Can nociception monitors be used to titrate remifentanil with a stable low noxious stimulation response index (NSRI)?

Nele Van Heck
00906995
Promotor 1: Dr. Rik Carette
Promotor 2: Dr. Jan Hendrickx

Masterproef master in de specialistische geneeskunde

Academiejaar: 2021-2022
Can nociception monitors be used to titrate remifentanil with a stable low noxious stimulation response index (NSRI)?

Nele Van Heck, M.D.¹,², Rik Carette, M.D.¹, Jan F.A. Hendrickx, M.D., PhD ¹,²,³ Andre De Wolf, M.D.⁴

¹ Department of Anesthesiology, OLV Hospital, Aalst, Belgium
² Department of Anesthesia, Ghent University Hospital, Gent, Belgium
³ Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium; Department of Anesthesiology, UZLeuven, Leuven, Belgium & Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
⁴ Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

Corresponding author: Nele Van Heck, Department of Anesthesia, Ghent University Hospital, Gent, Belgium, Corneel Heymanslaan 10, 9000, Ghent, Belgium. E-mail nele.vanheck@ugent.be, 0474738292

Prior Presentations: None

Permissions: Wolters Kluwer Permissions Team gave permission for reprinting figures 3 and 4

Acknowledgments: The authors thank Erik Weber Jensen (Quantium Medical, Mataró, Spain) for calculating the prediction probabilities

Funding Statement: This study was conducted with Departmental funding only. No external funding was involved.
Conflicts of Interest: Jan Hendrickx has received lecture support, travel reimbursements, equipment loans, consulting fees and/or meeting organizational support from a number of companies involved with inhaled agent delivery (alphabetically): AbbVie, Acertys, Air Liquide, Allied Healthcare, Armstrong Medical, Baxter, Dräger, GE, Hospithera, Heinen und Löwenstein, Intersurgical, Maquet, MDMS, MEDEC, Micropore, Molecular, NWS, Philips, Quantum Medical. Rik Carette has received lecture support and/or travel fees from Baxter and Dräger. The other authors declare that they have no conflict of interest.
Abstract

Purpose: Opioids blunt autonomic nervous system (ANS) responses to noxious stimuli. Nociception monitors analyze the same ANS responses and thus might prove useful to guide opioid dosing. However, concomitantly administered hypnotics also blunt ANS responses and may thus jeopardize the usefulness of nociception monitors to guide intra-operative opioid dosing. We therefore studied the \(P_K \) (prediction probability) of 3 nociception monitors (NOL index, qNOX and SPI) for the prevailing opioid concentration while maintaining the NSRI (noxious stimulus response index) at a low constant value with a range of opioids and inhaled agent combinations.

Methods: In 24 consenting ASA I-II patients undergoing robotic assisted radical prostatectomy, anesthesia was maintained with desflurane in \(\text{O}_2/\text{air} \) and remifentanil (target controlled infusion). During the dissection phase, the remifentanil effect site concentration (\(C_e \)) in each patient was maintained at 1, 3, or 5 ng/mL for 20 min while the end-expired desflurane concentration (\(F_{\text{ET}} \)) was adjusted to keep the noxious stimulus response index (NSRI) at 5; the sequence in which each patient received each of the three remifentanil \(C_e \) was randomized. After stabilization, during each 20 min study period, the following data were collected: NSRI, NOL Index, SPI, qNOX, and \(F_{\text{ETdes}} \). For each parameter, the prediction probability (\(P_K \)) for \(C_e \) remifentanil was calculated.

Results: All patients remained hemodynamically stable. Surgery was finished before the last data collection period in 5 patients with a remifentanil \(C_e = 5 \text{ ng/mL} \), and in 1 patient with a remifentanil \(C_e = 1 \text{ ng/mL} \). All other data have been included in the data analysis. The prediction probability (\(P_K \)) calculated for NOL Index, qNOX and SPI for \(C_e \) remifentanil was 0.519, 0.470, and 0.477, respectively.

Conclusion: Nociception monitoring becomes useless to titrate opioids when the concomitantly administered hypnotic is adjusted to maintain a low NSRI, presumably
because suppression of movement to laryngoscopy also ensures suppression of the sympathetic nervous system response to the noxious stimulus present during intra-abdominal resection of the prostate. Both the hypnotic/opioid ratio and stimulus intensity of the stimulus/response pair need to be considered when attempting to use nociception to guide opioid administration.

