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Abstract 

This study investigates the urban-rural and socioeconomic disparities in chronic pain 

prevalence and how these disparities evolve with aging, using nationally representative 

longitudinal data from China (2011-2020). The research applies two popular longitudinal 

analysis methods, Generalized Estimating Equations (GEE) and Generalized Linear Mixed 

Models (GLMMs), to examine the urban-rural disparities in pain prevalence and capture how 

they evolve over time. By examining pain prevalence across different socioeconomic groups 

and urban-rural populations, the study aims to provide insights into policies aimed at reducing 

pain inequalities, particularly in the context of China’s rapidly aging population. 

Our findings indicate that the rural population consistently reported the highest pain prevalence, 

followed by the semi-urban population, while the urban population exhibited the lowest risk of 

pain, demonstrating a health gradient in pain prevalence among urban-rural populations. In 

addition, we observe that pain prevalence increases with age, yet such pain-aging trajectories 

vary across the urban-rural populations, showing a converging trend in pain risk over the life 

course. 

In addition, despite similar empirical conclusions from both modeling strategies, GEE and 

GLMM still have their own advantages and disadvantages, with GEE emphasizing more on 

marginal effects but lacking the possibility of exploring model complexity. Although GLMM 

can examine both fixed effects and random effects, its overly complex model leads to low 

computational efficiency and is sensitive to assumptions regarding random effects and error 

structures.
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Chapter 1. Research Objectives and Outline 
1.1 Introduction 

1.1.1 Background of the Chronic Pain Context 

Chronic pain (henceforth pain) is acknowledged as a barometer of health (Rubin and Zimmer 

2015; Smith et al. 2018), closely linked to the quality of life for individuals (McNamee and 

Mendolia 2014) and imposing substantial economic costs on national healthcare systems 

(Gaskin and Richard 2012). It has received considerable attention in both biomedical and 

neuropsychological research, with a special focus on the proximate causes of pain at the 

individual level, such as emotional stress, traumatic experiences, inflammation, and 

degenerative diseases during the aging process (Cohen et al. 2021; Crofford 2015; Goubert and 

Trompetter 2017; Van Alboom et al. 2023). However, there remains a lack of understanding 

regarding why certain populations suffer more from pain while others experience lower 

prevalence and severity. To comprehend pain inequality fully at the population level, we must 

adopt a socio-structural lens, commonly referred to as the upstream cause of causes, as 

proposed by the sociology of pain (Zajacova et al. 2021b).   

While research on social determinants of pain is still in its infancy (Peele and Schnittker 2022), 

there has recently been a notable increase in the literature, yielding some consistent conclusions, 

such as the higher risk of pain among women and lower socioeconomic classes (Goosby 2013; 

Grol-Prokopczyk 2017; Kennedy et al. 2014; Jay et al. 2019; Zajacova et al. 2020; Topping 

and Fletcher 2024). Nonetheless, research on broader socioeconomic characteristics and their 

intersections remains limited (Zajacova et al. 2021b), hindering a deeper understanding of how 

pain disparities are produced and maintained. For instance, although it is well documented that 

elevated pain is highly linked to the aging process (Rustøen et al. 2005), there is little empirical 

research on whether and how the pain-aging trajectories vary across socio-demographic groups. 

Besides, the scarce existing research is predominantly based on US and European data (Zimmer 

et al. 2020), leaving an absence in empirical research from non-Western societies that bear a 

disproportionately high pain burden (Blyth et al. 2019). 

 

China provides one of the best contexts to address the aforementioned knowledge gap. The 

country has been experiencing a rapid population aging, with the proportion of individuals aged 

65 and older increasing from 7% in 2000 to 12.6% in 2019, and this number is predicted to 

reach to 17.1% by 2030 (Zhan et al. 2021). Consequently, the healthcare burden associated 
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with pain is also projected to surge substantially due to the growing number of high-risk pain 

sufferers. Meanwhile, the longstanding household registration (hukou) system divides the 

population into urban and rural categories, resulting in profound inequalities in life chances 

and several health outcomes between the urban and rural populations (Dorélien and Xu 2020; 

Fu et al. 2018; Lu and Qin 2014; Wu 2019). However, it is still unclear whether these urban-

rural inequalities are replicated in pain prevalence. Moreover, a comprehensive understanding 

of life-course related changes in pain disparities between urban and rural populations also 

remains absent. In addition, little is known about whether there are inequalities in chronic pain 

across socioeconomic status indicators such as education and income, and how such differences 

change with aging. Identifying vulnerable groups suffering from pain is crucial for providing 

vital insights for health policies aimed at reducing pain inequalities in the future, not only for 

China but also for countries experiencing concurrent population aging amidst deep-rooted 

institutional inequalities. 

 

1.1.2 Research Questions 

Hence, utilizing nationally representative longitudinal data from 2011 to 2020 from China, this 

study empirically contributes to the literature by answering the following questions: 

 

Research Question 1:  

Does the chronic pain prevalence vary across urban and rural populations? 

 

Research Question 2: 

Whether these disparities in chronic pain prevalence evolve across the life course? 
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1.2 The Necessity of Using Longitudinal Data Analysis Methods 

In this research, a central aim is to uncover and understand how individual aging influences 

pain prevalence and whether it modifies the underlying socioeconomic gradient in pain 

prevalence. To capture the dynamic characteristics, it is essential that our data could reflect 

changes in pain at individual-level over time, necessitating the use of longitudinal follow-up 

survey data rather than cross-sectional or pooled cross-sectional data.  

Although some studies have attempted to examine dynamic characteristics by combining 

multiple cross-sectional survey datasets to create a pooled dataset (Yang, 2008; Yang et al., 

2004; Yang & Land, 2006, 2008), this method has limitations. Specifically, the practice of 

replacing samples in these cross-sectional surveys means that different respondents are 

surveyed at each time point, capturing only a snapshot of respondents' conditions at the time 

of the survey. Consequently, such data do not allow for the exploration of continuous processes. 

While this approach can partially account for the impact of survey year (period) by 

incorporating time indicators into analytical models, it fails to distinguish between 'between-

individual effects' and 'within-individual effects.' As a result, it is inadequate for addressing 

research questions related to individual change and development over time. 

Another flawed approach is to treat longitudinal data as pooled cross-sectional data with a time 

indicator distinguishing the survey wave, disregarding the fact that repeated measurements are 

nested within the same set of individuals or units. This oversight can lead to significant 

problems, as these correlated data violate the assumption of independent and identically 

distributed (i.i.d.) observations when applying conventional modeling techniques such as linear 

regression or generalized linear models. As a result, the standard errors of parameter estimates 

may be inaccurately estimated (even in the large sample), leading to incorrect statistical 

inferences and undermining the validity of the study's conclusions (Fitzmaurice et al. 2012; 

Hoffman 2015). 

Therefore, in order to capture how pain prevalence changes with aging and to obtain consistent 

and efficient parameter estimates, we will use two common longitudinal data analysis 

frameworks: Generalized Estimating Equation (GEE) and Generalized Linear Mixed Models 

(GLMMs). 
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1.3 Outline: The Roadmap through This Thesis 

In Chapter 1, we provide an overview of the background on chronic pain, present the research 

questions, and highlight the importance and necessities of employing longitudinal data analysis 

approaches to answer the research questions. 

In Chapter 2, we offer a concise overview of two common longitudinal data analysis methods: 

Generalized Estimating Equations (GEE) and Generalized Linear Mixed Models (GLMMs). 

This chapter also introduces their basic model settings, assumptions, parameter estimation 

procedures, and relevant statistical inferences. 

In Chapter 3, we present the overview of the datasets and measurements utilized in the 

empirical study, as well as the model specifications for the corresponding estimation methods. 

Additionally, we address potential challenges related to measurement inconsistency and 

mortality selection, and outline the strategies employed to mitigate these issues in the 

robustness checks. 

In Chapter 4, we provide an exploratory analysis of the data, setting the foundation for 

subsequent statistical modeling. Then, we report the results obtained from the Generalized 

Estimating Equations (GEE) and Generalized Linear Mixed Models (GLMMs) and then 

compare these findings. 

Finally, in Chapter 5, we discuss the results from the empirical analysis and evaluate the cons 

and pros of the two modeling approaches. 

In the appendix, we include some descriptive statistical results that are not included in the 

main text, the results of the model robustness analysis, and the R code involved in the statistical 

modeling. 
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Chapter 2 Overview of the GEE and GLMMs 

The repeated measures ANOVA is a popular technique for analyzing the measurement results 

of the same group of subjects under different conditions or time points, especially suitable for 

analyzing changes within the group and comparing differences between different conditions or 

time points. However, when our data is an unbalanced panel data, for example, the time 

intervals of repeated measurements are inconsistent, some respondents are missing a large 

number of time points, or there is a serious autocorrelation between the measured data, then 

using repeated measures ANOVA may lead to wrong conclusions (Park et al. 2009). Therefore, 

when the assumptions of repeated measures ANOVA are not met, researchers tend to apply the 

alternative approaches, for instance, generalized estimating equation (GEE) and generalized 

linear mixed models (GLMM). 

