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The author,

Leila Aro-Sati



ACKNOWLEDGEMENTS

This thesis is part of a Project FONDECYT Iniciación en Investigación No.11220897 from

ANID Chile. The result of the collaboration of UGent and Universidad Católica del Maule
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ABSTRACT

Antimicrobial Resistance (AMR) is one the biggest health threats and tackling this problem

is essential as it is also an economic and security threat that will cost cumulatively about 100

trillion USD by 2050. As an alternative to the standard antibiotic sensitivity test (AST), clin-

ical microbiology laboratories started to apply mass spectrometry (MS), more particularly the

MALDI-TOF technique. However, since the increasing prevalence of antibiotic resistance in

pathogenic bacteria continues to evolve it demands innovative approaches for the accurate and

timely identification of resistant strains. One of the recent approaches is the application of

Machine Learning (ML) techniques to assist in the detection of antimicrobial resistance.

In this thesis, we aim to improve and broaden the application of the recently developed AMR

prediction model MSDeepAMR. By applying different multi-label approaches, this research

aims to enhance the accuracy and reliability of predictions. By integrating data from different

species across various antibiotics, we aim to develop a robust model capable of generalizing

across various domains of bacterial resistance. While there are examples in the literature of at-

tempts to apply DL methods for AMR, to the best of our knowledge, the subsequent application

of multi-label approaches has not yet been explored. In the first step, a multi-label model for pre-

dicting resistance across different antibiotics was implemented. It was found that a single model

could be utilized for all given antibiotics, offering an experimentally more straightforward ap-

proach. The second step involves the implementation of the model that combines all datasets

and predicts across multiple bacteria and antibiotics simultaneously. This model demonstrated

decent overall performance and comparable results. Subsequently, a transfer learning approach

was applied to test the model on an external dataset. Finally, a self-labeling technique has been

applied to the final model. This resulted in considerable improvements in predicting AMR.

Keywords: Antimicrobial Resistance (AMR), MALDI-TOF, MSDeepAMR, Deep Learning,

CNN, Transfer Learning, Self-Labeling
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CHAPTER 1

RESEARCH OBJECTIVES AND

OUTLINE

1.1 Introduction

Fleming’s discovery of penicillin in 1928 promoted the ”golden era” of antibiotic develop-

ment in the 1950s to combat infectious diseases. However, infectious pathogens can evolve

and develop resistance to previously developed antibiotics. For instance, methicillin-resistant

Staphylococcus aureus causes deaths of nearly 50,000 people every year in the United States

and Europe (Conly and Johnston, 2005). Another example of antibiotic-resistant disease is

multidrug-resistant tuberculosis (MDR-TB) which developed resistance to the standard and

powerful antibiotics.

The problem of antimicrobial resistance (AMR) of bacteria causes hundreds of thousands of

deaths annually. Recognizing the severity of this issue, the EU Regulation in 2019/6 has taken

measures to limit the use of antibiotics not only in treatment but also in the form of feed additives

for livestock (Parlament and the Council of EU, 2019). The World Health Organization (WHO)

has also recognized this widespread phenomenon as a major global threat in 2014 (Bengtsson-

Palme et al., 2018).

Resistance of bacteria to antibiotics has gained importance not only in clinical conditions but

also in agriculture and aquaculture as well. About 70 percent (by weight) of antibiotics are used

to prevent infections or promote growth in livestock (O’Neill, 2016). This raises a threat to hu-

man health due to the transmission of antibiotic-resistant bacteria (ARBs) from food-producing

animals to humans as shown in Figure 1.1 (Kim and Ahn, 2022). Residual antibiotics in food

promote low-dose exposure and indirect harm to humans via antibiotic resistance (Chen et al.,

2019). Moreover, drug-resistant strains are transmitted from plant- and animal-derived prod-

ucts (meat, eggs, poultry) to humans via environmental media, food products, and direct con-

tact (e.g., agricultural workers) (Smith et al., 2013). For example, chicken broiler samples
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CHAPTER 1. RESEARCH OBJECTIVES

from Morocco showed that isolated strains of S. aureus were resistant to penicillin (54%) and

ciprofloxacin (17%) (Mourabit et al., 2021). E. coli strains isolated from poultry in Poland

demonstrated high resistance to ampicillin (100%), doxycycline (100%), and ciprofloxacin

(81.3%) (Racewicz et al., 2022). The latter complements the findings of Vieira et al. (2011)

on the resistant strains of E. coli that cause bloodstream infections in humans potentially de-

rived from food sources. Studies have shown that overuse of antibiotics in food-producing

animals reduces the effectiveness of those antibiotics in patient treatments (Chen et al., 2019;

Ghorbani et al., 2016).

Figure 1.1: Transmission of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria
(ARBs) (Kim and Ahn, 2022).

Therefore, it is important to detect and monitor the resistance of bacteria towards antibiotics to

track the spread of drug resistance globally and take proactive actions. The matrix-assisted laser

desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was introduced in

clinical laboratories in the early 2000s for the identification of microorganisms. Nowadays,

MALDI-TOF MS is also used to rapidly determine AMR. The commonly used analytical ap-

proach using this technique is analysis of the fingerprint spectra in the range of 2000 to 20000

Daltons (Da), reflecting the composite proteome of a bacterial cell. Its ability to create unique

spectral fingerprints from bacterial samples enables efficient AMR analysis. The rapid success

of MALDI-TOF MS is based on its broad application, accuracy of identification for very diverse

groups of microorganisms, robustness, and cost-effectiveness (Florio et al., 2020). MALDI-

TOF MS is an effective and reliable monitoring tool that allows rapid and accurate diagnosis of

antimicrobial susceptibility. Moreover, it encourages optimal treatment strategies for patients
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CHAPTER 1. RESEARCH OBJECTIVES

with infectious diseases which includes appropriate drug selection, reduced hospitalization du-

ration, and overall improved patient outcomes.

1.2 Problem Statement

The reasons for the change in the susceptibility of bacteria are intrinsic resistance (as a result

of inherent characteristics) and spontaneous mutation (Blair et al., 2015). In the latter, bacteria

defending themselves against antibacterial agents, including antibiotics, evolve and develop dif-

ferent mechanisms to counteract the effects of antibiotics. As a result, bacteria become partially

or entirely resistant to a given antibiotic (Acar and Rostel, 2001).

Given the structure of the MALDI-TOF MS fingerprints that display common characteristics

such as sharp signal peaks and heteroscedasticity of the base noise level, it is common to use

raw mass spectra data for specific data analysis procedures. AI can assist in the lengthy pro-

cess of antimicrobial susceptibility tests (AST) and promote faster and more efficient patient

treatment by applying machine learning techniques. The machine learning techniques that have

been commonly used for bacterial species identification mainly exploit artificial neural networks

(ANN) including traditional machine learning methods such as random forests (RFs), support

vector machines(SVMs), k-nearest neighbors (KNN), logistic regression (LR) (De Bruyne et al.,

2011; Mortier et al., 2021; González et al., 2023). While a DT model is traceable (compared

to for example an ANN model), a DT model might not perform as well with increasing feature

complexity (Ali et al., 2023).

At present, machine learning techniques such as deep learning (DL) are also implemented by

researchers for AMR analysis (Popa et al., 2022; Weis et al., 2022; López-Cortés et al., 2024).

However, the application of DL in AMR is still underexplored. Current research proposes a

tailored approach for multi-label classification problems that allows simultaneous prediction

of multiple resistance profiles by exploiting complex MS data as an adaptation to the current

research of López-Cortés et al. (2024). Some additional techniques such as self-labeling and

custom loss functions were applied. This allowed us to train a model on a larger and more

diverse dataset that could potentially improve its ability to generalize better. However, since

bacterial resistance profiles can vary significantly across different geographical regions (dis-

cussed in Section 2.1) and slight differences in sample collections parameters (López-Cortés
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CHAPTER 1. RESEARCH OBJECTIVES

et al., 2024) can limit the generalizability of a DL model. Hence, we employ a transfer learning

approach on the DRIAMS-B dataset.

1.3 Objectives

The aim of the current research is to expand research on ML application in AMR by the use

of MS data and MSDeepAMR model through the application of the multi-label approach to

predict resistance across multiple bacteria species and antibiotics. The step-by-step approach:

1. To develop separate models for each bacterial species that can simultaneously predict

resistance across multiple antibiotics.

2. To train a single model per antibiotic across multiple bacterial species.

3. To develop a comprehensive single model that can simultaneously predict resistance

across multiple antibiotics and bacterial species.

4. To assess the performance of the model on the external dataset and exploit a self-labeling

technique.

The current dissertation is structured as follows:

Chapter 2 gives a basic overview of the current AMR situation and MS application. It also

includes a brief explanation of the traditional methods, ML methods, and the recently introduced

MSDeepAMR method.

Chapter 3 details the methodology and different approaches used in the current research. It

describes the current dataset, deep neural network architecture, model training, and evaluation

metrics.

Chapter 4 presents the results of the experiments. This includes tables and figures, a detailed

explanation of the results, and a comparison of the different approaches.

Chapter 5 discusses the obtained results, and summarizes the findings. The chapter also pro-

vides directions for the future research.
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CHAPTER 2

RESEARCH BACKGROUND

Currently, AMR is at dangerously high levels which has a severe global health threat. This

increases the importance of applying innovative methods for the accurate and timely identifi-

cation of resistant bacteria stains. This chapter reviews the biological context of AMR, recent

advancements, and current methodologies in the field of AMR detection by focusing on the

integration of machine learning techniques.

2.1 AMR and Current Technologies

The causes of AMR are complex and diverse. The AMR develops fast in countries where antibi-

otics are sold without prescription and used as growth-promoting additives in livestock farms.

As such, antibiotic prescription has been inappropriate at least in half of the cases (Tacconelli,

2009).

According to Murray et al. (2022) the six pathogens that are responsible for the death of 929,000

people due to AMR and 3.57 million deaths associated with AMR in 2019 are Echerichia coli,

Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter bau-

mannii, and Pseudomonas aeruginosa. These six pathogens have been identified as priority

pathogens by WHO (Murray et al., 2022).

