
star
Layout generation using simulated annealing and A

Academic year 2023-2024

Master of Science in Electrical Engineering - Electronic Circuits and Systems

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Prof. dr. ir. Johan Bauwelinck, Caro Meysmans
Supervisors: Prof. dr. ir. Guy Torfs, Prof. dr. Xin Yin

Student number: 01902405
Jorne De Schepper

PREFACE

The author gives permission to make this master dissertation available for consultation and to copy parts of
this master dissertation for personal use. In all cases of other use, the copyright terms have to be respected,
in particular with regard to the obligation to state explicitly the source when quoting results from this master
dissertation.

Dankwoord

I would like to sincerely thank ir. Caro Meysmans for the many useful brainstorm sessions, amounting to im-
portant insights and for always being ready to offer assistance, regardless of the matter at hand. I also want to
express my gratitude to Prof. dr. ir. Guy Torfs for his pristine advice and for continuously challenging me, hence,
elevating my knowledge. Thanks to them, my masters dissertation has been completed, marking the pinnacle
with which I could conclude my education in electrical engineering. This awesome topic fulfilled my passion
for software design, while requiring my accumulated comprehension of electronics. The acquired insights will
accompany me into my budding career as an electrical engineer.

Also a huge thanks goes to my classmates for creating such a fantastic atmosphere and for always provid-
ing insightful ideas and critically exchanging thoughts.

Additionally, I want to thank my parents for always granting me the freedom to pursue my diploma in my
own determined and somewhat unorthodox manner. Lastly, I would like to thank Justine for her unwavering
support and trust, and for always listening to my extensive explanations (ramblings) about my thesis and all
other irrelevant topics.

Jorne De Schepper
23/05/2024

I

STATEMENT

This master’s dissertation is part of an exam. Any comments formulated by the assessment committee during
the oral presentation of the master’s dissertation are not included in this text.

II

ABSTRACT

This master’s dissertation is authored by Jorne De Schepper, supervised by Prof. dr. ir. Guy Torfs, Prof. dr. ir.
Xin Yin and counselled by Prof. dr. ir. Johan Bauwelinck and ir. Caro Meysmans. The dissertations involves
an automatic layout generator which employs simulated annealing and A-star and is submitted to obtain the
academic degree of Master of Science in Electrical Engineering - Electronic Circuits and Systems.

Abstract – This master’s dissertation proposes a design automation tool for analog or mixed-signal design
in CMOS technology. This layout generator was developed with the goal of being used together with an IC de-
signer. By introducing many design parameters, an optimal DRC-clean layout can be obtained tailored to the
precise requirements. Provided a well designed schematic, the primitives are extracted and drawn according to
the design rules. An optimization process employing simulated annealing, performs the routing and placement
simultaneously, minimizing the weighted cost of the global area and parasitic resistance of the metal traces.
This involves continuously introducing adaptations to the layout by executing actions. Moving primitives, over-
lapping interconnects, changing routing order are all examples of these actions which improve the cost. Each
time the actions are performed, the routing is executed. An improved A* algorithm allows connecting all nets by
following the path which adds the least parasitic resistance. The layout generator provides the engineer with
relevant data about each obtained layout. Besides that, a calibration process is available to normalize the cost.
This way the many design parameters can easily be adjusted. This is all demonstrated and verified by a typical
analog circuit, the operational amplifier.

Keywords – Layout generation, analog integrated circuits, electronic design automation, CMOS layout, simul-
taneous placement and routing

III

Automatic layout generation with simulated
annealing and A*

Jorne De Schepper - 01902405

Supervisors: Prof. dr. ir. Guy Torfs, Prof. dr. Xin Yin
Counsellors: Prof. dr. ir. Johan Bauwelinck, ir. Caro Meysmans

Abstract—This extended abstract proposes a design automation tool for
analog or mixed-signal design in CMOS technology. This layout generator
was developed with the goal of being used together with an IC designer.
By introducing many design parameters, an optimal DRC-clean layout can
be obtained tailored to the precise requirements. Provided a well designed
schematic, the primitives are extracted and drawn according to the design
rules. An optimization process employing simulated annealing, performs
the routing and placement simultaneously, minimizing the weighted cost of
the global area and parasitic resistance of the metal traces. This involves
continuously introducing adaptations to the layout by executing actions.
Moving primitives, overlapping interconnects, changing routing order are
all examples of these actions which improve the cost. Each time the actions
are performed, the routing is executed. An improved A* algorithm allows
connecting all nets by following the path which adds the least parasitic re-
sistance. The layout generator provides the engineer with relevant data
about each obtained layout. Besides that, a calibration process is available
to normalize the cost. This way the many design parameters can easily be
adjusted. This is all demonstrated and verified by a typical analog circuit,
the operational amplifier.

Keywords— layout generation, analog integrated circuits, electronic de-
sign automation, CMOS layout, simultaneous placement and routing

I. INTRODUCTION

ELECTRONIC design automation (EDA) has always been
pursued for analog integrated circuit (IC) design. As scaled

technologies become more and more complex, the constraints
on the layout increase too. The Design Rules Check (DRC)
deck for 28nm technologies consist of 10000 rules, therefore
automating layout design can aid an IC designer by drastically
cutting down the development time.

Aside from the digital counterpart, the design automation of
analog complementary metal-oxide-semiconductor (CMOS) de-
vices is less adopted, because fully automated designs limit the
control of the IC engineer, which is required for these cutting
edge designs. The performance requirements of these layouts
is too high and the EDA tools do not reach these high specifi-
cations. Therefore this thesis aims to provide a layout gener-
ator which allows total control by the IC designer. This way
the resulting layout can be tailored to the requirements of the
schematic.

The first step in generating an IC layout requires identifying
the primitives, such as a differential pair or a current mirror,
among the various device combinations. What follows is the
creation of the floor plan of these primitives, based of their spe-
cific design parameters. The primitive layout should incorpo-
rate optimization techniques like interdigiting structures, merg-
ing devices and improving matching by including symmetry.
The final and most influential step involves carefully routing and
placing the primitive devices to ensure the layout induces mini-
mal parasitic effects and meets the design specifications.

Many layout generators have been developed over the years
employing various approaches. In [5], [9], [8] a template-and-
grid based structure was utilised which involves primitive tem-
plates specific to a technology with predefined placement grids.
Two equal primitives in two different technologies will have the
same absolute coordinates but different placement grids. This
ensures that layout objects are placed consistently. After an opti-
mal placement, the routing is performed on-grid, symmetrically
across the templates containing the devices.

BAG2 [2] introduces a generative approach. Rather than de-
signing a single circuit instance, the designer encapsulates their
methodology in the form of an executable circuit generator. This
high level generator is able to produce schematics and layouts
from given input specifications. Utilizing these generators, de-
signers can implement fully automated design iteration loops.

In [4], [3] an optimization based method is developed in these
open-source, fully automatic layout generators. From an unan-
notated netlist, a hierarchical representation is obtained. From a
list of primitives templates, the optimal one is chosen and placed
via an analytical method which takes into account the many
constraints, which are captured from the netlist and the design
rules. This method minimizes parasitics and utilizes symmetry
and other layout conventions. The routing employs an integer
linear programming method to find the optimal path.

In contrast to current state-of-the-art layout generators, this
work proposes a layout generator which optimizes both place-
ment and routing simultaneously. The tool is meant to be
used aside an IC designer, allowing much outside control. The
schematic of an operational amplifier (opamp) will be used to
generate a layout and simulations are performed in Virtuoso.

Section II discusses the preliminaries and general concepts
employed by this layout generator. The third section III explores
the developed method to detect, place and route primitive cells.
Then results are displayed in section IV and conclusions are ad-
dressed in section V.

II. PRELIMINARIES

This layout generator is an extension of IDcircuits, an inhouse
developed tool to generate DRC-clean layouts of certain primi-
tives. The codebases uses Python to interface with Cadence Vir-
tuoso. A differential pair as generated by IDCircuits is shown
in figure 1. To achieve optimal matching, the transistors are
arranged symmetrically and enclosed by dummy devices. Addi-
tionally, a guard ring is added for proper isolation. Rails above
and below the layout primitive serve as interfaces for the inputs
and outputs of the primitive.

Fig. 1. Differential pair layout generated by IDcircuits

Fig. 2. Abstract representation of a differential pair primitive

In figure 2 the abstract representation of the same primitive
is displayed. The active area and the primitive level routing are
represented as a grey rectangle. The other rectangles represent
the rails. This abstraction provides simplification while contain-
ing the important information for the placement and router.

As the grey rectangle is DRC-clean, the only restrictions on
the layout are the relative placement of the primitive and the
metal traces. Primitives with different bulk biasing have to be
spaced apart and distinct traces and vias have to meet spacing
requirements as well. The spacing of these traces is seen as the
measurement unit for the grid structure, which is required for the
routing. This means that the abstraction quantizes the primitive
cell, with the smallest distance being 1: the metal spacing.

A. General search method

As the layout is obtained via an optimization algorithm a fig-
ure of merit is required to gauge potential layouts. However,
it is essential to understand that the concept of an optimal de-
sign is heavily reliant on the considered circuit. Optimal could
involve having shortest interconnects, the least surface area or
minimised parasitics. The employed cost is calculated as a
weighted sum of the total area and the parasitic resistance of
rails, traces and vias. These weights should fit the circuit re-
quirements.

The cost of the layout is being minimised by simulated an-
nealing (SA) [7], a well known global optimization technique,
which is able to avoid local minima. SA proposes a chaotic,
completely random starting position and performs actions to
lower the global temperature T . These actions perform random
changes to the placement with the goal of decreasing the cost.

This algorithm 1 implements SA for both placement and rout-
ing. An initial placement is routed, after which the cost and
amount of unrouted nets is calculated. Then actions alter this
initial configuration to obtain a new circuit, which is also routed
and evaluated. If the new layout has less unrouted nets, it is ac-
cepted as the current layout. Each time a new layout is adopted,

the temperature decreases: Ti+1 = αTi. If the current amount
of unrouted nets is equal, the cost of the new layout is compared
with the current one. A lower cost also means adopting the new
layout. This process is continued until T reaches Tend or the
iterations exceed the maximum amount.

To avoid local minima, uphill movement is introduced, by
accepting a layout with a higher cost. A Boltzmann distribution
1 determines by chance whether uphill movement is tolerated.

ε < e−∆C/Ti (1)

If the difference in cost is small, while the current temperature
is still quite high, the probability of uphill movement is high. As
the solution converges, this change decreases. It should be noted
that ε follows the normal distribution.

The choice of Tstart, Tend is crucial to determine how the
process converges. This interval and α determine how many im-
provements are required. These parameters have default values
[1], but can be changed by the engineer.

Algorithm 1 Simulated Annealing for placement and routing
T0 ← 100
Tend ← 0.01
α← 0.95
i← 1

P0 ← Initial placement
U0 ← route(P0) ▷ U : amount of unrouted nets
C0 ← cost(P0)
while Ti > Tend and i < 5000 do

Pi = Pi−1

performActions(Pi)
Ui ← route(Pi)
Ci ← cost(Pi)

Evaluate new placement Pi

if Ui < Ui−1 then
Ti = αTi−1 ▷ Accept new placement

else if Ui = Ui−1 then
if Ci < Ci−1 then

Ti = αTi−1 ▷ Accept new placement
else

∆C = Ci − Ci−1

if ε < e−∆C/Ti then ▷ ε ∼ U(0, 1)
Ti = αTi−1 ▷ Accept new placement

else
Pi = Pi−1 ▷ Reset placement

end if
end if

else
Pi = Pi−1 ▷ Reset placement

end if
i = i+ 1

end while

The actions require a random character and should increase
the diversity of obtainable layouts. Once again the designer de-
termines which actions are executed more frequently and also
how many actions a single iteration can perform at a time.

B. Routing

The A* algorithm [6] is employed to connect primitives. This
algorithm is able to find the shortest path, via a heuristic search,
while avoiding obstacles. A grid is traversed by visiting the
neighbours of the current node and assigning a score to them.
The next step is determined by finding the visited node with the
current lowest score. This score is the sum of the actual distance
from the start to the node and an estimate between the node and
the goal, which is calculated by a heuristic.

A* is very well known, however, out of the box it is not viable
for routing integrated circuits. Multiple adjustments are required
to allow A* to route an IC layout. The first limitation is that
it connects only 2 single nodes. Realistic IC routing involves
routing different nets, which often interconnect more than two
primitives. Besides the routing of more than two rails, plain A-
star is also not able to route whole rails. Therefore, a point on
the rails to be routed will have to be selected.

An IC routing algorithm also has to deal with different con-
straints on the present obstacles and traces. Plain A* simply
routes around present obstacles, which means the validation of
neighbouring nodes will have to be extended to ensure DRC
clean routing.

Aside from all the aforementioned limitations, the most lim-
iting factor is the 2D grid. The fact that IC routing uses multiple
layers, has implications on both the heuristic and exploration.
An IC layout should strive for straight interconnections, avoid-
ing zigzag routing as much as possible. A convention that is
employed in (digital) IC routing is using even and odd layers
for respectively vertical and horizontal movement or vice versa.
This convention allows to find the optimal path faster.

3D routing requires a heuristic other than the Manhattan dis-
tance, due to the introduction of vias. The ’distance’ between
two metal layers is not the same as the distance between two
nodes, due to the vias adding more resistance. Besides that,
higher metal layers add less resistance for the unit distance,
which means the distance between two cells changes too.

III. IMPLEMENTATION

A. Primitive detection

The first step is to detect the primitives present in the
schematic. The detection logic revolves around recognising pat-
terns associated with various primitives and determining which
combinations of devices correspond with which specific primi-
tive. A dictionary stores the nets connected to each terminal of
each MOSFET, the specific transistor type and whether the gate
contains a digital net.

The algorithm iterates over the dictionary and performs se-
quential checks on the devices. If a condition is fulfilled, the
devices and transistor type are assigned to the corresponding
primitive. Detected devices are removed from the iteration.

The first condition verifies whether the current device is a
dummy. Dummy devices are single transistors which have the
ground net or supply net at each terminal.

The next checks examine if the current device is the input
device of a current mirror. The detection is based upon the pres-
ence of a diode-connected device, i.e., the gate and drain are

shorted. All devices sharing the gate connection are included in
the current mirror. An example of a current mirror and a dummy
device are shown in figure 3.

input

Fig. 3. Left: nmos current mirror bank; Right: nmos dummy device

Another current mirror variant that can be detected is shown
in figure 4. This primitive is found when the transistor M0 is
present, which source is connected to the drain of M1 and which
drain is shorted with the gate of M1. The primitive consists of
these two devices and the others which share M1’s gate signal.

M1

M0

Fig. 4. Left: nmos current mirror variant; right: differential pair

The differential pair is the last dedicated circuit which can be
detected and is shown in figure 4. If the previous conditions
are not fulfilled this primitive is detected next. If devices of the
same type share the same source connection, a differential pair
is identified.

The remaining unassigned devices are estimated to be a cas-
code or switch. If the net at the gate is a digital net, the single
transistor will be classified as a switch, if not a cascode. It is up
to the engineer to verify these choices.

A final, but important addition to the detection algorithm, al-
lows the layout generator to use cells with predefined layouts,
e.g., an inverter. Such a predefined layout can be drawn by a
designer or even IDcircuits. The designer has two choices to
submit such a layout. One can adopt the abstraction convention
and have rails above and below the cell, if the nets are known to
the layout generator, this primitive behaves like any other. The
other option requires introducing a primitive which has pins at
predefined locations. This would then be a cell without rails, but
with fixed pins which require routing.

B. Actions

The placement is done in a seemingly infinite, quantised
space. Primitives are defined by bounding boxes and a list of
Rail objects. These bounding boxes enable quick and simple
detection of overlapping cells and allow for padding to take into
account well spacing. Initial placement is performed by select-
ing a random position for each cell and verifying it does not
collide with other cells. Then various actions can be performed
to improve the initial layout. It should be noted that after each
action the actual gridsize is changed to the enclosing bounding
box, to limit memory occupation and increase routing perfor-
mance.

The most obvious action is moving a cell. This involves
choosing a cell and changing its position. Three variants ex-

ist. The first one limits the available space to the surrounding
bounding box of all cells. This variant optimizes the layout in
later stages, because only precise movement is allowed. The
second variant allows each cell to be placed everywhere, by in-
creasing the grid size by the dimensions of the cell that shall be
moved. The final variant only influences cells with overlapping
rails. It allows the cell to move horizontally along its rails, to
improve the amount of overlap.

Another action is responsible for changing the order of the
rails of a primitive. This action can swap two individual rails or
change the position of a single one. The outer rails remain in its
place if they overlap with other rails. This action is also able to
flip a cell, by change the position of each rail to the other side
of the primitive. A designer can specify if a cell has rails which
do not allow this behavior. For example the tail current of a
differential pair cannot be placed on the same side of a primitive
as the other rails.

Besides rails, cells can be swapped as well. This action se-
lects two cells at random. Based of the position of the cells an
anchor point is determined, from which the new position can
be calculated. This anchor is the corner of the cell closest to
the center of the grid. The two cells simply move to their new
position. If, due to the swap, two cells overlap, the cell at this
location is moved away. It follows the direction that requires the
least movement to avoid any overlap

The most influential action has been mentioned a few times,
due to its impact on the other actions. It is the action that merges
the rails of cells carrying the same net. This action has the most
potential to lower the cost at the later stages of the algorithm,
as the parasitic resistance is reduced a lot. Merging cells means
that the two rails overlap, sharing the signal. The amount of
cells that can merge is unlimited, as long as no shorts happen.
Also a single rail can be shared by multiple cells and two cells
can have more then one overlapping rail.

