

RESILIENTFOODSAFETYMANAGEMENTTOANTICIPATEONRELATEDMICROBIOLOGICALFOODSAFETYCHALLENGES

Word count: 30 535

Ella Meeusen Student number: 01806130

Promotor: Prof. dr. ir. Liesbeth Jacxsens Tutor: ir. Mathis Vermeersch

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Science in de bio-ingenieurswetenschappen: levensmiddelenwetenschappen en voeding

Academic year: 2023-2024

COPYRIGHT STATEMENT

De auteur en de promotor geven de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van de masterproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit de masterproef.

The author and the promotor give permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis.

ACKNOWLEDGEMENTS

First and foremost I would like to thank my promotor, prof. dr. Liesbeth Jacxsens, and my tutor, Mathis Vermeersch, for their help in the realisation of this thesis. They were always there to aid me in finding the right methodology, interpretation of results, and the writing of this thesis. Thank you for helping this thesis to come to this end point.

I would also like to thank my parents for their endless support and for being the perfect hype-people. Thank you to my brother for going through this thesis process along with me. Thank you to my friends for always being there for me when I needed it most and to always say the right things. Thank you for giving me things to look forward to and to always keep a smile on my face

INDEX

Copyrigi	ht statement	ii
Acknowl	ledgements	iii
Index		iv
Abbrevia	ations	vi
Abstract	t	vii
Samenv	atting	viii
Introduc	tion	1
1	Literature Study	3
1.1	Impact of drivers on microbiological food safety	3
1.1.1 1.1.2 1.2	Definitions of drivers and risks in food safety management Drivers Assessment of food safety management systems	3 5 7
1.2.1 1.2.2 1.3	Food Safety Management Systems The food safety management system diagnostic instrument Impact of drivers on food safety management	7 8 14
1.3.1 1.3.2 2	Innovation pathway Food safety shocks Materials and methods	15 16 19
2.1	Diagnosis of an alternative food system using the current diagnostic instrument	19
2.2	Updating the existing diagnostic instrument	20
2.2.1 2.2.2 2.2.3 2.2.4 3	Expert elicitation Coupling of subdrivers and indicators through literature review Adding a resilience level to existing indicators Formulating new external context indicators Results	20 26 30 31 32
3.1	Diagnosis of an alternative food system using the current diagnostic instrument	32
3.2	Results of the expert elicitation	34
3.2.1 3.2.2 3.2.3 3.2.4 3.3	Subdrivers that have an impact on food safety management Activities in food safety management impacted by changes in subdrivers Mechanisms of impact between subdrivers and FSMS activities Most important subdrivers to consider Coupling of drivers and indicators through literature review	34 38 40 46 47
3.3.1 3.3.2 3.4	Coupling of subdrivers and context indicators through literature review Coupling of subdrivers and FSMS activities through literature review Adding a resilience level to existing indicators	47 48 52
4	Discussion	55
4.1	Diagnosis of an alternative food system using the current diagnostic instrument	55

4.2	Updating the existing diagnostic instrument	56
4.2.1	Mechanisms of impact of subdrivers on internal context indicators	56
4.2.2	Mechanisms of impact of subdrivers on FSMS activities	57
4.2.3	Formulation of new external context indicators	60
4.2.4	Adding a resilience level to existing QA and QC indicators	62
4.2.5	Future perspectives	62
Conclusior	1	64
Reference	S	65
Appendice	25	81

ABBREVIATIONS

BRC	British Retail Consortium
EFSA	European Food Safety Authority
EU	European Union
FBO	Food Business Operator
FSMS	Food Safety Management System
FSMS-DI	Food Safety Management System Diagnostic Instrument
НАССР	Hazard Analysis and Critical Control Points
HSMS	Horticulture Safety Management System
HSMS-DI	Horticulture Safety Management System Diagnostic Instrument
GAP	Good Agriculture Practices
GMP	Good Manufacturing Practices
МО	Micro-Organisms
PI	Performance Indicators
QA	Quality Assurance
QC	Quality Control
STEEP	Social, Technological, Environmental, Economic, Political
SQF	Safe Quality Food

ABSTRACT

Introduction In this rapidly changing world, drivers of change impact our food consumption patterns and food production systems. These drivers can also influence the emergence of microbiological food safety hazards. Food Business Operators have the end responsibility for food safety of their output, so operating under the pressure of these drivers calls for adapted food safety management. This research focuses on this impact on food safety management, and how this can be used to asses a business's resilience under these drivers accurately. The goal is to provide a basis for the updating of the Food Safety Management System Diagnostic Instrument, a tool that is constructed to assess maturity and identify strengths and weaknesses of a business's Food Safety Management System through indicators.

Materials & Methods A literature study is conducted to get a feel for the considered drivers of change and their possible influence on food safety management, and also to find a definition for resilience in food safety management. To get acquainted with the working of the diagnostic instrument in its current form, an interview using the tool is done in an alternative food system. Based on this background information, a methodology for the update of the diagnostic instrument is proposed. First, to get an insight into the consequences of the impact of drivers for food safety management, food business operators are consulted in an online workshop. They are asked to give their opinions on which drivers can have an impact on food safety management and in what way. They are also asked to provide a top 5 of the most important drivers to consider. From this, mechanisms can be constructed linking drivers to particular activities in the Food Safety Management System. This coupling is also done through a structured literature review, to provide a scientific background for the mechanisms observed by food business operators. These mechanisms will form the basis for the construction of new indicators that define the impact level of external context factors. Lastly, the resilience definition as defined in the literature study is translated into a resilience level to score indicators on.

Results & conclusion The workshop and literature study results were translated into mechanisms at play when drivers and subdrivers impact Food Safety Management Systems. Differences were observed between the results of both methodologies. An overall ranking was made up of the most important subdrivers to consider in food safety management. Resilience of food safety management was defined based on literature. These results were then translated into a suggestion for an update of the diagnostic instrument, where the impact of the most important subdrivers is included in external context indicators and a resilience level for maturity of FSMS activities. Further research and adaptation of the results is needed to update the diagnostic instrument completely.

SAMENVATTING

Introductie In deze snel veranderende wereld, hebben drijfveren van deze veranderingen ook een invloed op onze voedselconsumptie patronen en voedselproductie systemen. Deze drijfveren zorgen ook voor de opkomst van voedselveiligheid gevaren. Food Business Operators zijn de eindverantwoordelijken voor de voedselveiligheid van hun producten, dus werken onder de druk van deze drijfveren vraagt om een aanpassing van hun voedselveiligheidsmanagement. In dit onderzoek ligt de focus op deze impact op voedselveiligheidsmanagement, en hoe dit kan gebruikt worden om de weerbaarheid van een bedrijf onder de druk van deze drijfveren op een juiste manier te beoordelen. Het doet is om het de basis te leggen voor een update van het diagnostisch instrument dat is opgezet om de maturiteit van een bedrijf zijn managementsysteem voor voedselveiligheid te bepalen, en om sterktes en zwaktes te identificeren aan de hand van indicatoren.

Materialen & Methoden Een inleidende literatuurstudie wordt uitgevoerd om kennis te maken met de mogelijke invloeden die de drijfveren kunnen hebben op management van voedselveiligheid, en ook om een definitie op te stellen voor weerbaarheid in voedselveiligheidsmanagement. Om voeling te krijgen met het diagnostische instrument in zijn huidige vorm, wordt een interview gedaan bij een alternatief voedingsbedrijf. Met deze achtergrondinformatie kan dan een methodologie uitgezet worden voor de update van het diagnostisch instrument. Eerst worden Food Business Operators geraadpleegd in een online workshop, om inzicht te krijgen op de mogelijke gevolgen van de impact van de drijfveren op voedselveiligheidsmanagement. Ze worden gevraagd om hun mening over welke drijfveren een impact kunnen hebben en op welke manier. Ook moeten ze een top 5 geven van welke drijfveren het belangrijkste zijn om rekening mee te houden. Uit deze resultaten kunnen dan de mechanismen worden uitgezet waarmee de drijfveren gelinkt zijn aan activiteiten binnen voedselveiligheidsmanagement. Deze koppeling wordt ook gemaakt op basis van een gestructureerde literatuurstudie, om een wetenschappelijke achtergrond te voorzien voor de antwoorden van de Food Business Operators. Deze mechanismen zullen dan de basis vormen voor het opstellen van nieuwe indicatoren rond de impact van externe context factoren. Daarna wordt de definitie voor weerbaarheid, die is opgesteld in de literatuurstudie, vertaald in een score niveau voor weerbaarheid voor de indicatoren.

Resultaten & conclusie De resultaten van de workshop en de literatuurstudie werden gebruikt om mechanismen op te stellen van de impact van drijfveren op voedselveiligheidsmanagement. De twee methodologieën vertoonden gelijkenissen, maar ook verschillen. Een algemene rangschikking van de drijfveren die het meest in het oog moeten gehouden worden in voedselveiligheidsmanagement werd opgesteld. Weerbaarheid in voedselveiligheidsmanagement werd gedefinieerd op basis van literatuur. Deze resultaten geven een aanleiding voor het updaten van het diagnostisch instrument, waar de impact van drijfveren gevat zit in indicatoren voor externe context, en voedselveiligheidsmanagement activiteiten beoordeeld worden op weerbaarheid dankzij een nieuw niveau voor weerbaarheid. Meer onderzoek is nodig om de update van het diagnostisch instrument te vervolledigen.

INTRODUCTION

Over the last few years, the world has been changing rapidly. The population keeps growing, our consciousness about climate change rises every year, and major world events like the COVID-19 crisis have had a significant influence on our mindsets and actions. The internet has given us access to tons of information in a fast and convenient way, and with the enormous popularity of social media, news and opinions travel all around the world in a matter of milliseconds. This has opened a whole new way of gathering knowledge but has also been a source of fake news and misinformation. Technology is ever changing, and new advancements take over the world faster than ever. All these elements also have an impact on the food industry.

Food consumption has changed due to changing consumer knowledge and a growing awareness of the environmental footprint of consumption choices. Concrete examples of this are consumers' avoidance of food additives due to concerns about the safety of consuming additives being spread through the media (Keptan & Kayisoglu, 2015), and the evolution towards more plant-based foods as a more eco-conscious alternative to animal food products (Toth et al., 2021). 'Zero-waste' strategies such as aquaponics are born out of the evolution towards a more circular economy (Nenciu et al., 2022) and a growing population with equally growing needs call for continuous technological advancements in food production and processing to keep up with these needs. COVID-19 changed the way people view hygiene and food safety, and created a rise in the use of delivery and pick up services (Ferreira Rodriguez et al., 2021). Climate change has a significant impact on weather and soil conditions and thus on food production (Duchenne-Moutien & Neetoo, 2021). All these context factors can be classified into five categories of drivers: Social, Technological, Environmental, Economic and Political (STEEP). They put pressure on the macro-environment in which Food Business Operators operate.

The effect of these drivers for emergence of food safety hazards on food consumption and production is of great concern to food business operators. Every food business in Europe is obliged to install a Food Safety Management System (FSMS) specific to their business, following a set of rules and regulations. One of the main objectives of the European General Food Law, Regulation (EC) No 178/2002, is to ensure a high level of protection of human health in food production. It states that the food business operator is responsible for ensuring compliance with the food safety requirements of all foodstuffs that he produces and that he has the primary legal responsibility to ensure food safety. Regulation (EC) No 852/2004 on the hygiene of foodstuffs lays down the principles of HACCP (Hazard Analysis and Critical Control Points) and good practices. Standards for the implementation of these principles are made by stakeholder associations, such as ISO and BRC. Audits for certification are executed where the FSMS is tested against these standards. The FSMS diagnostic tool presented by Jacxsens et al. (2011) serves to systematically analyze and assess the maturity of activities and the performance of a company's FSMS based on indicators. Core control and assurance activities, context factors and food safety output are evaluated through a scoring system and the results can be used to assess the weak and strong points of the current FSMS.

With the changing context that these food businesses operate in, the indicators based on which their FSMS can be evaluated should also change. In this thesis, the diagnostic tool will be revised to make it more future proof by investigating the most relevant drivers and using these to update the current indicators. To achieve this, an answer will be sought to the following research questions:

• How do social, technological, environmental, economic, and political drivers affect microbiological food safety management on FBO level? An overview will be given of the most important drivers in these five categories, and how these factors have changed over the last few years. Drivers and subdrivers were determined in context of the Horizon Europe FoodSafeR project To investigate the mechanisms in which these have an impact on food safety management, a workshop is set up with experts from the food industry. A literature review is conducted to support the results from the workshop and to give a scientific background to this question.

• Which of these drivers are most relevant to food business operators to consider? The answer to this question is sought through expert elicitation. Relevance in this sense is understood as the capability of food business operators to adapt to, cope with, prevent or intervene the impact of these drivers. It should be a combination of both the importance of the impact of this driver and the feasibility of considering this driver in food safety management. The impact of these drivers can then be incorporated into new indicators for the external context of a food business to include in the diagnostic tool as described in Jacxsens et al. (2011).

• **How can we most accurately assess the resilience of a business's food safety management system?** Resilience in food safety management systems is needed to cope with the impact of drivers. Through literature review, a framework is developed to find the definition of resilience in food safety management. This is then translated into a new "resilience level" in the diagnostic tool through literature review and group discussions. This will help to start updating the current diagnostic tool.

1 LITERATURE STUDY

1.1 Impact of drivers on microbiological food safety

1.1.1 Definitions of drivers and risks in food safety management

To start off this literature study, some important terms will be defined. **Drivers** used in this context are defined as drivers of change, context factors that influence trends and behaviour and thus lead to emerging challenges (FAO, 2022). Drivers are called the issues shaping the development of a society, organisation, research area, technology etc by the European Food Safety Authority or EFSA (2010). They can further be split up into more specific subdivisions called subdrivers. In this thesis specifically, drivers of change and their subdrivers leading to emerging risks in food safety are considered. EFSA (2012; 2014) defines **emerging risks** as the probability of harm to human, animal and/or plant health that results from either (a) a newly identified hazard of physical, chemical or microbiological nature to which a significant exposure of the target organism may occur, or (b) an unexpected new or increased exposure to a known hazard through the food chain for humans, the feed chain for animals or the environment for plants, and/or (c) increased susceptibility of the target organism to a known hazard. This threefold definition is shown in Figure 1. This thesis will focus on emerging risks for humans for hazards of a microbiological nature where an unexpected new or increased exposure to a known hazard occurs.

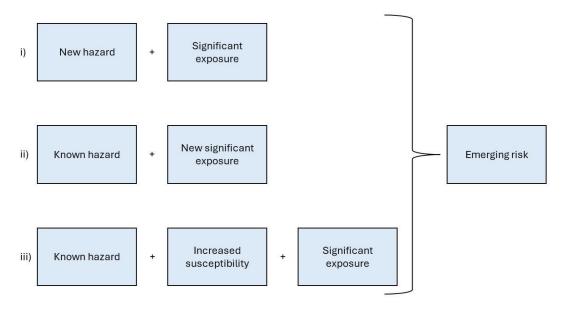


Figure 1 The threefold definition of emerging risks according to EFSA. (EFSA,2012)

Hazards in this context are defined as microbiological agents with the potential of causing adverse health effects to human through consumption of food, while **risks** are the likelihood of those hazards actually causing harm. These microbiological agents could be bacteria, for example Salmonella spp., viruses, such as Norovirus, parasites, like nematodes, and prions (WHO, n.d.). Risks are defined as a function of both the possibility of adverse health effects occurring and the severity of those effects caused by the relevant hazard. These definitions are laid out in EU Regulation 178/2002. According to this regulation, the Food Business Operator (FBO) has the end responsibility to assure food safety, for which **food safety** can be defined as the food not being injurious to human health or unfit for human consumption. FBO's thus have to deal with these microbiological hazards, as well as with food fraud and physical and chemical hazards, and reducing associated risks in their end product to ensure food safety. The way a company goes about this is called food safety management. The scope of this thesis is specifically **microbiological food safety management**, which focuses on the management of human pathogens as hazards and related risks.

Context changes, like the drivers described in this thesis, are often analysed using a **STEEP** analysis. To do this, the macro-environment that a business operates in can be split up into five domains of external factors: **Social**, **Technological**, **Environmental**, **Economic & Political**. This kind of analysis is often used in strategic management to gain insights in upcoming trends to be able to anticipate them (Hunger & Wheelen, 2014). A list of the drivers to consider in light of microbiological hazards has been compiled as part of the Horizon Europe FoodSafeR project. Table 1 shows an overview of all drivers and subdrivers organized in the STEEP framework.

Table 1 Drivers and subdrivers defined in the context of microbiological food safety, organized according to the STEEP framework. This list was compiled as part of the Horizon Europe FoodSafeR project.

STEEP	Drivers	Subdrivers	
Social	Consumer behaviour	Dietary choice	
		Consumer awareness and attitude	
		Consumer knowledge	
		Public awareness	
	Demographic development	Population (size)	
		Prevalence of vulnerable groups	
		Urbanisation	
		Migration and travel	
	Human health and wellbeing	Human health conditions	
		Resistant pests and diseases	
Technological	Technology in food production	Plant-derived food production	
		Animal-derived food production	
		Novel food sources	
		Products for food production	
	Technology in food processing	Processing techniques and scale	
		Upcycling for food	
		New digital technologies	
		Food formulation	
		Food packaging	
Environmental	Environmental contamination	Agricultural pollution	
		Sewage treatment	
	Management of natural resources	Recycling	
		Use of side streams	
		Water and soil management	
	Geographic region		
	Seasonality and weather		
	Climate change		
Economic	Distribution	Global trade	
		Distribution channels	
Political	Legislation, policies and governance	Official controls and communication	
		Good practices and standards	
		Food legislation	
	Geopolitical instability	War and conflict	
		Fragmentation between nations	

1.1.2 Drivers

From a **social** standpoint, the three major drivers of emerging microbiological hazards in food are *consumer behaviour*, demographic development and human health and wellbeing. Dietary choices such as consumers leaning towards more minimally processed foods can be related to higher initial contamination and with this higher food safety requirements for the production and processing industry. The combination of higher demand for ready-to-eat meals as a dietary choice and lack of *consumer knowledge* concerning food safety and hygiene results in threats towards human health. Improving knowledge on food safety and hygiene depends on the accessibility of food safety information. Public *awareness* on issues like food waste and depletion of natural resources shifts the attitude and requirements from consumers, which leads to new innovations in the industry, in which food safety should always be kept in mind. This public awareness can also ignite more personal *consumer awareness and attitude* in which certain consumers go for more extreme behaviour around food, such as eating only plant-based foods or watching out for only clean labels. These specific consumer groups also need to be catered to by the food industry (FAO, 2022; Marvin et al., 2019). In terms of demographic development, the growth of the global *population* leads to increased food demand and decreased food security. Rapidly growing food demand can destabilize the food industry, but is also drives innovation. The *prevalence* of vulnerable groups in this growing population is also a factor to consider, as products can have different health effects on different groups of people. Specifically ageing plays an important role in this, as older people are more vulnerable to adverse health effects. Urbanisation is the process of people more and more moving to urban areas, which increases in its turn the surface area that is urbanized. This calls for new food production systems in urban settings, or urban agriculture. However, the soil, water and air quality in urban areas and their contamination with specific pathogens is a concern. With *migration and travel* eating habits and dietary patterns spread globally, introducing foods that weren't consumed at all or in lesser amounts to other regions of the world (Buscaroli, 2021; FCEC, 2013; Mylona et al., 2016; Wentholt et al., 2010). Similar to the prevalence of vulnerable groups, *human health conditions* can make an individual more susceptible to a certain hazard. This also depends on the health protection that is in place. When however too much antimicrobial medicine is used, for humas or in rearing of animals, this can result in *resistant pests and diseases*. The more resistance is built up against these antimicrobial drugs, the less protective they are and the less human health can be protected. This also can lead to innovations in new drug development (Engering et al., 2013; Wentholt et al., 2010)

Two drivers can be categorized under the **technological** domain: *technology in food production* and *technology in food* production. Innovations driven by increased scientific knowledge and by other drivers constantly impact technology used in *plant*-and *animal-based food production*. New technological solutions for production problems constantly arise. Next to that, through global travel and the search for more sustainable production solutions, novel food sources gain more and more terrain. Novel foods is defined by the European Union (EU) as food not eaten to a significant degree in the EU before 1997 according to EU Regulation 2015/2283. Examples of more recent novel food sources are insects and seaweed. *Products for food production* refers to products like feed for the production of animal-based food and fertilizers for production of plant-based food. Innovations in the use of these products have an indirect effect on the final food product. *Processing techniques and scale* refers to the techniques used for food processing and the scale in which this happens. Smaller companies that use more innovative techniques often result in higher context risk. In the light of sustainability and circular economies, *upcycling for food* of waste streams, for example using whey protein from cheese production as protein powder, can lead to new upcoming companies. Using these waste streams is a reason for concern for microbiological food safety. On the other hand, new digital technologies can lead to improvements in food safety management, with for example the rise of blockchains as a tool for trustworthy documentation and recordkeeping. Artificial Intelligence (AI) can also play a role in finding solutions to emerging issues, as they are often used for predictive modelling. AI can help in tracking the current situation and correcting operational mistakes, as well as predicting future issues and foreseeing the right solution for handling them. Food formulation refers to the composition

of the product and its intrinsic, extrinsic and implicit factors. Intrinsic factors are specific to the product, like pH or aw. Extrinsic factors are environmental factors such as storage temperature or relative humidity. Implicit factors are related to the influence micro-organisms present in the product have on each other, they can compete with each other for resources or help create an ideal environment for each other. Technology in *food packaging* has been striving towards more recyclability, reusing and reducing of packaging materials, while also maintaining good barrier properties to influence food safety. New technologies can thus provide a solution for emerging issues, but can also create them (FAO, 2022; Marvin et al., 2019; Marvin et al., 2022; Mylona et al., 2016).

Environmental drivers are environmental contamination, management of natural resources, geographic region, seasonality and weather and climate change. Leaching out of pollutants in groundwater leads to agricultural pollution. This is mainly the case with inorganic agent from fertilizer, but can also spread microbial contaminants throughout the food chain. Higher pollution levels also lead to water scarcity, which causes issues for food security. This is also related to *sewage treatment*: water that is used in the food chain should be of potable quality and treated well. Sewage treatment plants often result in highly contaminated areas, which should be considered in primary production (FAO, 2022; FCEC, 2013; Kendall et al., 2018; Mylona et al., 2016). The concept of *recycling* as a form of circular economy implementation in the packaging industry raises concerns towards contamination of the contamination from initial use of the reused materials. Whereas recycling refers to the reuse of the end product of the main production stream, use of side streams raises similar concerns. Reusing waste streams or side streams can be about reusing process water but also upcycling of waste products that are created in the production of the end products. Reusing process water demands sufficient treatment to safe levels. Upcycling means that further attention needs to be paid to the food safety of what are otherwise waste or side streams. In light of sustainability water and soil management become increasingly important the amount of and how these two are used should be managed in a more sustainable way. Water scarcity can pose a real threat to food security, which can be linked to emerging food safety issues. Soilless cultivation becomes more popular, especially in urban agriculture, but also requires attention to food safety (Buscaroli, 2021; FAO, 2022; Kendall et al., 2018). The impact of geographic region, seasonality and weather and climate change are all linked to each other: the climate of the region where food is produced is related to the changing climate, which also impacts more extreme weather events in different regions. Temperature, precipitation, relative humidity, soil salinity and pH, and exposure to light can create an environment that is more suitable for pathogens to grow in. Temperature also influences the cold chain, as it is harder to maintain when travelling through different regions with varying climate conditions. Heavy rainfall can lead to flooding, which redistributes contaminated water which can end up in food production or processing. Drought leads to water scarcity, which is linked to emerging issues in food safety (Duchenne-Moutien & Neetoo, 2021; Kendall et al., 2018)

For the **economic** domain, *distribution* is the only major driver of change which was retained. *Global trade* can lead to an improved economy of the export country, which can lead to more investments in the food production and processing industry. Due to differing requirements in each country, export can also lead to advancement of food safety management in the exporting companies if food safety requirements are harder to meet in the importing country or region. On the other hand, globalisation of food distribution also makes distributed to new regions where the specific form of that pathogen might not be known, which can lead to severe foodborne illness outbreaks (Engering et al., 2013; FCEC, 2013; Kirezieva, Luning et al., 2015; Wentholt et al., 2010). *Distribution channels* are also more complex, with the rise towards shorter supply chains, alternative food chains and last-mile delivery. Distribution channels can also pose varying requirements for the food safety output of a company. The way in which the product is distributed needs to be taken into account with regards to food safety at the time of consumption (FCEC, 2013).

Politically, the drivers of change are considered to be *legislation, policies and governance* and *geopolitical instability. Official controls and communication* are important in enforcing *food legislation* and the implementation of *good practices and standards.* Decision making in food legislation should always be based on the most recent scientific knowledge and updated regularly when new information arises and the environment around the food industry shifts (Fernandez & Paoletti, 2021; Wentholt et al., 2010). War and conflict and *fragmentation between nations* can lead to political instability and thus impact the way legislation and controls are made. When war occurs in an important country for export, this can lead to food scarcity, as has happened recently with the war in Ukraine, and this can lead to several emerging food safety issues. When a large supplier is located in a conflict area, the need for alternative sourcing can arise, and the quality of materials of new suppliers can be hard to predict (Kendall et al., 2018; Wentholt et al., 2010).

1.2 Assessment of food safety management systems

1.2.1 Food Safety Management Systems

In 1962, the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) of the United Nations (UN) created the Codex Alimentarius (CA). It forms the benchmark for policy making around food legislation all over the world. With the aim of protecting human health and serving as a basis for balanced international trade, the CA sets certain standards for e.g. food hygiene, pesticide residues, contaminants, pathogen analysis, etc. Based on the standards and guidelines set by the CA, the European Union implemented the hygiene requirements for FBO's in EU Regulation (EC) No. 852/2004 on the hygiene of foodstuffs. It includes prerequisite programs or PRPs, Hazard Analysis Critical Control Points or HACCP principles, the need for setting requirements based on scientific evidence, the importance of traceability throughout the whole food chain and the responsibility of the FBO to ensure safety of the end product (Trienekens & Zuurbier, 2008). Regulation (EC) No. 853/2004 is an additional legislation for FBO's working with raw, unprocessed products from animal origin.

An FBO's Food Safety Management System (FSMS) is the company's own set of procedures aimed at ensuring that the produced end products are safe for human consumption. It is part of the overall Quality Management System that ensures high and consistent quality throughout the production process. Implementation of the legislation in this FSMS is personal to the company and can often be a challenge. Commission Notice 2022/C 355/01, as a revision of Commission Notice 2016/C 278/01, lays down the basics of how to translate this legislation and set up the FSMS for different types of food businesses. Generic standards such as Good Agricultural Practices or GAP standards, the HACCP principle and International Standardisation Organization or ISO standards are based on the aforementioned regulation, and are meant to achieve international uniformity. GAP standards are guidelines for the production and storage of food in the agricultural sector. It describes standards for sanitation, pest management, water quality, but also documentation, recall procedures etc. They are based on the PRP's as described in Commission Notice 2022/C 355/01. HACCP principles lay down a systematic approach for identification, evaluation and control of critical steps in food processing. Good Manufacturing Practices (GMP) are set up similar to GAP but for processing, and serve as a prerequisite for the implementation of HACCP principles. ISO standards are more focused on the managerial approach to food safety management and focus on writing down activities into specific procedures. Audits are performed by stakeholders to verify if guidelines and standards are well implemented. Certain private standards exist that are aimed at improving supplier and customer relationships and eliminating the need for multiple audits through certification. These standards often apply to the entire Quality Management Systems and are based on GAP, GMP, HACCP and ISO principles. Examples are Global GAP, British Retail Consortium (BRC) and Safe Quality Food (SQF) (Jacxsens et al, 2011; Luning et al, 2009; Trienekens & Zuurbier, 2008).

The FSMS is usually a combination of **Quality Control (QC)** and **Quality Assurance (QA)** activities, as described in Commission Notice 2022/C 355/01. QC activities or control measures are aimed at keeping product and process characteristics in an acceptable range, while QA activities are aimed at setting system requirements, evaluating system performance and organizing necessary changes Control measures have the goal of preventing, reducing or eliminating pathogens in food to result in safe end products. It includes preventive measures, interventions, and monitoring of procduct and process characteristics. Assurance activities include system set-up, validation, verification, documentation and record-keeping. They support the implementation of control measures (Commission Notice 2022/C 355/01; Luning et al, 2008; Luning, Marcelis et al, 2009).

1.2.2 The food safety management system diagnostic instrument

1.2.2.1 History of the diagnostic instrument

In light of the European FP6 Pathogen Combat project (2005-2009), a diagnostic instrument to assess performance of a company's FSMS was developed in 2009. The FSMS Diagnostic Instrument (FSMS-DI) is designed to assess the maturity of a company's FSMS as a form of self-checking. An inspection like this is done to assess the current state of a company in a more informal way, and to improve microbial food safety control and identify strengths and weaknesses towards ensuring food safety. For a company, implementing requirements of different stakeholders can be complicated, so a diagnostic instrument like this can help to define the gaps in the existing FSMS. The FSMS-DI is based on indicators evaluating the most important processes and activities for food safety management. These were defined through literature review and all indicators were validated through expert elicitation. It concerns context factors such as product and process characteristics, organisational characteristics and chain characteristics; control and assurance activities as explained in Chapter 1.2.1, and internal and external food safety performance evaluation. The higher the context riskiness, the more advanced the control and assurance activities should be to get the same level of food safety of the output. Food safety performance as evaluated through a diagnostic tool handles internal and external audits and customer complaints (Jacxsens et al., 2011; Luning et al., 2008; Luning et al., 2009; Luning, Marcelis et al., 2011).

In 2013, the diagnostic tool was further developed to include processing, production and trade of fresh produce in light of the European FP7 Veg-I-Trade project (2010-2014). In primary production, the safety management system is called the Horticulture Safety Management System (HSMS). Through literature review and an expert elicitation following the Delphi approach, the existing tool was re-evaluated. Indicators that were deemed less relevant were scrapped, and new indicators were added specifically related to fresh produce. Examples and definitions were adapted to the case of fresh produce handling. The final diagnostic tool was validated through expert elicitation (Kirezieva, Nanyunja et al., 2013; Kirezieva, Jacxsens et al., 2013).

1.2.2.2 Structure of the diagnostic instrument

The tool works as a checklist for which indicators are evaluated based on their presence and advancement level. These indicators are the key activities that establish the maturity of the FSMS. The original tool contains 58 indicators: 17 on context riskiness, 25 on control activities, 9 on assurance activities and 7 on performance evaluation. For each indicator the impact on food safety of the end product is described. Three levels are also defined: grids are set up to identify the descriptions for each level (Luning et al., 2008). An overview of the indicators of the original tool and the changes made for the fresh produce tool is given in Figure 2.

CONTEXT

Product riskiness - Risk of raw materials (microbiological/pesticides/mycotoxins) - Risk of final products (microbiological/chemical)

Extent of safety contribution of packaging concept Process riskiness - Extent of intervention steps Degree of production process changes Rate of product/process design changes Susceptibility of the production system Risk of climate conditions in the production environment Susceptibility of water supply Susceptibility to flooding Risk of cultivation site location Organisational characteristics Presence of technological staff Variability in workforce composition Sufficiency of operator competences Extent of management commitment Degree of employee involvement Level of formalization Sufficiency supporting information system Chain characteristics - Extent of power in supplier relationship Severity of stakeholder requirements Safety contribution in chain position Degree of authority in customer relationship Degree of information exchange Sophistication of logistic infrastructure Sufficiency of food safety authority Degree of globalization of supply Specificity of external support and food safety legal framework

- Sophistication of hygienic design of equipment and facilities - Adequacy of cooling (storage) facilities - Specificity of sanitation program - Extent of personal hygiene requirements - Extent of incoming material control Specificity of product specific preventive measures - Sophistication of supplier control Sophistication of water control Specificity of fertilization program Specificity of pesticide program Adequacy of irrigation method ntervention processes design - Adequacy of (full / partial) intervention equipment - Effectiveness of intervention method - Adequacy of packaging Specificity of maintenance program for intervention equipment Monitoring system design Adequacy of analytical equipment to assess pathogen levels - Specificity of calibration and verification programs for measuring and analytical equipment Specificity of sampling design/ measuring plan - Extent of corrective actions Appropriateness of CCP analysis Appropriateness assessment of standards and tolerances Adequacy of measuring equipment to monitor process/product - Adequacy of analytical equipment to assess pesticides Specificity of sampling plan for pesticides Operation of control strategies Actual availability of procedures - Actual compliance to procedures Actual hygienic performance of equipment and facilities - Actual cooling (storage) capacity Actual process capability of (full/ partial) intervention processes Actual measuring equipment

performance

performance

Actual analytical equipment

CONTROL

Preventive measures design

FSMS

Validation

ASSURANCE System set-up design - Sophistication of translating external requirements into internal FSMS requirements - Extent of systematic use of feedback information to improve FSMS Sophistication of validating preventive equipment and facilities - Sophistication of validating sanitation and personal hygiene program

- Sophistication of validating monitoring systems

Verification - Extent of verifying people related performance in procedure characteristics and compliance - Extent of verifying equipment and methods of related performance prevention and intervention equipment/ method measuring/ analysis equipment Documentation and record keeping

- Appropriateness of documentation

systems - Appropriateness of record-keeping systems

SAFETY OUTPUT

External food safety performance

- Comprehensiveness of external evaluation
- Seriousness of remarks
- Type of microbiological food safety
- complaints
- Type of hygiene related complaints - Type of chemical food safety complaints
- Type of visual quality complaints
- Internal food safety performance
- Advancement of product sampling (microbial/

pesticide residues)

- Comprehensiveness of microbiological criteria
- Comprehensiveness of pesticide residue

criteria

- Type of hygiene and pathogen nonconformities

Figure 2 Indicators of the diagnostic instrument. Indicators shown underlined are only present in the original FSMS-DI and not in the HSMS-DI. Changes made for the HSMS-DI are indicated in bold (Jacksens et al., 2010; Luning et al., 2009; Luning, Marcelis et al., 2011; Kirezieva, Jacxsens et al, 2013; Kirizieva, Nanyunja et al., 2013)

Context indicators are split up into product, process, organizational and chain characteristics. They are used to define the riskiness of the context in which the company operates. For product and process characteristics, low, medium and high risks represent respectively low, potential and high chance of contamination, growth or survival of pathogens. For organisational characteristics, low, moderate and high level represent respectively supportive, constrained and lack of administrative conditions for decision-making. For chain characteristics, the levels represent low, moderate and high dependence on other chain actors (Luning, Marcelis et al.,2011). For the HSMS diagnostic instrument a few changes were made to the context indicators. For product characteristics, the indicator for packaging concepts was scrapped as packaging is often less relevant in the fresh produce chain. The risk of raw materials was split up into microbial risk. risk due to pesticides and risk due to mycotoxins. Risk of final products was split into microbial and chemical risk. All production characteristics were left out and replaced by indicators for the susceptibility of the production system, the risk of climate conditions in the production environment and the susceptibility of the water supply. Only for primary production an indicator for susceptibility to flooding and risk of the cultivation site location was added. Organisation characteristics were all kept the same. Some extra indicators were added for chain characteristics: the degree of information exchange, sophistication of logistic infrastructure, sufficiency of the food safety authority, the degree of globalization of the supply, the specificity of external support and of the food safety legal framework were added. Safety contribution in the chain position was omitted as a separate tool exists for each position in the fresh produce chain. The indicator for degree of authority in customer relationships was also omitted (Kirizieva, Nanyunja et al., 2013).

Indicators for control activities concern preventive measures design, intervention processes design, monitoring system design and operation of control strategies. Grids were made to define at what level the company's activities are designed and operated. If the activity described in the indicator is not present in the company's FSMS, the lowest level is attributed for this indicator. If the activity is present, a low, medium and high level of advancement in its design are evaluated as follows. Low levels represent lack of scientific evidence, lack of predictability and design based on company experience and common equipment that is neither specific nor adapted to the company's own production system. Medium levels relate to best practice knowledge and equipment that is not always predictable, and design based on generic information. High levels correspond to scientifically underpinned design that is adapted to the own production process and that is stable and predictable. *Preventive measures* are aimed at preventing cross contamination and growth of pathogens within the production process. *Intervention* activities have the goal of reducing or inactivating pathogens to an acceptable level. *Monitoring* design refers to the present measuring and analytical equipment that is used to check if product and process parameters are kept in an acceptable range. Operation levels are defined to assess how the preventive measures, intervention processes and monitoring systems occur in practice (Luning et al., 2008). For the fresh produce chain, the following changes were made. Adequacy of cooling facilities was broadened to include all storage facilities. Extra indicators were added for sophistication of supplier control, sophistication of water control, specificity of the fertilization program, specificity of the pesticide program and adequacy of the irrigation method. Indicators for intervention processes are aimed at the adequacy of full, partial and chemical interventions. Indicators that are aimed at the implementation of HACCP principles are omitted as HACCP principles are not used for primary production. Indicators on adequacy of analytical equipment and specificity of sampling plans are split up into microbiological analysis and pesticide analysis. Indicators for operation levels follow these changes, as the indicator for actual capability of intervention processes is split into the capability of the full and the capability of the partial intervention processes, and actual cooling capacity is changed into actual storage capacity (Kirezieva, Jacxsens et al, 2013).

Indicators for **assurance activities** include indicators for systems set-up, validation, verification and documentation and record keeping. Criteria to differentiate between the different levels of advancement are as follows. High levels correspond to specific information based on scientific knowledge, with a criticising, procedure driven, systematic and full independent structure. Medium levels represent standard information based on expert knowledge, in a analysing,

feedback driven and partly independent structure. Low levels are based on general information obtained from historical data, within a checking, problem driven and not independent structure. If the activity described in the indicator is not present in the company's FSMS, a zero-level is attributed for this indicator. *System set-up* refers to how the FSMS is set-up, and how it is changed over time. *Validation* concerns the obtaining of scientific evidence about the effectiveness of the designed control activities. This means specifically that it has been checked in advance how effective the steps in the HACCP plan can be in assuring food safety. *Verification* is aimed at ensuring that the implemented control activities succeed in assuring food safety. *Performance of the designed control activities in reality is checked here after implementation of the HACCP plan. Documentation & record-keeping* is essential for the implementation of hygiene principles as it concerns documenting and keeping record of all procedures, implementation of HACCP principles, corrective actions, obtained scientific evidence from validation and verification, etc (Luning et al., 2009). The diagnostic instruments for the fresh produce chain keep all the same indicators for assurance activities and no new indicators are added.

System output indicators can be split into indicators for external and internal food safety performance. If no indication of food safety performance is present, a zero-level is attributed. If the specific food safety performance information is known, three levels of food safety performance are defined. The lowest level corresponds to poor performance and is associated with ad-hoc sampling, minimal used criteria for FSMS evaluation and various food safety problems due to different issues in the FSMS. Medium levels is defined as moderate performance and contains regular sampling, several used criteria and a restricted number of food safety problems all due to one specific type of problem occurring in the FSMS. The highest level means good performance and refers to systematic evaluation, specific criteria and no food safety problems. (Jacxsens et al., 2010). In the fresh produce diagnostic instruments two types of complaints are added as indicators: chemical food safety complaints and visual quality complaints. Advancement of sampling for pesticide residues and comprehensiveness of judgement criteria for pesticide residues are also added, in line with the control indicators on pesticide analysis (Kirezieva, Jacxsens et al., 2013).

1.2.2.3 Use of the diagnostic instrument in research

The FSMS-DI has already been used in numerous studies, as shown in Table 2. The original tool was aimed at companies producing animal-based products, and it was thus originally used in meat, fish and dairy processing businesses. After the development of the tool for fresh produce production by Kirezieva et al. (2013), the tool has been used in several studies concerning fresh produce such as leafy greens, strawberries, raspberries, mushrooms, etc. Next to production and processing companies, the tool had also been used in food services. Some studies investigate the FSMS of one specific company, while others make assessments for a bigger number of companies to perform cluster analysis and locate issues in food safety management for a whole sector.

Food Sector Conclusion Reference Country Animal Belgium, Spain, The Netherlands, Small and medium enterprises need more tailored support from government and/or Luning et al. (2015) based food products Greece, Italy, Hungary branch organizations to develop more advanced FSMSs Companies with national HACCP approval have more advanced FSMSs and less context Sampers et al. (2012) Dairy Japan riskiness. Vertical legislation leads to more hazard- or legislation based FSMSs Tanzania A two stage intervention would enable long term commitment and improvement to Kussaga et al. (2015) increase food safety levels Kenya Small sized company's often lack in their FSMS which decreases their ability for high Niage et al. (2018) microbial safety output A lack of data and knowledge on microbial contamination results in higher microbial risk Fish Vietnam Noseda et al. (2012) of end products Following multiple food safety standards, and the presence of physical interventions Van Durme et al. (2024) have a positive effect on FSMS maturity An FSMS should be based on scientific information, historical results and own Onjong et al. (2014) Kenya experimental trials to enhance food safety performance Reduction of context riskiness through automation of the production process is needed Kussaga et al. (2014) Tanzania to move towards more effective FSMSs Hygienic design needs to be improved and context riskiness reduced to guarantee safe Kussaga et al. (2017) output Belgium, The Netherlands, Spain Combination of FSMS-DI and actual microbiological output measurement can provide Luning, Jacksens et al. (2011) Meat insight in specific causes of safety problems Combined assessment with the FSMS-DI and microbiological output measurement is Oses et al. (2012) Spain useful in determining specific points of improvement for better food safety performance The level of core FSMS activities differs between different companies in the same country. Sampers et al. (2010) Poultry Belgium An advanced FSMS does not mean a pathogen-free product if effective interventions are not in place. More awareness and training of farmers for implementing good agricultural practices is de Quadros Rodrigues et al. Fresh produce Brazil needed (2014)

Table 2 An overview of studies using the FSMS-DI to assess maturity and performance of food safety management systems is given. The investigated food sector and countries and the reached conclusions are listed.

	Kenya	Due to the high context riskiness in fresh produce production, moderate FSMS activity levels are not enough to improve food safety levels	Sawe et al. (2014)
Fresh produce	Belgium, The Netherlands, Spain, Norway, Brazil, China, Egypt, India, Serbia, Kenya, South Africa, Uganda	Need for stratified measures and policies to support fresh produce companies in designing their FSMS	Kirezieva, Luning et al. (2015)
	Kenya & Uganda	Food safety standard certification play a major role in increasing maturity of FSMSs in developing countries	Nanyunja et al. (2015)
	South Africa	Small farms often lack effective HSMS implementation, which results in poor to moderate levels of food safety performance	Dzingirayi & Korsten (2016)
	Belgium & The Netherlands	Farmers in cooperatives with more hierarchical relationships score better in assessment of their FSMS, but large cooperatives with complex business systems have lower FSMS performance at farms	Kirezieva et al. (2016)
	Serbia	Global GAP certification results in better food safety outputs in primary production	Rajkovic et al. (2017)
Edible oil	China	Although food safety output is good, advancements in assurance activities can lead to a more robust FSMS	Ren et al. (2016)
Apple packhouses	Australia	Even though high FSMS performance is measured, the FSMS-DI better examined the details of the FSMS to enable continuous improvement	Frankish et al. (2022)
Powdered beverages	, , , , , , , , , , , , , , , , , , , ,		Cheah et al. (2021)
Ready-to-eat meals	Ready-to-eat Belgium For a high level context, a high advancement of control and assurance activities are		Spagnoli et al. (2023)
Various FBO's	Belgium	Certification systems based on audits can increase robustness of FSMSs	Jacxsens et al. (2015)
	China	An unbalance in current food laws emphasis on control over assurance activities is reflected clearly in FSMS assessments. Organizational characteristics should be improved	Ren et al. (2022)
Food service	Spain Food service establishments with insufficient organizational conditions show both a risky context and low activity levels, which increases food safety risks		Luning et al. (2013)
Hospital food service	Belgium	Possibilities for improvement of hygienic design, sampling plans, validation and verification activities can be defined	Lahou et al. (2015)

The tool is often used in combination with microbiological output measurement such as a Microbiological Assessment Scheme (MAS). This type of combined assessment, as used by Oses et al. (2012) for example gives the opportunity to locate more precisely where the issues lie within the FSMS by microbiological analysis and what causes poor food safety performance. Like Ren et al. (2016) shows, even if good performance is found by measurement of the output microbiological food safety, the FSMS-DI can define which activities still should be improved to create a more robust FSMS. This is necessary to keep performance levels stable, even if, for example, context riskiness would increase. Spagnoli et al. (2023) uses the tool in combination with tools to assess organizational food safety culture and individual participation and motivation towards food safety, in order to make an assessment of the food safety culture in a company.

In several studies shown in Table 2, the FSMS diagnostic instrument is used to compare companies that are certified for certain food safety standards to non-certified companies. In all of these studies, it was concluded that the implementation and certification of these standards leads to more mature and more robust FSMSs (Cheah et al., 2021; Jacxsens et al., 2015; Nanyunja et al., 2015; Rajkovic et al. 2017; Sampers et al., 2012; Van Durme et al., 2024). This seems reasonable as certification bodies require implementation of certain activities into the FSMS and regularly perform audits to check compliance to the standards. These standards are set-up to try and guarantee food safety of the outcome. Maturity of the FSMS is an important part of this.

In Table 2 it is also clear that the diagnostic tool is used globally. For example, Kirezieva, Luning et al. (2015) compares the situation in countries from the EU with non-EU countries. The countries from outside the EU that were investigated are crucial in international trading relationships with the EU. It is therefore important to know whether or not FSMSs in these countries are mature and robust enough to guarantee food safety of the exported products similar to products produced in the EU. Ren et al. (2022) focuses on FBOs in China, where food law focuses more on the importance of control activities over assurance activities. This unbalance is reflected when performing FSMS assessment with the diagnostic instrument: control activities were way more advanced than assurance activities. This is often the case as quality control activities are developed first.

1.3 Impact of drivers on food safety management

Regulations on food safety and food safety standards are made up in line with the scientific knowledge that is present at the time of their development. However, this knowledge and the decisions made based on this knowledge are also subject to the cultural and political environment at that time, as Fernandez & Paoletti state (2021). It is thus important to consider the changing environment in which FBOs operate over time when making food safety management decisions. This idea has also been investigated by Baert et al. (2012), who described this process as a so called Pressure-State-Response or PSR system. The "Pressures" in this context are the drivers of change that are explained in chapter 1.1.2. These societal, technological, economic, environmental and political factors in their turn influence the "State", which is the microbiological food safety status at the time. This then solicits a "Response" from the FBOs to deal with this new situation in their FSMS. This framework has also been expanded on to the "DPSIR framework" that Kirezieva , Jacxsens et al. (2015) uses to investigate the influence of climate change on food safety in the fresh produce chain. It exists of the "Driving force" that exerts "Pressure" and accordingly results in a certain "State" of the system. This has an "Impact" on the environment of the system and elicits a "Response".

In Figure 3 we can see how pressures from the drivers as explained in Section 1.1.2 can impact food safety management through the structure of the diagnostic tool from Section 1.2.2.2. On the one hand, drivers can elicit a change in internal context of the company through innovation. If this internal context changes, the FSMS had to change accordingly to

preserve food safety of the output. On the other hand, drivers can also impact the way QC and QA activities are performed, and the way food safety performance is scored through food safety shocks. The company needs to build up resilience in their FSMS to combat these food safety shocks from the external environment to make sure the output always meets the needs of food safety.

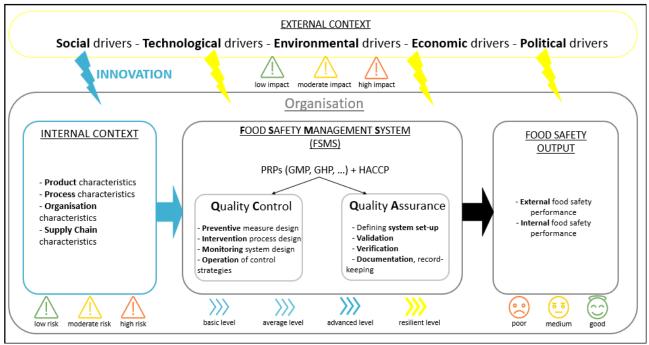


Figure 3 Impact of the drivers from the external context on the internal context via an innovation pathway (indicated with blue lightning bolt), and on the food safety management system via food safety shocks (indicated by yellow lightning bolts) eliciting the need for resilience (Vermeersch, 2024)

1.3.1 Innovation pathway

When the pressures that come from drivers change the state of the external context in which a food business operates, an FBO can choose to take a rather drastic approach by changing aspects of its internal context, as shown by the blue lightning bolt in Figure 3. An example of this could be a meat company coming on the market with plant-based alternatives and having to make up an entirely new FSMS. Another example of innovation could be the development of alternative food systems, like aquaponics as explained in Box 1. This is not the scope of this research as innovation evokes the set-up of an entirely new FSMS.

Box 1: Aquaponics

Aquaponics is an example of an alternative food system, that is influenced by the drivers of management of natural resources, climate change and urbanisation. It is based on the pairing of fish farming or aquaculture and soilless cultivation of fresh produce or hydroponics. Fish waste water goes through a set of filtration steps before being used for the cultivation of herbs and vegetables. The fish excrements still present in this water serve as a fertilizer for growing the plants. Zero-waste strategies and the principles of a circular economy are the basis of this concept. Aquaponics also fit into urban settings where surface area for agricultural activities is limited (Nenciu et al., 2022). Because there are two coupled production systems present here, one focused on animal based products and one plant based, food safety management is more complicated. Reusing the aquaculture water for the hydroponics system also calls for specific food safety measures. Integrating such a system in an urban environment can also bring with it certain pathogens that can end up in the produced end products (Buscaroli et al., 2021). Alternative systems like aquaponics should be considered in FSMS assessment as they bring with them emerging issues that should be addressed.

1.3.2 Food safety shocks

1.3.2.1 Reacting to food safety shocks

When a food safety shock occurs, the impact of it on microbiological food safety will be felt in the food safety of a food company's output, as indicated by the yellow lightning bolts in Figure 3. It is possible that there is no option to intervene with this issue or prevent it from impacting food safety of the product, and that the company has to undergo the consequences (e.g. a recall). However, there are multiple ways in which a company can react to try to combat this food safety shock. **Coping** can be described as a short-term solution that uses the available knowledge and equipment to preserve the current systems as much as possible while dealing with the influence of the drivers. **Adaptation** can then be seen as a long-term evolution of the FSMS where learning and experimentation are key (Paloviita et al., 2017). Possible responses for FBOs that were listed by Baert et al. (2012) are communication as a form of coping, and training as a form of adaptation. Communication here includes informing and sensitizing, dialogue and consultation. Training refers to capacity building in comprehending and providing clarity on drivers and their impact on food safety.

1.3.2.2 Resilient food safety management

Multiple definitions exist of what it means to be 'resilient'. When used in the context of business management, resilience is often defined in terms of the capacity to recover from future disturbances of any possible form. Different from the definition of "robustness", which is a system's ability to resist the impact of shocks and maintain a stable situation, resilience includes the flexibility to adapt to the situation and recover to a "new normal". A resilient system can be vulnerable in case of disturbances, but has the capacity to recover from these shocks (Antunes et al., 2011; Mu et al., 2021). When an unforeseen disturbance, albeit known or unknown, occurs, a resilient system has the robustness to not immediately feel the impact, but when the disturbance does trigger a response, the system can be adapted to rebound as quickly as possible. This is illustrated by the resilience triangle theory shown in Figure 4. System A in this graph lacks resilience as the operational level drops immediately when confronted with a disturbance and recovers slowly. System C is too robust, and lacks flexibility: the system stays stable through the disruptions at first, but long-term pressure leaves the system with a significant drop in operational level from which it cannot recover. System B is the most resilient: the response is small and postponed, and the recovery is quick. The smaller the resilience triangle is, the more resilient the system (Rød et al., 2020).

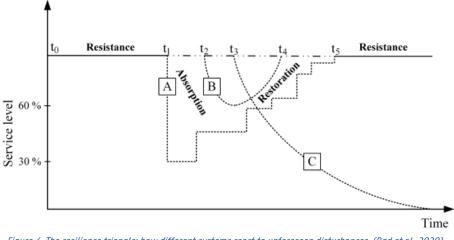


Figure 4 The resilience triangle: how different systems react to unforeseen disturbances. (Rød et al., 2020)

Mu et al. (2021) defines resilient food safety management specifically as "the recovery and adaptation capacity of the food supply chain to food safety shocks to allow the delivery of safe food over a reasonable lead time". In this situation, the desired state of the food system is that of sufficient food safety. While robust food safety management aims at the idea of zero food safety risks, resilient food safety management is more practical by adapting to emerging hazards and returning to a reasonable food safety state as quickly as possible. The same definition can be used on the level of FBO's.