Generalized estimating equation (GEE) and generalized linear mixed models (GLMM) are both 

commonly used statistical methods for dealing with data with correlation structure, when 

dealing with longitudinal data (repeated measurement data) or clustered data (such as multi-

level structured data). In this chapter, we first quickly review their basic model settings, 

assumptions, parameter estimation, and relevant statistical inferences, and the specific analytic 

strategy and model setting are presented in Chapter 3. 

2.1 Generalized Estimating Equation (GEE) for Correlated Data 

Based on the Generalized Linear Models (GLM), which cannot handle the violation of the 

independent and identically distributed assumption, the Generalized Estimating Equation (GEE) 

is a method developed to relax the above assumptions by introducing a working correlation 

structure to deal with the correlation between observations. The term GEE was used because 

the model is derived from a generalization of the GLM estimating equation. The most 

commonly described GEE model was introduced by Liang and Zeger in 1986, this regression 

framework is designed to analyze correlated data in a population-averaged approach. Due to 

its flexibility,  GEE is also widely applied for handling correlated longitudinal and clustered 

data (Ding 2024; Hardin and Hilbe 2002). GEE utilizes quasi-likelihood estimation methods to 

estimate parameters within generalized linear models, effectively accommodating the 

complexities inherent in repeated measurement data (Ding 2024; Liang and Zeger 1986; Zeger 

and Liang 1986). 
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The GEE can be written as: 

𝑔(𝜇௜௧)  =  𝐸(𝑌௜௧ | 𝑋௜௧)  =  𝑿௜௧
்  𝜷 

with Var(𝑌௜௧) =  v(𝜇௜௧)𝜙 

g(·) is the setting of link function; v(·) presents the relation between 𝜇௜௧ and variance; 𝜙 is 

unknown parameter of scale. Using the estimated covariance matrix, we can update the GEE 

estimate to improve efficiency (Ding 2024). There are three common choices of the working 

covariance structure matrix, called “independent”, “exchangeable”, and “unstructured”. 

Independent working covariance matrix: 

𝑅௜௧ =  ൮

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

൲ 

Exchangeable working covariance matrix: 

𝑅௜௧ =  ൮

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

൲ 

Unstructured working covariance matrix: 

𝑅௜௧ =  ൮

1 𝑎 ⋯ 𝑗
𝑎 1 ⋯ 𝑘
⋮ ⋮ ⋱ ⋮
𝑗 𝑘 ⋯ 1

൲ 

In longitudinal data analysis, the elements on the main diagonal of the covariance matrix are 

all equal to 1, as they represent the correlation between the t-th observation of the i-th individual 

and itself. In the Independent working covariance matrix, the off-diagonal elements are all 0, 

indicating that each repeated measurement within an individual is independent. The 

Exchangeable working covariance matrix allows for correlation between repeated 

measurements, with a constant correlation coefficient 𝜌. The Unstructured working covariance 

matrix further relaxes these assumptions by allowing for varying correlation coefficients.  
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Although different choices of the working covariance matrix do not affect the consistency of 

the estimation (Ding 2024), to get a more efficient 𝛽መ , we still need to consider the strategy of 

choosing the working covariance matrix. While the independent working covariance matrix is 

sufficient for many applications despite potential efficiency losses, a carefully selected working 

covariance matrix can lead to efficiency gains compared to the simpler independent covariance 

matrix. Therefore, in practice, one usually starts with an independence or exchangeability 

structure. If these structures do not capture the correlation in the data well, one can try other 

structures such as an unstructured working covariance matrix. 

In addition, as for the parameter estimation, GEE uses the method of "quasi-likelihood 

estimation", which does not require the full specification of the data distribution, but only 

requires the specification of the mean and variance structure of the data. The parameters of 

GEE are obtained by solving an iterative estimating equation based on the assumed correlation 

structure and an extension of the generalized linear model (GLM). Moreover, the Wald test is 

a commonly used method in the GEE model to test whether a single or multiple regression 

coefficients are significant.  

Regarding model fit evaluation, QIC (Quasi-likelihood under the Independence model 

Criterion) is provided to indicate the goodness of fit of the model. QIC is a model selection 

criterion, similar to the role of AIC (Akaike Information Criterion) in traditional models, with 

a smaller value indicating the better model, and can be used to compare the analysis results of 

correlation matrices of different operations, thus is widely used to compare different GEE 

models to select the most optimal one. 

Although GEE does not require data distribution and independent outcomes, there are several 

key issues that need to pay attention to ensure the validity of the model and the reliability of 

the results. First, though data points within the same individual can be correlated, data between 

different individuals are assumed to be independent. Second, we need to use the right link 

function to correctly reflect the relationship between the response variable and the linear 

predictors. Third, even if the working correlation matrix assumption is not completely correct, 

the parameter estimation of GEE is still robust, but the closer the working correlation matrix 

assumption is to the actual situation, the more efficient the estimation results. Therefore, it is 

still necessary to compare and select the most appropriate working covariance matrix. 
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2.2 Generalized Linear Mixed Models (GLMMs) for Correlated Data 

When the observations are not independent and the i.i.d. assumption is violated, another 

common method to solve the problem caused by intra-group correlation is linear mixed models. 

If the link function extends to non-linear format, for instance, considering the outcome is a 

categorical measure, we extend the linear one to a logit setting, thus get the generalized linear 

mixed models (GLMMs). Different from the GEE approach focusing on the “population-

averaged” effect, GLMMs dealing with correlated or clustered measures by incorporating the 

fixed effect and random effect, thus named the mixed effect model (Fitzmaurice et al. 2012).  

In GLMM, fixed effects are used to describe the average effect of the population level, while 

random effects are used to capture the variation caused by the hierarchical structure of the data 

or differences between groups. GLMM not only models the explainable part of the data (fixed 

effects), but also captures the unexplainable part (random effects), thus more accurately 

reflecting the complexity of the data (Hox et al. 2017; Rabe-Hesketh and Skrondal 2008). 

In this study, we use the multilevel modelling (MLM) framework (also called hierarchical 

linear model, HLM) to deal with the longitudinal data, which is a series of models designed to 

analyze mixed effects using nested or longitudinal data, integrating predictors from different 

levels to explain a common dependent variable. This model incorporates measurements across 

various levels and accounts for the contributions of information at different hierarchies (Bryk 

and Raudenbush 1992). In its mathematical expression, the intercept or slope at a lower level 

can be explained by predictors at a higher level. This approach not only accurately addresses 

the computation of model parameters in multilevel data analysis but also enables the 

simultaneous examination of micro and macro variables, as well as cross-level interaction 

effects. Additionally, it can mitigate estimation bias arising from correlated error terms across 

different levels, allowing for the estimation and analysis of both fixed and random effects. 

In this section, we quickly review the framework of the multilevel modelling using the linear 

model as an example. In the empirical part of the paper, the multilevel modelling and its 

specific parameter settings are described in detail in Chapter 3. 
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First, we start from the null model or the unconditional means model. The equation is as 

following:  

Level-1 / within-individual level: 

𝑌௧௜  =  𝛽଴௜ + 𝑢௧௜ 

Level-2 / between-individual level: 

 𝛽଴௜ = 𝛾଴଴ + 𝛿଴௜ 

Substitution of the second equation into the first one we get: 

 𝑌௧௜  =  𝛾଴଴ + 𝛿଴௜ + 𝑢௧௜ 

Where 𝑢௧௜ ~ 𝑁 (0, 𝜎௨
ଶ), 𝜐଴௜ ~ 𝑁 (0, 𝜎ఋ

ଶ), and Cov(𝑢௧௜, 𝛿଴௜) = 0. 

Using the unconditional mean model, we can estimate the proportion of total variation 

attributable to each level (e.g., within and between individuals). This helps identify sources of 

variation and guides subsequent model construction. Specifically, we decompose the outcome 

variable's variance into within- and between-individual components and calculate the 

proportion of between-individual variance using the intraclass correlation (ICC), ranging from 

0 to 1, with the following equation: 

ICC = ఙ್
మ

ఙೢ
మ  ା ఙ್

మ = ఙഃ
మ

ఙೠ
మ ା ఙഃ

మ 

Where 𝜎୵
ଶ  represents the within-group (within-individual) variance, 𝜎௕

ଶ is the between-group 

(between individual) variance. The value 𝜎୵
ଶ  + 𝜎௕

ଶ represents the total variance. The larger the 

ICC, the more similar the observations in the same group are, the smaller the individual 

differences within the group, and the greater the proportion of inter-group differences in the 

total variation, indicating that the group (or random effect) considered in the model has a 

greater impact on the data. Therefore, in this case, ignoring the hierarchy or group effect may 

lead to inaccurate models or large errors. 