While this action is very useful, it comes with complex im-
plementation. Balancing this action is difficult, as the actions
should be very random and simple. However, this action, be-
sides reducing the parasitic resistance, moves cells and swaps
rails, which takes away the responsibility of the other actions.

The merging is done by analyzing the cells above and below
the selected cell. If they have common nets, the potential de-
crease in cost is calculated. These cells are referred to as merge
candidates. Three cases can be abstracted:
Case 1 The selected cell is not merged with other rails. The
rails of the first candidate can be merged onto the selected cell
without problems and case 3 is the next step. If not, case 2 is.
Case 2 When the selected cell is already merged with another
cell, the cost reduction of the current merged rails is calculated.
If this is lower than the new reduction in cost, the selected cell
is unmerged and remerged with the first candidate. Either way,
case 3 is considered.
Case 3 At this point the current cell is already merged on at
least one side. If the other side is already merged, the algorithm
ends. If not, the candidates are reanalyzed for the yet unmerged
rails of the selected cell. The best candidate is then merged.

The two remaining actions influence the routing, one action
changes the order in which the nets are being routed. The other

Fig. 5. Temporary placement; the two left cells are merged along the red net

Fig. 6. The new layout is improved. The two cells on the right are swapped.
Each one of them also underwent the swap rails action, both cases are dis-
played. The merge variant of the move action was performed on one of the
cells with the merged rails.

one changes how many metal layers are available for the router
to use. All these actions introduce a lot of creativity and diver-
sity to the placement and routing of the cells. An example of
some actions can be seen in figure 5 and 6.

C. Routing

Each iteration, the layout is routed after executing the actions.
Before that happens, the cells are repositioned to ensure their
position resembles indices in the routing grid. These positions
are filled with certain values representing primitives or nets:
0 Unoccupied routeable space
1 Do not route, this represents space occupied by the primitives
2 This represents space occupied by the primitives, which allow
interconnections above the devices
3-9 Placeholder values
10-999 These values represent traces carrying net, 10 represents
the first net
1000- ... These numbers represent a via, 1000 represents the
same net as 10 does for the traces

The original heuristic, the Manhattan distance, was inter-
changed for the added parasitic resistance. The sheet resistance
for the current metal layer is multiplied by the distance cov-
ered in that layer. The resistance of the vias has to be added for
the difference in metal layers and for the turns. This heuristic
determines how the grid is explored and is crucial in efficient
exploring and performance.

When two rails are being connected, custom logic determines
the optimal point on each rail, which will be connected by the
improved A* algorithm. This is based on the relative positions
of both cells. Most of the time, the outer points on both rails
which are closest together are selected. However, some cases
require the selection of a specific point on the rail.

The next limitation which requires custom logic is when a net
connects more than two primitives. A general search method is
required to solve this problem. The layout generator employs a
greedy algorithm, that approaches optimal routing, while keep-
ing the amount of executions of the routing algorithm at a min-
imum. This method connects all the rails sequentially, based on
which rail has the current shortest distance to the present traces
of this net. This current shortest distance is estimated by the
heuristic. This will not always provide an optimal result, but it
is the task of SA to make sure the correct cells are close together
in which case this algorithm has optimal performance.

Figure 7 demonstrates how the greedy algorithm operates.
The red connection is made first, as it connects the two rails
of the blue net via the path, which has the lowest cost. Then the
remaining rails are routed onto the present traces, based on the
respective routing cost.

To deal with the additional constraints, an extensive valida-
tion is required before exploring a node. This involves checking
the following conditions in order on the neighbours of the se-
lected node.
• Is the neighbour colliding with a primitive
• Is the neighbour not free space or metal with the same net
• Is the neighbour outside of the grid boundaries

The order is established to ensure the most frequent failing
condition is verified first, to reduce execution time. The con-
straints are validated in the method validMove, employed by
the final improved A* algorithm 2.

The A* algorithm is the most executed part of the layout gen-
erator. Each iteration of SA requires many calls to the router.
Therefore, a lot of time went into optimizing the algorithm.
However, as a larger schematic contains more rails and more
nets, the amount of time the router is executed increases. Be-
sides that, the routing algorithm also scales bad for larger grids,
as it takes a longer time to route cells which are further apart.

The most effective way to enhance the performance of the
layout generator is consistently performing actions that lower
the cost. Hence, the amount of iterations is minimised. If the ac-
tions do not lower the cost, the calls to the router do not amount
to anything. This can be improved upon by the designer, by

Fig. 7. Greedy routing on the blue net. Order of adding traces: red, purple,
yellow, green

choosing an optimal configuration for the framework.

Algorithm 2 Improved A* algorithm
function AstarImproved (grid, start, goal, netV alue)
moves← [[(1, 0, 0), (1, 0, 0), (0, 0, 1), (0, 0,−1)],

[(0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)]]

if grid.layers = 1 then
moves← [[(0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)],

[(0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)]]
end if
closedSet = set()
cameFrom = Dict[(int, int, int)] = (int, int, int)
gScore = Dictionary[start] : 0 ▷ Default value is infinity
fScore = Dictionary[start] : heuristic(start, end)
openList = [(fScore[start], start)]
while openList not empty do

curr = openList.pop()[1]
if cur in closedSet then

continue
end if
if cur = end then

return reconstructPath(cur)
end if
for dx, dy, dz in moves[cur.z mod 2] do

neighbour = (cur.x+ dx, cur.y + dy, cur.z + dz)
if neighbour in closedSet then

continue
end if
if ¬validMove(neighbour) then

continue
end if
tentativeG = gScore[cur] + dist(cur[0], dz)
if tentativeG > gScore[neighbour] then

continue
end if
cameFrom[neighbour] = cur
gScore[neighbour] = tentativeG
fScore[neighbour] = tentativeG +

heuristic(neighbour, end)
openList.push((fScore[neighbour], neighbour))

end for
end while
return []

end function

IV. RESULTS AND USAGE

With the many degrees of freedom and the huge variety in
available circuits, the results of the layout generator can differ
a lot. A simplified operational amplifier circuit was studied to
gauge the influence of the parameters. Figure 8 shows an opti-
mal configuration obtained for the default annealing parameters.
To balance the influence of the area and parasitic resistance a fast
calibration method is provided. By finding the cost for the opti-
mal area and the optimal parasitic resistance, both contributions
to the cost can be normalised. These values are found by first
executing the algorithm without the router. Then this result is

Fig. 8. Optimal result of the layout generator for simplified opamp circuit

used as the initial placement for a second run of the algorithm,
which only takes into account the parasitic resistance.

The recommended method to find fitting values for the
weights of the actions is by doing manual adjustments based
on previous runs. Each run provides the engineer with data for
these actions which can be used as feedback. In general for each
iteration of the simulated annealing, the current cost and temper-
ature is stored, together with the performance of each action.

However, the annealing parameters are more influential on
the behavior of the layout generator. By executing the algorithm
multiple times for different configurations, it is clear that for
α = 0.98, the algorithm performs the best. The distributions of
the cost for different values for α are shown in figure 9. The cost
is the lowest on average and the difference between the worst
and best results is also the smallest. The downside is that the
results require a very high number of iterations to reach Tend.

The temperature interval [Tstart, Tend] can also be tweaked to
obtain different results. A smaller Tend will obtain very precise
results, but less uphill movement is allowed in later stages. A
higher Tstart will mean the early stage is very random as all the
uphill movement will be allowed for these high temperatures.
Changing the ratio of the start and end temperature will change
the amount of improvements required, as well as the behavior
of dealing with the local minima. The designer is tasked with
configuring the layout generator, as its specifics are contingent
upon the circuit being designed.

Fig. 9. Distribution of the cost for different α

Fig. 10. Final layout of the operational amplifier

A final layout is shown in figure 10 and displays an optimal
DRC-clean layout of an operational amplifier in Virtuoso. The
spacing for primitives with different bulk biasing and the con-
straints on the rails of the differential pair are taken into account.

V. CONCLUSION

Overall, this layout generator achieves precise routing and
placement via simulated annealing and an improved A* algo-
rithm. An operational amplifier was extensively studied to eval-
uate the performance of this tool, which extends the capabili-
ties of IDcircuits, a python framework for automatic layout gen-
eration. By simplifying the available primitives, an optimiza-
tion procedure was developed to simultaneously place and route
these primitives. As the layout generator is meant to be used
together with a designer, the framework allows a script and a
configuration file to control the resulting layouts. The influence
of these parameters is clarified and a calibration method is pro-
vided to accurately gauge the layouts based on the enclosing
area and parasitic resistance.

REFERENCES

[1] Noraziah Adzhar and Shaharuddin Salleh. “Simulated Annealing Tech-
nique for Routing in a Rectangular Mesh Network”. In: Modelling and
Simulation in Engineering 2014 (Dec. 2014).

[2] Eric Chang et al. “BAG2: A process-portable framework for generator-
based AMS circuit design”. In: 2018 IEEE Custom Integrated Circuits
Conference (CICC). 2018, pp. 1–8.

[3] Hao Chen et al. “MAGICAL: An Open-Source Fully Automated Analog
IC Layout System from Netlist to GDSII”. In: IEEE Design & Test 38.2
(2021), pp. 19–26.

[4] Tonmoy Dhar et al. “ALIGN: A System for Automating Analog Layout”.
In: IEEE Design & Test 38.2 (2021), pp. 8–18.

[5] Jaeduk Han et al. “LAYGO: A Template-and-Grid-Based Layout Gener-
ation Engine for Advanced CMOS Technologies”. In: IEEE Transactions
on Circuits and Systems I: Regular Papers 68.3 (2021), pp. 1012–1022.

[6] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”. In: IEEE Transac-
tions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. In: Science 220.4598 (1983), pp. 671–680.

[8] Ricardo Martins, Nuno Lourenço, and Nuno Horta. “LAYGEN
II—Automatic Layout Generation of Analog Integrated Circuits”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 32.11 (2013), pp. 1641–1654.

[9] Taeho Shin et al. “LAYGO2: A Custom Layout Generation Engine Based
on Dynamic Templates and Grids for Advanced CMOS Technologies”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 42.12 (2023), pp. 4402–4412.

Contents

1 Introduction 1

2 Environment 3

3 Proposed Concepts 5
3.1 Primitive detection 5
3.2 Placement and Routing 9

3.2.1 Placement via Simulated Annealing 10
3.2.2 Routing with A* 14

4 Implementation 17
4.1 Architecture 17

4.1.1 Cell 17
4.1.2 Bounding Box 18
4.1.3 Rail 19
4.1.4 Router and Grid 21

4.2 Initializing Grid and Router 22
4.3 Actions 26

4.3.1 Dealing with collision 26
4.3.2 Moving cells 30
4.3.3 Swapping Rails 32
4.3.4 Swapping Cells 37
4.3.5 Merging Cells 40
4.3.6 Minor Actions 43

4.4 Overcoming Limitations of the routing algorithm 44
4.4.1 Point on rail 44
4.4.2 Heuristic and pathing 47
4.4.3 Greedy routing 47
4.4.4 Valid move 50

4.5 Improved A* 51
4.6 Performance and optimization 52

5 Usage 53
5.1 Calibration and determining parameters 53

5.1.1 Actions 53
5.1.2 Calibration 54
5.1.3 Annealing parameters 58

6 Conclusion and Future Works 64
Biliography 67

X

List of Figures

2.1 Layout of a differential pair primitive 4
2.2 Representation of the abstracted differential pair primitive 4
2.3 Schematic and sizing of the operational amplifier 4

3.1 Opamp schematic with annotated nets 5
3.2 Current mirror bank 8
3.3 Cascoded current variant 8
3.4 Differential Pair 8
3.5 DRC clean layout for the opamp circuit. 10
3.6 Placement where swapping and moving cells does not amount to a lower cost 13
3.7 Actual optimal configuration 13

4.1 Cell representation 18
4.2 Coordinates of a bounding box 18
4.3 Demonstration of overlapping or merged rails 19
4.4 Random placement of cells 22
4.5 Demonstration of grid resizing and changing the cell position before the routing 25
4.6 Demonstration of evacuateCell. Cell 2 should be moved out of the way. The distances

for each cardinal direction is displayed. Moving to the right is the best option, as it is distance
10 away. The top right and bottom left coordinates are displayed for each cell. 26

4.7 Evacuation of a single cell, only moves the section containing the cell. Cell 3 retains the same
position relative to cell 2 27

4.8 When multiple cells collide, the full width or length is considered when moving cells aside. 28
4.9 Two distinct evacuations are required, which results in cell 3 moving twice. 28
4.10 The cell in the bottom right is moved, but has very little space to displace to. 30
4.11 The cell in the bottom right is moved after a refit, the cell can be placed everywhere 30
4.12 Example of both cases of the swap rail action; The left cell swaps the two rails and the right

cell changes the position of the blue rail. 32
4.13 Demonstration of swapping rails. The determining of the indices list is visualised in detail 33
4.14 Example of both cases of the swap rail action 34
4.15 Short after swapping rails 36
4.16 Initial configuration 37
4.17 Simple swap action concerning cell 3 and 5 38
4.18 Anchor and new bounding boxes when swapping cell 1 and 4 38
4.19 Cell 5 moved out of the way to make place for cell 1, cell 4 could move without any problems 38
4.20 Different swap anchors based of the quadrants, always the point closest to the center of the

grid. The crossing of the axes denotes the center of the grid. 39
4.21 2 examples of 2 cells merging 40

XI

4.22 Merge example in an extreme case, showing off the correct way to merge all the cells in the
vicinity of the selected cell in the center. The cell at the bottom lowers the parasitic resistance
themost, but is notmerged due to the final combination amounting to lower parasitic resistance. 41

4.23 Demonstration of merge actions 42
4.24 Two cases for selecting the correct point on a rail, the first example on the left has no over-

lapping x coordinates 44
4.25 Two cases where the two points closest together are chosen, the rail in the middle is part of

the smaller length cell and this cell is completely overlaps on the x axis. 45
4.26 Two cases where the routing can go next to the cell with the smaller length. 45
4.27 Example of routingmultiple rails at once. The interconnects are added as follows: red, purple,

yellow, green. 48

5.1 Subblocks of simplified opamp, showing optimal area configuration. Bulk potential and strict
rail configuration of differential pair are not taken into account. Area: 8910 53

5.2 Two layouts underwent the same action: the cell on the right moved down to a new position
adjacent the other cell, previous position is shown as a faded cell. The change in area and
length is given. 55

5.3 2 possible layouts with similar cost (Area + Length) 55
5.4 Simplified opamp with optimal length layout. Length: 288, Area: 11560 56
5.5 Simplified opamp with optimal layout. Cost: 622, Length: 305, Area: 9828 57
5.6 58
5.7 Cost evolution of five best results. Legend displays final cost and amount of iterations 59
5.8 Cost evolution of five worst results. Legend displays finals cost and amount of iterations 59
5.9 Cost distribution for different values of α 60
5.10 Optimal generated by the framework. Cost: 626, Length: 311, Area: 9735 61
5.11 Optimal generated by the framework. Cost: 627, Length: 326, Area: 9291 61
5.12 For similar amount of improvements, different configurations are displayed 62
5.13 For α = 0.95, the cost boxplot for different temperature intervals is displayed. 63
5.14 Layout in Virtuoso of an opamp. The n-well spacing is taken into account, as well as the

constraints on the rails of the differential pair 63

6.1 Less optimal layout, which requires additional action to improve 65
6.2 Almost optimal layout, which can benefit from a new action 66

XII

List of Tables

4.1 Cell architecture 18
4.2 Bbox attributes, x1 < x2, y1 < y2 18
4.3 Rail attributes, x1 < x2 19
4.4 Grid properties 21
4.5 anchor of a cell after swapping with another cell based of the anchor of the other cell 39

5.1 Default weights for the actions of the placement algorithm 54
5.2 Improvements required to divide temperature by 10. This would mean finding x for 10 ×

αx = 1 60

XIII

LIST OF ALGORITHMS

1 findNetAtTerminal, findDevicesAtNet . 6
2 Detection of primitives . 7
3 Placement algorithm based of simulated annealing . 11
4 perform Actions . 14
5 original A* Algorithm . 16

6 Bounding box collision . 19
7 Length of overlapping rails . 20
8 Update the parameters of the rails after any action is executed 20
9 Initialize placement . 23
10 Reset Dimensions . 24
11 handle evacuation of cells . 29
12 Basic move action and refit move action. 31
13 Move action for merged cells, which restrict to horizontal movement 32
14 Custom logic which finds the available indices for the selected rail 34
15 Swap Rail action for cells with no stricts rails . 35
16 Overlap cells . 43
17 Find points on two rails which are optimal to connect. rail1.y<rail2.y 46
18 Calculate via cost . 47
19 Greedy algorithm for routing multiple rails . 49
20 Valid move . 50
21 Improved A* algorithm . 51

XIV

1 INTRODUCTION

Electronic design automation (EDA) has always been pursued for analog integrated circuit(IC) design. As scaled
technologies become more and more complex, the constraints on the layout increases too. The Design Rules
Check (DRC) for 28nm technologies consist of 10000 rules, therefore automating layout design can aid an IC
designer by drastically cutting down the development time.