Frameworks on how this resilience can be achieved practically, often start from the Skill-Rule-Knowledge model set up by Rasmussen (1982). According to this study, the human mind can react to a problem in three different ways: a skillbased reaction relies entirely on automatic control and happens almost unconsciously. It is the result of long-term experience and good training. On the other hand, a knowledge-based approach concerns situations where active problem-solving and improvisation come into play. A rule-based reaction forms the middle ground between the two: this occurs when the situation consists of known or prescribed problems, for which a right way to handle them has already been determined. The used reactions in these situations are different from day-to-day activities, but improvisation is not needed as the rules are already written down. Resilience is then the capability to successfully solve novel problems in a knowledge-based way, translate this into new rules and eventually be able to react to similar problems in a skill-based way. Bracco et al. (2014) used this idea to create a Resilience Framework Matrix, shown in Figure 5.

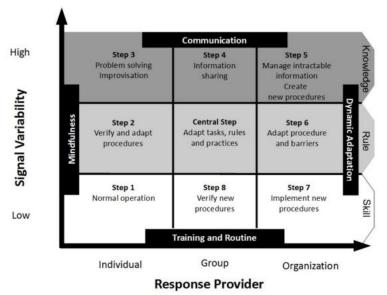


Figure 5 Resilience Framework Matrix (Bracco et al., 2014)

This framework can be applied to businesses to show how should be reacted to inconsistencies and works as a cyclic information system. Variability in operations are normal to a certain extent, and can be dealt with as part of normal operations on a skill-based level to that extent. With larger variability, it can be necessary for the production workers to verify or adapt procedures in a rule-based way, or even to proceed to problem solving and improvisation. Production workers should be able to recognize these inconsistencies and what could be the source of them, and then communicate to the group what they observed. The group could decide to adapt certain tasks, rules and practices in order to deal with these inconsistencies better in the future, but if this is out of there hand, they should inform the organization. On the organizational level, the received information should be used to look at the bigger picture and figure out the root cause of the problems. The new information can be used to clear up parts of the intractable system in which a business operates. New procedures are created based on the new insights, and can then be translated into new rules and day-to-day operations. This information needs to be relayed back to the group and the individual workers through training. New procedures can then be verified for how well they deal with the incoming disturbances and resulting inconsistencies (Bracco et al., 2014). Adini et al. (2017) also highlight the importance of collaboration, planning, procedures and training is resilient management. Good communication is key to make this cycle run smoothly.

A high level of resilience in a company's food safety management system is thus characterized by how quickly they can turn an adverse situation around to be able to provide safe food again after a disturbance has occurred. This was highlighted by the resilience triangle as seen in Figure 4, as well as in the Resilience Framework Matrix, where the cycle should be run through in a smooth way. At the basis of this are various trade-offs. The system should be robust enough to be stable through disturbances, but also flexible enough to actually absorb the disturbance and adapt to it, in order to stay stable if this disturbance becomes more prominent. Procedures should be strict enough to be able to mainly work in a skill-based or rule-based way, but there should be room for adaptation of procedures and improvisation on a knowledge-based level when needed. Inconsistencies should be monitored and analyzed, but should only be translated into new procedures when there is a significant root cause that should be dealt with now and in the future. For this all to work, communication and training are necessary (Adini et al., 2017; Antunes et al., 2011; Bracco et al., 2014). Rød et al. (2020) measured this in different companies through indicators, where the highest level of resilience was described as having continuous re-evaluation or monitoring, and ongoing preventive maintenance. This can be incorporated into the Food Safety Management System Diagnostic Instrument by adding a new level to the indicators for quality control and quality assurance where evaluation and monitoring occur routinely or continuously, and the possibility for adaptation is present.

2 MATERIALS AND METHODS

2.1 Diagnosis of an alternative food system using the current diagnostic instrument

To get familiar with the diagnostic instrument, the current tool was tested in an alternative food system. To do this, an in depth interview was conducted with the manager of an aquaponics company. Results of this interview could also highlight any weaknesses of the current tool in assessing the maturity of a Food Safety Management System in a more innovative food business. Indicators from the original tool as well as the tool for primary production were used to allow for comparison between the two. Indicators related to the HACCP principles were left out as the focus was on their primary production, where HACCP principles are not legally obliged to be used. These were the indicators for Appropriateness of CCP analysis, Appropriateness assessment of standards and tolerances and Sophistication of validating monitoring systems. Firstly, the diagnostic instrument was introduced and some important definitions that come back regularly in the indicators were explained. The company characteristics that are questioned at the start of the tool were defined. A representative production unit or RPU was chosen following the instructions provided in the tool. Then, all 74 indicators were gone over and the appropriate level was indicated. To differentiate between the levels, the descriptions in the grids and the provided "if, then" statements were used. Where needed, discussion was possible between the company managers and the interviewers to define the right level based on provided examples. Results were translated into spider diagrams for both the original tool and the tool for primary production. For the context indicators, the bigger the coloured surface area on the spider chart, the higher the context riskiness. For the other indicator categories, the bigger the coloured surface area, the more mature the company's Food Safety Management System is for this category. Average scores per category were calculated based on the indicated levels for each indicator: the lowest level corresponds to a score of 1, and the highest level corresponds to a score of 3 for context indicators and a score of 4 for the other indicator categories. Based on the conversion shown in Table 3, these averages were translated into an attributed score.

Category	Average score	Attributed score
	1 - 1.2	1
	1.3 - 1.7	1_2
Context	1.8 – 2.2	2
	2.3 – 2.7	2_3
	2.8 - 3.0	3
	1 – 1.2	1
	1.3 – 2.2	2
Control (Accurance / Derformance	2.3 – 2.7	2_3
Control / Assurance / Performance	2.8 – 3.2	3
	3.3 – 3.7	3_4
	3.8 - 4	4

The results of this interview are meant to shed light on how the current diagnostic instrument assesses an alternative food business, where innovation was influenced by specific drivers and subdrivers such as urbanisation and management of natural resources. A comparison between the original tool and the tool for primary production, constructed by Kirezieva et al. (2013) can also be made. When the tool is updated to include the influence of drivers and subdrivers, for which this thesis forms the basis, this result can be used as a baseline measurement to compare the new results to.

2.2 Updating the existing diagnostic instrument

The goal of this research is to contribute to an update of the diagnostic instrument by incorporating the influence of the drivers and subdrivers on a company's FSMS. The approach is shown graphically in Figure 6. A first literature review, which can be found in the literature study of this thesis, was used to set the scene. This led to the determination of two pathways in which this takes place, the innovation pathway and the resilience pathway. The focus of this thesis will be on the latter, and thus the influence of food safety shocks leading to the need for resilient food safety management. These food safety shocks have specific implications for the way FSMS activities are executed, so this impact needs to be taking into account in the FSMS-DI as well as the resilience of the FSMS activities. Therefore, the next step is to figure out which drivers have impact and which are most important to consider. An expert elicitation, as well as a structured literature study, are used for data collection. The results of this are found in the results section of this thesis. The collected data is then analysed to couple the drivers and subdrivers to the FSMS activities and indicators of the FSMS-DI. This coupling is also found in the results section. These results, as well as the results of the first literature review, are used to propose how the indicators of the current diagnostic instrument can be updated to include a resilience level for QC and QA activities, and to include indicators on the impact of external context factors. The definition of the resilience level is established in the results section. Suggestions for external context indicators are given in the discussion section.

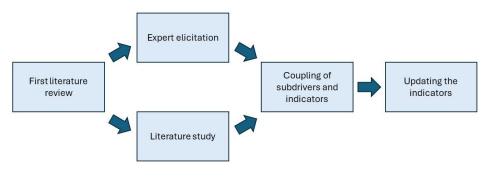


Figure 6 Approach to update the diagnostic instrument

2.2.1 Expert elicitation

2.2.1.1 Goal and methodology of the expert elicitation

To understand how drivers and subdrivers impact the external context of a food business, experts from the field are consulted. An answer is sought to the question of which drivers are relevant to consider and if/how an FBO can deal with these drivers. Based on the guidance document of EFSA (2014b) concerning expert elicitations in food safety risk assessment and the study of Rowe et al. (2016) on ranking food safety priorities, a Delphi study was selected as the method for this expert evaluation. A Delphi study consists of iterative individual questionnaires, conducted in person or online, with feedback moments between the different rounds where answers from the previous rounds are provided to include controlled and anonymous interaction. The goal is to gain consensus among experts. The first round is usually mostly qualitative, asking open questions to get a wide variety of input, whereas the following rounds aim at quantitatively assessing the input from the first round through iterative surveys using scores, rankings, etc. Rationales are often requested, so that these can be used as feedback for a next round. In this study however, a list of drivers to go over is already provided, so there is no need for an open ended first round question. This approach is called a modified Delphi method (Johnston et al., 2014). The question to ask would be to score the different subdrivers on relevance and on feasibility using a 5-point Likert scale. Relevance is understood as the extent to which it is important to consider the subdriver in a business's FSMS, whereas feasibility is about whether an FBO can anticipate and deal with the impact of this subdriver. Additionally, a top 3 including rationales behind the selection of the 3 most important subdrivers would

be asked for. Average scores for relevance and feasibility and ranking results as well as the rationales could be provided as feedback for a second round.

However, when discussing this approach with an expert in the field, a point was made about the importance of understanding how FBO's see the way in which subdrivers impact their food safety management. This resulted in a shift of approach where the focus now lies on finding the mechanisms at play between food safety shocks caused by drivers/subdrivers, and changes in microbiological food safety management in a food business. The first suggestion to reach this goal was to organize an in person focus group discussion, where FBO's are first asked to think about which drivers are important to consider individually and which FSMS they think are affected by the driver, followed by a division in groups where the mechanisms that are present are analyzed. These mechanisms could then be presented to the other groups, which allows for feedback and open discussion between the groups. This approach was then revised and further refined, keeping in mind how the results of these discussions would be collected in a uniform manner. A second suggestion, inspired by the concept of a modified Delphi approach included a first and third round asking for a ranking of subdrivers that are important to consider as well as the mechanisms with which these drivers impact certain FSMS activities, with the second round being a group discussion focused on the specific impact of these drivers they foresee and how a business could deal with this impact. The mechanisms in the first and third round would be constructed in the form of "For subdriver X, the considered impact is ..., affecting the FSMS activity Y". This sentence would need to be provided for the 10 subdrivers that are considered most important according to the participant. A list of all 34 subdrivers would be given, and FSMS activities would be split up into preventive measures, interventions, monitoring and operation for QC, system set-up, validation, verification and documentation & record-keeping for QA, and external and internal food safety performance for food safety of the ouput, following the structure of the diagnostic tool as explained in Section 1.2.2.2. All subdrivers and FSMS activities would be explained in the introduction of the session. The second round would consist of 4 groups, with one discussing all subdrivers in the social category, one discussing the subdrivers of the technological category, a third group going over the environmental category, and the last group talking about economic and political subdrivers. A presentation from each group would conclude the second round. To spare time however, the need for a group discussion was guestioned. As no real consensus is needed, as much as getting the individual input of each FBO, this element was scrapped.

2.2.1.2 Set-up of the workshop

A workshop was conducted in two sessions of about 2 hours each, on the 27th and the 28th of March 2024. The workshop followed a simple questionnaire set up with Qualtrics, and was held online through a Teams meeting. This was decided on so that participants can follow the workshop from their own workplace. Participants were selected based on voluntary participation, by sending an e-mail to as many contacts in the field as possible. Employees working in quality management in food businesses throughout Flanders were targeted for this thought experiment. An informed consent, which can be found in Appendix 1, was obtained from all participants. Participants were encouraged to ask questions where needed throughout the sessions. In this workshop, the goal is to gather information on how FBO's felt subdrivers could impact their FSMS activities, focusing on microbiological food safety, as well as making a ranking of the most important subdrivers to consider in a food business's FSMS.

The introduction of the sessions included a personal introduction of all participants present in the meeting, an introduction of the Horizon Europe FoodSafeR project, an explanation of Food Safety Management Systems as described in Commission Notice 2016/C278 and the diagnostic instrument, as well as the goal of this research and the workshops. In this the 10 FSMS activities that are incorporated in the questionnaire were explained as shown in Appendix 2. The participants were then given the URL for the Qualtrics survey, and asked to fill out the questions on company characteristics. The questions included in this were based on the list of company characteristics questioned in the research of Spagnoli, Vlerick et al. (2023) for the department of Food Technology, Safety and Health last year. Some

extra questions based on the company characteristics asked about in the diagnostic instrument are added to this. The whole list of company characteristics questions is given in Appendix 3. Then, the first set of subdrivers were explained. The subdrivers were split into 4 groups: the social (n=10), technological (n=9), environmental (n=8) and economic & political (n=2+5) categories. Per group, an explanation of each driver and its subdrivers was given orally as well as presented on screen. The explanations for each subdriver are given in Appendix 2. For each group, an example of a subdriver impacting a FSMS activity in a fictitious company was provided to help the participants along. These examples are given in Appendix 4. The first question about these subdrivers is "Can these social subdrivers have a direct impact on the Food Safety Management System of your organisation?", followed by a list of these subdrivers for which the participant had to check "Yes" or "No". Then, for all subdrivers where the answer "Yes" was checked, two follow-up questions were given: "What food safety management system activity does the subdriver "..." directly impact?" and "Provide an example of how the subdriver "..." affects this FSMS activity in your organisation.". The former is a multiple choice question where one of the 10 FSMS activities has to be indicated, the latter being an open-ended question. Per subdriver, this could be filled in for a maximum of three FSMS activities. This was done by asking the question "Does the subdriver "..." affect other FSMS activities?" where the answer options were "Yes" or "No". If the participant checks "Yes", the two questions on the impact of the subdriver are asked again in the same way, followed again by the question of if there are any other FSMS activities affected. If the participant checks "Yes" again, the two questions are asked yet again, without asking if there are any more. When completing this set of questions for all subdrivers in one group, the participants were asked to wait for the explanation of the next group of subdrivers before continuing the survey. When most participants reached this point, the next group was introduced and a new round of the same questions were gone through. A break was inserted between the technological and the environmental group. After the questions for the last group of subdrivers were completed, the participants were asked to rank the subdrivers with the question "What are the most important subdrivers that have a direct impact on your food safety management system? Provide your top 5 by dragging the subdrivers in the box and ranking them.". A list of all subdrivers that the participant previously indicated in the first question per group was provided, as well as a box named "Top 5" where they could drag the subdrivers to in the correct order according to them.

2.2.1.3 Conduct of the workshop sessions

For the first session, 16 people were registered to attend, of which 15 people actually attended. One person chose to not complete the survey because their company solely focuses on distribution and they felt this exercise was less applicable to them. One person had to leave due to urgent work commitments. In the end, only eight full responses were recorded for this first session. At the end of the session, participants were asked to orally give their remarks on the workshop. Multiple participants mentioned the lack of a "back" button, to go back to the previous question, bothering them. Most participants did say that they found this thought exercise quite hard, especially with the focus purely being on microbiological food safety. They also noted that they were often confused on the specific definition of the subdrivers and FSMS activities, despite the encouragement to ask those questions during the workshop.

For the second session, nine people were registered to attend. One person immediately excused themselves as their company had an unannounced audit at the time of the workshop. Of the eight responses recorded at the end of the workshop, one participant missed the introductory explanation due to being late, and one participant missed the explanation of the economic and political subdrivers. It is not known which responses belong to these participants. One participant had technical difficulties at the end of the survey which meant they were unable to fill out the question on ranking of the subdrivers. The participant did send in their top 5 through email one month after the workshop due to being in leave in between. Following the reactions of the participants from session 1, a "back" button was added to the survey, and more attention was given to the explanation of the FSMS activities and the subdrivers.

Table 4 Company characteristics from the respondents. These questions are based on the company characteristics questioned in Spagnoli, Vierick et al. (2023)

Participant	Session	Larger	Family	#FTE	Chain position	Plant/animal	Export	Premium/private
		company	owned			based		label
1	1	No	Yes	>249	Trans + distr	Plant	Yes	Private
2	1	No	Yes	10-49	Trans + distr	Plant	Yes	Premium
3	1	No	Yes	10-49	Trans + distr	Plant	Yes	Both
4	1	Yes	Yes	10-49	Trans	Plant	Yes	Both
5	1	Yes	Yes	>249	Trans + distr	Plant	Yes	Both
6	1	No	No	<10	Trans	Animal	Yes	Both
7	1	No	Yes	50-249	Trans + distr	Both	Yes	Private
8	1	No	Yes	10-49	Trans + distr	Animal	Yes	Both
9	2	No	Yes	50-249	Trans + distr	Plant	No	Both
10	2	Yes	Yes	>249	Trans + distr	Both	Yes	Both
11	2	Yes	Yes	>249	Trans + distr	Animal	No	Premium
12	2	Yes	Yes	50-249	Trans + distr	Plant	Yes	Both
13	2	No	Yes	10-49	Trans + distr	Both	No	Both
14	2	Yes	Yes	>249	Trans	Both	Yes	Both
15	2	Yes	No	>249	Trans	Plant	Yes	Both

The company characteristics that were recorded according to the questions in Appendix 3 are provided for all 15 participants in Table 4 and Table 5. Participant 6 is an employee in a sector organisation concerning animal products. This is also the only participating company that has no QA manager or department. Participant 15 is the person that had to sent in their top 5 through email at a later date due to technical difficulties. Out of the 15 participants, 13 work for a family-owned business, which is representative of the situation in Belgium, and most (n=12) companies do export outside of the European Union. All companies are certified for at least one QA standard.

Figure 6 shows a screenshot of the workshop as it took place on Microsoft Teams. The introduction was given by both the writer, tutor and promotor of this thesis. Explanations of a specific part were done by the same person over the two sessions. In session 1 all three were present at the same place, in session 2 only the writer and the tutor of this thesis. All participants were encouraged to put on their camera during the introduction, disconnect the camera while filling in the survey, and put it on again when they were finished filling in all questions of a group. When a new group of subdrivers was explained, they were encouraged to all reconnect their camera, despite of if they were finished with the previous group, to make sure everyone was attentive to these explanations. Question could be put in the meeting chat or posed orally.

Table 5 Company characteristics of the 15 workshop participants. These questions are based on the company characteristics questioned in the FSMS diagnostic instrument.

Participant	Session	QA standards implemented	QA standards certified	QA manager	QA department	# QA employees
1	1	PRP, HACCP, ISO9001, ISO22000, BRC, IFS	IS09001, IS022000, BRC, IFS	Yes	Yes	30
2	1	HACCP, IFS	IFS	Yes	Yes	4
3	1	PRP, HACCP, IFS	IFS	Yes	Yes	4
4	1	HACCP, IFS	IFS	Yes	Yes	4
5	1	PRP, HACCP, IFS, National standard: ACS	IFS, National standard: ACS	Yes	Yes	9
6	1		BRC, IFS, Others: Febev +, Belpork, Belbeef	No	No	1
7	1	BRC, IFS, National standard: ACS	BRC, IFS, National standard: ACS	Yes	Yes	3
8	1	PRP, HACCP, IFS, National standard: ACS	IFS, National standard: ACS	Yes	Yes	4
9	2	PRP, HACCP, IFS, National standard: ACS	IFS, National standard: ACS	Yes	Yes	4
10	2	HACCP, ISO9001, ISO22000, National standard: FSSC 22000	ISO9001, ISO22000	Yes	Yes	>100
11	2	PRP, HACCP, National standard: ACS	National standard: ACS	Yes	Yes	6
12	2	HACCP, BRC, IFS	BRC	Yes	Yes	12
13	2	PRP, HACCP, ISO22000	ISO22000, Other: MSC, ASC, BIO	Yes	Yes	2
14	2	BRC, IFS, National standard: ACS, Other: RSPO, BIO, glutenfree, customer specific QA standards	BRC, IFS, National standard: ACS, Other: RSPO, BIO, glutenfree	Yes	Yes	20
15	2	PRP, HACCP, ISO22000, National standard: Depending on the country, in Belgium - Zelf controle	ISO22000, National standard: As above	Yes	Yes	~1000

Figure 6 Screenshot taken during the introduction of session 2 of the workshop

2.2.1.4 Data processing of workshop results

Data was obtained from Qualtrics in the form of excel files. Participant were given the option to answer either in Dutch or English. The first steps of the data processing uses the both languages as used by the participants. Where given, translations are made with DeepL Translate. Company characteristics were not further processed. Results of this are mostly provided to give an idea of the constitution of the group of participants. Answers on the question "Can these social subdrivers have a direct impact on the Food Safety Management System of your organisation?" are processed quantitatively to see which drivers are most indicated as having a direct impact on a company's FSMS. To do this, firstly the provided examples given for each subdriver are also considered to allow for interpretation and related data cleaning. If the example refers specifically to a mechanism for chemical food safety issues or allergen issues, instead of microbiological food safety issues, the answer is not considered in counting the indicated drivers. Examples mentioning no actual impact is considered are also not considered. Examples that clearly indicate misinterpretation of the subdriver definition are either not considered if the example does not fall under any other subdrivers, or added to the count of another subdriver if it does refer to that subdriver. Based on the final count, a top 3 can be established for each category of subdrivers. As there are only 2 economic subdrivers, here only the most indicated subdriver is chosen.

The provided examples, as answers to the question "Provide an example of how the subdriver "..." affects this FSMS activity in your organisation.", are processed quantitatively. This is done for all subdrivers that are part of the top 3 of their respective category. The way in which this will be done is based on the principles of grounded theory to inductively generate an understanding of the impact mechanisms of subdrivers on FSMS activities. To do this, coding of the given answers is used to find relationships and theories in the various provided examples. Based on the guidelines of Charmaz (2006) the data analysis starts with initial coding. The intention here is to stick as closely to the initial data as possible and keep an open mind on interpretation of the words. Codes can be adapted throughout this first phase when different examples use different wordings to say the same thing, without steering too much away from the original phrase. In this research, initial coding will be used to simplify the examples to get a mechanism in the form of "subdriver effect" -> "FSMS activity impact". A code is thus formed to represent the effect the FBO sees at the subdriver side, as well as the specific impact it has on the FSMS activity. If no information is given on one of the two sides (e.g. only the specific impact on the FSMS activity is mentioned without giving a reason for this at the subdriver side), the name of the indicated subdriver or FSMS activity is used as a code to complete the mechanism. If the participant gives no example

or an example where no clear mechanism can be described, no coding is done. This coding also reveals if the participant understood the meaning of the subdrivers correctly. Where needed, the indicated FSMS activity is replaced by one that more closely relates to the given example. For the answers where no (clear) mechanism is described, it is assumed that the participant understood the meaning of the FSMS activity correctly. The answers for the question "What food safety management system activity does the subdriver "..." directly impact?" are cleaned up in this way. For the top 3 of each category (for the economic category only the highest ranked driver is considered in further processing), a heat map is made up of the links between the subdrivers and the FSMS activities. Then a second phase of coding is started: focused coding. Here codes from both the subdriver and the FSMS activity side are grouped together to form categories of effects and their impacts. Interpretation of the answers to form these categories are based on analysis of the different answers that are given as well as on scientific knowledge. More detailed heatmaps can then be made showing the mechanisms at play between the subdrivers and FSMS activities.

2.2.2 Coupling of subdrivers and indicators through literature review

Literature can be used to either support the qualitative analysis, but also to be processed and coded in the same way as the workshop results. This is done to give a comparison of the most important mechanisms according to scientific literature. A second way in which literature is used here is to find out where the drivers could impact the existing context indicators (McCalin, 2003).

In a first stage, an attempt was made to couple drivers and indicators through internal discussions amongst student, tutor and promotor. The thought process behind the links that were made could then be supported through a targeted literature search. However, to make the methodology more robust and reproducible, another approach was chosen where a scoping literature review is at the basis of the coupling. The results of this coupling and the papers that are found can then be used to support the results of the workshop, and to reflect on what mechanisms are highlighted most in literature.

The bibliographic database of Clarivate Web of Science was consulted for this literature review. In order to find the relevant literature search strings are constructed as follows. The abstract of the paper should contain the words "safe" or "safety" (coded together as "safe*"), "microbiological" or any variations on it (coded as microb*) and food. To find a link between drivers and indicators, a list of search terms is compiled for all subdrivers and indicators, shown in Table 6 for the subdrivers, Table 7 for the context indicators and in Table 8 for the FSMS activities. This list was compiled based on the explanations of the subdrivers as described in Chapter 1.1.2 of this thesis and on the full content of the indicators in the current diagnostic instrument. In a first draft of these search terms, it seemed that some subdrivers were not sufficiently characterized by these terms and that they often appeared in a different context then intended. For the subdrivers of "Dietary choice" and "Consumer awareness & attitude", at first the used search terms were based upon the explanations given in Chapter 1.1.2, including terms for "Ready-to-eat" and "Fresh food" for dietary choice and "Plant-based" and "Clean label" for consumer awareness & attitude, which led to the majority of the papers highlighting these specific topics. However, in the workshop, different definitions were used for these subdrivers, so using these search terms would complicate comparison between the results of the workshop and the literature review. Therefore these search terms were left out and were exchanged for "Dietary preference" and "Dietary choice", and for "Consumer preference", "Consumer awareness" and "Consumer attitude" to reflect the definitions given in the workshop more closely. For the subdriver on Urbanisation, the initial search term "Urban*" was intended to encompass urbanisation and variations on the word written with an s or a z, as well as concepts like urban agriculture. However, the use of urban as an adjective in papers often did not fit the context of growing urbanisation, so the search term was changed for "Urbani*" to still include both spellings, and "Urban agriculture" was included as a second search term. "Migration" as a search term for migration & travel led to papers talking about migration from chemical components in packaging to

the packaged food, so this search term was changed to "Immigration". For "Resistant pests & diseases", the search term "Diseas*" was scrapped, as most papers that were found were only included in the search because there was mention of "foodborne diseases" as a result of lacking food safety, which is too broad for the intent of this literature review. It was replaced by "Antimicrobial resistance". For "Products for food production, "Feed" was used as a third search term, but this often led to studies that focused on "food and feed" or feed in general, instead of finding results on how the used feed for animal production could impact microbiological quality of a food product using the meat or other products from these animals. The search terms of "Formulation" and "Composition" were changed to "Food formulation" and "Food composition" as too often papers talking about formulation or composition of other elements such as packaging materials were included in the search. For the FSMS activity of monitoring, the search terms that were used in the first place were "Monitor*", "Analys*" and "Measur*" to include all forms of this activity, however, a lot of irrelevant results turned up because they included other types of analysis (data analysis, analysis of other components, analysis of other papers, …) and measurements of other aspects performed in the reported research. No usable results were found for the search term "Measur*" Therefore, the search terms were changed to "Monitoring" and "Microbiological analysis" to find more accurate results.

These terms from Table 6, 7 & 8 are added to the search string separated by the Boolean operator "AND" between the terms for subdrivers and indicators, and the Boolean operator "OR" between the different search terms for either the subdriver or indicator. An example of how the search string looks like for the indicator of "Information systems" and the subdriver "New digital technologies" is as follows: AB=(safe* AND food AND microb* AND ("information system") AND ("digital technology" OR "blockchain" OR "artificial intelligence")). An exemption is made for the drivers of "Plant-derived food production" and "Animal-derived food production", that both pertain to primary production. Here, the search string for the driver will look like this: ("agriculture* technolog*" OR "primary production" AND "plant"), with "plant" being replaced by "animal" for the latter. The words "plant" and "animal" in Table 4 are indicated in bold to signify that they are preceded by the Boolean operator AND. The results are further refined by excluding all articles older then 2017, all articles in another language then English and all articles where no full text was available through the University of Ghent. When no results are found, it is assumed that no link can be found through this method.

Subdriver	Search term 1	Search term 2	Search term 3
Dietary choice	Dietary choice	Dietary preference	Diet*
Consumer awareness and	Consumer awareness	Consumer attitude*	Consumer preference*
attitude			
Consumer knowledge	Consumer knowledge	Hygiene knowledge	Consumer information
Public awareness	Public awareness		
Population (size)	Population growth	Population size	Food demand increas*
Prevalence of vulnerable groups	Vulnerable group*	Consumer vulnerab*	YOPI
Urbanisation	Urbani*	Urban agriculture	
Migration and travel	Immigrat*	Travel	Traditional food
Human health conditions	Consumer health	Consumer susceptib*	Health condition
Resistant pests and diseases	Resistan* pest*	Resistan* pathogen	Antimicrobial resistance
Plant-derived food production	Agricultur* technolog*	Primary production	Plant
Animal-derived food production	Agricultur* technolog*	Primary production	Animal
Novel food sources	Novel food*	Insect*	Seaweed
Products for food production	Fertiliz*	Pesticide	
Processing techniques and scale	Processing scale	Processing technique*	
Upcycling for food	Upcycl*		
New digital technologies	Digital technology	Blockchain	Artificial intelligence
Food formulation	Food formulation	Food composition	
Food packaging	Packaging technology		
Agricultural pollution	Agricultur* pollut*	Groundwater pollut*	
Sewage treatment	Sewage treatment		
Recycling	Recycl*		
Use of side streams	Sidestream	Process water	
Water and soil management	Water management	Soil management	
Geographic region	Geographic region		
Seasonality & weather	Season*	Weather	
Climate change	Climate change	Global warming	
Global trade	Global trade	Globali*	
Distribution channels	Distribution channel	Supply chain	
Official controls and	Official control*	Official communication	
communication			
Good practices and standards	Good practices	Standards	
Food legislation	Food legislation	Food law	
War and conflict	War	International conflict	
Fragmentation between nations	International		
	fragmentation		

Table 7 Search terms for the context indicators in the scoping review

Indicator	Search term 1	Search term 2	Search term 3
Contamination initial	Contaminat* ingredient*	Initial contamin*	
materials			
Contamination final	Product contaminat*		
product			
Packaging concept	Packaging		
Interventions	Intervention strategies	Pathogen reduc*	Pathogen inactivat*
Changes in the production	Product chang*	Process chang*	
process			
Rate of changes	Product change rate	Process change rate	
Technological staff	Technological staff		
Variability of workforce	Staff variability	Workforce variability	Workforce composition
composition			
Operator competences	Operator competence		
Management commitment	Management commitment		
Employee involvement	Employee involvement		
Formalization	Formali*ation		
Information systems	Information system		
Role in the safety of the	Supply chain position		
chain			
Supplier relationship	Supplier relationship		
Customer relationship	Customer relationship		
Requirements of	Stakeholder require*		
stakeholders			

Table 8 Search terms for control and assurance activities and performance indicators in the scoping review

	Search term 1	Search term 2	Search term 3
Preventive measures	Preventive measure*	Hygiene	Material control
Intervention	Intervention strategies	Pathogen reduc*	Pathogen inactivat*
Monitoring	Monitoring	Microbiological analysis	
Operation	Operation*	Procedure compl*	Equipment capacity
System set-up	System set-up	System modification	
Validation	Validation		
Verification	Verification		
Documentation & record-	Documentation	Record keeping	
keeping			
External food safety	Audit*	External inspection	Complaint*
performance			
Internal food safety	Non-conformities	Internal inspection	
performance			

This selection of papers was scanned further by reading through the article abstract. If the search terms that lead to this article were present in another context or with another meaning, the articles were excluded. Examples of this are seasoning for "Season*", gut microbiota for "microb*", novel or traditional food processing or packaging for "Novel food*" or "Traditional food". Articles talking mainly about chemical risks, allergens, production of animal food or animal diets, and production of non-food products were also excluded. Figure 7 shows the PRISMA flow diagrams of the literature review, based on the PRISMA flow diagram of Page et al. (2021), but adapted for the order of steps taken in this review. The remaining articles were used to define a mechanism with which the subdriver influences the specific Food Safety Management System activity. This is done in the same way of processing as the examples given in the workshops. Parts of the papers that talk about the trend that follows from this subdriver, and the way in which this impacts an FSMS are highlighted, an initial and focusing coding is done, and a schematic overview as well as a heatmap of the found mechanisms is made. The results of this can then be compared to the results of the workshop.

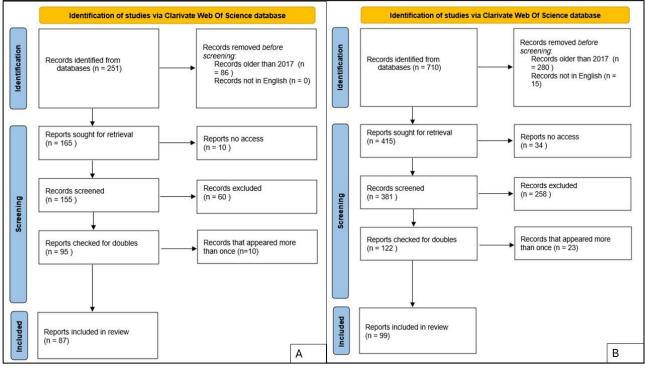


Figure 7 PRISMA flow diagram of the conducted literature study, adapted for the order of steps taken in this review (Page et al., 2021). (A) shows the flow diagram for the coupling of subdrivers and context indicators through literature, (B) shows the coupling of subdrivers and FSMS activities through literature

2.2.3 Adding a resilience level to existing indicators

An important part of this research is the assessment of resilience in a company's FSMS. As explained in Section 1.4, resilience comes down to adaptability, continuous monitoring and re-evaluation, and preventive maintenance. To incorporate this idea into the diagnostic instrument, a fourth level of advancement of FSMS activities will be added where resilient food safety management is seen as the most advanced level. This resilience is needed to cope with a multitude of food safety shocks that a company gets to deal with in its everyday operation. Based on the framework for resilience set out through literature study in Section 1.4, and through internal discussions, a definition of this fourth level is sought for Quality Control and Quality Assurance indicators. The structure of the grids from the current diagnostic tool is used to compile a complete definition. This new grid can then be used to make up the new grids for each individual indicator. An example will be given for an indicator of each subsection, but the development of grids for all indicators is outside the scope of this thesis.

2.2.4 Formulating new external context indicators

Based on the results from the workshop and literature study, a prompt is given for the development of new context indicators. These indicators will try to capture the extent of the impact of external context factors on the FSMS of a company.

3 <u>RESULTS</u>

3.1 Diagnosis of an alternative food system using the current diagnostic instrument

In depth interviews using the FSMS and HSMS diagnostic instrument were conducted with the Belgian aquaponics company BIGH. The interview starts with some introduction questions from the HSMS-DI on company characteristics, followed by some questions on the Representative Production Unit or RPU that will be used. The RPU should be a recognizable product that is most susceptible to microbiological contamination and is a good representation of the company's food safety issues. The company is a small scale farm with about 8 employees at the farm and 2 additional employees, producing about 10 varieties of herbs and 20 varieties of microgreens under a "société anonyme". The products are not organic, and there is a combined production with animal products. No QA standards are implemented, let alone certified for, and the owner has had no training on food safety or quality management. The RPU that is used in the interview is basil, which is sold in retail stores in and around Brussels. The initial materials that are used are substrate, seeds and water, which are supplied from multiple countries, and the product is packaged in plastic pots, sleeves from reusable paper and per six in cardboard boxes. The major activities involved in the cultivation of this RPU are seeding (with a machine), germination (in a germination chamber), growing under light (in a greenhouse), tide tables (in another greenhouse), packaging (in a packing zone) and distribution.

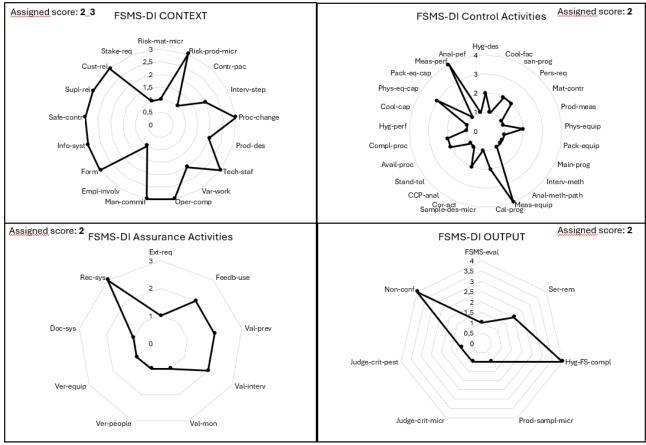


Figure 8 Results of the diagnosis performed with the original FSMS-DI. Spider charts are used to present the indicated levels of context riskiness, advancement of control and assurance activities, and performance, for each indicator. An overall score for each category is also attributed based on the average level.

Figure 8 shows the results of the interview for the indicators of the original FSMS-DI. The levels of context riskiness, advancement of control and assurance activities, and performance are shown in spider charts. An overall score for each of these categories is also shown. This attributed score is given based on the average level over all indicators from this category. The higher the overall context riskiness, the higher the advancement of the FSMS activities should be to get a

high level of food safety performance of the output. The maximum score for context is 3, while the maximum score for QC, QA and system output is 4. The company thus has a rather high context riskiness, combined with low advancement of FSMS activities leading to poor performance. Basil is quite a high risk product, and it is also often eaten without any further processing at the customer side, and it is produced here by people not knowledgeable in the field of food quality and safety in a fast changing company that has a rather weak position in the chain. This all leads to a high context riskiness, which is then not sufficiently compensated for by QC and QC activities. Most activities happen regularly as environment parameters like temperature and humidity are also important to measure to follow up the growth process of the plant. The performance score is mainly this low because no microbiological tests are performed (which leads to a score of 1 for indicators related to this, meaning absence of this activity), while there are no hygienic complaints from customers and non-conformities are not detected.

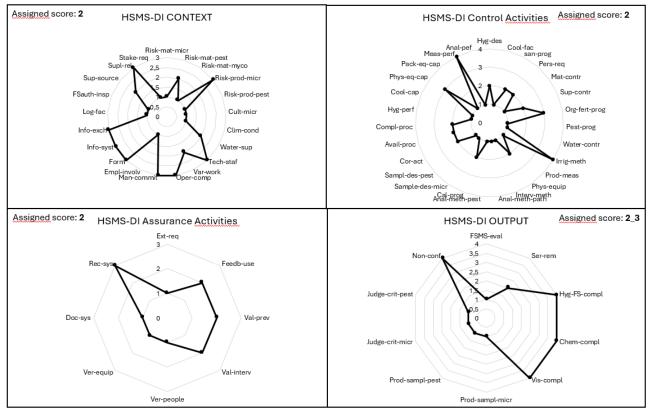


Figure 9 Results of the diagnosis performed with the adapted HSMS-DI for primary production. Spider charts are used to present the indicated levels of context riskiness, advancement of control and assurance activities, and performance, for each indicator. An overall score for each category is also attributed based on the average level.

Figure 9 shows the results of the interview for the indicators of the adapted HSMS-DI. Results are presented in the same way as with the results of the FSMS-DI. With this set of indicators, context riskiness is now medium high, and performance also leans more towards the medium score. The company scores rather well for the context indicators that are added such as microbiological contamination of the cultivation system (soilless), climate conditions (controlled) and pesticide risk of the product (no risk), as well as for the added performance indicators of chemical and physical complaints (no complaints). However, FSMS activities are still mostly not present or only ad hoc.

During the interview with the manager of this company, it was often mentioned that this long list of indicators is rather hard to go through for someone with no knowledge on quality and food safety. It's a small company that works off of the issues that present themselves when they happen, and until now, they have not seen a lot of reason to change this. This interview is mostly done to get a feel for how this diagnostic instrument performs in alternative food system like aquaponics, because it was set up mainly for more traditional systems, as also shown in Table 2 in Section 1.2.2.3

3.2 Results of the expert elicitation

3.2.1 Subdrivers that have an impact on food safety management

Appendix 5 show all answers as they were given by the respondents of the workshop around considered impacts of subdrivers on FSMS activities, divided per category of subdrivers, including the provided examples. Examples that clearly mention the impact being on allergens or chemical food safety issues are indicated in italics, as well as the answers stating clearly that no impact is considered. These answers and links are not considered in further data-analysis. When an example clearly references an effect that is not related to the subdrivers, the name of the subdriver is put in italics. Excerpts will be shown to give an explanation for these choices.

Table 10 Excerpt of Table A5.1 in Appendix 5. This excerpt contains all answers where the example mentions allergens or chemical food safety issues, as well as where it is clearly stated no impact is observed.

Participant	Subdriver	FSMS activity	Example
1	Dietary choice	System set-up	Allergen management, plant-based solutions
3	Dietary choice	Internal food safety	The presence of allergens or vegan products implicate directly
		performance	impact on preventive measures, validation, verifications, etc
7	Dietary choice	System set-up	Dit antwoord mag je negeren maar ik kon geen tabblad terug gaan
			Translation: You may ignore this answer but I couldn't go back a tab
12	Migration & travel	Operation	Innovating products to different cultures $ ightarrow$ change of lines +
			buying products and ingredients from countries outside EU $ ightarrow$ can
			give some challenges regarding pesticide residues etc $ ightarrow$
			monitoring plan per product per region (low risk vs high risk)
14	Population size	External food	It will have no impact
		safety performance	
	Prevalence of	Internal food safety	This factor has no impact on the FSMS since this already build to
	vulnerable groups	performance	protect this type of consumers
	Urbanisation	External food	This factor has no impact
		safety performance	
	Migration & travel	Internal food safety	No impact
		performance	
	Human health	External food	No impact
	condition	safety performance	

In the section of social subdrivers, shown in Table A5.1 of the appendix, two examples mention allergen management (Dietary choice -> Preventive measures for participant 1 and Dietary choice -> Internal food safety performance for participant 3). Allergen management does not fit into the scope of this research, being microbiological food safety management. Participant 12 mentions pesticide monitoring as an example of Migration -> Operation, which is a chemical food safety hazard. The answer of participant 7 and five of the answers of participant 14 clearly state that they see no impact for this subdriver, despite checking "Yes" when they were asked if these subdrivers impacted food safety management.

Table 11 Excerpt of Table A5.1 in Appendix 5. This excerpt shows all examples that reference an impact either related to a different subdriver, or not related to any subdrivers in particular

Participant	Subdriver	FSMS activity	Example
1	<i>Migration & travel -> </i>	Operation	Different regulatory frameworks with special impact on food safety
	Human health condition ->	Operation	Sick people is strictly forbidden to work at the facilities due to the food safety impact
2	<i>Consumer knowledge</i> - > Consumer awareness & attitude	Internal food safety performance	Knowledge causes additional requests towards nutritional value
4	<i>Consumer knowledge -</i> > Consumer awareness & attitude	Internal food safety performance	Minder E-nummers gewenst -> andere alternatieven zoeken (HPP – stap ipv bewaarmiddel) <i>Translation: Fewer E numbers desired -> seek other alternatives</i> (HPP - step instead of preservative)
5	<i>Consumer awareness & attitude -></i> Consumer knowledge <i>Public awareness -></i>	Preventive measures Preventive	Wrong usage of goods
10	Consumer knowledge Consumer awareness & attitude -> Consumer knowledge	measures Preventive measures	Optimale bewaaromstandigheden worden verbroken -> uitgroei van microbiologie mogelijk maar consumenten klagen liever <i>Translation: Optimal storage conditions are broken -> outgrowth of</i> <i>microbiology possible but consumers prefer to complain</i>
		External food safety performance	Impact vanuit de thuissituatie wordt onvoldoende meegenomen als een risico door externe partijen zoals auditbureaus en FAVV -> risico naar de eindconsument blijft onze verantwoordelijkheid terwijl we geen zicht hebben op wat de klant thuis doet <i>Translation: Impact from the home situation is insufficiently taken</i> <i>into account as a risk by external parties such as audit agencies and</i> <i>FASFC -> risk to the end consumer remains our responsibility while</i> <i>we have no insight into what the customer does at home</i>
13	Consumer awareness & attitude	Verification	Meer ready to eat producten (geen afdoding meer van pathogenen door consumer) / of meer (korte of onvolledige) opwarming in een microgolf door tijdsgebrek (ipv door verhitting of langdurige verhitting in oven of friteuse bv) / in welke mate is consument zich bewust van gevaren als bv koudeketen onderbroken is (of bv niet op tijd geconsumeerd is of tijdelijk bij een hogere temperatuur) <i>Translation: More ready-to-eat products (no more killing of</i> <i>pathogens by consumers) / or more (short or incomplete) heating in</i> <i>a microwave oven due to lack of time (instead of by heating or</i> <i>prolonged heating in an oven or deep-fryer, for example) / to what</i> <i>extent is the consumer aware of the dangers, for example, if the</i> <i>cold chain is interrupted (or e.g. not consumed on time or</i> <i>temporarily at a higher temperature)</i>
15	<i>Consumer knowledge</i> - > Consumer awareness & attitude	Preventive measures	Dietary knowledge might impact product design e.g. no preservatives

The example given by participant 1 on impact of the subdriver Human health conditions is about sick people being denied access to the workplace, but this subdriver is explained to be about non communicable diseases. Their example on Migration & travel also seems to be off context, talking about regulatory frameworks in other countries. Participant 2, 4 and 15 gave examples regarding the subdriver of Consumer knowledge that point to a misunderstanding of this subdriver, with all three answers pointing towards the subdriver of Consumer awareness & attitude. Participant 5 gave the same example to link both Consumer awareness & attitude and Consumer knowledge to Preventive measures, while the answer references only the definition Consumer knowledge, so the other answer is disregarded. This participants example for Public awareness probably references keeping up the cold chain at the customer side, which falls under Consumer knowledge too. The examples given by participant 10 on Consumer awareness & attitude also reference Consumer knowledge more. For participant 13, a similar point can be made, however, the given examples reference both subdrivers, and because Consumer knowledge is also indicated as having an impact, with a fitting example, no data cleaning actions are taken for this in this step.

Participant	Subdriver	FSMS activity	Example
2	Food packaging	External food	DoC & migration
		safety performance	
3	Plant-derived food	Operation	The presence of endogeneous plant material must be prevented
	production	Internal food safety	Presence of endogenous material must be monitored and
		performance	registered
11	Plant-derived food	Validation	Residu-analyses, bij overschrijding, recall
	production		Translation: Residue analyses, if exceeded, recall
	Animal-derived	Verification	Geneesmiddelen residu's, bij overschrijding, recall
	food production		Translation: Drug residues, if exceeded, recall
	Food packaging	Validation	Verpakkingstechnologie ifv commerciële aspecten (kleurbehoud)
			eerder dan voedselveiligheid
			Translation: Packaging technology ifv commercial aspects (colour
			retention) rather than food safety
14	Upcycling for food	Operation	No impact

 Table 12 Excerpt of Table A5.2 in Appendix 5. This excerpt contains all examples related to chemical food safety issues or referencing no observed food safety impact of a subdriver.

Moving on to Table A5.2 on technological subdrivers, participant 14 mentions no impact for Upcycling for food so this answer can be neglected. The answers of participant 2 about Food packaging, of participant 3 on Plant-derived food production and of participant 11 on Plant-derived and Animal-derived food production mention chemical food safety impact rather than microbiological food safety, so they are also disregarded. The example of participant 11 on Food packaging mentions commercial impact rather than food safety impact so this answer is also neglected. To determine the top indicated technological drivers, Plant- and Animal-derived food production are added together because the choice between these two mainly depends on the type of product the company uses.

Table 13 Excerpt from Table A5.3 in Appendix 5. This excerpt shows all answers related to chemical food safety issues or other impacts then microbiological food safety issues.

Participant	Subdriver	FSMS activity	Example
1	Recycling	Internal food safety	Several chemical contaminants are known to come from recycling
		performance	(i.e. mineral oil hydrocarbons from recycled packaging, allergen
			cross-contamination)
2	Seasonality &	External food	Avocado grown in southern countries, variability of fat content and
	weather	safety performance	viscosity
3	Agricultural	Monitoring	Pesticide monitoring
	pollution		
	Geographic region	Monitoring	Cadmium is more presence in some regions
6	Geographic region	Monitoring	Naar microbiologische impact heb ik hier niet onmiddellijk een
			idee, maar naar chemische verontreiniging kan dit wel een impact
			hebben op het FSMS (vb PFAS en regio's die gekend zijn als
			vervuilde zones)
			Translation: In terms of microbiological impact, I do not have an
			immediate idea here, but in terms of chemical contamination, this
			could have an impact on the FSMS (e.g. PFAS and regions known to
			be contaminated zones)
11	Agricultural	Documentation &	Steeds meer forever chemicals in het milieu = in het
	pollution	record-keeping	voedingsproduct, vaak dure analyses voor organisatie en/of
			overheid
			Translation: More and more forever chemicals in the environment
			= in the food product, often expensive analyses for organisation
			and/or government
		Monitoring	Teveel N = minder biodiversiteit, meer pesticiden nodig
			Translation: Too much N = less biodiversity, more pesticides
			needed
	Recycling	Monitoring	Migratie van chemische componenten (Mosh/Moah) vanuit
			verpakking naar voeding
			Translation: Migration of chemical components (Mosh/Moah) from
			packaging to food
12	Agricultural	Preventive	Pollution \rightarrow more attention to preventive measures; more
	pollution	measures	samples; drift is an important one; drift is hugh problem $ ightarrow$ but
			more related to chemicals than microbiological

In the case of the environmental subdriver, found in Table A5.3, multiple answers talk about chemical food safety issues, so they are disregarded for further processing. These are the answer of participant 1 on Recycling, participant 3's answers on Agricultural pollution and Geographic region, participant 6 on Geographic region, all answers of participant 11 and participant 12 on Agricultural pollution. Participant 2 gives an example of physical quality of the ingredients when talking about Seasonality & weather, so this answer is also not taken further for processing.

Table 14 Excerpt from Table A5.4 in Appendix 5. This excerpt shows the answer related to economic impact instead of microbiological food safety.

Participant	Subdriver	FSMS activity	Example
1	Distribution channels	Operation	The economic impact when selling to the artisan market is different when we talk about retailers. The latter has a larger distribution/impact

From the economic and political subdrivers in Table A5.4, the only answer that is not used for further processing from is participant 1's answer for impact of Distribution channels, as it talks about economic impact rather than food safety.

When all of these examples that were just discussed are omitted or replaced to another subdriver, top 3 rankings of the most indicated subdrivers per category can be made. For economic drivers, it is a top 1 that is established, as there are only 2 economic subdrivers. The top social subdriver having an impact on food safety management are Resistant pests & diseases (n=14), with Dietary choice (n=11) taking the second spot, and in third place Consumer awareness & attitude (n=9). The top technological subdrivers having an impact on food safety management according to these FBO's are Food packaging (n=12), products for food production (n=11) and processing techniques & scale (n=11). From the eight environmental drivers, the subdrivers that were indicated most for having an impact on food safety management are Climate change (n=9), Seasonality & weather (n=8), and a shared third place for Agricultural pollution (n=6) and Geographic region (n=6).From the two economic subdrivers, Global trade (n=10) is indicated most as having an impact on food safety management in a company. For the political subdrivers, the top 3 consists of Food legislation (n=13), Official controls & communication (n=11) and War & conflict (n=11). To get an idea of the category that participants see the most impact of, the average amount of participants that indicated as ubdriver from each category can be calculated by adding up the amount of times one of the subdrivers was indicated and dividing that number by the amount of subdrivers in this category. The most popular category is then political subdrivers (x=10.8), followed by economic (x=8.5) and social (x=7.6) subdrivers. Environmental (x=5.6) subdrivers are averagely the least indicated.

3.2.2 Activities in food safety management impacted by changes in subdrivers

For these top indicated subdrivers, a closer look is taken at the examples of impact mechanisms provided by the participants. This time, the focus is on the correctness of the indicated FSMS activity that the subdriver impacts. All examples referencing material control, supplier control and hygiene management are attributed to the FSMS activity of preventive measures. Where reduction of pathogens and the methods to do this are mentioned, the FSMS activity is interventions. Monitoring includes all aspects of sampling and monitoring plans. Operation includes changes in operational activity and proper working of people and machinery. Where the whole FSMS set-up is taken under the loop, the FSMS activity is system set-up. Examples where validation and verification are indicated are assumed to represent actions where new validation needs to be done, and are often explicitly mentioned in the examples. Documentation & record-keeping envelop all statements regarding management of documents and using documentation to analyse the situation. External food safety performance handles all audits and inspections done by external entities, as well as customer complaints. Internal food safety performance is about internal inspections and own test results. Where the example was unclear in its meaning or specific mechanism, other examples of the same participant or other examples attributed to the same link were taken into account to decide if the FSMS activity was indicated correctly. Where it still was not clear, or where no actual examples were given, it was assumed that the participant understood the meaning of the FSMS activity well. The examples with their attributed FSMS activities can be found in Appendix 6. These changes lead us to a clear image of the type of FSMS activities that each of these subdrivers impacts most.