Keywords: Nociception monitors, NOL index, NSRI, drug interactions, pharmacokinetics, pharmacodynamics
Introduction

General anesthesia is most often attained by the administration of a hypnotic and a noxious stimulus response suppressing drug. If these two drugs could selectively attain these clinical endpoints, it might become possible to monitor their individual desired effects and titrate the drugs accordingly: the hypnotic monitor could be used to titrate the hypnotic drug, and the nociception monitor could be used to titrate the noxious stimulus response suppressing drug. Unfortunately, there is as of yet no drug with such a one-to-one receptor-clinical effect relationship. In real life, a “hypnotic” (most often a GABA receptor acting agent or an inhaled agent with a still enigmatic mode of action) is combined with an opioid (mu receptor agonist). Rather than having separate actions, both clinical endpoints (unconsciousness and ANS control) are mediated by the combination of both drugs. Still, attempts are being made to distill out the effect of these drugs on each of the different neural systems that mediate the individual clinical endpoints, with EEG derived parameters focusing on hypnotic drug titration, and nociception monitors focusing on opioid titration.

But not surprisingly, these monitors so far have not succeeded to separately monitor hypnosis or suppression of noxious stimuli. The BIS value that is likely to ensure hypnosis is influenced by the amount of opioid present [1], and the value of a noxious stimulus suppression parameter (almost invariably based on some measure of autonomic nervous system activity) is influenced by the amount of hypnotic present [2]. The NOL index (Nociception Level Index; Medasense Biometrics Ltd, Ramat Gan, Israel) on the other hand is a nociception monitor that measures several autonomic responses in the individual patients which are then converted into an index [3]. Clinical validation of the NOL index is ongoing [4,5,6]. We predict that the NOL index and other monitors like qNOX (Quantium Medical, Mataró, Spain) [7] and Surgical Pleth Index (SPI; Anandic Medical Systems, Feuerthalen,
Switzerland) [8] are not useful to titrate opioids if the relative contribution of hypnotics on the hypnotic/opioid mix is high: if the opioid concentration is low, but the NSRI is kept at a stable low value by increasing the hypnotic component of the anesthetic, then the nociceptive monitors do not contribute much to the titration of the opioid. Different combinations of hypnotics and opioids were therefore titrated to the same NSRI, a population based calculated index of how likely it is that a patient does not display movement after laryngoscopy [9]. Movement is a response that is distinctively different from the ANS response to a noxious stimulus. We hypothesize that when the NSRI is maintained at a low constant value with a range of combinations of opioids and inhaled agent, the NOL index, qNOX and SPI are not predictive of the opioid concentration present.

Methods

After obtaining IRB approval (OLV hospital, Aalst, Belgium, study number 2019/016, B126201938844, approved 14/11/2019) and individual patient consent, 24 patients ASA I-II with regular sinus rhythm scheduled to undergo robotic assisted radical prostatectomy were enrolled.

In addition to routine monitoring, several nociception monitors were used. A finger probe was applied to derive the NOL index. A qCON/qNOX electrode was applied on the forehead. The SPI was obtained from a photoplethysmographic pulse oximetry finger sensor. The Noxious Stimulus Response Index (NSRI) was calculated by the SmartPilot View software and displayed on the Zeus anesthesia workstation (Dräger, Lübeck, Germany).

After preoxygenation (8 L/min100% O₂ by face mask), anesthesia was induced with propofol (2-3 mg/kg IV) and remifentanil (target controlled infusion (TCI), 3 ng/mL effect site concentration (C₀), Minto model). After tracheal intubation (facilitated with rocuronium, 1 mg/kg IV), anesthesia was maintained with desflurane in 40% O₂/air and remifentanil using
a Zeus anesthesia workstation. Prior to the start of the study, desflurane and remifentanil dosing were left at the discretion of the attending anesthesiologist. Ventilation was adjusted to maintain the end-expired CO\(_2\) fraction (F\(_{ET\text{CO}_2}\)) between 4.5 and 5%, and PEEP was titrated to individual patient’s needs. Additional rocuronium was administered to keep the train-of-four count at zero.

The study started after the patient had been installed in the Trendelenburg position with a capnopneumoperitoneum applied and surgical conditions were stable. During the study period, each patient received a remifentanil infusion with a C\(_e\) of 1, 3, and 5 ng/mL for 20 min, the sequence of which was randomized by closed envelope. Prior to the start of data collection during each 20 min time interval, the end-expired desflurane concentration (F\(_{ET\text{des}}\)) was adjusted to keep the NSRI stable at 5. During each period the following data were collected: NSRI, NOL Index, SPI, qNOX, and F\(_{ET\text{des}}\). If atropine, ephedrine or phenylephrine had to be administered (left at the discretion of the attending anesthesiologist), data collection was stopped.