However, it is important to note that the share of the AMR burden differed across different

geographical locations and socioeconomic factors across the globe (Murray et al., 2022). As

such, the study of Murray et al. (2022) on AMR burden in 2019 shows that low-income countries

had twice as many deaths attributed to AMR as in high-income countries. The top contributors

to the development of AMR in developing countries are (Chokshi et al., 2019):

1. Lack of surveillance of resistance development.

Indeed, low- and middle-income countries’ data on AMR surveillance lack representa-

tiveness due to the limited resources and lack of trained and qualified staff (Iskandar

et al., 2021).

5



CHAPTER 2. RESEARCH BACKGROUND

2. Poor quality control of available antibiotics.

Several studies have shown that the quality of the drugs is below the standards in develop-

ing countries. This also includes relabelled antibiotics whose shelf life is about to expire

or even counterfeit drugs (with low or no active ingredients) (Okeke et al., 1999).

3. Clinical misuse.

The lack of appropriate diagnostic approaches can lead to antibiotic resistance. Many

clinicians rely on general symptoms and signs rather than laboratory tests (Achanta et al.,

2013).

4. Ease of availability.

In most developing countries in Asia, Africa, and Latin America antibiotics are available

without prescription in local pharmacies, hospitals, and roadside stalls without prescrip-

tion (Chokshi et al., 2019; Dooling et al., 2014; Satyanarayana et al., 2016). This leads

to the overuse of antibiotics due to self-medication. The proportion of patients who self-

medicate is probably higher because patients are often reluctant to admit having taken

antibiotics before visiting a hospital. According to Chokshi et al. (2019) the ease of avail-

ability is potentially the main driver of the AMR.

Whereas in developed countries main factors are (Chokshi et al., 2019):

1. Poor hospital-level regulation.

Antibiotics are used not only in the treatment of infectious diseases but also prophylacti-

cally to reduce the risk of infections during surgeries and clinical procedures. Hence, one

of the main sources of antibiotic-resistant infections in developed countries is hospital-

acquired infections (nosocomial infections) (Chokshi et al., 2019; Weinstein, 2001). Spe-

cial hospital programs (e.g. antimicrobial stewardship programs) and hospital regulations

were introduced to tackle this problem.

2. Overuse of antibiotics in food-producing animals.

Consumption of animal-derived products contaminated with antibiotic-resistant pathogens

can lead to the transmission of drug-resistant strains to humans as explained in Figure 1.1

(Chen et al., 2019; Smith et al., 2013; Kim and Ahn, 2022).
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Traditional methods of antimicrobial susceptibility testing (AST) are effective but time-consuming

which can take up to 72 hours to obtain the results (O’Neill, 2016). These methods are widely

used in hospital laboratories to guide patient treatments. However, these methods require micro-

biology facilities and specially trained personnel for accurate implementation and are applicable

only for cultivable bacteria (Boolchandani et al., 2019). These drawbacks along with lengthy

testing time in detection can hinder timely patient treatment.

Currently, there are several popular methods for AST purposes (Gajic et al., 2022):

• PCR - polymerase chain reaction. This method is both rapid and highly sensitive (Liu

et al., 2019). However, the disadvantages are that PCR is prone to errors and that at least

some prior sequence data is required.

• qPCR - a quantitative polymerase chain reaction. While this method yields more infor-

mation than PCR (measurements are performed in real-time), the limitations of PCR still

remain.

• NGS - next-generation sequencing. As the whole DNA is sequenced, more information

can be gleaned (Behjati and Tarpey, 2013). But as a relatively new technology, it is not

yet fully standardized and uptake globally is uneven.

• MALDI-TOF MS - matrix-assisted laser desorption/ionization time-of-flight mass spec-

trometry. It is a fast and accurate method, but the downside is the high initial cost of the

instrumentation (Singhal et al., 2015).

In this research, we focus on the latter technique.

2.2 MS in Microbiology

A mass spectrometer (MS) is a device that separates ions by their mass-to-charge ratio (m/z).

However, it does require that the analyte molecules are in a charged state (i.e. ionized). After

ionization the ions are separated by their m/z, using for example electric fields, in the mass

analyzer. Once the ions are separated, they reach the detector that measures their abundance

(Gross, 2019).

In MALDI the sample is mixed with a matrix (that would absorb laser light), which is then

excited using a laser beam (Hillenkamp et al., 1991). In comparison with other ionization
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techniques (e.g. electron ionization), it is a ”soft” ionization technique – resulting in fewer

fragments. This makes it especially suitable for biological samples. The MALDI ionization

technique is often coupled with a time of flight (TOF) mass analyzer. The TOF mass analyzer

offers a combination of high resolution and the ability to analyze a wide m/z range (Xian et al.,

2012).

The initially available ionization techniques (chemical or electrical) were not suitable for the

analysis of biomolecules – these techniques use a high amount of energy, which can lead to

unpredictable degradation of the biomolecules (Sauer and Kliem, 2010). The later developed

electrospray ionization (ESI) and MALDI are softer and thus more suitable for the analysis of

large biomolecules. The analysis of bacteria using MS was first described in the 1970s (Anhalt

and Fenselau, 1975).

The use of MALDI-TOF MS for the analysis of bacteria was first described in 1990s (Cain et al.,

1994). From this point onwards MALDI-TOF MS has revolutionized microbial identification

in clinical settings (Singhal et al., 2015). Initially, MALDI-TOF MS was used for rapid and

accurate identification of bacteria and yeast species. This technique has been further explored

to develop a fast and reliable method for ASTs. Hence, several studies have been conducted to

investigate the possibility of MALDI-TOF for speedy and accurate AMR detection in bacterial

and fungi pathogens (Florio et al., 2018). Nowadays, it is successfully used in clinical microbi-

ology laboratories to quickly identify pathogens and their resistance profiles. As such, it detects

peaks associated with drug resistance, for example, the presence of an enzyme associated with

AMR (Yoon and Jeong, 2021).

2.3 Machine Learning and AMR

As the penetration of electronic health records has increased, large amounts of data have become

available (Beam and Kohane, 2018). This presents an opportunity to apply machine learning

(ML) techniques. The number of publications applying ML to AMR research has increased

rapidly since 2012 (Farhat et al., 2023). One application area of ML has been to improve an-

tibiotic selection and clinical decision-making by using information already available from the

electric patient record (Sakagianni et al., 2023). While the uptake of ML in the clinical setting

might not be very rapid due to safety concerns, it is likely to be more applicable in the labora-

tory setting (Macesic et al., 2017). Another area where ML techniques have increasingly been

8
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applied to biomedical data is to enhance the accuracy and efficiency of diagnostic procedures.

Initial applications in bacterial species identification utilized algorithms such as support vec-

tor machines (SVM), random forests (RF), and k-nearest neighbors (KNN) (De Bruyne et al.,

2011). The main advantage of the SVM approach is its generalization performance. Further-

more, SVM offers a solution and discriminative power. However, this performance comes at

a high computational cost, especially for large sets of data. Because SVM training is most of-

ten executed as a quadratic programming problem (Cervantes et al., 2020). The RF approach

allows the importance of each feature to be measured with respect to the training data set and

the proximity between samples can be measured. However, RF can incur biases depending on

the differences in attribute levels and correlation features (Prajwala, 2015). While the KNN

approach is comparatively simple to implement, processing large sets of data is slow. Addi-

tionally, the KNN approach is sensitive to the use of unnecessary parameters (Cervantes et al.,

2020).

Recent advances have seen the integration of more sophisticated models, including artificial

neural networks (ANN) and deep learning (DL) architectures, which can handle large datasets

and identify complex patterns in mass spectrometry data (Weis et al., 2022). ANN can solve

complex problems, evaluate features, and allow for multivariate features. However, they are in-

herently not traceable and become increasingly complex as more layers and/or nodes are added

(Ali et al., 2023). Additionally, gradient boosting machine (GBM) and decision tree (DT) have

grown in popularity as well (Sakagianni et al., 2023). While a DT model is traceable (compared

to for example an ANN model), a DT model might not perform as well with increasing feature

complexity (Ali et al., 2023) compared to DL models.

Multi-label classification (MLC) has been used previously to predict AMR (Ren et al., 2022).

However, in the paper of Ren et al. (2022) used whole-genome sequencing data and only the

resistance of E. coli. Current research, applies MLC to predict AMR of several bacteria across

multiple antibiotics. Additionally, in the work presented here MALDI-TOF MS data is used,

which is a faster method than whole-genome sequencing (Sakagianni et al., 2023). In the con-

text of AMR, MLC has been applied to MALDI-TOF MS data to predict the resistance of S.

aureus to two antibiotics (Zhang et al., 2022). There are also research on application of MLC

on smaller datasets (PATRIC) which applied similar masked loss function for incomplete labels

as in the current research (Tharmakulasingam et al., 2022). CNNs have found different applica-

tions in AMR research. For example, identifying novel sites in the genome of a bacteria linked

9
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to AMR in tuberculosis (Green et al., 2022). Closely related to current research is the predict-

ing AMR of bacteria based on their MALDI-TOF MS spectra by utilizing CNNs (López-Cortés

et al., 2024). To our knowledge, current research exploits multi-label multi-bacteria classifi-

cation with custom loss function and self-labelling approach on MALDI-TOF MS data from

DRIAMS dataset by utilizing the MSDeepAMR model (CNN) for the first time.

2.4 MSDeepAMR

Deep learning, particularly convolutional neural networks (CNN), has shown promise in en-

hancing AMR prediction by leveraging the detailed information contained in raw mass spec-

trometry data (López-Cortés et al., 2024). Studies have demonstrated that CNNs can effectively

classify antibiotic resistance across various bacterial species by learning to recognize intricate

patterns in spectral data.