 10 

Next, we could add the predictors and covariates into the MLMs and thus allow the random-

coefficients regression models. For instance, we could consider the existing of random 

intercept and random slopes at the same time. The MLM can be written as: 

Level-1 / within-individual level: 

𝑌௧௜  =  𝛽଴௜ + 𝛽ଵ௜ 𝑋௧௜   + 𝜀௧௜ 

Level-2 / between-individual level: 

 𝛽଴௜ = 𝛾଴଴ + 𝛾଴ଵ 𝑊௜ + 𝜏଴௜ 

 𝛽ଵ௜ = 𝛾ଵ଴ + 𝛾ଵଵ 𝑊௜ + 𝜏ଵ௜ 

Substitution of the second equation into the first one we get: 

 𝑌௧௜  =  𝛾଴଴ + 𝛾଴ଵ 𝑊௜ + 𝜏଴௜ + 𝛾ଵ଴ 𝑋௧௜  + 𝛾ଵଵ 𝑊௜ 𝑋௧௜  + 𝜏ଵ௜ 𝑋௧௜  + 𝜀௧௜ 

Where 𝜀௧௜ ~ 𝑁 (0, 𝜎ఌ
ଶ),  ቀఛబ೔ 

ఛభ೔
ቁ ~ N ቈ൫଴

଴൯, ቆ𝜎଴଴
ଶ 𝜎଴ଵ

ଶ

𝜎ଵ଴
ଶ 𝜎ଵଵ

ଶ ቇ቉ 

By setting the value of 𝜏଴௜ to non-zero, we can obtain a random intercept model, and by setting 

the value of 𝜏ଵ௜ to non-zero, we can obtain a random slope model. 

In multilevel modeling (MLM), parameter estimation involves estimating fixed and random 

effects. Given the complexity of MLM's hierarchical structure, estimation is more intricate than 

in general linear models, typically using Maximum Likelihood Estimation (MLE) or Restricted 

Maximum Likelihood Estimation (REML). Estimation is often performed through iterative 

algorithms, like the Expectation-Maximization (EM) or Newton-Raphson algorithms, which 

maximize the likelihood function by adjusting the parameters iteratively. 

Model evaluation and comparison can also be achieved through Log-likelihood, which is 

reported as -2LL (-2 * loglikelihood), with a smaller value meaning better model fitting. In 

addition, when comparing models, it is not appropriate to use the likelihood ratio test (LR test) 

for non-nested models. In this case, alternative approaches can be used for various information 

criteria developed based on -2LL including AIC (Akaike information criteria), and BIC 

(Bayesian information criteria), with smaller values indicating better model fitting. 
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Chapter 3 Data and Methods 
3.1 Dataset and analytic sample 

We used data from the China Health and Retirement Longitudinal Study (CHARLS) 1, a 

nationally representative survey of the Chinese population aged 45 years and older, conducted 

by Peking University. CHARLS adopted a stratified multistage probability sampling design to 

obtain the sample, which covered 450 communities from 150 county-level units in 28 provinces, 

and interviewed 17708 participants from 10257 households, in the baseline wave (Zhao et al. 

2014). After the baseline wave in 2011, CHARLS conducted four follow-up surveys in 2013, 

2015, 2018, and 2020.  

 

We excluded individuals (N = 1229, percentage = 6.9%) with missing information on outcome, 

urban-rural classification, demographic and educational indicators used for this study at the 

baseline wave. After incorporating data from four subsequent waves, we obtained an 

unbalanced panel dataset comprising 16479 participants. 

 

 
Figure 1. Data cleaning flow for the final analytic samples 

 

 
1 The CHARLS is an open source data set. User can submit an application to download it from the official website. 
The website link is: https://charls.pku.edu.cn/en/ 

https://charls.pku.edu.cn/en/
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3.2 Measures 

Pain. In 2011, 2015, 2018, and 2020 waves of CHARLS, all respondents were asked “Are you 

often troubled with any body pains?”  In the 2013 wave, the question was modified to 

“Yesterday, did you feel any pain?” Respondents who answered “No” were classified as living 

without pain in that survey wave (Pain = 0); otherwise, they were recorded as suffering from 

pain in the corresponding wave (Pain = 1).  

 

Urban-rural classification. The urban-rural classification was determined by a combination of 

hukou status and place of residence at the baseline wave. Among the rural hukou population, 

respondents living in rural regions were classified as rural population, and those dwelling in 

urban areas were grouped to semi-urban population. Given the small number of urban hukou 

holders living in rural areas (N = 285, percentage = 1.7%) and our primary focus on the impact 

of hukou as an institutional factor on pain, no differentiation was made concerning urban or 

rural residence among the urban hukou holders. Therefore, all respondents with an urban hukou 

were classified as urban population, regardless of whether they lived in urban or rural areas. 

Hence, we obtained a key predictor with three categories: rural population, semi-urban 

population, and urban population. 

 

Aging process. The years after the baseline wave is another key predictor in our study. We 

created a measure of continuous variable called aging process, which was obtained by 

subtracting the baseline from the corresponding survey year. 

 

Covariates. Considering that rural-to-urban migration, pain prevalence and severity are 

influenced by sociodemographic characteristics and health conditions (Hao and Tang 2018; Lu 

and Qin 2014; Rubin and Zimmer 2015; Zajacova et al. 2021b), we adjusted for potential 

confounders using the baseline wave data. Specifically, for demographic characteristics, we 

included gender (female = 0; male = 1), age groups in 2011 (45-49 = 0; 50-54 = 1; 55-59 = 2; 

60-64 = 3; 65–69 = 4; 70+ = 5), and marital status, which was categorized into 

married/cohabiting, and single (separated, divorced, widowed, and never married) as the 

reference group. We controlled for education level (illiterate = 0; less than elementary school 

= 1; up to elementary school = 2; middle school = 3; high School or beyond = 4). In addition, 

we also adjusted for health conditions including arthritis, hypertension, diabetes, and 

dyslipidemia. These conditions were assessed in CHARLS by the following question using a 

dichotomous measure: “Have you been diagnosed with [the condition] by a doctor?”  
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Table 1. List of the used variables and their codes in our study 
Variable Code 

Outcome  

    Pain prevalence Not suffering from pain = 0; 

Suffering from pain = 1. 

Key predictors  

    Urban-rural classification Rural population;  

Semi-urban population;  

Urban population. 

    Aging process Year of survey wave - 2011 

Covariates   

    Gender Female = 0;  

Male = 1. 

    Age groups in baseline wave 45-49 = 0;  

50-54 = 1;  

55-59 = 2;  

60-64 = 3;  

65–69 = 4;  

70+ = 5 

    Marital status in baseline wave Single (separated, divorced, widowed, and never married) = 0; 

Married/cohabiting = 1. 

    Education level illiterate = 0;  

less than elementary school = 1; 

up to elementary school = 2;  

middle school = 3; 

high School or beyond = 4. 

    Health conditions in baseline wave   

        Arthritis Not having arthritis = 0; 

Having arthritis = 1; 

Missing = 2. 

        Hypertension Not having hypertension = 0; 

Having hypertension = 1; 

Missing = 2. 

        Diabetes Not having diabetes = 0; 

Having diabetes = 1; 

Missing = 2. 

        Dyslipidemia Not having dyslipidemia = 0; 

Having dyslipidemia = 1; 

Missing = 2. 
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3.3 Analytic strategy 

3.3.1 Descriptive Analysis 

First, descriptive statistics for sample characteristics, stratified by urban-rural classification, 

were computed. Chi-square tests were employed to assess the statistical significance of 

covariate differences among urban-rural populations and to evaluate outcome variations across 

urban-rural groups for every survey wave. Then, in order to preliminarily assess how the pain 

prevalence varies with the aging process, this study generated line graphs depicting the average 

pain prevalence over the aging process across different socio-demographic groups.  

 

Since the descriptive analysis above only captures population-averaged trends, to further 

explore the heterogeneity in these trajectories—assuming that pain-aging trajectories may vary 

across individuals—we randomly selected 30 participants and plotted their individual pain 

trajectories across the five survey rounds. 

 

3.3.2 Multivariate Analysis  

Then we adjusted for the covariates in the regression analysis to assess the urban-rural and 

socio-economic disparities in pain prevalence. Due to the longitudinal nature of the data that 

repeated outcome measurements of the same set of subjects over time and could result in 

potential correlations between repeated measures nested in the same subject, the generalized 

estimating equation (GEE) and the generalized linear mixed models (GLMMs) were conducted 

to account for within-subject correlations. 

 

3.3.2.1 Model setting for the GEE logit model 

An unstructured covariance matrix was applied in all GEE models. A logit link function was 

used to deal with binary outcome, and all results were presented as odds ratios with 95% 

confidence intervals. In addition, this study focused on the average effect of the aging on the 

outcome rather than the differences within subjects, thus the grand mean centered value of the 

aging process was applied. We estimated the GEE logit models using geepack package in R.  