Aside from the digital counterpart, the design automation of analog complementarymetal-oxide-semiconductor
(CMOS) devices is less adopted, because fully automated designs limit the control of the IC engineer, which is
required for these cutting edge designs. The performance requirements of these layouts is too high and the EDA
tools do not reach these high specifications. Therefore this thesis aims to provide a layout generator which is
scripted by an IC designer. This way the resulting layout can be tailored to the requirements of the schematic,
because a lot of outside control is introduced.

The first step in generating an IC layout requires detecting the devices inside a schematic and selecting the
combination of devices which sum up so called primitives, like a differential pair or current mirror. What follows
is the creation of the floor plan of these primitives, based of their specific design parameters. The base block
design should incorporate optimization techniques like interdigiting structures, merging devices and improv-
ing matching by including symmetry. The final and most influential step involves carefully routing and placing
the primitive devices to ensure the layout inducesminimal parasitic effects andmeets the design specifications.

In literature many different layout generators have been proposed, each one employing different concepts
and algorithms. One of the types of layout generators are template-and-grid-based [6],[12], [11]. They use
primitives specific to the technology which have predefined placement grids. These placement grid consists
of regularly spaced points or cells, where each cell corresponds to a specific area on the chip. By aligning
template instances with the grid, the generator ensures that layout objects are placed consistently. The routing
is performed on-grid, symmetrically across the templates containing the devices. The placement is done by
using the knowledge of previously designed layouts to define relative placement constraints. The routing is
done as the last step utilizing an appropriate optimization engine.
LAYGEN II specifically extracts primitives from a thorough list of information and requirements of the nets. And
extracts a so called nonslicing B*-tree to perform the placement. By utilizing a packing algorithm a position
for the templates is derived. The routing step is performed using an optimization based algorithm called an
evolutionary algorithm.

BAG2 [3] introduces a generative approach. Rather than designing a single circuit instance, the designer
encapsulates their methodology in the form of an executable circuit generator. This high level generator is able
to produce schematics and layouts from given input specifications. Utilizing these generators, designers can
implement fully automated design iteration loops.

ALIGN [5], and MAGICAL [4] are optimization based layout generators. Both are developed in an open-source
environment. ALIGN has a very large pool of primitive cells which each have multiple layouts. ALIGN fully
automates the process by accepting an unannotated net list as input. By incorporatingmachine learningmodels
it annotates the netlist, and generates the specific constraints relative to the circuit and technology. Based of the

1

generated constraints and netlist, the corresponding primitives are chosen, placed and routed. Implementing
multiple optimization techniques to perform the placement and routing for advanced technologies employing
FINFET devices, like a sequence-pair method and A-star routing.

MAGICAL is another fully automated IC layout framework. By extracting layout constraints, concerning for
example symmetry, of a given netlist the parameters for placement and routing are found. The analog place-
ment uses an analytical framework to satisfy the generated constraints and an integer linear programming
(ILP) algorithm for the global routing. The detailed routing is performed with an adaptation of the A* search
algorithm. This way they generate high performing, symmetrical analog layouts.

This thesis presents a layout generator which produces layouts for single-ended circuits. The layout genera-
tor combines the routing and placement, by utilizing a generative and optimization based approach. Simulated
Annealing (SA) performs the placement of primitives based of specific technology design rules, while an im-
proved A-star(A*) algorithm takes care of the routing simultaneously. The preliminaries such as environment,
tools and testing circuit required for this layout generator are described in chapter 2. Then the main concepts
of the proposed design are discussed in chapter 3. Chapter 4 dives into the actual implementation, describing
the architecture and algorithms which make up the placer and router. Chapter 5 discusses the performance and
usage of the layout generator. A conclusion and future works conclude this thesis in chapter 6.

2

2 ENVIRONMENT

This chapter delves into the required tools and concepts to convert a schematic into an optimal layout.

To evaluate the performance of the developed algorithms, two sets of schematics were utilised. The first set
consists of randomly generated schematics, which may not accurately reflect realistic functional circuits. These
schematics were employed to test the various tools for a wide range of inputs. However, caution is necessary
to prevent the unrealistic nature of some inputs from leading to unnecessary assumptions and optimizations.

The second set comprises of an operational amplifier (opamp). This circuit was employed to gauge the per-
formance of the layout generator. The influence of the design parameters were explored by analyzing many
layouts for different configurations.

While the developed tools and concepts are technology-agnostic, the IHP SG13 technology was used during
the development of the layout generator. Hence, when applying the framework to other technologies, it is
expected that slightly different configurations of the algorithms may be required to account for the differences
in design rules.

To programmatically interface with Virtuoso, the SKILL language was developed by Cadence. However, most
engineers are not familiar with using this scripting language. Luckily Skillbridge exists, which serves as a bridge
between Python [13] and Skill, allowing full control over Virtuoso in Python.

The layout generator is not a stand alone project, as it builds further upon IDcircuits, an inhouse developed
tool to generate layouts of certain primitives. This thesis aims to extend IDcircuits to automatically detect, place
and route these primitives. These primitives are for example a differential pair or a current mirror. These can
be generated given a set of primitive-specific design parameters and the resulting layouts are DRC clean. This
thesis does not aim to do routing and placement on device level, thus primitives are seen as a black box.

Figure 2.1 shows the layout of a differential pair, as generated by IDCircuits. To achieve optimal matching, the
transistors are arranged symmetrically and enclosed by dummy devices. Additionally, a guard ring is added for
proper isolation. Rails above and below the layout primitive serve as the inputs and outputs of the primitive. In
the following discussion an abstract representation of the layout primitive is used, as shown in Figure 2.2. The
active area and the primitive level routing are simplified as a grey rectangle. The other rectangles represent the
rails to interface with the transistors. Before chapter 4, the colours of the rails represent a certain net. When
the results and usage is discussed the colours represent a metal layer.

The employed operation amplifier is a single-ended, two-stage, operational amplifier. The corresponding
schematic can be seen in figure 2.3. The transistor dimensions can be seen on the figure, where the labels
represent the width/length. These dimensions were obtained, using pre-computed lookup tables [9]. This de-
sign provides a good starting point for the layout generator as it contains 5 simple building blocks: a NMOS
differential pair, 2 NMOS current mirror, 2 PMOS current mirrors.

3

Figure 2.1: Layout of a differential pair primitive

Figure 2.2: Representation of the abstracted differential pair primitive

2u/400n2u/400n

15u

6.5u/400nVin- 6.5u/400n Vin+

6.5u/700n13u/700n

4u/1.5u

6.5u/400n 6.5u/400n

Vout

4u/1.5u

Figure 2.3: Schematic and sizing of the operational amplifier

4

3 PROPOSED CONCEPTS

This chapter explores the proposed concepts of the primitive detection, and the simultaneous optimization of
placement and routing. As a starting point, a schematic with proper sizing is assumed.

3.1 Primitive detection

The first step is to detect the primitives present in the schematic. The detection logic revolves around recognis-
ing the patterns associated with various primitives and determining which combinations of devices correspond
with which specific primitive. A dictionary stores the nets connected to each terminal of each MOSFET, the spe-
cific transistor type and whether the gate contains a digital net. This way all connections between the devices
can easily be retrieved. To demonstrate how this works the opamp is redrawn in figure 3.1, the corresponding
net of each wire is annotated.

M0net1M9

M1

net2

Vin- M2 Vin+

M3

net3

net5

M4

M7

net4

M5 M6

Vout

M8

Figure 3.1: Opamp schematic with annotated nets

5

devices = {
M1:{type:nmos, S:net2, G:Vin-, D:net3},
M2:{type:nmos, S:net2, G:Vin+, D:net4},
M3:{type:pmos, S:Vdd, G:net3, D:net3},
M4:{type:pmos, S:Vdd, G:net3, D:net5},
M5:{type:pmos, S:Vdd, G:net4, D:net4},
M6:{type:pmos, S:Vdd, G:net4, D:Vout},
M7:{type:nmos, S:gnd, G:net5, D:net5},
M8:{type:nmos, S:gnd, G:net5, D:Vout},
M9:{type:nmos, S:gnd, G:net1, D:net1},
M10:{type:nmos, S:gnd, G:net1, D:net2}}

Thedevices dictionary stores for each device its type and the nets at each terminal. Two extra utility methods
are employed: findNetAtTerminal, findDevicesAtNet of which the pseudocode is shown in 1.

Algorithm 1 findNetAtTerminal, findDevicesAtNet

function findNetAtTerminal(net, terminal, devices)
result← []
for all name, nets in devices do

if nets[terminal] = net then
result.append(name)

end if
end for
return result

end function
function findDevicesAtNet(net, devices)

result← Dictionary[str, List]
for all name, nets in devices do

terms← []
for all term, curNet in nets do

if curNet = net then
terms.append(term)

end if
end for
result[name] = terms

end for
return result

end function

The current implementation only detects differential pairs and 2 variants of current mirrors, as other prim-
itives are not available yet in IDCircuits. Nonetheless, the algorithm could easily be extended to include more
advanced primitives. Primitives which could not be detected, are either classified as a cascode or a switch,
depending on the nature of the gate voltage.

The algorithm for the primitive detection is shown in 2.

6

Algorithm 2 Detection of primitives

function detectPrimitive(devices)
unassigned← devices.keys
primitives← []
for all name, type, nets in devices do

if ¬(name in unassigned) then
continue

else if nets[S] = nets[G] = nets[D] then
primitives.append((type, Dummy, [name]))
unassigned.remove([name])

else if nets[G] = nets[D] then
atGate←findNetAtTerminal(nets[G], G, devices)
primitives.append((type, CurrentMirror, [name, atGate]))
unassigned.remove([name, atGate])

else if findNetAtTerminal(nets[D], S) = findNetAtTerminal(nets[G], D) then
atGate←findNetAtTerminal(nets[G], G, devices)
atDrain←findNetAtTerminal(nets[D], S, devices)
primitives.append((type, CurrentMirrorVariant, [name, atGate, atDrain]))
unassigned.remove([name, atGate, atDrain])

else
atSource←findNetAtTerminal(nets[S], S, devices)
if length(atSource) = 1 then

primitives.append((type, DifferentialPair, [name, atSource]))
unassigned.remove([name, atSource])

end if
end if

end for
for all name in unassigned do

if devices[name][G] has digital nature then
primitives.append((type, Switch, name))

end if
primitives.append((type, Cascode, name))

end for
return primitives

end function

7

The algorithm iterates over the dictionary and performs sequential checks on the devices. If a condition
is fulfilled, the devices and transistor type are assigned to the corresponding primitive. Detected devices are
removed from the iteration.

The first condition verifies whether the current device is a dummy. Dummy devices are single transistors
which have the ground net or supply net at each terminal.

The next primitive being detected is a standard current mirrors. This is based upon the presence of a diode-
connected device, i.e., the gate and drain are shorted. All devices sharing the gate connection are included in
the current mirror. An example of a current mirror bank is shown in figure 3.2.

input

Figure 3.2: Current mirror bank

Another current mirror variant that can be detected is show in figure 3.3. This primitive is found when the
transistor M0 is present, which source is connected to the drain of M1 and which drain is shorted with the gate
of M1. Then the primitive consists of these two devices, together with the other transistors carrying the gate of
M1 at their own gate.

M1

M0

Figure 3.3: Cascoded current variant

The differential pair is the last dedicated circuit which can be detected and is shown in figure 3.4. If the
previous conditions are not fulfilled this primitive is detect next. Devices of the same type, which share the
same source connection are classified as a differential pair.

Figure 3.4: Differential Pair

The remaining unassigned devices are estimated to be a cascode or switch. If the net at the gate is of a digital
nature, the signle transistor will be classified as a switch, if not a cascode. It is up to the engineer to verify these
and all the other detected primitives.

A final, but important addition to the detection algorithm, allows the layout generator to use cells with
predefined layouts, e.g., an inverter. Such a predefined layout can be drawn by a designer or even IDcircuits.
The designer has two choices to submit such a layout. One can adopt the abstraction convention and have rails
above and below the cell, if the nets are known to the layout generator, this primitive behaves like any other.
The other option requires introducing a primitive which has pins at predefined locations. This would then be a
cell without rails, but with fixed pins which require routing.

8

3.2 Placement and Routing

Having detected the different subblocks inside a circuit, placing and routing these primitives is the next step.
The final layout should be DRC clean and as optimal as possible. Optimal could involve having shortest inter-
connects, the least surface area or minimised parasitics. However, it is essential to understand that the targeted
performance metric depends heavily on the considered circuit. Hence, the IC designer must be allowed to tailor
the algorithm to optimize for the desired performance metric. The main objective of the layout generator is to
provide the engineer with quick and proficient starting point, which allows easy finetuning.

As the layout is obtained via an optimization algorithm a figure ofmerit is required to gauge the performance
of a specific configuration. This figure of merit is a cost function, where a lower cost corresponds to an optimal
design. It is calculated as a weighted sum of the total area of the layout and total added parasitic resistance
of the rails, traces and vias. The second comes down to minimizing the routing or choosing the path with least
resistance between two rails.

The final product will be discussed in depth. The algorithms went trough multiple iterations, each one im-
proving on previous designs to reach the final goal of generating an optimal, DRC-clean IC layout. This involves
routing and placing layouts of primitives on a grid with multiple layers, up to 4. The subblock routing happens
on a base layer, below the routeable layers, with the rails of these subblocks exposed on the first available layer.
The aforementioned grid is assumed infinite, for the cells can be placed everywhere. The pitch of this grid is
defined as 1. This unit distance is the smallest size of anything in the layout, meaning that the minimal width of
a trace is 1 and the smallest spacing between different primitives is 1 as well. This results in a quantised layout,
which is necessary to limit memory usage and computation time. A smaller pitch would mean increasing the
total grid size.

This quantization also influences the design rules. It is crucial that the placement and routing obliges to these
technology-specific constraints. As the primitive layouts, drawn by IDcircuits, are DRC-clean, the placement and
routing only needs to consider the relative placement of the primitives, metal traces, and vias. All these design
rules require to be quantised, to correspondwith the pitch. Hence, the unit distance 1 is translated to theminimal
spacing between two metal traces, as this is the most stringent constraint.

The constraints for relative placement of vias and traces depend on the specific metal layer. This is disad-
vantageous for the routing, as this would mean that different layers behave on different pitches and that the
unit distance 1 is not equal for these layers. To avoid this, the layout generator assumes that 4 metal layers
with the same relative spacing and minimal width are available. If this is not the case, the amount of metal
layers can be easily reduced.
The relative placement between subblocks also has to oblige to design rules. Primitives can be placed next to
each other if their bulk is biased to the same potential and the devices inside the primitive have the same type
(N or P type devices). If this is not the case, the cells have to be spaced apart correctly.
Besides relative placement, it is obviously required to avoid shorts and open or unrouted nets. It is the task of
the router to make sure no metal traces carrying different signals touch each other and that each net is routed
to avoid opens. If it does happen, the placer can detect these erroneous layouts.

To give an idea of what a general layout of the opamp looks like, one could analyze figure 3.5. Here, the
spacing between the N and P cells is clear. This layout is definitely not optimal, but it displays a DRC clean
layout. For the remainder of this thesis all cells are assumed to be n-type, unless specified. The examples
shown will demonstrate the operation of the algorithms and do not resemble actual circuits. Most examples
are visualised with simplified primitives of the opamp circuit.

9

Figure 3.5: DRC clean layout for the opamp circuit.

3.2.1 Placement via Simulated Annealing

Before going in the details of the placer, it is important to explain the main method used to solve the routing
and placing problem. The optimization process should explore and narrow down the solution space to obtain a
good design. A viable method for solving complex problems is a genetic algorithm. This would involve changing
the same layout once, N times, providing N different new layouts. Then from these N designs, the layout with
the lowest cost is selected and the previous step happens anew, where something is changed about this new
circuit N times. This way the layout would keep on improving and this would narrow down the solution space.
After a certain amount of iterations, the designer would be happy with the outcome.
However this method is not that good at detecting local minima, hence reaching a suboptimal solution. Another
problem with this method is that the many iterations take a lot of time, because the router has to be executed
a lot. This approach could be possible if the routing and placement was seen as two sequential problems. This
thesis however gauges the routing and placement of a layout at the same time, with correlated algorithms for
routing and placement.

A method that does deal well with detecting and avoiding local minima is Simulated Annealing(SA) [10]. This
heuristic algorithm is based of the controlled cooling down of metal, called annealing. Hot metal has a high
entropy and a very chaotic, randomised crystal structure. By gradually cooling down, the atoms move into a
more structured lattice, reducing entropy and randomness. However if a part of this lattice was not perfectly
aligned with the rest, reheating the metal a bit before cooling it down again, allows the lattice to realign itself.

The placer employs simulated annealing to find an optimal solution, starting from a random chaotic position.
Applied to layout generation this comes down to the following. At the start, the cells are placed at a random
spot in the infinite grid. Then this configuration is routed and the corresponding cost is calculated. By changing
the configuration, one tries to reduce this cost until it reaches a point low enough. Changing the configuration
is done by executing an ’action’ in the hope of lowering the cost. To avoid local minima, sometimes a worse cost
can be accepted and uphill movement is allowed. Algorithm 3 shows pseudocode used by this layout generator.
The initial values of the parameters are the default values, inherited by [1]. Some utilised functions are not yet
specified, for they are explained further on.