The study by López-Cortés et al. (2024) introduced the DeepAMR model, which applies deep

neural networks to predict AMR directly from raw MALDI-TOF MS spectra. This model

achieved higher classification performance compared to traditional ML approaches (Weis et al.,

2022), particularly when combined with transfer learning techniques to adapt pre-trained mod-

els to new datasets (DRIAMS-B, DRIAMS-C and DRIAMS-D) for certain bacteria-antibiotic

combinations.

The deep learning model applied by López-Cortés et al. (2024) is a convolutional neural net-

work (CNN) designed to classify antibiotic resistance in bacteria. The model consists of the

following layers as represented in Figure 2.1:

• Input Layer: accepts the binned mass spectra data (6000,)

• Convolutional Layers:

– Convolutional layers (4);

– ReLu Activation function;

– Average pooling;

– Batch normalization.

• Fully Connected Layers

• Dropout rate: 0.65

10
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• Output Layer

• Dense layer with 1 neuron

Figure 2.1: DeepAMR architecture (López-Cortés et al., 2024).

The use of multiple convolutional layers allows the model to learn increasingly abstract features

from the raw input data, while the fully connected layer integrates these features to make the

final classification. The sigmoid activation function indicates the probability of belonging to

one of the classes (0 or 1).

In conclusion, the integration of MALDI-TOF MS with machine learning techniques, particu-

larly deep learning model MSDeep AMR, could potentially accelerate the prediction of antimi-

crobial resistance which could ensure effective and timely treatments.

11



CHAPTER 3

METHODOLOGY

The current study applies a Deep Learning architecture to detect antibiotic resistance across

multiple bacterial species from raw Mass Spectrometry (MS) data. The approach extends the

current paper of López-Cortés et al. (2024). The DRIAMS dataset (Drug Resistance in Infec-

tious Agents Modelling and Surveillance) has been chosen to investigate antibiotic resistance

patterns in bacterial pathogens due to its high number of samples and public availability (Weis

et al., 2022). The size of the database is approximately 300,000 mass spectra with over 750,000

antibiotic resistance profiles which includes initially 803 different types of bacterial and fun-

gal pathogens. The sub-collection of DRIAMS-A has been selected as it contains the largest

number of publicly available samples. Hence, the study focuses on the DRIAMS-A dataset for

training and cross-validation, with transfer learning applied to the DRIAMS-B dataset. After

extraction of the data, binned mass spectra were computed to obtain fixed-length vectors suit-

able for DL algorithms (López-Cortés et al., 2024). Further, the data was split into training and

test sets (80/20). The 10-fold cross-validation was applied to the training set to ensure robust

model evaluation. Lastly, the performance metrics are calculated on the test set to assess the

model performance. Figure 3.1. visually illustrates the general workflow of this research.

Figure 3.1: Scheme of the methodology proposed for the identification of AMR (López-Cortés
et al., 2024).
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CHAPTER 3. METHODOLOGY

3.1 Dataset overview

Current research exploits the following priority pathogens (Murray et al., 2022) due to the

largest number of samples: E. coli, K. pnuenomiae, S. aureus in DRIAMS-A dataset. The

extracted dataset consists of 6000 features representing raw MS data represented by binned

vectors of size 3 Da in the range of 2000 to 20000 Da and species information. The last columns

include the antibiotics with class labels 1 for resistance and 0 for susceptibility. The following

bacteria-antibiotics combination were examined:

• E. coli: Ciprofloxacin, Ceftriaxone, Cefepime, Piperacillin-Tazobactam, and Tobramycin.

• K. pneumoniae: Ciprofloxacin, Ceftriaxone, Cefepime, Meropenem, and Tobramycin.

• S. aureus: Ciprofloxacin, Fusidic acid, Oxacillin, Ceftriaxone, and Clindamycin.

This selection of combinations was based on the public availability, clinical relevance, and

amount of samples available. Tables 3.1 and 3.2 provide a detailed overview of the class

distribution for resistant and susceptible strains for each combination in the DRIAMS-A and

DRIAMS-B datasets respectively. These tables highlight the higher number of susceptible

strains in each dataset, i.e. class imbalance in each bacteria-antibiotic combination. This could

potentially lead to several challenges in the training and evaluation of ML models. For example,

biased model predictions towards the majority class, i.e. susceptible samples.

Table 3.1: DRIAMS-A: Susceptible and Resistant Strains Across Antibiotics

Bacteria Antibiotic # Susceptible (%) # Resistant (%)

E. coli

Ciprofloxacin 3445 (70%) 1466 (30%)
Ceftriaxone 3875 (78%) 1086 (22%)
Cefepime 4051 (83%) 839 (17%)
Piperacillin-Tazobactam 4449 (93%) 350 (7%)
Tobramycin 4240 (87%) 636 (13%)

K. pneumoniae

Ciprofloxacin 2325 (81%) 513 (19%)
Ceftriaxone 2411 (84%) 449 (16%)
Cefepime 2477 (87%) 362 (13%)
Meropenem 2794 (98%) 61 (2%)
Tobramycin 2527 (89%) 319 (11%)

S. aureus

Ciprofloxacin 3141 (84%) 616 (16%)
Fusidic acid 3513 (93%) 253 (7%)
Oxacillin 3064 (81%) 726 (19%)
Ceftriaxone 2928 (80%) 712 (20%)
Clindamycin 3056 (85%) 519 (15%)

Complementary to the above-mentioned tables, Figures 3.2 and 3.3 provide a graphical repre-

sentation of the distribution of resistant and susceptible strains.
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Table 3.2: DRIAMS-B: Susceptible and Resistant Strains Across Antibiotics

Bacteria Antibiotic # Susceptible (%) # Resistant (%)

E. coli

Ciprofloxacin 154 (72%) 59 (28%)
Ceftriaxone 168 (79%) 45 (21%)
Cefepime 170 (80%) 43 (20%)
Piperacillin-Tazobactam 164 (77%) 49 (23%)

K. pneumoniae

Ciprofloxacin 130 (85%) 22 (15%)
Ceftriaxone 134 (88%) 18 (12%)
Cefepime 134 (88%) 18 (12%)
Meropenem 146 (99%) 1 (1%)

S. aureus

Oxacillin 325 (94%) 21 (6%)
Clindamycin 311 (89%) 37 (11%)
Ceftriaxone 0 (0%) 0 (0%)
Ciprofloxacin 322 (93%) 26 (8%)
Fusidic acid 326 (94%) 20 (6%)

Figure 3.2: Distribution of susceptible (0) and resistant (1) strains across various antibiotics for
E. coli, K. pneumoniae, and S. aureus in the DRIAMS-A dataset. These figures correspond to
the data shown in Table 3.1.

Figure 3.3: Distribution of susceptible (0) and resistant (1) strains across various antibiotics for
E. coli, K. pneumoniae, and S. aureus in the DRIAMS-B dataset. These figures correspond to
the data shown in Table 3.2.
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3.2 Approaches

In this thesis, three different approaches were implemented to predict antibiotic resistance.

These approaches were compared with the baseline results of López-Cortés et al. (2024). The

approaches are as follows::

3.2.1 Multi-label Classification

Objective: to develop separate models for each bacterial species that can simultaneously predict

resistance across multiple antibiotics.

In this approach, a separate model is trained for each bacterial species E. coli, K. pneumoniae,

and S. aureus. This is a multi-label classification problem where each label represents a different

antibiotic. The advantage of this approach is that it is able to predict resistance to multiple

antibiotics for a single species.

3.2.2 Multi Bacteria Classification

Objective: to train a single model per antibiotic across multiple bacterial species.

Contrary to the Multi-label Classification approach, the Multi Bacteria approach focuses on

creating individual models for each antibiotic, rather than each bacterial species. Here, a single

model is responsible for predicting resistance to one antibiotic, but across multiple species,

including E. coli, K. pneumoniae, and S. aureus. This allows us to train a model per antibiotic

that can be potentially generalized across species.

Importantly, Table 3.3 below outlines the antibiotics that were used to implement the current

approach, as not all antibiotics are present in more than one bacterial species. For example,

Piperacillin-Tazobactam is only available in E. coli strains, hence we can not implement Multi

Bacteria approach with the given antibiotic, this will simply lead to a baseline result with one

bacteria-antibiotic approach.

The species information was one-hot encoded, which allows us to exploit species-specific infor-

mation during a 10-fold cross-validation process, training, and testing. This also promotes the

calculation of performance metrics per species thus ensuring a robust evaluation of the model.

15



CHAPTER 3. METHODOLOGY

Table 3.3: Antibiotics Across Bacterial Species

Bacteria Applicable Antibiotics Single Antibiotics

E. coli Ciprofloxacin, Ceftriaxone, Cefepime, Piperacillin-Tazobactam
Tobramycin

K. pneumoniae Ciprofloxacin, Ceftriaxone, Cefepime, Meropenem
Tobramycin

S. aureus Ciprofloxacin, Ceftriaxone Oxacillin, Fusidic acid, Clindamycin

3.2.3 Multi-label Multi Bacteria

Objective: to develop a comprehensive single model that can simultaneously predict resistance

across multiple antibiotics and bacterial species.

The Multi-label Multi Bacteria approach represents a more complex classification task, where

a single model is trained to predict antibiotic resistance across multiple species and antibiotics.

This approach combines the shared information across species and antibiotics to improve pre-

diction accuracy.

This approach utilizes self-labeling techniques and a masking technique to handle incomplete

labels. This is particularly important given that not all antibiotics are present and relevant for

every bacterial species (as shown in Table 3.4). Self-labeling involves predicting incomplete

labels during training to enhance the model’s ability to learn from incomplete data.