The full model including the interaction term can be expressed as: 

logit (odds)  =  𝑙𝑜𝑔(
𝜋௧௜

1 − 𝜋௧௜ ) =  𝛽଴  + 𝛽ଵ𝑌𝑒𝑎𝑟𝑠௧௜  + 𝛽ଶ𝑋௜  + 𝛽ଷ𝑌𝑒𝑎𝑟𝑠௧௜𝑋௜  + ෍ 𝛽௡

௡

௡ୀସ
𝐶௜  

(𝜋௧௜  refers to the probability of pain = 1, at time point t for individual i.; 𝑌𝑒𝑎𝑟𝑠௧௜ refers to aging 

process; 𝑋௜ is Urban-rural classification, and 𝐶௜ indicates the covariates.) 
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3.3.2.2 Model setting for the GLMMs 

We then utilized a multilevel format for the GLMMs to assess the multivariate associations 

between pain prevalence and the predictors, as well as depict the pain-aging trajectory and its 

variation across different urban-rural and socio-economic groups using the five-wave 

unbalanced panel data. We also use a logit format as the link function to fit the probability that 

an individual was suffering from pain in the specific wave (Ward and Ahlquist 2018). We 

estimated the GEE logit models using lme4 package in R.  

 

Model 0: check the necessity for random intercept. 

In this research, we first start from the unconditional means model (null model, or empty 

model), to estimate how much of the total variation comes from the variations at the individual 

level (level-2 or within the individual level), as a basis for subsequent model constructions. 

The expression for the unconditional means model is as follows: 

Level 1:  

logit (odds) = 𝑙𝑜𝑔( గ೟೔
ଵିగ೟೔ 

) = β଴୧ 

Level 2:  

β଴୧ = γ଴଴  +  𝛿଴௜ 

Thus, the combined format:  

logit (odds) = 𝑙𝑜𝑔( గ೟೔
ଵିగ೟೔ 

) = γ଴଴  + 𝛿଴௜ 

(𝜋௧௜  refers to the probability of pain = 1, at time point t for individual i.; β଴୧ is the random 

intercept; γ଴଴ is the fixed intercept; and 𝛿଴௜ is the deviation of the individual-specific intercept 

from the fixed intercept, that is the within-individual residual) 

The interclass correlation case:  

ICC = ఛబబ

ఛబబ ା ഓ
మ

య

 

(𝜏଴଴ is the variance of random intercept, and for the binomial distribution model, the residual 
variance is usually assumed to be ఛమ

ଷ
 ). 
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Model 1: Adding our predictors and covariates to answer question 1 (Does the chronic pain 

prevalence vary across urban and rural populations?) 

Based on the empty model, we then add urban-rural classification and covariates into the 

random intercept part. For model simplicity, we assume that our predictors and covariates are 

all time-invariant variables.  

Level 1: 

logit (odds) = 𝑙𝑜𝑔( గ೟೔
ଵିగ೟೔ 

) = β଴୧  

Level 2: 

 β଴୧ = γ଴଴  +  γ଴ଵ 𝑋௜ + ∑ 𝛾଴௡
௡
௡ୀଶ 𝐶௜ +  𝛿଴௜ 

Thus, the combined format:  

logit (odds) = 𝑙𝑜𝑔 ቀ గ೟೔
ଵିగ೟೔ 

ቁ = γ଴଴  + γ଴ଵ 𝑋௜ +  ∑ 𝛾଴௡
௡
௡ୀଶ  𝐶௜ + 𝛿଴௜ 

(𝑋௜  is the key predictors: Urban-rural classification; 𝐶௜ refers to the covariates: Gender, Age 

group in the baseline wave, marital status in the baseline wave, educational level, and health 

conditions in the baseline wave).  

 

Model 2: add aging process to Model 1 

Based on the above model, we further add the time indicator variable aging process in level-1 

to examine the fixed effect of aging process and its random effect, and get the growth model: 

Level 1: 

logit (odds) = 𝑙𝑜𝑔( గ೟೔
ଵିగ೟೔ 

) = β଴୧ + βଵ୧ Years௧௜  

Level 2: 

 β଴୧ = γ଴଴  +  γ଴ଵ 𝑋௜ + ∑ 𝛾଴௡
௡
௡ୀଶ  𝐶௜ + 𝛿଴௜ 

 βଵ୧ = γଵ଴  + 𝛿ଵ௜ 

Thus, the combined format:  

logit (odds) = 𝑙𝑜𝑔 ቀ గ೟೔
ଵିగ೟೔ 

ቁ = γ଴଴  + γ଴ଵ 𝑋௜ + ∑ 𝛾଴௡
௡
௡ୀଶ  𝐶௜ + 𝛿଴௜  + γଵ଴Years௧௜ + 𝛿ଵ௜ Years௧௜  

(The βଵ୧ refers to the random slope for the pain-aging trajectory, meaning that the effect of 

aging on pain prevalence could vary across individuals; and 𝛿ଵ௜  is the deviation of the 

individual-specific slope from the fixed slope γଵ଴; 𝑌𝑒𝑎𝑟𝑠௧௜ refers to aging process). 

 

By setting 𝛿ଵ௜ equal to zero or not, we could have two different type of unconditional growth 

models, with 𝛿ଵ௜ is a model with random slope, otherwise without random slope. Then we use 
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likelihood ratio test to compare the above model and decide whether we need to add random 

slope in our MLM analysis or not. 

 

Model 3: Adding the interaction term to answer question 2 (Whether these disparities in 

chronic pain prevalence evolve across the life course?) 

Finally, we add the interaction term in the above model: 

Level 1: 

logit (odds) = 𝑙𝑜𝑔( గ೟೔
ଵିగ೟೔ 

) = β଴୧ + βଵ୧ Years௧௜  

Level 2: 

 β଴୧ = γ଴଴  +  γ଴ଵ 𝑋௜ + ∑ 𝛾଴௡
௡
௡ୀଶ  𝐶௜ + 𝛿଴௜ 

 βଵ୧ = γଵ଴  + γଵଵ 𝑋௜ +  𝛿ଵ௜ 

Thus, the combined format:  

logit (odds) = 𝑙𝑜𝑔 ቀ గ೟೔
ଵିగ೟೔ 

ቁ = γ଴଴  + γ଴ଵ 𝑋௜ + ∑ 𝛾଴௡
௡
௡ୀଶ  𝐶௜ + 𝛿଴௜  + γଵ଴Years௧௜ + 

γଵଵYears௧௜ 𝑋௜ + 𝛿ଵ௜ Years௧௜  

(𝑋௜  is the key predictors: Urban-rural classification; 𝐶௜ refers to the covariates: Gender, Age 

group in the baseline wave, marital status in the baseline wave, educational level, and health 

conditions in the baseline wave).  

 

3.3.3 Robustness Check 

Due to inconsistencies in outcome measurement during the 2013 wave, we excluded this wave 

and analyzed the above models for a sensitivity check. Additionally, our sample consists of 

middle-aged and elderly individuals, and some unhealthy elderly participants may pass away 

during the survey between 2011 and 2020. Since mortality risk varies across individuals based 

on urban-rural classification and pain levels, restricting the analysis sample to surviving elderly 

adults may introduce collider bias. This could, in turn, lead to a biased estimate of the 

relationship between urban-rural classification and pain prevalence.  

 

To address the potential mortality selection bias, we also conducted a robustness check by 

analyzing a sub-sample of participants aged 45 to 69 at baseline wave. This age group was 

below the average life expectancy of 77.4 years old in 2019 for Chinese (World Health 

Organization 2021) and thus less influenced by mortality risk. 
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Chapter 4 The Results of Analysis  
4.1 Descriptive Analysis 

Table 2 presents the descriptive statistics for the full analytic sample, stratified by urban-rural 

classification. There were significant differences in pain prevalence among urban-rural 

populations across all survey waves. The rural population consistently reported the highest pain 

prevalence, followed by the semi-urban population, while the urban population exhibited the 

lowest risk of pain, demonstrating a health gradient in pain prevalence among urban-rural 

populations. In addition, an extensive escalation of pain prevalence was observed between 

2011 and 2020, rising from approximately 33% in the baseline wave to nearly 58% in the final 

wave, on average. However, the magnitude of this increase varied across urban-rural groups, 

with the urban population experiencing the largest increase (approximately 29%), followed by 

the semi-urban population (around 26%), and the rural population showing the smallest 

increase (about 23%). This pattern suggests that while age-related pain increased across all 

three populations, the increase rate varied by urban-rural groups, and the disparities in pain 

prevalence appeared to wane across the life course. This also reminds us that in subsequent 

modeling, we should take into account that the aging effect on pain prevalence may be 

differentiated by urban and rural groups. Therefore, the interaction terms need to be included 

in the multivariate models. 

 

Moreover, 𝜒ଶ test results presented in Table 2 indicate significant associations between urban 

and rural categories and covariates. The data reveal that individuals in urban areas tend to have 

higher levels of education (𝜒ଶ = 2614.032, p < 0.001), and a lower prevalence of arthritis (𝜒ଶ 

= 138.155, p < 0.001). However, the urban population also exhibits a higher risk of 

cardiovascular disease. Figure 2 illustrates the prevalence of chronic pain across various 

demographic groups at different stages of aging. The data reveal that rural populations 

consistently exhibit the highest prevalence rates, while urban populations demonstrate the 

lowest. From a demographic standpoint, women are more likely to experience chronic pain 

than men, and individuals who are single face a heightened risk. The likelihood of chronic pain 

also increases with age. Regarding socioeconomic factors, there is a pronounced educational 

gradient; individuals with higher levels of education are less likely to suffer from chronic pain. 