Figure 10 shows a heat map of the impacted FSMS activities for each of the most indicated subdrivers, according to the results of the workshop. The impact of the social subdrivers is given a dark blue color, technological subdrivers are indicated in orange, environmental subdrivers in green, economic in light blue and the impact of the political subdrivers is shown in purple. The diameter of the circles represents the amount of times the given link is made by the participants. The ovals show the impact of each subdriver on the category of FSMS activities, namely QC, QA or PI. Here the smallest diameter is representative of the amount of times a link inside this category was made.

From this figure, it can be seen that the social subdrivers impact the whole FSMS, and for Dietary choice and Consumer awareness & attitude also the food safety performance. This means that when changes in social subdrivers are at play, the FBO's need to re-evaluate the whole FSMS, and issues can occur along the entire system. The technological subdrivers mostly impact QA activities, especially validation, meaning that revalidation needs to happen when these subdrivers are at play. On the other hand, environmental subdrivers show their influence mostly in QC activities: importance of supply chain analysis and material control, and follow up in the monitoring system are highlighted here. The economic subdriver shows a scattered impact on all FSMS activities, which is also true for the subdriver of Food Legislation. Official controls and communication impact mostly external food safety performance as it has to do with auditing, while War & conflict influences mostly QC activities.

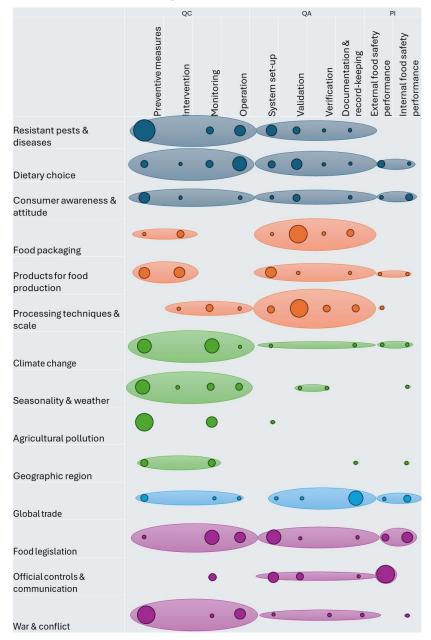


Figure 10 Heatmap showing the top subdrivers per category (dark blue = social, orange = technological, green = environmental, light blue = economic, purple = political) and the FSMS activities that they impact, according to the participants of the workshop. The diameter of the circles is representative of the amount of participants indicating this link. The ovals represent the impact per group of activities (QA, QC, PI), and here the smallest diameter is representative of the amount of participants indicating this link.

3.2.3 Mechanisms of impact between subdrivers and FSMS activities

To really understand the mechanisms of impact that FBO's deal with, the examples provided by the participants were converted into the form of "subdriver effect" -> "FSMS activity impact". This was done by the principles of initial and focused coding found in grounded theory by Charmaz (2006). These codings for each of the provided examples are shown in Appendix 6. In initial coding, the codes match as closely as possible the wording of the original answer, while filtering out the effect on the subdriver side and the impact on the FSMS side. Where one of the two is not clearly stated, other answers from the same participant are consulted. If this brings no clarity, the name of the FSMS activity or subdriver is used as an initial code. When neither sides of the mechanisms are clearly formulated, and no link is found when looking at the other answers of this participant, or when no example is given, no coding is done. In focused coding, initial codes that resemble each other are grouped into categories. For the subdrivers, this is done taken into consideration all initial codes of this subdrivers side, for the FSMS activities, all examples given for this FSMS activity are taken into account to set up these categories.

For preventive measures, five categories could be distinguished: improvement of pest control, increase or improvement of incoming material control, having to change suppliers and the management that comes with this, hygiene management, and control of multiple suppliers, often from multiple regions of the world. For intervention, the inclusion of additional intervention steps in the production process, and the need for new machinery are the two impacts that are considered. For monitoring, the modification of the entirety of the monitoring plans could be needed, or more specifically, it might be crucial to take more samples, or include new criteria. For the activity of operation, it might be needed to pay more attention to actual hygienic working on the production floor, operational activities might need to be adapted in general, or attention must be paid to the cold chain. The system set-up might need to be revised as a whole, or incorporation of specific stakeholder requirements can be important. Validation is mostly indicated when new validation is necessary, and this is sometimes specified to be validation of the shelf life or technologies due to the impact of the subdrivers. Improvement of verification of effectiveness is about the improvement of verification activities to follow up on the effectiveness of all taken measures to ensure a safe end product. Documentation & Recordkeeping includes four categories, namely the correct documentation of changes in product and process parameters to be used for re-evaluation, the management of supplier documentation, challenges with traceability, and modification of documents and the documentation system. External food safety performance is impacted through additional audits, more customer complaints, differing auditing results depending on the auditing body and the auditor, and one category showing a positive impact, namely that a resource of info is provided. In internal food safety performance disturbed lab results, high risks of non-compliance and the consideration of different regulations are noticed.

Table 15 shows a heat map of the mechanisms as indicated by the participants and focused coding of their answers for the social subdrivers top 3. It can be seen that no mechanisms are included for impact on internal food safety performance, despite this impact being indicated in Figure 10. This is because all examples given for this link were unclear or did not actually mention a mechanism. For Resistant pests & diseases, when the occurrence of both was listed in initial coding, both were seen as a separate mechanism in focused coding. Resistance against treatments includes heat treatments as well as preventive measures. For Dietary choice, using less sugar and less salt are grouped together in focused coding as the issue for both is listed as the influence of these components on water activity. The most notable mechanisms at play here, as they were indicated by multiple participants, are the occurrence of more resistant pests and micro-organisms or M0 impacting the preventive measures of pests and incoming material control, increased sickness of the working staff leading to need for higher attention of their hygienic working, and using less sugar or salt leading to new validation of the shelf life.

Table 16 shows a similar heat map for the technological subdrivers. For Food packaging, all packaging innovations that are related to sustainability are grouped together. This includes using less packaging, using monomaterials and using recycled packaging. Three people gave examples saying that switching to these more sustainable packaging solutions instigates the need for validation of the shelf life as barrier properties change. Implementing new and innovative techniques also leads to the need for revalidation. Five participants mentioned this impact, of which two specified this being about the validation of the technology. Two participants mentioned that products for food production could impact the quality and contamination of the raw materials, which calls for increased material control.

Table 15 Mechanisms at play when social subdrivers impact FSMS activities. Based on focused coding of the answers from the participants of the workshop. The number of times each specific link was made is indicated with the exact number, and is also shown through the darkness of the coloring.

							Qua	lity Co	ntrol									Qı	uality A	Assura	nce					P	erform	nance	Indicat	tors
	FSMS activity		Preve	ntive n	neasur	es	Interv	ention/	М	lonitori	ng	0	peratio	n	Syste	m set-	١	Validati	on	Verific		ocume			Ex	ternal				nal food safety
				1	-	1		1		1	1			1	U	ID		1	1	ation	1	ecord-	keepir	ig		perfo	rmance	9	pe	erformance
Subdriver	FSMS activity impact	Improve pest control	Improve material control	opliers	Hygiene management	Multiple supplier control	Additional intervention steps	ines	Modification monitoring plan	lling	e	tion to orking	ational	d chain	Revise system set-up	Incorporate stakeholder requirements	chnology	ielf life	tion	Improve verification of effectiveness	ation of	ocument ent	~	u tion	audits	llaints	Differing audit results	f info	Disturbed lab results	High risk of non- compliance Different regulations
	Subdriver effect	Improve pe	Improve m	Change suppliers	Hygiene m	Multiple su	Additional steps	New mach	Modificatic plan	More sampling	New criteria	More attention to hygienic working	Adapt operational activities	Failing cold chain	Revise syst	Incorporato requiremen	Validate te	Validate shelf life	New validation	Improve ve effectivene	Documentation of changes	Supplier document management	Traceability	Modification documentation	Additional audits	More complaints	Differing a	Resource of info	Disturbed I	High risk o compliance Different r
Resistant pests &	More pests	3	2																1											
diseases	More resistant MO		3									1			1					1										
	New diseases								1						1															
	MO/Pests resistant to treatments								1								1				1									
	Sickness staff											2																		
Dietary choice	Bio-products		1																											
	Less sugar/salt						1			1			1					2												
	Claims								1			1	1						1	1										
	New retailer demands														1															
	New products														1									1						
Consumer	Negative publicity			1											1															
awareness & attitude	Specific region sourcing			1																										
	Less additives						1																							
	More plant-based																		1											
	More ready-to-eat																		1		1									
	Consumer awareness																									1				

Table 16 Mechanisms at play when technological subdrivers impact FSMS activities. Based on focused coding of the answers from the participants of the workshop. The number of times each specific link was made is indicated with the exact number, and is also shown through the darkness of the coloring.

							Qua	lity Co	ntrol									Qı	uality A	Assura	nce					Pe	erform	ance l	Indicat	ors	·
	FSMS activity		Preve	ntive m	neasure	25	Interv	rention	М	lonitori	ng	()perati	on	Syste u	m set- Ip	1	/alidati	on	Verific ation		ocume ecord-			Ext	ternal f perfo	food sa rmance			al food : rforman	
Subdriver	ESWS ECTINITY Subdriver effect	Improve pest control	Improve material control	Change suppliers	Hygiene management	Multiple supplier control	Additional intervention steps	New machines	Modification monitoring plan	More sampling	New criteria	More attention to hygienic working	Adapt operational activities	Failing cold chain	Revise system set-up	Incorporate stakeholder requirements	Validate technology	Validate shelf life	New validation	Improve verification of effectiveness	Documentation of changes	Supplier document management	Traceability	Modification documentation	Additional audits	More complaints	Differing audit results	Resource of info	Disturbed lab results	High risk of non- compliance	Different regulations
Food packaging	New packaging							1								1		1						1							
	MAP gassing						1																								
	Sustainable packaging																	3		1		1									
	Water quality		1						1						1																
production	Quality raw materials	i	2																												
	New products								1						2							1									
	Regulation change									1																					
	Specification sheets																		1												
	Use of biological products																												1		
Processing techniques & scale	New techniques							1	1						1		2		3	1	1			1							
	Export										1														1						
	Upscaling														1											1					

Table 17 shows the heat map for the top 3 environmental subdrivers, in which there is a tie for third place. Both for Climate change and Seasonality & weather low availability of ingredients, variable quality of ingredients and changing weather are categories in effects of these subdrivers. Changing weather could mean hotter temperatures or dry weather. This is not surprising as climate change does impact the weather, and can thus impact the FSMS activities in the same way. Low availability calls for a change in suppliers and managing these new suppliers. This is mentioned when talking about both subdrivers. When weather events lead to variable quality of ingredients, multiple suppliers need to be balanced to guarantee sufficient quality materials to come in. It also sets up that

material control needs to be increased and monitoring plans might need modification, which were mentioned as mechanisms for both subdrivers. Changing weather, especially higher temperatures, can lead to failing of the cold chain. This can happen along each step of the supply chain and should be followed up closely. This phenomenon was also mentioned in the example giving in the workshop, as shown in Appendix 4. Agricultural pollution results mostly in contamination of raw materials, which calls for increased material control. It can also impact water quality in primary production or in processing, so monitoring of both water quality and material quality throughout the production process will be important.

Table 17 Mechanisms at play when environmental subdrivers impact FSMS activities. Based on focused coding of the answers from the participants of the workshop. The number of times each specific link was made is indicated with the exact number, and is also shown through the darkness of the coloring.

							Qua	lity Co	ntrol									Qı	uality /	Assura	nce					P	erform	nance	Indicat	ors	
	FSMS activity		Preve	ntive m	neasure	25	Interv	ention/	M	lonitor	ing	C	perati	on	Syste	m set- Ip		Validati	on	Verific ation		ocume ·ecord-			Ex	ternal i nerfo	food sa rmanc	-		al food rforma	
Subdriver	ESMS activity impact Subdriver effect	ibdriver effect				Multiple supplier control	Additional intervention steps	New machines	Modification monitoring plan	More sampling	New criteria	More attention to hygienic working	Adapt operational activities	Failing cold chain	Revise system set-up	lder	Validate technology	Validate shelf life	New validation	Improve verification of effectiveness		document nent		Modification documentation	Additional audits	More complaints	Differing audit results	Resource of info	Disturbed lab results	High risk of non- compliance	
Climate change	Low availability ingredients			2																			1				1				
	Reduce water use				1																										
	Variable quality ingredients		1						1						1											1					
	Regions of sourcing										1																				
	Changing weather								1					1															1		
Seasonality & weather	Variable quality ingredients		1			2	1		1	1																					
	Low availability ingredients			1		1																									
	Changing weather		1											2																	
	Microbiological environment																												1		
pottation	Contamination raw materials		5							1																					
	Water quality								2						1																
Geographic region	Different sourcing regions								1	1														1							1

Table 18 Mechanisms at play when economic and political subdrivers impact FSMS activities. Based on focused coding of the answers from the participants of the workshop. The number of times each specific link was made is indicated with the exact number, and is also shown through the darkness of the coloring.

							Qua	lity Co	ntrol									Q	uality /	Assura	nce					Pe	erform	ance l	ndicat	ors	
	FSMS activity		Prevei	ntive m	ieasure	25	Interv	rention	М	onitori	ng	0	perati	on	-	m set- Ip		Validat	ion	Verific ation		ocume record-			Ext		food sa rmance			al food rforma	l safety nce
Subdriver	ESMS impact Subdriver effect	Improve pest control	Improve material control	Change suppliers	Hygiene management	Muttiple supplier control	Additional intervention steps	New machines	Modification monitoring plan	More sampling	New criteria	More attention to hygienic working	Adapt operational activities	Failing cold chain	Revise system set-up	Incorporate stakeholder requirements	Validate technology	Validate shelf life	New validation	Improve verification of effectiveness		nent	Traceability	Modification documentation	Additional audits	More complaints	Differing audit results	Resource of info	Disturbed lab results	High risk of non- compliance	Different regulations
Global trade	Export										1							1						1							
	Multiple country sourcing											1											1								1
	More stakeholders															1										1					
	New region sourcing																					1		1						1	
Food legislation	Differing regulatory requirements			1							1					1			1						1						
	New legislation								1	1			2		1	2								2							1
Official controls & communication	Interpretation of legislation								1		1																2				
	Official controls								1										1									2			
	Authority expectations														1									1							
	High degree of control														1																
War & conflict	New sourcing areas			1		2										1													1		
	Low availability of ingredients			2											1																
	Higher costs								1				1											1							

The heatmap for economic (in light blue) and political (in purple) subdrivers is given in Table 18. The impact of the economic subdriver Global trade is scattered across the FSMS activities, as was also mentioned when looking at Figure 10. The implementation of new legislation, which includes new regulations and stricter regulations, can result in necessary adaptations of operational activities, the need for incorporation of new stakeholder requirements in the system set-up and need for modification of documents and documentation systems. For Official controls and communication, it is mentioned that different interpretations of legislation can lead to different auditing results when confronted with different auditing bodies or auditors. A positive impact of Official controls and communication could be that they are a resource of info about external food safety performance, which can help identify weaknesses and improve the FSMS. War & conflict as a third political subdriver can instigate the need for new sourcing areas when conflict in sourcing regions results in restricted import. This will result in having to manage multiple suppliers from these new sourcing areas. The low availability of ingredients also leads to looking for new suppliers to compensate.

3.2.4 Most important subdrivers to consider

At the end of the workshop, participants were asked to give their top 5 of all subdrivers that they had indicated, ranking the most important subdrivers to consider in their FSMS. The results of this are given in Tabel A5.5 in Appendix 5. Based on their position in each ranking, the subdrivers were given scores: 5 points when the subdriver ranked highest in a participant's ranking, 1 when it ranked lowest. 26 of the 34 subdrivers were included in at least one top 5 ranking. The top 10 highest ranked subdrivers are given below, with corresponding colors to the ones in Figure 10 and Table 15-18.

1.Food legislation	5.Products for food production	8b.Food packaging
2.Climate change	6.Consumer awareness & attitude	9a.Dietary choice
3.Good practices & standards	7.Resistant pests & diseases	9b.Water & soil management
4.Processing techniques & scale	8a.Global trade	10.Novel food sources

The top 3 contains two political subdrivers. FBO's thus feel the most pressure coming from these subdrivers. Good practices & standards shows up in third place in this overall ranking, while it was not in the top 3 most indicated subdrivers from the political category. FBO's who encounter the pressures from this, also rank it very high, while the other FBO's didn't even indicate it as having an impact. Official controls & communication and War & conflict were indicated by more separate FBO's, but did not rank high enough to even be in the overall top 10. The ranking is completed with 4 technological subdrivers and 3 social subdrivers that do correspond to their most indicated subdrivers. The top indicated economic subdriver is in a shared 8th place. Climate change as the most indicated environmental subdriver, scores high in the overall ranking as well. Water & soil management was not part of the environmental subdrivers but was ranked quite high by the FBO's who did indicate its impact. The other subdrivers that were included in the participants ranking were, in order for their scores, New digital technologies, Plant-derived food production, Seasonality & weather, Human health conditions, Distribution channels, Animal-derived food production, Fragmentation between nations, Official controls & communication, War & conflict, Food formulation, Agricultural pollution, Use of sidestreams, Consumer knowledge and Sewage treatment. The average score when looking at all subdrivers of a category (with subdrivers that were not included in any ranking having a score of O) for political subdrivers is highest, followed by technological subdrivers, economic subdrivers, then environmental subdrivers and lastly social subdrivers. If only the scores of the subdrivers included in at least one top 5 are averaged out, social subdrivers fall in third place, while economic subdrivers end last. The other 3 categories remain in the same spot.

3.3 Coupling of drivers and indicators through literature review

3.3.1 Coupling of subdrivers and context indicators through literature review

In a first stage of this research, a coupling of drivers, subdrivers and indicators was made through internal discussions where the goal was to find where drivers were already incorporated or could be further incorporated in existing indicators. The results of this can be found in Appendix 7. Mostly influences of the innovation pathway and thus impact on context indicators were incorporated in this. A structured literature review is conducted as described in Section 2.2.2. When a paper is found when using a search term from the subdriver side and a search term from the context indicator side, and this paper was deemed relevant after screening of the abstract, it shows that the two are linked and have an influence on each other. Most links that were made are related to the indicator of packaging concept, and to a lesser extent, intervention strategies and final product contamination. For all other context indicators, no relevant papers could be found when conducting the literature review in this way. This could be related to the chosen search terms for the other indicators. The amount of links that are found in this way per subdriver can be added up and used to find the top 3 subdrivers per category for which a link to context indicators can be found in literature For the economic category, only one subdriver will be selected. For the social category, Consumer awareness & attitude (n=9) is linked to context indicators the most, followed by Dietary choice (n=5) and Resistant pests & diseases (n=3). For technological subdrivers, the top 3 consists of Food packaging (n=11), Processing techniques & scale (n=7) and Novel food sources (n=5). From the environmental subdrivers, the highest amounts of relevant papers were found for Seasonality & weather (n=8), Recycling (n=6) and in a shared third place Use of sidestreams (n=2) and Climate change (n=2). The top economic subdriver is Distribution channels (n=13), and for political subdrivers, the only subdriver generating relevant papers is Good practices & standards (n=18). Relevant passages of the papers found for these top subdrivers that give an idea of the link between the subdrivers and these indicators are shown in Appendix 8 and then coded through initial and focused coding in the same way as for the workshop results. As already mentioned, most innovations mentioned in these papers have to do with packaging concept. The importance of packaging for shelf life is highlighted in light of Dietary choice of ready-to-eat meals and traditional foods (Dzikunoo et al., 2021; Lapikadis & Frangkiadakis, 2022; Makinde et al., 2020), Consumer awareness & attitude towards preservatives and minimal processing (Khade et al., 2023; Mei et al., 2019), the rise of Resistant pests and pathogens (Sequino et al., 2024), Novel food sources such as edible insects and seaweed (Blikra et al., 2021; Hyun et al., 2018; Moreira-Leite et al., 2023; Ojha et al., 2021), contamination of food related to Seasonality & weather (Bai et al., 2019), handling of products in Distribution channels (Ahmed et al., 2023; Gomez et al., 2023; Lopez-Galvez et al., 2021; Peng et al., 2022; Zhang et al., 2023), and keeping up compliance with microbiological Standards (Abrokwah et al., 2020; Bandyopadhyay et al., 2020; Esposito et al., 2021; Gutierrez-Rodriguez & Adhakari, 2018; Pushparaj et al., 2022). New Processing techniques, innovation in Recycling can result in better protection of the food product (Dzikunoo et al., 2021; Ferri et al., 2023; Stanley et al., 2023), so that requirements set in Standards can be met (Aiyar & Pingali, 2020; Ferri et al., 2023; Hernandez-Garcia et al., 2022; Manikandan & Min., 2023; Zaidi et al., 2022). Consumer awareness towards sustainability gives rise to the construction of biodegradable and biobased packaging. Active and smart packaging are developed as new Food packaging technologies (Alizadeh-Sani et al., 2020; Ibrahim et al., 2021; Pou et al., 2022; Rangaraj et al., 2021; Suvarna et al., 2022, Zhang et al., 2023), and used to simplify control in Distribution channels and provide more information to consumers (Ahmed et al., 2018; Chisenga et al., 2020; Fang et al., 2017; Liu et al., 2019; Pou et al., 2022. The indicator for final product contamination was linked to Dietary choice through the rise of consumption of products with high risk of contamination (Cano et al., 2019), Resistant pests & diseases leading to high risk of contamination (Aragao et al., 2021), and Good practices & standards laying out quidelines for product contamination(Aragao et al., 2021). Effectiveness of interventions can be impacted by overuse of refrigeration in Distribution channels (Hingston et al., 2019). Use of sidestreams, specifically reuse of water elicits the need for extra intervention steps (Gadelha et al., 2019; Koutsoumanis et al., 2023).

3.3.2 Coupling of subdrivers and FSMS activities through literature review

When looking at the impact of subdrivers on FSMS activities, as was done in the workshop, the top saturated subdrivers per category in literature concerning their impact on FSMS activities can be calculated in the same way. In the social category, the top subdrivers Resistant pests & diseases (n=16) and Dietary choice (n=10). For all other social subdrivers, only 1 or no papers were found indicating a link to FSMS activities, so no third place is attributed. In the technological category, Novel food sources (n=6) takes the top spot, followed by Processing techniques & scale (n=4), and New digital technologies (n=3). The top 3 for environmental subdrivers are Seasonality & weather (n=13), Use of sidestreams (n=7) and Water & soil management (n=5). For the latter two, there are only 2 papers but they cover multiple links. The top economic subdriver is Distribution channels (n=10). From the political subcategory, the top 3 consists of Good practices & standards (n=22), Official controls & communication (n=2) and Food legislation (n=2). A heatmap showing the links that can be made between these top subdrivers and FSMS activities is shown in Figure 11. Relevant passages from these papers that give an idea of the mechanisms between the two are shown in Appendix 9 and coded through initial and focused coding in the same way as for the workshop results. Table 19 and 20 show the results of this coding

From the heatmap in Figure 11 it is clear that most papers that were found concern QA activities, especially preventive measures and monitoring. The search terms that led to the most papers for these two activities were "Hygiene" and "Monitoring". For the technological subdrivers, no relevant papers were even found linking the impact of these subdrivers to QC activities, while the workshop results suggested that these subdrivers do impact QC activities the most. No papers were found linking any subdrivers to system set-up or internal food safety performance.

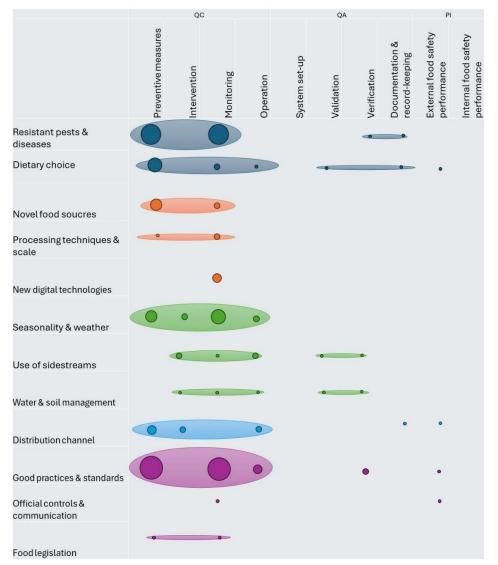


Figure 11 Heatmap showing the top subdrivers per category (dark blue = social, orange = technological, green = environmental, light blue = economic, purple = political) and the FSMS activities that they impact, according to the literature study. The diameter of the circles is representative of the amount of papers indicating this link. The ovals represent the impact per group of activities (QA, QC, PI), and here the smallest diameter is representative of the amount of parpers indicating this link.

Table 19 Mechanisms at play when social and technological subdrivers impact FSMS activities, based on literature review. The number of times each specific link was made is indicated with the exact number, and is also shown through the darkness of the coloring. Dark blue = Social, Orange = technological

		Quality Control											Qua	lity Assura	ance		Perform	ance	
	FSMS activity	Preventive measures	Interv	entions			Monitoring				Operation		Vali- dation	Verifi	cation		ntation & keeping	sat	al food ety mance
Subdriver	FSMS activity effect	Hygiene management	Effective intervention techniques	Effectiveness of intervention	Continuous monitoring	Improve microbiological analysis	New monitoring technologies	Specific monitoring	Modification monitoring plans	Ease of operation	Adapat operations	Knowledge of personnel	Need for validation	Verification of strains	Verification of strategies	Modifciation of documentation	Documentation for follow-up	Additional audits	Less complaints
Resistant pests & diseases	Antimicrobial resistance	7			4	1	2							1			1		
Dietary choice	Diet staples	4			1				1	1			1					1	
	Ready -to- eat food	1																	
	New products															1			
Novel food sources	Edible insects	4							1										
	Algae					1													
Processing techniques & scale	New technology		1							1		1							
New digital technologies	Digital technology					1	2												

Table 20 Mechanisms at play when environmental, economic & politcal subdrivers impact FSMS activities, based on literature review. The number of times each specific link was made is indicated with the exact number, and is also shown through the darkness of the coloring. Green = environmental, light blue = economic, purple = political

Т

		Quality assurance								Quality assurance				Performance					
		Preventive measures	Interve	entions			Monitoring]			Operation		Vali dation Verificatio		cation	ion Documentation & record-keeping		External food safety performance	
Subdriver	FSMS activity	Hygiene management	Effective intervention techniques	Effectiveness of intervention	Continuous monitoring	Improve microbiological analysis	New monitoring technologies	Specific monitoring	Modification monitoring plans	Ease of operation	Adapat operations	Knowledge of personnel	Need for validation	Verification of strains	tion of es	stion of ntation	Documentation for follow-up	Additional audits	Less complaints
	Subdriver effect	Hygiene	Effective in techniques	Effectiveness intervention	Continu	Improve analysis	New mo technolo	Specific	Modifica plans	Ease of	Adapat	Knowle	Need fo	Verifica	Verification of strategies	Modification of documentation	Documenta follow-up	Additior	Less cor
Seasonality & weather	Seasonal variation in contamination	4	1	1	2			1	1		1								
	Microbiological environment							1			1								
Use of sidestreams	Reuse of water		2		1						1	1	1		1				
Water & soil management	Reuse of water		1									1							
	Good water management							1					1		1				
Distribution channels	Transport to distribution	2																	
	Cold chain	1	1	1						1	1								
	Information for retailer																1		1
Good practices & standards	Standards	8			5	3				2	1				2			1	
Official controls &	Official controls					1													
communication	Different countries of control																	1	
Food legislation	Food legislation requirements	1			1														

Table 19 and 20 show the mechanisms of social and technological, and environmental, economic and political subdrivers respecetively, impacting FSMS activities according to literature. The social subdriver of Resistant pests & diseases has the most impact on preventive measures, especially hygiene management. The idea here is mainly to prevent resistant pathogens from coming in (Aleksic et al., 2024; Aragao et al., 2021; Fernandes et al., 2018; Koutsoumanis et al., 2021; Rubiola et al., 2022; Rugna et al., 2021; Yang et al., 2024). Antimicrobial resistance also elicits continuous monitoring and the development of new monitoring technologies, specifically to follow up on resistance (Allard et al., 2018; Alvarez-Molina et al., 2023; Bahramianfard et al., 2021; Brunn et al., 2022; Elafify et al., 2022; Saksena et al., 2019). For Dietary choice, most papers talked about the production of a few diet staples in different countries, for example different types of meat and herbs. As these are eaten in abundance, albeit in a specific region, hygiene management is important to prevent pathogens from entering the supply chain (Ngo et al., 2021; Oliveira et al., 2018). Edible insects as a Novel food source can be passive carriers for human pathogens, and their gut microbiota are often related to hygiene indicators (Egonyu et al., 2021; Garofalo et al., 2019; Grabowski et al., 2017; Wynants et al., 2017). Hygiene management in production and processing is thus of utmost concern to produce safe end products. The use of New digital technologies can aid especially in monitoring, via the implementation of new monitoring technologies based on artificial intelligence or geographical information systems (Varyvoda et al., 2021; Wu et al., 2022).

The biggest reason of concern for Seasonality & weather seems to be seasonal variation in contamination. Hot and wet weather often favors the growth and trasmission of pathogens, so hygiene is extra important in the summer (Amaiach et al., 2023; Dzudor et al., 2024; Hull-Jackson & Adesiyun., 2019; Lim et al., 2021). It also elicits the need for continuous monitoring to detect variation (Bogdanovicova et al., 2019; Srisamran et al., 2022). When process water is reused, implementation of effective intervention steps, e.g. chemical disinfection is required (Gadelha et al., 2019; Koutsoumanis et al., 2023). In transport to Distribution channels, hygiene management is required, because timetemperature combinations are often not favorable for food safety (Lopez-Galvez et al., 2021; Ortuzar et al., 2020). The difference between effective intervention techniques and effectiveness of intervention for the impact of the cold chain. lies in that effective intervention techniques are required to inactivate pathogens before the cold chain, where they can't grow further, to provide food safety (Dogan et al., 2019), and effectiveness of interventions is impacted through the overuse of the cold chain, which results in adaptation of pathogen which can render interventions ineffective (Hingston et al., 2019). Established standards, stringent standard criteria, legally defined standards, ... all require proper hygiene management to meet the criteria. This is achieved through good hygiene practices (Achinas et al., 2019; Berge & Baars, 2020; Constanzo et al., 2018; Firmo et al., 2023; Nalbone et al., 2022; Sab et al., 2024; Sobolik et al., 2021; Zwietering et al., 2023) and continuous monitoring (Jacxsens et al., 2017; Kharbach et al., 2023; Mario et al., 2024; Saksena et al., 2019; Vallinayagam et al., 2022). Improved microbiological analysis is used to provide more information on the microbiological status and performance (Bahuguna et al., 2023; da Silva et al., 2023; Sab et al., 2024). This is important for the verification of effectiveness of the intervention strategies (da Silva et al., 2023; Vallinayagam et al., 2022). Standards can also give rise to innovations optimizing and streamlining food processing operations (du Plessis et al., 2023; Wu et al., 2024)

3.4 Adding a resilience level to existing indicators

Based on the literature review on resilient food safety management as described in Section 1.2.3.2 and expert discussions, a definition of the resilience level is formulated for QC and QA activities. These definitions are shown in Table 19 and 20, based on the structure of the definitions of the existing levels of advancement. To achieve resilience, a company needs to take into account scientific knowledge on not only the activity, but also on drivers and subdrivers, and their possible impact. This is based on food system knowledge: to know what impacts can be expected, all steps of the food system need to be known and observed. Variability in product and process parameters, which QC activities should keep in an acceptable range, is expected due to the impact of drivers and subdrivers, and can be unpredictable, but the company needs to strive to limit uncertainty in these situations and combat this variability as quickly as possible

and bring product and process characteristics to a new normal. The implemented activities should be adapted to the production system, and adaptable following impacts of external factors.

Table 19 Definition of the various levels of advancement of QC activities from the current diagnostic tool as explained in Luning et al. (2008), expanded to include the resilience level, defined in this research based on literature study and expert discussions.

QC activities	Knowledge base	Variability	Specificity
0 - absence		Absence of activity	
1 – basic level	Lack of scientific evidence, using historical company data	Variable, unknown, unpredictable	Based on common materials / practices, neither specific nor
2 – average level	Best practice knowledge / equipment	Sometimes variable, not always predictable	adapted Based on generic information for the product sector
3 – advanced level	Scientifically underpinned	Stable, predictable	Tailored for the specific production system
4 – resilience level	<i>Scientific knowledge & food system knowledge</i>	Expected variable, sometimes unpredictable, limited uncertainty	Adaptable to production system

Table 20 Definition of the various levels of advancement of QA activities from the current diagnostic tool as explained in Luning et al. (2009), expanded to include the resilience level, defined in this research based on literature study and expert discussions.

	Content of activities		Structure of activities					
QA activities	Specificity of	Knowledge base	Method	Controllability				
	information							
0 - absence	Absence of activity							
1 – basic level	General information	Historical data	Checking, problem	Ad hoc, not				
			driven	independent				
2 – average level	Standard information	Expert knowledge	Analysing, feedback	Regular, partly				
			driven	independent				
3 – advanced level	Specific information	Scientific knowledge	Criticizing, procedure	Systematic, fully				
			driven	independent				
4 – resilience level	Research & Innovation	Scientific knowledge &	Re-evaluating, future	Adaptable, various				
	information	food system knowledge	driven	ranges of				
				independency				

QA activities should be based on research and information and focused on constant re-evaluation of the system. A proactive and future driven approach is crucial in resilient food safety management. There should always be a plan B and activities should be adaptable to the situation. To do this, the company needs to record as much information as possible themselves, but information coming from other links in the food supply chain should be consulted as well to get as good of an image as possible on what mechanisms are at play. This means that the company is not always fully independent in the controlling of QA activities. An example is given for both a QC activity and a QA activity of how this resilience level can be translated into specific indicators of the current FSMS diagnostic instrument. For QC, the indicator for incoming material control is shown in Table 21, for QA the indicator for validation of preventive measures is shown in Table 22.

Table 21 Example of the implementation of the resilience level definition in the QC indicator for incoming material control

Situation O	Situation 1	Situation 2	Situation 3	Situation 4				
No control of	Incoming material	Incoming material	Incoming material	Incoming material				
food safety	control on food safety	control on food safety	control on food safety	control on food safety				
level of	level is ad hoc and is	level is based on	level is based on use of	level is based on				
incoming	mainly based on	guidelines, or legislative	statistical underpinned	scientific knowledge as				
material	historical experience	requirements or	acceptance sampling (i.e.	well as all information				
	with suppliers	guidance document for	sampling frequency,	available in the food				
		sector and is	location, analysis,	system, and is constantly				
		implemented in daily	rejection criteria, etc.)	re-evaluated to adapt				
		practice	using actual historical	when variability exceeds				
			data of suppliers, and is	limits				
			implemented in daily					
			practice					
Systematic and adequate incoming material control will prevent (high and variable initial) acceptance of contaminated								
incoming materials, which will reduce chance on (cross) contamination of the production process which will positively								

contribute to food safety.

Table 22 Example of the implementation of the resilience level definition in the QA indicator for validation of preventive measures

Cituation 0	Cituatian 1	Cituatian 2	Cituatian 7	Cituation (
Situation O	Situation 1	Situation 2	Situation 3	Situation 4					
Effectiveness	Effectiveness of	Effectiveness of	Effectiveness of	Effectiveness of					
of preventive	preventive measures is	preventive measures is	preventive measures is	preventive measures is					
measures	validated based on	validated based on	systematically validated,	validated and re-					
have (yet)	historical knowledge	opinion of independent	by independent experts,	evaluated regularly,					
never been	only judged by own	expert, using expert	based upon specific	based upon scientific					
validated	people	knowledge, regulatory	scientific sources (like	sources as well as					
		documents and historical	scientific data/literature	knowledge gathered					
		results	on validation studies,	from other links in the					
			predictive modeling),	food supply chain, and					
			historical results, and	adapted through					
			own experimental	research and innovation					
			trials;						
	On ad-hoc basis	On regular basis and	On regular basis and	On regular basis					
		after system	after system	following continuous					
		modifications	modifications	monitoring and re-					
				evaluation					
	Findings scarcely (not)	Findings described in	Activities and results	Activities and results					
	described.	reports	well documented	well documented					
Systematic and	adequate incoming mater	al control will prevent (high	and variable initial) accepta	nce of contaminated					
incoming mater	rials, which will reduce cha	nce on (cross) contamination	of the production process w	/hich will positively					
contribute to fo									

4 **DISCUSSION**

4.1 Diagnosis of an alternative food system using the current diagnostic instrument

Aquaponics as a food production system are an example of an innovation led by the impact of certain drivers and subdrivers, as explained in Box 1 of Section 1.3.1. The system consists of a combination of primary production of vegetables, herbs and microgreens, and the primary production of fish. The latter falls under Regulation (EG) 853/2004 when it comes to hygiene regulation, as it concerns food production of animal origin. HACCP principles need to be in place along with the specific hygiene requirements for fishery products. In the interview, it was discussed that these regulations are followed by the company in their fish farming section. However, for primary production of plants, no HACCP implementation is required, as stated in Regulation (EG) 852/2004. Indicators related to HACCP principles are also not present in the HSMS-DI that is specifically set up for primary production. The company is however still responsible for producing a safe end product, and possible food safety hazards should be identified and controlled. It is stated in this regulation that in the case of production of small quantities directly sold to local retail markets, the regulation does not necessarily apply and national law should be followed to protect human health. The company that was interviewed for this only sells through retail markets in and around Brussels, so this might be the case for them.

There are some important aspects here concerning food safety that should be considered when setting up a food safety management system for an aquaponics farm. The water that is used for fish production, is then reused to grow plants. This water could potentially be contaminated with pathogens coming from the fish or fish handling. The fish excrements present in the water are useful as an organic fertilizer for the primary production of the plants, but could also be contaminated. These microbiological risks are often unknown or uncertain, especially in small companies like this where limited food safety knowledge is present, like the one interviewed here (Ljubojevic et al., 2017). The water is filtered before application in plant primary production, but monitoring, validation and verification activities are limited. The implementation of this filtration step is based on best practices and guidelines, as was also established through the indicator concerning the organic fertilizer program of the HSMS-DI. However, for the indicator on water control, it was mentioned that water control is not in place. The products are sold as fresh produce for ready-to-eat consumption, so the aquaponics farm is the most important link in the supply chain when it comes to ensuring food safety. As it is a fresh product, the only intervention step that occurs is the removal of visibly contaminated or wilted parts of the plant. This was started as a reaction to customer complaints. The manager of the company mentioned that this was not well controlled nor documented and based entirely on the knowledge and action of the workers. The same goes for hygiene requirements: the supervisor is instructed to make sure the employees pay attention to hygiene, but besides the encouragement to keep hands and equipment clean, no structural sanitation program is in place. Especially when working with seasonal workers, that are often not knowledgeable and not trained in food safety, this might be a reason for concern (Labovic et al., 2023). The only FSMS activity that is well established and documented is the measuring of environmental parameters in the production environment, although this is mostly done to support the growth of the plants rather than for food safety. Food safety effects of these measured parameters are also not really considered or followed up.

Overall, the HSMS for primary production in this company is not well structured, although fresh produce has a significant risk for contamination and no further processing or handling by the customer is expected before consumption. As this is a small company where the manager has no food safety training and no QA manager is present, this lack of knowledge is represented in the lack of implemented FSMS activities and follow up of the product's food safety. They act solely on complaints and ad hoc issues, and hygiene and physical intervention are fully in the hands of a staff with variable composition. Through this interview, it also became clear that the exhaustive list of indicators as presented in the

diagnostic instrument is quite hard to get through when interviewing someone with limited to no food safety knowledge. Specific terms often needed extra explanation and it was often up to the interviewer to decide which level should be attributed, based on the explanations of the manager. Paying attention to the given answers was also important to guide the manager through the interview, by adapting examples that were given to the specific situations in the company. This does show the importance of having conducting interviews to go through the diagnostic instrument, with interviewers that are knowledgeable on the subject. Some answers that were given in the beginning, e.g. that no pesticides are used in the company, made other indicators useless, e.g. pesticide analysis. However, these indicators were still gone through, albeit with less attention spent on these follow up indicators. This gives rise to the question of if this diagnostic instrument should be adapted to the specific situation of the company: if no pesticides are used for example, the indicators on follow up and control of pesticides will render low scores, although this does not affect the product safety.

The diagnostic instrument could also be adapted to the size of the company and their consumer market. However, the current form is quite established and has been used in a multitude of sectors and FBO's already, as was shown in Section 1.2.2.3. Luning et al. (2015), Njage et al. (2018) and Dzingirayi & Korsten (2016) use the diagnostic to compare companies and farms of different sizes. The conclusion is that smaller companies often lack advancement of QC and QA activities, and don't have the same range of implemented activities as larger companies, resulting in lower food safety performance. The reason for the lack of FSMS activities could be that the cost of the implementation is too high for a company of that size, and they cannot cover this investment in food safety. If the expectation however is that less advanced activities will be installed, going through that long list of indicators, could be unnecessary. When adapting the diagnostic instrument to a small business situation, the list of FSMS indicators could be reduced to activities that are more often present in these companies, but correcting in scoring for the fact that the risk in small business is often higher. This adaptation is however outside the scope of this research.

4.2 Updating the existing diagnostic instrument

4.2.1 Mechanisms of impact of subdrivers on internal context indicators

Through the literature review, mostly links were made between subdrivers and the internal context indicator packaging concept, as seen in Section 3.3.1. In early internal discussions concerning the update of the diagnostic instrument, the context indicator of packaging concept was already considered as an example of an indicator that should be updated under the influence of the drivers and subdrivers. Especially the drive towards more sustainable packaging options, such as biodegradable packaging and design for recyclability, are not considered in the current formulation of the indicator. The balance between good barrier properties and protection of the food product, and sustainability is delicate and should be thought about. Multi-layer plastic packaging is often used because of its excellent product protection, but isn't recyclable. Monomaterial packaging on the other hand is more recyclable but doesn't offer as good of a barrier, which has implications for food safety. Guttierez et al. (2017) even proved that sometimes using non-recycled materials has a smaller environmental impact because it reduces food waste. However, the European strategy for circular economy states that in 2030, all plastic packaging should either be reusable or recyclable (Matthews et al., 2021). The evolution towards packaging that is recyclable or biodegradable and has better barrier properties is still ongoing, but with the pressure of changing regulations around single use plastics, FBO's already feel the need to incorporate more sustainable packaging materials. This can be seen in the rather high amount of participants in the workshop highlighting sustainable packaging as a trend with impact on their FSMS, especially on the shelf life. This is not reflected in the current indicator for packaging concept. An update of this indicator that includes this trend towards sustainability might be beneficial to asses maturity of the business better. The indicator for packaging concept is set up following the rationale that a packaging concept that is meant to influence the shelf life poses higher requirements for QA and QC

activities. Using recyclable or recycled packaging, or biobased packaging, intended to have the same barrier properties as multilayer packaging also poses high requirements for the FSMS, especially through the need for validation of this impact on shelf life. Implementation of hygienic standards, combined with extra intervention and a recyclable packaging option could even come close to protection of classic packaging (Ferri et al., 2023)

Some of the trends stemming from the influence of drivers that are highlighted by FBO's in the workshop could also be seen as innovations, impacting context indicators. New technologies, new products, new packaging, more plant-based and ready-to-eat products, minimal processing and use of additives,... these trends can already be measured in the current context indicators. For example, the indicator for rate of changes of products and processes. A high impact of these drivers for implementation of new products or technologies will result in a high score for this indicator. Minimal processing and use of additives is discussed in the indicator for intervention strategies. Ready-to-eat products are an end of line product where no further handling or processing is expected from the customer, as assessed by the indicator for position in the supply chain. When FBO's follow these trends and often change their product portfolio, this will be reflected in a high score for their context riskiness and so a more robust FSMS is needed. A similar thought process can be followed for the indicator of contamination of initial materials. When the risk of contamination goes up for their incoming materials, following the impact of drivers and subdrivers, or when more contaminated materials are chosen, this context indicator will already reflect that.

These internal context indicators go over product, process, organisational and chain characteristics. As mentioned in Section 1.3, these internal contest indicators are under the pressure of the drivers and subdrivers via the innovation pathway. The variability of these impacts and the pressure to follow these trends is rooted in the impact level of the external business context. This external context consists of the drivers and subdrivers. Therefore, the inclusion of new indicators for external context, can form a good addition to these internal context indicators, to assess how mature the FSMS activities should be. Stoyanova (2019) describes a similar research linking internal and external context factors to impact on food safety management, and concludes that both can have significant impact on food safety output. The dynamic character of the external factors can lead to inconsistencies in output performance and present adverse effects. The more dynamic the external factors are, the higher the impact, which should be considered in the FSMS-DI.

4.2.2 Mechanisms of impact of subdrivers on FSMS activities

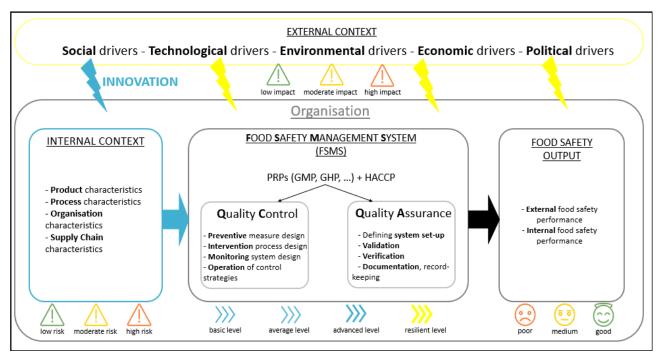
For all the subdrivers, there was at least one workshop participant that indicated that this subdriver has an impact on their food safety management system. This shows that these FBO's really feel the pressure of the drivers and subdrivers that were established in the Horizon Europe FoodSafeR project. In the workshop, only a limited number of FBO's participated, all located in Belgium. This does implicate uncertainty about the results and if this applies for a larger number of FBO's all over Europe in the same way. Although the scope of the workshop was microbiological food safety management, multiple answers included examples for chemical food safety management, and even overall product quality. The participants mentioned struggling with this restriction for microbiological food safety, as they usually have to keep an overview of all consequences on food safety and quality. These examples were not further analysed, but it is noteworthy that drivers and subdrivers do not only impact microbiological food safety. The literature study did not result in papers linking subdrivers to FSMS activities for all subdrivers. This review is however limited by the search terms that were chosen. The search for papers was also limited to containing the search terms, as well as some variations of the words "food", "microbiological" and "safety", in the abstract. This was done to simplify initial screening of the papers, but the search terms might appear in the full text of a paper, without all appearing in the abstract too. In the literature review, a multitude of papers were also not used for further analysis because of their focus on chemical food safety.

The category of drivers that was on average indicated by the most participants was the political category. The three subdrivers that were indicated most for this category are Food legislation, Official controls & communication and War & conflict. This category also scores best in the overall ranking of subdrivers to consider, with Food legislation taking first place and Good practices and standards in third. These political subdrivers impact all parts of the FSMS and also of the performance indicators.

For Food legislation, the impact is scattered over all FSMS activities, through the influence of changing legislation and lack of harmonisation in legislation between different import and export regions. For Official controls & communication, the impact is mostly on external food safety performance, as different interpretation of legislation by different auditing bodies results in different auditing results. The high degree of controls and authority expectations put pressure on the QA team and the development of the FSMS. These findings are however not supported by the literature review. Very few papers were found discussing the impact of legislation and official controls on microbiological food safety, while the FBO's consider this as one of the most important subdrivers. Scientific research deviates here from the issues that occur in real-life situations.

War & conflict mostly impact QC activities, especially preventive measures, because restricted import and low availability of materials from conflict regions result in the need to look for other suppliers and manage multiple suppliers when products were originally sourced from suppliers in conflict regions. This impact was already suggested in Section 1.1.2 based on Kendall et al. (2018) and Wentholt et al., (2010) This subdriver scoring this high in the workshop might be related to the recent occurrence of wars in important export countries, mainly Ukraine. FBO's working with grains or other materials from Ukraine will have definitely felt the impact of the restricted export due to the ongoing war (EUC0, 2024).

Good practices & standards was not indicated by as many participants, but the ones who did feel the impact, ranked it quite high. In the literature study it did appear in multiple papers highlighting its impact on multiple FSMS activities, especially preventive measures and monitoring. When putting the results of this literature review next to the examples provided by the participants that did indicate this impact, it can be seen that the implementation of good practices and the follow up of microbiological standards does put pressure on the implementation of preventive measures such as hygiene management (Achinas et al., 2019; Berge & Baars, 2020; Constanzo et al., 2018; Firmo et al., 2023; Nalbone et al., 2022; Sab et al., 2024; Sobolik et al., 2021; Zwietering et al., 2023) , monitoring of process and product parameters to stay in between the acceptable ranges set by standards (Jacxsens et al., 2017; Kharbach et al., 2023; Mario et al., 2024; Saksena et al., 2019; Vallinayagam et al., 2022), and the implementation of changing standards in the system set-up, which was mostly mentioned by the workshop participants.


The economic subdriver of Global trade was indicated by two thirds of the participants and ranked 8th in the overall subdriver ranking. The impact of it on food safety management is rather scattered over different activities. Globalisation leads to export to new countries, as well as import from suppliers all over the world. The whole FSMS, both QC and QA activities, is subject to changes caused by new sourcing regions, new export countries and the increase of stakeholders that need to be considered. In the literature review, more papers were found on the impact of Distribution channels than for Global trade. The mechanisms described in these papers talk about the influence of time, temperature and handling in transport to the Distribution channels on food safety. If any of these aspects are not favourable for the food safety of the product, a higher pressure is put on hygiene, interventions and optimised operations, to prevent pathogens from entering or growing throughout the supply chain (Lopez-Galvez et al., 2021; Ortuzar et al., 2020).

Dietary choice and Resistant pests & diseases are the top subdrivers with an impact on food safety in both the workshop and the literature review, with Consumer awareness & attitude coming in third in the workshop results. All three also show up in the top 10 of the overall ranking of subdrivers to consider. They impact all parts of the FSMS. Resistant pests diseases especially have an impact on preventive measures: when resistance of pests and diseases to interventions increases, it becomes more important to keep them out of the workplace. Increased incoming material control, pest control and hygienic working are most important to achieve this, according to the participants in the workshop. This is confirmed by the literature (Aleksic et al., 2024; Aragao et al., 2021; Fernandes et al., 2018; Koutsoumanis et al., 2021; Rubiola et al., 2022; Rugna et al., 2021; Yang et al., 2024). Dietary choice and Consumer awareness & attitude mostly have an impact through rising demand for new or different products, leading to a revision of the whole FSMS to accommodate for these new products. For the subdriver of Dietary choice, FBO's also highlighted the demand for products with a different formulation and production, like containing less salt or sugar, and adapting to the requirements for claims. When production is adapted like this, validation of the food safety of this adapted product and production process are required. Two different participants also mentioned the impact of allergen free diets, as this is also managed in the FSMS. The scope of this thesis is on microbiological food safety, so these results were not taken into account in further processing, but it is worth mentioning that this is also a possible impact of Dietary choice. In the literature review, the main focus concerning Dietary choice is on dietary staples in different countries. Large demand for these products put pressure on FBO's, and also results in large exposure of contaminations on this product. This calls for good hygiene management in production facilities of such diet staples (Bahuguna et al., 2023; Cortes-Sanchez et al., 2023; Ngo et al., 2021; Oliveira et al., 2018) For Consumer awareness & attitude, it was also mentioned that negative publicity and demand for new sourcing regions, e.g. local sourcing, could lead to a necessary change in suppliers.