10

Algorithm 3 Placement algorithm based of simulated annealing
Initialize parameters
Tstart ← 100
Tend ← 0.01
T0 ← Tstart

α← 0.95
i← 1
maxIter ← 5000

Initialize layout
P0 ← Initial placement
U0 ← route(P0) ▷ route() returns amount of unrouted netsU0

C0 ← cost(P0)

while T > Tend and i < maxIter do
Pi = Pi−1

performActions(Pi)
resizeGrid(Pi)
Ui ← route(Pi)
Ci ← cost(Pi)

Evaluate new placement Pi based of amount of unrouted netsUi and costCi

ifUi < Ui−1 then
Ti = αTi−1 ▷ Accept new placement

else ifUi = Ui−1 then
ifCi < Ci−1 then

Ti = αTi−1 ▷ Accept new placement
else

∆C = Ci − Ci−1

if ε < e−∆C/Ti then ▷ ε ∼ U(0, 1)
Ti = αTi−1 ▷ Accept new placement

else
Pi = Pi−1 ▷ Reset placement

end if
end if

else
Pi = Pi−1 ▷ Reset placement

end if
i = i+ 1

end while

11

The mentioned parameters, which track the progress of the algorithm, are related to temperature. T is the
global temperature of the system. The temperature at the ith iteration is denoted asTi . This temperature lowers
every time the cost lowers or a configuration with a worse cost is accepted. Tend is the ending temperature,
when T , reaches this value, the layout generation is finished. α indicates how quickly the global temperature
changes. Each time the temperature lowers, the new temperature is calculated as follows: Ti+1 = (1−α)Ti .
To avoid local minima, uphill movement is introduces, by accepting a layout with a higher cost. A Boltzmann
distribution 3.1 determines by chance whether uphill movement is tolerated.

P (∆Cost) = exp

(
−∆Cost

Ti

)
(3.1)

When the cost is worse than the cost of the current layout, this distribution determines if the uphill move-
ment is allowed. It does this according to the random chance that the distribution is larger than a random
uniform distribution P (∆Cost) > ε ∼ U(0, 1).
The odds of uphill movement depend on the change in cost and the current temperature, this means the lower
the global temperature gets, the less a worse configuration is accepted. Or in other words only configurations
which are slightly higher in cost can be accepted for lower temperatures to gradually find the optimal layout.

The driving power behind simulated annealing are the actions, which modify the layout of the current gen-
eration to obtain the layout of the next generation. Each SA iteration, a specific action is chosen at random. The
most obvious action is moving a cell to a new position. An action should be simple and flexible, for SA relies
on randomness to find an optimal solution. An action too specific will not perform good enough, because it
would only lower the cost for the specific purpose. For example if one would design an action that moves a
cell 10 units to the left. This action is too specific and will only work when a cell should be moved 10 places to
lower the cost. This example is an exaggeration, but it points out that the actions should empower the chaotic,
random character of SA.

The reason actions should be simple is that it should be easy to adapt actions and add other actions. Actions
should interact well with each other and too much edgecases may lead to faulty configurations. This can be
extended to everything that encompasses the layout generator and not always was it possible to achieve a
simple design for the actions.

The design and concept of an action is crucial, yet its impact is reliant on the current placement and imple-
mentation. As the global temperature gets lower, SA needs more time to find a fitting action. The toleration on
the cost tightens and everything needs to be more precise. In scenarios where only a couple of viable actions
exist, it is luck dependent whether the cost lowers. In most of these scenarios uphill movement is required to
broaden the solution space. In these later stages, some actions are more useful. These tend to be the actions
with less impact on the cost. The opposite is also true, moving cells is for example an action that can be very
powerful at the start of SA. That is why each action has its own weight, which influences how often it is chosen.

Another example why the implementation of the actions is crucial is the following situation. The layout
generator can reach a point where a single action cannot further lower the cost, whilst the layout itself is not
optimal yet. An example of this can be seen in figure 3.6, for this example the available actions are moving cells
and changing the position of rails. The routing is done on a single layer as this is the most optimal.
The only improvement to the layout is having a shorter interconnection for the yellow net, which requires chang-
ing the position of cell 1 and cell 2, the optimal layout is shown in figure 3.7. However, moving any of the cells
to another location in order to make space for the other, increases the cost significantly. With the given actions
the optimal solution cannot be reached. The solution is to allow executing 3 actions at the same time to change
the locations of the two cells. Another solution would be to swap the cells, which is explained further on.

12

Figure 3.6: Placement where swapping and moving cells does not amount to a lower cost

Figure 3.7: Actual optimal configuration

Therefore each iteration a random amount of actions were performed, to introduce more creativity in the
placement algorithm. The maximum amount of actions per iteration is controlled by the IC designer. It is
important not to choose this value too high, because this increases the chance that a bad action is executed. If for
example five actions are executed and four of them lower the cost, but one of them is very bad and the resulting
cost is increased or even worse a rail is not routed, these other four good actions are not propagating to the
next iteration. To avoid this, choose this parameter as low as possible, to still avoid problems like seen in figure
3.6, where a minimum amount of actions are required. The pseudocode for the method performActions is
shown in algorithm 4.

13

Algorithm 4 perform Actions
Initialize weights and actions
allActions← [moveCell, swapRail, ...]
weights← [1, 1, ...]
maxActions← 2
function performActions(P)

n← random(0,maxActions)
actions← choice(n, allActions, weights) ▷ choose n values from array with given weights
succes← False
while ¬succes do

for all action in actions do
if action(P) then

succes← True
end if

end for
if succes then

break
end if
n← random(0,maxActions)
actions← choice(n, allActions, weights) ▷ If all actions failed, choose actions

end while
end function

3.2.2 Routing with A*

The actions of the simulated annealing take care of the placement of the cells. After the action(s) are executed,
the nets are routed before the cost is calculated. This section focusses on the general algorithm for the routing
of the subblocks and the individual rails. An optimal algorithm to connect two points in a grid where many
obstacles are present is the astar(A*) algorithm. This algorithm is an extension of Dijkstra’s, but it performs
better, due to the search being directive and aware of the goal at any time by employing a heuristic. Algorithm
5 explains the working of A* as proposed by [8].
The algorithm explores a 2D grid or graph, while keeping track of two metrics for each visited node: the current
cost from the starting point to the node and the estimated cost to the endpoint. The current cost is accurate as
the path from start to the point is aware of all the obstacles in between. Line 17 of the pseudocode calculates
this value, the so called gScore. On the other hand, the estimation of the cost between the current node and
the goal follows a heuristic function. For plain A* and 2D routing the heuristic is just the Manhattan distance
between each node and the goal, if the movement is restricted to the cardinal directions. This means that each
movement has a distance of 1, which means that the gScore is always updated by 1. The fScore is then the sum
of the estimated cost to the goal and the current gScore. By exploring the neighbours of the node with the
current lowest fScore and recalculating the two metrics for these nodes, the shortest path is found. The only
time the distance between a node and its neighbour is not 1, is when the neighbour is an obstacle. Then, an
infinite gScore is obtained.

14

A-star is very well known and well documented, however out of the box it is not viable for routing integrated
circuits. Multiple adjustments are required to allow A* to route an IC layout. The first limitation of A* is that it
connect 2 single nodes. Realistic IC routing involves routing different nets, which often interconnect more than
two primitives. Besides the routing of more than two rails, plain A-star is also not able to route whole rails.
Therefore, a point on the to be routed rails will have to be selected. Besides dealing with the rails of the cells,
the routing algorithm also has to deal with different constraints on the present obstacles.

An IC routing algorithm also has to deal with different constraints on the present obstacles and traces. Tradi-
tional A* simply routes around present obstacles, which means the validation of neighbouring nodes will have
to be extended to ensure DRC-clean routing.

Aside from all the aforementioned limitations, the most limiting factor is the 2D grid. The fact that IC routing
uses multiple layers, has implications on both the heuristic and exploration. However, an IC layout should strive
for straight interconnections, avoiding zigzag routing as much as possible. A convention that is employed in
(digital) IC routing is using even and odd layers for respectively vertical and horizontal movement or vice versa.
This convention allows to find the optimal path faster.

Furthermore, 3D routing requires a heuristic other than the Manhattan distance, due to the introduction of
vias. The ’distance’ between two metal layers is not the same as the distance between two nodes, due to the
vias adding more resistance. Besides that,higher metal layers add less resistance for the unit distance, which
means the distance between two cells changes too.

15

Algorithm 5 original A* Algorithm

1: function AStar(start, goal)
2: openList← {start}
3: closedList← {}
4: gScore[start]← 0
5: fScore[start]← heuristic(start, goal)
6: while openList is not empty do
7: current← node in openList with lowest fScore
8: if current = goal then
9: return ReconstructPath(current)
10: end if
11: Remove current from openList
12: Add current to closedList
13: for each neighbour of current do
14: if neighbour is in closedList then
15: continue
16: end if
17: tentative_gScore← gScore[current] + distance(current, neighbour)
18: if neighbour is not in openList or tentative_gScore < gScore[neighbour] then
19: cameFrom[neighbour]← current
20: gScore[neighbour]← tentative_gScore
21: fScore[neighbour]← gScore[neighbour] + heuristic(neighbour, goal)
22: if neighbour is not in openList then
23: Add neighbour to openList
24: end if
25: end if
26: end for
27: end while
28: return failure
29: end function
30: function ReconstructPath(current)
31: totalPath← [current]
32: while current in cameFrom.Keys do
33: current← cameFrom[current]
34: Add current to totalPath
35: end while
36: return totalPath
37: end function

16

4 IMPLEMENTATION

As the main concepts for routing and placing primitives are explained, the full details of the layout generator
can be discussed. The architecture of the code, all actions available to simulated annealing and the improved
A-star routing algorithm will be explained. Finally, the abstraction is lifted and a real layout in Virtuoso is the
result.

4.1 Architecture

The code architecture of the layout generator evolved a lot. The final architecture introduces multiple classes
or instances to allow precise control of the primitives and to easily store and access the current state of the
layout. By applying the single-responsibility principle, the functionality of the instances was kept modular and
simple. Following this principlemade adding new features easy and simplified the interaction between different
instances.

4.1.1 Cell

The abstracted primitives are stored in the Cell class, whose attributes are shown in table 4.1. The dimensions
of a Cell object are defined by the coordinate of the top left corner and the width and the length of the cell.
The width of the cell is the total width and w_si denotes the width of the black box area of the primitive,
represented in grey in figure 4.1. The rails of the primitive are stored in two arrays: top, bot as Rail objects.
ThestrictRails variable decides howflexible the rails can be placed. Certain primitives, like the differential
pair, do not allow mixing the initial rail configuration. The net containing the tail current should always be on
the other side of the cell, compared to the two other nets containing the outputs of the differential pair. These
types of cells have strict rail constraints and will have to be handled differently for certain actions.

Besides that the remaining characteristics of a primitive cell is a unique id, used for indexing cells and the
bulk potential. For simplicity the latter has type net. The nets are stored as the string representing them, but
the net type is used as a wrapper to make this more clear.

When a Cell is initialised, the required parameters are: id, bulk, w, l, topNets, botNets. The starting
position is optional and cells are assumed to not have strict rails. The width that is passed during initialization
is w_si. This is because w is calculated of the other parameters as it depends on the placement of the rails. w
is calculated as follows.

w = w_si+ 2× length(top)− 1 + 2× length(bot)− 1

The topNets and botNets parameters are lists containing the nets above and below the cell, afterwards
top and bot are initialised with the correct Rail instances. The Rail class stores the state of these rails, but
they still rely on the cell class for information related to position. The order of the rails is determined by the
two lists storing them. The first rail in top is the first rail at the top of the cell and the first rail in bot is the
rail at the outside, below the cell. So the order is based of how far the rails are from the cell.

17

Cell
id: str
bulk: net
w: int
l: int
w_si: int
x: int
y: int
top: List[Rail]
bot: List[Rail]
strictRails: Boolean

Table 4.1: Cell architecture Figure 4.1: Cell representation

4.1.2 Bounding Box

As mentioned above the overlapping of cells is done by comparing the bounding boxes(bbox) of the cells. A
Bbox object is defined by the top left coordinate and the bottom right coordinate of the bounding box, the
variables are shown in table 4.2 and they are visualised in figure 4.2. A bounding box can be initialised by
passing these 4 values or by passing a Cell object. When a cell is given, the bulk of the cell is also stored. A
Bbox object utilizes algorithm 6 to detect collision. If two cells need to be spaced apart because a different
biasing of the bulk, the bounding box can be easily padded and by applying the same collision algorithm, the
two cells will be spaced apart correctly.

Bbox
x1: int
x2: int
y1: int
y2: int
bulk: net

Table 4.2: Bbox attributes, x1 < x2, y1 < y2

Figure 4.2: Coordinates of a bounding box

When passing aCell object to theBbox, the coordinates are converted as follows: Bbox.x1 = Cell.x,
Bbox.y1 = Cell.y, Bbox.x2 = Cell.x + Cell.l - 1, Bbox.y2 = Cell.y + Cell.w
- 1

18

Algorithm 6 Bounding box collision

function collide(Bbox1 ,Bbox2)
if (Bbox1.x2 < Bbox2.x1) or (Bbox1.x1 > Bbox2.x2) then

return False ▷ No overlap in x dimension
else if (Bbox1.y2 < Bbox2.y1) or (Bbox1.y1 > Bbox2.y2) then

return False ▷ No overlap in y dimension
else

return True ▷ Overlaps for both axes
end if

end function

4.1.3 Rail

The Rail object was mainly introduced to simplify the overlapping of rails and the swapping of the rails, its
properties are listed in table 4.3. Rails are created upon the initialization of the Cell class. The following
properties (x1, x2, y, index, top, net) are derived from the parent cell. merged keeps tracks
if the rail is merged with other rails. If this is the case, the other Rail objects are stored in connections
Merging rails refers to an action described later on. It boils down to multiple cells sharing the same rail. This
reduces the cost a lot, as the amount of metal required to route the net is very small. This action was the main
reason a Rail Class was required.

Rail
x1: int
x2: int
y: int
top: Bool
net: net
index: int
parent: Cell
merged: Bool
connections: List[Rail]

Table 4.3: Rail attributes, x1 < x2
Figure 4.3: Demonstration of overlapping or merged rails

The Rail class provides a method to find the length of the rail that is overlapping with other cells. The
pseudocode to do this is shown in algorithm 7. This value is required to correctly calculate the length of all the
rails, in order to calculate the global length of the layout for the placement cost.

This instance does come with a downside. As the information of the rail depends for the most on a Cell
object, the rails need to be updated each time the position of a primitive changes. To tackle this, the method
updateRails was introduced, which needs to be called each time an instance of Cell is updated. The
pseudocode for this method is shown in algorithm 8.

19

Algorithm 7 Length of overlapping rails

function overlapLength(rail)
length← 0
for all connection in rail.connections do

x1Max← max(connection.x1, rail.x1)
x2Min← min(connection.x2, rail.x2)
length = length+ x2Min− x1Max

end for
return x1Max, length

end function

Algorithm 8 Update the parameters of the rails after any action is executed

function updateRails(cell)
cell.w ← cell.w_si
if (length(cell.top) > 0) then

cell.w ← cell.w + 2× length(cell.top)− 1
end if
if (length(cell.bot) > 0) then

cell.w ← cell.w + 2× length(cell.bot)− 1
end if
i← 0
for all rail in cell.top do

e.index← i
e.top← True
e.y ← self.y + i× 2
e.x1← self.x
e.x2← self.x+ self.l − 1
i← i+ 1

end for
i← 0
for all rail in cell.bot do

e.index← i
e.top← False
e.y ← self.y + self.w − i× 2− 1
e.x1← self.x
e.x2← self.x+ self.l − 1
i← i+ 1

end for
end function

20

4.1.4 Router and Grid

These three classes are everything required to represent the primitive. There are two large classes left. The first
one is the Grid class, with the properties listed in table 4.4. The grid class contains the list of primitives and
represents the total area containing the cells. Each action that involves more than two cells is implemented
here, else it is implemented inside the Cell object. The specific implementation of the grid initialization
and actions will be discussed in the following sections. The grid does not require any arguments on creation.
However, to have correct behavior the individual Cell objects have to be passed to a Grid object using the
addCell method. This method updates multiple values of the Grid. By passing all the cells, the aiding
dictionaries railsFromNet and cellsFromNet, which allow finding specific Rails or Cells quickly,
are initialised. Also the nets, maxCellLength and maxCellWidth are calculated.
The current allowed amount of metal layers is stored in the layers parameter. After the routing is complete
the resulting traces are stored in traces.

Grid
gridWidth: int
gridLength: int
cells: List[Cell]
nets: List[net]
maxCellLength: int
maxCellWidth: int
traces List[Trace]
layers: int
railsFromNet: Dictionary[net, List[Rail]]
cellsFromNet: Dictionary[net, List[Cell]]

Table 4.4: Grid properties

The last class is the Router class which controls the algorithms. Its first argument is the corresponding
Grid object that contains the to be routed and placed primitives. It executes the annealing algorithm and
contains wrappers for the routing algorithms and the different actions. This class is also responsible for storing
the previous best iteration and determining the cost of the current iteration. The second and last argument is
the path of a configuration file, which contains all the tunable parameters of the layout generator.
Besides the annealing algorithm explained in the previous chapter, this class contains only wrapper methods
to provide simple execution of the placement and routing. The specifics of the actions and routing algorithms
will be explained in the following sections.