Additionally, an individual's health status is a significant determinant of chronic pain risk. In 

particular, individuals with arthritis face a substantially higher risk of chronic pain compared 
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to those without arthritis. The above results show that it is necessary to consider the above 

confounders in subsequent modeling to obtain unbiased estimates. 

Before going to the MLM, we randomly selected 25 individuals and plotted their pain-aging 

trajectories. Figure 3 shows that the trajectories of individuals differed greatly during the five 

observation periods. Although the pain trajectory of most individuals showed an upward trend, 

some individuals showed different trajectories, such as remaining unchanged or showing a V-

shaped increase. Therefore, it is necessary to consider the random slope model in subsequent 

analyses to explore the heterogeneity of aging effects. 
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Fig. 2. Pain-aging trajectories across different populations. 
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Fig. 3. Pain-aging trajectories for randomly chosen 25 individuals 
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Table 2. Descriptive statistics for sample characteristics, stratified by urban-rural classification 
 Urban-rural classification 

Rural Semi-urban Urban Total 𝜒ଶ 

Number of individuals at baseline 9801 (59.476) 3381 (20,517) 3297 (20,007) 16479 (100.000)  

Covariates at baseline      

    Gender     15.921 *** 

        Female 5048 (51.505) 1830 (54.126) 1624 (49.257) 8502 (51.593)  

        Male 4753 (48.495) 1551 (45.874) 1673 (50.743) 7977 (48.407)  

    Marital Status     3.578 

        Single 1311 (13.376)   417 (12.334)   409 (12.405)   2137 (12.968)  

        Married or cohabiting 8490 (86.624) 2964 (87.666) 2888 (87.595) 14342 (87.032)  

    Age Group     49.505 *** 

        45 - 49 1926 (19.651) 782 (23.129) 660 (20.018) 3368 (20.438)  

        50 - 54  1471 (15.009) 549 (16.238) 465 (14.104) 2485 (15.080)  

        55 -59  2042 (20.835) 703 (20.793) 664 (20.140) 3409 (20.687)  

        60-64  1676 (17.100) 563 (16.652) 555 (16.833) 2794 (16.955)  

        65-69  1092 (11.142)     300 (8.873) 351 (10.646) 1743 (10.577)  

        70+ 1594 (16.264) 484 (14.315) 602 (18.259) 2680 (16.263)  

    Education     2614.032 *** 

        Illiterate 3422 (34.915) 860 (25.436)      326 (9.888) 4608 (27.963)  

        Less than elementary school 1951 (19.906) 709 (20.970)  332 (10.070) 2992 (18.156)  

        Up to elementary school 2154 (21.977) 824 (24.371)  587 (17.804) 3565 (21.634)  

        Middle school 1725 (17.600) 733 (21.680)  948 (28.753) 3406 (20.669)  

        High school or beyond 549 (5.601) 255 (7.542) 1104 (33.485) 1908 (11.578)  

    Arthritis     138.155 *** 

        Yes 3594 (36.670) 1072 (31.707)   853 (25.902)   5520 (33.497)  

        No 6177 (63.024)  2300 (68.027) 2438 (73.946) 10915 (66.236)  

        Missing    30 (0.306)      9 (0.266)     5 (0.152)     44 (0.267)  

    Hypertension          126.249 *** 

        Yes 2191 (22.355)    776 (22.952) 1045 (31.695)   4012 (24.346)  

        No 7543 (76.962)  2585 (76.457) 2243 (68.032) 12371 (75.071)  

        Missing   67 (0.684)    20 (0.592)     9 (0.273)     96 (0.583)  

    Diabetes     371.746 *** 

        Yes 397 (4.051)  194 (5.738) 325 (9.857)   916 (5.559)  

        No 9299 (94.878)  3155 (93.316) 2952 (89.536) 15406 (93.489)  

        Missing 105 (1.071)    32 (0.946)   20 (0.607)   157 (0.953)  

    Dyslipidemia     163.042 *** 

        Yes 639 (6.520)   267 (7.897)   571 (17.319)  1477 (8.963)  

        No 8929 (91.103)  3042 (89.973) 2690 (81.589) 14661 (88.968)  

        Missing 233 (2.377)    72 (2.130)   36 (1.092)   341 (2.069)  

Pain prevalence      

    Pain in 2011 (N = 16479)     259.202 *** 

        Pain = No 6157 (62.820) 2368 (70.038) 2588 (77.586) 11083 (67.255)  

        Pain = Yes 3644 (37.180) 1013 (29.962)   739 (22.414)   5396 (32.745)  

    Pain in 2013 (N = 12997)     95.014 *** 

        Pain = No 

        Pain = Yes 

4882 (60.571) 

3178 (39.429) 

1685 (65.159) 

  901 (34.841) 

1677 (71.331) 

  674 (28.669) 

8244 (63.430) 

4753 (36.570) 

 

    Pain in 2015 (N = 12841)     160.813 *** 

        Pain = No 

        Pain = Yes 

5275 (64.843) 

2860 (35.157) 

1794 (70.160) 

  763 (29.840) 

1696 (78.920) 

  453 (21.080) 

8765 (68.258) 

4076 (31.742) 

 

    Pain in 2018 (N = 12716)     82.257 *** 

        Pain = No 

        Pain = Yes 

2955 (36.887) 

5056 (63.113) 

1074 (41.937) 

1487 (58.063) 

1012 (47.201) 

1132 (52.799) 

5041 (39.643) 

7675 (60.357) 

 

    Pain in 2020 (N = 12291)     57.762 *** 

        Pain = No 3085 (39.709) 1088 (43.853)   992 (48.604) 5165 (42.023)  

        Pain = Yes 4684 (60.291) 1393 (56.147) 1049 (51.396) 7126 (57.977)  

Note. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. The Chi-square tests were computed to test the associations between pain prevalence and urban-

rural classification, and associations between covariates and urban-rural classification. Percentages in parentheses indicate the column ones. 

 



 23 

4.2 The Results from the GEE and GLMMs  

4.2.1 Multivariate Analysis from the GEE Logit Models 

Table 3 presents the estimates from the GEE models on the associations between pain 

prevalence and urban-rural populations for the full analytic sample. Consistent with the earlier 

bivariate patterns, after adjusting for covariates, Model 4 indicates that pain prevalence varied 

significantly by urban-rural groups. Compared to semi-urban population, rural population 

exhibited a nearly 21% higher risk of suffering from pain (OR = 1.208, CI = 1.143-1.278), 

showing that the that urban dwelling is associated with a lower risk of suffering from pain 

among the rural hukou populations. Moreover, urban population was more likely to be free 

from pain than semi-urban population, with a nearly 15% lower odds of developing it (OR = 

0.847; CI = 0.786-0.913). 

 

Although we also observed the elevated pain prevalence during aging process, the magnitude 

of these rising pain-aging trajectories varied across urban-rural populations. For semi-urban 

population, the odds of experiencing pain increased by about 17% for each year of aging (OR 

= 1.166; CI = 1.154-1.178). With each additional year of aging, the likelihood of experiencing 

pain decreased by 1.5% in the rural population compared to the semi-urban population (OR = 

0.985; CI = 0.973-0.997), indicating a narrowing disparity in pain prevalence between the two 

groups as age increases. Conversely, the urban population showed a more pronounced increase 

in pain prevalence with age compared to the semi-urban population, with a 2.3% higher rate of 

increase (OR = 1.023; CI = 1.007-1.039).  