Table 3.4: Available Antibiotics Across Bacterial Species

Bacteria Available Antibiotics Absent Antibiotics

E. coli Ciprofloxacin, Ceftriaxone, Cefepime Meropenem, Oxacillin,
Piperacillin-Tazobactam, Tobramycin Fusidic acid, Clindamycin

K. pneumoniae Ciprofloxacin, Ceftriaxone, Cefepime, Piperacillin-Tazobactam,
Meropenem, Tobramycin Oxacillin, Fusidic acid, Clindamycin

S. aureus Ciprofloxacin, Ceftriaxone Cefepime, Piperacillin-Tazobactam,
Oxacillin, Fusidic acid, Clindamycin Tobramycin, Meropenem

Species encoding has also been implemented in this approach. Similar to the Multi Bacteria

Approach, it allows the model to differentiate between species. Species encoding, masking

technique, and self-labeling approach are discussed further in detail in the next section.

This approach combines two previous ones. It develops a single model that can handle multiple

tasks. This potentially reduces the computational load and time compared to training separate

models for each species or antibiotic. However, the increased complexity of the model requires

careful implementation and validation.
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3.3 Data Preparation

In order to ensure robust and smooth training of the model, the following steps were imple-

mented during the data preprocessing steps to address specific requirements for each of the

approaches. Table 3.5 gives an overview of the data-preprocessing steps applied to each of the

approaches.

Table 3.5: Summary of Preprocessing Steps by Approach

Preprocessing Step Multilabel Classification Multi Bacteria Problem Multilabel Multi Bacteria

Unnecessary Columns/Rows + + +

Normalization + + +

Species Encoding N/A + +

Masking-technique N/A N/A +

Self-Labeling N/A N/A +

1. Unnecessary columns that do not contribute to prediction were removed in approaches.

As such irrelevant information has been removed keeping the features of mass spectra

peaks intensity, species information, and labels.

2. Normalization

Features were scaled using normalization to ensure comparability and consistency. The

maximum normalization technique is applied due to the nature of the raw mass spectra

data (sharp peaks), i.e. each sample’s maximum is scaled to 1.

3. Species encoding

Bacterial species information was one-hot encoded as binary columns to allow the model

to differentiate between species for the Multi Bacteria Problem and the Multi-label Multi

Bacteria Approach. For the Multi-label Classification approach, species encoding was

not necessary, since it deals with a single species at a time.

It is important to note that features were first normalized and then only concatenated

with the one-hot encoded species information. This ensures that in our training data, the

last three columns are species information distinct from mass spectra peak values. Later,
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during the cross-validation, training, and testing processes, it allows us to evaluate the

model’s performance individually for each species-antibiotic combination.

4. Incomplete Labels

The incomplete labels for antibiotic resistance status is present in all three datasets of E.

coli, K. pneumonia and S. aureus. To deal with incomplete labels, several approaches

have been applied:

• Removed for Multi-label Classification and Multi Bacteria Classification.

• Masked Binary Crossentropy Loss function applied on Multilabel Multi Bacteria

Approach.

Since the Multi-label Multi Bacteria approach combines all datasets and not all an-

tibiotics are present in each bacterial species, we can not simply delete incomplete

labels, as it leads to an empty dataset. Therefore, we applied the masking technique.

First, incomplete labels were identified, then they were set to the value of -1 (dis-

tinct from 0 and 1). Then by applying the custom function, we create a mask where

all -1 values are not considered. The mask is applied to both the true and predicted

labels. Therefore, the error between the target and predicted values for the missing

value indices will be zero in the masked loss defined below (Tharmakulasingam

et al., 2022) and will not affect the masked binary crossentropy value. Finally, the

binary crossentropy loss function is calculated only for the masked values, this way

we eliminate the model’s bias by incomplete entries.

Mask(mi,j) =

 0 ify(i, j) == −1

1 ify(i, j) ̸= −1

Maskedloss = − 1

n

∑
j∈n

(myi,j log (ŷi,j) + (1−myi,j) log (1− ŷi,j))

• Iterative self-labeling approach applied complementary to the custom masked loss

function on Multi-label Multi Bacteria approach and evaluated separately. This

is a semi-supervised learning technique that allows the model to assign labels to

unlabelled data points during iterative training.
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The training dataset is further split into training and validation sets using stratifi-

cation. The pre-trained model on Multi-label Multi Bacteria has been loaded and

applied in the self-labeling loop. Then, the model predicts the labels for incomplete

labels, where we apply a confidence threshold of 0.70. This implies that only if the

confidence is above the set threshold, the incomplete label (-1) is replaced by the

predicted label (0 or 1). Finally, the labels are updated for the next iteration and the

model is retrained.

During the iterative self-training process we exploit early stopping, learning rate

reduction, and model checkpoint callbacks. This way we save the best-performed

model only (based on validation loss) to employ further on the test set.

3.3.1 Model architecture

The deep learning model applied is a convolutional neural network (CNN) designed to classify

antibiotic resistance in bacteria, namely MSDeepAMR López-Cortés et al. (2024). The model

consists of the layers discussed in Section 2.4. but with a distinct output layer for different

approaches:

• Multi-label Classification: Dense layer with 5 neurons;

• Multi Bacteria Classification: Dense layer with 1 neuron;

• Multi-label Multi Bacteria: Dense layer with 9 neurons.

3.4 Model training

Initially, the model is split into training and test sets with a ratio of 80/20 with stratification to

maintain the label distribution.

Next, we apply a 10-fold stratified cross-validation strategy applied to the training set to ensure

the robustness and generalizability of the model. In each fold, the data were split into training

and validation sets with a ratio of 80/20, applying stratified sampling to maintain the same class

distribution across folds. This way we get a training set, validation set, and separate unseen test

set.

The model was trained using the Adam optimizer with a learning rate of 0.0001, a batch size

of 32, and a binary cross-entropy loss function for Multi-label Classification and Multi Bacteria
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Classification. Whereas a custom masked binary crossentropy loss function for the Multi-label

Multi Bacteria approach as it was discussed above. The training process also includes the

following steps:

• Early stopping - to prevent overfitting, the patience parameter was set to 4. Training is

stopped if the validation loss does not improve for four consecutive epochs.

• Learning rate - reduced by 0.1 if the validation loss plateau for two epochs.

3.5 Evalutaion metrics

The performance of ML techniques (when applied in AMR research) is most often measured

with the area under receiver operating curve (AUROC), especially in binary classification prob-

lems of biological nature class (Chicco, 2017). The calculation of AUROC involves computing

the area under the ROC curve, which represents the true positive rate or “recall” versus the false

positive rate. This metric measures the model’s discriminative ability, where a value of AUROC

equal to 1 indicates a perfect model. Whereas a value of 0.5 indicates performance similar to

random guessing. Given the nature of the dataset which is imbalanced, the balanced accuracy

has also been chosen as a metric. Balanced accuracy is the average between sensitivity and

specificity. It is useful when the dataset is imbalanced, i.e. one of the values occurs far less

frequently than the other (Brodersen et al., 2010). The area under the precision-recall curve

(AUPRC) is sometimes used as an alternatively to AUROC but based on precision and recall,

focusing on correctly classified positive values (minority class). AUPRC has been assumed to

perform better with imbalanced data for binary classification problem (McDermott et al., 2024).

Hence, the model’s performance was assessed with the following metrics: balanced accuracy,

Area Under the Precision-Recall Curve (AUPRC), and Area Under the Receiver Operating

Characteristic Curve (AUROC).
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RESULTS

4.1 Introduction

In this chapter, the results of the three different models are discussed. First, the findings of the

DRIAMS-A dataset are discussed. Next, the outcomes of the transfer learning on the DRIAMS-

B dataset are examined. Finally, the self-labeling approach has been evaluated on DRIAMS-A

dataset for the Multi-label Multi Bacteria approach.

The baseline results (single model per bacteria per antibiotic) serve as a reference point, i.e. the

models before application of the multi-label classification (MLC).

In all three approaches, we applied 10-fold cross-validation and tested on a separate test set.

The combined results of all approaches with 10-fold cross-validation are summarized in Tables

4.4, 4.5, 4.6.

4.2 Multi-label Classification per Bacteria

This approach deploys separate models for each bacteria species across multiple antibiotics.

The comparison between the baseline results and the MLC per Bacteria is presented in Table

4.1 across various metrics: Balanced Accuracy (B. Acc), AUROC (Area Under the Receiver

Operating Characteristic Curve), and AUPRC (Area Under the Precision-Recall Curve).

The balanced accuracy shows a slight improvement or remains consistent with baseline results.

For example, Ceftriaxone for E.coli improved from 0.80 to 0.82. The standard deviation is

generally similar to the baseline indicating the improvement is consistent across different folds.

The AUROC values are generally higher for the MLC per Bacteria approach, indicating better

discriminative ability compared to the baseline. For example, Ceftriaxone for E. coli improved

from 0.87 to 0.91.

Regarding AUPRC scores in Table 4.1 the model performs better for almost all bacteria-antibiotic

combinations except for Ciprofloxacin antibiotic across all bacteria.

21



CHAPTER 4. RESULTS

Overall, this approach either improves or maintains the performance when compared to the

baseline. The improvements are generally consistent, with relatively small increases in vari-

ability that might reflect challenges associated with class imbalance.