The technological subdrivers of Food packaging and Processing techniques & scale mainly implicate that new and sustainable packaging solutions, and new technologies, should always be validated before implementation. Literature shows that new processing techniques could make operation easier and be used as effective intervention techniques, but they do require good knowledge and understanding of the operating personnel. Products for food production have an impact on the quality of the raw materials, and when new products are used, this should be taken into account in system set-up. When regulation on products like pesticides change and pesticide use is reduced, microbiological quality of the incoming materials might decrease, and more sampling might be necessary. On the other hand, as shown in the literature study, the administration of pesticides using contaminated water might also result in higher microbial loads of the incoming materials (Gomba et al., 2017). The same is true for fertilizes, as they provide a favourable environment for growth of plants, they can also facilitate growth of micro-organisms (Amkor et al., 2024). The literature review highlighted the impact of Novel food sources on food safety management (Egonyu et al., 2021; Garofalo et al., 2019; Grabowski et al., 2017; Wu et al., 2022; Vandeweyer et al., 2021; Wynants et al., 2017) , but this is only relevant when a company actually introduces these materials for new food products. New digital technologies, such as artificial intelligence, can help in facilitating monitoring activities according to literature (Ma et al., 2023; Varyvoda et al., 2021; Wu et al., 2021).

For the environmental drivers, Seasonality & weather and Climate change are the most indicated by participants. Both subdrivers are explained through similar impacts by the participants of the workshop: changes in weather, especially due to climate change, resulting in lower availability of ingredients, and these ingredients often vary in quality and food safety. Literature however mostly highlights the seasonal variation is pathogen contamination. Warm and wet weather can stimulate the growth and transmission of pathogens (Amaiach et al., 2023; Beckiewicz & Kowalcyk, 2021; Bogdanovicova et al., 2019; du Plessis et al., 2023; Dzudzor et al., 2024; Hull-Jackson & Adesiyun, 2019; Ilic et al., 2017; Jeon et al., 2020; Lim et al., 2021; Sabillon et al., 2020; Srisamran et al., 2022). This phenomenon is not mentioned by the FBO's in the workshop. This could mean that FBO's do not observe these variations in their production, or that they are not attentive to these variations. Participants of the workshop also highlighted the effect of agricultural pollution on contamination of ingredients and water quality. A few of the examples for this were not considered in further analysis because they specifically mentioned chemical issues. Other examples did not specifically mention if they considered microbiological or chemical contamination. The geographic region of sourcing can impact multiple facets of food safety management, but none of these mechanisms were mentioned by more than participant. This influence was also not supported by the literature review. Reuse of water was considered in literature as a Use of sidestreams and as

part of good Water management. To be able to repurpose process water safely, interventions, validation of these interventions, monitoring and verification of the process parameters are required (Gadelha et al., 2019; Koutsoumanis et al., 2023)

4.2.3 Formulation of new external context indicators

Figure 12 Impact of the drivers from the external context on the internal context via an innovation pathway (indicated with blue lightning bolt), and on the food safety management system via food safety shocks (indicated by yellow lightning bolts) eliciting the need for resilience. Vermeersch (2024)

As shown in Figure 12, that was introduced in Section 1.3, the external context, consisting of the drivers and subdrivers, impacts the FSMS (shown by the yellow lightning bolts) requiring resilience of the system to result in good food safety output. The impact can be either on how QA and QC activities are performed or on the way food safety performance is judged. The mechanisms that were presented in the previous section give real life explanations of how this might happen. When a food business operates in a low impact environment, changes in external context factors have no or limited impact on their FSMS. Resilience of the FSMS is thus not required to guarantee food safety of the output. When a business operates in a high impact environment, a high variability of food safety output is expected and resilience is needed to cope with that.

Indicators that can assess the severity of the external context impact can be based on the mechanisms that are presented for the most important drivers to consider. A first suggestion for new external context indicators stems from the overall ranking of subdrivers by the FBO's in the workshop. Food legislation is found to be the most important subdriver to consider in food safety management for these businesses. The impact that they see here has to do with changing and new legislation, and non-harmonised legislation between the different countries of their suppliers and customers. Two new indicators for external context factors can be constructed based on these subdriver effects. The first one will ask about variation of legislation in the country of production. A low impact is related to stable legislation that is not often updated. High impact is related to regularly updated legislation. Changing regulation was also mentioned by participants as a reason for impact on their FSMS for the subdrivers of Products for food production, Geographic region and Global trade. The second indicator could handle harmonisation of legislation between the different countries in Europe, most legislation is harmonised. Low impact could then be considered for companies that import, export and produce only in Europe. High impact is present when supply, distribution and production happen in various countries that do not have a

harmonized legislation. Stoyanova (2019) also mentions the importance of legislative external context factors, including changing and harmonisation of legislation. Differences between regulations of different countries and compliance to new criteria dependant on the country of supply and distribution leading to complication of the FSMS were also mentioned by participants for the subdrivers of Climate change (due to low availability of ingredients and new region sourcing), Processing techniques & scale (due to upscaling to export) and Official controls & communication.

A second political subdriver that should be considered for conversion into a new indicator for external impact is Good practices & standards. Although it was not in the top 3 most indicated political subdrivers, the participants that did indicate an impact, also ranked it high. This already indicates the different levels of impact: some FBO's are under high pressure of these Good practices & standards, while others don't even notice the impact. The mechanisms of impact are mostly based on the literature review for this, where it did come out on top among the political subdrivers. Regulatory standards can be defined for product performance, process design or a combination of both. Product performance is regulated by criteria for presence of hazards, while process design standards focus on the implementation of certain procedures in process design, such as sanitation programs (Cho & Hooker, 2009). Good Agricultural Practices or GAP standards, the HACCP principle and International Standardisation Organization or ISO standards are examples of such standards and are meant to achieve international uniformity. Certain private standards exist that are aimed at improving supplier and customer relationships and eliminating the need for multiple audits through certification. These standards often apply to the entire Quality Management Systems and are based on GAP, GMP, HACCP and ISO principles. Examples are Global GAP, British Retail Consortium (BRC) and Safe Quality Food (SQF) (Jacxsens et al, 2011; Luning et al, 2009; Trienekens & Zuurbier, 2008). Based on this, two external context indicators are suggested for implementation. The first one should handle regulatory standards. Strict standards on product performance pose high requirements for the FSMS activities. Strict standards on process design require implementation and follow-up of specific processes. Stringent and often changing regulatory standards thus result in a high impact situation. When product and process standards are less stringent or stable over time, impact is low. A second external indicator could be based on private standards and the pressure for implementation based on supplier and customer requirements. High impact relates to high pressure for implementation of multiple standards, while low impact refers to limited pressure for implementation of (additional) private standards. However, this was only specifically highlighted in one paper, as an instigator for additional audits (Smith, 2019). This indicator might thus be less important to include.

The second highest ranked subdriver is climate change. Effects of climate change as observed by the workshop participants have to do with availability of quality ingredients, maintenance of the cold chain and reduced water use. Although "climate change" and "sustainability" are two concept that are often related to each other, the FBO's in this workshop did not mention this drive for sustainability as an effect of climate change. For a business, incorporation of sustainable initiatives is often forced by legislation or customer requirements, or intentionally done as part of a business strategy. For a sustainability decision to make sense, it needs to generate profit (Chladek, 2019). For the subdriver of food packaging, multiple examples talked about the switch to more sustainable packaging solutions such as reduction of material and recycled or recyclable material This evolution is also driven by European legislation, as mentioned in Matthews et al. (2021). Pressure to include sustainable alternatives could thus be a possible external context indicator, with high impact being related to high legislative pressure and/or customer requirements. The observed effect of reduced water use also falls under such a implementation driven by sustainability pressures. The main effects by FBO's concerning Climate change have to do with irregular and extreme weather events impacting availability and quality of products, and the cold chain. Both of these are also mentioned as effects of Seasonality & weather. Literature supports the idea that weather conditions impact contamination of materials. Possible external context indicators based on this subdriver could be about the weather conditions in supplier regions, and weather conditions in the production and distribution region (related to maintenance of the cold chain). Highly variable and hot weather result in higher impact on food safety in both cases.

4.2.4 Adding a resilience level to existing QA and QC indicators

To combat high impact of external context factors, a food business thus needs to be resilient in order to produce a safe output. High impact will likely result in high quality variability of input and output. Resilience means that this variability is considered, the root causes are sought, and changes in operations and activities are made to bring variability back to normal levels. To make this process fast and smooth, continuous monitoring and re-evaluation of the monitoring results are needed, and production processes should be adaptable to react quickly when inconsistencies occur (Rød et al., 2020). The Resilience Framework Matrix in Section 1.2.2.3 shows how this is a cyclical process: when variability goes out of bounds, extra attention should be given to the reason for this disturbance. This should then be communicated properly to the right people or authorities, that can then make a decision on how to handle this variability, and new procedures can be implemented (Bracco et al., 2014). To be able to do this, the company needs to be prepared for future disturbances and be able to anticipate on them in a pro-active manner. Research and innovation are key to reach this goal. An overview needs to be kept on trends in the company itself as well as trends occurring in the rest of the food system. A clear vision on the different drivers at play in the food system is needed to find the root cause for occurring problems. Research in unexpected variability can also clear up new pathways of impact of external context drivers, which will lead to more preparedness for similar situations in the future. An example of this could be, based on the mechanisms as presented based on the workshop and literature review, seasonal variation of contamination. In incoming material control, and monitoring of the product contamination, it might be evident that a high variability of food safety parameters occurs when comparing records from different times of the year. If this variability could be attributed to seasonal variation due to warm and wet weather stimulating growth of pathogens, preventive measures should be increased in these high risk seasons. The effectiveness of preventive measures and intervention strategies can be validated to see how these measures should be adapted to the seasons, and after implementation, effectiveness can be verified, and where needed, re-evaluated.

This idea of resilience has been translated into a resilience level for the assessment of QC and QA activities in food businesses. For QC activities, resilience is based on scientific and food system knowledge, variability is expected, and can be uncertain or unpredictable, but should be reduced over time, and this through the adaptability of the implemented activities. Resilience in QA activities is based on research & innovation using scientific and food system information, activities are structured in a future driven way and continuously monitored and re-evaluated. Activities should be adaptable, and a plan B should always be present. The company depends on it's own information and records, as well as food system information for this.

4.2.5 Future perspectives

If impact of external context factors are high for a specific company, the variability stemming from these impact factors should be countered by resilient food safety management. This rationale can be translated for the updated diagnostic instrument: if a company scores high for external context indicators, they should reach the resilience level in QA and QC indicators, to deliver good food safety performance. Including both of these updates into the current diagnostic instrument will help in assessing maturity of a company's FSMS better in the future. To complete this update, the mechanisms resulting from the workshop and the literature study should be further analysed and translated into new indicators for external context. A prompt is already given for possible new indicators, but these new indicators should be verified by a panel of experts before implementation. The definition for the resilience level was already applied to two FSMS indicators, but the implementation in the other indicators for QA and QC activities will require further research and verification by experts. The scoring system, as seen in Table 3 of Section 2.1 will also need to be revised for the inclusion of a new level of advancement.

CONCLUSION

Impact of drivers and subdrivers on food safety on an FBO level were assessed with an online workshop where FBO's were stimulated to think about what impacts they see and experience in light of microbiological food safety management. Their answers were then translated into more concrete mechanisms. In this way, subdrivers could be linked to specific FSMS activities that they might impact when changes in the subdriver effects occur. The results were supported by a structured literature review with the same aim. This led to a more clear and structured vision of the ways in which impact of drivers and subdrivers can influence food safety management. However, the workshop was performed with only 15 FBO's that are all situated in Belgium. This limited number of participants that all operate in the same country can lead to uncertainty on the results. To get a more complete understanding of the mechanisms at play, the workshop could be repeated with a larger sample size of FBO's from different countries. Participants also mentioned struggling with the restriction for microbiological food safety impact, and some participants still gave examples based on chemical food safety and allergen management, and even sensorial quality of the products. An extension of the workshop to include all food safety and quality issues could be interesting to get a more comprehensive result. The literature review supported the results of the workshop in some ways, but also deviated from the results in terms of subdrivers and trends that were highlighted the most. Food legislation for example was seen as the most important subdrivers from an FBO perspective, but only limited scientific research of its impact was found. There are also some methodological limitations for this literature review: the search terms were chosen were re-evaluated throughout the process but could still be optimized further.

A ranking was made of the most important subdrivers to consider in food safety management, based on the rankings provided by the FBO's in the workshop. As already mentioned, the limited amount of participants does result in some uncertainty of these results. The subdrivers that are considered to be the most important to consider for FBO's are also probably most relevant to include as part of the Food Safety Management System Diagnostic Instrument. To include the impact of drivers, new indicators can be constructed for impact of external context impact. Suggestions are made for new external context indicators, but further investigation into the mechanisms at play, and a revision of the ranking based on a larger sample size of experts are needed to construct relevant indicators.

Resilient food safety management was described based on literature review and translated into a new level of FSMS maturity in the FSMS-DI. Further implementation of this resilience level into the existing indicators is required. This resilience level will serve to asses if a business can cope with high impact of external factors. The implementation of both these external context indicators and the resilience level can help the assessment of maturity of a business's FSMS.

This research gives an indication for possible mechanisms at play when drivers and subdrivers impact food safety management, and how this could be translated into the assessment of food safety management systems with the diagnostic instrument in the future.

REFERENCES

- Abrokwah, S., Ekumah, B., & Abrokwah, F. K. (2020). Microbial assessment of plastic bottles reused for packaging food products in Ghana. *Food Control, 109*, 106956. https://doi.org/10.1016/j.foodcont.2019.106956
- Acharya, D. R., Liu, S., Lu, H., Albashir, D., Koirala, P., Shi, Y., & Chen, Q. (2024). Nanoemulsion-integrated gelatin/bacterial cellulose nanofibril-based multifunctional film: Fabrication, characterization, and application. *International Journal of Biological Macromolecules*, 257, 128341. https://doi.org/10.1016/j.ijbiomac.2023.128341
- Achinas, S., Charalampogiannis, N., & Euverink, G. J. (2019). A brief recap of microbial adhesion and biofilms. *Applied Sciences*, *9*(14), 2801. https://doi.org/10.3390/app9142801
- Adampourezare, M., Hasanzadeh, M., Hoseinpourefeizi, M.-A., & Seidi, F. (2023). Iron/iron oxide-based magneto-electrochemical sensors/biosensors for ensuring food safety: Recent progress and challenges in environmental protection. *RSC Advances*, *13*(19), 12760–12780. https://doi.org/10.1039/d2ra07415j
- Adini, B., Cohen, O., Eide, A. W., Nilsson, S., Aharonson-Daniel, L., & Herrera, I. A. (2017). Striving to be resilient: What concepts, approaches and practices should be incorporated in Resilience Management Guidelines? *Technological Forecasting and Social Change*, *121*, 39–49. <u>https://doi.org/10.1016/j.techfore.2017.01.020</u>
- Ahmed, A. R., Aleid, S. M., & Mohammed, M. (2023). Impact of modified atmosphere packaging conditions on quality of dates: Experimental study and predictive analysis using artificial neural networks. *Foods*, *12*(20), 3811. https://doi.org/10.3390/foods12203811
- Ahmed, Md. W., Haque, Md. A., Mohibbullah, Md., Khan, Md. S., Islam, M. A., Mondal, Md. H., & Ahmmed, R. (2022). A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. *Food Packaging and Shelf Life, 33*, 100913. https://doi.org/10.1016/j.fpsl.2022.100913
- Ahmed, I., Lin, H., Zou, L., Li, Z., Brody, A. L., Qazi, I. M., Lv, L., Pavase, T. R., Khan, M. U., Khan, S., & Sun, L. (2018). An overview of smart packaging technologies for monitoring safety and quality of meat and meat products. *Packaging Technology and Science*, *31*(7), 449–471. https://doi.org/10.1002/pts.2380
- Aiyar, A., & Pingali, P. (2020). Pandemics and food systems towards a proactive food safety approach to Disease Prevention & Management. *Food Security*, *12*(4), 749–756. https://doi.org/10.1007/s12571-020-01074-3
- Al-Najjar, S. Z., Al-Sharify, Z. T., Onyeaka, H., Miri, T., Obileke, K., & Anumudu, C. K. (2023). Advances in mass transfer and fluid flows in non-thermal Food Processing Industry – a review. *Food Production, Processing and Nutrition, S*(1). <u>https://doi.org/10.1186/s43014-023-00162-z</u>
- Aleksic, B., Udovicki, B., Kovacevic, J., Miloradovic, Z., Djekic, I., Miocinovic, J., Tomic, N., & Smigic, N. (2024). Microbiological assessment of dairy products produced by small-scale dairy producers in Serbia. *Foods*, *13*(10), 1456. <u>https://doi.org/10.3390/foods13101456</u>
- Ali, M. A., Hashish, M. H., & Fekry, M. M. (2023). Microbiological quality of some packed and unpacked bread products in Alexandria, Egypt. *Journal of the Egyptian Public Health Association, 98*(1). https://doi.org/10.1186/s42506-023-00141-9
- Alizadeh-Sani, M., Mohammadian, E., Rhim, J.-W., & Jafari, S. M. (2020). Ph-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. *Trends in Food Science Gamp; Technology, 105*, 93–144. https://doi.org/10.1016/j.tifs.2020.08.014
- Allard, M. W., Bell, R., Ferreira, C. M., Gonzalez-Escalona, N., Hoffmann, M., Muruvanda, T., Ottesen, A., Ramachandran, P., Reed, E., Sharma, S., Stevens, E., Timme, R., Zheng, J., & Brown, E. W. (2018). *Genomics of Foodborne Pathogens for Microbial Food* Safety. Current Opinion in Biotechnology, 49, 224–229. https://doi.org/10.1016/j.copbio.2017.11.002

- Alsayeqh, A. F., Baz, A. H., & Darwish, W. S. (2021). Antimicrobial-resistant foodborne pathogens in the Middle East: A systematic review. *Environmental Science and Pollution Research, 28*(48), 68111–68133. <u>https://doi.org/10.1007/s11356-021-17070-9</u>
- Alvarez-Molina, A., Cobo-Díaz, J. F., Alexa, E. A., Crispie, F., Prieto, M., López, M., Cotter, P. D., & Alvarez-Ordóñez, A. (2023). Sequencing-based analysis of the microbiomes of Spanish food processing facilities reveals environment-specific variation in the dominant taxa and antibiotic resistance genes. *Food Research International, 173*, 113442. https://doi.org/10.1016/j.foodres.2023.113442
- Alwazeer, D. (2020). Importance of consideration of oxidoreduction potential as a critical quality parameter in food industries. *Food Research International, 132*, 109108. https://doi.org/10.1016/j.foodres.2020.109108
- Amaiach, R., Lairini, S., Fadil, M., Benboubker, M., Bouslamti, R., El Amrani, S., & El Ouali Lalami, A. (2023). Microbiological profile and hygienic quality of foodstuffs marketed in Collective Catering in central Morocco. *International Journal of Food Science*, 2023, 1–13. https://doi.org/10.1155/2023/2820506
- Amkor, A., Aboulkacem, A., Bannay, O. E., & El Barbri, N. (2024). Determining the potato samples processed manner with an electronic nose system supported by a machine-learning approach. *Measurement Science and Technology*, *35*(8), 085104. https://doi.org/10.1088/1361-6501/ad440f
- Ansari, M. A. (2023). Nanotechnology in food and plant science: Challenges and future prospects. *Plants*, *12*(13), 2565. https://doi.org/10.3390/plants12132565
- Antunes, P., & Mourão, H. (2011). Resilient Business Process Management: Framework and services. *Expert Systems with Applications*, *38*(2), 1241–1254. <u>https://doi.org/10.1016/j.eswa.2010.05.017</u>
- Aragão, B. B., Trajano, S. C., Silva, R. A., Silva, B. P., Peixoto, R. de, & Mota, R. A. (2021). Occurrence of multi-resistant staphylococcus aureus in artisan goat Coalho cheese in northeastern Brazil. *Acta Scientiae Veterinariae*, 49. https://doi.org/10.22456/1679-9216.117447
- Aslam, A., Zahoor, T., Khan, M. R., Khaliq, A., Nadeem, M., Sagheer, A., Chugtai, M. F., & Sajid, M. W. (2019). Studying the influence of packaging materials and storage on the physiochemical and microbial characteristics of black plum (*syzygium cumini*) jam. *Journal of Food Processing and Preservation*, *43*(5). https://doi.org/10.1111/jfpp.13941
- Aussanasuwannakul, A., & Butsuwan, P. (2024). Evaluating microbiological safety, sensory quality, and packaging for online market success of roasted pickled fish powder. *Foods*, *13*(6), 861. https://doi.org/10.3390/foods13060861
- Baert, K., Van Huffel, X., Jacxsens, L., Berkvens, D., Diricks, H., Huyghebaert, A., & Uyttendaele, M. (2012). Measuring the perceived pressure and stakeholders' response that may impact the status of the safety of the food chain in Belgium. *Food Research International*, 48(1), 257–264. <u>https://doi.org/10.1016/j.foodres.2012.04.005</u>
- Bahramianfard, H., Derakhshandeh, A., Naziri, Z., & Khaltabadi Farahani, R. (2021). Prevalence, virulence factor and antimicrobial resistance analysis of salmonella enteritidis from poultry and egg samples in Iran. *BMC Veterinary Research*, *17*(1). https://doi.org/10.1186/s12917-021-02900-2
- Bahuguna, A., Kumar, V., Bodkhe, G., Ramalingam, S., Lim, S., Joe, A., Lee, J. S., Kim, S.-Y., & Kim, M. (2023). Safety Analysis of Korean Cottage Industries' doenjang, a traditional fermented soybean product: A special reference to biogenic amines. *Foods*, 12(22), 4084. https://doi.org/10.3390/foods12224084

Bai, C. (2019). Analysis on microbial contamination of several kinds of food in L City. AIP Conference Proceedings.

https://doi.org/10.1063/1.5085540

Bandyopadhyay, N. C., More, V., Tripathi, J., & Gautam, S. (2020). Gamma radiation treatment to ensure microbial safety of ready to

bake (RTB) vegetable toppings/ fillers and retain their nutritional qualities during cold storage. *Radiation Physics and Chemistry*, *176*, 108939. https://doi.org/10.1016/j.radphyschem.2020.108939

- Bassey, A. P., Chen, Y., Boateng, E. F., Zhang, Y., Diao, X., Nasiru, M. M., Tang, C., Ye, K., Li, C., & Zhou, G. (2022). Evaluation of physicochemical, microbiological, and sensory profiles of vacuum-packed cooked low-salt pork belly under refrigeration and room-temperature storage. *LWT*, *167*, 113847. https://doi.org/10.1016/j.lwt.2022.113847
- Beczkiewicz, A. T. E., & Kowalcyk, B. B. (2021). Risk factors for salmonella contamination of whole chicken carcasses following changes in U.S. regulatory oversight. *Journal of Food Protection*, *84*(10), 1713–1721. https://doi.org/10.4315/jfp-21-144
- Berge, A. C., & Baars, T. (2020). Raw milk producers with high levels of hygiene and safety. *Epidemiology and Infection, 148.* https://doi.org/10.1017/s0950268820000060
- Bianchi, D. M., Barzanti, P., Adriano, D., Martucci, F., Pitti, M., Ferraris, C., Floris, I., La Brasca, R., Ligotti, C., Morello, S., Scardino, G., Musolino, N., Tramuta, C., Maurella, C., & Decastelli, L. (2023). Food safety monitoring of salmonella spp. in northern Italy 2019–2021. *Pathogens*, 12(7), 963. https://doi.org/10.3390/pathogens12070963
- Blikra, M. J., Altintzoglou, T., Løvdal, T., Rognså, G., Skipnes, D., Skåra, T., Sivertsvik, M., & Noriega Fernández, E. (2021). Seaweed products for the future: Using current tools to develop a sustainable food industry. *Trends in Food Science Gamp; Technology*, 118, 765–776. <u>https://doi.org/10.1016/j.tifs.2021.11.002</u>
- Bogdanovičová, K., Kameník, J., Dorotíková, K., Strejček, J., Křepelová, S., Dušková, M., & Haruštiaková, D. (2019). Occurrence of foodborne agents at Food Service Facilities in the Czech Republic. *Journal of Food Protection*, *82*(7), 1096–1103. https://doi.org/10.4315/0362-028x.jfp-18-338
- Brunn, A., Kadri-Alabi, Z., Moodley, A., Guardabassi, L., Taylor, P., Mateus, A., & Waage, J. (2022). Characteristics and global occurrence of human pathogens harboring antimicrobial resistance in food crops: A scoping review. *Frontiers in Sustainable Food Systems, 6.* https://doi.org/10.3389/fsufs.2022.824714
- Bracco, F., Piccinno, T., & Dorigatti, G. (2014). Turning variability into emergent safety: the resilience matrix for providing strong responses to weak signals. *Proceedings of the Fifth Symposium on Resilience Engineering*, 23-27. Sophia Antipolis: Resilience Engineering Association
- Buscaroli, E., Braschi, I., Cirillo, C., Fargue-Lelièvre, A., Modarelli, G. C., Pennisi, G., Righini, I., Specht, K., & Orsini, F. (2021). Reviewing chemical and biological risks in urban agriculture: A comprehensive framework for a food safety assessment of City Region Food Systems. *Food Control*, *126*, 108085. <u>https://doi.org/10.1016/j.foodcont.2021.108085</u>
- Cano, C., Meneses, Y., & Chaves, B. D. (2019). Ozone-based interventions to improve the microbiological safety and quality of poultry carcasses and parts: A Review. *Journal of Food Protection*, 82(6), 940–947. https://doi.org/10.4315/0362-028x.jfp-18-489
- Ceballos, L. A., Vercellino, D., D'Errico, V., Barzanti, P., Decastelli, L., Nicolandi, L., Negro, M., & Ru, G. (2020). Hazard perception and possibility of simplifying food safety management systems in small businesses in Piedmont region, Italy. *Italian Journal of Food Safety*, *9*(1). https://doi.org/10.4081/ijfs.2020.8273
- Charmaz, K. (2006). Coding in grounded theory practice. In *Constructing grounded theory: A practical guide through qualitative analysis* (pp. 42–71). essay, SAGE.

- Chau, M. L., Aung, K. T., Hapuarachchi, H. C., Lee, P. S., Lim, P. Y., Kang, J. S., Ng, Y., Yap, H. M., Yuk, H.-G., Gutiérrez, R. A., & Ng, L. C. (2017). Microbial survey of ready-to-eat salad ingredients sold at retail reveals the occurrence and the persistence of listeria monocytogenes sequence types 2 and 87 in pre-packed smoked salmon. *BMC Microbiology*, 17(1). https://doi.org/10.1186/s12866-017-0956-z
- Cheah, H. Y., Merican, S. E., Nor Khaizura, M. A. R., Bakar, A. Z. A., Omar, S., & Sanny, M. (2021). Assessing the performance of Food Safety Management System Using Food Safety Management System Diagnostic Tools and microbial assessment scheme: A case of powdered beverage manufacturers. *Malaysian Journal of Medical Sciences*, *28*(3), 129–142. <u>https://doi.org/10.21315/mjms2021.28.3.12</u>
- Chisenga, S. M., Tolesa, G. N., & Workneh, T. S. (2020). Biodegradable food packaging materials and prospects of the Fourth Industrial Revolution for Tomato Fruit and product handling. *International Journal of Food Science*, 2020, 1–17. <u>https://doi.org/10.1155/2020/8879101</u>
- Chladek, N. (2019). The importance of sustainability in business: HBS Online. Business Insights Blog. https://online.hbs.edu/blog/post/business-sustainability-strategies
- Cho, B.-H., & Hooker, N. H. (2009). Comparing Food Safety Standards. *Food Control, 20*(1), 40–47. https://doi.org/10.1016/j.foodcont.2008.01.011
- Chrun, R., Hosotani, Y., Kawasaki, S., & Inatsu, Y. (2017). Microbioligical hazard contamination in fermented vegetables sold in local markets in Cambodia. *Biocontrol Science*, *22*(3), 181–185. https://doi.org/10.4265/bio.22.181
- Commission Notice 2022/C 355/01. Commission Notice on the implementation of food safety management systems covering Good Hygiene Practices and procedures based on the HACCP principles, including the facilitation/flexibility of the implementation in certain food businesses 2022/C 355/01. *Official Journal of the European Communities*, 16/09/2022.
- Cortés-Sánchez, A. D., Salgado-Cruz, M. de, Diaz-Ramírez, M., Torres-Ochoa, E., & Espinosa-Chaurand, L. D. (2023). A review on food safety: The case of Citrobacter sp., fish and fish products. *Applied Sciences*, *13*(12), 6907. https://doi.org/10.3390/app13126907
- Costanzo, N., Rodolfi, M., Musarella, R., Ceniti, C., Santoro, A., Britti, D., & Casalinuovo, F. (2018). Microbial quality evaluation of grated cheese samples collected at retail level in Calabria (Italy). *Journal of Food Safety*, *38*(6). https://doi.org/10.1111/jfs.12530
- da Silva, G. M., de Paiva Anciens Ramos, G. L., Barreto, C., Schiavone, T., de Carvalho da Hora, I. M., & Walter, E. H. (2023). Industrial verification of egg handling for meal preparation: A case study of professional engagement with application of remote design thinking during the covid-19 pandemic. *International Journal of Food Science Gamp; Technology, 58*(3), 1299–1306. https://doi.org/10.1111/ijfs.16285
- de Quadros Rodrigues, R., Loiko, M. R., Minéia Daniel de Paula, C., Hessel, C. T., Jacxsens, L., Uyttendaele, M., Bender, R. J., & Tondo, E. C. (2014). Microbiological contamination linked to implementation of good agricultural practices in the production of organic lettuce in southern Brazil. *Food Control, 42*, 152–164. <u>https://doi.org/10.1016/i.foodcont.2014.01.043</u>
- Dogan, O. B., Clarke, J., Mattos, F., & Wang, B. (2019). A quantitative microbial risk assessment model of campylobacter in broiler chickens: Evaluating processing interventions. *Food Control, 100*, 97–110. https://doi.org/10.1016/j.foodcont.2019.01.003
- Duchenne-Moutien, R. A., & Neetoo, H. (2021). Climate change and emerging food safety issues: A Review. *Journal of Food Protection*, *84*(11), 1884–1897. <u>https://doi.org/10.4315/jfp-21-141</u>
- du Plessis, F., Goedhals-Gerber, L. L., & van Eeden, J. (2023). Forecasting fruit export damages and enhancing food safety through risk management. *Sustainability*, *15*(21), 15216. https://doi.org/10.3390/su152115216

- Dzikunoo, J., Letsyo, E., Adams, Z., Asante-Donyinah, D., & Dzah, C. S. (2021). Ghana's Indigenous Food Technology: A review of the processing, safety, packaging techniques and advances in Food Science and Technology. *Food Control, 127*, 108116. https://doi.org/10.1016/j.foodcont.2021.108116
- Dzingirayi, G., & Korsten, L. (2016). Assessment of primary production of horticultural safety management systems of Mushroom Farms in South Africa. *Journal of Food Protection, 79*(7), 1188–1196. <u>https://doi.org/10.4315/0362-028x.ifp-15-356</u>
- Dzudzor, M. I., Gerber, N., & Asante, F. A. (2024). Food Safety and dietary diversity in African urban cities: Evidence from Ghana. BMC Public Health, 24(1). https://doi.org/10.1186/s12889-024-18297-0
- EFSA. (2010). Development and implementation of a system for the early identification of emerging risks in food and feed. *EFSA Journal*, *8*(10), 1888. <u>https://doi.org/10.2903/j.efsa.2010.1888</u>
- EFSA. (2012). Piloting a process for emerging risks identification: Lessons Learnt and next steps. *EFSA Supporting Publications*, *9*(7). https://doi.org/10.2903/sp.efsa.2012.en-310
- EFSA. (2014a). Drivers of emerging risks and their interactions in the domain of biological risks to animal, plant and Public Health: A Pilot Study. *EFSA Supporting Publications, 11*(4). <u>https://doi.org/10.2903/sp.efsa.2014.en-588</u>
- EFSA. (2014b). Guidance on expert knowledge elicitation in food and Feed Safety Risk Assessment. *EFSA Journal*, *12*(6). https://doi.org/10.2903/j.efsa.2014.3734
- Egonyu, J. P., Kinyuru, J., Fombong, F., Ng'ang'a, J., Ahmed, Y. A., & Niassy, S. (2021). Advances in insects for food and feed. *International Journal of Tropical Insect Science*, *41*(3), 1903–1911. https://doi.org/10.1007/s42690-021-00610-8
- Elafify, M., Elabbasy, M. T., Mohamed, R. S., Mohamed, E. A., Saad Eldin, W. F., Darwish, W. S., Eldrehmy, E. H., & Shata, R. R. (2022). Prevalence of multidrug-resistant listeria monocytogenes in dairy products with reduction trials using rosmarinic acid, ascorbic acid, clove, and Thyme Essential Oils. *Journal of Food Quality, 2022*, 1–12. https://doi.org/10.1155/2022/9696927
- Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–Host–Environment Interplay and disease emergence. *Emerging Microbes Gamp; Infections, 2*(1), 1–7. <u>https://doi.org/10.1038/emi.2013.5</u>
- Esposito, L., Mastrocola, D., & Martuscelli, M. (2022). Approaching to biogenic amines as quality markers in packaged chicken meat. *Frontiers in Nutrition, 9.* https://doi.org/10.3389/fnut.2022.966790
- EU Regulation 178/2002. Regulation (EC) No 178/2002 of the European parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority. *Official Journal of the European Communities*, 01/02/2002.
- EU Regulation 852/2004. Regulation (EC) No 852/2004 of the European parliament and of the council of 29 April 2004 on the hygiene of foodstuffs. *Official Journal of the European Communities*, 30/04/2004.
- EU Regulation 853/2004. REGULATION (EC) No 853/2004 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. *Official Journal of the European Communities*, 30/04/2004.
- EU Regulation 2015/2283. Regulation (EU) No 2015/2283 of the European parliament and of the council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. *Official Journal of the European Communities*, 25/11/2015
- EUCO. (2024). *How the Russian invasion of Ukraine has further aggravated the global food crisis consilium*. Consilium Europa. https://www.consilium.europa.eu/en/infographics/how-the-russian-invasion-of-ukraine-has-further-aggravated-the-global-food-crisis/

- Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A review on antimicrobial packaging for extending the shelf life of food. *Processes*, *11*(2), 590. <u>https://doi.org/10.3390/pr11020590</u>
- Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent packaging in Meat Industry. *Trends in Food Science Gamp; Technology, 61*, 60–71. https://doi.org/10.1016/j.tifs.2017.01.002

FAO. (2022). Thinking about the future of Food Safety. *Food and Agriculture Organization of the United Nations*. https://doi.org/10.4060/cb8667en

- FCEC (2013). Scoping study Delivering on EU food safety and nutrition in 2050-Scenarios of future change and policy responses. *European Commission.*
- Fernandes, D. V., Castro, V. S., Cunha Neto, A. da, & Figueiredo, E. E. (2018). Salmonella spp. in the fish production chain: A Review. *Ciência Rural, 48*(8). https://doi.org/10.1590/0103-8478cr20180141
- Fernández, L. A., Etchegaray, V. F., Grandinetti, G., González, M. F. L., Medici, S. K., & Alippi, A. M. (2023). Characterization of Argentine commercial bee pollen intended for human consumption. *Revista de la Facultad de Ciencias Agrarias UNCuyo*, 55(2), 20-31.
- Fernandez, A., & Paoletti, C. (2021). What is unsafe food? change of perspective. *Trends in Food Science Gamp; Technology*, *109*, 725–728. https://doi.org/10.1016/j.tifs.2021.01.041
- Ferreira Rodrigues, J., Cunha dos Santos Filho, M. T., Aparecida de Oliveira, L. E., Brandemburg Siman, I., Barcelos, A. de, de Paiva Anciens Ramos, G. L., Almeida Esmerino, E., Gomes da Cruz, A., & Arriel, R. A. (2021). Effect of the COVID-19 pandemic on food habits and perceptions: A study with Brazilians. *Trends in Food Science Gamp; Technology, 116*, 992–1001. <u>https://doi.org/10.1016/j.tifs.2021.09.005"</u>
- Ferri, G., Lauteri, C., Scattolini, M., & Vergara, A. (2023). Shelf life and safety of vacuum packed HPP-treated soaked cod fillets: Effects of salt content and multilayer plastic film. *Foods*, *12*(1), 179. https://doi.org/10.3390/foods12010179
- Firmo, M. J., Menezes, L. D., Sales, G. de, Carvalho, A. F., da Costa, N. M., Leite Júnior, B. R., & Martins, M. L. (2023). Diagnosis of the microbiological quality of fiscal artisanal minas cheese samples. *Food Control*, 153, 109887. https://doi.org/10.1016/j.foodcont.2023.109887
- Frankish, E. J., Phan-Thien, K.-Y., Ross, T., McConchie, R., Luning, P. A., & Bozkurt, H. (2022). Performance Assessment of Food Safety Management Systems in Australian apple packhouses in view of Microbial Control. *Food Control, 133*, 108642. <u>https://doi.org/10.1016/i.foodcont.2021.108642</u>
- Gadelha, J., Allende, A., López-Gálvez, F., Fernández, P., Gil, M., & Egea, J. (2019). Chemical risks associated with ready-to-Eat Vegetables: Quantitative Analysis to estimate formation and/or accumulation of disinfection byproducts during washing. *EFSA Journal, 17.* https://doi.org/10.2903/j.efsa.2019.e170913
- Garofalo, C., Milanović, V., Cardinali, F., Aquilanti, L., Clementi, F., & Osimani, A. (2019). Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. *Food Research International, 125*, 108527. https://doi.org/10.1016/j.foodres.2019.108527
- Ghosh, T., & Katiyar, V. (2022). Nanochitosan functionalized hydrophobic starch/guar gum biocomposite for edible coating application with improved optical, thermal, mechanical, and surface property. *International Journal of Biological Macromolecules*, 211, 116–127. https://doi.org/10.1016/j.ijbiomac.2022.05.079
- Gomba, A., Chidamba, L., & Korsten, L. (2017). Viable microbial loads on citrus carpoplane during Packhouse Processing and survival of foodborne pathogens in reconstituted Postharvest fungicides. *Journal of Food Safety*, *37*(4). https://doi.org/10.1111/jfs.12357

- Gómez, P. A., Egea-Gilabert, C., Giménez, A., Benaissa, R. R., Amoruso, F., Signore, A., Gallegos-Cedillo, V. M., Ochoa, J., & Fernández, J. A. (2023). Biodegradable food packaging of Wild Rocket (diplotaxis tenuifolia L. [DC.]) and sea fennel (Crithmum maritimum L.) grown in a cascade cropping system for short food supply chain. *Horticulturae*, *9*(6), 621. https://doi.org/10.3390/horticulturae9060621
- Grabowski, N. Th., & Klein, G. (2017). Bacteria encountered in raw insect, Spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of View. *Trends in Food Science Gamp; Technology*, *63*, 80–90. https://doi.org/10.1016/j.tifs.2017.01.007
- Gutierrez, M. M., Meleddu, M., & Piga, A. (2017). Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment. Food Research International, 91, 124–132. <u>https://doi.org/10.1016/i.foodres.2016.11.031</u>
- Gutierrez-Rodriguez, E., & Adhikari, A. (2018). Preharvest farming practices impacting fresh produce safety. *Microbiology Spectrum, 6*(2). https://doi.org/10.1128/microbiolspec.pfs-0022-2018
- Gyawali, R., Mahapatra, A. K., Bardsley, C. A., & Niemira, B. A. (2024). Nonthermal techniques, antimicrobial agents, and packaging methods to improve the microbial safety of nuts. *Trends in Food Science Gamp; Technology*, *146*, 104363. https://doi.org/10.1016/j.tifs.2024.104363
- Harikrishna, S., Anil, P. P., Shams, R., & Dash, K. K. (2023). Cold plasma as an emerging nonthermal technology for Food Processing: A comprehensive review. *Journal of Agriculture and Food Research*, *14*, 100747. <u>https://doi.org/10.1016/j.jafr.2023.100747</u>
- Hernández-García, E., Vargas, M., & Torres-Giner, S. (2022). Quality and shelf-life stability of pork meat fillets packaged in multilayer polylactide films. *Foods, 11*(3), 426. https://doi.org/10.3390/foods11030426
- Hingston, P. A., Truelstrup Hansen, L., Pombert, J.-F., & Wang, S. (2019). Characterization of listeria monocytogenes enhanced coldtolerance variants isolated during prolonged cold storage. *International Journal of Food Microbiology*, 306, 108262. https://doi.org/10.1016/j.ijfoodmicro.2019.108262
- Hull-Jackson, C., & Adesiyun, A. A. (2019). Foodborne disease outbreaks in Barbados (1998-2009): A 12-Year review. *The Journal of Infection in Developing Countries*, *13*(01), 1–10. https://doi.org/10.3855/jidc.10404
- Hunger, J. D. & Wheelen, T. L. (2014). 3 Environmental scanning and industry analysis. *Essentials of strategic management, 5*, 31–49. essay, Pearson.
- Hyun, J., Kim, J., Choi, Y., Kim, E., Kim, J., & Lee, S. (2018). Evaluation of microbial quality of dried foods stored at different relative humidity and temperature, and effect of packaging methods. *Journal of Food Safety*, *38*(2). https://doi.org/10.1111/jfs.12433
- Ibrahim, S., Fahmy, H., & Salah, S. (2021). Application of interactive and intelligent packaging for fresh fish shelf-life monitoring. *Frontiers in Nutrition, 8.* https://doi.org/10.3389/fnut.2021.677884
- Ilic, N., Velebit, B., Teodorovic, V., Djordjevic, V., Karabasil, N., Vasilev, D., Djuric, S., Adzic, B., & Dimitrijevic, M. (2017). Influence of environmental conditions on norovirus presence in mussels harvested in Montenegro. *Food and Environmental Virology*, 9(4), 406–414. https://doi.org/10.1007/s12560-017-9298-0
- Ivkova, I. A., Scryabina, O. V., Ryabkova, D. S., & Pilyaeva, A. S. (2021). The effect of plant-based antioxidants on the storage capacity of Canned Milk. *IOP Conference Series: Earth and Environmental Science*, 640(3), 032034. https://doi.org/10.1088/1755-1315/640/3/032034
- Jacxsens, L., Kirezieva, K., Luning, P. A., Ingelrham, J., Diricks, H., & Uyttendaele, M. (2015). Measuring microbial food safety output and comparing self-checking systems of food business operators in Belgium. *Food Control, 49*, 59–69. <u>https://doi.org/10.1016/j.foodcont.2013.09.004</u>

- Jacxsens, L., Luning, P. A., Marcelis, W. J., van Boekel, T., Rovira, J., Oses, S., Kousta, M., Drosinos, E., Jasson, V., & Uyttendaele, M. (2011). Tools for the performance assessment and improvement of Food Safety Management Systems. *Trends in Food Science Bamp; Technology, 22*, S80–S89. https://doi.org/10.1016/j.tifs.2011.02.008
- Jacxsens, L., Uyttendaele, M., Devlieghere, F., Rovira, J., Gomez, S. O., & Luning, P. A. (2010). Food Safety Performance Indicators to benchmark food safety output of Food Safety Management Systems. *International Journal of Food Microbiology*, 141. <u>https://doi.org/10.1016/i.ijfoodmicro.2010.05.003</u>
- Jacxsens, L., Uyttendaele, M., Luning, P., & Allende, A. (2017). Food Safety Management and risk assessment in the Fresh Produce Supply Chain. *IOP Conference Series: Materials Science and Engineering*, *193*, 012020. https://doi.org/10.1088/1757-899x/193/1/012020
- Jaffur, N., Jeetah, P., & Kumar, G. (2021). A review on enzymes and pathways for manufacturing polyhydroxybutyrate from Lignocellulosic Materials. *3 Biotech, 11*(11). https://doi.org/10.1007/s13205-021-03009-x
- Jeon, D. J., Pachepsky, Y., Coppock, C., Harriger, M. D., Zhu, R., & Wells, E. (2019). Temporal stability of E. coli and enterococci concentrations in a Pennsylvania creek. *Environmental Science and Pollution Research*, *27*(4), 4021–4031. https://doi.org/10.1007/s11356-019-07030-9
- Johnston, L. M., Wiedmann, M., Orta-Ramirez, A., Oliver, H. F., Nightingale, K. K., Moore, C. M., Stevenson, C. D., & Jaykus, L. (2014). Identification of core competencies for an undergraduate food safety curriculum using a modified Delphi Approach. *Journal of Food Science Education*, *13*(1), 12–21. <u>https://doi.org/10.1111/1541-4329.12024</u>
- Kendall, H., Kaptan, G., Stewart, G., Grainger, M., Kuznesof, S., Naughton, P., Clark, B., Hubbard, C., Raley, M., Marvin, H. J. P., & Frewer, L. J. (2018). Drivers of existing and emerging food safety risks: Expert opinion regarding multiple impacts. *Food Control, 90*, 440–458. <u>https://doi.org/10.1016/i.foodcont.2018.02.018</u>
- Keptan, B., & Kayisoglu, S. (2015). Consumers' attitude towards food additives. *American Journal of Food Science and Nutrition Research*, 2(2), 21–25.
- Khade, H. D., Saxena, S., Hajare, S. N., & Gautam, S. (2023). Gamma radiation processing for extending shelf-life and ensuring quality of minimally processed ready-to-eat onions. *Journal of Food Science and Technology*, 60(8), 2265–2274. https://doi.org/10.1007/s13197-023-05754-8
- Khaled, A. Y., Parrish, C. A., & Adedeji, A. (2021). Emerging nondestructive approaches for meat quality and safety evaluation—A Review. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3438–3463. https://doi.org/10.1111/1541-4337.12781
- Kharbach, M., Alaoui Mansouri, M., Taabouz, M., & Yu, H. (2023). Current application of advancing spectroscopy techniques in food analysis: Data Handling with chemometric approaches. *Foods*, *12*(14), 2753. https://doi.org/10.3390/foods12142753
- Kirezieva, K., Nanyunja, J., Jacxsens, L., van der Vorst, J. G. A. J., Uyttendaele, M., & Luning, P. A. (2013). Context factors affecting design and operation of food safety management systems in the fresh produce chain. *Trends in Food Science Gamp; Technology*, 32(2), 108–127. <u>https://doi.org/10.1016/i.tifs.2013.06.001</u>
- Kirezieva, K., Bijman, J., Jacxsens, L., & Luning, P. A. (2016). The role of cooperatives in food safety management of fresh produce chains: Case studies in four strawberry cooperatives. *Food Control*, 62, 299–308. <u>https://doi.org/10.1016/j.foodcont.2015.10.038</u>
- Kirezieva, K., Jacxsens, L., Uyttendaele, M., Van Boekel, M. A. J. S., & Luning, P. A. (2013). Assessment of Food Safety Management Systems in the Global Fresh Produce Chain. *Food Research International, 52*(1), 230–242. <u>https://doi.org/10.1016/i.foodres.2013.03.023</u>

- Kirezieva, K., Jacxsens, L., van Boekel, M. A. J. S., & Luning, P. A. (2015). Towards strategies to adapt to pressures on safety of fresh produce due to climate change. *Food Research International, 68*, 94–107. https://doi.org/10.1016/j.foodres.2014.05.077
- Kirezieva, K., Luning, P. A., Jacxsens, L., Allende, A., Johannessen, G. S., Tondo, E. C., Rajkovic, A., Uyttendaele, M., & van Boekel, M. A. J.
 S. (2015). Factors affecting the status of food safety management systems in the Global Fresh Produce Chain. *Food Control*, 52, 85–97. <u>https://doi.org/10.1016/j.foodcont.2014.12.030</u>
- Kong, I., Lamudji, I. G., Angkow, K. J., Insani, R. M., Mas, M. A., & Pui, L. P. (2023). Application of edible film with Asian plant extracts as an innovative food packaging: A Review. Coatings, 13(2), 245. https://doi.org/10.3390/coatings13020245

Kontominas, M. G. (2020). Use of alginates as food packaging materials. Foods, 9(10), 1440. https://doi.org/10.3390/foods9101440

- Koutsoumanis, K., Allende, A., Álvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Herman, L., Hilbert, F., Lindqvist, R., Nauta, M., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Argüello, H., Berendonk, T., Cavaco, L. M., Gaze, W., Schmitt, H., Topp, E., Guerra, B., Liebana, E., Stella, P., Peixe, L. (2021). Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the Food Chain. EFSA Journal, 19(6).
 <u>https://doi.org/10.2903/j.efsa.2021.6651</u>
- Koutsoumanis, K., Ordóñez, A. A., Bolton, D., Bover-Cid, S., Chemaly, M., De Cesare, A., Herman, L., Hilbert, F., Lindqvist, R., Nauta, M., Nonno, R., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Banach, J., Ottoson, J., Zhou, B., da Silva Felicio, M., Jacxsens, L., Martins, J.L., Messens, W., Allende, A. (2023). Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (FFFVHS). part 1 (Outbreak Data Analysis, Literature Review and Stakeholder Questionnaire). *EFSA Journal, 21*(11). https://doi.org/10.2903/j.efsa.2023.8332
- Kumar, V., Singh, C. S., Bakshi, S., Kumar, S., Yadav, S. P., Al-Zamani, Z. A., Kumar, P., Singh, U., Meena, K. K., Bunkar, D. S., & Paswan, V. K. (2023). Physicochemical and bioactive constituents, microbial counts, and color components of spray-dried syzygium cumini l. pulp powder stored in different packaging materials under two controlled environmental conditions. *Frontiers in Nutrition*, *10*. https://doi.org/10.3389/fnut.2023.1258884
- Kussaga, J. B., Luning, P. A., Tiisekwa, B. P. M., & Jacxsens, L. (2014). Challenges in performance of Food Safety Management Systems: A case of fish processing companies in Tanzania. *Journal of Food Protection*, 77(4), 621–630. <u>https://doi.org/10.4315/0362-028x.ifp-13-254</u>
- Kussaga, J. B., Luning, P. A., Tiisekwa, B. P., & Jacxsens, L. (2015). Current performance of food safety management systems of dairy processing companies in Tanzania. *International Journal of Dairy Technology*, *68*(2), 227–252. <u>https://doi.org/10.1111/1471-0307.12183</u>
- Labović, S. B., Joksimović, I., Galić, I., Knežević, M., & Mimović, M. (2023). Food safety behaviours among food handlers in different food service establishments in Montenegro. *International Journal of Environmental Research and Public Health*, *20*(2), 997. https://doi.org/10.3390/ijerph20020997
- Lahou, E., Jacxsens, L., Verbunt, E., & Uyttendaele, M. (2015). Evaluation of the Food Safety Management System in a hospital food service operation toward listeria monocytogenes. *Food Control, 49*, 75–84. <u>https://doi.org/10.1016/j.foodcont.2013.10.020</u>
- Langerreiter, D., Solin, K., Jordà-Redondo, M., Bresolí-Obach, R., Fliri, L., Nonell, S., Kostiainen, M. A., & Anaya-Plaza, E. (2024). Antimicrobial efficacy of solar disinfection in cellulose fiber supported photoactive materials. *Materials Today Communications*, *38*, 107858. https://doi.org/10.1016/j.mtcomm.2023.107858
- Lapidakis, N., & Fragkiadakis, G. A. (2021). Dairy processing: The soft spreadable cheese Xygalo Siteias. *Processes, 10*(1), 80. https://doi.org/10.3390/pr10010080