 

The above pattern is graphically presented in Fig. 4. Although the rural population exhibits the 

highest pain prevalence, the increase in pain with age is the smallest. In contrast, the urban 

population has a lower initial prevalence, but the risk escalates more rapidly with age. The 

disparities in pain prevalence among the above three groups become smaller across life course, 

rather than diverging. 
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Table 3. Generalized estimating equations for pain prevalence (Full sample) 
 Model 1  

(OR, 95% CI) 

Model 2 

(OR, 95% CI) 

Model 3 

(OR, 95% CI) 

Model 4 

(OR, 95% CI) 

Intercept 0.867 (0.790-0.952) ** 0.940 (0.843-1.048) 2.922 (2.501-3.414) *** 2.930 (2.507-3.424) *** 

Gender (ref = Female)     

    Male 0.539 (0.516-0.563) *** 0.578 (0.551-0.606) *** 0.610 (0.582-0.639) *** 0.609 (0.581-0.638) *** 

Marital Status (ref = Single)     

    Married or cohabiting 0.899 (0.838-0.965) ** 0.908 (0.846-0.974) ** 0.922 (0.859-0.989) * 0.921 (0.859-0.989) * 

 Age Group in 2011 (ref = 45 - 49)     

    50 - 54  1.083 (1.006-1.165) * 1.065 (0.989-1.146) † 1.015 (0.943-1.092) 1.014 (0.943-1.091) 

    55 -59  1.129 (1.056-1.208) *** 1.040 (0.971-1.115) 0.963 (0.899-1.032) 0.963 (0.898-1.032) 

    60-64  1.252 (1.167-1.344) *** 1.117 (1.037-1.202) ** 0.988 (0.919-1.063)  0.988 (0.918-1.063)  

    65-69  1.310 (1.207-1.422) *** 1.182 (1.086-1.286) *** 1.023 (0.940-1.114)  1.022 (0.939-1.113)  

    70+ 1.266 (1.173-1.366) *** 1.101 (1.014-1.196) * 1.006 (0.926-1.093) 1.007 (0.926-1.094) 

Education (ref = Illiterate)     

    Less than elementary school  1.024 (0.958-1.095) 0.995 (0.931-1.063) 0.996 (0.933-1.065) 

    Up to elementary school  0.910 (0.852-0.972) ** 0.914 (0.856-0.976) ** 0.916 (0.858-0.978) ** 

    Middle school  0.750 (0.699-0.806) *** 0.772 (0.719-0.829) *** 0.774 (0.720-0.831) *** 

    High school or beyond  0.657 (0.599-0.721) *** 0.687 (0.626-0.753) *** 0.686 (0.625-0.753) *** 

Arthritis (ref = Yes)     

    No   0.393 (0.376-0.412) *** 0.394 (0.376-0.412) *** 

    Missing   0.722 (0.508-1.027) † 0.721 (0.507-1.025) † 

Hypertension (ref = Yes)     

    No   0.890 (0.844-0.938) *** 0.890 (0.844-0.938) *** 

    Missing   0.888 (0.660-1.195) 0.887 (0.660-1.193) 

Diabetes (ref = Yes)     

    No   0.829 (0.751-0.915) *** 0.827 (0.749-0.913) *** 

    Missing   0.878 (0.674-1.145) 0.877 (0.673-1.144) 

Dyslipidemia (ref = Yes)     

    No   0.779 (0.721-0.843) *** 0.778 (0.720-0.841) *** 

    Missing   0.734 (0.609-0.885) ** 0.733 (0.608-0.883) ** 

Urban-rural classification (ref = Semi-urban)     

    Rural 1.263 (1.195-1.335) *** 1.240 (1.173-1.312) *** 1.208 (1.143-1.278) *** 1.208 (1.143-1.278) *** 

    Urban 0.747 (0.697-0.801) *** 0.857 (0.795-0.923) *** 0.850 (0.789-0.916) *** 0.847 (0.786-0.913) *** 

Aging process 1.150 (1.144-1.155) *** 1.150 (1.145-1.156) *** 1.159 (1.154-1.165) *** 1.166 (1.154-1.178) *** 

Aging process * Urban-rural classification (ref = Semi-urban)     

    Aging process * Rural    0.985 (0.973-0.997) * 

    Aging process * Urban    1.023 (1.007-1.039) ** 

Observations 67324 67324 67324 67324 

Number of individuals 16479 16479 16479 16479 

QIC 86557 86298 83320 83292 

      Note. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Fig. 4. Predicted pain-aging trajectories by urban-rural classification 

 



 26 

4.2.2 Multivariate Analysis from Generalized Linear Mixed Models 

Based on the results from the null model, the ICC is around 0.314, indicating that that 

differences between individuals (Level-2 units) explain 31.4% of the total variation. In other 

words, 31.4% of the variation is due to differences between individuals, not to variation within 

individuals. This shows that individual characteristics play an important role in predicting pain 

prevalence. Hence, it is reasonable and necessary to use a mixed effects model to consider the 

random effects between individuals. 

 

Table 4. shows the multivariate results from the multilevel logit models for chronic pain 

prevalence. The results are similar to those of the GEE model. The presence of a significant 

urban-rural gradient in the prevalence of chronic pain was consistently observed across studies. 

However, it is important to highlight that in the analysis of interaction terms, differences were 

only identified in the trajectories of chronic pain between urban and rural populations. No 

significant differences were observed in pain-aging trajectories between rural and semi-urban 

populations, a result that is inconsistent with the conclusion of the GEE model. 
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Table 4. Generalized Linear Mixed Models for pain prevalence (Full sample) 
 Model 1 

(OR, 95% CI) 

Model 2 

(OR, 95% CI) 

Model 3 

(OR, 95% CI) 

Fixed effect    

Intercept 3.220 (2.713-3.820) *** 3.864 (3.203-4.466) *** 3.762 (3.115-4.544) *** 

Gender (ref = Female)    

    Male 0.554 (0.525-0.584) *** 0.535 (0.505-0.567) *** 0.544 (0.513-0.577) *** 

Marital Status (ref = Single)    

    Married or cohabiting 0.941 (0.869-1.018)  0.928 (0.852-1.011) † 0.923 (0.847-1.007) † 

 Age Group in 2011 (ref = 45 - 49)    

    50 - 54  1.057 (0.974-1.147)  1.055 (0.964-1.154) 1.026 (0.937-1.123) 

    55 -59  0.994 (0.921-1.073) 0.994 (0.913-1.081) 0.968 (0.889-1.053) 

    60-64  1.026 (0.945-1.114)  1.032 (0.943-1.130)  0.995 (0.909-1.090)  

    65-69  1.046 (0.951-1.149)  1.071 (0.965-1.188)  1.044 (0.941-1.159)  

    70+ 0.941 (0.857-1.033)  1.063 (0.959-1.177) 1.038 (0.937-1.150) 

Education (ref = Illiterate)    

    Less than elementary school 1.037 (0.962-1.118) 1.001 (0.923-1.087) 1.006 (0.927-1.092) 

    Up to elementary school 0.932 (0.866-1.003) † 0.895 (0.826-0.971) ** 0.892 (0.823-0.968) ** 

    Middle school 0.767(0.708-0.831) *** 0.719 (0.658-0.785) *** 0.708 (0.648-0.774) *** 

    High school or beyond 0.668 (0.603-0.740) *** 0.612 (0.547-0.685) *** 0.593 (0.529-0.664) *** 

Arthritis (ref = Yes)    

    No 0.345 (0.328-0.364) ** 0.304 (0.287-0.322) *** 0.308 (0.291-0.327) *** 

    Missing 0.779 (0.483-1.256)  0.656 (0.389-1.105)  0.746 (0.442-1.259)  

Hypertension (ref = Yes)    

    No 0.915 (0.862-0.971) *** 0.868 (0.813-0.927) *** 0.880 (0.824-0.940) *** 

    Missing 1.047 (0.744-1.474) 0.888 (0.660-1.195) 0.873 (0.599-1.272) 

Diabetes (ref = Yes)    

    No 0.828 (0.741-0.925) *** 0.806 (0.714-0.910) *** 0.823 (0.728-0.929) ** 

    Missing 0.903 (0.673-1.212) 0.863 (0.626-1.192) 0.860 (0.622-1.188) 

Dyslipidemia (ref = Yes)    

    No 0.689 (0.741-0.925) *** 0.745 (0.675-0.821) *** 0.729 (0.661-0.805) *** 

    Missing 0.689 (0.558-0.850) *** 0.689 (0.548-0.868) ** 0.698 (0.554-0.879) ** 

Urban-rural classification (ref = Semi-urban)    

    Rural 1.285 (1.207-1.367) *** 1.284 (1.200-1.375) *** 1.320 (1.233-1.414) *** 

    Urban 0.781 (0.719-0.849) *** 0.807 (0.737-0.884) *** 0.855 (0.779-0.937) *** 

Aging process  1.207 (1.200-1.215) *** 1.210 (1.194-1.226) *** 

Aging process * Urban-rural classification (ref = Semi-urban)    

    Aging process * Rural   0.990 (0.975-1.005)  

    Aging process * Urban   1.033 (1.013-1.054) ** 

Random effect    

    Intercept 1.050 1.384 1.398 

    Slope / 0.001 0.003 

Observations 67324 67324 67324 

Number of individuals 16479 16479 16479 

AIC 83887 79567 79552 

BIC 84096 79804 79808 

      Note. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Chapter 5 Conclusion and Discussion 

5.1 The Conclusion and Discussion for the Empirical Results 

Based on nationally representative longitudinal data, our study contributes new knowledge on 

urban-rural disparities in pain prevalence and how they evolve across life course among 

middle-aged and older Chinese for the first time. The findings reveal a pronounced urban-rural 

gradient in pain prevalence, with the highest prevalence observed among individuals with rural 

hukou dwelling in rural areas, followed by rural-to-urban migrants with rural hukou, and finally, 

the urban hukou population, who experienced the lowest pain prevalence. Our results indicate 

that both urban residence and urban hukou are associated with lower pain prevalence. This 

finding provides evidence supporting that urban geographic and institutional characteristics act 

as health advantage resources shaping pain inequalities, consistent with prior research 

(Dorélien and Xu 2020; Song and Smith 2019). Notably, the observed heightened vulnerability 

to pain risk among individuals with rural hukou, regardless of their place of residence, 

compared to those with urban hukou, demonstrating that urban hukou is closer to advantages 

in health outcomes, and has a greater impact than geographic characteristics in shaping health 

conditions. This pattern highlights the role of the hukou as an unequal and fundamental 

institutional arrangement, exerts an entrenched influence on producing and maintaining health 

inequalities. In this sense, urban-rural health inequality shaped by institutional factors deserves 

more of research attention when research focuses on examining the urban-rural division in 

China. 