Bacteria Antibiotic Baseline Results MLC per Bacteria

B. Acc AUROC AUPRC B. Acc AUROC AUPRC

E. coli

Ciprofloxacin 0.74 ± 0.01 0.85 ± 0.03 0.75 ± 0.03 0.74 ± 0.02 0.84 ± 0.03 0.73 ± 0.03
Ceftriaxone 0.80 ± 0.01 0.87 ± 0.03 0.79 ± 0.03 0.82 ± 0.04 0.91 ± 0.03 0.82 ± 0.04
Cefepime 0.78 ± 0.02 0.88 ± 0.02 0.70 ± 0.03 0.79 ± 0.04 0.90 ± 0.03 0.73 ± 0.04
Piperacillin-T. 0.51 ± 0.04 0.64 ± 0.04 0.14 ± 0.05 0.52 ± 0.02 0.73 ± 0.06 0.23 ± 0.09
Tobramycin 0.55 ± 0.03 0.76 ± 0.02 0.30 ± 0.04 0.56 ± 0.02 0.75 ± 0.04 0.35 ± 0.07

K. pneumoniae

Ciprofloxacin 0.59 ± 0.03 0.76 ± 0.02 0.53 ± 0.03 0.64 ± 0.03 0.76 ± 0.05 0.50 ± 0.06
Ceftriaxone 0.76 ± 0.02 0.82 ± 0.01 0.68 ± 0.02 0.76 ± 0.05 0.87 ± 0.04 0.74 ± 0.06
Cefepime 0.75 ± 0.01 0.83 ± 0.01 0.60 ± 0.03 0.72 ± 0.05 0.86 ± 0.04 0.64 ± 0.06
Meropenem 0.55 ± 0.04 0.83 ± 0.03 0.20 ± 0.05 0.52 ± 0.05 0.92 ± 0.04 0.30 ± 0.14
Tobramycin 0.64 ± 0.02 0.83 ± 0.03 0.54 ± 0.02 0.64 ± 0.03 0.81 ± 0.07 0.49 ± 0.06

S. aureus

Ciprofloxacin 0.75 ± 0.01 0.85 ± 0.02 0.70 ± 0.02 0.65 ± 0.05 0.81 ± 0.04 0.59 ± 0.08
Fusidic acid 0.48 ± 0.04 0.68 ± 0.03 0.10 ± 0.06 0.51 ± 0.01 0.71 ± 0.09 0.21 ± 0.06
Oxacillin 0.87 ± 0.01 0.93 ± 0.02 0.85 ± 0.01 0.83 ± 0.03 0.92 ± 0.01 0.85 ± 0.02
Ceftriaxone - - - 0.83 ± 0.03 0.93 ± 0.01 0.86 ± 0.02
Clindamycin - - - 0.57 ± 0.03 0.75 ± 0.04 0.42 ± 0.06

Table 4.1: Comparison of Baseline Results and MLC per Bacteria

4.2.1 E. coli

The balanced accuracy score in 10-fold cross-validation is slightly higher or similar to the base-

line results (Table 4.1). Moreover, in most cases, AUROC scores show improved performance

compared to baseline results. Specifically, results with Ceftriaxone, Cefepime, and Piperacillin-

T. (Figure 4.1). Regarding AUPRC scores, it demonstrates higher results for all antibiotics ex-

cept for Ciprofloxacin which is slightly lower than baseline. The AUROC curve indicates the

model’s ability to distinguish between susceptible and resistant classes. AUPRC summarizes

the ability to identify the resistant class in the presence of imbalanced data. The confusion ma-

trix results are presented in Figure 4.2. Notably, the model makes almost no correct resistance

(1) predictions for Piperacillin-T. and Tobramycin with the lowest number of resistant labels.
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Figure 4.1: AUROC and AUPRC curves for the Test set predictions of E. coli.

Figure 4.2: Normalized Confusion Matrices for Predicting Antibiotic Resistance in E. coli
across Ciprofloxacin, Ceftriaxone, Cefepime, Piperacillin-T., Tobramycin. The model strug-
gles with correctly identifying resistance especially Piperacillin-T. and Tobramycin.

4.2.2 K. pneumoniae

Similarly to E. coli, the balanced accuracy score for K. pneumoniae is almost the same as the

baseline results (Table 4.1). Likewise, in most cases, AUROC scores show improved perfor-

mance compared to baseline results. Both AUROC and AUPRC scores for Ciprofloxacin and

Cefepime results exceed baseline results. The confusion matrix results are shown in Figure

4.4. Notably, the model makes almost no correct resistance (1) predictions for Meropenem and

Tobramycin which have the least amount of resistant samples (low AUPRC).
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Figure 4.3: AUROC and AUPRC curves for the Test set predictions of K. pneumoniae.

Figure 4.4: Normalized Confusion Matrices for Predicting Antibiotic Resistance in K. pneu-
moniae across Ciprofloxacin, Ceftriaxone, Cefepime, Meropenem, Tobramycin. The model
struggles with correctly identifying resistance especially with Meropenem and Tobramycin.

4.2.3 S. aureus

The balanced accuracy score for K. pneumoniae is slightly lower than the baseline results (Table

4.1). For Ciprofloxacin AUROC and AUPRC scores are considerably lower, for Oxacillin they

are similar to baseline results and for Fusidic acid the scores are higher (Table 4.1). The confu-

sion matrix results in Figure 4.6 demonstrate that the model makes almost no correct predictions

for Fusidic acid and Clindamycin which have the least amount of resistant samples.
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Figure 4.5: AUROC and AUPRC curves for the Test predictions of S. aureus.

Figure 4.6: Normalized Confusion Matrices for Predicting Antibiotic Resistance in K. pneu-
moniae across Oxacillin, Clindamycin, Ceftriaxone, Ciprofloxacin, Fusidic acid. The model
struggles with correctly identifying resistance especially with Fusidic acid and Clindamycin.

4.3 Multi Bacteria Classification per Antibiotic

This approach creates a single model per antibiotic but across different bacteria species. To

differentiate between species, species information was one-hot encoded. It shows either similar

or slightly lower balanced accuracy compared to the baseline (Table 4.2). For example, in the

case of E. coli with Ciprofloxacin, the balanced accuracy drops slightly from 0.74 ± 0.01 to

0.71 ± 0.03. Both AUROC and AUPRC generally improve or stay the same. For example, in

K. pneumoniae with Ceftriaxone, the AUROC increases from 0.82 ± 0.01 to 0.93 ± 0.04 and

AUPRC increases from 0.68 ± 0.02 to 0.87 ± 0.06.

Overall, the multi-bacteria approach per antibiotic tends to perform better in terms of AUROC

and AUPRC, potentially better handling the class imbalance for certain bacteria-antibiotic com-
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binations. The model performs best for Ceftriaxone and Cefepime antibiotics. The best test

results obtained from S. aureus resistance to Ceftriaxone with AUROC = 0.98 and AUPRC =

0.97 as shown in Figure 4.9.

Antibiotic Bacteria Baseline Results Multi Bacteria per Antibiotic

B. Acc AUROC AUPRC B. Acc AUROC AUPRC

Ciprofloxacin
E. coli 0.74 ± 0.01 0.85 ± 0.03 0.75 ± 0.03 0.71 ± 0.03 0.82 ± 0.01 0.68 ± 0.04
K. pneumoniae 0.59 ± 0.03 0.76 ± 0.02 0.53 ± 0.03 0.69 ± 0.03 0.83 ± 0.06 0.66 ± 0.10
S. aureus 0.75 ± 0.01 0.85 ± 0.02 0.70 ± 0.02 0.72 ± 0.03 0.84 ± 0.03 0.69 ± 0.04

Ceftriaxone
E. coli 0.80 ± 0.01 0.87 ± 0.03 0.79 ± 0.03 0.80 ± 0.03 0.90 ± 0.01 0.81 ± 0.03
K. pneumoniae 0.76 ± 0.02 0.82 ± 0.01 0.68 ± 0.02 0.84 ± 0.05 0.93 ± 0.04 0.87 ± 0.06
S. aureus - - - 0.92 ± 0.01 0.84 ± 0.03 0.80 ± 0.03

Cefepime E. coli 0.78 ± 0.02 0.88 ± 0.02 0.70 ± 0.03 0.76 ± 0.04 0.87 ± 0.03 0.69 ± 0.05
K. pneumoniae 0.75 ± 0.01 0.83 ± 0.01 0.60 ± 0.03 0.74 ± 0.03 0.86 ± 0.07 0.65 ± 0.09

Tobramycin E. coli 0.55 ± 0.03 0.76 ± 0.02 0.30 ± 0.04 0.60 ± 0.05 0.77 ± 0.03 0.40 ± 0.17
K. pneumoniae 0.64 ± 0.02 0.83 ± 0.03 0.54 ± 0.02 0.60 ± 0.05 0.76 ± 0.07 0.40 ± 0.17

Table 4.2: Comparison of Baseline Results and Multi Bacteria Approach

4.3.1 Ciprofloxacin

The performance is highest for Escherichia coli (AUROC = 0.84, AUPRC = 0.76), followed

by S. aureus (AUROC = 0.83, AUPRC = 0.63), with the lowest performance observed for K.

pneumoniae (AUROC = 0.76, AUPRC = 0.47). In contrast to the 10-fold cross-validation results

(Table 4.2), AUPRC score in the test for K. pneumoniae is considerably lower.

Figure 4.7: Ciprofloxacin AUROC and AUPRC curves for the Test predictions of E.coli, K.
pneumonia, S. aureus.
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Figure 4.8: Normalized Confusion Matrices for Predicting Antibiotic Resistance across
Ciprofloxacin in E. coli, K. pneumonia, S. aureus. The model struggles with correctly iden-
tifying resistance, especially in K. pneumonia strains.

4.3.2 Ceftriaxone

The performance is highest for S. aureus (AUROC = 0.98, AUPRC = 0.97), followed by K.

pneumoniae (AUROC = 0.92, AUPRC = 0.85), with the lowest performance observed for E.

coli (AUROC = 0.91, AUPRC = 0.83) as shown in Figure 4.9. Compared to the baseline re-

sults, balanced accuracy and both AUROC and AUPRC for all bacteria E. coli, K. pneumoniae,

S. aureus are considerably higher (Table 4.1). Confusion matrices in Figure 4.10 show consid-

erable improvements in the model’s performance in terms of sensitivity (recall) compared to

previous models, especially for S. aureus.

Figure 4.9: Ceftriaxone AUROC and AUPRC curves for the Test predictions of E.coli, K. pneu-
monia, S. aureus.
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Figure 4.10: Normalized Confusion Matrices for Predicting Antibiotic Resistance across Cef-
triaxone in E. coli, K. pneumonia, S. aureus. The model struggles the most with correctly
identifying resistance in E. coli, K. pneumoniae strains

4.3.3 Cefepime

The performance is nearly identical for both E. coli and K. pneumoniae (AUROC = 0.86,

AUPRC = 0.67 and 0.64 respectively). Compared to the baseline results, both AUROC and

AUPRC scores for both bacteria E.coli, K. pneumoaniae are similar to the baseline. Confusion

matrices in Figure 4.14 show the model’s difficulty in predicting resistant cases.