- Lee, K. H., Ab Samad, L. S., Lwin, P. M., Riedel, S. F., Magin, A., Bashir, M., Vaishampayan, P. A., & Lin, W.-J. (2017). On the rocks: Microbiological quality and microbial diversity of packaged ice in Southern California. *Journal of Food Protection, 80*(6), 1041–1049. https://doi.org/10.4315/0362-028x.jfp-16-295
- Li, F., Zhe, T., Ma, K., Li, R., Li, M., Liu, Y., Cao, Y., & Wang, L. (2021). A naturally derived nanocomposite film with photodynamic antibacterial activity: New prospect for Sustainable Food Packaging. *ACS Applied Materials Gamp; Interfaces, 13*(44), 52998–53008. https://doi.org/10.1021/acsami.1c12243
- Lim, E. S., Kim, J. J., Sul, W. J., Kim, J.-S., Kim, B., Kim, H., & Koo, O. K. (2021). Metagenomic analysis of microbial composition revealed cross-contamination pathway of bacteria at a foodservice facility. *Frontiers in Microbiology*, 12. https://doi.org/10.3389/fmicb.2021.636329
- Liu, D., Yang, L., Shang, M., & Zhong, Y. (2019). Research progress of packaging indicating materials for real-time monitoring of food quality. *Materials Express*, *9*(5), 377–396. https://doi.org/10.1166/mex.2019.1523
- Ljubojević, D., Pelić, M., Radosavljević, V., & Ćirković, M. (2017). Food safety hazards related to fish produced in aquaponics. *Aquaculture*, *2017*.
- López-Gálvez, F., Rasines, L., Conesa, E., Gómez, P. A., Artés-Hernández, F., & Aguayo, E. (2021). Reusable Plastic crates (rpcs) for fresh produce (case study on cauliflowers): Sustainable packaging but potential salmonella survival and risk of crosscontamination. *Foods*, *10*(6), 1254. https://doi.org/10.3390/foods10061254
- Luning, P. A., Bango, L., Kussaga, J., Rovira, J., & Marcelis, W. J. (2008). Comprehensive analysis and differentiated assessment of food safety control systems: A diagnostic instrument. *Trends in Food Science Gamp; Technology*, *19*(10), 522–534. <u>https://doi.org/10.1016/j.tifs.2008.03.005</u>
- Luning, P. A., Chinchilla, A. C., Jacxsens, L., Kirezieva, K., & Rovira, J. (2013). Performance of Safety Management Systems in Spanish food service establishments in view of their context characteristics. *Food Control*, *30*(1), 331–340. https://doi.org/10.1016/j.foodcont.2012.06.040
- Luning, P. A., Jacxsens, L., Rovira, J., Osés, S. M., Uyttendaele, M., & Marcelis, W. J. (2011). A concurrent diagnosis of microbiological food safety output and Food Safety Management System Performance: Cases from Meat Processing Industries. *Food Control*, 22(3–4), 555–565. <u>https://doi.org/10.1016/j.foodcont.2010.10.003</u>
- Luning, P. A., Kirezieva, K., Hagelaar, G., Rovira, J., Uyttendaele, M., & Jacxsens, L. (2015). Performance Assessment of Food Safety Management Systems in animal-based food companies in view of their context characteristics: A European study. *Food Control, 49*, 11–22. <u>https://doi.org/10.1016/j.foodcont.2013.09.009</u>
- Luning, P. A., Marcelis, W. J., Rovira, J., van Boekel, M. A. J. S., Uyttendaele, M., & Jacxsens, L. (2011). A tool to diagnose context riskiness in view of food safety activities and microbiological safety output. *Trends in Food Science Gamp; Technology, 22.* <u>https://doi.org/10.1016/j.tifs.2010.09.009</u>
- Luning, P. A., Marcelis, W. J., Rovira, J., Van der Spiegel, M., Uyttendaele, M., & Jacxsens, L. (2009). Systematic assessment of core assurance activities in a company Specific Food Safety Management System. *Trends in Food Science Gamp; Technology*, 20(6–7), 300–312. <u>https://doi.org/10.1016/j.tifs.2009.03.003</u>
- Ma, L., Yi, J., Wisuthiphaet, N., Earles, M., & Nitin, N. (2023). Accelerating the detection of bacteria in food using artificial intelligence and optical imaging. *Applied and Environmental Microbiology*, *89*(1). https://doi.org/10.1128/aem.01828-22
- Ma, Z. (Sam). (2020). Estimating the optimum coverage and quality of amplicon sequencing with Taylor's Power Law Extensions. *Frontiers in Bioengineering and Biotechnology, 8.* https://doi.org/10.3389/fbioe.2020.00372
- Madrid, N., Boulton, R., & Knoesen, A. (2017). Remote monitoring of winery and Creamery Environments with a wireless sensor system. *Building and Environment, 119*, 128–139. https://doi.org/10.1016/j.buildenv.2017.04.010

- Makinde, O. M., Ayeni, K. I., Sulyok, M., Krska, R., Adeleke, R. A., & Ezekiel, C. N. (2020). Microbiological safety of ready-to-Eat Foods in low- and middle-income countries: A comprehensive 10-year (2009 to 2018) review. *Comprehensive Reviews in Food Science and Food Safety*, *19*(2), 703–732. https://doi.org/10.1111/1541-4337.12533
- Manikandan, V., & Min, S. C. (2023). Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of Food Products: A Review. International Journal of Biological Macromolecules, 252, 126381. https://doi.org/10.1016/j.ijbiomac.2023.126381
- Mario, E., Belay, A., & Amare, E. (2024). Evaluation of the quality and safety of commercial complementary foods: Implications for nutrient adequacy and conformance with national and international standards. *PLOS ONE*, *19*(2). https://doi.org/10.1371/journal.pone.0294068
- Marvin, H. J. P., Bouzembrak, Y., van der Fels-Klerx, H. J., Kempenaar, C., Veerkamp, R., Chauhan, A., Stroosnijder, S., Top, J., Simsek-Senel, G., Vrolijk, H., Knibbe, W. J., Zhang, L., Boom, R., & Tekinerdogan, B. (2022). Digitalisation and Artificial Intelligence for Sustainable Food Systems. *Trends in Food Science Samp; Technology*, 120, 344–348. https://doi.org/10.1016/j.tifs.2022.01.020
- Marvin, H., Bouzembrak, Y., van Asselt, E., Meijer, N., Kleter, G., Lorentzen, G., & Johansen, L. (2019). Applicability of a food chain analysis on aquaculture of Atlantic Salmon to identify and monitor vulnerabilities and drivers of change for the identification of emerging risks. *EFSA Supporting Publications*, *16*(7). <u>https://doi.org/10.2903/sp.efsa.2019.en-1619</u>
- Matthews, C., Moran, F., & Jaiswal, A. K. (2021). A review on European Union's strategy for plastics in a circular economy and its impact on Food Safety. *Journal of Cleaner Production*, *283*, 125263. https://doi.org/10.1016/j.jclepro.2020.125263
- Mei, J., Ma, X., & Xie, J. (2019). Review on natural preservatives for extending fish shelf life. *Foods*, *8*(10), 490. https://doi.org/10.3390/foods8100490
- Miteluţ, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O.-C., Ion, V. A., & Popa, M. E. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. *Foods*, *10*(11), 2821. https://doi.org/10.3390/foods10112821
- Moreira-Leite, B., Antunes, R., Cotas, J., Martins, N., Costa, N., Noronha, J. P., Mata, P., & Diniz, M. (2023). Modified atmosphere packaging (map) for seaweed conservation: Impact on physicochemical characteristics and microbiological activity. *Foods*, *12*(14), 2736. https://doi.org/10.3390/foods12142736
- Mu, W., van Asselt, E. D., & van der Fels-Klerx, H. J. (2021). Towards a resilient food supply chain in the context of food safety. *Food Control, 125*, 107953. https://doi.org/10.1016/j.foodcont.2021.107953
- Mylona, K., Maragkoudakis, P., Bock, A. K., Wollgast, J., Caldeira, S., & Ulberth, F. (2016). Delivering on EU food safety and nutrition in 2050–future challenges and policy preparedness. *Publications Office of the European Union*. https://doi.org/10.2787/625130
- Nalbone, L., Vallone, L., Giarratana, F., Virgone, G., Lamberta, F., Marotta, S. M., Donato, G., Giuffrida, A., & Ziino, G. (2022). Microbial risk assessment of industrial ice cream marketed in Italy. *Applied Sciences*, 12(4), 1988. https://doi.org/10.3390/app12041988
- Nanyunja, J., Jacxsens, L., Kirezieva, K., Kaaya, A. N., Uyttendaele, M., & Luning, P. A. (2015). Assessing the status of food safety management systems for fresh produce production in East Africa: Evidence from Certified Green Bean Farms in Kenya and noncertified Hot Pepper Farms in Uganda. *Journal of Food Protection*, *78*(6), 1081–1089. <u>https://doi.org/10.4315/0362-028x.ifp-14-364</u>
- Nenciu, F., Voicea, I., Cocarta, D. M., Vladut, V. N., Matache, M. G., & Arsenoaia, V.-N. (2022). "zero-waste" food production system supporting the synergic interaction between Aquaculture and horticulture. *Sustainability*, *14*(20), 13396. https://doi.org/10.3390/su142013396

- Ngo, H. H., Nguyen-Thanh, L., Pham-Duc, P., Dang-Xuan, S., Le-Thi, H., Denis-Robichaud, J., Nguyen-Viet, H., Le, T. T. H., Grace, D., & Unger, F. (2021). Microbial contamination and associated risk factors in retailed pork from key value chains in northern Vietnam. *International Journal of Food Microbiology*, *346*, 109163. https://doi.org/10.1016/j.ijfoodmicro.2021.109163
- Njage, P. M., Opiyo, B., Wangoh, J., & Wambui, J. (2018). Scale of production and implementation of food safety programs influence the performance of current food safety management systems: Case of dairy processors. *Food Control, 85*, 85–97. <u>https://doi.org/10.1016/i.foodcont.2017.09.015</u>
- Noseda, B., Tong Thi, A. N., Rosseel, L., Devlieghere, F., & Jacxsens, L. (2012). Dynamics of microbiological quality and safety of Vietnamese Pangasianodon Hypophthalmus during processing. *Aquaculture International*, 21(3), 709–727. <u>https://doi.org/10.1007/s10499-012-9605-6</u>
- Ojha, S., Bußler, S., Psarianos, M., Rossi, G., & Schlüter, O. K. (2021). Edible insect processing pathways and implementation of emerging technologies. *Journal of Insects as Food and Feed*, 7(5), 877–900. https://doi.org/10.3920/jiff2020.0121
- Olatunde, O. O., & Benjakul, S. (2018). Nonthermal processes for shelf-life extension of seafoods: A revisit. *Comprehensive Reviews in Food Science and Food Safety*, *17*(4), 892–904. https://doi.org/10.1111/1541-4337.12354
- Oliveira, M., Silva, D., & Quintas, C. (2018). Assessment of the microbiological quality of dried aromatic herbs commercialized in the Algarve. *INCREaSE*, 236–240. https://doi.org/10.1007/978-3-319-70272-8_19
- Onjong, H. A., Wangoh, J., & Njage, P. M. (2014). Current Food Safety Management Systems in fish-exporting companies require further improvements to adequately cope with contextual pressure: Case study. *Journal of Food Science*, 79(10). <u>https://doi.org/10.1111/1750-3841.12598</u>
- Ortúzar, J. E., Dogan, O. B., Sotomayor, G., Jiménez, C., Clarke, J., Flores, R. A., Gray, G. M., Rupnow, J. H., & Wang, B. (2020). Quantitative assessment of microbial quality and safety risk: A preliminary case study of strengthening Raspberry Supply System in Chile. *Food Control, 113*, 107166. https://doi.org/10.1016/j.foodcont.2020.107166
- Osés, S. M., Luning, P. A., Jacxsens, L., Santillana, S., Jaime, I., & Rovira, J. (2012). Food Safety Management System Performance in the lamb chain. *Food Control*, *25*(2), 493–500. <u>https://doi.org/10.1016/j.foodcont.2011.11.018</u>
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ...
 Moher, D. (2021). The Prisma 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*. https://doi.org/10.1136/bmj.n71
- Paloviita, A., Kortetmäki, T., Puupponen, A., & Silvasti, T. (2017). Insights into food system exposure, coping capacity and adaptive capacity. *British Food Journal, 119*(12), 2851–2862. <u>https://doi.org/10.1108/bfj-02-2017-0057</u>
- Park, J. M., Cho, H. M., Kim, J. M., & Ghim, S. (2018). New procedures for food handlers under infectious gastrointestinal disease: To control emerging microbial problems. *Journal of Food Safety*, *38*(5). https://doi.org/10.1111/jfs.12481
- Peng, S., Wei, H., Zhan, S., Yang, W., Lou, Q., Deng, S., Yu, X., & Huang, T. (2022). Spoilage mechanism and preservation technologies on the quality of shrimp: An overview. *Trends in Food Science Gamp; Technology*, *129*, 233–243. https://doi.org/10.1016/j.tifs.2022.09.024
- Pou, K. R. J., Raghavan, V., & Packirisamy, M. (2022). Microfluidics in smart packaging of foods. *Food Research International*, *161*, 111873. https://doi.org/10.1016/j.foodres.2022.111873
- Pushparaj, K., Liu, W.-C., Meyyazhagan, A., Orlacchio, A., Pappusamy, M., Vadivalagan, C., Robert, A. A., Arumugam, V. A., Kamyab, H., Klemeš, J. J., Khademi, T., Mesbah, M., Chelliapan, S., & Balasubramanian, B. (2022). Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the Food Sector. *Energy*, 240, 122732. <u>https://doi.org/10.1016/j.energy.2021.122732</u>

- Rajendran, D. S., Venkataraman, S., Jha, S. K., Chakrabarty, D., & Kumar, V. V. (2024). A review on bio-based polymer polylactic acid potential on sustainable food packaging. *Food Science and Biotechnology, 33*(8), 1759–1788. https://doi.org/10.1007/s10068-024-01543-x
- Rajkovic, A., Smigic, N., Djekic, I., Popovic, D., Tomic, N., Krupezevic, N., Uyttendaele, M., & Jacxsens, L. (2017). The performance of Food Safety Management Systems in the Raspberries Chain. *Food Control, 80*, 151–161. <u>https://doi.org/10.1016/i.foodcont.2017.04.048</u>
- Rangaraj, V., Rambabu, K., Banat, F., & Mittal, V. (2021). Natural antioxidants-based edible active food packaging: An overview of current advancements. *Food Bioscience*, *43*, 101251. https://doi.org/10.1016/j.fbio.2021.101251
- Rasmussen, J. (1982). Human errors. A taxonomy for describing human malfunction in industrial installations. *Journal of occupational accidents, 4* (2-4), 311-333.
- Ren, Y., He, Z., & Luning, P. A. (2016). A systematic assessment of quality assurance-based food safety management system of Chinese edible oil manufacturer in view of context characteristics. *Total Quality Management Gamp; Business Excellence*, 1–15. <u>https://doi.org/10.1080/14783363.2016.1187995</u>
- Ren, Y., He, Z., & Luning, P. A. (2022). Performance of Food Safety Management Systems of Chinese food business operators in Tianjin. *Food Control, 138*, 108980. <u>https://doi.org/10.1016/i.foodcont.2022.108980</u>
- Rød, B., Lange, D., Theocharidou, M., & Pursiainen, C. (2020). From risk management to resilience management in critical infrastructure. *Journal of Management in Engineering*, *36*(4). <u>https://doi.org/10.1061/(asce)me.1943-5479.0000795</u>
- Rowe, G., & Bolger, F. (2016). Final report on 'the identification of food safety priorities using the Delphi Technique.' *EFSA Supporting Publications*, *13*(3). <u>https://doi.org/10.2903/sp.efsa.2016.en-1007</u>
- Rubiola, S., Macori, G., Chiesa, F., Panebianco, F., Moretti, R., Fanning, S., & Civera, T. (2022). Shotgun metagenomic sequencing of bulk tank milk filters reveals the role of Moraxellaceae and Enterobacteriaceae as carriers of antimicrobial resistance genes. *Food Research International, 158*, 111579. <u>https://doi.org/10.1016/j.foodres.2022.111579</u>
- Rugna, G., Carra, E., Bergamini, F., Franzini, G., Faccini, S., Gattuso, A., Morganti, M., Baldi, D., Naldi, S., Serraino, A., Piva, S., Merialdi, G., & Giacometti, F. (2021). Distribution, virulence, genotypic characteristics and antibiotic resistance of listeria monocytogenes isolated over one-year monitoring from two pig slaughterhouses and processing plants and their fresh hams. *International Journal of Food Microbiology, 336*, 108912. https://doi.org/10.1016/j.ijfoodmicro.2020.108912
- Sab, C., Ramírez, E. M., Romero, C., Brenes-Álvarez, M., Ouelhadj, A., & Medina, E. (2024). Characterization and safety of commercial table olives from the Algerian market. *Food Control, 160*, 110324. https://doi.org/10.1016/j.foodcont.2024.110324
- Sabillón, L., Stratton, J., Rose, D., & Bianchini, A. (2020). Reduction in pathogenic load of wheat by tempering with saline organic acid solutions at different seasonal temperatures. *International Journal of Food Microbiology*, *313*, 108381. https://doi.org/10.1016/j.ijfoodmicro.2019.108381
- Saksena, R., Malik, M., & Gaind, R. (2019). Bacterial contamination and prevalence of antimicrobial resistance phenotypes in raw fruits and vegetables sold in Delhi, India. *Journal of Food Safety*, *40*(1). https://doi.org/10.1111/jfs.12739
- Salines, M., Lazou, T., Gomez-Luengo, J., Holthe, J., Nastasijevic, I., Bouwknegt, M., Dadios, N., Houf, K., Blagojevic, B., & Antic, D. (2023). Risk categorisation of Abattoirs in Europe: Current state of play. *Food Control, 152*, 109863. https://doi.org/10.1016/j.foodcont.2023.109863
- Sampers, I., Jacxsens, L., Luning, P. A., Marcelis, W. J., Dumoulin, A., & Uyttendaele, M. (2010). Performance of food safety management systems in poultry meat preparation processing plants in relation to spp.. contamination. *Journal of Food Protection*, 73(8), 1447–1457. <u>https://doi.org/10.4315/0362-028x-73.8.1447</u>

- Sampers, I., Toyofuku, H., Luning, P. A., Uyttendaele, M., & Jacxsens, L. (2012). Semi-quantitative study to evaluate the performance of a HACCP-based food safety management system in Japanese milk processing plants. *Food Control*, 23(1), 227–233. <u>https://doi.org/10.1016/j.foodcont.2011.07.018</u>
- Sawe, C. T., Onyango, C. M., & Njage, P. M. (2014). Current food safety management systems in fresh produce exporting industry are associated with lower performance due to context riskiness: Case study. *Food Control, 40*, 335–343. <u>https://doi.org/10.1016/j.foodcont.2013.12.019</u>
- Sequino, G., Cobo-Diaz, J. F., Valentino, V., Tassou, C., Volpe, S., Torrieri, E., Nychas, G.-J., Álvarez Ordóñez, A., Ercolini, D., & De Filippis, F. (2024). Microbiome mapping in beef processing reveals safety-relevant variations in Microbial Diversity and genomic features. *Food Research International*, *186*, 114318. https://doi.org/10.1016/j.foodres.2024.114318
- Silva, S. P. M., Teixeira, J. A., & Silva, C. C. G. (2023). Recent advances in the use of edible films and coatings with probiotic and bacteriocin-producing lactic acid bacteria. *Food Bioscience*, *56*, 103196. <u>https://doi.org/10.1016/i.fbio.2023.103196</u>
- Śmiechowska, M., Newerli-Guz, J., & Skotnicka, M. (2021). Spices and seasoning mixes in European Union—Innovations and ensuring safety. Foods, 10(10), 2289. https://doi.org/10.3390/foods10102289
- Smith, D. L. (2019). Global Food Safety Initiative Scheme audit requirements regarding cleaning tool and utensil selection and maintenance – A Review. *Quality Assurance and Safety of Crops Gamp; Foods*, *11*(7), 603–611. https://doi.org/10.3920/qas2018.1409
- Sobolik, J. S., Newman, K. L., Jaykus, L.-A., Bihn, E. A., & Leon, J. S. (2021). Norovirus transmission mitigation strategies during simulated produce harvest and packing. *International Journal of Food Microbiology*, 357, 109365. https://doi.org/10.1016/j.ijfoodmicro.2021.109365
- Spagnoli, P., Jacxsens, L., & Vlerick, P. (2023). Towards a food safety culture improvement roadmap: Diagnosis and GAP analysis through a conceptual framework as the first steps. *Food Control*, *145*, 109398. <u>https://doi.org/10.1016/j.foodcont.2022.109398</u>
- Spagnoli, P., Vlerick, P., & Jacxsens, L. (2023). Food safety culture maturity and its relation to company and employee characteristics. *Heliyon, 9*(11). <u>https://doi.org/10.1016/i.heliyon.2023.e21561</u>
- Srisamran, J., Atwill, E. R., Chuanchuen, R., & Jeamsripong, S. (2022). Detection and analysis of indicator and pathogenic bacteria in conventional and organic fruits and vegetables sold in retail markets. *Food Quality and Safety*, *6*. https://doi.org/10.1093/fgsafe/fyac013
- Stanley, J., John, A., Pušnik Črešnar, K., Fras Zemljič, L., Lambropoulou, D. A., & Bikiaris, D. N. (2022). Active agents incorporated in polymeric substrates to enhance antibacterial and antioxidant properties in food packaging applications. *Macromol, 3*(1), 1–27. <u>https://doi.org/10.3390/macromol3010001</u>
- Stoyanova, A. (2019). Impact of external and internal circumstances on Food Safety Management. *Trakia Journal of Sciences, 171*(Suppl.1), 386–394. https://doi.org/10.15547/tjs.2019.s.01.064
- Suvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial nanomaterials for food packaging. *Antibiotics*, *11*(6), 729. https://doi.org/10.3390/antibiotics11060729
- Tóth, A. J., Dunay, A., Battay, M., Illés, C. B., Bittsánszky, A., & Süth, M. (2021). Microbial spoilage of plant-based meat analogues. *Applied Sciences*, *11*(18), 8309. https://doi.org/10.3390/app11188309
- Trienekens, J., & Zuurbier, P. (2008). Quality and safety standards in the food industry, developments and challenges. *International Journal of Production Economics*, *113*(1), 107–122. <u>https://doi.org/10.1016/j.ijpe.2007.02.050</u>

- Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., & Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. *Trends in Food Science Gamp; Technology*, *114*, 355–371. https://doi.org/10.1016/j.tifs.2021.06.004
- Ur Rahim, H., Qaswar, M., Uddin, M., Giannini, C., Herrera, M. L., & Rea, G. (2021). Nano-enable materials promoting sustainability and resilience in modern agriculture. *Nanomaterials, 11*(8), 2068. https://doi.org/10.3390/nano11082068
- Vallinayagam, S., Paladhi, A. G., Pal, K., & Kyzas, G. Z. (2022). Multifunctional biosensor activities in food technology, microbes and toxins A systematic mini review. *Process Biochemistry*, *120*, 260–264. https://doi.org/10.1016/j.procbio.2022.06.019
- Vandeweyer, D., De Smet, J., Van Looveren, N., & Van Campenhout, L. (2021). Biological contaminants in insects as food and feed. *Journal of Insects as Food and Feed*, 7(5), 807–822. https://doi.org/10.3920/jiff2020.0060
- Van Durme, J., Spagnoli, P., Doan Duy, L. N., Lan Nhi, D. T., & Jacxsens, L. (2024). Maturity of food safety management systems in the Vietnamese Seafood Processing Industry. *Journal of Food Protection*, 87(4), 100240. https://doi.org/10.1016/j.jfp.2024.100240
- Varyvoda, Y., Cederstrom, T., Borberg, J., & Taren, D. (2021). Enabling Food Safety Entrepreneurship: Exploratory Case Studies from Nepal, Senegal, and Ethiopia. *Frontiers in Sustainable Food Systems*, *5*. https://doi.org/10.3389/fsufs.2021.742908

Vermeersch. M (2024) unpublished

- Walker, D. I., Younger, A., Stockley, L., & Baker-Austin, C. (2018). Escherichia coli testing and enumeration in live bivalve shellfish present methods and future directions. *Food Microbiology*, *73*, 29–38. https://doi.org/10.1016/j.fm.2017.12.006
- Walsh, C., & Leva, M. C. (2019). A review of Human Factors and Food Safety in Ireland. *Safety Science*, *119*, 399–411. https://doi.org/10.1016/j.ssci.2018.07.022
- Wang, J., Chen, J., Sun, Y., He, J., Zhou, C., Xia, Q., Dang, Y., Pan, D., & Du, L. (2023). Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. *Food Control*, 148, 109684. https://doi.org/10.1016/j.foodcont.2023.109684
- Wani, N. R., Dar, A. H., Dash, K. K., Pandey, V. K., Srivastava, S., Jan, S. Y., Deka, P., & Sabahi, N. (2023). Recent advances in the production of bionanomaterials for development of Sustainable Food Packaging: A comprehensive review. *Environmental Research*, 237, 116948. https://doi.org/10.1016/j.envres.2023.116948
- Wentholt, M. T. A., Fischer, A. R. H., Rowe, G., Marvin, H. J. P., & Frewer, L. J. (2010). Effective identification and management of emerging food risks: Results of an international Delphi Survey. *Food Control, 21*(12), 1731–1738. <u>https://doi.org/10.1016/j.foodcont.2010.07.006</u>
- WHO. (n.d.). Assessing microbiological risks in food. World Health Organization. <u>https://www.who.int/activities/assessing-microbiological-risks-in-food</u>
- Wu, C.-P., Wu, S.-M., Lin, Y.-H., Wu, Y.-H., Huang, B.-C., Huang, H.-W., & Wang, C.-Y. (2022). High pressure processing-based hurdle strategy for microbial shelf life of packed food in the cold chain. *Food Packaging and Shelf Life*, *34*, 100983. https://doi.org/10.1016/j.fpsl.2022.100983
- Wu, G., Zhuang, D., Chew, K. W., Ling, T. C., Khoo, K. S., Van Quyen, D., Feng, S., & Show, P. L. (2022). Current status and future trends in removal, control, and mitigation of algae food safety risks for human consumption. *Molecules*, 27(19), 6633. https://doi.org/10.3390/molecules27196633

- Wu, X., Xie, B., Qiao, Y., Yuan, S., & Du, W. (2024). MMET: A novel reusable microfluidic chip for precision microbial enumeration tests. *Analytical Chemistry, 96*(2), 630–635. https://doi.org/10.1021/acs.analchem.3c04889
- Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., Borremans, A., Bruyninckx, L., & Van Campenhout, L. (2017). Effect of postharvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). *Innovative Food Science Gamp; Emerging Technologies*, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004
- Xiong, Y., Lin, X., Wen, X., Wang, Y., Liang, W., & Xing, T. (2023). The analysis of residents' intention to consume pre-made dishes in China: A grounded theory. *Foods*, *12*(20), 3798. https://doi.org/10.3390/foods12203798
- Yang, P., Wong, C., Hash, S., Fung, F., & Menon, S. (2018). Rapid detection of *salmonella* spp. using magnetic resonance. *Journal of Food Safety*, *38*(4). <u>https://doi.org/10.1111/jfs.12473</u>
- Yang, T., Wu-Chen, R. A., Zhang, R., Liao, X., Lou, Y., Gölz, G., Ding, T., & Feng, J. (2024). Emergence of rapidly spreading antimicrobialresistant salmonella in traditional blood-based foods. *Food Quality and Safety, 8*. <u>https://doi.org/10.1093/fqsafe/fyae009</u>
- Yasir, M., Alkhaldy, A. A., Soliman, S. A., Turkistani, S. A., & Azhar, E. I. (2023). Metagenomic insights into the microbiome and resistance genes of traditional fermented foods in Arabia. *Foods*, *12*(18), 3342. <u>https://doi.org/10.3390/foods12183342</u>
- Zaidi, S., Vats, M., Kumar, N., Janbade, A., & Gupta, M. K. (2022). Evaluation of food packaging paper for microbial load and storage effect on the microbial activity of paper. *Packaging Technology and Science, 35*(7), 569–577. https://doi.org/10.1002/pts.2652
- Zhang, L., Yu, Q., Zhang, M., Law, C. L., & Ma, Y. (2023). Intelligent detection of quality deterioration and adulteration of fresh meat products in the supply chain: Research Progress and Application. *Food Bioscience*, 55, 103047. https://doi.org/10.1016/j.fbio.2023.103047
- Zouharová, A., Bartáková, K., Bursová, Š., Necidová, L., Haruštiaková, D., Klimešová, M., & Vorlová, L. (2023). Meat and fish packaging and its impact on the shelf life – A Review. *Acta Veterinaria Brno, 92*(1), 95–108. https://doi.org/10.2754/avb202392010095
- Zwietering, M. H., Anderson, W., Farber, J. M., Gorris, L. G. M., & den Besten, H. M. W. (2023). Effectiveness of an increasingly stringent microbiological process hygiene criterion to control campylobacter in broiler carcasses. *Food Control, 153*, 109962. https://doi.org/10.1016/j.foodcont.2023.109962

APPENDICES

1. <u>Appendix 1: Informed consent as provided and accepted by all participants of the workshop</u> <u>sessions</u>

Dear Participant,

This survey is conducted as part of a thesis, that falls into the Horizon Europe FoodSafeR project, carried out partly by the Ghent University. The project aims at developing future-oriented tools for the assessment and management of emerging food safety hazards and associated risks. This thesis specifically handles the topic of resilient food safety management to anticipate on related microbiological food safety challenges. By completing this questionnaire you contribute to our research. There are no right or wrong answers, so try to answer as honestly as possible. All obtained data will be processed strictly confidentially by us and any form of anonymity will be guaranteed. Thank you very much in advance for your contribution!

Informed consent form

We ask that you read this form carefully before continuing this survey and indicate what you agree and disagree with.

I declare that I:

- voluntarily participate in this study and that I can stop my participation at any time
- consent to the anonymous use of my results by the researchers
- know that not participating or stopping my participation will not affect me negatively in any way
- know that I can obtain a summary of this research upon request, after the study is completed and the results are known
- □ I declare that I have received the explanation of this research and that I have been given the opportunity to ask additional questions.
- □ I declare that I agree with this informed consent form.

2. Appendix 2: Explanation of drivers, subdrivers and FSMS activities in the workshop.

Table A2.1 Explanation of FSMS activities as given in the workshop. Activity categories are indicated in bold, with the corresponding activities in the rows underneath it.

FSMS activity	Explanation			
Quality Control (QC)	All activities that aim at ensuring that product and process characteristics are in an			
	acceptable range			
Preventive measures	Aim at avoiding high initial contamination of the ingredients and cross contamination			
	during the process, e.g. hygiene policy, supplier control			
Interventions	Aim at inactivating pathogens or reducing them to an acceptable level, e.g. addition of			
	additives, heat treatments			
Monitoring	Aim at following up on the status of product and process characteristics, e.g. samp			
Operation	Actual operation situation and equipment capacity, e.g. following procedures			
Quality Assurance (QA)	All activities that aim at setting requirements, evaluating effectiveness of the system			
	and organizing change			
System set-up	How the system is set-up and changed over time			
Validation	Checking in advance if planned QC activities are effective in reaching their goals			
Verification	Checking after implementation of QC activities if they can guarantee food safety			
Documentation & record-keeping	How data and procedures are maintained and stored			
Performance Indicators (PI)	Food safety performance of the output			
External food safety performance	How food safety performance is measured externally, e.g. audits, inspections,			
	customer complaints			
Internal food safety performance	How food safety performance is measured internalle, e.g. sampling results			

Table A2.2 Explanations of drivers and subdrivers as was given in the workshop, divided into the 5 STEEP categories. Drivers are indicated in bold, with its subdrivers in the rows underneath. No structured explanation was given for geographic region, seasonality & weather and climate change.

Driver/Subdriver	Expanation	
	Social category	
Consumer behaviour	The behaviour of individual consumers can influence the nutritional habits /individual	
	diets. (Changed eating habits lead to potential exposure or development of new	
	hazards.)	
Dietary choice	What food consumers choose based on nutrition and preference; e.g., vegetarian, fast	
	food, red meat	
Consumer knowledge	The individual and common knowledge of consumers in relation to food (including	
	education & training); e.g., cooking at home, hygiene practices	
Consumer awareness & attitude	Change of attitude drives choices; e.g., animal welfare, natural equals safe, herbal tea	
	is good for you	
Public awareness	The awareness on foods, diets and related hazards via governmental communication,	
	news, social media, NGOs; e.g., high fibre, low salt, bird flu, antimicrobial resistance	
Demographic development	Demographic development strongly influences dietary and nutritional needs in	
	Europe through:	
Population change	Change in the size of a population between a given time period (usually one year);	
	e.g., birth/deaths, age/population pyramid	
Prevalence of vulnerable groups	Composition of the population considering e.g., ageing, immunocompromised people	
Urbanisation	Proportion of people living in towns and cities	
Migration & travel	Migration movement, and on a small scale also tourism and travelling of people lead	
	to cultural changes; e.g., exposure to different foods/hazards	

Health and wellbeing	Human health and wellbeing can affect the susceptibility of the general public to food safety risks.			
Human health condition	A person's wellbeing influenced by proportion of non-communicable diseases; e.g., depression, diabetes or obesity			
Resistant pests & diseases	Pests and diseases can develop different resistances; e.g., antibiotic use and related antimicrobial resistance			
	Technological category			
Technologies in food production	Technological cross-overs may lead to new products and production systems. While some technologies can decrease the risk of hazards, others may cause unwanted side effects.			
Plant-derived food production	Technologies used for the production, rearing or growing of primary products; e.g., industrialized, traditional, intensive - extensive (incl. fishing, hunting and harvesting			
Animal-derived food production	of wild products)			
Products for food production	Products used in food production to increase the health of livestock or for protecting and enhancing crops; e.g., food yield increasing measures (pesticide, fertilizers and its alternatives), insects for feed, measures to clean the stables			
Novel food sources	Production of e.g., insects, algae for human consumption			
Technologies in food processing	Innovative technologies lead to improved, more sustainable food products with longer shelf lives within whole supply chain. Some technologies may bear the risk of unwanted side products, or on the other hand may decrease the risk of hazards.			
Processing techniques & scale	 'Processing' means any action that substantially alters the initial product; e.g., heating, smoking, curing, maturing, drying, marinating, extraction, extrusion, novel and alternative techniques and industrial and traditional processes or a combination of those processes, risk of cross-contamination 			
Food packaging	Containment of food; e.g., primary/secondary contained, food packaging material, type and duration of contact, smart packaging			
Upcycling for food	Using of side streams in the food chain; e.g., coffee grounds to grow mushrooms			
New digital technologies	Monitoring processes and products; e.g., AI, big data, blockchain analysis			
Food formulation	Macro- and micronutrients, additives, e.g. salt, carbohydrates, protein, etc. composition			
	Environmental category			
Environmental contamination	Environmental contamination influences competition for land and shortage of available water due to over exploitation, pollution, the impact of climate change.			
Agricultural pollution	Pollution of air, land and water caused by agriculture; e.g., leaching of chemicals, veterinary product residues, plastic waste and eutrophication			
Sewage treatment	Sewage treatment plant, both industrial and municipal; e.g., incomplete treatment or effluents released into the environment			
Management of natural resources	The availability, accessibility and usability of natural resources are prerequisites for prospering economies including the agricultural sectors. High quality land and the availability of water and nutrients are the basis for food and renewable energy production.			
Recycling	Any recovery operation by which waste materials are reprocessed into products, materials or substances whether for the original or other purposes; e.g., removing heavy metal, smelting of e-waste			
Use of sidestreams	Using of other water sources and reusing waste including sludge, manure and fish effluent to recapture the nutrients still present for agriculture			
Water & soil management	The planning, developing, distributing and optimum use of water resources and application of operations, practices, and treatments to protect soil; e.g, nutrient sourcing and use			

Geographic region	1
Seasonality & weather	1
Climate change	1
	Economic category
Distribution	Across the food sector a significant horizontal and vertical restructuring is happening
	which effects distribution along the food supply chain
Global trade	The exchange of capital, goods, and services across international borders or
	territories, including trade agreements; e.g., jute bag for food contact material,
	imported fish
Distribution channels	Well-established paths to move products from the manufacturer to the consumer;
	e.g., supermarkets, local farmers market, wholesale
	Political category
Legislation, policies & governance	Standardization, legislation, policy and governance directly and indirectly influence
	production and consumption of food.
Official controls & communication	Food safety monitoring is the mechanism that routinely checks for safety hazards,
	manages compliance adherence, and ensures procedures are being correctly
	implemented and communicated openly; e.g., inspectors, food business operators
	recalls, RASFF
Good practices & standards	Practices that have been proven to work well and produce good results, and is
	therefore recommended as a model; e.g., ISO standards, hygiene
Food legislation	Legislation which regulates the production, trade and handling of food across the
	entire food chain, from the provision for animal feed to the consumer; e.g., HACCP,
	food contact material
Geopolitical instability	Advancing economic globalization is currently hampered through newly
	established/changed borders, barriers, and limits.
War & conflict	Disruptions of diplomatic relations and global markets; e.g., Russia-Ukraine raw
	materials
Fragmentation between nations	Political stand-off/ trade embargos; e.g., BREXIT in EU, computer chips

3. Appendix 3: Company characteristics questioned at the start of the workshop

Table 3 Questions on company characteristics as asked in the workshop, based on those asked in Spagnoli, Vlerick et al. (2023) and those asked in the FSMS diagnostic instrument.

No.	Question	Answer options
А	Is your company part of a larger company?	Yes / No
В	Is your company family owned?	Yes / No
С	What is the total number of full-time employees of your company?	<10 / 10-49 / 50-249 / >249
D	What is the place of your company in the food supply chain?	Only transformation / Transformation and distribution
E	Do you produce plant- or animal-based products?	Plant-based products / Animal-based products / Both
F	Does your company export to countries outside of Europe?	Yes / No
G	Does your company produce premium brand or private label products?	Premium brand / Private label / Both
Н	Which Quality Assurance (QA) standards are implemented in your company?	PRP (GMP, GDP, GHP) / HACCP / ISO 9001
		/ ISO 22000 / BRC / IFS / SQF 2000 /
		National standard, please specify: /
		Other, please specify: / None
Ι	Which QA standards is your company certified for?	ISO 9001 / ISO 22000 / BRC / IFS / SQF
		2000 / National standard, please
		specify: / Other, please specify: / None
J	Does your company have a QA manager?	Yes/No
К	Does your company have a QA department? How many people work in the QA department?	Yes, number of QA employees: / No

4. <u>Appendix 4: Examples of how subdrivers could impact FSMS activities in a fictitious company</u>, <u>as provided in the workshop to help the participants along</u>

<u>Fictitious company:</u> A Flemish company that sells ice cream under a premium brand and under private label, as well as to restaurant

Social category example: In light of sustainability, consumers demand more and more a short-chain approach, and for companies to use locally sourced materials (subdriver: consumer awareness & attitude). Because of this, the company needs to select new suppliers and adapt their incoming material control based on this (FSMS activity: QC - preventive measures)

Technological category example: New processing techniques are researched to improve the microbiological quality of ice cream while maintaining a clean label, such as the use of low-dose gamma irradiation (subdriver: processing techniques & scale). Incorporating this new intervention equipment requires the company to validate the effectiveness of this technique (FSMS activity: QA - validation), but also a new calibration program for this equipment (FSMS activity: QC - interventions)

Environmental category example: In the storage and distribution of ice cream, the cold chain needs to be maintained. Global warming has resulted in a rise of the global temperature and more extreme weather events such as heat waves, especially in summer, when ice cream consumption is highest (subdriver: climate change). The storage equipment should have the cooling capacity to handle these variable / high outside temperatures and maintain the desired inside temperature (FSMS activity: QC - operation).

Economic category example: Using different distribution channels (retail, restaurants) can result in many different client / stakeholder requirements (subdriver: distribution channels). This puts a higher pressure on translating these stakeholder requirements into the company's own FSMS (FSMS activity: QA - system set-up)

Political category example: Further harmonisation of EU legislation, such as the harmonisation of the regulation for official controls in EU Regulation 625/2017 (subdriver: food legislation), results in a different, more harmonised approach to official FSMS evaluation (FSMS activity: PI - external food safety performance).

5. Appendix 5: Raw data of the answers from the expert elicitation workshop

Table A5.1 Answers from the workshop showing the social subdrivers indicated by each participant as having an impact on food safety management, the specific FSMS activities that the subdrivers impact, and examples about the mechanisms of these impacts. Examples talking about different issues than microbiological food safety management are indicated in italics and disregarded for further processing. When an example references another subdriver than the one indicated, the indicated subdriver is shown in italics, and the subdriver that it does reference is given.

Participant	Subdriver	FSMS activity	Example	Session
1	Dietary choice	System set-up	Allergen management, plant-based solutions	1
		Preventive measures	By asking the right questions before system set-up	
		Internal food safety	Pre-requisites definition	
		performance		
	Consumer awareness &	Operation	Moving towards a more plant-based diet increase the availability on the market of plant-based	
	attitude		solutions	
		Validation	Validation of cleaning to avoid cross-contamination	
	Consumer knowledge	Operation	Driver for new solutions	
	Public awareness	Operation	Development of solutions to meet customer expectations	
	Population size	Internal food safety	Dietary needs and targeted products while ensuring the safety of the products	
		performance		
	Prevalence of	Internal food safety	Groups with special needs have an impact on the pre-requisites	
	vulnerable groups	performance		
	Urbanisation	Operation	Increase of the activities may have an impact on how food safety is targeted within the factory	
	Migration & travel ->/	Operation	Different regulatory frameworks with special impact on food safety	
	Human health	Operation	Sick people is strictly forbidden to work at the facilities due to the food safety impact	
	condition ->/			
	Resistant pests &	Operation	Better raw materials with lower contaminants, decreasing the food safety risk	
	diseases			
2	Dietary choice	Validation	Less salt, more clean label $ ightarrow$ influence shelf life	1
	Consumer knowledge	Internal food safety	Knowledge causes additional requests towards nutritional value	
	-> Consumer	performance		
	awareness & attitude			
	Human health	Internal food safety	Less salt, less fat	
	condition	performance		

	Resistant pests &	External food safety	Avocado validation pests in country of origin $ ightarrow$ risk analysis	
	diseases	performance		
3	Dietary choice	Internal food safety performance	<i>The presence of allergens or vegan products implicate directly impact on preventive measures, validation, verifications, etc</i>	1
	Consumer knowledge	Internal food safety performance	Shelf life and storage conditions must be validated (+worst case)	
	Human health condition	Validation	Validation must be done to assure the product is safe for YOPI	
	Resistant pests & diseases	Preventive measures	Extra controls necessary, pest monitoring plans of suppliers are needed, extra costs	
4	Dietary choice	Internal food safety performance	Meer bio-producten -> extra contole + handeling (extra afspoelstap na ontsmetting)	1
	<i>Consumer knowledge</i> -> Consumer awareness & attitude	Internal food safety performance	Minder E-nummers gewenst -> andere alternatieven zoeken (HPP – stap ipv bewaarmiddel)	
	Human health condition	Internal food safety performance	Afwezigheid listeria of salmonella	
	Resistant pests & diseases	External food safety performance	Extra controle bij container aankomst, geen sporen van ongedierte	
5	Dietary choice	System set-up	Specific demand of retailer	1
	<i>Consumer awareness & attitude -></i> Consumer knowledge	Preventive measures	Wrong usage of goods	
	Consumer knowledge	Preventive measures	Misusage of goods	
	<i>Public awareness -></i> Consumer knowledge	Preventive measures	Cold chain	
	Migration & travel	Monitoring	New ingredient	
	Human health conditions	Preventive measures	Supplier selection	
	Resistant pests & diseases	Monitoring	Raw material	

6	Dietary choice	External food safety	
		performance	
		Operation	/
	Consumer awareness & attitude	Preventive measures	Rekening houden met veranderende vraag van consument – ander aanbod
	Consumer knowledge	Preventive measures	Consumenten op juiste wijze voorlichten
	Public awareness	Preventive measures	Hier ook correct informeren van de consumenten, product aanbod verrijken. Kan op verschillende niveaus een impact hebben. De verschillende drivers zijn relevant voor bedrijven in onze sector maar vanuit de sectorfederatie is het niet mogelijk om hier exacte voorbeelden of situaties van te geven.
	Population size	Preventive measures	Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven. Kan een impact hebben op export (meer export vraag) maar hier spelen er veel meer factoren mee
	Prevalence of vulnerable groups	Preventive measures	Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven. Onze producten moet correct worden vermeld in de voedingstabellen, waardoor de meerwaarde om deze producten in een evenwichtig dieet op te nemen ook worden meegenomen.
	Urbanisation	Preventive measures	Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven
	Migration & travel	Operation	Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven. Kan een rol spelen in de tewerkstelling
	Human health conditions	Internal food safety performance	Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven
	Resistant pests & diseases	Preventive measures	Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven
7	Dietary choice	System set-up	Dit antwoord mag je negeren maar ik kon geen tabblad terug gaan
8	Dietary choice	Monitoring	New products/suppliers = modification system set-up & documentation
	Consumer knowledge	Monitoring	Increase customer knowledge -> additional analyses/monitoring
	Population size	Documentation & record-keeping	New suppliers & sourcing regions -> impact on documentation, monitoring, validation/verification
		Monitoring	New suppliers & regions sourcing
		Documentation & record-keeping	New sourcing regions = eg. modification VACCP
	Prevalence of vulnerable groups	Monitoring	Additional vulnerable groups -> modification plans

	Resistant pests &	Monitoring	New diseases -> modification monitoring plans	
	diseases	System set-up	New diseases -> modification HACCP	
9	Consumer awareness &	Internal food safety	Consument wil langere houdbaarheid – druk op sales – gevaar microbiologie	2
	attitude	performance		
	Migration & travel	Operation	Andere eetgewoonten – introductie nieuwe producten	
	Resistant pests &	Operation	Ziekte personeel – snel nieuwe mensen moeten opleiden en inzetten in productie – aandacht	
	diseases		werkmethodiek/hygiënisch werken	
10	Dietary choice	System set-up	Producten met claims dienen vaak als eerste op de lijn versneden te worden terwijl dit microbiologisch	2
			gezien niet de ideale set-up is	
		Operation	Door het introduceren van de verschillende claims dient er meer reinigingswerk uitgevoerd te worden,	
			operationeel zorgt dit voor meer kuisactiviteiten en risico op kruiscontaminaties	
	Consumer awareness &	Preventive measures	Optimale bewaaromstandigheden worden verbroken -> uitgroei van microbiologie mogelijk maar de	
	<i>attitude -></i> Consumer		consumenten klagen liever	
	knowledge	External food safety	Impact vanuit de thuissituatie wordt onvoldoende meegenomen als een risico door externe partijen	
		performance	zoals auditbureau's en FAVV -> risico naar de eindconsument blijft onze verantwoordelijkheid terwijl	
			we geen zicht hebben op wat de klant thuis doet	
	Consumer knowledge	Validation	Onvoldoende kennis -> extra veiligheidsmarge inbouwen -> microbiologie is echter geen 100% zekere	
			wetenschap	
	Migration & travel	System set-up	Introductie van nieuwe eetgewoontes -> onvoldoende kennis van deze producten beschikbaar ->	
			microbiologische gevaren niet altijd volledig 100% gekend en beheersd	
		Interventions	Onbekende producten -> initiële condities zijn niet altijd 100% gekend -> nood aan striktere	
			maatregels voor de microbiologische afdodingen zonder volledig 100% kennis van het product	
	Resistant pests &	Preventive measures	Aanwezigheid van resistente microbiologie in de omgeving -> meer nood aan hygiëne bij de	
	diseases		grondstoffen om dit niet binnen te nemen in de bedrijven	
		System set-up	Bijsturingen naar gelang de meldingen uit de buitenomgeving noodzakelijk -> meer aanwezigheid van	
			Listeria in productieomgevingen (?) /STEC	
11	Dietary choice	External food safety	Nutriscores verbeteren leidt tot wijziging ingrediënten	2
		performance		
	Consumer awareness &	Monitoring	Negatieve publiciteit zorgt voor verandering van leveranciers	
	attitude			
	Public awareness	External food safety	(Sociale) media zetten aan tot andere consumptie-patroon	
		performance		

		Operation	Meer dierenwelzijn doet processen (farm to fork) wijzigen	
	Migration & travel	Monitoring	Andere culturen = andere eetgewoonten = andere producten	1
	Human health	Documentation &	Toename obesitas = meer 'light' = meer kunstmatige producten	1
	conditions	record-keeping		
	Resistant pests &	Documentation &	Covid-crisis = afstand houden = meer aandacht voor hygiëne in productie	
	diseases	record-keeping		
12	Migration & travel	Operation	Innovating products to different cultures $ ightarrow$ change of lines + buying products and ingredients from	2
			countries outside EU \rightarrow van give some challenges regarding pesticide residues etc \rightarrow monitoring plan	
			per product per region (low risk vs high risk)	
		External food safety	Innovating products for different cultures $ ightarrow$ different types of certification necessary in production	
		performance	facilities, >1 type of HALAL certification, kosher, $ ightarrow$ a lot of audits and time and money	
	Resistant pests &	Validation	More resistant pests and diseases $ ightarrow$ will need to execute validation of heat treatments on products	
	diseases		are enough for reduction to acceptable level $ ightarrow$ type of intervention will not change, just validation $ ightarrow$	
			if NOK, process parameter changes	
		Monitoring	More monitoring if pests and diseases are not reduced to acceptable level by standard heat treatments	
			ightarrow in first place; when validated, less additional monitoring – go back to standard monitoring	
13	Dietary choice	Validation	Bv lager zoutgehalte / uitgroei pathogenen (1 horde minder in hordensysteem) kan wijzigen	2
	Consumer awareness &	Verification	Meer ready to eat producten (geen afdoding meer van pathogenen door consumer) / of meer (korte of	
	attitude		onvolledige) opwarming in een microgolf door tijdsgebrek (ipv door verhitting of langdurige verhitting	
			in oven of friteuse bv) / in welke mate is consument zich bewust van gevaren als bv koudeketen	
			onderbroken is (of bv niet op tijd geconsumeerd is of tijdelijk bij een hogere temperatuur) /	
		Documentation &	Validatie gegevens bijhouden, trendanalyses bijhouden, mate van misbruik of fout gebruik inschatting	
		record-keeping		
	Consumer knowledge	Validation	Als afwijking vastgesteld wordt (bv verpakking is open bv lekkage) en in welke mate heeft consument	
			kennis om juist te handelen	
	Migration & travel	Validation	Nieuwe grondstoffen in R&D	
	Human health	Verification	Doelgroep: behoren er meer consumers tot yopi's dan vooraf ingeschat. Als bv meer mensen met	
	condition		overgewicht	
	Resistant pests &	System set-up	1	
	diseases			

14	Dietary choice	Internal food safety	Dietary choices may have to do with claims on pack. Implementation includes validation monitoring,	2
		performance	verification	
		Validation	See explanation above	
	Consumer awareness &	External food safety	Consumer awareness and attitude will be visible by consumer / customer complaints and questions?	
	attitude	performance		
	Consumer knowledge	External food safety	More attention will have to be paid to info on product pack	
		performance		
	Public awareness	External food safety	Same as for awareness & attitude	
		performance		
	Population size	External food safety	It will have no impact	
		performance		
	Prevalence of	Internal food safety	This factor has no impact on the FSMS since this already build to protect this type of consumers	
	vulnerable groups	performance		
	Urbanisation	External food safety	This factor has no impact	
		performance		
	Migration & travel	Internal food safety	No impact	
		performance		
	Human health	External food safety	No impact	
	conditions	performance		
	Resistant pests &	Verification	Resistance of pathogenic microbes has an impact on the FSMS since implemented preventive measures	
	diseases		may not be sufficient enough after some periods. Therefore, verification will become an important	
			factor to manage the effectiveness of the FSMS	
		Documentation &	Documentation of changes to are being implemented to counter resistance is important to build	
		record-keeping	background knowledge and manage the case efficiently. Each time verification shows that the	
			preventive measures are no longer effective, an optimisation step needs to be developed and validated	
		Operation	A optimised preventive measure includes changes in operations	
15	Dietary choice	Interventions	Less sugar – lower water activity – addition interventions might to be implemented	2
		Monitoring	Producing product with higher water activity might trigger additional testing requirements	4
		Operation	Additional intervention are linked with extra operation activities	4
	Consumer awareness &	Preventive measures	Supplier management of preventive measures $ ightarrow$ we might be obliged to source from specific regions	
	attitude		for example	

	System set-up	Example: Awareness of incidents in the sector might give a trigger to redesign/improve the system
<i>Consumer knowledge</i> -> Consumer awareness & attitude	Preventive measures	Dietary knowledge might impact product design e.g. no preservatives
Public awareness	Monitoring	Might trigger extra testing by regulators
	External food safety performance	Might impact number of audits
	System set-up	Might impact revision of internal or industry processes/standards
Population size	Preventive measures	Increasing demand for example chocolate consumption might impact supplier management which is on of preventive measures
Prevalence of vulnerable groups	Operation	Additional process might be implemented
Urbanisation	Preventive measures	Less agriculture land – limited number of suppliers
Migration & travel	Preventive measures	Operators travelling to exotic places
Human health conditions	Interventions	Stricter intervention on micro hazards control
Resistant pests & diseases	Preventive measures	Pest control

Table A5.2 Answers from the workshop showing the technological subdrivers indicated by each participant as having an impact on food safety management, the specific FSMS activities that the subdrivers impact, and examples about the mechanisms of these impacts. Examples talking about different issues than microbiological food safety management are indicated in italics and disregarded for further processing. When an example references another subdriver than the one indicated, the indicated subdriver is shown in italics, and the subdriver that it does reference is given.