Data were downloaded every 5 sec into a PC and converted into Excel files using RUGloop® (Demed, Temse, Belgium). For each parameter, data were organized per 20 min interval, and the prediction probability (P\(_K\)) calculated for the NOL Index, qNOX and SPI for C\(_e\) remifentanil [10]. A P\(_K\) value of 1.0 means an exact prediction on every occasion, while a P\(_K\) of 0.5 is no better than a 50:50 chance of being correct.

Results

Patient age, height, and weight were 63 ± 7 years, 178 ± 6 cm, 87 ± 12 kg (mean ± standard deviation), respectively. None of the patients received atropine, ephedrine or phenylephrine. Surgery was finished before the last data collection period in 5 patients with a remifentanil C\(_e\) = 5 ng/mL and in 1 patient with a remifentanil C\(_e\) = 1 ng/mL. All other data
have been included in the data analysis. Data collection was only started after stabilization of $F_{ET}des$, C_e Remi and NSRI, which typically took several minutes.

Raw data ($F_{ET}des$, NOL index, qNOX, and SPI) are presented in Figure 1. The prediction probability (P_K) calculated for NOL Index, qNOX and SPI for C_e remifentanil were 0.519, 0.470, and 0.477, respectively; by design there was an inverse relationship between C_e fentanyl and $F_{ET}des$.

Discussion

The results confirmed our hypothesis: when the NSRI is maintained at a low constant value with a range of combinations of opioids and inhaled agent, the NOL index, qNOX and SPI are not predictive of the opioid concentration present.

These results can be explained by considering the hypnotic and opioid effect site concentration pairs that ensure the same probability of absence of sympathetic response to stimuli of varying intensity, so called isoboles, an example of which is given for sevoflurane and remifentanil in (Figure 3) [11]. Katoh determined the isoboles describing the 50 and 90 % probabilities (full and dashed black lines) of no sympathetic response to a noxious stimulus with different combinations of sevoflurane and fentanyl. It can be seen in Figure 3 that a wide range of hypnotic-opioid pairs can result in the same degree of suppression of the sympathetic response; the combination of 3 % F_{ET} sevoflurane and 1 ng/mL C_e fentanyl and the combination of \sim0.8% F_{ET} sevoflurane and 5 ng/mL C_e fentanyl are points on the same isobole and result in an equal 90% probability of sympathetic response suppression. Because nociception monitors measure the degree of the sympathetic nervous system suppression, it can be expected that they display the same response with either 3% F_{ET} sevoflurane and 1 ng/mL C_e fentanyl or \sim 0.8% sevoflurane F_{ET} and 1 ng/mL C_e fentanyl.
Based on those findings, in our current study, nociception monitors cannot be expected to differentiate the Cₚ of remifentanil of the different desflurane/remifentanil drug. Nociception monitors can therefore only be expected to be useful to titrate opioids if the hypnotic concentration is sufficiently low to allow “a window” for the nociception monitor to detect and measure autonomic system responses, which becomes less and less possible as the concentration of the hypnotic in the hypnotic/opioid mixture increases. But in the 3 and 5 ng/mL Cₚ remifentanil groups in the current study the FETdes was well below 1 age adjusted MAC for the study population, a hypnotic concentration some clinicians might not consider to be high enough to ensure unconsciousness. However, the Katoh drug interaction studies should be very reassuring: at 0.5 MAC and Cₚ remifentanil of 5 ng/mL the incidence of intraoperative awareness is exceedingly low. Determining for which hypnotic-opioids ratios nociception monitors might prove useful to titrate the opioids requires further work. Future studies could reveal a possible (or absent) relationship between a predicted NSRI and a measured value of nociception. Our work solves one piece of this puzzle: at an NSRI of 5, all desflurane/remifentanil drug pairs that were used in this study suppress sympathetic response to the extent that nociception monitoring becomes useless for opioid titration. This was not entirely expected because the NSRI is a parameter based on movement during laryngoscopy [12], not on sympathetic nervous responses. The current study results therefore suggests that over the range of hypnotic/opioid drug pairs used to maintain NSRI at 5 with the stimulus intensity provided by intra-abdominal dissection during robotic assisted radical prostatectomy sympathetic response suppression is pronounced.