 

In addition, the study indicates that aging is associated with a significantly elevated risk of 

developing pain, which is in line with previous research (Zajacova et al. 2021a). Notably, our 

results reveal substantial urban-rural disparities in the pain-aging trajectory. In rural hukou 

groups, although pain prevalence is higher among rural residents compared to rural-to-urban 

migrants, the disparity in pain prevalence diminishes over the life course. While the urban 

hukou population exhibits a lower initial pain prevalence, they experience the most pronounced 

increase in prevalence over time. As individuals age and their physical function declines, the 

differences in pain prevalence between urban and rural populations tend to converge. This 

finding supports the age-as-leveler hypothesis, as opposed to the cumulative (dis)advantage 

hypothesis, and contrasts with the conclusions of some prior studies. For instance, research 

conducted in the United States has found that the socioeconomic status (SES) gap in pain 



 29 

prevalence widens with age (Zajacova et al. 2021a). We argue that the contrasting pattern 

observed in our study may be attributable to two key reasons. First, compared to the US, China 

provides lower levels of social security for middle-aged and elderly populations, including less 

generous pension benefits, which may result in insufficient support for pain prevention and 

treatment. Second, our sample includes individuals aged 45 years and older, all of whom were 

born before 1966. These cohorts endured substantial hardships in their early years, marked by 

material scarcity, malnutrition, high-intensity physical labor, and limited access to timely 

medical care. The experiences and lasting negative impact of these early-life conditions may 

have a more pronounced effect on health outcomes in later life (Fan and Qian 2015; Song et al. 

2009; Zhang et al. 2017). Future research needs to consider and explore the influences of early-

life conditions on chronic pain in later life. In addition, based on the results from the sensitivity 

analysis, we contend that the narrowing health gap is unlikely to be attributable to mortality 

selection. Instead, it may be influenced by other biological factors associated with the aging 

process. Future research should aim to incorporate a broader range of physiological indicators 

to more comprehensively test this hypothesis. 

 

This research has several limitations that should be acknowledged. First, the measurement of 

pain relies on retrospective self-reported data, which is inherently subjective to recall bias and 

reporting heterogeneity. Additionally, the measurement does not distinguish between chronic 

and acute pain, nor does it specify the duration of pain, potentially compromising its validity. 

Second, the use of an overall pain measure, rather than focusing on specific types of pain, limits 

the ability to explore heterogeneity in pain disparities. The pain prevalence and its sites can 

vary significantly between urban and rural populations due to differing working- and life-style 

patterns. For example, lower back and joint pain, often associated with prolonged physical 

labor, may be more prevalent in rural populations, whereas conditions such as sciatica, linked 

to sedentary behaviors, may be more common in urban groups. Furthermore, age-related pain 

patterns are not uniform across all pain sites. Certain types of pain are more closely associated 

with physiological decline regardless of socioeconomic status, while others may be more 

influenced by non-physiological factors. Future research should aim to refine measurement 

approaches and focus on more specific indicators to assess pain inequalities in middle-aged 

and older Chinese. 
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5.2 A Conclusion and Discussion for the GEE and GLMMs modelling 

As more longitudinal data become available to researchers, the challenge is how to effectively 

extract and utilize the information related to change and development hidden within these data. 

This study applied the GEE logit model and GLMM logit model to model the urban-rural 

disparities in pain prevalence and its dynamic characteristics within a Chinese context. Despite 

the general consistency in the conclusions of the empirical studies, substantial differences 

remain between the two models in practical application. 

When comparing the GEE Logit model and the GLMM (using a multilevel framework), each 

model has distinct characteristics. The GEE Logit model is designed to handle correlated data 

by modeling the correlation between observations through a working correlation matrix. Its 

parameters directly reflect marginal effects, making it suitable for interpretation at the 

population level. The strength of the GEE model lies in its robustness to misspecifications of 

the error structure as we discussed in Chapter 2 and its relative computational efficiency. 

However, it may be less suitable and less predictive than GLMM in dealing with complex 

hierarchical data structures. 

GLMM, on the other hand, incorporates random effects to handle the hierarchical structure 

within the data, allowing for better modeling of variability between individuals. Its flexibility 

enables it to manage complex nested data and excel in individual-level predictions. However, 

GLMM is computationally more complex and more sensitive to assumptions regarding random 

effects and error structures, which can present challenges, especially with large datasets or 

intricate model structures. 

In all, GEE models and GLMM models each have their own application scenarios and 

assumptions. GEE is more suitable for use when focusing on overall marginal effects and 

uncertainty about the correlation structure, while GLMM is more suitable for scenarios that 

need to capture individual differences and accurately model random effects. The choice of 

model should be based on the actual needs of the research problem, the data structure, and the 

degree of dependence on assumptions. 
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Appendix 
A.1 Tables for robustness check  

Table A.1.1. Generalized estimating equations for pain prevalence (Exclude 2013 wave) 
 Model 1 Model 2 Model 3 Model 4 

Intercept 0.921 (0.835-1.015) † 0.993 (0.886-1.114) 3.251 (2.756-3.836) *** 3.263 (2.764-3.851) *** 

Aging process 1.151 (1.146-1.157) *** 1.150 (1.145-1.158) *** 1.162 (1.156-1.168) *** 1.170 (1.157-1.184) *** 

Urban-rural classification (ref = Semi-urban)     

    Rural 1.275 (1.203-1.351) *** 1.240 (1.173-1.328) *** 1.220 (1.150-1.294) *** 1.219 (1.149-1.293) *** 

    Urban 0.748 (0.695-0.805) *** 0.857 (0.795-0.932) *** 0.856 (0.791-0.926) *** 0.852 (0.787-0.923) *** 

Gender (ref = Female)     

    Male 0.532 (0.508-0.557) *** 0.578 (0.551-0.598) *** 0.601 (0.572-0.631) *** 0.600 (0.572-0.631) *** 

Marital Status (ref = Single)     

    Married or cohabiting 0.909 (0.844-0.979) * 0.908 (0.846-0.990) * 0.932 (0.864-1.004) † 0.931 (0.864-1.004) † 

 Age Group in 2011 (ref = 45 - 49)     

    50 - 54  1.070 (0.992-1.115) † 1.065 (0.989-1.139)  1.002 (0.928-1.081) 1.002 (0.928-1.081) 

    55 -59  1.118 (1.043-1.199) ** 1.040 (0.971-1.105) 0.950 (0.884-1.022) 0.950 (0.884-1.021) 

    60-64  1.254 (1.165-1.351) *** 1.117 (1.037-1.204) ** 0.983 (0.910-1.061)  0.982 (0.909-1.060)  

    65-69  1.320 (1.211-1.439) *** 1.182 (1.086-1.298) *** 1.023 (0.935-1.120)  1.022 (0.934-1.118)  

    70+ 1.236 (1.140-1.340) *** 1.101 (1.014-1.172)  0.977 (0.895-1.067) 0.977 (0.895-1.067) 

Education (ref = Illiterate)     

    Less than elementary school  1.024 (0.958-1.114) 1.009 (0.940-1.082) 1.011 (0.942-1.084) 

    Up to elementary school  0.910 (0.852-0.991) * 0.929 (0.867-0.995) * 0.931 (0.869-0.998) * 

    Middle school  0.750 (0.699-0.807) *** 0.771 (0.716-0.832) *** 0.773 (0.717-0.834) *** 

    High school or beyond  0.657 (0.599-0.713) *** 0.677 (0.614-0.746) *** 0.676 (0.613-0.745) *** 

Arthritis (ref = Yes)     

    No   0.385 (0.367-0.403) *** 0.385 (0.367-0.404) *** 

    Missing   0.816 (0.563-1.181)  0.815 (0.563-1.178)  

Hypertension (ref = Yes)     

    No   0.882 (0.834-0.933) *** 0.882 (0.833-0.932) *** 

    Missing   0.920 (0.670-1.265) 0.919 (0.669-1.262) 

Diabetes (ref = Yes)     

    No   0.810 (0.730-0.900) *** 0.808 (0.727-0.899) *** 

    Missing   0.859 (0.650-1.134) 0.857 (0.649-1.133) 

Dyslipidemia (ref = Yes)     

    No   0.776 (0.714-0.843) *** 0.775 (0.713-0.842) *** 

    Missing   0.746 (0.612-0.911) ** 0.744 (0.610-0.908) ** 

Aging process * Urban-rural classification (ref = Semi-urban)     