Participant	Subdriver	FSMS activity	Example	Session
1	Plant-derived food	Operation	Product reformulation	1
	production			
	Novel food sources	Operation	Product reformulation	
	Products for food	Internal food safety	Ensure all incoming raw materials are duly checked for food safety contaminants	
	production	performance		
	New digital	Operation	New digital technologies can help companies to start preventive food safety and avoid food safety	
	technologies		issues & crisis	

	Food formulation	Internal food safety	New formulations must be duly checked for possible new food safety risks	
		performance		
	Food packaging	Internal food safety	Food packaging can introduce food safety risks that must be checked before introducing it	
		performance		
2	Plant-derived food	Internal food safety	Avocado is plant based so forms base of our company	1
	production	performance		
	Novel food sources	Internal food safety	New risk $ ightarrow$ risk analysis, HACCP, CCP/PRP	
		performance		
		Preventive measures	Validation & verification	
	Products for food	External food safety	Validation towards specification sheets	
	production	performance		
		Preventive measures	Validation, external food safety performance	
	Processing techniques	Internal food safety	With new machines validation HACCP, risk analysis	
	& scale	performance		
	Food formulation	Internal food safety	Risk analysis modified nutritional value	
		performance		
		Validation	Risk analysis lower salt content $ ightarrow$ shelf life analysis	
	Food packaging	External food safety	DoC and migration	
		performance		
3	Plant-derived food	Operation	The presence of endogeneous plant material must be prevented	1
2				'
	production	Internal food safety performance	Presence of endogenous material must be monitored and registered	
	Novel food sources	System set-up	In case of novel food sources the whole system set-up must be revised	
	Products for food	System set-up	The whole system must be revised, validated and adjusted to the products for food production	
	production			
	Processing techniques	Internal food safety	Processing techniques & scale have an impact on new lines, each technique must be validated	
	& scale	performance		
	Food formulation	System set-up	System must be designed in a way you can produce safe and with respect for the recipes	

	Food packaging	Internal food safety	MAP gassing can have an effect on food safety	
		performance		
4	Plant-derived food	Monitoring	Slechte oogst -> minder kwalitatieve product	1
	production			
	Products for food	Monitoring	Algemene ingrediënten, controle goederen inkomst	
	production			
	Processing techniques	System set-up	Upscaling nieuwe innovatie	
	& scale			
	Upcycling for food	Interventions	Afval pitten hergebruiken voor olie	
	New digital	Operation	Introductie tables voor effeciëntere werking	
	technologies			
	Food packaging	Operation	Andere soorten verpakking, zorgt voor ander inpakmethode	
5	Plant-derived food	Preventive measures	Juices	1
	production			
	Products for food	System set-up	Water	
	production			
	Processing techniques	System set-up	Washing and drying technologies	
	& scale			
	Food packaging	Preventive measures	New packaging, legislation, client spec	
6	Animal-based food	Preventive measures	Kan hier geen concrete voorbeelden voor geven	1
	production			
	Products for food	Preventive measures	Zie vorige opmerking, geen concrete voorbeelden. Wel mogelijke impact, watergebruik, maar ook de	
	production		bijkomende microbiologische belasting van de primaire grondstoffen (levende dieren)	
	Processing techniques	Operation	Zie vorige opmerking, geen concrete voorbeelden	
	& scale			
	Food formulation	System set-up	Zie vorige opmerking, geen concrete voorbeelden	
	Food packaging	Preventive measures	Zie vorige opmerking, geen concrete voorbeelden	
7	Products for food	Internal food safety	Wanneer we microbiologische analyses doen op eindproducten met een aardbei grondstof of op een	1
	production	performance	aardbei grondstof rechtstreeks vinden we vaak positieve resultaten voor Bacillus Cereus. Ondertussen	
			hebben we ontdekt dat Bacillus thuringiensis bij aardbeien teelt kan gebruikt worden als insecticide.	
			Bij labo analyses wordt dit eruit gehaald als Bacillus Cereus. Als we dit weten zou het geen probleem	

			kunnen zijn alleen hebben we nog geen concreet bewijs dat aanwezigheid van bacillus thuringiensis wel veilig is.	
8	Animal-derived food	System set-up	Animal food production = specific regulations eg micro	1
	production	Monitoring	Animal food production = specific regulations eg micro	
	Products for food production	Monitoring	Regulations water quality, cleaning products, additives	
	Processing techniques & scale	Documentation & record-keeping	New techniques = modification HACCP studies & several documents	
		Interventions	New techniques = possible new interventions/monitoring by workers/QC	
	New digital technologies	System set-up	Digitization = mainly impact on set-up & documentation	
	Food packaging	Documentation & record-keeping	New packaging = modification of documentations in QA system	
9	Products for food production	System set-up	Nieuw product -	2
	Processing techniques & scale	Validation	Nieuwe desinfectietechniek	
	Food packaging	Verification	Gerecycleerde verpakkingen – waarborgen microbiologische kwaliteit eindproduct	
10	Plant-derived food production	Preventive measures	Hoge beginwaarden qua microbiologie / matrixen die onvoldoende gekend zijn -> aanpassingen aan processen nodig	2
		Verification	Door de variabele matrixen van plant-based is er meer nood aan validatie -> wisselende resultaten voor de borging van de microbiologie	
	Novel food sources	System set-up	Nieuwe grondstoffen / ongekende microbiologische gevaren -> studie te herwerken en meestal in combinatie met behouden van huidige producties	
		Interventions	Initiële microbiologische belading minder goed gekend -> afdoding van microbiologie kan vaak niet op gekende manier doorgaan	
	Upcycling for food	System set-up	"Afval" stroom hergebruiken -> herwerken van de studie -> bijkomende maatregels te nemen / afspraken met de leveranciers	
		Operation	"Afval" stroom -> hygiene bij de dagelijkse verwerking nog belangrijker maar indruk bij de productie dat het er niet meer toe doet -> meer risico op microbiologische gevaren	
	Food packaging	Validation	Switch naar monomateriaal is niet zonder gevaren -> barriëres niet even sterk -> sneller bederf in de verpakkingen + technologie nog volop in ontwikkeling	

11	Plant-derived food production	Validation	Residu-analyses: bij overschrijding, recall	2
	Animal-derived food production	Verification	Geneesmiddelen residu's: bij overschrijding, recall	
	Processing techniques & scale	Verification	-	
	Food formulation	Documentation & record-keeping	-	
	Food packaging	Validation	Verpakkingstechnologie ifv commerciële aspecten (kleurbehoud) eerder dan voedselveiligheid	
12	Plant-derived food production	Operation	Based on type of production process and harvesting process etc \rightarrow more/less foreign bodies & spoilage \rightarrow do we seen already in the field? \rightarrow due to automation, (extensive vs intensive crops) less manual work so less people taking out the 'bad' products, you need to trust on equipment to see product that is spoiled	2
	Products for food production	Internal food safety performance	Change regulation pesticides & fertiliser (banned products & lowering MRL) → more and more products exceeds MRL or had been spoiled due less use of pesticides & need to try new combinations of pesticides & fertilizers → more sampling of products → also a lot go to waste due to bad products if too 'less' pesticides → most problems with biological produced crops	
	New digital technologies	Operation	Use of AI in optical sorter \rightarrow not working properly \rightarrow a lot of tests, see thing that aren't there and the other way around \rightarrow testing	
13	Processing techniques & scale	Validation	Bv microgolftechnologie (indien implementatie om te ontdooien of bij verhitting)	2
	Upcycling for food	Monitoring	Als vermeerdering van productielijnen, meerdere lijnen controleren ipv 1 productielijn; of als werken in meerdere ploegen ipv 1 ploeg (enkel dag)	
	New digital technologies	Operation	Meer sensoren; die parameters in productie proces opvolgen (temperatuur product na verhitting, temperatuur na invriezen)	
	Food formulation	Validation	Bv minder zout in recepturen;	-
	Food packaging	Validation	Verpakkingshoeveelheid steeds verminderen (minder bescherming, minder dikke folie, of product is minder beschermd tegen externe factoren cfr bij diepvries transport	
14	Plant-derived food production	Preventive measures	In order to avoid cross contamination of plant based materials with animal based materials, separation in time or space is essential having impact on GSMS activities seen monitoring will be important	2

		System set-up	Introduction of plant based products in an animal based product production environment involves	
		System set up	analyses of other hazards (contaminants, microbiology,)	
		Validation		
		Valluation	Each plant based product group to be introduced will need validation and set up of monitoring	
	Noval food courses	Decumentation (programs	
	Novel food sources	Documentation &	In our business, novel foods will only be used as ingredient, so management of documentation will be	
		record-keeping	key	
	Products for food	Monitoring	New products for food production will include need for management of supplier documentation and	
	production		setup of monitoring of each new class of products	
		Documentation &	Management of supplier documentation and authority control programs	
		record-keeping		
	Processing techniques	Validation	New processing techniques include validation to ensure food safety of the product	
	& scale	Documentation &	New processing techniques include documented control points to ensure process is successful	
		record-keeping		
		Verification	Periodic verification of way of working will be needed	
	Upcycling for food	Operation	No impact	
	New digital	Validation	New digital technologies do need to be validated	
	technologies	Monitoring	New digital technologies will increase efficiency of FSMS	
	Food formulation	Monitoring	New ingredient groups will include extension of the monitoring plan	
		System set-up	New quality label ingredients may have the consequence that a new FSMS subsystem needs to be set	
			up	
	Food packaging	Monitoring	A new class of food packaging or packaging technology may include that shelf life of the involved	
			products needs to be validated	
		Documentation &	Management of supplier documentation for special type of packaging (recyclability)	
		record-keeping		
15	Novel food sources	Validation	Validation of processes for other ingredients	2
		System set-up	Micro hazard analysis for new ingredients	
	Processing techniques	External food safety	Delivering across the glob might trigger additional audits; bigger scale potentially more complaints	
	& scale	performance		
		Monitoring	If exporting to certain countries different micro-criteria might be required	
	Upcycling for food	System set-up	To identify microbiological hazards that might occur during upcycling	
	New digital	Documentation &	Will help to record, store and analyse micro data – trending	
	technologies	record-keeping		

Food formulation	Validation	Less sugar, no preservatives – to validate if changes are not impacting micro stability of the product	
Food packaging	Validation	To validate that for example recycled packaging has the same functionality – e.g. fmoisture transfer	
		that can increase water activity of the product that can lead to spoilage -> soft bakery. Sealing	
		integrity	

Table A5.3 Answers from the workshop showing the environmental subdrivers indicated by each participant as having an impact on food safety management, the specific FSMS activities that the subdrivers impact, and examples about the mechanisms of these impacts. Examples talking about different issues than microbiological food safety management are indicated in italics and disregarded for further processing. When an example references another subdriver than the one indicated, the indicated subdriver is shown in italics, and the subdriver that it does reference is given.

Participant	Subdriver	FSMS activity	Example	Sessio
1	Agricultural pollution	Internal food safety	Agricultural pollution may have an impact on the raw materials used. Additional checks must be added	1
		performance	to avoid the risk of non-compliance	
	Sewage treatment	Internal food safety	Sewage treatment must be part of the Environmental Monitoring Plan as there is a risk of pathogens	
		performance		
	Recycling	Internal food safety	Several chemical contaminants are known to come form recycling (ie, mineral oil hydrocarbons from	
		performance	recycled packaging, allergen cross-contamination)	
	Water & soil	Operation	Water & soil may come with chemical and microbiological risks and must be monitored	
	management			
	Geographic region	Internal food safety	Depending on the region there are different regulatory frameworks that must be followed	
		performance		_
	Seasonality & weather	Internal food safety	May affect the microbiological environment of a factory. Moreover, it may have an impact of chemical	
		performance	contaminants in certain raw materials (mycotoxins in cereals due to weather conditions)	
	Climate change	Internal food safety	It may impact the selection of certain raw materials, economic impact linked to fraud and	
		performance	presence/absence of certain contaminants	
2	Recycling	System set-up	Use of RPET in packaging	1
	Seasonality & weather	External food safety	Avocado grown in southern countries, variability of fat content and viscosity	
		performance		
3	Agricultural pollution	Monitoring	Pesticide monitoring	1
	Geographic region	Monitoring	Cadmium is more presence in some regions]
	Seasonality & weather	Preventive measures	Multiple suppliers from multiple countries are necessary to have multiple options when quality is bad	1
			because of seasonality & weather conditions	

4	Recycling	Internal food safety performance	Afval van pitten voor olie gebruiken	1
	Geographic region	Preventive measures	Ontwikkeling van land	-
	Seasonality & weather	Monitoring	Verschillende leveranciers zoeken uit verschillende continenten die verschillende seizoenentijden	
			hebben, zodat er constant kwaliteitsvol en voldoende product geleverd kan worden	
	Climate change	Monitoring	Minder goede oogsten, meer verschillende leveranciers zoeken	
5	Agricultural pollution	Preventive measures	Raw material on the field	1
	Sewage treatment	Preventive measures	Used water	
	Water & soil	Preventive measures	Misusage of water by supplier	
	management			
	Geographic region	Preventive measures	New sourcing region	
	Seasonality & weather	Monitoring	Problems on the fields caused by weather conditions (temperature, rain,)	
	Climate change	Monitoring	Duration of product season are changing eg: pumpkin season was very short	
6	Agricultural pollution	Preventive measures	Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact om hier aan te geven welke impact dit zou kunnen zij op microbieel vlak is zeer moeilijk. Kan hier ook geen concrete voorbeelden geven. Het voorkomen om deze grondstoffen binnen te krijgen is een van de belangrijkste stappen	1
	Sewage treatment	Monitoring	Sommige bedrijven gaan het water van hun waterzuivering gaan hergebruiekn. Dus monitoring van de kwaliteit van het water is belangrijk vooraleer dit is in verdere stappen kan worden ingezet. Gebruik recuperatiewater (vb. reinigen stallen) of volledig zuiveren van het recuperatiewater naar drinkwaterkwaliteit. Of de risico's naar het lozen van dit recuperatiewater	
	Water & soil management	Monitoring	Kwaliteit van het ontvangen water , vb. indien men werkt met putwater	
	Geographic region	Monitoring	Naar microbiologische impact heb ik hier niet onmiddellijk een idee, maar naar chemische verontreiniging kan dit wel een impact hebben op het FSMS (vb. PFAS en regio's die gekend zijn als vervuilde zone's)	-
7	Water & soil management	Internal food safety performance	In de nabije toekomst zullen we minder putwater mogen oppompen volgens onze vergunning. Putwater gebruiken we momenteel voor reiniging van machines en dergelijken (contactwater). We zullen binnenkort reversed osmose water terugkrijgen uit onze waterzuiveringsinstallatie en bekijken momenteel hoe we dit kunnen borgen in ons FSMS.	1

8	Agricultural pollution	System set-up	Water quality origin (suppliers) = impact on raw materials -> modification	1
			documentation/system/validation	
		Monitoring	Water quality origin (suppliers) = impact on raw materials -> modification monitoring plan	
	Recycling	Monitoring	Recycling raw material @ supplier – impact on monitoring plan	
	Water & soil management	Monitoring	Water management @ origin/supplier = impact on monitoring plan raw materials	
	Geographic region	Documentation & record-keeping	Raw materials from different geographic region = impact on documentation (eg specifications)	
		Monitoring	Raw materials from different geographic regions = impact on monitoring plan microbiology	
	Seasonality & weather	Monitoring	Seasonality = possible impact on bacteriological quality of raw materials -> modification of monitoring plan	
		Documentation & record-keeping	Seasonality -> possible impact on validation/verification of product groups	
	Climate change	Monitoring	Climate change -> possible impact @ suppliers = modification on sampling plan	
		System set-up	Climate change @ suppliers -> possible impact on system set-up	
9	Agricultural pollution	Preventive measures	Vervuilde grondstoffen – recalls tot gevolg	2
		Operation	Extra controles in productie	
	Recycling	Internal food safety performance	Te doorgedreven hergebruik waardoor voedselveiligheid in gevaar komt	-
	Climate change	Operation	Warmere temperaturen zorgen voor uitdagingen bij gekoeld transport in zomer – deuren vrachtwagen gaan open en volledige laadruimte te hoge temperatuur	
10	Sewage treatment	System set-up	Waterzuivering -> andere risico's en verplichtingen wegens eigen beheer -> meer restrisico naar microbiologie toe indien het fout loopt	2
	Seasonality & weather	Preventive measures	Meer neerslag = lagere kwaliteit van grondstoffen -> meer nood aan reducties qua microbiologie	
		External food safety	Aankoop van grondstoffen uit andere regio's door seizoenen -> minder vertrouwne in de kwaliteit en	
		performance	de controles van buiten EU -> verhoogde microbiologische metingen nodig (?)	
	Climate change	Monitoring	Nieuwe micro-organismen kunnen gedetecteerd worden in regio's van aankoop terwijl er daar vroeger	
			nooit problemen mee waren	
11	Agricultural pollution	Documentation &	Steeds meer forever chemicals in het milieu = in het voedingsproduct, vaak dure analyses voor	2
		record-keeping	organisatie en/of overheid	
			Teveel N = minder biodiversiteit, meer pesticiden nodig	
	Recycling	Monitoring	Migratie van chemische componenten (Mosh/Moah) vanuit verpakking naar voeding	

12	Agricultural pollution	Preventive measures	Pollution \rightarrow more attention to preventive measures; more samples; drift is an important one; drift is hugh problem \rightarrow but more related to chemicals than microbiological	2
	Climate change	Operation	Due to climate change \rightarrow products in south of Europe are burnt due to hot weather, in Belgium are soaked due to a lot of rain \rightarrow crop cycle disrupted \rightarrow less products produced by our factories \rightarrow more products sourced outside Europe with their own problems (exceedance pesticides,)	
		External food safety	More complaints as more products are 'non conform', the A-grade quality from previous years, we	-
13	Recycling	performance System set-up	cannot produce that anymore → complaints releated to 'poor quality' Bv rework – hoe vaak kan de cyclus zich herhalen? Dient cyclus onderbroken te worden? Hoe monitoring?	2
	Seasonality & weather	Operation	DV opslag; koel houden van productie- en receptiezones; beslasting koelgroepen bij (langdurig) warm weer in de zomer; snellere correcties nodig bij technisch falen van koeling of te hoge producttemperatuur en mogelijks uitgroei m.o.	_
14	Agricultural pollution	Monitoring	Pollution resulting in contamination of incoming ingredients and raw materials	2
		Monitoring	Pollution resulting in contamination of process water	
	Sewage treatment	Monitoring	Norms to sewage do need to be monitored	
	Recycling	Operation	Recycling management does involves definition of way of working for separation of waste materials	
		Documentation & record-keeping	Separation of waste flows includes record keeping and documentation for recyclable products	
	Use of sidestreams	System set-up	Cutting loss of products to be used as rework involves setup of FSMS subsystem	
	Water & soil management	Monitoring	Quality parameters need to be monitored	
	Seasonality & weather	Operation	Cooling systems need more follow up (QC) during high summer temperatures	-
	Climate change	Operation	Reduction of water use may have impact on hygiene management	_
		Documentation & record-keeping	Shortage in ingredients availability – recipe flexibility – traceability/shelf life of products	
		Operation	High temperatures – impact on frequency of monitoring/verification	1
15	Geographic region	Monitoring	For some materials in some regions/countries extra testing might be done	2
	Seasonality & weather	Operation	Shortage of certain raw material due weather might require revision of new suppliers – impact on company operation	
	Climate change	Monitoring	e.g. for some spices dry weather might results in higher TPC results	1

Table 4 Answers from the workshop showing the economic and political subdrivers indicated by each participant as having an impact on food safety management, the specific FSMS activities that the subdrivers impact, and examples about the mechanisms of these impacts. Examples talking about different issues than microbiological food safety management are indicated in italics and disregarded for further processing. When an example references another subdriver than the one indicated, the indicated subdriver is shown in italics, and the subdriver that it does reference is given.

Participant	Subdriver	FSMS activity	Example	Session
1	Global trade	Operation	Different food safety issues may come from different regions. Additionally traceability is more	1
			challenging as sometimes there are trading companies involved	_
	Distribution channels	Operation	<i>The economic impact when selling to the artisan market is different when we talk about retailers. The latter has a larger distribution/impact</i>	
	Official controls &	System set-up	Ensuring all our products are safe and manufactures in such a way that always meet authorities	
	communication expectations		expectations	
	Good practices &	Preventive measures	Quality and Food Safety Culture	
	standards			
	Food legislation	System set-up	The system set-up must always be in line with local legislation	
	War & conflict	Operation	Availability of raw materials	
	Fragmentation	Operation	Availability of raw materials	
	between nations			
2	Global trade	Internal food safety	Conform legislation of each country	1
		performance		
	Distribution channels	System set-up	Validation of transporteurs	
	Official controls &	System set-up	Validation of control	
	communication			
	Good practices &	Monitoring	ССР	
	standards			
	Food legislation	Internal food safety	Conform as food product	
		performance		
		Monitoring	Food product so conformity is needed	
3	Official controls &	External food safety	Official audits by authorities	1
	communication	performance		
	Good practices &	System set-up	GP's must be implemented in our organisation to assure food safety & quality	
	standards			
	Food legislation	System set-up	We need to produce and import/export conform food legislation. Designs of equipment must be	
			conform legislation	

	War & conflict	Preventive measures	Multiple suppliers are needed to make sure import is possible. Because of the war in the Red Sea our	
			goods are sometimes longer on the road	
4	Global trade	Preventive measures	Overzees product, internationaal bedrijf	1
	Distribution channels	Preventive measures	Verschillende handelsroutes bekijken (boot, over de weg)	
	Good practices &	Preventive measures	Sociale normen steeds belangrijker	
	standards			
	War & conflict	Preventive measures	Andere leveranciers zoeken, geen handel met land in conflict (subsidies)	
5	Global trade	Preventive measures	Sourcing from new areas	1
	Distribution channels	Preventive measures	New channels	
	Official controls &	Monitoring	Different interpretation of legislation by different departments in same country of different MS	
	communication			
	Good practices &	System set-up	Changes of legislation, new versions of standards	
	standards			
	Food legislation	System set-up	New legislation, new interpretation	
	War & conflict	Preventive measures	New sourcing areas	
	Fragmentation	Monitoring	Different legislation in other countries	
	between nations			
6	Distribution channels	System set-up	Veel verschillende eindklanten, elke met hun eigen eisen	1
		Operation	De verschillende eisen van de verschillende klanten hebben eveneens een invloed op de operationele	
			werking van het bedrijf	
	Official controls &	System set-up	Voor onze sector heeft dit een zeer grote impact, de controle graad bij onze bedrijven ligt vele male	
	communication		hoger dan bij andere bedrijven in ander sectoren. Dit zorgt voor veel druk bij de mensen die op de QA werken	
	Good practices &	Documentation &	Naast de operationele druk is er ook een grote administratieve druk	
	standards	record-keeping		
	Food legislation	System set-up	Snel wijzigende wetgevingen en bijkomende verstrengen maken het voor vele kleinere bedrijven	
			moeilijk om dit zelf nog volledig op te kunnen volgen	
	War & conflict	Operation	Vb. sterke stijging van de hulpgrondstoffen, of verpakkingen, maar ook de stijgende energiekosten. Dit	
			heeft voor vele bedrijven een grote impact gehad op hun operationele procesvorming	
	Fragmentation	System set-up	Een voorbeeld in onze sector kan hier ook zeker Brexit zijn. Bedrijven hebben hun huidige systematiek	
	between nations		hierop moeten afstellen. Extra documentaire werkdruk	

8	Global trade	Documentation &	Disruption chain= raw materials from new regions -> impact on documentation & monitoring	1
		record-keeping		_
	Distribution channels	Documentation &	Disruption supply chain -> new suppliers/regions = impact on documentation	
		record-keeping		_
		Monitoring	Disruption supply chain -> new suppliers/regions = impact on monitoring plan	_
	Official controls &	Monitoring	Official controls = may affect several parts of Quality assurance (documentation, validation,)	_
	communication	Operation	Official controls = may affect several parts of Quality Control (monitoring, measures,)	_
	Good practices &	Documentation &	Good practices -> observation internal audits = mainly impact on documentation	
	standards	record-keeping		
		Operation	Good practices -> observation internal audits = mainly impact on operations	
	Food legislation	Documentation & record-keeping	Modification legislation, possible impact on system (validation, verification, docs)	
		Monitoring	New legislation -> mainly impact on monitoring plan	
	War & conflict	Documentation &	Conflict -> increase import duties -> sourcing new suppliers/ regions -> impact on documentation	
		record-keeping		
		Monitoring	Conflict -> increase import duties -> sourcing new suppliers/ regions -> impact on monitoring plan	
9	Food legislation	External food safety	Lange doorlooptijd om EU wetgevingen om te zetten in KB, cfr KB water	2
		performance		
	Fragmentation	Documentation &	Verschillende regels tussen landen	
	between nations	record-keeping		
10	Global trade	System set-up	Grondstoffen van buiten EU = onvoldoende kennis bij de leveranciers van de eisen -> meer risico op	2
			overschrijdinge	
		Documentation &	Aanleveringen van buiten EU -> nood aan extra documenten / analyses -> twijfel aan echtheid van	
		record-keeping	documenten op vlak van microbiologische analyses / accreditaties labo's	
	Official controls &	External food safety	Interpretatie sterk afhankelijk van de inspecteur die aanwezig is -> andere manier van opzet nodig om	
	communication	performance	te voldoen aan de eisen van het LCE + vernieuwing qua mensen dus drang om zich te bewijzen ->	
			onderzoeken naar microbiologische activiteiten die eigen zijn aan het product/proces met	
			waarschuwingen	
		System set-up	Wijzigingen in omzendbrieven -> verduidelijkingen die een andere aanpak vragen -> herwerken van	
			het analyseplan	
	Food legislation	Internal food safety	Meer nood aan omgevingscontroles en de interpretatie / trends van deze gegevens -> meer kennis	
		performance	nodig van microbiologie intern	

	Fragmentation	System set-up	Andere eisen door Brexit of andere interpretatie van de wetgeving door lokaal FAVV (bv Nederland en	
	between nations		de Listeria interpretatie) -> andere manier van benadering -> microbiologische resultaten die bij ons	
			geen gevaar zijn vormen daar wel een gevaar	
11	Global trade	Monitoring	Grote productie bedrijven bevoorraden meerdere landen om prijs te drukken, lage lonen = minder	2
			gekwalificeerd personeel	
	Official controls &	Monitoring	Grote verschillen in controles = andere standaarden per land	
	communication			
	Food legislation	Operation	Europese wetgeving niet over gelijk toegepast, oneerlijke concurrentie (minder controles)	
	War & conflict	Verification	Alternatieve bronnen van grondstoffen zoeken, zeker niet altijd van gelijkwaardige kwaliteit	-
		Operation	Tekort aan bepaalde grondstoffen, om toch te kunnen leveren aanvullen met minderwaardige	
			grondstoffen	
	Fragmentation	Monitoring	Minder kennisuitwisseling, tussen landen	
	between nations			
12	Official controls &	Documentation &	A lot of documentation necessary to comply with regulations $ ightarrow$ store all documents and extras, not	2
	communication	record-keeping	easy to have localised system	
	Food legislation	Internal food safety	More and more sampling $ ightarrow$ 'new' components found $ ightarrow$ also sample and analyses $ ightarrow$ time & money	
		performance	necessary $ ightarrow$ +change of regulations $ ightarrow$ pro-active approach needed to implement to new regulations	
			in time	
	War & conflict	Internal food safety	Higher prices $ ightarrow$ sourcing ingredients outside of Europe, mainly Asia $ ightarrow$ not same maturity level of	
		performance	FSMS as here $ ightarrow$ hygiene etc not the same $ ightarrow$ have more unexplained contamination	
	Fragmentation	Documentation &	Everywhere other regulation $ ightarrow$ need to comply with all to export, not easy $ ightarrow$ requires a lot of	
	between nations	record-keeping	documents, certificated,	
13	Global trade	Operation	Grote verdelers / toeleveranciers hebben vaak meerdere vestigingen door overnames; en kunnen	2
			grondstoffen aanvoeren vanuit verschillende werelddelen, hierdoor extra stakeholders (en extra	
			aandacht of opvolging nodig indien bv klanteneis met betrekking tot afkomst)	
	Distribution channels	Internal food safety	Portaalsites van elk distribution channel/ bijhouden van informatie / up to date houden / wirwar van	
		performance	referentienummers en artikelnummers tussen verschillende distribution channels/	
		Documentation &	Intern system opbouwen/bijhouden welke info bij welk distribution channel dient up to date gehouden	
		record-keeping	te worden	
	Food legislation	System set-up	Wijziging food legislation $ ightarrow$ bv wel/niet rookaroma's verder toegelaten (verlenging of niet toelating	
			in toekomst)	

		Operation	Als wijziging aan food legislation → bv heet water 82°C of ander systeem om messen te ontsmetten bij vers vlees of vleesbereidingen; dit heeft impact op de werkvloer en operationele activiteiten	
	War & conflict	Operation	Niet tijdig of stop aanvoer van bepaalde grondstoffen / zoeken naar alternatieven (bij andere leveranciers, andere grondstoffen, of andere afkomst) cfr geen zonnebloemolie meer beschikbaar in 2023 - overschakeling naar koolzaadolie of ander	
	Fragmentation between nations	Operation	Bv bij falen van machine; tekort aan micro chips; machines buiten gebruik	
14	Global trade	Verification Documentation &	Export to new countries involves need for compliance to new norms Export to non-EU countries needs documentation for export certificates	2
		record-keeping		_
		Verification	Export to countries may involve shelf life extension	4
	Distribution channels	System set-up	Customer specific book of charges to be implemented	4
	Official controls & communication	External food safety performance	Official controls = resource of info for risk analysis	
	Good practices & standards	Operation	Clear factory guidelines on the workfloor based upon good practices and standards do maximize effective management of FSMS	
	Food legislation	Monitoring	Legal norms are a food source for minimum quality requirements for incoming materials. On the other hand, non-harmonised legal norms (different norms in the same food product subsectors) are a challenge for a FSMS)	
		External food safety performance	Harmonised legislation makes it easier to source from different countries	
	War & conflict	System set-up	Unavailability of materials is a challenge for business continuity, and also for a FSMS that needs to be installed to allow changes in materials	
	Fragmentation between nations	System set-up	Different guidelines in different nations, with local interpretation, do make it a challenge to comply with local guidelines, especially when your company has no local QA department to check compliance	1
		Monitoring	Dependent upon national guidelines, different monitoring plans for the same product may be needed	
15	Global trade	External food safety performance	Exposure to high number if costumer requirements	2
	Official controls & communication	External food safety	Controls might results in identified improvements opportunities	
	Good practices & standards	System set-up	Shared goods practices and industry standards contribute to system improvements	1

Food legisla	tion Monitoring	Extra testing might be required	
	Validation	Validation my be required by regulators in some regions	
	External food safety	Food regulators might be visiting plants	
	performance		
War & confl	ct Preventive measures	Raw material limitations	
Fragmentat	ion Monitoring	Different testing requirements between countries	
between na	tions		

Table A5.5 Top 5 rankings given by the workshop participants answering the question which subdrivers are most important to consider in their company's FSMS

Participant	Session	Ranking	Participant	Session	Ranking
1	1	1. Climate change	9	2	1. Processing techniques & scale
		2. Global trade			2. Consumer awareness & attitude
		3. Food formulation			3. Food packaging
		4. Novel food sources			4. Agricultural pollution
		5. Distribution channels			5. Climate change
2	1	1. Good practices & standards	10	2	1. Plant-derived food production
		2. Human health conditions			2. Climate change
		3. Processing techniques & scale			3. Novel food sources
		4. Consumer knowledge			4. Consumer awareness & attitude
		5. Food packaging			5. Food packaging
3	1	1. Good practices & standards	11	2	1. Food legislation
		2. Products for food production			2. Animal-derived food production
		3. Dietary choice			3. Consumer awareness & attitude
		4. Food packaging			4. Food packaging
		5. Human health condition			5. Dietary choice
4	1	1. Good practices & standards	12	2	1. Climate change
		2. Resistant pests & diseases			2. Food legislation
		3. Seasonality & weather			3. Products for food production
		4. Products for food production			4. Resistant pests & diseases
		5. Consumer knowledge			5. Agricultural pollution
5	1	1. Good practices & standards	13	2	1. Processing techniques & scale
		2.Processing techniques & scale			2. Consumer awareness & attitude
		3. Water & soil management			3. New digital technologies
		4. Seasonality & weather			4. Distribution channels
		5. Food legislation			5. Food legislation
6	1	1. Food legislation	14	2	1. Resistant pests & diseases
		2. Official controls &			2. Fragmentation between nations
		communication			3. Use of sidestreams
		3. Products for food production			4. Distribution channels
		4. Sewage treatment			5. Global trade
		5. Dietary choice			
7	1	1. Water & soil management	15	2	1. Climate change
		2. Products for food production			2. War & conflict
		3. Dietary choice			3. Food legislation
					4. Novel food sources
					5. Food formulation
8	1	1. Food legislation		1	
		2. Global trade			
		3. New digital technologies			
		4. Climate change			
		5. Processing techniques & scale			

6. <u>Appendix 6: Initial and focused coding of the workshop results</u>

Table A6.1 Initial and focused coding of the examples provided by the workshop participants on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 most indicated social subdrivers

Subdriver	FSMS activity	Example	Initial coding	Focused coding
Resistant pests & diseases	Preventive measures	Extra controls necessary, pest monitoring plans of suppliers are needed, extra costs	Pests -> Extra pest controls	More pests -> Improve pest control
		Zelfde opmerking, niet mogelijk om hier concrete voorbeelden te geven	1	1
		Pest control	Pests -> Pest control	More pests -> Improve pest control
		Raw material	Resistant pests & diseases -> Raw material	More resistant MO -> Increase material control More pests -> Increase material control
		Better raw materials with lower contaminants, decreasing the food safety risk	Lower contaminants -> better raw materials	More resistant MO -> increase material control
		An optimized preventive measure includes changes in operation	Resistant pests & diseases -> optimized preventive measure	More resistant MO -> increase material control More resistant pests -> improve pest control
		Extra controle bij containeraankomst, geen sporen van ongedierte	Pests -> Extra material control	More pests -> Increase material control
	Monitoring	New diseases → modification monitoring plans	New diseases -> Modifictation monitoring plans	New diseases -> Modificate monitoring plans
		More monitoring if pests and diseases are not reduced to acceptable level by standard heat treatments> in first place; when validated, less additional monitoring - go back to standard monitoring	Pests/diseases not reduced enough by heat treatment -> More monitoring	MO/Pests resistant to treatments -> Modificate monitoring plans
	Operation	Ziekte personeel - snel nieuwe mensen moeten opleiden en inzetten in productie - aandacht werkmethodiek / hygiënisch werken	Sickness staff -> Attention to hygienic work	Sickness staff -> More attention to hygienic working

		Aanwezigheid van resistente microbiologie in de omgeving>	Resistant microbiology in	More resistant MO -> More
		meer nood aan hygiëne bij de grondstoffen om dit niet binnen te	environment -> More need of	attention to hygienic working
		nemen in de bedrijven	hygiene	
		Covid-crisis = afstand houden = meer aandacht voor hygiëne in	Pandemic -> More attention to	Sickness staff -> More
		productie	hygienic work	attention to hygienic working
	System set-up	New diseases> modification HACCP	New diseases -> Modification	New diseases -> Revise
			НАССР	system set-up
		Bijsturingen naar gelang de meldingen uit de buitenomgeving	More resistant pathogens ->	More resistant MO -> Revise
		noodzakelijk> meer aanwezigheid van Listeria in	Modification system set-up	system set-up
		productieomgevingen(?) / STEC		
		1	/	1
	Validation	More resistant pests and diseases> will need to execute	Pests/ diseases not reduced	MO/Pests resistant to
		validation of heat treatments on products are enough for	enough by heat treatments ->	treatments-> Validate
		reduction to acceptable level> type of intervention will not	Validation of process parameters	technology
		change, just validation> if NOK, process parameter changes		
		Avocado validation on pests in country of origin> risk analysis	Pests -> Validation	More pests -> New validation
	Verification	Resistance of pathogenic microbes has an impact on the FSMS	Resistance of pathogenic	More resistant MO -> Improve
		since implemented preventive measures may not be sufficient	microbes -> Verification to	verification of effectiveness
		enough after some periods. Therefore, verification will become an	manage effectiveness	
		important factor to manage the effectiveness of the FSMS.		
	Documentation &	Documentation of changes to are being implemented to counter	Preventive measures no longer	MO/Pests resistant to
	record-keeping	resistance is important to build background knowledge and	effective -> Documentation of	treatments -> Documentation
		manage the case efficiently. Each time verification shows that the	changes	of changes
		preventive measures are no longer effective, an optimization step		
		needs to be developed and validated.		
Dietary choice	Preventive measures	By asking the right questions before system set-up	/	1
		Meer bio-producten> extra controle + handeling (extra	Bio-products -> Extra controls	Bio-products -> Increase
		afspoelstap na ontsmetting)		material control
	Intervention	Less sugar - lower water activity - addition interventions might to	Less sugar -> Additional	Less sugar/salt -> Additional
		be implemented	interventions	intervention steps
	Monitoring	Producing product with higher water activity might trigger	Less sugar -> Additional testing	Less sugar/salt -> More
		additional testing requirements		sampling

		Dietary choices may have to do with claims on pack.	Claims -> Implement monitoring	Claims -> Modificate
		Implementation includes validation, monitoring, verification.		monitoring plans
	Operation	1	1	1
		Door het introduceren van de verschillende claims dient er meer	Claims -> More cleaning	Claims -> More attention to
		reinigingswerk uitgevoerd te worden, operationeel zorgt dit voor	operations	hygienic work
		meer kuisactiviteiten en risico op kruiscontaminaties		
		Additional intervention are linked with extra operation activities	Less sugar -> Extra operation	Less sugar/salt -> Adapt operational activities
		Producten met claims dienen vaak als eerste op de lijn versneden	Claims -> Change in operation	Claims -> Adapt operational
		te worden terwijl dit microbiologisch gezien niet de ideale set-up is	sequence	activities
	System set-up	Specific demand of retailer	Specific demand retailer -> System set-up	New retailer demands -> Revise system set-up
		New products/suppliers = modification system set-up & documents	New products -> Modification FSMS	New products -> Revise system set-up
	Validation	Less salt, more clean label> influence shelf life	Less salt -> Shelf life validation	Less sugar/salt -> Validate shelf life
		Bv lager zoutgehalte / uitgroei pathogenen (1 horde minder in	Less salt -> Validate pathogen	Less sugar/salt -> Validate
		hordensysteem) kan wijzigen	growth	shelf life
		Dietary choices may have to do with claims on pack. Implementation includes validation, monitoring, verification.	Claims -> Implement validation	New validation
	Verification	Dietary choices may have to do with claims on pack. Implementation includes validation, monitoring, verification.	Claims -> Implement verification	Claims -> Improve verification of effectiveness
	Documentation & record-keeping	New products/suppliers = modification system set-up & documents	New products -> Modification documents	New products -> Modification documentation
	External food safety	Nutriscores verbeteren leidt tot wijziging ingrediënten	1	1
	performance	1	1	1
	Internal food safety performance	Pre-requisites definition	1	1
Consumer awareness & attitude	Preventive measures	Rekening houden met veranderende vraag van consument - ander aanbod	1	1

	Ν	Negatieve publiciteit zorgt voor verandering van leveranciers	Negative publicity -> Change in suppliers	Negative publicity -> Change suppliers
	S	Supplier management of preventive measures $ ightarrow$ we might be	Specific region sourcing ->	Specific region sourcing ->
	C	obliged to source from specific regions for example	Supplier management	Change suppliers
Interventio	on N	Minder E-nummers gewenst -> andere alternatieven zoeken (HPP -	Less additives -> Alternative	Less additives -> Additional
	s	stap ipv bewaarmiddel)	intervention steps	intervention steps
Operation		Moving towards a more plant-based diet increase the availability on the market of plant-based solutions	More plant-based -> Operation	More plant-based -> Adapt operational activities
System set	:-up E	Example: Awareness of incidents in the sector might give a trigger	Awareness of incidents ->	Negative publicity -> Revise
	t	o redesign/improve the system	Redesign system	system set-up
Validation	V	/alidation of cleaning to avoid cross-contamination	More plant-based -> Validation of cleaning	More plant-based -> New validation
	Ν	Meer ready to eat producten (geen afdoding meer van pathogenen	More ready-to-eat -> Validation	More ready-to-eat -> New
	d	loor consumer) / of meer (korte of onvolledige) opwarming in een	consumer behaviour	validation
	n	nicrogolf door tijdsgebrek (ipv door verhitting of langdurige		
	v	/erhitting in oven of friteuse bv) / in welke mate is consument zich		
	b	pewust van gevaren als bv koudeketen onderbroken is (of bv niet		
	C	op tijd geconsumeerd is of tijdelijk bij een hogere temperatuur) /		
Documenta	ation & V	/alidatie gegevens bijhouden, trendanalyses bijhouden, mate van	More ready-to-eat ->	More ready-to-eat ->
Record-kee	eping n	nisbruik of fout gebruik inschatting	Documentation of trends	Documentation of changes
External fo	od safety C	Consumer awareness and attitude will be visible by consumer /	Consumer awareness ->	Consumer awareness -> More
performan	ce c	customer complaints and questions?	Customer complaints	complaints
Internal for	od safety 🛛 🛛 🖌	Knowledge causes additional requests towards nutritional value	1	1
performan		Consument wil langere houdbaarheid – druk op sales – gevaar nicrobiologie	1	1

Table A6.2 Initial and focused coding of the examples provided by the workshop participants on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 most indicated technological subdrivers

Subdriver	FSMS activity	Example	Initial coding	Focused coding
Food packaging	Preventive measures	Zie vorige opmerking, geen concrete voorbeelden.	/	/
	Intervention	Andere soorten verpakking, zorgt voor ander inpakmethode	Different packaging -> New	New packaging -> New
			packaging technology	machines

		MAP gassing can have an effect on food safety	MAP gassing -> Implement as	MAP gassing -> Additional
			intervention	intervention step
	System set-up	New packaging, legislation, client spec	New packaging -> Client	New packaging -> Incorporate
			requirement	stakeholder requirements
	Validation	Switch naar monomateriaal is niet zonder gevaren -> barriëres	Monomaterials -> Different	Sustainable packaging ->
		niet even sterk -> sneller bederf in de verpakkingen + technologie	barrier properties	Validate shelf life
		nog volop in ontwikkeling		
		A new class of food packaging or packaging technology may	New class of packaging -> Shelf	New packaging -> Validate
		include that shelf life of the involved products needs to be	life validation	shelf life
		validated		
		Verpakkingshoeveelheid steeds verminderen (minder bescherming,	Less packaging -> Less	Sustainable packaging ->
		minder dikke folie, of product is minder beschermd tegen externe	protection	Validate shelf life
		factoren cfr bij diepvriestransport		
		To validate that for example recycled packaging has the same	Recycled packaging -> Validate	Sustainable packaging ->
		functionality - e.g. fmoisture transfer that can increase water	functionality	Validate shelf life
		activity of the product that can lead to spoilage -> soft bakery.		
		Sealing integrity		
		Food packaging can introduce food safety risks that must be	1	1
		checked before introducing it		
	Verification	Gerecycleerde verpakkingen - waarborgen microbiologische	Recycled packaging ->	Sustainable packaging ->
		kwaliteit eindproduct	Guarantee safety end product	Improve verification of
				effectiveness
	Documentation &	New packaging = modification of documentations in QA system	New packaging -> Modification	New packaging ->
	Record-keeping		documentation	Modification documentation
		Management of supplier documentation for special type of	Recyclability of packaging ->	Sustainable packaging ->
		packaging (recyclability)	Supplier documentation	Supplier document
				management
Products for food	Preventive measures	Zie vorige opmerking, geen concrete voorbeelden. Wel mogelijke	Water use -> incoming material	Water quality -> Increase
production		impact, watergebruik, maar ook de bijkomende microbiologische	quality	material control
		belasting van de primaire grondstoffen (levende dieren)		
		algemene ingrediënten, controle goederen inkomst	Ingredients -> Control incoming	Quality raw materials ->

	Ensure all incoming raw materials are duly checked for food safety	Raw materials -> Good control	Quality raw materials ->
	contaminants	necessary	Increase material control
Monitoring	New products for food production will include need for	New products -> Setup	New products -> Modification
	management of supplier documentation and setup of monitoring	monitoring	monitoring planse
	of each new class of products.		
	Change regulation pesticides & fertiliser (banned products &	Change regulation	Regulation change -> More
	lowering MRL)> more and more products exceeds MRL or has	pesticides/fertilizer -> More	sampling
	been spoiled due less use of pesticides & need to try new	sampling	
	combinations of pesticides & fertilizers> more sampling of		
	products;> also a lot go to waste due to bad products if too		
	'less' pesticides> most problems with biological produced crops		
	Regulations water quality, cleaning products, additives	Regulation water quality ->	Water quality -> Modification
		Monitoring	monitoring plans
System set-up	Nieuw product	New product -> System set-up	New products -> Revise
			system set-up
	Water	Water -> System set-up	Water quality -> Revise
			system set-up
	The whole system must be revised, validated and adjusted to the	Adjust to products -> Revise	New products -> Revise
	products for food production	system	system set-up
Validation	Validation towards specification sheet	Specification sheets ->	Specification sheets -> New
		Validation	validation
Documentation &	Management of supplier documentation and authority control	Products for food production ->	New products -> Supplier
Record-keeping	programs	Management of supplier	document management
		documentation	
External food safety	Validation, external food safety performance	/	1
performance			
Internal food safety	Wanneer we microbiologische analyses doen op eindproducten	Bacillus thuringiensis in primary	Use of biological products ->
performance	met een aardbei grondstof of op een aardbei grondstof	production -> Disturbed lab	Disturbed lab results
	rechtstreeks vinden we vaak positieve resultaten voor Bacillus	results	
	<i>cereus</i> . Ondertussen hebben we ontdekt dat <i>Bacillus thuringiensis</i>		
	bij aardbeien teelt kan gebruikt worden als insecticide. Bij labo		

		weten zou het geen probleem kunnen zijn alleen hebben we nog		
		geen concreet bewijs dat aanwezigheid van Bacillus thuringiensis		
		wel veilig is.		
Processing techniques &	Intervention	New techniques = possible new interventions/monitoring by	New techniques -> New	New techniques -> New
scale		workers/QC	intervention	machines
	Monitoring	If exporting to certain countries different micro criteria might be required	Export -> Different criteria	Export -> New criteria
		New techniques = possible new interventions/monitoring by	New techniques -> New	New techniques ->
		workers/QC	monitoring	Modification monitoring plans
	Operation	Zie vorige opmerking, geen concrete voorbeelden	1	1
	System set-up	Upscaling nieuwe innovatie	Upscaling -> System set-up	Upscaling -> Revise system set-up
		Washing and drying technologies	Technologies -> System set-up	New techniques -> Revise system set-up
	Validation	Nieuwe desinfectietechniek	New disinfection technique -> Validation	New techniques -> New validation
		Bv microgolftechnologie (indien implementatie om te ontdooien of	Implement microwave	New techniques -> Validate
		bij verhitting)	tehcnology -> Validation	technology
		New processing techniques include validation to ensure food	New processing techniques->	New techniques -> Validate
		safety of the product.	Validation	technology
		Processing techniques & scale have an impact on new lines. Each	New lines -> Validation	New techniques -> Validate
		technique must be validated	technique	technology
		With new machines validation HACCP, risk analysis	New machines -> Validation	New techniques -> New validation
	Verification	Periodic verification of way of working will be needed.	Processing techniques & scale ->	New techniques -> Improve
			Periodic verification	verification of effectiveness
		-	1	1
	Documentation &	New techniques = modification HACCP studies & several documents	New techniques -> Modification	New techniques ->
	Record-keeping		documents	Modification documentation
		New processing techniques include documented control points to	New processing techniques ->	New techniques ->
		ensure process is successful	Documented control	Documentation of changes

External food safety	Delivering across the globe might trigger additional audits; bigger	Global delivery -> Additional	Export -> Additional audits
performance	scale potentially more complaints	audits	
		Upscaling -> More complaints	Upscaling -> More complaints

Table A6.3 Initial and focused coding of the examples provided by the workshop participants on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 (with a shared 3rd place) most indicated environmental subdrivers

Subdriver	FSMS activity	Example	Initial coding	Focused coding
Climate change	Preventive measures	Minder goede oogsten, meer verschillende leveranciers zoeken	Bad harvest -> Search new	Low availability ingredients ->
			suppliers	Change suppliers
		Reduction of water use may have impact on hygiene management	Reduction of water use ->	Reduce water use -> Hygiene
			Hygiene management	management
		It may impact the selection of certain raw materials, economic	Presence of contaminants ->	Variable quality ingredients ->
		impact linked to fraud and presence/absence of certain	Selection of raw material	Increase material control
		contaminants		
		Due to climate change> products in south of europe are burnt	Less products produced ->	Low availability ingredients ->
		due to hot weather, in belgium are soaked due to a lot of rain>	Change suppliers	Change suppliers
		crop cycle disrupted> less products produced by our factories>		
		more products sourced outside Europe with their own problems		
		(exceedance pesticides,)		
Monitoring	Monitoring	Nieuwe micro-organismen kunnen gedetecteerd worden in regio's	Region of sourcing -> New	Region of sourcing -> New
		van aankoop terwijl er daar vroeger nooit problemen mee waren	micro-organisms	criteria
		Duration of product season are changing eg: pumpkin season was	/	1
		very short		
		Climate change> possible impact @ suppliers = modification on	Impact at supplier ->	Variable quality ingredients ->
		sampling plan	Modification sampling plan	Modification monitoring plans
		High temperatures - impact on frequency monitoring / verification	Higher temperatures ->	Changing weather ->
			Frequency monitoring	Modification monitoring plans
	Operation	Warmere temperaturen zorgen voor uitdagingen bij gekoeld	Warmer temperatures ->	Changing weather -> Failing
		transport in zomer - deuren vrachtwagen gaan open en volledige	Challenges with cooled transport	cold chain
		laadruimte te hoge temperatuur		
	System set-up	Climate change @ suppliers> possible impact on system set-up	Impact at supplier -> System	Variable quality ingredients ->
			set-up	Revise system set-up

	Documentation &	Shortage in ingredients availability - recipe flexibility - traceability	Shortage in ingredients ->	Low availability ingredients ->
	Record-keeping External food safety	/ shelf life of products More complaints as more products are 'non conform', the A-grade	Traceability Poor quality -> More complaints	Traceability Variable quality ingredients ->
	performance	quality from previous years, we cannot produce that anymore> complaints releated to 'poor quality'		More complaints
	Internal food safety	E.g for some spices dry weather might results in higher TPC results	Dry weather -> Higher TPC	Changing weather ->
	performance		results	Disturbed lab results
Seasonality & weather	Preventive measures	Multiple suppliers from multiple countries are necessary to have	Bad quality -> Multiple suppliers	Variable quality ingredients ->
		multiple options when quality is bad because of seasonality & weather conditions	needed	Multiple supplier control
		Shortage of certain raw material due weather might require	Shortage of raw materials ->	Low availability ingredients ->
		revision of new suppliers - impact on company operation	Revision of new suppliers	Change suppliers
		Verschillende leveranciers zoeken uit verschillende continenten die	Low availability of quality	Variable quality ingredients ->
		verschillende seizoenstijden hebben, zodat er constant	ingredients -> Multiple suppliers	Multiple supplier control
		kwaliteitsvol en voldoende product geleverd kan worden	needed	Low availability ingredients ->
				Multiple supplier control
		Problems on the field caused by weather conditions (temperature,	Problems on the field ->	Variable quality ingredients ->
		rain,)	Preventive measures	Increase material control
			Weather conditions ->	Changing weather -> Increase
			Preventive measures	material control
	Intervention	Meer neerslag = lagere kwaliteit van grondstoffen -> meer nood	Lower quality ingredients ->	Variable quality ingredients ->
		aan reducties qua microbiologie	Need for reduction steps	Additional intervention steps
	Monitoring	Seasonality = possible impact on bacteriological quality of raw	Bacteriological quality raw	Variable quality ingredients ->
		materials> modification of monitoring plan	material -> Modification monitoring plan	Modification monitoring plans
		Aankoop van grondstoffen uit andere regio's door seizoenen>	Low quality ingredients -> More	Variable quality ingredients ->
		minder vertrouwen in de kwaliteit en de controles van buiten EU	sampling	More sampling
		> verhoogde microbiologische metingen nodig (?)		
	Operation	DV opslag; koel houden van productie- en receptiezones; belasting	Warm weather -> Technical	Changing weather -> Failing
		koelgroepen bij (langdurig) warm weer in de zomer; snellere	failing cooling system	of cold chain
		correcties nodig bij technisch falen van koeling of te hoge		
		producttemperatuur en mogelijks uitgroei m.o.		