The importance of considering the hypnotic/opioid ratio of a mixture when interpreting monitoring parameters has also been noticed with BIS monitoring (Fig. 4) [1]. Remifentanil has a mild additive effect on the hypnotic effect of sevoflurane (and therefore also the mild effect on BIS), but there is a synergistic or potentiating effect on the effect of
sevoflurane for movement and ANS response [1]. Therefore targeting a BIS less than 60 may result in an unnecessarily deep anesthetic state during "opioid-heavy" sevoflurane-remifentanil anesthetics. The opposite is true also: the BIS can be 65 or higher yet suppression of movement and autonomic nervous system to noxious stimulation may be adequate in the presence of 1% F_{ET} sevoflurane and 5 ng/mL C_{e} remifentanil.

We conclude that nociception monitoring is useless to titrate opioids when the concomitantly administered hypnotic is adjusted to maintain a low NSRI, presumably because suppression of movement to laryngoscopy also ensures suppression of the sympathetic nervous system response to the noxious stimulus present during intrabdominal resection of the prostate. Both the hypnotic/opioid ratio and stimulus intensity of the stimulus/response pair need to be considered when attempting to use nociception to guide opioid administration.

https://doi.org/10.1007/s12630-019-01372-1

https://doi.org/10.1111/aas.12359

https://doi.org/10.1177/0300060518796749

https://doi.org/10.1097/ALN.0b013e3181d40368

https://doi.org/10.1213/ANE.0b013e3181fb919e

doi: 10.1097/00000542-199902000-00012

https://doi.org/10.1093/bja/aew060
Statements and Declarations

Funding: This study was conducted with Departmental funding only. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing interests: Jan Hendrickx has received lecture support, travel reimbursements, equipment loans, consulting fees and/or meeting organizational support from a number of companies involved with inhaled agent delivery (alphabetically): AbbVie, Acertys, Air Liquide, Allied Healthcare, Armstrong Medical, Baxter, Dräger, GE, Hospithera, Heinen und Löwenstein, Intersurgical, Maquet, MDMS, MEDEC, Micropore, Molecular, NWS, Philips, Quantum Medical. Rik Carette has received lecture support and/or travel fees from Baxter and Draeger. The other authors declare that they have no conflict of interest.

Author contributions: All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Nele Van Heck and Rik Carette. The first draft of the manuscript was written by Nele Van Heck, Rik Carette, Jan Hendrickx and Andre De Wolf, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Ethics approval: This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the OLV hospital, Aalst, Belgium (study number 2019/016, B126201938844, approved 14/11/2019).

Consent to participate: written informed consent was obtained from all patient

Consent to publish: written informed consent obtained from all patient also included consent to publish
Figure legends

Fig. 1 Nociception parameters and end-expired desflurane concentration
Course of end-expired desflurane concentration (%), NOL index, qNOX, and SPI (top to bottom) over 20 min periods with three different effect site concentrations of remifentanil (1, 3, and 5 ng/mL from left to right)

Fig. 2 Prediction probabilities
SPI = Surgical Pleth Index; NOL index = Nociception Level index. See text for details.

Fig. 3 Increasing concentrations of fentanyl result in decreasing requirements of sevoflurane to achieve sympathetic response suppression after incision in 50 and 95% of patients (isoboles) [11].
See text for details. Reproduction permission obtained from Wolters Kluwer.

Fig. 4 Effect of the hypnotic/opioid ratio on the relationship between BIS and clinical sedation [1]
The isoboles that produce target BIS values of 40, 50, 60, and 70 are overlaid on isoboles for adequate clinical sedation (95% probability of achieving an Observer’s Assessment of Alertness/Sedation score 1) and adequate surgical analgesia (95% probability of no movement response or hemodynamic response to a 50mA tetanic electrical stimulation). See text for details. Reproduction permission obtained from Wolters Kluwer.
Fig. 2

- Pk = 0.100
- Pk = 0.519
- Pk = 0.470
- Pk = 0.477

End-expired desflurane concentration (%)

Remifentanil Ce(ng/mL)

NOL index

Remifentanil Ce(ng/mL)

qNOX

SPI

Remifentanil Ce(ng/mL)
Fig. 4
Can nociception monitors be used to titrate remifentanil with a stable low noxious stimulation response index (NSRI)?

Abstract:

Purpose: Opioids blunt autonomic nervous system (ANS) responses to noxious stimuli. Nociception monitors analyze the same ANS responses and thus might prove useful to guide opioid dosing. However, concomitantly administered hypnotics also blunt ANS responses and may thus jeopardize the usefulness of nociception monitors to guide intra-operative opioid dosing. We therefore studied the P/K (prediction probability) of 3 nociception monitors (NOL index, qNOX and SPI) for the prevailing opioid concentration while maintaining the NSRI (noxious stimulus response index) at a low constant value with a range of opioids and inhalated agent combinations.