    Aging process * Rural    0.982 (0.969-0.995) ** 

    Aging process * Urban    1.027 (1.009-1.044) ** 

Observations 54327 54327 54327 54327 

Number of individuals 16479 16479 16479 16479 

QIC 69843 69609 67097 67061 

      Note. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A.1.2. Generalized estimating equations for pain prevalence (Exclude age group 70+ in 2011) 
 Model 1 Model 2 Model 3 Model 4 

Intercept 0.911 (0.818-1.015) † 0.965 (0.852-1.092) 3.026 (2.548-3.595) *** 3.032 (2.552-3.603) *** 

Aging process 1.151 (1.146-1.157) *** 1.152 (1.146-1.158) *** 1.161 (1.155-1.167) *** 1.167 (1.154-1.180) *** 

Urban-rural classification (ref = Semi-urban)     

    Rural 1.272 (1.198-1.350) *** 1.246 (1.172-1.324) *** 1.219 (1.147-1.294) *** 1.219 (1.148-1.295) *** 

    Urban 0.762 (0.706-0.823) *** 0.887 (0.818-0.962) ** 0.883 (0.814-0.958) ** 0.878 (0.809-0.953) ** 

Gender (ref = Female)     

    Male 0.539 (0.514-0.565) *** 0.578 (0.550-0.609) *** 0.607 (0.577-0.638) *** 0.607 (0.577-0.638) *** 

Marital Status (ref = Single)     

    Married or cohabiting 0.857 (0.785-0.935) *** 0.868 (0.796-0.947) ** 0.891 (0.817-0.972) ** 0.890 (0.816-0.971) ** 

 Age Group in 2011 (ref = 45 - 49)     

    50 - 54  1.082 (1.005-1.164) * 1.066 (0.990-1.148) † 1.016 (0.944-1.094) 1.016 (0.944-1.093) 

    55 -59  1.127 (1.054-1.206) *** 1.037 (0.967-1.112) 0.960 (0.896-1.030) 0.960 (0.896-1.029) 

    60-64  1.248 (1.162-1.339) *** 1.108 (1.029-1.194) ** 0.981 (0.911-1.056)  0.981 (0.911-1.056)  

    65-69  1.301 (1.198-1.413) *** 1.170 (1.075-1.274) *** 1.013 (0.930-1.104)  1.012 (0.929-1.103)  

Education (ref = Illiterate)     

    Less than elementary school  1.054 (0.978-1.135) 1.027 (0.954-1.105) 1.029 (0.956-1.107) 

    Up to elementary school  0.937 (0.871-1.007) † 0.948 (0.882-1.018)  0.950 (0.884-1.021)  

    Middle school  0.763 (0.707-0.824) *** 0.789 (0.731-0.851) *** 0.790 (0.733-0.853) *** 

    High school or beyond  0.651 (0.590-0.718) *** 0.682 (0.618-0.752) *** 0.682 (0.618-0.752) *** 

Arthritis (ref = Yes)     

    No   0.392 (0.373-0.412) *** 0.392 (0.373-0.412) *** 

    Missing   0.822 (0.558-1.212)  0.821 (0.557-1.209)  

Hypertension (ref = Yes)     

    No   0.878 (0.828-0.931) *** 0.878 (0.828-0.931) *** 

    Missing   0.879 (0.641-1.205) 0.878 (0.640-1.203) 

Diabetes (ref = Yes)     

    No   0.833 (0.748-0.928) *** 0.832 (0.747-0.927) *** 

    Missing   0.889 (0.669-1.182) 0.888 (0.668-1.181) 

Dyslipidemia (ref = Yes)     

    No   0.765 (0.703-0.833) *** 0.764 (0.702-0.832) *** 

    Missing   0.756 (0.615-0.930) ** 0.755 (0.613-0.929) ** 

Aging process * Urban-rural classification (ref = Semi-urban)     

    Aging process * Rural    0.986 (0.973-0.999) * 

    Aging process * Urban    1.025 (1.008-1.042) ** 

Observations 58477 58477 58477 58477 

Number of individuals 13799 13799 13799 13799 

QIC 75109 74858 72243 72220 

      Note. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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A.2 R syntax for statistical modelling 
# Part A: GEE  ----------------------------------------------------------- 
# Full sample 
full_1 <- geeglm( 
  pain01 ~ years + urban + years * urban + gender  + marital + age_group +
  
    education + pche_quartile + arthritis_pre_2011 + 
    hypertension_pre_2011 + dyslipidemia_pre_2011 + diabetes_pre_2011, 
  id = id, 
  data = full_data, 
  family = binomial(link = "logit"), 
  corstr = "unstructured"  
) 
summary(full_1) 
QIC(full_1) 
 
# OR format 
summary_gee_or(full_1) 
 
# Interaction effect plot 
slopes_1 <- ggpredict(full_1, terms = c("years", "urban")) 
slopes_1$x <- slopes_1$x + 4.11 
slopes_1$x 
 
group_levels <- unique(slopes_1$group) 
 
plot_simple_slopes_1 <- ggplot(slopes_1, aes(x = x, y = predicted, linetyp
e = factor(group))) + 
  geom_line(size = 0.35, color = "black") +   
  scale_y_continuous(labels = percent) +   
  labs(x = "Years after baseline survey", y = "Predicted Pain Prevalence",
 linetype = "Urban-rural classification") + 
  ggtitle("Predicted pain prevalence by aging process and urban-rural clas
sification") + 
  scale_linetype_manual(values = c( "solid", "twodash", "dotted")) +  
  scale_x_continuous(breaks = c(0:9)) +   
  theme_minimal() + 
  theme( 
    plot.title = element_text(hjust = 0.5),   
    legend.position = "bottom" 
  ) 
 
print(plot_simple_slopes_1) 
 
 
# Sensitivity Analysis------------------------------------------------- 
# no 2013 wave -------------------------------------------------------- 
full_2 <- geeglm( 
  pain01 ~ years + urban + years * urban + gender  + marital + age_group +
  
    education + pche_quartile + arthritis_pre_2011 + 
    hypertension_pre_2011 + dyslipidemia_pre_2011 + diabetes_pre_2011, 
  id = id, 
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  data = no2013_data, 
  family = binomial(link = "logit"), 
  corstr = "unstructured"  
) 
summary(full_2) 
QIC(full_2) 
 
 
 
# no age_group >= 70------------------------------------------------------ 
full_3 <- geeglm( 
  pain01 ~ years + urban + years * urban + gender  + marital + age_group +
  
    education + pche_quartile + arthritis_pre_2011 + 
    hypertension_pre_2011 + dyslipidemia_pre_2011 + diabetes_pre_2011, 
  id = id, 
  data = no70_data, 
  family = binomial(link = "logit"), 
  corstr = "unstructured"  
) 
summary(full_3) 
QIC(full_3) 
# ------------------------------------------------------------------ 
 
 
 
 
# ------------------------------------------------------------------ 
# Part B: MLM ------------------------------------------------------ 
library(lme4) 
 
## Model 0: Null Model 
null_model <- glmer( 
  pain01 ~ 1 + (1 | id), 
  data = full_data, 
  family = binomial(link = "logit") 
) 
 
summary(null_model) 
 
var_random_intercept <- as.numeric(VarCorr(null_model)$id[1]) 
 
#### ICC 
icc <- var_random_intercept / (var_random_intercept + (pi^2 / 3)) 
icc 
 
# -------------------------------------------------------------- 
## Model 1: random intercept with predictor and covariates 
model_1 <- glmer( 
  pain01 ~ urban + 
    gender + marital + age_group + 
    education +  
    arthritis_pre_2011 + hypertension_pre_2011 + 
    diabetes_pre_2011 + dyslipidemia_pre_2011 + 
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    (1 | id), 
  data = full_data, 
  family = binomial(link = "logit") 
) 
summary(model_1) 
 
# lr test 
model_1_lmerTest <- lmerTest::lmer( 
  pain01 ~ urban + 
    gender + marital + age_group + 
    education +  
    arthritis_pre_2011 + hypertension_pre_2011 + 
    diabetes_pre_2011 + dyslipidemia_pre_2011 + 
    (1 | id), 
  data = full_data, 
  family = binomial(link = "logit") 
) 
 
## model 2: adding aging process 
model_2 <- glmer( 
  pain01 ~ years + urban + 
    gender + marital + age_group + 
    education +  
    arthritis_pre_2011 + hypertension_pre_2011 + 
    diabetes_pre_2011 + dyslipidemia_pre_2011 + 
    (1 + years | id), 
  data = full_data, 
  family = binomial(link = "logit") 
) 
summary(model_2) 
 
## model 3: interaction term 
model_3 <- glmer( 
  pain01 ~ years + urban + 
    years * urban + 
    gender + marital + age_group + 
    education +  
    arthritis_pre_2011 + hypertension_pre_2011 + 
    diabetes_pre_2011 + dyslipidemia_pre_2011 + 
    (1 + years | id), 
  data = full_data, 
  family = binomial(link = "logit") 
) 
summary(model_3) 
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