Figure 4.11: Cefepime AUROC and AUPRC curves for the Test predictions of E.coli, K. pneu-
monia, S. aureus.
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Figure 4.12: Normalized Confusion Matrices for Predicting Antibiotic Resistance across Ce-
fepime in E. coli, K. pneumonia. The model struggles with correctly identifying resistance
especially in K. pneumonia strains.

4.3.4 Tobramycin

The performance is better for K. pneumoniae with AUROC = 0.81 and AUPRC = 0.43, whereas

for E. coli AUROC = 0.71 and AUPRC = 0.43. Compared to the baseline results, AUROC and

AUPRC scores for both species are lower. Confusion matrices in Figure 4.14 show the model’s

difficulty in predicting resistant cases.

Figure 4.13: Tobramycin AUROC and AUPRC curves for the Test predictions of E.coli, K.
pneumonia, S. aureus.
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Figure 4.14: Normalized Confusion Matrices for Predicting Antibiotic Resistance across To-
bramycin in E. coli, K. pneumonia. The model struggles with correctly identifying resistance
classes in both bacteria.

4.4 Multi-label Multi Bacteria Classification

This model aims to predict resistance simultaneously across multiple bacteria and antibiotics.

Some bacteria-antibiotic combinations demonstrate improved performance, while most of them

show similar outcomes as shown in Table 4.3 except for Ciprofloxacin in S. aureus. The main

challenge that has been encountered along with class imbalance is incomplete labels. Com-

bining all three datasets of bacteria species results in a dataset where every row and column

has at least one incomplete label. Hence, simply removing them would have resulted in an

empty dataset. To address this problem two main techniques have been applied: masking and

self-labeling. In this section results from the masking technique are discussed.

Bacteria Antibiotic Baseline Results MLC Multibacteria

B. Acc AUROC AUPRC B. Acc AUROC AUPRC

E. coli

Ciprofloxacin 0.74 ± 0.01 0.85 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 0.85 ± 0.02 0.76 ± 0.03
Ceftriaxone 0.80 ± 0.01 0.87 ± 0.03 0.79 ± 0.03 0.80 ± 0.02 0.90 ± 0.02 0.82 ± 0.03
Cefepime 0.78 ± 0.02 0.88 ± 0.02 0.70 ± 0.03 0.77 ± 0.03 0.90 ± 0.03 0.72 ± 0.07
Piperacillin-T. 0.51 ± 0.04 0.64 ± 0.04 0.14 ± 0.05 0.51 ± 0.01 0.68 ± 0.01 0.20 ± 0.05
Tobramycin 0.55 ± 0.03 0.76 ± 0.02 0.30 ± 0.04 0.55 ± 0.02 0.76 ± 0.02 0.35 ± 0.05

K. pneumoniae

Ciprofloxacin 0.59 ± 0.03 0.76 ± 0.02 0.53 ± 0.03 0.63 ± 0.05 0.76 ± 0.05 0.50 ± 0.09
Ceftriaxone 0.76 ± 0.02 0.82 ± 0.01 0.68 ± 0.02 0.74 ± 0.06 0.83 ± 0.06 0.68 ± 0.13
Cefepime 0.75 ± 0.01 0.83 ± 0.01 0.60 ± 0.03 0.73 ± 0.05 0.84 ± 0.05 0.61 ± 0.12
Meropenem 0.55 ± 0.04 0.83 ± 0.03 0.20 ± 0.05 0.52 ± 0.04 0.88 ± 0.03 0.35 ± 0.16
Tobramycin 0.64 ± 0.02 0.83 ± 0.03 0.54 ± 0.02 0.61 ± 0.05 0.80 ± 0.05 0.46 ± 0.06

S. aureus

Ciprofloxacin 0.75 ± 0.01 0.85 ± 0.02 0.70 ± 0.02 0.67 ± 0.03 0.81 ± 0.03 0.59 ± 0.04
Fusidic acid 0.48 ± 0.04 0.68 ± 0.03 0.10 ± 0.06 0.50 ± 0.01 0.71 ± 0.06 0.18 ± 0.10
Oxacillin 0.87 ± 0.01 0.93 ± 0.02 0.85 ± 0.01 0.82 ± 0.02 0.92 ± 0.02 0.84 ± 0.03
Ceftriaxone - - - 0.82 ± 0.01 0.92 ± 0.03 0.85 ± 0.03
Clindamycin - - - 0.56 ± 0.02 0.70 ± 0.02 0.38 ± 0.07

Table 4.3: Comparison of Baseline Results and MLC Multi Bacteria
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The AUROC and AUPRC scores visualised in Figure 4.15 provide insights into the model’s

performance across different bacterial species and antibiotics.

Figure 4.15: Multi-label Multi Bacteria approach: AUROC and AUPRC curves for the Test
predictions of E.coli, K. pneumonia, S. aureus.

In general, compared to the baseline results, we observe considerable improvement in both

AUROC and AUPRC scores. Specifically, for E. coli with Ceftriaxone, the AUROC increased
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to 0.91 and the AUPRC to 0.84, while for E. coli with Cefepime, the AUROC also reached 0.91

and the AUPRC improved to 0.76. The baseline results for these combinations were lower, with

AUROCs of 0.87 and 0.88, and AUPRCs of 0.79 and 0.76, respectively.

Figure 4.16: Normalized Confusion Matrices for Predicting Antibiotic Resistance across all
bacteria-antibiotic combinations. Each row corresponds to species E. coli, K.pneumoniae, and
S. aureus

Referring to confusion matrices in Figure 4.16, we see that the model struggles with correctly

identifying resistance especially in E. coli strains for Piperacillin-T and Tobramycin, in K. pneu-

monia strains for Meropenem and Tobramycin, and in S. aureus strains for Clindamycin and

Fucidic acid antibiotics.

4.5 Comparative Analysis

First, the 10-fold cross-validation has been applied to all datasets and approaches to provide

insights into the model’s stability and consistency across different folds. It is important to

note that due to the class imbalances (i.e. higher number of susceptible labels than resistant),

AUPRC scores are generally lower. Nevertheless, the standard deviation is low which shows

that the results are stable. Next, the models were evaluated on the test set. This is a final

evaluation of the model’s performance.
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Overall, it can be seen that there is no a single approach that considerably outperforms other

approaches or baseline results as shown in Tables 4.4, 4.5, 4.6.

Nevertheless, it is important that for some species certain approaches perform better. As such:

E. coli: The multi-label classification per bacteria and multi-label multibacteria models tend to

outperform others for Ceftriaxone and Cefepime.

K. pneumoniae: The multi bacteria per antibiotic and multi-label multi bacteria approaches

show better results for Ceftriaxone.

S. aureus: The multi-label per bacteria and multi-label per antibiotic approaches perform better

for Oxacillin.

Bacteria Antibiotic Baseline MLC per Bacteria MLC Multi Bacteria MLC per Antibiotic

E. coli

Ciprofloxacin 0.74 ± 0.01 0.74 ± 0.02 0.75 ± 0.03 0.71 ± 0.03
Ceftriaxone 0.80 ± 0.01 0.82 ± 0.04 0.80 ± 0.02 0.80 ± 0.03
Cefepime 0.78 ± 0.02 0.79 ± 0.04 0.77 ± 0.03 0.76 ± 0.04
Piperacillin-T. 0.51 ± 0.04 0.52 ± 0.02 0.51 ± 0.01
Tobramycin 0.55 ± 0.03 0.56 ± 0.02 0.55 ± 0.02 0.60 ± 0.03

K. pneumoniae

Ciprofloxacin 0.59 ± 0.03 0.64 ± 0.03 0.63 ± 0.05 0.69 ± 0.03
Ceftriaxone 0.76 ± 0.02 0.76 ± 0.05 0.74 ± 0.06 0.84 ± 0.05
Cefepime 0.75 ± 0.01 0.72 ± 0.05 0.73 ± 0.05 0.74 ± 0.08
Meropenem 0.55 ± 0.04 0.51 ± 0.03 0.52 ± 0.04
Tobramycin 0.64 ± 0.02 0.64 ± 0.03 0.61 ± 0.05 0.60 ± 0.05

S. aureus

Ciprofloxacin 0.75 ± 0.01 0.65 ± 0.05 0.67 ± 0.03 0.72 ± 0.03
Fusidic acid 0.48 ± 0.04 0.51 ± 0.01 0.50 ± 0.01
Oxacillin 0.87 ± 0.01 0.83 ± 0.03 0.82 ± 0.02
Ceftriaxone - 0.83 ± 0.03 0.82 ± 0.01 0.80 ± 0.02
Clindamycin - 0.57 ± 0.03 0.56 ± 0.02

Table 4.4: Balanced Accuracy Score combined for all models applied

Bacteria Antibiotic Baseline MLC per Bacteria MLC Multi Bacteria Multi Bacteria

E. coli

Ciprofloxacin 0.85 ± 0.03 0.84 ± 0.03 0.85 ± 0.02 0.82 ± 0.01
Ceftriaxone 0.87 ± 0.03 0.91 ± 0.03 0.90 ± 0.02 0.90 ± 0.01
Cefepime 0.88 ± 0.02 0.90 ± 0.03 0.90 ± 0.03 0.87 ± 0.03
Piperacillin-T. 0.64 ± 0.04 0.73 ± 0.06 0.68 ± 0.01
Tobramycin 0.76 ± 0.02 0.75 ± 0.04 0.76 ± 0.02 0.77 ± 0.03

K. pneumoniae

Ciprofloxacin 0.76 ± 0.02 0.76 ± 0.05 0.76 ± 0.05 0.83 ± 0.06
Ceftriaxone 0.82 ± 0.01 0.87 ± 0.04 0.83 ± 0.06 0.93 ± 0.04
Cefepime 0.83 ± 0.01 0.86 ± 0.04 0.84 ± 0.05 0.86 ± 0.07
Meropenem 0.83 ± 0.03 0.92 ± 0.04 0.88 ± 0.03
Tobramycin 0.83 ± 0.03 0.81 ± 0.07 0.80 ± 0.05 0.76 ± 0.07