21

4.2 Initializing Grid and Router

In earlier versions the Grid class contained an actual 2D list, where each value represented a 1 by 1 unit cell.
The grid contained zero for empty space, non-zero integers represent the nets or cells. This grid was used for the
routing and the actions/placement. Collision detection of the cells was also performed by checking the value of
the list corresponding to the specific cell. As mentioned earlier the use of bounding boxes was adopted quickly,
to increase performance and scalability. From this point on the data structures for placement and routing were
split.

The placement uses the Bbox, Cell, Rail and Grid objects for implementing the actions. The initializa-
tion of these objects were described earlier, except for the latter. The initial sizing of the grid and placement of
the primitives are the first step in the annealing algorithm. This requires placing the subblocks at random on a
seemingly infinite grid. An initial placement of a simplified opamp circuit can be seen in figure 4.4.

By default, the initial grid width is twice as large as the sum of widths of the cells and the same is true for
the grid length. This way a nice trade-off between initial performance and randomness is obtained. A larger
initial grid size significantly increases the execution time due to the much larger routing time.

Figure 4.4: Random placement of cells

After the Grid was initialised by adding all the primitives as Cell objects, the grid sizing is calculated
as mentioned earlier. Following this, algorithm 9 is used to place the primitives randomly in the grid. The
collisionmethod of the Bbox class ensures proper spacing of the cells.

Next, the initial placement is routed and therefore the data structure for the router has to be initialised. The
state of the router is stored in a numpy [7] array of integers with dimensions layers x gridWidth x
gridLength. The meaning of each integer value is shown below. The grid represents the placement of the
primitives and the routing can explore the grid where the values are zero or equal to the value of the being
routed net. The position of the primitives directly correspond to the indices on this routing grid, because of the
quantization of the traces.

22

0: Unoccupied space

1: Do not route, this represents space occupied by the primitives.

2: This represents space occupied by the primitives, which allow interconnections above the devices.

3-9: Placeholder values

10-999: These values represent a certain net. 10 represents the first value in the nets property of a Grid

1000- ... : These numbers also represent a net, where 1000 refers to the same net as 10 previously those. These
values are used for when the net goes up or down a layer, this is to be able to space vias accordingly.

Algorithm 9 Initialize placement

function Grid.initPlacement()
for all cell in Grid.cells do

i← 0
while i < 100 do

cell.x = random(0, gridLength− cell.l)
cell.y = random(0, gridWidth− cell.w)
if (grid.checkOverlap(cell)) then

break
end if
i← i+ 1

end while
if i = 100 then ▷ after 100 tries resize the grid

increase grid for more space
end if

end for
end function
function Grid.checkOverlap(curCell)

curBbox = Bbox(curCell)
for all cell in Grid.cells do

if cell.id = curCell.id then continue
end if
bbox = Bbox(cell)
if ¬(cell.bulk = curCell.bulk) then

bbox.extend(padding) ▷ padding is the design rule spacing for distinct wells
end if
if collision(curBbox, bbox) then

return False
end if

end for
return True

end function

23

Before the routing grid is filled with these values, one more algorithm is performed on the cells and grid.
Because the grid is infinite the routing should also be able to go at the edge of the grid. Therefore the gridsize
and cell positions are optimised before the routing. This is also useful to limit memory usage. If the grid remains
at the initial size, which is way larger than the final layout, the memory occupation is much larger than when
the gridsize would dynamically scale according to the current layout size.

Another reason to resize the grid and rearrange the cell positions is due to the actions of SA. When a cell is
moved, outside the current gridsize, the gridsize needs to change. Also a cell can be moved anywhere, which
means the position of the cell can be negative. Because these positions correspond to indices in the routing
grid, the cells have to be repositioned such that each cell has positive integer coordinates. An example of this
method is shown in figures 4.5. These figures display an initial placement, the position after the actions are
performed and the final resized grid.

The pseudocode for the method resetDimensions is shown in 10. The new dimensions are found by
iterating over all cells and finding the minimal and maximal values for both directions. In the figures, this is
highlighted by the dotted bounding box. Then the coordinates of the cell is accounted for by the appropriate
amount, such that the each coordinate is a positive value. Because each cell changes position, it is required to
always update the rails of the cells.

This algorithm can also be used to add padding to the grid, which is useful for more complicated schematics,
that require more routeable space at the edge of the grid. This algorithm can move all the cells more to the
center, creating more space. This feature will also be useful for certain actions. By default 4 units are added at
each side of the grid.

Algorithm 10 Reset Dimensions
function Grid.ResetDimensions(px, py)

xMin← Grid.gridWidth
yMin← Grid.gridLength
xMax← 0
yMax← 0
for all cell in grid.cells do

xMin← min(xMin, cell.x)
yMin← min(yMin, cell.y)
xMax← max(xMax, cell.x+ cell.w − 1)
yMax← max(yMax, cell.y + cell.l − 1)

end for
Grid.gridLength← xMax− xMin+ 2 ∗ px
Grid.gridWidth← yMax− yMin+ 2 ∗ py
for all cell in grid.cells do

cell.x← cell.x− (xMin− px)
cell.y ← cell.y − (yMin− py)
cell.updateRails()

end for
end function

Now that the data structures for the placement and routing is fully explained, the actions for the simulated
annealing and the improved A* algorithm for the routing can be explained.

24

(a) Initial placement

(b) One of the cells is moved

(c) The positions of the cells are adjusted and the grid is resized

Figure 4.5: Demonstration of grid resizing and changing the cell position before the routing

25

4.3 Actions

This section discusses in depth the implementation of each action. Some actions were mentioned earlier, like
swapping rails, moving cells and merging rails. The introduction of the rail merging action required some mod-
ification to the other actions. Because, when two rails are merged together, the parent cells are not as flexible
anymore as their position is reliant on the overlap. Actions, such as the move cell action, should behave dif-
ferently for merged cells. As many edge cases exist it is too much to take care of them all. The actions are
developed as general as possible to work in most situation. The edge cases which are taken care of are demon-
strated.
Sometimes the design rules are violated, to make sure this does not propagate to the final solution a sanity
check is introduced after the routing. This checks for overlapping cells and shorted nets. If one of these rules is
violated, the current cost becomes infinite, making sure this configuration does not propagate.

4.3.1 Dealing with collision

Some actions require moving a cell to a certain position, which could result in two cells colliding. To solve this
issue, a method was introduced which ’evacuates’ cells from a certain bounding box. This ensures that the cell
can safely move to that specific position. The reason its referred to as evacuating a cell, is due to this method
taking the shortest possible direction to avoid collision. This may not be the best way to move a cell out of the
way, but it is the most consistent. An earlier version implemented a different method, where depending on the
relative positions of the cells a fixed direction was chosen to move the colliding cell(s). This method however
was very inconsistent and too complex.

A figure explaining the logic behind finding the evacuation path is shown in 4.6. Because of an action, Cell 1
is moved to that specific position, which makes it collide with Cell 2. Next, for each cardinal direction an escape
path is considered. The length for each path is calculated based on the two bounding boxes. Consequently, the
path with the shortest distance is chosen. In the example, the shortest escape path has distance of 10. This
means cell 2 is moved 10 spaces plus the correct padding (1) to the right.

Figure 4.6: Demonstration of evacuateCell. Cell 2 should be moved out of the way. The distances for each
cardinal direction is displayed. Moving to the right is the best option, as it is distance 10 away. The
top right and bottom left coordinates are displayed for each cell.

26

Now this method, calledfindExit, provides the point of the cell which should bemoved, together with the
evacuation distance and whether the movement is horizontal or vertical. For the given example, these values
are the following: horizontal movement, distance 10 and the coordinate is 10. Another method handles this
information to actually move the cell. The reason that this is handled by a different method is that it is not
straightforward, as another cell could be present at the new location, meaning the collision is just transferred
to a different combination of cells.

A possible solution for this would be to recursively evacuate cells, until everything has a new distinct position.
But this could amount in very hectic movement or even worse infinite recursion. This problem could be tackled
by simply trying the recursive approach and if a recursion limit is reached, the action causing the collision is
simply canceled.

However, a different approachwas employed that only requiredminimal evacuations. Instead of onlymoving
a single cell, all the cells past the anchor point where moved, basically inserting empty space for the new cell.
When applied to the previous example this comes down to the following. If a third colliding cell was added
below cell 2, outside of cell 1, it would also be moved 11 spaces to the right. This method seems worse as it will
increase the area most of the time, but on the other hand it will retain the relative placement between the cells,
which will result in similar routing.

An example of how a single obstacle is handles is displayed in figure 4.7. In this case all cells that are present
to the right of the anchor and in between the dotted horizontal lines are moved the evacuation distance to the
right. Figure 4.8 shows an example with an additional colliding cell. The algorithm then behaves differently. At
first it selects the cell with the longest evacuation distance. Then all the cells to the right of the anchor, for the
entire width of the grid, are moved that distance to the right. Each time a cell is evacuated the collided cells are
reevaluated. This is necessary as moving cell 2, evacuated the third cell as well, which is very beneficial.

Figure 4.7: Evacuation of a single cell, onlymoves the section containing the cell. Cell 3 retains the same position
relative to cell 2

It is not always the case that the largest exit distance evacuates other colliding cells. An example requiring
two distinct evacuations is shown in figure 4.9. Cell 2 has the longest evacuation distance. It is moved according
to the vertical anchor. Cell 3 is moved as well, because a part of its bounding box is present in the bounding box
defined by the grid width and anchor. However, cell 3 still collides with cell 1. It is moved down according to the
new evacuation distance and horizontal anchor. Resulting in its final position down right from the original one.

27

Figure 4.8: When multiple cells collide, the full width or length is considered when moving cells aside.

The explanation was mainly performed for horizontal movement, but it behaves the same for vertical evac-
uation. However, care must be taken that a vertical evacuation does not result in rails being unmerged.

Now the general concept is explained, the pseudocode for the multiple algorithms mentioned is shown in
11. The algorithm explains the main method handleEvacuation, which accepts a repositioned Cell, this
would be cell 1 when looking at the previous examples. By default mergesafe is false, which restricts the
evacuation to the x-axis.

Figure 4.9: Two distinct evacuations are required, which results in cell 3 moving twice.

28

Algorithm 11 handle evacuation of cells

function Grid.handleEvacuation(cell,mergeSafe)
bbox← Bbox(cell)
collisions← Grid.cellsInBbox(bbox)
if (length(collisions) = 1) then

(Horiz, distance, anchor)← findExit(bbox, collision[0],mergeSafe)
Grid.moveGridSection(horiz, anchor, distance, collision[0].y, collision[0].y+

collision[0].l)
else

for all collision in collisions do
(Horiz, distance, anchor)← findExit(bbox, collision[0],mergeSafe)
Grid.moveGridSection(horiz, anchor, distance, 0, grid.gridlength)
collisions← Grid.cellsInBbox(bbox)

end for
end if

end function
function Grid.cellsInBbox(curCell)

curBbox← Bbox(curcell)
cells← []
for all cell in Grid.cells do

bbox = Bbox(cell)
if ¬(cell.bulk = curCell.bulk) then

bbox.extend(padding)
end if
if collision(curBbox, bbox) then

cells.append(cell)
end if

end for
return cells

end function

29

4.3.2 Moving cells

Moving a cell is the most essential action and three variants of this actions exist. For high temperatures this
action has the most merit, because random movement will likely improve the cost. However, as the temper-
ature gets lower, the actions need to be more precise and moving a cell results most of the time in a worse
position. The basic move action does not increase the gridsize before moving a cell. A second version does in-
crease the gridsize based of the cell which will be moved. By passing the dimensions of the selected cell to the
resetDimensionsmethod, together with appropriate margins, the selected cell can be moved everywhere
around the grid. Both actions can be seen in figures 4.10 and 4.11.

Figure 4.10: The cell in the bottom right is moved, but has very little space to displace to.

Figure 4.11: The cell in the bottom right is moved after a refit, the cell can be placed everywhere

30

If this second version would not be available, the cell movement would be very limited. In some cases this
limited movement is good, as this increases the chance a precise move is found. But if a cell needs to moved to
the other side, this will not happen. Both actions can be chosen by the placement algorithm. They are referred
to as ’move cell’ and ’refit and move cell’.

The pseudocode for the move actions is shown in algorithm 12. As without resizing the chance a new position
is valid is small, the grid is automatically refit after a certain amount of iterations. This algorithm has similar
behavior as the initial placement of the cells.

Algorithm 12 Basic move action and refit move action.

function Grid.moveCell(cell, refit)
cell.unmerge()
if (refit = True) then

Grid.resetDimensions(cell.l + 5, cell.w + 5)
end if
i← 0
while i < 100 do

cell.x = random(0, gridLength− cell.l)
cell.y = random(0, gridWidth− cell.w)
if (grid.checkOverlap(cell)) then

break
end if
i← i+ 1

end while
if i = 100 then ▷ after 100 tries, change to refit variant

Grid.moveCell(cell, True)
end if

end function

The third version of the move action has to do with how this actions interacts with merged rails. As the two
variants just described move the single cell away, the cells rails are unmerged, before its position is changed.
When a move action is executed, the wrapper in the Router class selects a random cell. If this cell is merged
with another cell, it is determined by chance which variant of the move function is executed on this cell. It
chooses between the basic move action and a specific move action for merged cells. This algorithm is given in
13, the updateMerge function just recalculates the new overlap length with the algorithm explained earlier.
This specific action allows the cell to move along the rail it is merged with, thus allowing only some horizontal
movement. This way merged cells can be rearranged to align better and overlap more. This action allows the
cell the move at most its own length to either the left or the right. This was added because previously once
cells were merged they were not able to move sideways will staying merged, as the normal move action would
always undo the merging of rails.

31

Algorithm 13 Move action for merged cells, which restrict to horizontal movement

function Grid.moveCellMerged(cell, refit)
i← 0
while i < 100 do

cell.x = random(max(0, cell.x− cell.l),min(gridWidth, cell.x+ cell.l))
if (grid.checkOverlap(cell)) then

break
end if
i← i+ 1

end while
if i = 100 then ▷ after 100 tries, change to basic variant

Grid.moveCell(cell, False)
end if
cell.updateOverlap()

end function

4.3.3 Swapping Rails

The second action: swapping rails, was the next step to lowering the cost even more. Together with moving
the cells, a quite optimal solution could almost always be reached. These two actions already introduce a large
amount of creativity to the layout generator, due to the very simple nature of these actions and them working
in every situation (unless the overlapping rails are introduced).

This actions just changes the order of the rails of a cell and this consists of two cases. Again a cell is selected
by the wrapper for this action and then one of the two is handled. The first case changes the position of a single
rail and the other one swaps two rails. In figure 4.12 these two cases are demonstrated.

Figure 4.12: Example of both cases of the swap rail action; The left cell swaps the two rails and the right cell
changes the position of the blue rail.

32

Swapping two rails is very easy, for the rails are stored in two arrays, one for the rails above the cell and
one for the rails below. It suffices to check which arrays contains the selected rails and then swapping them
correctly depending on the selected array.

Implementing the swap variant is not strictly necessary as it combines two sequential swap rail actions of
case 1, which defeats the purpose of simulated annealing. It was added for the sake of simplicity and a faster
result, but in hindsight, however, it is obsolete.

Changing the position of a single rail is a bit more complicated. To move a single rail, all available new
positions are determined and one of these is selected. Figure 4.13 shows two examples of the first case and
demonstrates how the available positions are determined. These positions will now be referred to as indices in
the combined array of cell.top and cell.bot called rails.

Figure 4.13: Demonstration of swapping rails. The determining of the indices list is visualised in detail

All available indices are determined first. This is denoted as options in the image and this goes from index
0 to the amount of rails incremented by one. Then based on how many rails are merged, certain indices are
removed. As one rail is merged at the top (the green rail), index 0 is removed from the array. For the same
reasoning but at the other side of the cell, 5 and 6 is removed. Then the available array is obtained.

In order to not insert the selected rail to its old location, the two options above and below this selected rail
are removed. For the first example, the blue rail is selected. This means index 1 and 2 are removed from the
options, which is the index of the selected element and the next one. For the second example, where the selected
rail is not in top, this is index 3 and 4. Therefore, the rails below the cell, this comes down to currentIndex
+ 1 and currentIndex + 2.

33

The result of the two examples are shown in figures 4.14 and the pseudocode for findIndices is shown
in algorithm 14. The pseudocode for the actual action is shown in algorithm 15, explaining both cases.