tion ation al food safety mance ntive measures	temperatures. Seasonality> possible impact on validation/verification of product groups Seasonality> possible impact on validation/verification of product groups May affect the microbiological environment of a factory. Moreover, it may have an impact of chemical contaminants in certain raw materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij op microbieel vlak is zeer moeilijk. Kan hier ook geen concrete	Cooling system follow up / / Microbiological environment of factory -> Internal PI Raw material -> Preventive measures Incoming contamination -> Prevention	of cold chain / / / Microbiological environment -> Disturbed lab results Contamination raw materials -> Increase material control Contamination raw materials -> Increase material control
ation al food safety mance	product groups Seasonality> possible impact on validation/verification of product groups May affect the microbiological environment of a factory. Moreover, it may have an impact of chemical contaminants in certain raw materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	factory -> Internal PI Raw material -> Preventive measures Incoming contamination ->	-> Disturbed lab results Contamination raw materials -> Increase material control Contamination raw materials
al food safety mance	Seasonality> possible impact on validation/verification of product groups May affect the microbiological environment of a factory. Moreover, it may have an impact of chemical contaminants in certain raw materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	factory -> Internal PI Raw material -> Preventive measures Incoming contamination ->	-> Disturbed lab results Contamination raw materials -> Increase material control Contamination raw materials
al food safety mance	product groups May affect the microbiological environment of a factory. Moreover, it may have an impact of chemical contaminants in certain raw materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	factory -> Internal PI Raw material -> Preventive measures Incoming contamination ->	-> Disturbed lab results Contamination raw materials -> Increase material control Contamination raw materials
mance	May affect the microbiological environment of a factory. Moreover, it may have an impact of chemical contaminants in certain raw materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	factory -> Internal PI Raw material -> Preventive measures Incoming contamination ->	-> Disturbed lab results Contamination raw materials -> Increase material control Contamination raw materials
mance	 it may have an impact of chemical contaminants in certain raw materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij 	factory -> Internal PI Raw material -> Preventive measures Incoming contamination ->	-> Disturbed lab results Contamination raw materials -> Increase material control Contamination raw materials
	materials (mycotoxins in cereals due to weather conditions) Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	Raw material -> Preventive measures Incoming contamination ->	Contamination raw materials -> Increase material control Contamination raw materials
ntive measures	Raw material on the field Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	measures Incoming contamination ->	-> Increase material control Contamination raw materials
ntive measures	Onze grondstoffen zijn "levende dieren", dus hier is wel degelijk een impact, om hier aan te geven welke impact dit zou kunnen zij	measures Incoming contamination ->	-> Increase material control Contamination raw materials
	een impact, om hier aan te geven welke impact dit zou kunnen zij	Incoming contamination ->	Contamination raw materials
	een impact, om hier aan te geven welke impact dit zou kunnen zij	-	
		Prevention	-> Increase material control
	op microbieel vlak is zeer moeilijk. Kan hier ook geen concrete		
	voorbeelden geven. Het voorkomen om deze grondstoffen binnen		
	te krijgen is een van de belangrijkste stappen		
	Vervuilde grondstoffen - recalls tot gevolg	Contaminated incoming	Contamination raw materials
		materials -> Preventive	-> Increase material control
		measures	
	Pollution resulting in contamination of incoming ingredients and	Contamination incoming	Contamination raw materials
	raw materials	materials -> Preventive	-> Increase material control
		measures	
	Agricultural pollution may have an impact on the raw materials	Raw materials -> Additional	Contamination raw materials
	used. Additional checks must be added to avoid the risk of non- compliance.	checks	-> Increase material control
oring	Pollution resulting in contamination of process water	Contamination process water ->	Water quality -> Modification
		Monitoring	monitoring plans
	Extra controles in productie	Agricultural pollution -> Extra	Contamination raw materials
			Water quality -> Modification
	Water quality origin (suppliers) = impact on raw materials ->		monitoring plans
ori	ng	compliance. ng Pollution resulting in contamination of process water	compliance. Contamination process water ng Pollution resulting in contamination of process water Contamination process water -> Monitoring Extra controles in productie Agricultural pollution -> Extra controls

	System set-up	Water quality origin (suppliers) = impact on raw materials ->	Water quality -> Modification	Water quality -> Revise
		modification documentation/system/validation	system	system set-up
Geographic region	Preventive measures	Ontwikkeling van land	1	1
		New sourcing region	1	1
	Monitoring	Raw materials from different geographic regions = impact on	Different geographic regions ->	Different sourcing regions ->
		monitoring plan microbiology	Impact on monitoring plan	Modification monitoring plans
		For some materials in some regions/countries extra testing might	Some sourcing regions/countries	Different sourcing regions ->
		be done	-> Extra testing	More sampling
	Documentation &	Raw materials from different geographic region = impact on	Different geographic regions ->	Different sourcing regions ->
	Record-keeping	documentation (eg specifications)	Impact on documentation	Modification documentation
	Internal food safety	Depending on the region there are different regulatory	Depending on region ->	Different sourcing regions ->
	performance	frameworks that must be followed	Different regulations	Different regulations

Table A6.4 Initial and focused coding of the examples provided by the workshop participants on the mechanisms at play between subdrivers and FSMS activities, done for the most indicated economic subdriver and the top 3 most indicated political subdrivers

Subdriver	FSMS activity	Example	Initial coding	Focused coding
Global trade	Preventive measures	Overzees product, internationaal bedrijf	/	1
		Sourcing from new areas	1	1
	Monitoring	Export to new countries involves need for compliance to new	Export -> New norms	Export -> New criteria
		norms		
	Operation	Grote productie bedrijven bevoorraden meerdere landen om prijs	Multiple country supply -> Less	Multiple country supply ->
		te drukken, lage lonen = minder gekwalificeerd personeel	qualifies personnel	More attention to hygienic
				working
	System set-up	Grote verdelers / toeleveranciers hebben vaak meerdere	More stakeholders -> Extra	More stakeholders ->
		vestigingen door overnames; en kunnen grondstoffen aanvoeren	attention to customer	Incorporate stakeholder
		vanuit verschillende werelddelen, hierdoor extra stakeholders (en	requirements	requirements
		extra aandacht of opvolging nodig indien bv klanteneis met		
		betrekking tot afkomst)		
	Validation	Export to countries may involve shelf life extension	Export -> Shelf life extension	Export -> Validation shelf life
	Documentation &	Disruption chain= raw materials from new regions -> impact on	New region sourcing -> Impact	New region sourcing ->
	Record-keeping	documentation & monitoring	on documentation	Modification of
				documentation

		Different food safety issues may come from different regions.	Different sourcing regions ->	Multiple country supply ->
		Additionally traceability is more challenging as sometimes there	Challening traceability	Traceability
		are trading companies involved		
		Aanleveringen van buiten EU -> nood aan extra documenten /	Sourcing outside EU -> Supplier	New region sourcing ->
		analyses -> twijfel aan echtheid van documenten op vlak van	document analysis	Supplier documentation
		microbiologische analyses / accreditaties labo's		management
		Export to non-EU countries needs documentation for export	Export -> Need for right	Export -> Modification of
		certificates	documentation	documentation
	External food safety performance	Exposure to high number of customer requirements	More customers -> More customer requirements	More stakeholders -> More complaints
	Internal food safety	Grondstoffen van buiten EU = onvoldoende kennis bij de	Sourcing outside EU -> High risk	New region sourcing -> High
	performance	leveranciers van de eisen -> meer risico op overschrijdingen	of non-compliance	risk of non-compliance
		Conform legislation of each country	Different countries -> Conform legislation	Multiple country supply -> Different regulations
Food legislation	Preventive measures	Harmonised legislation makes it easier to source from different	Harmonised legislation ->	Differing regulator
		countries	Different country sourcing easier	requirements -> Change suppliers
	Monitoring	Legal norms are a good source for minimum quality requirements	Non-harmonised legislation ->	Differing regulator
		for incoming materials. On the other hand, non-harmonised legal	Different norms	requirements -> New criteria
		norms (different norms in the same food product subsectors) are a challenge for a FSMS.		
		Food product so conformity is needed	/	1
		New legislation> mainly impact on monitoring plan	New legislation -> Monitoring plan	New legislation -> Modification monitoring plans
		Extra testing might be required	New requirements -> Extra testing	New legislation -> More sampling
	Operation	Europese wetgeving niet overal gelijk toegepast, oneerlijke concurrentie (minder controles)	/	/
		Als wijziging aan food legislation> bv heet water 82°C of ander	New legislation -> Change	New legislation -> Adapt
		systeem om messen te ontsmetten bij vers vlees of	operational activities	operational activities
		· ·		

		Wijziging food legislation> bv wel/niet rookaroma's verder	Change in legislation -> Change	New legislation -> Adapt
		toegelaten (verlenging of niet toelating in toekomst)	operational activities	operational activities
	System set-up	The system set-up must always be in line with local legislation	Local legislation -> System set-	New legislation -> Incorporate
			up	stakeholder requirements
		We need to produce and import/export conform food legislation.	Import/export -> Conform	Differing regulator
		Designs of equipment must be conform legislation.	legislation	requirements -> Incorporate
				stakeholder requirements
		New legislation, new interpretation	New legislation -> New	New legislation -> Incorporate
			interpretation	stakeholder requirements
		Snel wijzigende wetgevingen en bijkomende verstrengen maken	Quick changing legislation ->	New legislation -> Revise
		het voor vele kleinere bedrijven moeilijk om dit zelf nog volledig op te kunnen volgen	Keep up in system	system set-up
	Validation	Validation might be required by regulators in some regions	Regulator requirements ->	Differing regulator
			Validation	requirements -> New
				validation
	Documentation &	Modification legislation, possible impact on system (validation,	Modification legislation ->	New legislation ->
	Record-keeping	verification, docs)	Impact on documentation	Modification documentation
	External food safety	Lange doorlooptijd om EU wetgevingen om te zetten in KB, cfr KB	New legislation implementation	New legislation ->
	performance	water	-> Documentation & record-	Modifciation documentation
			keeping	
		Food regulators might be visiting plants	Regulators -> Plant visits	Differing regulator
				requirements -> Additional audits
	Internal food safety	Conform as food product	/	1
	performance	Meer nood aan omgevingscontroles en de interpretatie / trends	/	1
		van deze gegevens -> meer kennis nodig van microbiologie intern		
		More and more sampling> 'new' components found> also	Change of regulation ->	New legislation -> Different
		sample and analyse> time & money necessary> + change of	Implement new criteria	regulations
		regulations> pro-active approach needed to implement to new		
		regulations in time		
Official controls &	Monitoring	Different interpretation of legislation by different departments in	Different interpretation of	Interpretation of legislation ->
communication		same country of different MS	legislation -> Monitoring	New criteria

		Official controls = may affect several parts of Quality Control	Official controls ->	Official controls ->
		(monitoring, measures,)	Monitoring/measures	Modification monitoring plans
	System set-up	Wijzigingen in omzendbrieven -> verduidelijkingen die een andere aanpak vragen -> herwerken van het analyseplan	Different interpretation of legislation -> Modificate	Interpretation of legislation -> Modification monitoring plans
			monitoring plans	
		Ensuring all our products are safe and manufactured in such a way	Authority expectations ->	Authority expectations ->
		that always meet authorities expectations	System set-up	Revise system set-up
		Voor onze sector heeft dit een zeer grote impact, de controle graad	High degree of control -> System	High degree of control ->
		bij onze bedrijven ligt vele male hoger dan bij andere bedrijven in ander sectoren. Dit zorgt voor veel druk bij de mensen die op de QA werken	set-up	Revise system set-up
	Validation	Validation of control	Controls -> Validation	Official controls -> New validation
		Official controls = may affect several parts of Quality assurence (documentation, validation,)	Official controls -> Validation	Official controls -> New validation
	Documentation &	A lot of documentation necessary to comply with regulations>	Lot of documentation necessary	Authority expectations ->
	Record-keeping	store all documents and extras, not easy to have localised system	-> Localised system	Modifications documentation
	External food safety performance	Interpretatie sterk afhankelijk van de inspecteur die aanwezig is -> andere manier van opzet nodig om te voldoen aan de eisen van het	Interpretation differs -> Differences in audit	Interpretation of legislation -> Differing auditing results
		LCE + vernieuwing qua mensen dus drang om zicht te bewijzen -> onderzoeken naar microbiologische activiteiten die eigen zijn aan het product / proces met waarschuwingen	requirements	
		Grote verschillen in controles = andere standaarden per land	Differences in standards -> Differences in controls	Interpretation of legislation -> Differing auditing results
		Official controls = resource of info for risk analysis	Official controls -> Resource of info	Official controls -> Resource of info
		Controls might results in identified improvements opportunities	Controls -> Identified improvement opportunities	Official controls -> Resource of info
		Official audits by authorities	1	1
War & conflict	Preventive measures	Multiple suppliers are needed to make sure import is possible. Because of the war in the Red Sea our goods are sometimes longer	Import restricted -> Multiple suppliers needed	New sourcing areas -> Multiple supplier control
		on the road.		

	Andere leveranciers zoeken, geen handel met land in conflict	Import restricted -> New	New sourcing areas -> Change
	(subsidies)	suppliers	suppliers
	New sourcing areas	New sourcing areas ->	New sourcing areas ->
		Preventive measures	Multiple supplier control
	Niet tijdig of stop aanvoer van bepaalde grondstoffen / zoeken	Low availability of ingredients ->	Low availability of ingredients
	naar alternatieven (bij andere leveranciers, andere grondstoffen,	New suppliers	-> Change suppliers
	of andere afkomst) cfr geen zonnebloemolie meer beschikbaar in		
	2023 - overschakeling naar koolzaadolie of ander		
	Raw material limitation	Raw material limitation ->	Low availability of ingredients
		Preventive measures	-> Change suppliers
Monitoring	Conflict> increase import duties> sourcing new	Increased import duties ->	Higher costs -> Modification
	suppliers/regions> impact on monitoring plan	Monitoring plan	monitoring plans
Operation	Availability of raw materials.	/	1
	Vb. sterke stijging van de hulpgrondstoffen, of verpakkingen, maar	Higher costs -> Adapt	Higher costs -> Adapt
	ook de stijgende energiekosten. Dit heeft voor vele bedrijven een	operational activities	operational activities
	grote impact gehad op hun operationele procesvoering.		
	Tekort aan bepaalde grondstoffen, om toch te kunnen leveren	/	1
	aanvullen met minderwaardige grondstoffen		
System set-up	Unavailability of materials is a challenge for business continuity,	Unavailability of materials ->	Low availability of ingredients
	and also for a FSMS that needs to be installed to allow changes in materials	FSMS needs regular updates	-> Revise system set-up
Verification	Alternatieve bronnen van grondstoffen zoeken, zeker niet altijd	Alternative sourcing ->	New sourcing areas ->
	van gelijkwaardige kwaliteit	Verification	Improve verification of
Decumentation C	Conflict > increase import duties > coursing new		effectiveness
Documentation &	Conflict> increase import duties> sourcing new	Increased import duties ->	Higher costs -> Modification
Record-keeping	suppliers/regions> impact on documentation	Documentation	of documentation
Internal food safety	Higher prices> sourcing ingredients outside of Europe, mainly	Sourcing outside EU -> More	New sourcing areas ->
performance	Asia> not same maturity level of FSMS as here> hygiene etc	unexplained contamination	Disturbed lab results
	not the same> have more unexplained contamination		

7. <u>Appendix 7: Coupling of drivers and indicators through internal discussion</u>

Table A7.1 Coupling of drivers, subdrivers and indicators as compiled through internal discussion. Coupling is grouped per category of drivers. Where all subdrivers belonging to one driver are considered to have an impact, the name of the driver is used and indicated in italics

Indicators	Social	Technological	Environmental	Economic	Political
Context					
	Consumer behaviour	Technology in food	Use of sidestreams	Global trade	Food legislation
		production	Environmental conditions		
			Geographic region		
			Climate change		
Contamination initial materials			Seasonality and weather		
	Consumer awareness and	Technology in food	Climate change		Legislation, policies and
Contamination final product	attitude	processing			governance
Packaging concept	Public awareness	Food packaging	Recycling	Global trade	Food legislation
	Consumer awareness and	Technology in food			
Interventions	attitude	processing			
Changes in the production		Processing techniques and			
process	Dietary choice	scale			
	Dietary choice	Upcycling for food			
	Public awareness	Food formulation			
Rate of changes		Novel food sources			
Technological staff					
Variability of workforce					
composition					
Operator competences					
Management commitment					
Employee involvement					
Formalization					Good practices & standards
Information systems		New digital technologies			
Role in the safety of the chain	Consumer knowledge				
Supplier relationship					
Customer relationship	Consumer knowledge				

	Prevalence of vulnerable				
	groups				
	Human health conditions				
	Public awareness				Legislation, policies and
	Consumer awareness and				governance
Requirements of stakeholders	attitude				
Quality Control					
Hygienic design of equipment		Technology in food			Good practices and
and facilities		production			standards
Storage conditions			Geographic region	Distribution	
			Climate change		
			Seasonality and weather		
Sanitation programs					Good practices and
					standards
Personal hygiene requirements					Good practices &
					standards
Incoming material control			Geographic region	Global trade	Good practices and
					standards
					Food legislation
			Sewage treatment		Good practices and
Product specific preventive			Water and soil		standards
measures			management		Food legislation
Full/partial physical		Processing techniques and			
intervention		scale			
Packaging equipment		Food packaging			
Maintenance and calibration					
programs					
Intervention strategies	Resistant pests and diseases				
	Consumer awareness and				
	attitude				
Analysis of CCPs and CPs					
Standards and tolerances					
design					

Analytical methods to asses				
pathogens				
Measuring equipment to asses				
product/proces status				
Calibration programs for				
measuring and analytical				
equipment				
Sampling plan for microbial				
assessment				
Corrective measures				
Actual availability of				
procedures				
Actual compliance to				
procedures				
Actual hygienic performance of				
equipment and facilities				
Actual storage/cooling capacity				
Actual process capability of				
full/partial physical				
intervention				
Actual process capability of				
packaging				
Actual performance of				
measuring equipment				
Actual performance of				
analytical equipment				
Quality Assurance		Γ	I	
Translation of stakeholders				Legislation, policies and
requirements into own FSMS				governance
Systematic use of feedback to				
modify FSMS				
Validation of preventive				
measures				

Validation of intervention						
process						
Validation of monitoring						
systems						
Verification of people related						
processes						
Documentation		New digital technologies				
Record keeping system		New digital technologies				
External food safety performa	nce					
Food safety management					Official controls &	
system evaluation					communication	
Seriousness of remarks					Official controls &	
					communication	
Microbiological food safety	Consumer knowledge					
complaints	Consumer awareness and					
	attitude					
Hygiene related complaints	Consumer knowledge					
	Consumer awareness and					
	attitude					
Internal food safety performance						
Product sampling						
Judgement criteria						
Non-conformities						

8. Appendix 8: Coding of papers found for the impact of subdrivers on context indicators

Table A8.1 Initial and focused coding of the passage found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 social subdrivers

Subdriver	Context indicator	Passage found in literature	Initial coding	Focused coding	Reference
Consumer	Packaging	"Meanwhile, a growing number of consumers are aware of the potential	Natural preservatives ->	Natural preservatives ->	Mei et al. (2019)
awareness &	concept	negative health effects of chemical preservatives, which has prompted the	MAP packaging as extra	Importance of packaging	
attitude		food industry to find natural products used and developed as	hurdle	in shelf life	
		alternatives." "It is evident that natural preservatives combined with			
		either lower levels of synthetic/chemical ones, or with other hurdles, such			
		as non-thermal sterilization processing, modified atmosphere packaging,			
		and edible films and coatings, will enhance the performance of various			
		natural preservatives discussed in the review."			
		"The integration of traditional food products into the digital marketplace	Traditional food products	Tradition food products -	Aussanasuwannakul
		represents a significant evolution within the food processing and	-> Importance of	> Importance of	& Butsuwan (2024)
		preservation domain, marking a dynamic confluence of heritage culinary	packaging efficiency	packaging in shelf life	
		practices and contemporary consumer expectations." "Our study	Digital marketplace ->	Digital marketplace ->	
		underscores the pivotal role of microbiological safety, sensory qualities,	Importance of packaging	Importance of packaging	
		packaging efficiency, and alignment with consumer preferences in the	efficiency	in shelf life	
		online marketplace."	Sustainability	Sustainability ->	
		"This focus on packaging efficiency not only enhances consumer appeal	considerations ->	Importance of packaging	
		but also aligns with sustainability considerations crucial for online sales	importance of packaging	in shelf life	
		success."	efficiency		
		"Minimally processed (MP) onion is convenient to use and can be packaged	Minimal processing ->	Minimal processing ->	Khade et al. (2023)
		under different forms such as ready-to-cook (RTC) or ready-to-eat (RTE).	Packaging to extend shelf	Importance of packaging	
		Market supply of MP onions depends upon availability of these products	life	in shelf life	
		which in turn is related to consumer demand and purchasing behavior." "A			
		combination process has been standardized which includes, gamma			
		irradiation Dmin 60 Gy treatment to fresh onions, minimal processing (de-			
		skinning and scooping) followed by packaging and storage at 4–6 °C. his			
		combinatorial approach resulted in extended shelf-life of RTE (Ready-to-			
		Eat) as well as RTC (Ready-to-Cook) onions."			

"Nowadays, the increase in consumer demand for minimally processed	Minimally processed food	Minimal processing ->	Fadiji et al. (2023)
foods prone to spoilage compromises food safety and quality"	-> Antimicrobial	Active packaging	
"antimicrobial packaging to extend the shelf life of food products,	packaging		
emphasizing fresh and minimally processed fruits and vegetables, meat,			
and dairy products"			
"Over the past few years, considerable attention has been given in	Carbon foot print ->	Sustainability ->	Ghosh & Katiyar
developing biodegradable food packaging in the academia and industrial	Biodegradable packaging	Biodegradable/biobased	(2022)
sections to elucidate the environmental challenges associated with	e.g. edible coatings	alternatives	
petroleum-based packaging materials including biological incompatibility			
and increased carbon footprint tending towards amplified global			
warming" "consumer preference for transparent packaging materials"			
"Edible packaging is available as edible films or edible coatings, where,			
the materials of edible packaging should have the biodegradability similar			
to the food products."			
"Interest in edible films and coatings has increased in recent decades due	Environmental friendly	Sustainability ->	Silva et al. (2023)
to consumer demand for environmentally friendly packaging solution"	solutions -> Edible films	Biodegredable/biobased	
		alternatives	
"Food preservation and food safety concerns among food producers and	Aversion for use of heat	Minimal processing ->	Ucar et al. (2021)
consumers are becoming increasingly important globally. The use of	treatments -> Alternative	Alternative packaging	
alternative techniques for food processing instead of heat treatment have	sterilization techniques	sterilization	
recently been reported in the food industry" "consumer demand for raw			
or unprocessed food is increasing with the rising interest in healthy			
lifestyles." "In addition to recently published articles, the synergistic			
hurdle effect of CP with other novel technologies such as nanotechnology			
on food or food packaging materials could be further studied and used			
more extensively to ensure food safety."			
"Many countries are now moving towards the banning of single-use	Ban of single use plastics	Sustainability ->	Jaffur et al. (2021)
plastics." "These bio-based polymers have the possibility of replacing	-> Bio-based packaging	Biodegradable/biobased	
traditional polymers demonstrating analogous physical, chemical,	material	alternatives	
thermal and mechanical properties as depicted by polypropylene (PP) and			
low-density polyethylene (LDPE)"			

		"Food packaging is one of the crucial elements of the product from a	Environmental impact ->	Sustainability ->	Alizadeh-Sani et al.
		consumer's perspective and very important in modern commercial trade"	Biodegradable packaging	Biodegradable/biobased	(2020)
		"On the other hand, the widespread utilization of petroleum-based plastic		alternatives	
		packaging has become a major global concern because their production			
		and disposal are causing many environmental problems." "For this reason,			
		there has been a growing interest in the design and fabrication of			
		biodegradable packaging materials from natural and biological resource"			
		"While maintaining the food quality and safety is one of the functions in			
		food packaging, the modern-day packaging must also inform the	Better consumer	Better consumer	
		consumer about the food quality and their suitability to be consumed"	information -> Smart	information -> Smart	
		"Furthermore, the use of smart packaging based on chemo-responsive	packaging	packaging	
		natural colorants even along with nanomaterials can be a promising			
		strategy to provide numerous advantages to the food industry by			
		minimizing food waste, foodborne diseases, spoilage and deterioration of			
		food products."			
Dietary	Contamination	"Poultry meat represents an important part of the U.S. economy and diet.	Poultry meat -> high	Poultry meat -> High risk	Cano et al. (2019)
choice	final product	However, it remains one of the food categories responsible for the most	product contamination	for product	
		outbreak-associated foodborne illness cases. Therefore, the food safety		contamination	
		and public health communities continue to examine appropriate			
		antimicrobial interventions to reduce product contamination and the risk			
		of foodborne disease. "			
	Packaging	"Traditional fermented foods play a major role in many Ghanaian diets."	Industrialization of	Industrial traditional	Dzikunoo et al.
	concept	"The difficulties in implementation food safety management systems as	traditional fermented	food -> Importance of	(2021)
		reported by these industries included raw materials specifications, no	food -> Testing for	packaging for shelf life	
		quality points in processing operations and testing for packaging	packaging materials		
		materials prior to use."			
		"Similar to other regions, RTEs are widely consumed in low-and middle-	Industrial ready-to-eat ->	Ready-to-eat ->	Makinde et al.
		income countries (LMICs) due to ease of production, availability,	Type of packaging	Importance of packaging	(2020)
		affordability, and palatability" "Based on the type of processing technique	material	for shelf life	
		and packaging material, RTEs could range from traditionally processed			
		foods such as chaat in India, matoke in Uganda, and warankasi in Nigeria			
		to industrially processed foods such as bread, biscuits, canned sardine ice			
		cream, and pizza."			

		"we focus on the processing and characteristics of Xygalo Siteias, mentioning perspectives for the further microbiological characterization of the product, the determination of its shelf-life in combination with new packaging-materials, as well as the attention it deserves as a food important for breeders, the local economy, and consumers, since it is associated with the Cretan-Mediterranean diet type" "Furthermore, appropriate packaging solutions could minimize quality changes in soft cheeses, resulting in an increased shelf life as well as quality maintenance"	Traditional cheese -> Appropriate packaging solutions	Industrial traditional food -> Importance of packaging for shelf life	Lapidakis & Fragkiadakis (2022)
		"With the continuous progress of economic society and the diversification of people's diet culture, food safety has become the focus of attention of the government and consumers." "It can also be seen from the above data that the microbial contamination status of different food types and packaging forms is different."	Diversification of diet -> Packaging form	Diversification of diet -> Importance of packaging for shelf life	Bai (2019)
Resistant pests & diseased	Contamination final products	"Despite its importance, goat cheese is often made under inadequate hygienic-sanitary conditions and usually uses raw goat's milk, increasing the risk of product contamination. " "From a health point of view, it is even more alarming when it comes to <i>S. aureus</i> carrying resistance genes."	Resistant pathogens -> High risk for product contamination	Resistant pathogens -> High risk for product contamination	Aragao et al. (2021)
	Packaging concept	"According to the World Health Organization, antimicrobial resistance is one of the emerging threats to global health. Therefore, the development of new strategies to mitigate resistant bacterial strains is highly desirable." "In this work, a self-sterilizing and potentially biodegradable material is developed, providing a green alternative for single-use packaging in the medical, food, and cosmetic industry."	Antimicrobial resistant pathogens -> Self- sterilizing packaging	Resistant pathogens -> Alternative sterilization for packaging	Langerreiter et al. (2024)
		"This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution." "A different microbiome composition was found in raw beef samples stored under different temperature and packaging conditions." "Finally, we highlighted a distinct distribution of ARGs. Samples stored in AIR packaging harbored a lower diversity of antibiotic families, which decreases over time."	Antimicrobial resistance -> Depends on packaging type	Resistant pathogens -> Importance of packaging for shelf life	Sequino et al. (2024)

Subdriver	Context indicator	Passage found in literature	Initial coding	Focused coding	Reference
Food	Packaging	"Various innovative food packaging techniques have been developed with	Innovative packaging	Innovation in packaging	Pou et al. (2022)
packaging	concept	the application of advanced interdisciplinary approach and they continue	techniques -> Smart	-> Smart packaging	
		to contribute to the development of the packaging industry" "In recent	packaging		
		years, smart food packaging technologies, namely, intelligent packaging			
		and active packaging are increasingly applied in the food sector. However,			
		in many cases, these modernized packaging methods are still under			
		research and have not been adopted at the commercial scale"			
		"To overcome these issues, advanced packaging systems are actively	Advances packaging	Innovation in packaging	Rangaraj et al.
		engaged in the food industries to enhance the quality, security, and shelf-	systems -> Active	-> Active packaging	(2021)
		life of the food products during storage" "The packaging system should	packaging		
		also optimize the integrated interactions of chemical, physical, and			
		biological processes between the food and the packaging system to retain			
		the quality and freshness of the food product. The research on active			
		packaging systems has currently received widespread attention towards			
		developing efficient packaging films to protect the food products from			
		inherent and external factors"			
		"As a result, the packaging industry views a paradigm shift towards	Eco-friendly packaging ->	Sustainability ->	
		developing and applying eco-friendly, safe, and non-toxic biopolymers-	biopolymers	Biodegradable/biobased	
		based active films" "Consequently, biopolymers have gained significant		packaging	
		attention in the packaging industries due to their biodegradability and			
		abundant availability from various natural sources, making them effective			
		alternatives for fossil-based plastics"			
		"Moreover, various innovative packaging systems that comprise active	Innovative packaging	Innovation in packaging	Suvarna et al.
		and smart/intelligent packaging materials are widely explored in the food	systems -> active	 - > Active packaging 	(2022)
		industry. Active packaging (AP) is a modification of traditional packaging	antimicrobial packaging		
		that offers protection against the growth of pathogenic microorganisms			
		during food storage. The antimicrobial effect of AP is attributed to its			
		incorporation of antimicrobial (natural or synthetic) agents into the			
		packaging material"			

Table A8.2 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 technological subdrivers

r				
	"Modern society has extensively investigated the replacement of	Packaging for fresh	Packaging for fresh food	Zouharova et al.
	traditional food packaging systems with new ones. These packaging	products -> New packaging	-> Importance of	(2023)
	systems are an effective way to extend or maintain shelf life and preserve	to extend shelf life	packaging for shelf life	
	quality for a range of fresh products such as vegetables, fruits, meat and			
	fish." "Special attention is paid to the MAP and active packaging."			
	"On the other hand, the widespread utilization of petroleum-based plastic	Environmental problems ->	Sustainability ->	Alizadeh-Sani et al.
	packaging has become a major global concern because their production	Biodegradable packaging	Biodegradable/biobased	(2020)
	and disposal are causing many environmental problems." "For this reason,		packaging	
	there has been a growing interest in the design and fabrication of			
	biodegradable packaging materials from natural and biological resource"			
	"While maintaining the food quality and safety is one of the functions in	Consumer information ->	Consumer information ->	
	food packaging, the modern-day packaging must also inform the	Smart packaging	Smart packaging	
	consumer about the food quality and their suitability to be consumed"			
	"Furthermore, the use of smart packaging based on chemo-responsive			
	natural colorants even along with nanomaterials can be a promising			
	strategy to provide numerous advantages to the food industry by			
	minimizing food waste, foodborne diseases, spoilage and deterioration of			
	food products."			
	"Human health has been influenced by the quality of foods and their	Additional information ->	Consumer information	Ibrahim et al.
	types. The demands of high food quality products with improved quality	Smart packaging	-> Smart packaging	(2021)
	and shelf life are on the rise globally. For that, packaging materials play			
	a vital role in saving the food quality, especially the third generation of			
	packaging that indicates the spoiling metabolism of food throughout			
	using smart, responsive materials." "Interactive packaging has a scientific			
	basis for additional information about food products because these codes			
	give all required data."			
	"To tackle the environmental pollution problem, scientists have begun to	Environmental pollution ->	Sustainability ->	Kontominas
	explore the possibility of using natural, biodegradable and renewable	Biodegradable packaging	Biodegradable/biobased	(2020)
	packaging materials for food packaging applications."		packaging	
	"Finally, packaging technology, especially MAP, can be implemented to	Seafood -> Packaging	Packaging of fresh food	Olatunde &
	prolong the shelf-life of seafoods"	technology to prolong	-> Importance of	Benjakul (2018)
		shelf life	packaging for shelf life	

		"Therefore, biodegradable packaging materials incorporating natural	Eco-friendly ->	Sustainability ->	Acharya et al.
		compounds became popular, offering an eco-friendly to environmental	Biodegradable packaging	Biodegradable/biobased	(2024)
		concerns and food safety challenges"	materials	packaging	
		"Notwithstanding, adequate packaging has played a remarkable role in	Meat -> Adequate	Packaging of fresh food	Bassey et al.
		reducing meat deterioration and extending shelf life."	packaging to extend shelf	-> Importance of	(2022)
			life	packaging for shelf life	
		"The intelligent detection of fresh meat quality has the advantages of	Fresh meat -> Smart	Packaging of fresh food	Zhang et al. (2023)
		providing more convenient, faster, low-cost and non-destructive	packaging	-> Smart packaging	
		detection than the traditional detection methods." "Fortunately,			
		intelligent film prepared by combining natural pigments such as			
		anthocyanin and curcumin with biopolymer matrix (cellulose, chitin,			
		starch, agar, etc.) can effectively reduce and avoid leaching problems. It			
		can even replace traditional plastic packaging materials"			
Processing	Packaging	"A novel way to diminish this problem is the use of edible packaging,	Novel ways to diminish	New technology ->	Mitelut et al.
techniques &	concept	edible coatings, or edible films, which can provide an additional protective	problems -> Edible	Biodegradable/biobased	(2021)
scale		layer(s) for fresh products, thus increasing their shelf life by delaying	packaging	packaging	
		microbial spoilage and providing moisture and gas barrier properties"			
		"Modern technology has come to affect the use and acceptance of	Modern technology ->	New technology ->	Dzikunoo et al.
		traditional packages by the new generation. These modern packaging of	Better product protection	Better product protection	(2021)
		food have grave effect on the immediate environment since the			
		packaging materials employed are not biodegradable. Traditional			
		packaging materials are biodegradable even though it has its limitations			
		in shelf-life extension and product protection."			
		"Surfaces might be cleaned with cold plasma before packing or as part of	Cold plasma technology ->	New technology ->	Harikrishna et al.
		the packaging procedure." "Materials for packaging are decontaminated	Decontamination of	Alternative sterilization	(2023)
		with cold plasma outside, where the shade effect is minimal because the	packaging	for packaging	
		plasma circulates all around the exterior"			
		"Recent studies reported the potential application of this parameter in	Novel food processing	New technology ->	Alwazeer (2020)
		novel food processing techniques such as reducing atmosphere drying	techniques -> Better	Better product protection	
		(RAD) of food products and reducing atmosphere packaging (RAP) of fresh	product protection		
		food products for preserving the quality attributes and extending the			
		shelf-life of food products."			

		"During the processing of polymers, the mechanical, thermal, optical, and	Optimized polymer	New technology ->	Stanley et al.
		other properties have been improved by using optimized processing	processing -> Better	Better product protection	(2023)
		parameters ." "This paper intends to present a comprehensive review of	properties		
		active agents incorporated in both synthetic and natural substrates used	New technology -> Active	New technology -> Active	
		for enhancing the antioxidant and the antimicrobial properties of the	packaging	packaging	
		polymer matrix as well as the bulk processing technologies involved in			
		the food packaging applications during the last 10 years.			
		"This review focuses on the emerging nonthermal technologies that can	Emerging nonthermal	New technology -> Active	Gyawali et al.
		be used to improve the safety of nuts during processing." "Packaging	technologies -> Active	packaging	(2014)
		materials including modified atmosphere packaging (MAP) and films and	packaging		
		coatings can be used as a carrier of different types of antimicrobials			
		agents such as organic acids and essential oils, and plant extracts. These			
		packaging materials may reduce the risk associated with pathogenic and			
		spoilage microorganisms."			
	Intervention	"UV processing is a non-thermal technology that has been widely used	Emergence of new	New technology ->	Wang et al. (2023)
		and has shown great potential in the past decades for sterilization in food	technologies -> Effective	Effectiveness of	
		processing. Especially in recent years, the emergence of new technologies	decontamination	intervention	
		in combination with LEDs and pulses has accelerated the trend of UV			
		applications in meat and meat products. As an effective decontamination			
		tool UVA, UVB, and UVC can effectively break the genetic material of			
	pathogenic bacteria under certain circumstances, causing the dissociation				
		of DNA molecules to form pyrimidine dimers and thus inactivating the			
		pathogens."			
Novel food	Packaging	"HPP is a novel non-thermal food processing technology. This processing	Healthy novel foods -> In-	Healthy novel foods ->	Wu et al. (2022)
	concept	is special in that after the food is sealed with a flexible packaging, the	package inactivation of	In-package pathogen	
		microorganisms and enzymes in the food are inactivated with high	pathogens	inactivation	
		pressure of 100–600 MPa under room temperature" "The HPP-based			
		hurdle strategy may facilitate the food production process to achieve			
		clean labeling as consumers are increasingly seeking safe and healthy			

			
"Combined effects of packaging and storage conditions have been tested	Edible insect products ->	Edible insects ->	0jha et al. (2021)
by who observed that storage at room temperature (20 °C) could	Packaging to guarantee	Importance of packaging	
guarantee microbiological, chemical and sensorial stabilities only if	microbiological stability	for shelf life	
opaque vacuum packaging was applied" "Refrigeration and freezing, as			
well as air containing packaging, vacuum packaging and modified			
atmosphere packaging (MAP) are common preservation methods used for			
edible insects products."			
"Recently, production and consumption of dried foods and food ingre-	Dried seaweed ->	Seaweed -> Importance	Hyun et al. (2018)
dients have increased in many countries due to convenient transporta-	Packaging method affects	of packaging for shelf	
tion" "Therefore, the present study aimed to investigate the growth of	bacterial growth	life	
micro-organisms in dried foods including dried seaweed, dried kelp, and			
dried pumpkin at different storage temperatures and RH during storage.			
" "Thus, the packaging method affects the growth of bacterial populations			
in dried foods with open bag than that in a closed bag or air-tight			
container at high RH."			
"Seaweeds are one of the world's largest unexploited, low trophic,	Seaweed -> Targeted	Seaweed -> Importance	Blikra et al. (2021)
renewable global biomass resources." "Main food safety concerns include	packaging technology	of packaging for shelf	
the presence of pathogenic bacteria, PTEs such as iodine, cadmium and		life	
inorganic arsenic, as well as unintended allergen presence attributed to			
cross-contamination with biofouling organisms. These obstacles can be			
tackled using general food hygiene practices, careful selection of			
seaweeds for consumption and targeted processing and packaging			
technology."			
"Most of the published research deals with the nutritional or health	Seaweed -> MAP packaging	Seaweed -> Importance	Moreira-Leite et al
benefits that edible seaweeds can promote in food formulations, rather	for preservation	of packaging for shelf	(2023)
than valuing them as an ingredient with gastronomic potential" "The use		life	()
of MAP proved to be a promising method for preserving minimally			
processed seaweed, surpassing the effectiveness of vacuum packaging in			
most of the studies."			
most of the studies.			

Subdriver	Context indicator	Passage from literature	Initial coding	Focused coding	Reference
Seasonality &	Packaging	"It can be seen from the test results of three years and different seasons	More contamination in	Seasonal variation in	Bai et al. (2019)
weather	concept	that the microbial contamination of food in summer is serious. This is	high temperatures ->	contamination ->	
		mainly because the bulk food are in high temperature in summer, and the	Packaging to keep food in	Importance of packaging	
		protection is not in place to cause the microorganism to exceed the	good condition	for shelf life	
		standard. The package of pre-packaged food is in good condition and			
		within the warranty period. Its microbiological indicators are not affected			
		by seasonal change."			
		"Food packaging with efficient antibacterial ability is highly desirable and	Weather conditions ->	Weather conditions ->	Li et al. (2021)
		challenging in facing the crisis of microbial contamination." "Also, this	Antibacterial activity of	Active packaging	
		film can release BB NPs to inactivate bacteria under all weather	packaging		
		conditions."			
		"However, this seasonal fruit is highly perishable, and a large proportion	Seasonal fruit -> Storage	Seasonal fruit ->	Kumar et al. (2023)
		of it goes unharvested and wasted worldwide. Spray drying of the fruit	quality of packaging	Importance of packaging	
		pulp can impart improved shelf life, ensuring long-term availability for		in shelf life	
		consumers to exploit its health benefits. The storage quality varies			
		according to the type of packaging material and the storage			
		environment."			
		"The development of jamun jam is very important to preserve the	Seasonal fruit -> Proper	Seasonal fruit ->	Aslam et al. (2019)
		nutritious value of fruit and make it available during off season"	packaging material	Importance of packaging	
		"Moreover, jamun fruit in Pakistan is wasted due to postharvest losses,		in shelf life	
		and through this study, it is concluded that these losses can be cut down			
		through value addition and proper packaging material."			
	Intervention	"Season also remained a risk factor; the odds of Salmonella	Seasonal pattern of	Seasonal variation in	Beczkiewicz &
		contamination were higher in the summer than in winter. Poultry	contamination -> Focus on	contamination ->	Kowalcyk (2021)
		contamination typically follows a seasonal pattern" "Although meat and	reduction	Effectiveness of	
		poultry safety has improved since implementation of the pathogen		intervention	
		reduction HACCP rule in 1996 (22), Salmonella remains a major concern.			
		The proposed Healthy People 2030 goals continue to target a reduction			
		in outbreaks of Salmonella infection (among other foodborne pathogens)			
		linked to poultry"			

Table A8.3 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for top 3 environmental subdrivers (with a tie for third place)

		"The analysis of variance (ANOVA) revealed that temperature and	Survival of pathogens	Seasonal variation in	Sabillon et al.
		tempering solution and their interaction significantly impacted the	seasonal -> Effectiveness	contamination ->	(2020)
		pathogen load" "Temperatures at which the tempering process may be	of intervention	Effectiveness of	
		carried out during different seasons of the year did not significantly		intervention	
		influence the effectiveness of the saline organic acid solutions against the			
		pathogenic microorganisms tested. However, the average temperatures			
		experienced by wheat kernels in storage bins during the winter and fall			
		months may favor the survival of pathogenic microorganisms."			
Recycling	Packaging	"Food packaging based on nanoparticles embedded biopolymers can	Improve recyclability ->	Improvements in	Wani et al. (2023)
	concept	alleviate environmental concerns by lowering the amount of packaging	Nanoparticles embedded	recyclability ->	
		materials required and enhancing packaging recyclability."	biopolymers	Biodegradable/biobased	
				packaging	
		"control batches were packaged in gas barrier recycled polyethylene	Reduced shelf life of	Reduced shelf life of	Gutierrez et al.
		terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were	recycled packaging ->	recycled packaging ->	(2017)
		then stored at 20 °C and inspected at regular intervals for chemical-	Choice of packaging	Importance of shelf life	
		physical, microbiological and sensory parameters. Results show that the	focused on shelf life	in packaging	
		new packaging solution could considerably extend the shelf life of			
		cheesecakes, thereby reducing food waste and decreasing the overall			
		environmental impact."			
		"Sustainable plastic multilayer films (different OTR values with high	Multilayer films with high	Improvements in	Ferri et al. (2023)
		recyclability scores) for fish matrices combined with consolidated	recyclability ->	recyclability -> Better	
		stabilizing food technologies have provided the real applicability of	Performance and practical	protection	
		innovative measures at the industrial level." "This study has served to	applicability		
		highlight, at the food industry level, the recent evolution in innovative			
		production systems and their respective environmental sustainability			
		(salt content reductions for each transporting carton resulting in major			
		productive volume reductions, less salt wasting, and lower carbon			
		emissions) compared to the traditional salted cod fish trades, and the			
		practical applicability of new multilayer films with high recyclability, as a			
		means of reducing environmental pollution."			

		"Nanocomposites are reported to be an effective strategy that possesses	Effective recyclability ->	Improvements in	Ansari (2023)
		high acid resistance capacity, effective recyclability, high thermostability,	Antibacterial protection	recyclability -> Active	
		and enhanced storage stability" "It is a simple and reliable method that		packaging	
		uses nanomaterials for food packaging to improve freshness, provide			
		antibacterial protection, and regulate water vapor permeability."			
Use of	Interventions	"The wash process requires high volumes of water, which are usually	Reuse of process water ->	Reuse of water ->	Gadelha et al.
sidestreams		reduced by water reuse. To maintain the microbiological quality of the	Chemical disinfection	Disinfection necessary	(2019)
		process water, intervention strategies are needed. Chemical disinfection			
		is the most common method to maintain the microbial quality of process			
		water."			
		"In addition to the current known hazards, emerging microbiological	Reuse of water -> Water	Reuse of water ->	Koutsoumanis et
		hazards e.g. due to new production systems in primary production (reuse	disinfection treatment	Disinfection necessary	al. (2023)
		of agricultural/industrial water, aquaponics, urban agriculture, etc.), will			
		be addressed. " "To avoid cross-contamination of the product due to the			
		use of contaminated water, water disinfection treatments are needed to			
		eliminate, or reduce to an acceptable level, microorganisms of public			
		health concern but these treatments should not have an adverse effect			
		on the quality and safety of the produce"			
Climate	Packaging	"Meanwhile, the ongoing climate changes fostered by agricultural	Degradation of non-	Degradation of non-	Rahim et al. (2021
change	concept	practices could enhance the degradation of non-renewable resources,	renewable resources ->	renewable resources ->	
		further impairing crop yields and agricultural production" "These	Biodegradable packaging	Biodegradable packaging	
		conditions drive the development of suitable materials for the			
		preparation of functional and biodegradable packaging with low			
		environmental impact."			
		"New threats of such diseases emerging have been augmented by	Emerging diseases ->	Emerging diseases ->	Aiyar & Pingali
		biodiversity loss and climate change. Deforestation, for example, forces	Enhanced packaging	Better protection	(2020)
		humans to come in contact with new types of animals that carry disease	standards		
		vectors that are otherwise harmful for human health. Long term climate			
		change also poses challenges for the re-emergence of previously			
		eliminated communicable diseases from changing ecological			
		environments" "Proper handling of food, improving storage quality for			

	livestock and food products and enhanced packaging standards will		
	reduce cross-species transmission."		