S. aureus

Ciprofloxacin 0.85 ± 0.02 0.81 ± 0.04 0.81 ± 0.03 0.84 ± 0.03
Fusidic acid 0.68 ± 0.03 0.70 ± 0.00 0.71 ± 0.06
Oxacillin .93 ± 0.02 0.92 ± 0.01 0.92 ± 0.02
Ceftriaxone - 0.93 ± 0.01 0.92 ± 0.03 0.92 ± 0.01
Clindamycin - 0.75 ± 0.04 0.70 ± 0.02

Table 4.5: AUROC Score combined for all models applied
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Bacteria Antibiotic Baseline MLC per Bacteria MLC Multi Bacteria Multi Bacteria

E. coli

Ciprofloxacin 0.75 ± 0.03 0.73 ± 0.03 0.76 ± 0.03 0.68 ± 0.04
Ceftriaxone 0.79 ± 0.03 0.82 ± 0.04 0.82 ± 0.03 0.81 ± 0.03
Cefepime 0.70 ± 0.03 0.73 ± 0.04 0.72 ± 0.07 0.69 ± 0.05
Piperacillin-T. 0.14 ± 0.05 0.23 ± 0.09 0.20 ± 0.05
Tobramycin 0.30 ± 0.04 0.35 ± 0.07 0.35 ± 0.05 0.40 ± 0.05

K. pneumoniae

Ciprofloxacin 0.53 ± 0.03 0.50 ± 0.06 0.50 ± 0.09 0.66 ± 0.10
Ceftriaxone 0.68 ± 0.02 0.74 ± 0.06 0.68 ± 0.13 0.87 ± 0.06
Cefepime 0.60 ± 0.03 0.64 ± 0.06 0.61 ± 0.12 0.65 ± 0.09
Meropenem 0.20 ± 0.05 0.30 ± 0.14 0.35 ± 0.16
Tobramycin 0.54 ± 0.02 0.49 ± 0.06 0.46 ± 0.06 0.40 ± 0.17

S. aureus

Ciprofloxacin 0.70 ± 0.02 0.59 ± 0.08 0.59 ± 0.04 0.69 ± 0.04
Fusidic acid 0.10 ± 0.06 0.21 ± 0.06 0.18 ± 0.10
Oxacillin 0.85 ± 0.01 0.85 ± 0.02 0.84 ± 0.03
Ceftriaxone - 0.86 ± 0.02 0.85 ± 0.03 0.80 ± 0.03
Clindamycin - 0.42 ± 0.06 0.38 ± 0.07

Table 4.6: AUPRC Score combined for all models applied

Bacteria Antibiotic Baseline MLC per Bacteria MLC Multi Bacteria Multi Bacteria

E. coli

Ciprofloxacin 0.85 0.81 0.83 0.84
Ceftriaxone 0.87 0.88 0.92 0.91
Cefepime 0.88 0.88 0.91 0.86
Piperacillin-T. 0.64 0.70 0.73
Tobramycin 0.76 0.75 0.78 0.71

K. pneumoniae

Ciprofloxacin 0.76 0.78 0.80 0.76
Ceftriaxone 0.86 0.86 0.90 0.92
Cefepime 0.83 0.86 0.89 0.86
Meropenem 0.83 0.90 0.85
Tobramycin 0.83 0.80 0.83 0.81

S. aureus

Ciprofloxacin 0.85 0.75 0.81 0.83
Fusidic acid 0.68 0.72 0.72
Oxacillin 0.93 0.95 0.93
Ceftriaxone 0.94 0.93 0.98
Clindamycin 0.78 0.73

Table 4.7: AUROC Test Set DRIAMS-A

Bacteria Antibiotic Baseline MLC per Bacteria MLC Multi Bacteria Multi Bacteria

E. coli

Ciprofloxacin 0.75 0.71 0.72 0.76
Ceftriaxone 0.79 0.77 0.84 0.83
Cefepime 0.70 0.69 0.76 0.67
Piperacillin-T. 0.14 0.21 0.23
Tobramycin 0.30 0.37 0.36 0.30

K. pneumoniae

Ciprofloxacin 0.53 0.55 0.53 0.47
Ceftriaxone 0.68 0.68 0.79 0.85
Cefepime 0.60 0.63 0.66 0.64
Meropenem 0.20 0.15 0.21
Tobramycin 0.54 0.51 0.46 0.43

S. aureus

Ciprofloxacin 0.70 0.57 0.63 0.63
Fusidic acid 0.10 0.22 0.17
Oxacillin 0.85 0.86 0.86
Ceftriaxone 0.86 0.86 0.97
Clindamycin 0.55 0.40

Table 4.8: AUPRC Score Test Set DRIAMS-A
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4.6 Transfer learning

Transfer learning allows the model to leverage knowledge learned from one domain and ap-

ply it to another where domain-specific differences can be significant. Three transfer learning

strategies were performed using DRIAMS-B dataset: the first is zero-shot without any training

and treating the whole dataset as a test set. Second, with freezing the weights of convolutional

layers, and the final one is a warm start (retraining the entire neural network).

The performance of transfer learning models on Multi-label Multi Bacteria approach is summa-

rized in Table 4.10. Whereas the Multi-label classification per Bacteria results are provided in

Table 4.9. The baseline results from the paper of (López-Cortés et al., 2024) are also included.

4.6.1 Multi-label per Bacteria

Zero-shot learning provides a strong baseline, outperforming the baseline zero-shot results in

all cases. Moreover, the results of training only on local data perform worse compared to other

techniques. Further strategies of transfer learning tend to improve performance, namely freezing

convolutional layers and warm start. Notably, it performs better for E.coli and K. pneumoniae

and worse for S. aureus when compared with zero-shot results. The warm start outcomes vary,

being mostly similar to zero-shot results for E. coli and K. pneumoniae and worse for S. aureus

strains where zero-shot tends to outperform. The final results are shown in Table 4.9

Bacteria Antibiotic Zero-shot Trained on Local Data Freezing Conv Layers Warm start

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

E. coli

Ciprofloxacin 0.75 0.68 0.72 0.44 0.74 0.66 0.78 0.73
Ceftriaxone 0.90 0.82 0.55 0.27 0.89 0.80 0.89 0.78
Ceftriaxone (baseline) 0.80 0.54 0.74 0.50 0.77 0.53 0.94 0.75
Cefepime 0.92 0.82 0.48 0.22 0.93 0.83 0.89 0.74
Piperacillin-Tazobactam 0.42 0.21 0.61 0.31 0.36 0.20 0.75 0.65

K. pneumoniae
Ciprofloxacin 0.50 0.32 0.30 0.12 0.65 0.30 0.49 0.25
Ceftriaxone 0.49 0.32 0.31 0.10 0.69 0.45 0.68 0.46
Ceftriaxone (baseline) 0.36 0.10 0.44 0.32 0.35 0.15 0.57 0.35
Cefepime 0.47 0.28 0.42 0.11 0.68 0.44 0.64 0.53

S. aureus

Ciprofloxacin 0.70 0.26 0.55 0.19 0.38 0.07 0.41 0.07
Fusidic acid 0.61 0.12 0.42 0.05 0.49 0.31 0.49 0.31
Oxacillin 0.76 0.34 0.68 0.26 0.66 0.18 0.71 0.22
Oxacillin (baseline) 0.72 0.18 0.68 0.39 0.72 0.18 0.79 0.27
Clindamycin 0.57 0.14 0.41 0.09 0.83 0.29 0.83 0.30

Table 4.9: Multi-label Classification per Bacteria: performance comparison across different
transfer learning strategies on DRIAMS-B dataset.
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4.6.2 Multi-label Multi Bacteria

Similar to Multi-label per Bacteria, zero-shot learning provides a strong baseline and outper-

form other strategies for E. coli - Ciprofloxacin, S. aureus - Ciprofloxacin, Fusidic acid and

Oxacillin. In all cases, zero-shot results outperform the baseline results for zero-shot. Training

on local data produce the worst results. Further strategies of transfer learning tend to improve

the performance of some bacteria-antibiotic combinations. Freezing convolutional layers shows

the best results for K. pneumoniae - Ciprofloxain, Ceftriaxone and Cefepime. The warm start

outcomes vary, resulting in best outcomes for E-coli - Ceftriaxone, Cefepime, Piperacillin-T,

and exceptionally outperfoming for S. aureus - Clindamycin. The final results are shown in

Table 4.10.

Bacteria Antibiotic Zero-shot Trained on Local Data Freezing Conv Layers Warm start

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

E. coli

Ciprofloxacin 0.83 0.73 0.76 0.49 0.65 0.55 0.73 0.62
Ceftriaxone 0.81 0.64 0.60 0.34 0.89 0.82 0.89 0.84
Ceftriaxone (baseline) 0.80 0.54 0.74 0.50 0.77 0.53 0.94 0.75
Cefepime 0.84 0.66 0.62 0.34 0.76 0.70 0.89 0.84
Piperacillin-Tazobactam 0.65 0.29 0.58 0.36 0.75 0.64 0.85 0.77

K. pneumoniae

Ciprofloxacin 0.50 0.32 0.30 0.12 0.65 0.30 0.49 0.29
Ceftriaxone 0.49 0.32 0.31 0.10 0.69 0.45 0.51 0.42
Ceftriaxone (baseline) 0.36 0.10 0.44 0.32 0.35 0.15 0.57 0.35
Cefepime 0.47 0.28 0.42 0.11 0.68 0.44 0.58 0.44

S. aureus

Ciprofloxacin 0.70 0.26 0.55 0.19 0.38 0.07 0.41 0.07
Fusidic acid 0.61 0.12 0.31 0.05 0.49 0.31 0.42 0.08
Oxacillin 0.76 0.34 0.38 0.06 0.68 0.19 0.71 0.22
Oxacillin (baseline) 0.72 0.18 0.68 0.39 0.72 0.18 0.79 0.27
Clindamycin 0.57 0.14 0.41 0.09 0.83 0.29 0.83 0.30

Table 4.10: Multi-label Multi Bacteria: performance comparison across different transfer learn-
ing strategies on DRIAMS-B dataset.