Figure 4.14: Example of both cases of the swap rail action

Algorithm 14 Custom logic which finds the available indices for the selected rail

function Cell.findIndices(rail)
rails← cell.top+ reverse(cell.bot)
currentIndex← rails.index(rail)
amountMergedTop
amountMergedBot
currentTopLength← length(cell.top)
indices← []
for i = amountMergedTop to length(rails) + 1− amountMergedBot do

if (rail.top and ¬(i = currentIndex or i = currentIndex+ 1)) then
indices.append(i)

else if (¬rail.top and ¬(i = currentIndex+ 1 or i = currentIndex+ 2)) then
indices.append(i)

end if
end for
return indices

end function

34

Algorithm 15 Swap Rail action for cells with no stricts rails
function cell.swapRail(case)

available← []
rails← cell.top+ reverse(cell.bot)
currentTopLength← length(cell.top)
for all rail in rails do

if ¬(rail.merged) then
available.append(rail)

end if
end for
if case = 1 or length(available) = 1 then

rail← selectRandom(available)
indices← findIndices(rail)) ▷ select indices as described and visualised above
if length(indices) = 0 then

return False
end if
newIndex = selectRandom(indices)
if newIndex > currentTopLength then

cell.assignRail(rail, length(rails) + 1− newIndex, False)
else

cell.assignRail(rail, rail1.index, True)
end if

else if case = 2 then
rail1 = selectRandom(available)
rail2 = selectRandom(available)
cell.assignRail(rail2, rail1.index, rail1.top)
cell.assignRail(rail1, rail2.index, rail2.top)

end if
cell.updateRails()
return True

end function
function cell.assignRail(rail, newIndex, newTop)

if rail.top = True then
cell.top.remove(rail)

else
cell.bot.remove(rail)

end if
if newTop = True then

cell.top.insert(rail, newIndex)
else

cell.top.insert(rail, newIndex)
end if

end function

35

The swap rail action suffers the most from the constraints on cells and the addition of merging rails. The
merged rails can obviously not be swapped as this would mean rails with different nets be will be merged
creating shorts. The other problem is the cells with the strict rails, the wrapper function checks whether this
is the case for the selected cell and executes an adapted variant of the algorithm. This adapted versions just
executes the algorithm for swapping rails, but now rails only includes bot or top based of chance. The only
difference is that there is a third case for the strict rails cells. To introduce enough randomness the two lists
containing the cells can be interchanged, visually this comes down to flipping the cell.

This action can also cause shorts unwillingly as the dimensions of the cell can change if one of the sides of
the cell becomes empty, this increases the width of the cell by one. An example is shown in figure 4.15, the rail
containing the yellow net is swapped and without moving any cell, two nets are shorted. This is handled by
performing the sanity check and the actions that cause this problem are rejected. The swap action can also be
rejected for other reasons, that is why the algorithm returns a boolean.

Figure 4.15: Short after swapping rails

36

4.3.4 Swapping Cells

Another action allows two cells to swap. This was added as a different solution for the problem mentioned in
chapter 3, where a layout was shown which did not allow further improvement and required multiple actions.
This action is straight forward and works as follows.

The wrapper function of the Router selects two cells at random. The anchor point of each cell is deter-
mined. This anchor point is the coordinate where the other cell swaps to and is required to derive its new
position. This is fixed for each quadrant of the grid to have a consistent algorithm. This anchor point is the
point of the bounding box closest to the center of the grid. In the example, shown in figure 4.16, the anchor is
bottom right for cell 3 and bottom left for cell 5. When the cells swap, the anchor of the other cell is adopted
and the cell is placed at that point.

This first example is trivial, because the two cells can just swap position. The result is shown in figure 4.17
. This is the simplest case, however this action is the first one to require the evacuation method stated earlier.
The need for this is demonstrated in figure 4.18. In this example swapping cell 1 and cell 5, without taking
into account the other cells, would result in collisions. The anchors and new bounding boxes are also shown as
hatched versions of the cells. To avoid this overlap, it suffices to execute the handleEvacuation method.
After using this method the resulting layout is shown in 4.19.

Figure 4.16: Initial configuration

37

Figure 4.17: Simple swap action concerning cell 3 and 5

Figure 4.18: Anchor and new bounding boxes when swapping cell 1 and 4

Figure 4.19: Cell 5 moved out of the way to make place for cell 1, cell 4 could move without any problems

38

Quadrant cell.x cell.y
1 anchor.x - cell.l anchor.y - cell.w
2 anchor.x anchor.y - cell.w
3 anchor.x - cell.l anchor.y
4 anchor.x anchor.y

Table 4.5: anchor of a cell after swapping with another cell based of the anchor of the other cell

Figure 4.20 displays how the anchor positions are determined and this is based on in which quadrant the
center of each cell was. Table 4.5 shows how the new x and y of the cells are calculated.

Figure 4.20: Different swap anchors based of the quadrants, always the point closest to the center of the grid.
The crossing of the axes denotes the center of the grid.

39

4.3.5 Merging Cells

Themost influential action is already discussed a lot because of the impact on the other actions. What follows is
the discussion of the behavior of the action that merges the rails of cells carrying the same net. A basic example
of this can be seen in figure 4.21. This action has the most potential to lower the cost at the later stages of the
algorithm, as a lot of metal can be omitted. Merging cells just means that the two rails overlap, thus sharing
the signal. The amount of cells that can merge is unlimited, as long as no shorts happen. Also a single rail can
be shared by multiple cells and two cells can have more than one overlapping rail.

Figure 4.21: 2 examples of 2 cells merging

While this action is very useful, it comes with complex implementation. Balancing this action is also difficult,
as the actions should be very randomand simple. But this action could control the algorithm toomuch, rendering
the other actions useless. The reason this action is so powerful is that it, besides reducing metal, moves cells
and swaps rails. Again taking away the work of the simulated annealing.

The merging of rails is however a crucial step in reducing the parasitic resistance in IC design. Because the
difficult nature of this move, it was briefly explored to not implement this as an action but as an extra step
before the routing. This would allow the algorithm to do every available merge thus reducing the cost a lot. But
due to previous mentioned reasoning, this was not done as it would be too influential.

To balance this action correctly it needs to be determined how much parasitic resistance can be reduced by
a single merge action. An extreme example is shown in figure 4.22. This shows the combination of cells which
overlap with the center cell, if each cell was considered. The actual implementation of this action performed at
maximum twomerges at once, one at each side of the cell, selected by thewrappermethod of theRouter class.
When applying this to the example, the lower cell containing the red and green net would be merged below the
cell and the subblock on the top right would overlap the rails for the blue and yellow net, above the selected cell.

Due to allowing onemerge at each side, the cells above and below the selected subblock need to be analyzed
and it has to be determined which of the neighbouring cells are most suitable to merge. An earlier version
allowed the cell that was the closest to be analyzed first for a possibility of overlapping rails. If it had a common
net, the corresponding rails would be merged. But the final version merges the cells that would decrease the
cost the most. This was done in two steps. Of all the cells below and above the cell, the cell which would reduce
the cost the most was merged. Then, available cells were recalculated and the cell with the remaining highest

40

Figure 4.22: Merge example in an extreme case, showing off the correct way to merge all the cells in the vicinity
of the selected cell in the center. The cell at the bottom lowers the parasitic resistance the most,
but is not merged due to the final combination amounting to lower parasitic resistance.

cost reduction was merged. The merge algorithm does not care about the relevant placement of the rails, it just
compares all the rails of two neighbouring cells.

This is not the most optimal way, as the optimal strategy would be to analyze the combination of all the
neighbouring cells. But this does not matter, as the merge is part of the annealing process and it is the task
of simulated annealing to make sure the cells most optimal for overlap are placed accordingly, such that the
merging action can do optimal merges without being truly optimised.

The main algorithm for this will be explained soon. This method does the detection and validation of the
selected rails and cells, the actual merging however is not explained as it is trivial. It comes down to moving
the cells on top of each other and performing an evacuation check. This is necessary because the best cell for
the merge can be anywhere above and below the selected cell. The selected cell will never move, so there is
definitely potential of collision. Than the relevant parameters of the Rail objects are updated correctly.

The first steps involve detecting the cells above and below the cell by invoking the method cellsInBbox,
then the cellswith different bulk biasing and the cells that are alreadymergedwith the selected cell are omitted.
That is what the method findMergableNeighbours does. Then the common rails are found between the
available cells and the selected cell. This allows the construction of a list of candidates where each candidates
is a list of the rails that can be merged between a cell and the selected cell. An example of the whole process
is shown in figure 4.23. In this example we are considering cell 4. The list of cells available for merging is
displayed. Cell 1 is excluded from this list as no rails are common with the selected cell. Cell 5 is excluded
because it has a different bulk biasing and it will need to be moved down.

41

Figure 4.23: Demonstration of merge actions

The candidate list is sorted based on howmuch metal is overlapping with the selected cell. The first element
of the sorted candidates are merged, which means cell 6 is merged onto cell 4, evacuating cell 5 in the process.
This means the yellow and red net are not available anymore for overlap, therefore the remaining candidates
have to be recalculated and resorted based onwhich side of the cell is not occupied. What follows is themerging
of the first remaining candidate.

This method seems quite easy, but things become more complicated when other cells already have merged
rails. Therefore it should be determined whether the first candidate is allowed to be merged and whether other
options are available. This is done in three steps. These steps require knowledge about the current length of
the merged rails, this can be calculated via the method overlapLength. Besides that, only the current cell
is analyzed for any pre-existing merged rails. If the rails of the first candidate are merged with the selected
cell, these rails are unmerged, regardless of the new merge being is less beneficial. This does not matter as the
simulated annealing takes care of determining what is optimal.

Case 1 The selected cell is not merged with other rails. The rails of the first candidate can be merged onto the
selected cell without problems and case 3 is the next step. If not go to case 2.

Case 2 When the selected cell is alreadymerged with another cell, the cost reduction of the current merged rails
is calculated. If this is lower than the new reduction in cost, the selected cell is unmerged and remerged
with the first candidate. Either way, case 3 is considered.

Case 3 At this point the current cell is already merged on at least one side. If the other side is already merged,
the algorithm ends. If not, the candidates are reanalyzed for the yet unmerged rails of the selected cell.
The best candidate is then merged.

These three cases ensure that both sides of the cell allow overlap regardless of present merged rails. The
main algorithm managing all this is explained in 16.

42

Algorithm 16 Overlap cells

function Grid.merge(selectedCell)
available← Grid.findMergableNeighbours(selectedCell)
candidates← []
for all cell in available do

common← selectedCell.commonRails(cell)
candidates.append(common)

end for
if length(candidates) = 0 then

return False
end if
candidates.sort() ▷ sort the candidates based on the length of overlap with the selected cell
_, newMergeLength← overlapLength(candidates[0])
if currentMergeLength = 0 then ▷ Step 1

Grid.mergeCells(selectedCell, candidates[0])
else if currentMergeLength < newMergeLength then ▷ Step 2

Grid.unmerge(selectedCell)
Grid.mergeCells(selectedCell, candidates[0])

end if
candidates.remove(candidates[0])
Step3: find the unmerged rails and the free side of the selected cell
for all candidate in candidates do

if (candidate all not merged and on freeSide) then
remainingCandidates.append(candidate)

end if
end for
if length(remainingCandidates) = 0 then

return False
end if
remainingCandidates.sort()
Grid.mergeCells(selectedCell, remainingCandidates[0])
return True

end function

4.3.6 Minor Actions

Two actions were added related to the routing algorithm, as this might improve the cost. One of these actions
changes the order in which the nets are being routing. It could be for example that routing net2 before net1
uses different paths, which leads to shorter metal traces.

This action is optional as the order of the routed nets could be fixed by the designer. Thereby assigning a
certain hierarchy of importance to the nets. Besides that nets could also be given an additional weight, which
makes that net more important. Meaning that a change of the interconnects of the net has a larger influence on
the cost. The final action could increase or decrease the amount of metal layers that were used by the router.
This way the routing complexity could be gradually increased or decreased and in very simple cases the routing
could also use a single metal layer without using the digital routing convention.

43

4.4 Overcoming Limitations of the routing algorithm

The proposed routing algorithm overcomes two limitations of the A* algorithm. It is able to connect more than
2 points, and it supports a 3D grid. First, the modifications with respect to the A* algorithm are described, after
which the complete solution is showcased.

4.4.1 Point on rail

The first handled limitation is allowing the router to connect rails instead of single points. The actual algorithm
does still only connect two points, but before the routing happens two points on each rail are chosen. This de-
pends on the relative position of the two cells and the specific rails. A naive way of handling this, is choosing
the points on each rail that are closest together. This would work fine if the primitives would not serve as ob-
stacles. The implemented logic partially takes into account the present obstacles. Again, it is not the task of the
algorithm to always behave optimally, it is the task of the annealing to place the cells that should be connected
together close to each other. Only in this case the path should be optimal. Therefore, only the cells containing
the specific rails are taken into account when analyzing obstacles in between rails.

There are many different cases. Some cases deliver specific points on each rail and other result in returning
the points on the outside of both rails which are closest together. The latter is shown in figure 4.24. This ex-
ample shows the simplest case: the two rails do not overlap on the x-axis. The case where rails do overlap will
be explained next, but this example already shows the case where the two rails are not obstructed by a cell. In
this scenario, the algorithm selects two random points on each rail with a common x coordinate. Since these
points all yield the same path length, any pair can be chosen.

Figure 4.24: Two cases for selecting the correct point on a rail, the first example on the left has no overlapping
x coordinates

44

The remaining cases are all variants of the type where both rails are above or below the cell. The only ones
that do not fit this type is the opposite of the second example in figure 4.24. In that example, the two rails are
not obstructed by the cells. The opposite case is when both rails are on the outside and are obstructed by both
cells. In this case and the no overlap case, the method findClosest is used to determine the two points
that should be routed.

This method determines the outer point on each rail that result in the shortest path. It accomplishes this by
computing the cost of the four combinations of the outer points of the rails, via the heuristic. It returns the two
points corresponding to the lowest cost.

The remaining cases have both rails on the same side of the cells. It is assumed from now on that cell 1 is
above cell 2. Two of the remaining six cases use the findClosest method. These two cases can be seen in
figure 4.25. These examples can be recognised, due to the cells fully overlapping on the x axis and the rail in
the center is connected to the cell with the smallest length. Hence, the traces wrap around the larger cell.

Figure 4.25: Two cases where the two points closest together are chosen, the rail in the middle is part of the
smaller length cell and this cell is completely overlaps on the x axis.

The remaining cases allow direct calculation of the optimal points, because the path follows the side of one
of the cells. This means the path goes from one of the outer points to the left of right and then up/down to the
other rail. Two of the four cases are displayed in figure 4.26. The other two cases follow the same principle but
now the cells are on the bottom. All these cases are handled in algorithm 17.

Figure 4.26: Two cases where the routing can go next to the cell with the smaller length.

45

Algorithm 17 Find points on two rails which are optimal to connect. rail1.y<rail2.y

function Router.findPoints(rail1, rail2)
overlapX, overlapL←overlapLength(rail1, rail2)
if overlapL = 0 then

return findClosest(rail1, rail2)
end if
if ¬rail1.top and rail2.top then

x← random(overlapX, overlapX + L
return (x, rail1.y, rail1.z), (x, rail2.y, rail2.z)

end if
if rail1.top and ¬rail2.top then

return findClosest(rail1, rail2)
end if
if cell1.top then ▷ only top, bot combinations left

if cell1.x < cell2.x then
if cell1.x+ cell1.l > cell2.x+ cell2.l then ▷ full overlap

return findClosest(rail1, rail2)
else

return (rail1.x+rail1.l, rail1.y, rail1.z), (rail1.x+rail1.l+1, rail2.y, rail2.z)
end if

else
return (rail1.x, rail1.y, rail1.z), (rail1.x− 1, rail2.y, rail2.z)

end if
else

if cell1.x > cell2.x then
if cell1.x+ cell1.l < cell2.x+ cell2.l then ▷ full overlap

return findClosest(rail1, rail2)
else

return (rail2.x+rail2.l+1, rail1.y, rail1.z), (rail2.x+rail2.l, rail2.y, rail2.z)
end if

else
return (rail2.x− 1, rail1.y, rail1.z), (rail2.x, rail2.y, rail2.z)

end if
end if

end function
function findClosest(rail1, rail2)

path1← heuristic((rail1.x, rail1.y, rail1.z), (rail2.x, rail2.y, rail2.z))
path2← heuristic((rail1.x, rail1.y, rail1.z), (rail2.x+ rail2.l − 1, rail2.y, rail2.z))
path3← heuristic((rail1.x+ rail1.l − 1, rail1.y, rail1.z), (rail2.x, rail2.y, rail2.z))
path4← heuristic((rail1.x+ rail1.l − 1, rail1.y, rail1.z), (rail2.x+ rail2.l − 1, rail2.y, rail2.z))
if path1 = min(path1, path2, path3, path4) then

return (rail1.x, rail1.y, rail1.z), (rail2.x, rail2.y, rail2.z)
else if path2 = min(path2, path3, path4) then

return (rail1.x, rail1.y, rail1.z), (rail2.x+ rail2.l − 1, rail2.y, rail2.z)
else if path3 = min(path3, path4) then

return (rail1.x+ rail1.l − 1, rail1.y, rail1.z), (rail2.x, rail2.y, rail2.z)
else

return (rail1.x+rail.l−1, rail1.y, rail1.z), (rail2.x+rail2.l−1, rail2.y, rail2.z)
end if

end function
46

4.4.2 Heuristic and pathing

A-star utilised the Manhattan distance as a heuristic, so the best path at this point is also the shortest path.
But for routing an IC the parasitic resistance should be the figure of merit. The heuristic plays a big part in the
performance of the router. A good heuristic allows fast exploration and precise, optimal path estimation.