Table A8.4 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the economic subdriver and the top political subdrivers

Subdriver	Context indicator	Passage from literature	Initial coding	Focused coding	Reference
Distribution	Packaging	"Currently, smart food packaging methods, such as microbial sensors,	Time in supply chain ->	Distribution control ->	Pou et al. (2022)
channel	concept	time-temperature indicators (TTIs), critical temperature indicators (CTIs),	Smart packaging	Smart packaging	
		freshness indicators, gas indicators, moisture regulators, ethylene			
		remover, antioxidant, CO2, and O2, scavengers, and antimicrobial activities			
		systems are rapidly progressing" "Time-temperature indicator (TTI) in			
		food packaging records the time and temperature history of a product			
		package (cumulative effect of temperature on the packaged product)			
		during packaging, distribution, storage, and retailing."			
		"Based on different materials and reaction principles, sensors like	Distribution control ->	Distribution control ->	Liu et al. (2019)
		electrochemical sensors, fluorescence sensors, biosensors and gas	Smart packaging	Smart packaging	
		sensors are widely used in the field of intelligent food packaging."			
		"Microbe TTI can be used as an effective indicator by combining with a			
		"use by date" label. It can also be used to improve distribution control and			
		management of the supply chain and food safety by attaching to a single			
		product unit"			
		"Intelligent packaging is an emerging and exciting branch of packaging	Convenience of distribution	Distribution control ->	Fang et al. (2017)
		science and technology that offers great opportunities for enhancing food	-> Smart packaging	Smart packaging	
		safety, quality, and convenience, and consequently decrease the number			
		of retailer and consumer complaints. The introduction of quality and			
		freshness indicators (e.g. temperature indicators, TTI, and gas-level			
		controls), the increased convenience of product manufacturing and			
		distribution methods, the invention of smart permeability films, and theft			
		and counterfeiting evidence systems will help maximize the safety and			
		quality of food products"			
		"The nanosensor signals expressed in nanometers are developed to	Monitor freshness in	Distribution control ->	Chisenga et al.
		detect changes in structural and functional properties of materials at	distribution ->	Smart packaging	(2020)
		nano level (1nm = 10–9) and are embedded in food packaging material to			

monitor freshness of perishable products during production, processing,	Nanosensors in food		
and distribution."	packaging		
"Smart packaging possesses an inherent property or integral part of a	Monitor condition of food	Distribution control ->	Ahmed et al.
package, product, or package/product design, which provides intelligence	in distribution -> Smart	Smart packaging	(2018)
suitable to identify and monitor the condition of packaged food during	packaging		
distribution in response to the external and internal environments."			
"The handling of fresh fruits and vegetables in reusable plastic crates	Retail sector -> Packaging	Spoilage in distribution	Lopez-Galvez et al.
(RPCs) has the potential to increase the sustainability of packaging in the	with influence on safety	-> Importance of	(2021)
fresh produce supply chain. However, the utilization of multiple-use		packaging to shelf life	
containers can have consequences related to the microbial safety of this			
type of food." "Reusable plastic crates (RPCs) are utilized in different			
steps of the fruit and vegetable supply chain, including harvest, handling,			
packaging, and transport operations, as well as in the retail sector"			
"Meat is easy to spoilage during distribution in supply chain due to	Spoilage in distribution ->	Spoilage in distribution	Zhang et al. (2023)
microbial contamination and oxidation reaction." "To extend the shelf life	Packaging to extend shelf	-> Importance of	
and regulate the quality of fresh meat, for example, a combination of	life	packaging to shelf life	
aerated packaging or the addition of natural preservatives can be used."			
"The intelligent detection of fresh meat quality has the advantages of	Spoilage in distribution ->	Spoilage in distribution	
providing more convenient, faster, low-cost and non-destructive	Intelligent packaging	-> Smart packaging	
detection than the traditional detection methods."			
"Moreover, breaks in the cold chain during distribution and retail must be	Breaks in the cold chain ->	Refrigeration in supply	Gomez et al.
avoided." "Results of this research showed that packaging fresh-cut wild	Protection by packaging	chain -> Importance of	(2023)
rocket and sea fennel with a PLA-based film is a feasible alternative to		packaging to shelf life	
common plastic used in the fresh-cut industry, avoiding the waste of			
polymers in landfills. The biodegradable film has good oxygen barrier			
properties for packaging wild rocket."			
"This makes ANNs useful tools for food quality and safety, such as	Influence of distribution ->	Spoilage in distribution	Ahmed et al.
modeling microbial growth; analyzing spectroscopic data; and predicting	Quality attributes	-> Importance of	(2023)
food products' food safety and physiochemical, sensory, and functional	significantly affected by	packaging to shelf life	
properties during processing, storage, and distribution." "The findings of	packaging		
the current study indicated that using ANN regression models to predict			
the fruit quality of stored date fruits is a promising application of ANN,			

		 which can help improve the efficiency of producing and supplying perishable goods like date fruits." "The quality attributes of the fruits were significantly affected by MAP gases of CO2, O2, and N, packaging materials, storage temperature, and storage time." "Various novel preservation technologies have been successfully proposed to effectively prolong the shelf-life of shrimp with high quality, showing high market values throughout the supply chain of shrimps." "ensure aquatic products safety for a long time of storage and distribution" "MAP is a great potential method for packaging fresh shrimp products." 	Ensure quality in distribution -> MAP packaging	Spoilage in distribution -> Importance of packaging to shelf life	Peng et al. (2022)
	Interventions	"The results from this study demonstrate that the continuous use of refrigeration along the food-supply chain has the potential to select for <i>L. monocytogenes</i> variants with enhanced cold and heat tolerance, highlighting the impact that microbial intervention strategies can have on the evolution of <u>bacterial strains</u> and likewise, food safety." "mutations remain a large concern for the food industry as arising strains may possess enhanced survival capabilities that render current intervention and safety measures ineffective."	Refrigeration in supply chain -> Render interventions ineffective	Refrigeration in supply chain -> Effectiveness of intervention	Hingston et al. (2019)
		"Along the supply chain, processing operations are more critical steps in controlling final risks compared to cold storage and primary production." "it was assumed that, depending on the supply chain, a product is most likely to be on the shelves of a retailer and sold between two and five days and the duration of keeping a product in the freezer was assumed between 0 and 90 days."	Cold storage in supply chain -> Still need for proper intervention	Refrigeration in supply chain -> Effectiveness of intervention	Dogan et al. (2019)
Good practices & standards	Contamination final product	"After microbiological analysis it was found that all samples of coalho cheese were out of standards and unfit for human consumption in accordance with Ordinance n° 146/1996 of the Ministry of Agriculture, Livestock and Supply of Brazil." "Despite its importance, goat cheese is often made under inadequate hygienic-sanitary conditions and usually uses raw goat's milk, increasing the risk of product contamination."	Standards -> Guideline for product contamination	Standards -> Guideline for product contamination	Aragao et al. (2021)

Packaging	"These approaches have certainly intensified the strength of food	Standards -> Packaging	Standards -> Importance	Pushparaj et al.
concept	processing technology and improved food quality and maintenance	technology	of packaging for shelf	(2022)
	standards during shelf life." "The significant nuances in food packaging		life	
	include nanocomposites, antimicrobial nano-pack tailored with metal			
	ions, metal oxides, nano clay and other biopolymers, which are key			
	components inactive, intelligent, and biodegradable packaging"			
	"There are existing guidelines about migration of chemical substances,	Standards -> Microbial	Standards -> Better	Zaidi et al. (2022)
	absence of holes or blemishes in the paper, but guidelines for microbial	limits	protection	
	analysis need to be formulated so that regulatory authorities and			
	manufacturing units strictly follow the standards for microbial limits in			
	paper and paperboard used to pack or contain food items."			
	"The development of new active packaging systems is constantly	Standards -> Active	Standards -> Active	Ahmed et al.
	increasing due to technological advances, leading to higher food safety	packaging	packaging	(2022)
	and quality standards as well as waste minimization and sustainability.		Standards ->	
	Edible films and coatings are active packaging technologies that can meet	Standards ->	Biodegradable/biobased	
	standards, are primarily natural in origin, and are biodegradable."	Biodegradable	packaging	
	"Enhancing mechanical strength, moisture and oxygen barrier	Standards -> Antibacterial	Standards -> Active	Rajendran et al.
	capabilities, and exhibiting antibacterial properties, thereby effectively	properties	packaging	(2024)
	extend the shelf life of packaged food items, ensuring heightened food			
	safety standards"			
	"The addition of APE and EOs into the packaging matrix demonstrated the	Standards -> Addition of	Standards -> Active	Kong et al. (2023)
	potential to prolong the storage of food products by preserving food	substances with	packaging	
	quality (pH, colors, and lipid oxidation) and safety during storage, and the	antibacterial properties		
	inhibition zones of some extracts against the pathogens demonstrated			
	are weaker in comparison to the standard antibiotic drug used (WHO			
	standards)"			
	"Our data also suggest a need for enforcement of processing standards	Standards -> Packaging	Standards -> Packaging	Lee et al. (2017)
	during the on-site packaging of ice."	process	operation	
	"Food production and marketing sectors are in absolute need to maintain	Standards -> Smart	Standards -> Smart	Manikandan & Mir
	product quality to meet global standards." "The application of	packaging	packaging	(2023)
	nanomaterials in food packaging is three important reasons, i.e., smart,	Standards-> Active	Standards-> Active	
	improved, and active food packaging"	packaging	packaging	

	Chandanda y l	Chandanda - D. U	
	Standards -> Improved	Standards -> Better	
	packaging	protection	
"However, the pH changes and bacterial growth in the cold-stored fresh	Standards ->	Standards -> Better	Hernandez-Garcia
pork meat samples were minimal and very similar in the three tested	Accomplishing food safety	protection	et al. (2022)
multilayer films, successfully accomplishing the requirements of the food			
quality and safety standards at the end of storage."			
"Furthermore, among the production processes, high hygienic standards	Standards -> Valid	Standards -> Better	Ferri et al. (2023)
combined with efficient technologies, i.e., HPP, and new packaging	alternative for classic film	protection	
materials, can be valid alternatives to the classic films to give substantial			
solutions to the growing environmental necessity of sustainability."			
"The lack of adequately enforced food-safety standards in managed	Standards -> Enhances	Standards -> Better	Aiyar & Pingali
agricultural production systems creates the necessary conditions for	packaging standards	protection	(2020)
diseases to mutate into highly contagious strains" "Proper handling of			
food, improving storage quality for livestock and food products and			
enhanced packaging standards will reduce cross-species transmission."			
"Bread produced by local bakeries showed lower standards in packaging	Standards -> Ineffective	Standards -> Packaging	Ali et al. (2023)
and microbial quality" "A high frequency of contamination in packed and	and inefficient packaging	operations	
unpacked bread may be attributed to ineffective and inefficient packaging			
of products. "			
"On one hand, food companies need of fast and affordable methods to	Safety standards -> Right	Standards -> Importance	Esposito et al.
keep constant higher sensory and safety standards, on the other hand,	packaging for products	of packaging for shelf	(2021)
food scientists and operators find difficult conjugating these exigencies		life	
by means of univocal parameters." "Beyond the correct rearing practices			
and the observance of the best hygiene and manufacturing protocols in			
the processing, oxidation can be prevented with the use of right			
packaging according to the storage conditions and the destination of the			
product "			
"However, our understanding of how these events originate and what	Standards -> Knowledge	Standards -> Importance	Gutierrez-
agronomic, packaging, and environmental factors influence the survival,	on packaging impact	of packaging for shelf	Rodriguez &
persistence, and proliferation of human pathogens remains of scientific		life	Adhikari (2018)
debate." "It reflects on 20 years of research, industry guidelines, and			

federal standards and how they have evolved to our current			
understanding of fresh produce safety"			
"Additionally, intelligent packaging systems (IPSs) provide real-time	Standards -> Smart	Standards -> Smart	Sani et al. (2024)
information to consumers about the status of the product. ""Additionally,	packaging	packaging	
ensuring the compatibility of IPSs with existing industrial processes and			
standards can be a hurdle."			
"There is the urgent need for strict enforcement of food safety regulations	Standards -> Ensure	Standards -> Importance	Abrokwah et al.
in Ghana to ensure that packaging materials used by food vendors as well	protection by packaging	of packaging for shelf	(2020)
as the mode of treating these materials meet standards that safeguard		life	
public health"			
"Besides radiation and cold storage, packaging in low density	Standards -> Packaging to	Standards -> Importance	Bandyopadhyay et
polyethylene bags in sealed condition was found to help in retaining the	retain quality during	of packaging for shelf	al. (2020)
quality of these products during storage." "According to 'revised	storage	life	
microbiological standards for fruits and vegetables and their products'			
under the latest regulation of Food Safety and Standards Authority of			
India (FSSAI); the microbiological limit (w.r.t. aerobic plate count) is			
1 × 10^6 CFU g-1"			
"Herbs for medicinal purposes must meet the same quality and safety	Standards -> Innovative	Standards -> Smart	Smiechowska et al
standards as are set for medicines." "The greening of the production of	packaging	packaging	(2021)
herbs and spices goes in two directions, one concerning innovative			
packaging solutions for this group of food products, and the other			
concerning the obtained raw material"			

9. <u>Appendix 9: Coding of papers found for the impact of subdrivers on FSMS activities</u>

Table A9.1 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the top 2 social subdrivers

Subdriver	FSMS activity	Passage from literature	Initial coding	Focused coding	Reference
Dietary choice	Preventive	"Pork and pork products play an important role in the diet of Vietnamese	Pork as a diet staple ->	Diet staple -> Hygiene	Ngo et al. (2021)
	measures	people, contributing over 52.7% of the total meat intake" "Unsatisfactory	Importance of hygiene	management	
		food safety outcomes were associated with management (long	practices		
		transportation time) and poor hygiene practices (i.e. not separating pork			
		and other meat and storing pork at inappropriate temperature) in both			
		traditional and modern channels in rural and urban areas."			
		"Aromatic herbs are characteristic of the Mediterranean diet pattern and,	Herbs as part of the diet ->	Diet staple -> Hygiene	Oliveira et al.
		as with many agricultural products, may be exposed to a wide range of	Importance of preventive	management	(2018)
		microbial contamination during pre and post-harvest processing." "The	measures		
		results highlight the importance of preventing contamination at the			
		primary production, processing, distribution and retailing"			
		"Fish is a fundamental part of a healthy diet, being a source of proteins,	Fish as part of the diet ->	Diet staple -> Hygiene	Cortes-Sanchez et
		lipids, vitamins, and minerals, contributing to nutritional needs through	Importance of adequate	management	al. (2023)
		food by consumers" "These microorganisms, several of them	hygiene		
		enterobacteria that are pathogenic to humans, can be autochthonous to			
		fish or exogenous due to contamination of the product when it is captured			
		in water contaminated with fecal matter or in post-capture phases			
		(handling, transformation, conservation, distribution, commercialization,			
		and preparation prior to consumption) under inadequate hygiene			
		conditions and practices, including failures in thermal processes."			
		"Ready-to-eat foods (RTEs) are foods consumed without any further	Ready to eat foods -> Good	Ready-to-eat food ->	Makinde et al.
		processing. They are widely consumed as choice meals especially by	personal hygiene	Hygiene management	(2020)
		school-aged children and the fast-paced working class in most low- and	necessary		
		middle-income countries (LMICs), where they contribute substantially to			
		the dietary intake." "Good personal hygiene is necessary during actual			
		food preparation as well as during food pack-aging in order to limit RTE			
		contamination"			
		"Fermented vegetables are common part of the Cambodian diet." " The	Fermented vegetables as	Diet staple -> Hygiene	Chrun et al. (2017)
		presence of Staphylococcus Spp. (10%) and Listeria spp. (10%) may also	part of diet-> Hygiene	management	

	point to unhygienic food handling procedures, inadequate sanitary			
	processing places, and keeping temperature abuse over a period of time			
	to allow for bacterial growth."			
Monitoring	"The results documented the analysis of traditional cottage industry	Typical diet component ->	Diet staple -> Continuous	Bahuguna et al.
	doenjang and suggest the need for constant monitoring to ensure the	Need for constant	monitoring	(2023)
	safety of food for the consumer." "The typical Korean diet contains a	monitoring		
	significant quantity of doenjang owing to its unique taste and health benefits"			
	"Meat is one of the most consumed agro-products because it contains	Meat as a critical part of	Diet staple ->	Khaled et al. (2021)
	proteins, minerals, and essential vitamins, all of which play critical roles	the diet -> Redefine	Modification monitoring	
	in the human diet and health." "These concerns are prompting the meat	standards for monitoring	plans	
	industry to begin to redefine and reevaluate standards for measuring and			
	monitoring the quality and safety characteristics of meat and meat			
	products"			
Operation	"In Eastern countries, seed sprouts have been employed for dietary	Sprouts as part of the diet	Diet staple -> Ease of	Kehinde et al.
	applications for so many years, but in the Western countries, the food	-> Ease of operation	operation	(2022)
	usage of sprouted seeds can be traced back to the 1980s when there was			
	remarkable demand by consumers for exotic, nutritional, and healthy			
	foods, though in recent years, attention on sprout foods has been on			
	issues related to minimal processing and absence of additives" "Sprouting			
	as a processing operation is green, cost-effective, requires little			
	technicality, requires less time, and with substantial output;"			
Validation	"Australian apples significantly contribute to the Australian economy and	Apples as part of diet ->	Diet staple -> Need for	Frankish et al.
	dietary requirements." "Lack of validation could result in use of activities	Need for validation of	validation	(2022)
	and processes that do not achieve the intended food safety outcomes if,	activities		
	for example, the system is challenged by increased contamination levels."			
Documentation &	"Milk and dairy products are socially significant products in the population	New products ->	New products ->	lvkova et al. (2021)
record-keeping	diet." "Taking into account constant improvement of the existing and the	Introduced in	Modification	
	development of new innovative technologies, the increase in the range of	documentation	documentation	
	the produced products, the strengthening of the requirements to shelf			
	life. And other factors, the evaluation criteria of the quality and safety are			
	constantly expanding and new methods are developed, which are			

		introduced into the official registration documentation for new types of products.			
	External food safety	"Australian apples significantly contribute to the Australian economy and dietary requirements. Their safety is ensured by food safety management	Apples as part of diet -> Audits by commercial	Diet staple -> Additional audits	Frankish et al. (2022)
	performance	systems (FSMS) audited by commercial entities."	entities		
Resistant	Preventive	"Limited hygiene standards and improper handling may lead to	Antibiotic resistance ->	Antimicrobial resistance	Yang et al. (2024)
pests &	measures	incomplete sterilization and aggravate the risk of pathogen	Need for hygiene	-> Hygiene management	
diseases		contamination." "In addition, many antibiotic resistance genes were found	standards		
		in gene cassettes, segments of DNA with one or two opening reading frames that lack promoters"			
		"Salmonella is not a normal bacterial component of fish microbial flora,	Antibiotic resistant ->	Antimicrobial resistance	Fernandes et al.
		and the occurrence of this pathogen is commonly related to its breeding,	Hygiene to prevent	-> Hygiene management	(2018)
		as well as to the industrialization environment, due to inefficient hygiene	contamination		
		practices, equipment and inadequate food handling." "Salmonella			
		antibiotic-resistant strains have been isolated in fish in Brazil and			
		worldwide, which evidences the transference of resistance genes among			
		the aquatic microbial population, which can lead to more severe and			
		difficult to treat foodborne infections."			
		"The predominance of specific <i>L. monocytogenes</i> serogroups and the	Antimicrobial resistance ->	Antimicrobial resistance	Aleksic et al.
		different antimicrobial resistance patterns emphasize the need for	Necessity for proper	-> Hygiene management	(2024)
		constant surveillance and intervention to mitigate public health risks. "	hygiene		
		"The presence of L. monocytogenes in dairy products after pasteurization			
		underscores the necessity of maintaining proper food hygiene throughout			
		the production process."			
		"During sample collection were found inadequate hygiene conditions in	Resistance of pathogens ->	Antimicrobial resistance	Aragao et al.
		the environment used for cheese production. From a health point of view,	Adequate hygiene	-> Hygiene management	(2021)
		it is even more alarming when it comes to S. aureus carrying resistance	conditions		
		genes."			
		"In accordance with our results, raw milk can be considered a source of	Antimicrobial resistance ->	Antimicrobial resistance	Rubiola et al.
		AMR bacteria and genes; this points out the importance of properly	Hygiene practices	-> Hygiene management	(2022)
		informing food business operators about the risk associated with poor			
		hygiene practices in the dairy production environment and consumers of			

	the potential microbial food safety risks derived from raw milk products			
	consumption."			
	"the most important measures to mitigate AMR applicable for all the	Antimicrobial resistance ->	Antimicrobial resistance	Koutsoumanis et
	food-production sectors investigated, both at pre- and post-harvest,	Correct implementation of	-> Hygiene management	al. (2021)
	involve the correct implementation of effective general measures (good	hygiene practices		
	hygiene practices, biosecurity) to prevent/reduce occurrence and			
	transmission of pathogens and other microorganisms"			
	"Very high levels of resistance were observed for clindamycin (57%) and	Antimicrobial resistance ->	Antimicrobial resistance	Rugna et al. (2021)
	high resistance levels (>20–50%) to ciprofloxacin, oxacillin, levofloxacin	Proper hygiene conditons	-> Hygiene management	
	and daptomycin, confirming the L. monocytogenes resistance trend to a			
	wide range of antimicrobial agents. ""Persistence of L. monocytogenes in			
	food processing environments is still considered the major source of RTE			
	food contamination and this persistence appears to be the result both of			
	improper hygiene conditions and of the high adaptive capacity of this			
	bacterium"			
Monitoring	"Metagenomic evaluation of Arabian fermented foods, including the	Antimicrobial resistance ->	Antimicrobial resistance	Yasir et al. (2023)
	identification of probiotics, pathogenic bacteria, and ARGs, illustrates the	Importance of	-> Improve	
	importance of microbiological analysis in evaluating their health effects."	microbiological analysis	microbiological analysis	
	"In general, the taxonomic assignments obtained evidence the benefits of	Antimicrobial resistance ->	Antimicrobial resistance	Alvarez-Molina et
	focusing AMR monitoring activities also on less frequently assessed non	New monitoring	-> New monitoring	al. (2023)
	pathogenic bacterial species, therefore highlighting the added value of	technologies	technologies	
	metagenomic studies to complement FPE microbiological surveys."			
	"Whole genome sequencing (WGS) has been broadly used to provide	Antimicrobial resistance ->	Antimicrobial resistance	Allard et al. (2018)
	detailed characterization of foodborne pathogens." "Numerous	New monitoring	-> New monitoring	
	government agencies, industry and academia have developed new	technologies	technologies	
	applications in food safety using WGS approaches such as outbreak			
	detection and characterization, source tracking, determining the root			
	cause of a contamination event, profiling of virulence and pathogenicity			
	attributes, antimicrobial resistance monitoring, quality assurance for			
	microbiology testing, as well as many others."			

	"This review highlights the need to include agriculturally-derived AMR in	Antimicrobial resistance ->	Antimicrobial resistance	Brunn et al. (2022)
	monitoring food safety risks from plant-based foods, and the challenges	Need for monitoring	-> Continuous	
	facing its surveillance."		monitoring	
	"Continuous monitoring of Listeria spp., particularly Listeria	Antimicrobial resistance ->	Antimicrobial resistance	Elafify et al. (2022)
	monocytogenes, in foods is a mandatory task for food safety and	Continuous monitoring	-> Continuous	
	microbiology sectors. This study aimed to determine the prevalence and		monitoring	
	antimicrobial resistance patterns of L. monocytogenes in milk and dairy		-	
	products retailed in Egypt."			
	"The presence of ESBL and MBL in fruits and vegetables is an indicator for	Antimicrobial resistance ->	Antimicrobial resistance	Saksena et al.
	spreading antimicrobial resistance in the environment. ""Therefore, the	Periodic monitoring	-> Continuous	(2019)
	study underlines the need for periodic monitoring of produce at various		monitoring	
	levels of production and sale are required to achieve satisfactory levels of			
	microbial load.			
	"The rate of contamination with Salmonella in the poultry and egg	Antimicrobial resistance ->	Antimicrobial resistance	Bahramianfard et
	samples, besides the presence of antimicrobial resistant and MDR	Continuous monitoring	-> Continuous	al. (2021)
	Salmonella isolates harboring the virulence genes in these samples, could		monitoring	
	significantly affect food safety and subsequently, human health.			
	Therefore, continuous monitoring of animal-source foods, enhancement			
	of poultry farm control measures, and limiting the use of antibiotics for			
	prophylactic purposes in food producing animals, are essential for			
	reducing the zoonotic risk of this foodborne pathogen for consumers and			
	also choosing effective antibiotics for the treatment of salmonellosis."			
Verification	"Very high levels of resistance were observed for clindamycin (57%) and	High levels of resistance ->	Antimicrobial resistance	Rugna et al. (2021)
	high resistance levels (>20–50%) to ciprofloxacin, oxacillin, levofloxacin	Include strain	-> Verification of strains	
	and daptomycin, confirming the L. monocytogenes resistance trend to a	characterization in		
	wide range of antimicrobial agents." "In conclusion, microbiological	verification		
	sampling of food and environments after sanitization are commonly used			
	as verification procedure for the absence of L. monocytogenes in food			
	plants and to give assurance of food safety, but the findings of this study			
	underlined that the presence without recognizing of the real pattern of			
	contamination and the characteristics of the strains could not be			

	considered as the conclusive assessment of a potential risk for public health."			
Documentation &	"Antimicrobial resistance (AMR) among foodborne pathogens becomes	Antimicrobial resistance ->	Antimicrobial resistance	Alsayeqh et al.
record-keeping	one of the top challenges for the environment, public health, and food	Documentation to follow	-> Documentation for	(2021)
	safety sectors. However, less is known about antimicrobial-resistant	up	follow-up	
	foodborne pathogens in the Middle East region. Possibly because of the			
	lack of surveillance, documentation, and reporting."			

Table A9.2 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 technological subdrivers

Subdriver	FSMS activity	Passage from literature	Initial coding	Focused coding	Reference
Novel food	Preventive	"As insects and insect-based foods are receiving more attention and are	Microbiota of edible	Edible insects -> Hygiene	Wynants et al.
sources	measures	already being marketed in some European countries, more insects farms	insects -> Hygiene	management	(2017)
		are being established. Rearing companies often optimise their practices	measures are necessary		
		by trial and error and no general hygiene codes are available." "Further			
		research on the impact of other rearing practices, hygiene measures and			
		the substrate on the microbiota of edible insects is necessary in order to			
		provide additional guidelines for the emerging insect-rearing industry to			
		ensure food safety of their end products."			
		"From the food hygiene point of view, the importance of NCA as passive	Insects as transmitters of	Edible insects -> Hygiene	Grabowski et al.
		transmitters of microorganisms is far more important as their role of	MO -> Hygiene	management	(2017)
		vectors for several infectious diseases; "			
		"The data show complex ecosystems with large variations in microbial	Large variations in edible	Edible insects -> Hygiene	Garofalo et al.
		load and diversity among the analysed edible insects." "The above-	insect microbial load ->	management	(2019)
		mentioned microbial groups play important and unique roles in food	Good hygienic practices		
		matrices (as well as in edible insects) and are relevant from the			
		perspectives of hygiene and safety." "microbial hazards should be limited			
		through the implementation of good hygienic practices during rearing,			
		handling, processing, and storage, as well as the implementation of an			
		appropriate HACCP system for edible insect supply chains"			
		"Climate change will impede availability of edible insects; hence,	Edible insects -> Hygiene	Edible insects -> Hygiene	Egonyu et al.
		necessitating upscaling of mass production technologies and sound	as a barrier	management	(2021)
		conservation practices. Safety and hygiene, on the other hand, hamper the			

		acceptability of insects as food and/or feed, particularly in developed			
		countries."			
	Monitoring	"The result indicates that it is urgent to carry out monitoring measures	Algae food -> Strengthen	Algae -> Improve	Wu et al. (2022)
		for Vibrio parahaemolyticus in coastal areas. Hence, it is necessary to	microbiological detection	microbiological analysis	
		strengthen the microbiological detection of algae food and hygiene			
		supervision in the manufacturing environment."			
		"Rather unexplored so far is the unculturable fraction of the insect	Increase in edible insect	Edible insects ->	Vandeweyer et al.
		microbial community and its importance in food safety. Last but not least,	consumption ->	Modification monitoring	(2021)
		the most important microbiological challenge may well be situated in the	Implications for	plans	
		further development of the sector: upscaling in terms of capacity and	monitoring		
		number of companies will increase the complexity of the sector. That will			
		have implications for monitoring and control of biological contaminants"			
Processing	Interventions	"UV processing is a non-thermal technology that has been widely used	Emergence of new	New technology ->	Wang et al. (2023
techniques &		and has shown great potential in the past decades for sterilization in food	technologies -> Non-	Effective intervention	
scale		processing. Especially in recent years, the emergence of new technologies	thermal decontamination	techniques	
		in combination with LEDs and pulses has accelerated the trend of UV			
		applications in meat and meat products. As an effective decontamination			
		tool UVA, UVB, and UVC can effectively break the genetic material of			
		pathogenic bacteria under certain circumstances, causing the dissociation			
		of DNA molecules to form pyrimidine dimers and thus inactivating the pathogens."			
	Operation	"New non-thermal food processing techniques, which achieve	New food processing	New technology -> Ease	Al-najjar et al.
		microbiological inactivation in food materials without the application of	techniques -> Reduction in	of operation	(2023)
		heat directly are emerging and novel alternatives to the conventional	operation time		
		thermal processing techniques" "Increase in mass transfer is of industrial			
		interest owing to a reduction in operation time."			
		"Recent studies reported the potential application of this parameter in	Novel food processing	New technology ->	Alwazeer (2020)
		novel food processing techniques such as reducing atmosphere drying	techniques ->	Knowledge of personnel	
		(RAD) of food products and reducing atmosphere packaging (RAP) of fresh	Understanding of		
		food products for preserving the quality attributes and extending the	personnel		
		shelf-life of food products. This paper aims to help the technical and			
		operational personnel working in food industry sectors as well as the			

		scientific community to have an updated and a comprehensible review about the Eh parameter permitting its consideration for potential applications in food industries."			
New digital Moni technologies	Monitoring	"It also needs to be connected to new technologies, such as the Internet of Things (IoT) (artificial intelligence, machine learning). Moving to the industry 4.0 era after the outbreak of the pandemic, the IoT is receiving more attention in various industries, including monitoring in real-time and being measured online."	Internet of Things -> Monitoring	Digital technology -> New monitoring technology	Wu et al. (2022)
		"Geographical Information Systems (GISs) can be an unraveling solution. GISs relates informational data to a geographic location and can be dynamically used to grow food businesses " "In terms of growing food businesses, GISs can be used for logistics and traceability to identify vulnerable areas in terms of monitoring and evaluating time and temperature within food safety procedures."	Geographical Information Systems -> Monitoring	Digital technology -> New monitoring technology	Varyvoda et al. (2021)
		"This study combined artificial intelligence (AI) and optical imaging to detect bacteria at the microcolony stage within 3 h of inoculation. " "Our method has the potential to be widely applied in food industries, environmental monitoring, and clinical settings and could aid in the rapid detection of bacteria."	Artificial intelligence -> Rapid bacteria testing	Digital technology -> Improve microbiological analysis	Ma et al. (2023)

Table A9.3 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the top 3 environmental subdrivers

Subdriver	FSMS activity	Passage from literature	Initial coding	Focused coding	Reference
Seasonality &	Preventive	"Some foodborne diseases are linked to specific weather and climatic	Seasonal risk on pathogens	Seasonal variation in	Dzudzor et al.
weather	measures	conditions and are prevalent at specific times and seasons of the year"	-> Hygiene	contamination ->	(2024)
		"For example, the Salmonella transmission risk increases with high		Hygiene management	
		rainfall" "environments where pathogens can easily find their way into			
		food and water if not hygienically maintained"			
		"Notably, human pathogens such as genera Vibrio was detected in Q3 and	Seasonal risk on pathogens	Seasonal variation in	Lim et al. (2021)
		there was a significant increase in the relative abundance of	-> Improvement of hygiene	contamination ->	
		Staphylococcus showing that a greater attention is recommended in	processes	Hygiene management	
		hotter season, while other seasons showed only few bacteria to be			
		recognized. In addition, two distinctive rate of Bacillus spp. and the			

	Firmicute/Droteebacteria ratio ware abcerved by the warmer or calder			
	Firmicute/Proteobacteria ratio were observed by the warmer or colder			
	seasons" "Taken together, our results would be a powerful reference to			
	hygiene managers for improvement of food processes."	Concernel viels on anthereene	Concernel unvioltion in	
	"The increased level of outbreaks during the summer months is often	Seasonal risk on pathogens	Seasonal variation in	Hull-Jackson &
	attributed to the increased ambient temperatures which favour the	-> Need for proper hygiene	contamination ->	Adesiyun, (2019).
	multiplication of pathogens" "This may lead to increased demands		Hygiene management	
	being placed on food operators which can result in less attention			
	being paid to proper food hygiene, cooking temperatures and food			
	storage"			
	"According to Table 1, it can be deduced that the non-conformity is higher	Seasonal risk on non-	Seasonal variation in	Amaiach et al.
	in summer and autumn compared to the other seasons," "The high rate of	compliance -> Hygiene	contamination ->	(2023)
	non-compliance during summer revealed in our study could be due to the		Hygiene management	
	increasing temperature or lack of hygiene;"			
Interventions	"Season also remained a risk factor; the odds of Salmonella	Seasonal pattern of	Seasonal variation in	Beczkiewicz &
	contamination were higher in the summer than in winter. Poultry	contamination -> Focus on	contamination ->	Kowalcyk (2021)
	contamination typically follows a seasonal pattern" "Although meat and	reduction	Effective intervention	
	poultry safety has improved since implementation of the pathogen		techniques	
	reduction HACCP rule in 1996 (22), Salmonella remains a major concern.			
	The proposed Healthy People 2030 goals continue to target a reduction			
	in outbreaks of Salmonella infection (among other foodborne pathogens)			
	linked to poultry"			
	"The analysis of variance (ANOVA) revealed that temperature and	Survival of pathogens	Seasonal variation in	Sabillon et al.
	tempering solution and their interaction significantly impacted the	seasonal -> Effectiveness	contamination ->	(2020)
	pathogen load" "Temperatures at which the tempering process may be	of intervention	Effectiveness of	
	carried out during different seasons of the year did not significantly		intervention	
	influence the effectiveness of the saline organic acid solutions against the			
	pathogenic microorganisms tested. However, the average temperatures			
	experienced by wheat kernels in storage bins during the winter and fall			
	months may favor the survival of pathogenic microorganisms."			
Monitoring	"The dynamic and seasonal environments of fermented food facilities are	Microbiological	Microbiological	Madrid et al. (2017)
	largely uncharacterized and can produce rich microbial communities."	environment -> Monitoring	environment -> Specific	
		indoor air	monitoring	

Г — Т		I		1
	"Monitoring indoor air particles is critical for maintaining healthy building			
	environments."			
	"With regard to influence of environmental conditions on Norovirus	Seasonal presence of virus	Seasonal variation in	Ilic et al. (2017)
	presence, we have proved seasonal pattern of virus occurrence i.e., the	occurrence -> Upgrade	contamination ->	
	largest number of positive samples was noticed during winter, while	monitoring plans	Modification monitoring	
	other physico-chemical factors were not of great significance. It was		plans	
	found that count of E. coli did not correlate with Norovirus prevalence.			
	From the aspect of food safety, an upgrade of monitoring plans could lead			
	to obtaining safer products."			
	"Specifically, the odds of produce contamination from Salmonella was 2.4	Seasonal contamination ->	Seasonal variation in	Srisamran et al.
	times greater during rainy season than samples obtained during the dry	Monitoring of product	contamination ->	(2022)
	season" "Surveillance and monitoring of produce contamination	contamination	Continuous monitoring	
	throughout the food chain are suggested to enhance produce food safe"			
	"Seasonal occurrence of individual bacteria was found while monitoring	Seasonal occurrence of	Seasonal variation in	Bogdanovicova et
	the microbial situation at food service facilities. This seasonality was	bacteria -> Regular	contamination ->	al. (2019)
	observed in all the bacteria we detected (B. cereus, S. aureus, and E. coli)."	monitoring	Continuous monitoring	
	"The data highlight the need of regular monitoring of the occurrence of			
	agents of alimentary diseases at food service facilities as an important			
	part of the HACCP plan to prevent the occurrence of FBDO."			
	"FIB concentrations were high in the warm season and low in the cold	Concentrations of bacteria	Seasonal variation in	Jeon et al. (2020)
	season" "Identification of stable spatial patterns can be a useful	dependent on season ->	contamination -> Specific	
	component of the microbial water quality monitoring design and implementation."	Water quality monitoring	monitoring	
Operation	"The dynamic and seasonal environments of fermented food facilities are	Microbiological	Microbiological	Madrid et al. (2017)
	largely uncharacterized and can produce rich microbial communities."	environment -> Adapt	environment -> Adapt	
	"The ability to measure air parameters continuously over an extended	operations	operations	
	period of time allows a facility manager to view past environmental			
	conditions and make informed decisions about future operations within			
	the building."			
	"By accurately allocating resources during perilous seasons and	Seasonal quality variation	Seasonal variation in	Du Plessis et al.
	potentially devising season-specific fruit handling, storage and transport	-> Adapt operations	contamination -> Adapt	(2023)
	guidelines, stakeholders can optimise operations and mitigate risks, with		operations	

		these findings proffering a crucial comprehension of the seasonal			
		dynamics in fruit damage claims, thereby fortifying the agricultural sector's resilience and enhancing overall food safety."			
Use of sidestreams	Interventions	"The wash process requires high volumes of water, which are usually reduced by water reuse. To maintain the microbiological quality of the	Reuse of process water -> Chemical disinfection	Reuse of water -> Effective intervention	Gadelha et al. (2019)
		process water, intervention strategies are needed. Chemical disinfection		technique	
		is the most common method to maintain the microbial quality of process water."			
		"In addition to the current known hazards, emerging microbiological	Reuse of water -> Water	Reuse of water ->	Koutsoumanis et
		hazards e.g. due to new production systems in primary production (reuse	disinfection treatment	Effective intervention	al. (2023)
		of agricultural/industrial water, aquaponics, urban agriculture, etc.), will		technique	
		be addressed. " "To avoid cross-contamination of the product due to the			
		use of contaminated water, water disinfection treatments are needed to			
		eliminate, or reduce to an acceptable level, microorganisms of public			
		health concern but these treatments should not have an adverse effect			
		on the quality and safety of the produce"			
	Monitoring	"The proper operation of water disinfection treatment (e.g. application	Reuse water -> Monitoring	Reuse water ->	Koutsoumanis et
		rate, in-use concentration and residual concentration on ffFVHs) as well	of efficacy of treatments	Continuous monitoring	al. (2023)
		as of the monitoring of the efficacy has to be conducted in a proper and safe way."			
	Operation	"Water quality is critical to prevent microbial and chemical risks in any of	Reuse water -> Reduce	Reuse water -> Adapt	Gadelha et al.
		the postharvest and processing operations related to fresh and fresh-cut	water use in operation	operations	(2019)
		fruits and vegetables. The wash process requires high volumes of water,			
		which are usually reduced by water reuse."			
		"The proper operation of water disinfection treatment (e.g. application	Reused water -> Special	Reuse water ->	Koutsoumanis et
		rate, in-use concentration and residual concentration on ffFVHs) as well	attention in operation	Knowledge of personnel	al. (2023)
		as of the monitoring of the efficacy has to be conducted in a proper and			
		safe way. As established by FAO and WHO (2019), water quality must be			
		maintained throughout the processing operation and special attention is			
		required for common wash and flume systems and reused water."			

	Validation	"In the context of process water for ffFVHs, the goal of the validation is obtaining evidence about the reliably achievable microbiological quality of the process water to avoid cross-contamination during the handling and processing operations. Validation procedures allow definition of the appropriate operational conditions associated with the water management strategy (e.g. performance standard of water disinfection and/or replenishment related to certain physico-chemical parameters of the process water) allowing to control the target microorganisms (e.g. generic E. coli as indicator organism)"	Process water -> Validation of microbiological quality	Reuse water -> Need for validation	Koutsoumanis et al. (2023)
	Verification	"Verification is conducted as part of a FSMS, to demonstrate that the applied water management strategies are being applied as required, and the process water reached the required microbiological quality (defined as fit-for-purpose for the intended use) to avoid cross-contamination of the ffFVHs via the water."	Process water -> verification of correct application of strategies	Reuse water -> Verification of strategies	Koutsoumanis et al. (2023)
Water & soil management	Interventions	"To avoid cross-contamination of the product due to the use of contaminated water, water disinfection treatments are needed to eliminate, or reduce to an acceptable level, microorganisms of public health concern but these treatments should not have an adverse effect on the quality and safety of the produce"	Reuse water -> Disinfection treatments	Reuse water -> Effective intervention technique	Koutsoumanis et al. (2023)
	Monitoring	"A good water management plan implies that any intervention (as a water management strategy) has to be validated, monitored and verified in their operation." "The operational monitoring of the applied water management strategies aims at the follow-up of defined process parameters and conditions. Operational monitoring parameters should be selected from the evaluated factors in the validation study."	Good water management -> Monitoring of defined process parameters	Good water management -> Specific monitoring	Koutsoumanis et al. (2023)
	Operation	"The proper operation of water disinfection treatment (e.g. application rate, in-use concentration and residual concentration on ffFVHs) as well as of the monitoring of the efficacy has to be conducted in a proper and safe way. As established by FAO and WHO (2019), water quality must be maintained throughout the processing operation and special attention is required for common wash and flume systems and reused water."	Reused water -> Special attention in operation	Reuse water -> Knowledge of personnel	Koutsoumanis et al. (2023)

Validation	"A good water management plan implies that any intervention (as a water	Good water management	Good water management	Koutsoumanis et
	management strategy) has to be validated, monitored and verified in	-> Validation of	-> Need for validation	al. (2023)
	their operation. The goal of the validation is obtaining evidence about the	interventions		
	achievable microbiological quality of the process water to avoid cross-			
	contamination during the handling and processing operations."			
Verification	"A good water management plan implies that any intervention (as a water	Good water management	Good water management	Koutsoumanis et
	management strategy) has to be validated, monitored and verified in	-> Verification of	-> Verification of	al. (2023)
	their operation. The goal of the validation is obtaining evidence about the	intervention	strategies	
	achievable microbiological quality of the process water to avoid cross-			
	contamination during the handling and processing operations."			

Table A9.4 Initial and focused coding of the passages found in literature on the mechanisms at play between subdrivers and FSMS activities, done for the top economic subdriver and the top 3 political subdrivers

Subdriver	FSMS activity	Passage from literature	Initial coding	Focused coding	Reference
Distribution	Preventive	"Reusable plastic crates (RPCs) are utilized in different steps of the fruit	Crates used in transport to	Transport to distribution	Lopez-Galvez et al.
channel	measures	and vegetable supply chain, including harvest, handling, packaging, and	retail -> Hygiene	-> Hygiene management	(2021)
		transport operations, as well as in the retail sector" "To exploit the			
		potential environmental benefits of RPCs while ensuring food safety, it			
		is necessary to guarantee the hygiene of this type of container."			
		"The main reason is that bacterial growth is influenced by the interaction	Time & temperature of	Transport to distribution	Ortuzar et al.
		between time and temperature. When the transport time is reduced, the	transport influence	-> Hygiene management	(2020)
		effectiveness of the temperature intervention is discounted accordingly.	bacterial growth -> More		
		Considering the apparent high monetary costs and demands on	restrictive hygiene		
		resources, a recommendation is to consider interventions to either	requirements		
		reduce transport time through systematic supply chain management or			
		control temperature through wide application of cold chain systems. "			
		"Based on the results, more restrictive hygiene requirements for workers			
		directly contacting fruit is highly recommended, with an emphasis on the			
		processing stage."			
		"The corresponding higher SPC substantiates the need for improved	Disruption of cold chain ->	Cold chain -> Hygiene	Chau et al. (2017)
		manufacturing processes and cold chain management along the food	Improved hygiene	management	
		distribution network." "While our microbial survey has certain limitations	processes		

	in its sampling design as discussed above, our findings do point to a need			
	for improved manufacturing and retail hygiene processes."			
Interventions	"The results from this study demonstrate that the continuous use of	Refrigeration in supply	Cold chain ->	Hingston et al.
	refrigeration along the food-supply chain has the potential to select	chain -> Render	Effectiveness of	(2019)
	for <i>L. monocytogenes</i> variants with enhanced cold and heat tolerance,	interventions ineffective	intervention	
	highlighting the impact that microbial intervention strategies can have			
	on the evolution of <u>bacterial strains</u> and likewise, food safety."			
	"mutations remain a large concern for the food industry as arising strains			
	may possess enhanced survival capabilities that render current			
	intervention and safety measures ineffective."			
	"Along the supply chain, processing operations are more critical steps in	Cold storage in supply	Cold chain -> Effective	Dogan et al. (2019)
	controlling final risks compared to cold storage and primary production."	chain -> Still need for	intervention technique	
	"it was assumed that, depending on the supply chain, a product is most	proper intervention		
	likely to be on the shelves of a retailer and sold between two and five			
	days and the duration of keeping a product in the freezer was assumed			
	between 0 and 90 days."			
Operation	"Along the supply chain, processing operations are more critical steps in	Cold storage in supply	Cold chain -> Adapt	Dogan et al. (2019)
	controlling final risks compared to cold storage and primary production."	chain -> Pressure on	operations	
	"it was assumed that, depending on the supply chain, a product is most	processing operation		
	likely to be on the shelves of a retailer and sold between two and five			
	days and the duration of keeping a product in the freezer was assumed			
	between 0 and 90 days."			
	"When exporting fruit, it is crucial to control time and temperature	Cold chain -> Optimize	Cold chain -> Ease of	Du Plessis et al.
	factors in the supply chain. Failure to do so can result in the fruit not	operations	operation	(2023)
	meeting market requirements, leading to a decline in quality, shelf life			
	and food safety." "By accurately allocating resources during perilous			
	seasons and potentially devising season-specific fruit handling, storage			
	and transport guidelines, stakeholders can optimise operations and			
	mitigate risks, with these findings proffering a crucial comprehension of			
	the seasonal dynamics in fruit damage claims, thereby fortifying the			
	agricultural sector's resilience and enhancing overall food safety.			

	Documentation &	"Indicators and sensors, SP components, are used for real-time	Real-time information for	Information for retailers	Ahmed et al.
	Record-keeping	monitoring of meat quality and subsequently inform the retailers and	retailers -> Record-	-> Documentation for	(2018)
		consumers about the freshness, microbiological, temperature, and shelf	keeping of freshness	follow-up	
		life status of the products. Barcodes and radio-frequency identification			
		tags are employed in meat packaging for real-time information about			
		the authenticity, and traceability of the products in the supply chain.			
		Recently, innovations in SP technologies resulted in fast, sensitive, and			
		effective detection, sensing, and record keeping of freshness,			
		microbiological, and shelf life status of meat and meat products."			
	External food	"Information including food packing date, batch/lot number, package	Information for retailers	Information for retailers	Fang et al. (2017)
	safety	weight, nutritional information, cooking instructions and the website	-> Less customer	-> Less complaints	
	performance	address of food manufacturer can ben encoded in the barcodes and they	complaints		
		are even readable by smartphones; providing great convenience for both			
		retailers and consumers." "Active and intelligent packaging offer great			
		opportunities for enhancing meat safety, quality, and convenience, and			
		consequently decrease the number of retailer and consumer complaints."			
Good practices	Preventive	"It is crucial to adhere to the established standards in international table	Established standards ->	Standards -> Hygiene	Sab et al. (2024)
& standards	measures	olive processing norms and respect the defined limits, especially	Hygiene practices	management	
		concerning oxidized black olives." "The use of preservatives and heat			
		treatments together with good manufacturing and hygiene practices are			
		useful tools as control measures to reduce alterations in table olives."			
		"This analysis clearly shows that a timewise push to further improve	Stringent criteria ->	Standards -> Hygiene	Zwietering et al.
		hygiene standards will be needed in various countries for their food	Improve hygiene	management	(2023)
		businesses to be able to achieve a high level of compliance with the			
		progressively stringent EU Campylobacter process hygiene criterion"			
		"The food and beverage industries operate their production units under	Stringent standards ->	Standards -> Hygiene	Achinas et al.
		stringent hygiene standards to verify high-quality products."	Hygiene	management	(2019)
		"Cheese microbiota largely depends on the initial quality of milk used	Standards -> Hygiene	Standards -> Hygiene	Costanzo et al.
		and on the hygiene procedures followed during manufacturing. The	procedures	management	(2018)
		appropriated hygienic standards of the environment, pasteurization and			
		the control of the chilling temperatures are of utmost importance to			

	avoid any potential contamination and growth of pathogenic and			
	spoilage microorganisms"			
	"Hygienic production, harvesting and storage techniques have become	Obligatory standards ->	Standards -> Hygiene	Berge & Baars
	obligatory standards for many products, including those intended for	Hygiene	management	(2020)
	possible raw consumption such as meat, eggs, fruits, vegetables and			
	nuts."			
	"This work demonstrates that global produce safety standards, with a	Safety standards ->	Standards -> Hygiene	Sobolik et al.
	particular emphasis on handwashing, effectively control norovirus	Importance of hand	management	(2021)
	contamination and mitigate risks to consumers." "Findings from our	hygiene		
	study demonstrate the primary importance of hand hygiene in			
	preventing focal contamination with norovirus in important harvesting			
	and packing agricultural settings."			
	"Ice cream is a complex food matrix, and a comprehensive approach to	Standards of safety ->	Standards -> Hygiene	Nalbone et al.
	the whole production system is required to ensure high standards of	Good hygiene practices	management	(2022)
	quality and safety." "Appropriate training of the workforce in good			
	hygiene and manufacturing practices is required, as well as ongoing			
	maintenance of the plant and equipment, which should be easily cleaned			
	and sanitized."			
	"The legislation of the state of Minas Gerais is what determines the	Legally defined standards	Standards -> Hygiene	Firmo et al. (2023
	microbiological and physical-chemical parameters and standards of this	-> Good hygiene of	management	
	cheese" "Therefore, in general, in relation to the analysis of coliforms,	facilities and equipment		
	although the average results for non-conformity were small (Table 2),			
	there was no trend for improvement in the AMC quality over the 11 years			
	of study, which could be achieved by expanding the adoption of good			
	agricultural and handling practices, such as care with animal and handler			
	health, water quality, hygiene of facilities and equipment, amongst			
	others."			
Monitoring	"Furthermore, standards are an important tool to trigger the maturation	Standards -> Priority on	Standards -> Continuous	Jacxsens et al.
	of the systems as companies that were lacking any pressure to comply	monitoring	monitoring	(2017)
	to standards operated at a very basic level - with only few activities			
	implemented." "This quantitative exposure ranking demonstrates that			
	also niche products such as basil can have an potential impact on public			

health equal or higher than lettuce, resulting in a priority in monitoring			
and surveillance"			
"It is crucial to adhere to the established standards in international table	Established standards ->	Standards -> Improve	Sab et al. (2024)
olive processing norms and respect the defined limits, especially	Strict microbiological	microbiological analysis	
concerning oxidized black olives." "In summary, this study provides a	control		
snapshot of the quality of table olives available in the outlets surveyed			
and underscores the importance of strict microbiological control, quality,			
and appropriate production practices in the table olive industry in			
Algeria."			
"Extensive review recapitulates overall food-pathogen testing research	Legislation defined	Standards -> Continuous	Vallinayagam et al.
market trends, as well as commercialization of biosensors for the food	standards -> Microbial	monitoring	(2022)
safety industry as legislation creates novel standards for microbial	monitoring		
monitoring."			
"It is also important to consider that during the coronavirus (SARS-CoV-	New microbiological	Standards -> Improve	Da Silva et al.
2) pandemic, new legislation on microbiological standards for food came	standards -> Challenge for	microbiological analysis	(2023)
into force in Brazil, which is of importance to all segments of the food	microbiological analysis		
and food service industry. This update of the sanitary legislation has			
increased the challenge and responsibility of those involved in the food			
production chain, including microbiological analysis laboratories, in			
proving the safety of food, as well as the adequacy of production			
processes."			
"As a result, food authorities are closely monitoring the food industry to	Required standards of	Standards -> Continuous	Kharbach et al.
ensure that products meet the required standards of quality. " "The scope	quality -> Monitoring food	monitoring	(2023)
of the proposed paragraph is to discuss the application and advantages	quality		
of hyperspectral and multispectral imaging combined with chemometric			
tools in detecting food adulteration, assessing food composition,			
monitoring food quality, and classifying different food products."			
"Commercially produced complementary foods (CPCF) were investigated	Accordance to standards	Standards -> Continuous	Mario et al. (2024)
and computed in accordance with the standards." "Thus, regular	-> Regular monitoring	monitoring	
monitoring of the raw material and processing trends and the inclusion			
of animal sources in the raw material are suggested for having well-			
enriched complementary foods"			

	Periodic monitoring of produce at various levels of production and sale	Standards -> Periodic	Standards -> Continuous	Saksena et al.
	is required to achieve satisfactory levels of microbial load as specified by	monitoring	monitoring	(2019)
	Food Safety and Standards Authority of India (FSSAI).			
	"This study recommends conducting regular assessments of cottage	Quality control standards	Standards -> Improve	Bahuguna et al.
	industry products, especially in cases where quality control standards are	-> more samples	microbiological analysis	(2023)
	less stringent than those in large-scale doenjang industries, to ensure			
	product safety. Also, it is advisable to carry out these analyses in the very			
	large sample size to establish a strong concluding remark."			
Operation	"Therefore, if pollen is intended for human consumption, appropriate	Standards -> Hygienic	Standards -> Adapt	Fernandez et al.
	hygiene standards must be applied to all bee pollen production	working	operations	(2023)
	operations."			
	"They establish export protocols and guidelines, including ideal	Quality standards ->	Standards -> Ease of	Du Plessis et al.
	temperature ranges for each perishable product, and ensure exporters	Optimize operations	operation	(2023)
	adhere to quality standards." "Utilising this knowledge, stakeholders can			
	optimise operations and formulate guidelines tailored to high-risk			
	seasons for fruit handling and transportation."			
	"This work describes μ MET, a novel microfluidic device for precise	Microbiological safety	Standards -> Ease of	Wu et al. (2024)
	microbial enumeration tests (MET), essential in pharmaceutical,	standards -> Streamlining	operation	
	cosmetic, and food industries for ensuring microbiological safety	operations		
	standards." "Notably, bright-field μMET eliminates the need for			
	fluorescent staining, streamlining operations with deep-learning			
	algorithms for bacterial counts."			
Verification	"Extensive review recapitulates overall food-pathogen testing research	Legislation defined	Standards -> Verification	Vallinayagam et al
	market trends, as well as commercialization of biosensors for the food	standards -> Verification	of strategies	(2022)
	safety industry as legislation creates novel standards for microbial			
	monitoring." "The preface of biosensors has assisted food industries for			
	monitoring and verification of raw materials, food processing, and			
	composition of the food and assessment of product freshness."			
	"It is also important to consider that during the coronavirus (SARS-CoV-	New microbiological	Standards -> Verification	Da Silva et al.
	2) pandemic, new legislation on microbiological standards for food came	standards -> Process	of strategies	(2023)
	into force in Brazil, which is of importance to all segments of the food	verification		
	and food service industry." "The application of the design thinking			

		method and the use of the online platform establish an appropriate			
		environment for a collective sampling solution for process verification."			
	External food	"Food manufacturers who hold GFSI scheme certification can	Standard certification ->	Standard certification ->	Smith (2019)
	safety	demonstrate their compliance with food safety and quality standards	quality audits	Additional audits	
	performance	more easily and thus protect and improve the reputation and income of			
		their business globally." "Many external food safety and quality audits			
		are now conducted by, or on behalf of, one of the four main Global Food			
		Safety Initiative (GFSI) approved food safety schemes ,these being"			
Official	Monitoring	"Overall, the majority of the FBOs believed that application of an FSMS	Official controls ->	Official controls ->	Ceballos et al
controls &		helps to overcome official controls, to produce healthy foods, to better	Microbiological analysis	Improve microbiological	(2020)
communication		manage the production process, and for staff training;" "The cost of	needed	analysis	
		FSMS(mainly due to microbiological analysis) and the time it takes were			
		the main reasons for FBO resistance to its application."			
	External food	"The main reported purpose of categorising abattoirs is to adapt the	Different countries of	Different countries of	Salines et al.
	safety	frequency of official controls. Major differences in the described	control -> More audits	control -> Additional	(2023)
	performance	categorisation systems were found between countries, particularly in		audits	
		their complexity and the criteria used. The number of included criteria			
		ranged from 1 to 10, the main ones being the outcomes of the CA's official			
		audits"			
Food	Preventive	"European food legislation has established microbiological criteria to	Food legislation criteria ->	Food legislation	Bianchi et al.
legislation	measures	ensure consumer protection. Salmonella is listed under both process	Hygiene	requirement -> Hygiene	(2023)
		hygiene criteria and food safety criteria."		management	
	Monitoring	"Because of these well-established food safety risks, food legislation	Food legislation	Food legislation	Walker et al.
		such as that in Europe stipulates that BMS production areas are	requirement -> Monitoring	requirement ->	(2018)
		monitored for faecal contamination and classified accordingly."		Continuous monitoring	