4.7 Self-labeling

A self-labeling approach iteratively updates the labels by predicting the labels of initially unla-

beled data points. This aims to improve the training process with each iteration. Initially, the

dataset is split into train and test sets. The training set is further split into training and valida-

tion sets. The self-labeling is applied only on the training set. The pre-trained model of the

Multi-label Multi Bacteria approach is loaded. In each iteration, the model predicts probabil-

ities for the unlabeled data. If the predicted probability exceeds the threshold (0.70) then the

corresponding label is updated, otherwise, it does not change. Importantly, only unlabeled data
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points are updated and considered. Additionally, during the iteration process, the masked cross-

entropy loss function is applied to penalize the model only on incorrect prediction of known

labels. Due to computational and time limits, the iteration number of 10 has been set. However,

we can see from the 4.11 that the number of unlabeled instances does not decrease after the 9th

iteration. In the beginning, the dataset had 36,559 labeled and 30,473 unlabeled data points.

After applying the interactive self-labeling for 10 iterations the number of labeled instances in-

creased to 64,335 and unlabeled data points decreased to 13,075 as shown in Table 4.11.

Iteration # Labeled # Unlabeled (before) # Unlabeled (after)
Initial 36,559 30,473 30,473

1 38,220 30,473 29,812
2 39,670 29,812 29,102
3 40,939 29,102 28,732
4 42,379 28,732 26,659
5 45,364 26,659 21,668
6 48,968 21,668 18,064
7 52,953 18,064 13,680
8 56,915 13,680 13,079
9 60,722 13,079 13,075
10 64,335 13,075 13,075

Table 4.11: Number of Labeled and Unlabeled Instances Before and After Each Iteration

The most noticeable change in the reduction of the unlabeled labels (-1) appeared for Oxacillin

dropped from 5026 to just 1 (Figures 4.17 and 4.18), all of which were assigned to resistance

class (1). A similar result is seen for Clindamycin and Tobramycin. Whereas Fusidic acid label

distribution has not changed. The distribution appears to become more balanced for Cefepime

and Tobramycin as a result of increased resistant (1) labels. A full overview of the label distri-

butions before and after self-labeling is shown in Figures 4.17 and 4.18. Further, the best model

of the self-labeling approach is tested on the test set. The results of the test set are presented in

tables 4.12 and 4.13.
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Figure 4.17: DRIAMS-A dataset: label distribution (-1 incomplete, 0 susceptible, 1 resistant)
before self-labeling.

Figure 4.18: DRIAMS-A dataset: label distribution (-1 incomplete, 0 susceptible, 1 resistant)
after self-labeling.

As can be seen from the Tables 4.12 and 4.13 self-labeling approach outperforms the base-

line and other methods. For comparison purposes, previously obtained results for the Multi-

label Multi Bacteria approach are presented as well. As such, for E.coli it shows improved

performance for Ciptrofloxacin, Ceftriaxone and Piperacillin-T. in terms of both AUROC and

AUPRC. For K. pneumoniae - Ciptrofloxacin, Meropenem, Cefepime, Tobramycin both AU-

ROC and AUPRC scores outperform previous outcomes. For S. aureus - Oxacillin shows slight

improvement in AUPRC score.
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This approach is straightforward and underlines the potential of a self-labeling approach in

improving the models in antibiotic resistance research. Especially in such settings where im-

balanced and limited data are common constraints in building an accurate and applicable model

in clinical settings.

Bacteria Antibiotic Baseline MLC per Bacteria MLC Multi Bacteria Multi Bacteria MLC Multi Bacteria (self-labeling)

E. coli

Ciprofloxacin 0.85 0.81 0.83 0.84 0.86
Ceftriaxone 0.87 0.88 0.92 0.91 0.92
Cefepime 0.88 0.88 0.91 0.86 0.90
Piperacillin-T. 0.64 0.70 0.73 0.76
Tobramycin 0.76 0.75 0.78 0.71 0.76

K. pneumoniae

Ciprofloxacin 0.76 0.78 0.80 0.76 0.84
Ceftriaxone 0.86 0.86 0.90 0.92 0.89
Cefepime 0.83 0.86 0.89 0.86 0.91
Meropenem 0.83 0.90 0.85 0.96
Tobramycin 0.83 0.80 0.83 0.81 0.87

S. aureus

Ciprofloxacin 0.85 0.75 0.81 0.83 0.79
Fusidic acid 0.68 0.72 0.72 0.71
Oxacillin 0.93 0.95 0.93 0.93
Ceftriaxone 0.94 0.93 0.98 0.93
Clindamycin 0.78 0.73 0.73

Table 4.12: AUROC Test Set DRIAMS-A

Bacteria Antibiotic Baseline ML per Bacteria MLC Multi Bacteria Multi Bacteria MLC Multi Bacteria (self-labeling)

E. coli

Ciprofloxacin 0.75 0.71 0.72 0.76 0.76
Ceftriaxone 0.79 0.77 0.84 0.83 0.85
Cefepime 0.76 0.73 0.76 0.67 0.71
Piperacillin-T. 0.14 0.23 0.20 0.25
Tobramycin 0.30 0.37 0.36 0.30 0.39

K. pneumoniae

Ciprofloxacin 0.53 0.55 0.53 0.47 0.62
Ceftriaxone 0.68 0.68 0.79 0.85 0.80
Cefepime 0.60 0.63 0.65 0.64 0.69
Meropenem 0.20 0.15 0.21 0.42
Tobramycin 0.54 0.51 0.46 0.48 0.56

S. aureus

Ciprofloxacin 0.70 0.57 0.63 0.63 0.56
Fusidic acid 0.10 0.22 0.17 0.17
Oxacillin 0.85 0.86 0.84 0.86
Ceftriaxone 0.86 0.86 0.97 0.87
Clindamycin 0.55 0.42 0.38 0.40

Table 4.13: AUPRC Test Set DRIAMS-A
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CONCLUSION

The objective of this research was to explore and improve the performance of antimicrobial

resistance prediction models (MSDeepAMR) by applying different multi-label approaches and

domain adaptation techniques. The study aimed to evaluate whether a multi-label approach

could enhance model accuracy across various bacteria and antibiotics. For these purposes,

mass spectrometry (MS) data from the DRIAMS-A and DRIAMS-B datasets has been used.

The initial proposed models included single bacteria-specific models (multi-label classification

per bacteria), multi-label models for multiple bacteria, and models focusing on individual an-

tibiotics. Subsequently, transfer learning and self-labeling techniques were incorporated.

Multi-label per Bacteria Approach: The model is trained to predict the resistance to multiple

antibiotics but for each bacteria separately. This approach adapts to specific domains (different

bacteria). The results indicated that this approach effectively captured the domain-specific char-

acteristics, leading to similar to baseline or improved performance between different bacteria.

Multi Bacteria per Antibiotic: The model is trained to predict the resistance of multiple bac-

teria to a specific antibiotic. This allows to understand how different bacteria respond to a

particular antibiotic. The results showed that this method could adapt to the specific resistance

patterns of various bacterial species, achieving competitive performance, particularly for the

antibiotic Ceftriaxone.

Multi-label Multi Bacteria Approach: Instead of creating a separate model for each bacteria

antibiotic pair, a single model is trained to handle species and antibiotics together. This allowed

the model to learn a more diverse set of data that could potentially capture patterns that are not

domain-specific (bacteria-antibiotic) but across different bacterial species and antibiotics. The

complexity of this model required careful handling of incomplete labels, which was achieved

through the implementation of a custom-masked binary cross-entropy loss function and self-

labeling techniques. The integration of these methods led to notable improvements in AUROC

and AUPRC scores for several bacteria-antibiotic combinations.
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Transfer learning: The models for Multi Bacteria per Antibiotic and Multi-label Multi Bacte-

ria were tested on the external DRIAMS-B dataset to evaluate the adaptability and performance

of the models. Subsequently, different transfer learning experiments were implemented. The

results obtained by warm start (retraining the entire neural network) on Multi-label Classifi-

cation per Bacteria outperformed the results of baseline K. pneumoniae - Ceftriaxone. The

results show that zero-shot and warm start performed better compared to the method of freezing

convolutional layers.

Challenges with Incomplete Labels

The dataset includes a vast amount of incomplete labels, to address this issue a masked binary

cross-entropy loss function was implemented. This loss function specifically masked out the

missing labels (denoted as -1) during training. Another method applied was self-labeling, which

iteratively predicted and updated the incomplete labels.

The self-labeling technique resulted in improvements in model performance across several

bacteria-antibiotic combinations. The AUROC and AUPRC scores generally increased after

self-labeling, particularly for antibiotics like Ceftriaxone and Ciprofloxacin. Overall, the in-

tegration of masking and self-labeling techniques showed improved results compared to the

baseline results.

Recommendations for Future Research

Given the promising results of this study, further research could explore more sophisticated

approaches, such as Domain Adversarial Neural Network (DANN) or probability calibration

technique on imbalanced data which may offer better performance in complex multi-label clas-

sification tasks. Additionally, integrating the self-labeling model with more data sources, such

as patient demographics could further improve prediction accuracy.

The results suggest that further development and refinement of these techniques could lead

to more accurate and reliable models, contributing significantly to the field of antimicrobial

resistance prediction.

The integration of domain adaptation techniques, including multi-label approaches, transfer

learning, and self-labeling, has demonstrated promising results in the prediction of antibiotic

resistance using MALDI-TOF MS data. Despite the challenges posed by incomplete labels and

domain shifts, the study provides a foundation for future work that could lead to more accurate

and reliable models.
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