The heuristic requires knowledge of the sheet resistance of the employed metal layers and the resistance
of the vias in between them. The total estimated resistance is then calculated, by looking at which layers will
be employed when using the best path. The main heuristic multiplies the difference in x coordinate by the
sheet resistance of the lowest layer for horizontal movement. The same principle is used for the difference in y
coordinate, but the cost of two vias between the lowest two layers is added. Because vertical movement implies
the minimal use of two vias. Then, the difference in metal layers is determined and based of the highest metal
layer, the cost for the vias are calculated. This is summarised in the following formula.

h(∆x,∆y, z1, z2) = abs(∆x)∗RM0+abs(∆y)∗RM1+sgn(abs(∆y))∗RV0+viaCost(z1, z2)

This function should execute fast, as this method has a very large amount of calls during each routing step. The
method viaCost is described in algorithm 18

Algorithm 18 Calculate via cost

RV ia← [...] ▷ List containing via resistance, first elements refers to first via
function viaCost(z1, z2)

zMax← max(z1, z2)
zMin← min(z1, z2)
totRes← 0
for i = zMin to zMax do

totRes← totRes+RV ia[i]
end for
return totRes

end function

For simplicity the amount of metal layers used for the examples is four and the first four metal layers have
sheet resistance 1, where each via has a resistance of 6.

As mentioned in the previous chapter, the heuristic is used to determine which cell is explored next. As it is
used to estimate the current cost from each node to the goal. The other metric, the gScore, is the accurate cost
of the current path: from the starting node to the current node. This is calculated by using the exact distance
from node to node, so a step in a metal layer adds a cost of 1 and going up or down a layer adds a cost of 6.
These values are arbitrary and employed for the results.

4.4.3 Greedy routing

When routing the layout of an IC, the routing problem comes down to a variant of the traveling salesman prob-
lem. This means finding an optimal solution is computationally expensive. Simulated annealing is a method
that can be used to solve these kind of routing optimization problems. Then, the actions are focussed on decid-
ing which path to take between two points. This layout generator utilizes the simulated annealing algorithm
for the placement specific, without it influencing the router much.

47

When a net only interconnects two rails, it suffices to find one point on each rail and use this as the input
for the improved A* algorithm to find the path. However, once a net connects more than two rails, the problem
gets much harder. To solve it a greedy algorithm is proposed. This approach estimates the optimal routing well,
while keeping the function calls to the routing algorithm at a minimum. The greedy algorithm connects all the
rails sequentially onto the current interconnects, based on which rail has the current shortest distance to the
existing traces. This current shortest distance is estimated by the heuristic of the A* algorithm. Again, this will
not always provide the optimal result, but it is the task of the placer algorithm to make sure the cells are close
together in which case this algorithm will perform correctly.

Figure 4.27 demonstrates how the blue net is being routed. The first step is to find the two rails which
selected points are closest together, according to the heuristic. This is the red net. If the actual cost of the path
is smaller than the second best heuristic, this path is accepted. For this example, this is the case. The heuristic
estimation is the same as the actual implementation, for the heuristic calculates the cost of the optimal path.

After the first path is chosen, the process is repeated. The optimal connection between the current path
and the remaining rails is found. This is done by finding the closest point between the rail and the currently
routed net, by comparing each combination of points. Then the shortest path is determined and if the cost of
the path again is lower than the second best heuristic, it is routed. This step is being repeated until every rail is
connected.

If the actual path happens to be worse then the second best estimation of the heuristic, the next path is
routed. If this implementation is better than the previous one, it is implemented. If not, it is compared to
the third best estimation. If this estimation is better, that path is calculated. This process keeps on repeating
and stops if the actual routing is cheaper than the next estimation; or a previous routing is cheaper than the
current one; or until all rails are compared. The final algorithm executing this, is shown in 19, the method
findBestPath is a helper function which can access the same properties as greedy.

Figure 4.27: Example of routing multiple rails at once. The interconnects are added as follows: red, purple,
yellow, green.

48

Algorithm 19 Greedy algorithm for routing multiple rails

function Greedy(routeGrid, rails, netV alue)
pathCost← Dictionary[(int, int), cost] ▷ tuple contains indices of two rails, cost is a float
for i = 0 : length(rails)− 1 do

for j = i : length(rails) do
p0, p1 = pointsOnRails(rails[i], rails[j])
pathCost[(i, j)] =heuristic(p0.x− p1.x, p0.y − p1.y, 0, 0)

end for
end for
findBestPath(pathCost)
while rails.notAllMarkedDone do

pathCost← Dictionary[(int, int)] = cost
for i = 0 : length(rails)− 1 do

for j = i : length(rails) do
p0, p1 = closestPoints(rails[i], rails[j])
pathCost[(i, j)] =heuristic(p0.x− p1.x, p0.y − p1.y, 0, 0)

end for
end for
findBestPath(pathCost)

end while
end function
function findBestPath(pathCost)

pathCost.sortByV alue()
curLowest← inf
curLowestIndices← (0, 0)
for all pair, optCost in pathCost do

nextOptCost ▷ obtain next cost in pathCost too
bestPair ← pathCost.keys[0]
path, cost← findPath(pointsOnRails(rails[bestPair[0]], rails[bestPair[1]]), net)
if cost > curLowest then

rail1 = rails[curLowestIndices[0]]
rail2 = rails[curLowestIndices[1]]
path, cost← findPath(pointsOnRails(rail1, rail2, net)
routeGrid.addPath(path)
rails.markDone(pair)

else if cost < nextOptCost then
routeGrid.addPath(path)
rails.markDone(pair)

else if cost < curLowest then
curLowest← cost
curLowestIndices← pair

end if
end for

end function

49

4.4.4 Valid move

Another responsibility of the router is to avoid shorting multiple nets and keeping 1 unit distance between
distinct traces. This adds an extra layer of complexity to the router. Each time a neighbour is explored, it needs
to be validated. This means that neighbours of the explored node cannot be next to another trace, as one of the
constraints will be violated. Consequently, each explored neighbour, requires checking 8 neighbouring cells.
Performance wise this makes the router slower, but it is required. The algorithm for validMove is shown in
20, this method can access the same parameters as the A* method.

Algorithm 20 Valid move
allowed← set((int, int, int))
function validMove(node)

for i = −1 to 1 do
for j = −1 to 1 do

if ¬(i = j) then
col← node.x+ i
row ← node.y + j
if (node.z, row, col) in allowed then:

continue
end if
if routeGrid[0, node.y, node.x] = 1 then

return False
end if
if ¬(routeGrid[node.z, node.y, node.x] = 0 or netV alue) then

return False
end if
if ¬(0 <= node.z < grid.layers and 0 <= row < grid.rows) and 0 <=

col < grid.cols) then
return False

end if
end if
allowed.add((node.z, row, col))

end for
end for
return True

end function

This algorithm has intensively been optimised. A number of checks are required which are also slow, but
they are executed in a specific order and also allow premature exiting of the method, such that not all 9 cells
have to be verified if one requirement is not met. The order is determined based on which check is violated the
most. This way unnecessary statements are avoided. The first condition is a member check of a set storing the
already verified nodes. The second condition checks if the node is above a primitive or not. The next condition
verifies whether the current cell is free space or the same net. The last one ensures the index does not exceed
the bounds of the routing grid.

50

4.5 Improved A*

The final A* routing algorithm is shown in 21.

Algorithm 21 Improved A* algorithm

function AstarRevisited(grid, start, goal, netV alue)
moves← [[(1, 0, 0), (1, 0, 0), (0, 0, 1), (0, 0,−1)], [(0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)]]
if grid.layers = 1 then

moves← [[(0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)], [(0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)]]
end if
closedSet = set()
cameFrom = Dict[(int, int, int)] = (int, int, int)
gScore = Dictionary[start] : 0 ▷ Default value of items is infinity
fScore = Dictionary[start] : heuristic(start, end)
openList = [(fScore[start], start)]
while openList not empty do

current = openList.pop()[1]
if current in closedSet then

continue
end if
if current = end then

return reconstructPath(current)
end if
for dz, dy, dx inmoves[current.z mod 2] do

neighbour = (current.x+ dx, current.y + dy, current.z + dz)
if neighbour not in closedSet then

if validMove(neighbour) then
tentativeGScore = gScore[current] + distance(current[0], dz)
if tentativeGScore < gScore[neighbour] then

cameFrom[neighbour] = current
gScore[neighbour] = tentativeGScore
fScore[neighbour] = tentativeGScore +

heuristic(neighbour, end)
openList.push((fScore[neighbour], neighbour))

end if
end if

end if
end for

end while
return []

end function

51

To allow 3D exploration and to follow the routing convention, a list of moves is constructed. Moves contains
two sets of moves, the first one is for movement on even layers(x-axis), the second one for movement on odd
layers (y-axis). Most of the algorithm remains the same, but with optimised data structures and conditions. The
algorithm itself uses a dictionary for the g and f scores. Python dictionaries (and sets) provide member checks
on average in O(1), worst case it is performed in O(n), which is the average for member checks in Python
lists. Besides that, the default value for the items in these dictionaries is infinity.

Similar to validMove, the if-statements are precisely ordered, mainly to execute validMove and
heuristic as late as possible, for they are more expensive methods. The algorithm itself does not differ that
much from the original one, but it is assisted by all the other methods described in this section, to overcome all
the limitations of standard A*.

4.6 Performance and optimization

The A* algorithm is the most executed part of the layout generator. Each iteration of simulated annealing
requires many calls to the router, therefore a lot of time went into optimizing the algorithm. A larger schematic
contains more rails and more nets, thus the amount of time the algorithm is executed increases too. But the
execution time itself also goes up for larger grids, as it takes longer to reach further cells.

What would increase the layout generator performance the most is always doing actions that lower the cost,
this way the amount of iterations is low. If the actions do not lower the cost, the calls to the router were ’wasted’
which can be costly. This can only be optimised by choosing the correct weights for the actions.

To make validMove and A* perform faster Cython [2] was explored, for the A* algorithm in a 2D grid,
this improved performance, but for the last version it slowed the algorithm down slightly. Cython is meant
to be used when large arrays are iterated over to perform calculations, as the data structures for the routing
algorithm are mostly dictionaries which are constantly updated, it is not able to speed up the algorithm. The
best option to do so would be to use a different programming languages which perform faster, to implement
the improved A* method.

When looking at the memory performance of the layout generator, it is obvious that it depends on the size
of the circuit. What is always stored is two objects of the router class, containing the information of all the cells
for a specific configuration, based on the state of simulated annealing. These objects are always there and do
not depend much on the size. However, the router requires the initialization of a grid, to be able to perform the
router. This grid has to be reinitialised for each router, but previous grids are not stored. This grid does not scale
optimally as it depends on the grid size which depends on the size of all the cells.
The A* algorithm minimises memory usage by employing dictionaries and sets to store relevant data.

Overall the memory occupation is not the performance concern of this layout generator, the main issue is
the non-ideal scaling of execution time for larger circuits.

The only step that remains is exporting the python representation of the layout to Virtuoso. This would mean
lifting the abstraction to make a realistic and functional IC layout. The primitives are already drawn after they
are detected in order to perform the quantization and to know the dimensions and other specifications of them.
These are all passed to a Router instance to generate a layout. When a result is obtained, the information
about the placement and routing is passed back to the script which redraws the primitives. The previously drawn
subblocks cannot be reused because the rails swap places. Utilizing all thesemethods, a fully operational layout
is obtained in Virtuoso and the performance of the layout and the layout generator can be measured.

52

5 USAGE

With the many degrees of freedom and the huge variety in available circuits, the results of the layout generator
differ a lot. Different circuits and setups will be explored to demonstrate the various outcomes. The reference
circuit is the operational amplifier circuit. It is simple, which allow fast performance of the routing and it has
many different good configurations. The realistic circuit includes using the strict rails for the differential pair
and taking into account the bulk of the primitive. However, for testing the performance of the layout generator,
these constraints will not be enforced. This allows more creativity and allows better gauging of the layout
generator. This simplified configuration can be seen in figure 5.1, the showcased layouts will be annotated with
the cost, the area and length are unit-less, as it is expressed by the pitch, which is 1.

What follows, is an in depth discussion of the influence of the parameters on the layout generator and how
the best performance can be ensured. Finally, the performance of the circuit will be analyzed using a realistic
layout.

Figure 5.1: Subblocks of simplified opamp, showing optimal area configuration. Bulk potential and strict rail
configuration of differential pair are not taken into account. Area: 8910

5.1 Calibration and determining parameters

5.1.1 Actions

While all the degrees of freedom provide much control over the generator, it can be difficult to find the correct
combination of values to ensure good performance. Therefore, providing fitting default values is important. The
default values of some parameters do not depend on the specific circuit. This the case for the weights of the
actions, the default values for these can be seen in table 5.1. These default values are determined by trial and
error, based on their importance and influence on the cost. In theory, simulated annealing should always reach

53

a decent layout independent of these weights, due to the random nature. However, finding the best actions will
take longer depending for the exact values.

The recommended method to find good values for the weights is by doing manual adjustments based on
previous runs. Each run will provide data for these actions which can be used as feedback. In general for each
iteration of the simulated annealing, the current cost and temperature is stored. Besides that each executed
action also provides the following information.

• Type of action

• current iteration (allows finding the current cost and temperature)

• cost lowered, cost increased and tolerated or cost increased and not tolerated

This allows to find when each action was executed and how influential each actions was. By analyzing the
frequency of lowering the cost, it can be analyzed if the action is for example more useful for higher annealing
temperatures. Based on that the designer should tweak the weights of the actions.

Action weight
Move 100
Move and Refit 40
Swap rails 50
Swap cells 40
Merge 20
Swap routing order 5
Update layers 10

Table 5.1: Default weights for the actions of the placement algorithm

In contrary to the weights, finding the maximum amount of actions per iteration relies on the specific circuit.
Therefore, it requires looking at multiple iterations of the algorithm. If the results are always similar or if only
doing more actions at a time will improve the cost, this value should be incremented. The default value should
be 2 or 3, depending on the circuit complexity as this influences how fast the layout generator converges. For a
more complex circuit, a higher value is better.

The amount of predefined constraints on the layout matter. If the solution space is small, it can be beneficial
it to have a higher number of actions. To give an example, for the simpler opamp the maximum amount of
actions per placement is 2 and for the actual opamp layout this is 3, due to the extra constraints. It should be
noted that a higher number of actions result in larger execution time.

5.1.2 Calibration

To determine theweights for the cost function a calibration process is available. Firstly, this is necessary to allow
the simulated annealing to always behave equally for the same parameters. To understand this, the Boltzmann
distribution which allows uphill movement should be analyzed.

P (∆Cost) = exp

(
−∆Cost

Ti

)

54

Depending on the change of the cost and the current temperature uphill movement will be accepted, i.e., when
the temperature is high and the change in cost is low, a higher probability of acceptance is obtained. This
implies that, in order to always have the same behavior, the difference in cost for the same action should be
independent of the circuit. As the cost consists of the total trace resistance and the total area, the influence on
these two values should be the same. The trace resistance, which is equivalent to the trace length, follows this
principle. If an action brings a cell closer to the left, the length of the rail is reduced. This is independent of
the circuit. However by moving the cell closer, the total area changes, which depends on the size of the layout.
Figure 5.2 shows two layouts with two cells. The same action is performed for both cases. The difference in
length is the same, but the difference in area is not. To solve this the area should somehow be normalised.

(a) Layout 1: ∆Area=2925,∆Length=27 (b) Layout 2: ∆Area=1625∆Length=27

Figure 5.2: Two layouts underwent the same action: the cell on the right moved down to a new position adjacent
the other cell, previous position is shown as a faded cell. The change in area and length is given.

The second reason to normalize the area is due to the cost not represent a correct figure of merit without
rescaling, as the area will in most cases be much larger, compared to the length. Figure 5.3 shows two layouts;
the sheet resistance of the traces is assumed 1. Both layouts almost have the same cost, but the configuration
of layout 2 is clearly better. This is due to the area and length being unbalanced.

(a) Layout 1: 1846 = 1720 + 126 (b) Layout 2: 1845 = 1760 + 85

Figure 5.3: 2 possible layouts with similar cost (Area + Length)

55

This can be solved by correctly choosing weights for the area and length, but this would make using the
weights very unintuitive. It would be much better if the cost and length are balanced when the weights are
equal. To obtain this, the area needs to be normalised. The normalization factor is the ratio between the best
possible length and the best possible area. This way the optimal area equals the optimal length. Applying this
to the example in figure 5.3, the costs for the layouts would be 168 and 128 respectively, which reflects the
change in length (39) and change in area (1).

However, this clashes with the first problem mentioned and the area is not being resized to the same value.
But due to the rescaling the difference in cost is much smaller. Hence, the negative effect on the uphill move-
ment stated earlier is much weaker.

Now to do this normalization the calibration is necessary. The calibration determines the ’best’ area and
’best’ length, to calculate the scaling factor. The first step is to find the optimal area. This can be found very
quickly by performing the simulated annealing algorithm without routing the cells, which would slow down
this process. The cost of the circuit only takes into account the area and the final area is this (almost) optimal
area. For the simplified opamp this step can be seen in figure 5.1 and the optimal area is 8910.

After this the optimal length should be calculated. This takes a bit more time as the router should obviously
be used. Now only the length or trace resistance should be considered for the cost. For simplicity and speed
routing over the cells is allowed. To further speed up the process, the starting layout could be the layout obtained
by step 1. The result for this can be seen in figure 6.2 and the length is 288. It should be noted that using the
digital convention does increase the cost for the final results, due to the additional vias. However, the algorithm
performs faster with it. This convention can be toggled by the designer.