Methods: In 24 consenting ASA I-II patients undergoing robotic assisted radical prostatectomy, anesthesia was maintained with desflurane in O 2 /air and remifentanil (target controlled infusion). During the dissection phase, the remifentanil effect site concentration (C e) in each patient was maintained at 1, 3, or 5 ng/ml for 20 min while the end-expired desflurane concentration (F ET) was adjusted to keep the noxious stimulus response index (NSRI) at 5; the sequence in which each patient received each of the three remifentanil C e was randomized. After stabilization, during each 20 min study period, the following data were collected: NSRI, NOL index, SPI, qNOX, and F ET data. For each parameter, the prediction probability (P/K) for C e remifentanil was calculated.

Results: All patients remained hemodynamically stable. Surgery was finished before the last data collection period in 5 patients with a remifentanil C e = 6 ng/ml, and in 1 patient with a remifentanil C e = 1 ng/ml. All other data have been included in the data analysis. The prediction probability (P/K) calculated for NSRI, NOL index, qNOX and SPI for C e remifentanil was 0.519, 0.470, and 0.477, respectively.

Conclusion: Nociception monitoring becomes useless to titrate opioids when the concomitantly administered hypnotic is adjusted to maintain a low NSRI, presumably because suppression of movement to laryngoscopy also ensures suppression of the sympathetic nervous system response to the noxious stimulus present during intra-abdominal resection of the prostate. Both the hypnotic/opioid ratio and stimulus intensity of the stimulus/response pair need to be considered when attempting to use nociception to guide opioid administration.

Suggested Reviewers:

- Pedro Gambus
 pigambus@gmail.com
 Expert in depth of anaesthesia and nociception monitoring, University of Barcelona

- Ross Kennedy
 ross.kennedy@cdhb.health.nz
 Expert in depth of anaesthesia monitoring, University of Otago, Christchurch
De reactie van ons autonoom zenuwstelsel op schadelijke stimuli tijdens chirurgie wordt verminderd door het gebruik van opiaten. Nociceptie monitors analyseren dezelfde reacties van het autonoom zenuwstelsel en kunnen bijgevolg nuttig zijn om opiaten te titreren. Tegelijkertijd verminderen hypnotica echter ook de autonome respons en kunnen dus de bruikbaarheid van nociceptie monitors om perioperatieve titratie van opiaten te leiden, in het gedrang brengen. Daarom bestudeerden we de P_K (prediction probability) van 3 nociceptie monitors (NOL index, qNOX en SPI) bij verschillende opiaten concentraties terwijl we de NSRI (noxious stimulus response index) op een lage waarde constant hielden.

We deden dit onderzoek bij 24 ASA I-II patiënten die een robotgeassisteerde prostatectomie ondergingen en gebruikten Desflurane als inhalatieanestheticum en remifentanil (target controlled infusion) als opiaat. Gedurende de dissectiefase werd de concentratie remifentanil (C_e) bij iedere patiënt gedurende 20 minuten op 1, 3 en 5 ng/ml gehouden, terwijl de end-expired desflurane concentration (F_{ET}) aangepast werd zodat de NSRI constant gehouden werd op 5. De volgorde waarin de patiënten elk van de drie concentraties remifentanil toegediend kregen, werd gerandomiseerd. Gedurende 20 minuten werden telkens volgende data verzameld: NSRI, NOL index, SPI, qNOX en F_{ET}des. Voor elk van deze werd de prediction probability (P_K) voor de desbetreffende C_e remifentanil berekend.

Alle patiënten bleven hemodynamisch stabiel. Bij 5 patiënten eindigde de bruikbare chirurgische tijd vooraleer data konden verzameld worden met remifentanil $C_e = 5$ ng/mL, bij 1 patiënt konden de data bij remifentanil $C_e = 1$ ng/mL niet meer verzameld worden. Alle andere data zijn geïncludeerd in de data-analyse. De prediction probability (P_K) werd berekend voor NOL Index, qNOX en SPI voor de effect site concentratie van remifentanil en was 0.519, 0.470, en 0.477. Nociceptie monitors worden dus onbruikbaar om opiaten te titreren bij een constante NSRI van 5, vermoedelijk door de uitgesproken onderdrukking van de autonome respons.