Figure 5.4: Simplified opamp with optimal length layout. Length: 288, Area: 11560

56

The final step just involves rescaling the area and the layout generator is calibrated. The weights now rep-
resent a correct scaling of the area and length. By default both weights are 1. Now an optimal layout for the
simplified opamp can be generated. When using the default weights and the normalization calculated earlier,
the following layout is obtained 5.5. The final cost is 622, which is close to twice the optimal length.

Figure 5.5: Simplified opamp with optimal layout. Cost: 622, Length: 305, Area: 9828

This calibration system is not perfect, as these values will almost never be actually optimal. The problem
with the different annealing behavior also remains. But it provides the designer with proper default values for
the cost function and greatly improves when comparing to the performance without the calibration.

57

5.1.3 Annealing parameters

The remaining parameters are the annealing parameter: Tstart , Tend and α. Tend is the parameter that has
the most influence on allowing uphill movement. As the denominator of the Boltzmann distribution is the
current temperature. The idea is that, as T gets very close to Tend , less uphill movement is allowed, as only
a slightly worse cost can be accepted. As Tend controls how low the temperature can get, it also controls how
much uphill movement is allowed in the later stages.

Even more, when the ratio between Tstart and Tend both is divided by 10 and the weights of the cost are
multiplied by 10, the behavior of the layout generator will be the same as the Boltzmann distribution will not
change.

If the layout generator does not seem to reach an optimal solution, incrementing Tstart will allow more
variation in the beginning with the same uphill movement in the end. Decreasing Tend on the other hand,
enforces more precise moves at the end of the algorithm. The default values for these parameters are 100 and
0.01 respectively. For α, the default value is 0.95.

Changing how fast the algorithm reaches the end, means changing α or how far the start and end temper-
ature are apart. When the solution is reached too fast, changing α is useful if the amount of uphill movement
is sufficient. Else,it is best to change the temperature interval. There is no clear cut way to determine these
values, but at least the default values will allow generating a decent layout.

Now the layout shown in Figure 5.5 uses these default values. However, the algorithm reaches a solution
very fast as the circuit is quite simple and small. At a certain point the layout is just waiting for the temperature
to be lowered but no optimal moves can be found as the layout is already quite good. This is visualised in figure
5.6, where 191 generated layouts were analyzed.

Figure 5.6

58

The majority of these layouts reach 99% of their final cost when the temperature is around halfway. On aver-
age the amount of iterations is 2579 when the cost reaches this point. The average amount of total iterations is
5900 and the average final cost is 669. This means the temperature interval is too large orα is too large. When
looking at the progression of the cost of the 5 best and 5 worst layouts, it is clear that annealing converges fast.
The cost evolution of both is shown in figures 5.7 and 5.8.

Figure 5.7: Cost evolution of five best results. Legend displays final cost and amount of iterations

Figure 5.8: Cost evolution of five worst results. Legend displays finals cost and amount of iterations

It is clear that the way the solution is reached does not depend on the total amount of iterations or the
starting position. The randomness of the algorithm is clearly shown as the convergence shows no clear pattern
for good or bad results. These results also show no correlation when looking at the amount of uphill movement
or when the cost reaches ’99%’ of the final cost. As stated above, the cost converges fast but it takes a long time
to finish the algorithm. Next the influence of α will be explored.

59

Figure 5.9: Cost distribution for different values of α

The same experiment was executed for the following values α ∈ [0.98, 0.95, 0.92, 0.90, 0.85, 0.80].
Going higher or lower than these values means converging extremely slow or fast respectively, thus not pro-
viding feasible results. Figure 5.9 shows the distribution of the cost of each experiment.

It is clear that for most values the optimal solution (622) almost can be reached. The algorithm is more con-
sistent if it runs longer as the largest two values provide on average very good results. The speed of convergence
will be very similar for each experiment, but the algorithm will just finish sooner. The main disadvantage for
using α = 0.98 is that it takes on average 9907 iterations to finish. This value is not even a correct estimate
as the maximum amount of iterations is 10000 and the annealing stops before reaching Tend . For α = 0.98,
the amount of improvements required to lower the order of magnitude of the temperature is very high, this is
displayed in table 5.2.

α x

0.8 10
0.85 14
0.90 22
0.92 28
0.95 45
0.98 114

Table 5.2: Improvements required to divide temperature by 10. This would mean finding x for 10× αx = 1

Another observation is the similarity in layouts. The resulting costs seem discretised as they are grouped in
adaptations of the same layouts. As the simplified opamp has not many building blocks the variation in cost is
not that large.

60

Another almost optimal layout thatwas generated can be seen in figure 5.10. This designwas generatedmultiple
times by different configurationswith various parameters. Another layoutwith almost similar costwas obtained
evenmore and is shown in figure 5.11. These two layouts are quite alike, but the latter occurred muchmore. Only
the frequency of the best layouts where counted. Because of the large number of simulations the results where
often very close to one of the three optimal layouts.

Figure 5.10: Optimal generated by the framework. Cost: 626, Length: 311, Area: 9735

Figure 5.11: Optimal generated by the framework. Cost: 627, Length: 326, Area: 9291

To understand the influence of the annealing parameters the same experiment was executed for combina-
tions of different temperature intervals and α. The temperature range was changed and some of the previous
mentioned values for α where selected for that range, based on how much improvements were necessary. If
T ∈ [0.01, 1000] the corresponding values where low as the temperature interval is very spread out. The
value of α was 0.95 or 0.98, if the temperature interval was close together.

The first observation is that almost each configuration reached at least one of the optimal configurations.
Obviously by running a large amount of simulations, the chance increases of finding one. The main difference
lies in the distribution of the cost.

61

The most obvious result is that for α = 0.98 the layout generator performs the best. The average cost is
the lowest and the difference between worse and best results is also the smallest. The downside is that these
simulations take the most time: it takes 2 to 3 times longer to execute when compared to α = 0.95. The
reason this performs so optimally, is that the temperature stays similar a long time, which means that in the
beginning a lot of uphill movement is allowed and at the end a lot of precise movement is required to finish the
process. As this configuration requires a lot of improvements to finish, the temperature interval is quite small.

A large temperature interval with a lower alpha and the same Tend does obtains similar results, but with
a higher upper bound. The temperature changes too fast for these configurations to have optimal uphill and
precise movement. This is shown in figure 5.12. As the left configuration does require the most improvements
(228), it performs the slowest and the best.

Figure 5.12: For similar amount of improvements, different configurations are displayed

If quick and rough results are desired, Tstart = 1000 and Tend >= 0.1 for low α is advised. These
results can be optimal, but are quite inconsistent for this very fast configuration. Choosing an even higher value
for Tstart is not useful as all uphill movement is allowed and once Ti = 1000 the current layout might be
equal to the starting configuration of a different simulation with Tstart = 1000. The other extreme example
employs Tend = 0.001. These results are very spread out, as almost no uphill movement is allowed at the
end, local minima are not avoided. The results can be very good, but can also get stuck very easily.

As stated earlier, the opamp circuit converged too slow. Hence, forα = 0.95, smaller temperature intervals
where used. The distribution for the cost is shown in figure 5.13. The first boxplot is for the default configuration
and the second one increases both temperature bounds by 10, which leads to very similar results. The next three
boxplots require less improvements, this leads to faster results. The optimal solutions can definitely be found
but the upper bound is higher. Overall it is beneficial to use one of these intervals for the simplified operation
amplifier. The last boxplot shows a very small temperature interval, the optimal solutions are not reached and
it performs worse on average, because the algorithm stops too fast.

62

Figure 5.13: For α = 0.95, the cost boxplot for different temperature intervals is displayed.

The final results is shown in figure 5.14 and displays a realistic DRC-clean operational opamp layout in Virtu-
oso as obtained by the layout generator.

Figure 5.14: Layout in Virtuoso of an opamp. The n-well spacing is taken into account, as well as the constraints
on the rails of the differential pair

63

6 CONCLUSION AND FUTURE WORKS

An effective layout generator is the result of this thesis. An optimal DRC-clean layout can be obtained. This
layout generator employs an optimization process where the routing and placement happens simultaneously,
while providing a lot of tunable parameters, such that its performance can be tweaked fitting. The optimization
is done via simulated annealing which introduces random variations onto the layout. The routing is performed
via an optimised and improved A* algorithmwhich allows 3D routing of the nets. However, the layout generator
can still be improved a lot and has some shortcomings.

The layout generator does not take symmetry into account and, hence, is suboptimal for differential circuits.
It can definitely route and place differential circuits, but due to matching problems the layout will not work
properly. However, the fact that each primitive is symmetric already reduces the effect on matching signif-
icantly. Adding this would require detecting which cells require symmetry and then updating all actions to
behave in a symmetric matter.

The router slows down the algorithm. This is why other layout generators opt for splitting the two main
tasks. It is a dedicated choice to do the routing simultaneously as it allows for optimal results and more control
during the process. To further increase the speed and performance, some potential improvements are provided.

One of the mentioned problem is that each explored cell requires the validation of all its neighbours, due
to the required spacing between the traces. Nevertheless, this step can be skipped and validMove will only
need to perform checks on the explored neighbours. By doing some preprocessing on the routing grid this can
happen. If all the metal containing a different net includes a perimeter of the required spacing, these occupied
cells will never be explored. This would speed up A* significantly and it will allow different spacings between
different nets.

Furthermore, the concept of retrying previous interconnects can be explored. When the routing is compli-
cated and only one cell is moved slightly the routing can happen almost instantly as only the nets of the moved
cell require rerouting. Obviously this might inhibit the optimal solution, if certain traces are never redrawn.
Therefore, traces can be reused for a maximum amount of, for example, 5 times after which they require rerout-
ing. On top of that, certain actions could enforce a full redraw, specifically the actions that influence the router.

The limitation of the grid is avoided by not using metal layers with different minimal widths. If this would
be the case, the grids would have different sizing and placing vias would be hard as it is difficult to know how
the two grids would overlap and it would be likely that two traces above each other would not fully overlap.

The grid also allows making traces wider, but this is not yet added to the algorithm. One could retrieve the
current density of certain nets and calculate the minimal required width of the traces. This would automatically
mean that these nets get a higher priority as they contain more metal.

Another limitation is that adding larger components such as capacitorswill immediately increase the gridsize
a lot and slow down the routing. To solve this, the routing could be performed recursively. Larger cells could be
routed on a more coarse grid to not require the large gridsize. The connection of the coarser grid to the smaller
cells would then be done on a more precise grid, this would determine the exact position of the interconnect in
the coarser grid. The idea of omitting the quantised grid could be explored …

64

Now for the actions most of them perform quite good. However, one more action could improve on the
placement. If cells are merged, moving them does not happen often, because the chance of having a higher cost
is large, the only movement allowed is the movement along the rails. During the experiments many layouts
where not optimal because of this, an example is shown in figure 6.1. Moving the group of cells that are merged
would help this layout, therefore the new actionwould change the position of the cells that aremerged together
and then verifying whether no overlap happens. Perhaps merged cells could be interpreted as a single cell.

Figure 6.1: Less optimal layout, which requires additional action to improve

Another but less straightforward action would be to change the height of the rails. The reasoning for this
can be seen in figure 6.2. Here the upper rail of the middle left cell could be risen to merge with the cell above.
With the current actions and placement this merge cannot happen as it would mean shorting two cells. But
if the rail could be placed higher, this could be resolved. This action would breach the black box assumption
as now the connections from the terminal contacts to the rail interface need to change too, which would lead
to an increase in resistance. This method imposes a trade-off between the decrease in resistance because of
potential changes in interconnections and the added resistance due to the elongation of the connections inside
the primitive.

This concept would also help for the cell in the upper right corner. The rail above that cell could be placed
higher up, to align vertically with the adjacent rail, hence, omitting two vias andminimizing the interconnection
length. This action is not easy to implement as it would also influence other actions. To retain the annealing
characteristic of the action, it would be feasible to undo the change in height each time the specific cell is
moved. Besides, it needs to be detected whether the change in height could allow rails to merge.

The way the actions are used could also be improved on. By using a function of the current temperature to
determine the weight. This would mean that certain actions could be executed more frequently in certain parts
of the algorithm. For example less merging in the beginning and less unprecise movement in the end of the
process. Determining the specific function for this would be difficult and again reliant on the specific schematic,
but it could provide a performance boost and more precise results.

Besides changing the actions based on the progress of the algorithm, it could also be beneficial to do, i.e.,

65

Figure 6.2: Almost optimal layout, which can benefit from a new action

the first quarter of the placement without the routing, which would lead to quick improvements on the area
and placement. Then the routing is performed to further improve the layout, in a faster fashion, due to the cells
already being merged or close together.

The layout generator was only tested for the opamp circuit, while it allowed much variation it was only a
simple circuit without many different primitives. The specific algorithm that detects these primitives should be
expanded further and how the detection behaves for other circuits with more complex primitives is unknown.
Complex randomised structures where tested, but this is not a realistic way of gauging performance. For the
moment the flexibility of the primitives is also not superb; unknown, predefined layouts can be added but the
resulting layouts might not be optimal, because most actions cannot be performed on these predefined sub-
blocks. In order to do that, the black box concept has to be lifted and more knowledge has to be obtained from
these existing layouts.

Overall, this layout generator achieves precise routing and placement via simulated annealing and an im-
proved A* algorithm. An operational amplifier was extensively studied to evaluate the performance of this tool,
which extends the capabilities of IDcircuits, a python framework for automatic layout generation. By simplifying
the available primitives, an optimization procedure was developed to place and route these primitives simul-
taneously. As the layout generator is meant to be used together with an IC designer, the framework allows a
script and a configuration file to control the resulting layouts. The influence of the framework’s parameters is
clarified and a calibration method is provided to accurately gauge the layouts based on the enclosing area and
parasitic resistance.

66

BIBLIOGRAPHY

[1] Noraziah Adzhar and Shaharuddin Salleh. “Simulated Annealing Technique for Routing in a Rectangular
Mesh Network”. In: Modelling and Simulation in Engineering 2014 (Dec. 2014). doi: 10.1155/2014/
127359.

[2] Stefan Behnel et al. “Cython: The best of both worlds”. In: Computing in Science & Engineering 13.2 (2011),
pp. 31–39.

[3] Eric Chang et al. “BAG2: A process-portable framework for generator-based AMS circuit design”. In: 2018
IEEE Custom Integrated Circuits Conference (CICC). 2018, pp. 1–8. doi: 10 . 1109 / CICC . 2018 .
8357061.

[4] Hao Chen et al. “MAGICAL: An Open-Source Fully Automated Analog IC Layout System fromNetlist to GDSII”.
In: IEEE Design & Test 38.2 (2021), pp. 19–26. doi: 10.1109/MDAT.2020.3024153.

[5] Tonmoy Dhar et al. “ALIGN: A System for Automating Analog Layout”. In: IEEE Design & Test 38.2 (2021),
pp. 8–18. doi: 10.1109/MDAT.2020.3042177.

[6] JaedukHan et al. “LAYGO: A Template-and-Grid-Based Layout Generation Engine for Advanced CMOS Tech-
nologies”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 68.3 (2021), pp. 1012–1022. doi:
10.1109/TCSI.2020.3046524.

[7] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362.
doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/s41586-020-
2649-2.

[8] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.
doi: 10.1109/TSSC.1968.300136.

[9] Paul G. A. Jespers and Boris Murmann. Systematic Design of Analog CMOS Circuits: Using Pre-Computed
Lookup Tables. Cambridge University Press, 2017.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”. In: Science 220.4598
(1983), pp. 671–680. doi: 10.1126/science.220.4598.671. url: https://www.science.
org/doi/abs/10.1126/science.220.4598.671.

[11] Ricardo Martins, Nuno Lourenço, and Nuno Horta. “LAYGEN II—Automatic Layout Generation of Analog
Integrated Circuits”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
32.11 (2013), pp. 1641–1654. doi: 10.1109/TCAD.2013.2269050.

[12] Taeho Shin et al. “LAYGO2: A Custom Layout Generation Engine Based on Dynamic Templates and Grids
for Advanced CMOS Technologies”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 42.12 (2023), pp. 4402–4412. doi: 10.1109/TCAD.2023.3294462.

[13] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009.
isbn: 1441412697.

67

https://doi.org/10.1155/2014/127359
https://doi.org/10.1155/2014/127359
https://doi.org/10.1109/CICC.2018.8357061
https://doi.org/10.1109/CICC.2018.8357061
https://doi.org/10.1109/MDAT.2020.3024153
https://doi.org/10.1109/MDAT.2020.3042177
https://doi.org/10.1109/TCSI.2020.3046524
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://doi.org/10.1109/TCAD.2013.2269050
https://doi.org/10.1109/TCAD.2023.3294462

	Introduction
	Environment
	Proposed Concepts
	Primitive detection
	Placement and Routing
	Placement via Simulated Annealing
	Routing with A*

	Implementation
	Architecture
	Cell
	Bounding Box
	Rail
	Router and Grid

	Initializing Grid and Router
	Actions
	Dealing with collision
	Moving cells
	Swapping Rails
	Swapping Cells
	Merging Cells
	Minor Actions

	Overcoming Limitations of the routing algorithm
	Point on rail
	Heuristic and pathing
	Greedy routing
	Valid move

	Improved A*
	Performance and optimization

	Usage
	Calibration and determining parameters
	Actions
	Calibration
	Annealing parameters

	Conclusion and Future Works
	Biliography

