
Link-Traversal-based Query Processing
Discovering Digital Art Collections using

Academic year 2022-2023

Master of Science in Information Engineering Technology

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Bryan-Elliott Tam, Ir. Wout Slabbinck
Supervisors: Prof. dr. Pieter Colpaert, Prof. dr. ir. Ruben Verborgh

Student number: 01706456
Martijn Bogaert

Acknowledgements

There aremany people I would like to thank for their valuable advice and support over the pastmonths. During thosemonths,

I have had the privilege of immersing myself in what has been an entirely new world for me, at the same time collaborating

with very talented people. However, the past months have also been challenging. Therefore, a heartfelt thank you to those

who have helped me navigate through them, is more than fitting.

First and foremost, I would like to express my sincere gratitude to Bryan-Elliott Tam. Bryan was my counselor throughout

the second and third semesters of the academic year, going above and beyond to navigate me through the realm of link

traversal. I distinctly recall one of our initial meetings. Bryan had prepared an entire PowerPoint presentation to help me

get started with the new approach for my thesis, which we had decided on just the week before. I was able to dive right

in. However, what I am most thankful to Bryan for, are his numerous reassuring and encouraging words during the more

challenging moments. Especially during the last month, it brought me a great deal of comfort. So, Bryan, from the bottom

of my heart: thank you.

Omdat ik met de volgendemensen in het dagelijkse leven steeds in mijn moedertaal communiceer, schakel ik even over naar

het Nederlands. Dat doe ik in eerste instantie om Brecht Van de Vyvere te bedanken. Brecht was mijn begeleider tijdens het

eerste semester van het academiejaar en heeft me mijn eerste stappen in de wereld van Linked Data helpen zetten. Dat

deed hij altijd met veel zorg en de grootste glimlach. Dankjewel, Brecht.

Iemand die ik zeker niet mag en kan vergeten te bedanken, is Olivier Van D’huynslager. Als digitaal hoofd van CoGent heeft

Olivier me bijna een volledig jaar lang mee begeleid. Op bijna elke meeting die ik met mijn begeleider hield, was Olivier

aanwezig. Hij nam die extra vergaderingen er met de glimlach bij. Bedankt voor al je ideeën en goede raad, Olivier.

Ook Pieter Colpaert wil ik bedanken. Hij was anderhalf jaar geleden degene dieme tijdens eenwandeling in de Blaarmeersen

kennis liet maken met de wereld van Linked Data. Dat deed hij met veel overgave en passie. Ik hoefde dan ook niet lang te

twijfelen welk masterproefonderwerp ik zou kiezen. Bedankt, Pieter.

Dan zijn we aangekomen bij mijn familie. Ik ga het mezelf niet te moeilijk maken en meteen met mijn ouders beginnen.

Zij zullen namelijk ook gemerkt hebben dat dit laatste jaar voor mij veruit de meest uitdagende van de voorbije zes was.

Gelukkig heb ik de beste ouders die iemand zich kan wensen, en stonden zij trouw op de eerste rij om me er met aanmoedi-

gende woorden en veel liefde doorheen te loodsen. Mama en papa, ik zal het jullie nog wel luidop zeggen, maar hier staat

het alvast zwart op wit: dankjewel.

Ook mijn broer en zus wil ik bijzonder bedanken. We zien elkaar misschien niet zoveel tijdens het jaar, maar dat maakt de

kortstondige succeswensen - thuis of via chat - alleen maar meer deugddoend. Ik weet alvast wat me te doen staat als jullie

zich straks achter jullie thesis moeten scharen. Dankjewel, Lore en Arne!

Wie hier ook zeker niet mogen ontbreken, zijn mijn grootouders. Niet alleen tijdens het schrijven van mijn masterproef,

maar jarenlang, tijdens elke examenperiode, mocht ik bij hen - gewoon het hoekje om - in alle rust komen werken. Elke dag

opnieuw werd ik beladen met lekker eten, tussendoortjes, aanmoedigingen en vooral veel liefde. Ik heb veel onvergetelijke

momenten meegemaakt tijdens mijn studententijd, maar ik lieg niet als ik zeg dat ik de dagen bij hen nog het meest zal

missen. Lieve moemoe en grootva, ik ben jullie eeuwig dankbaar.

ii

En dan is er nog iemand die ongetwijfeld niet kan wachten haar naam te horen. Mijn allerliefste Eva, dankjewel voor al die

weken, maanden en jaren onophoudelijke steun. Ik weet niet hoe je het doet, maar zelfs op de moeilijkste momenten slaag

je er telkens weer in mij op te rapen enmet nieuwemoed vooruit te doen kijken. Ik kan niet wachten ommet jou de volgende

fase van mijn - ons - leven te beginnen. Ik zie je graag.

Ten slotte wil ik ook alle mensen die ik nog niet vermeld heb maar die me toch al die tijd gesteund hebben, heel oprecht

bedanken. Ik denk daarbij aan familie, vrienden, medestudenten ... Die steun hoeft zelfs niet altijd uitgesproken te zijn. Een

schouderklopje of een aanmoedigende glimlach kan al een wereld van verschil maken. Het zijn de kleine gebaren die het ’m

doen. Dankjewel allemaal!

iii

Notes related to the master’s thesis

This master’s dissertation is part of an exam. Any comments formulated by the assessment committee during the oral

presentation of the master’s dissertation are not included in this text.

AI usage

Appendix A outlines in which ways AI was used throughout the thesis development.

iv

Abstract

English

This master’s thesis explores the innovative approach of discovering digital art collections using Link-Traversal-based Query-

ing, focusing on the Collections of Ghent (CoGhent) data. CoGhent, a former partnership that digitized collections from cul-

tural institutions, published the data as Linked Data in RDF format. By employing link traversal, this data can be explored in

new ways, offering fresh insights into art collections.

The Comunica platform is central to this process, allowing for link traversal of RDF datasets and enabling the extraction of

valuable data. In the CoGhent data, for instance, each entity referred to as a Human-Made Object, such as an art piece, links

to a IIIF Manifest. This manifest is a JSON-LD document that specifies artwork data and may provide instructions for digital

display. Particularly, it holds a link to a picture of the piece, offering a visual representation of the artwork.

However, some resource links in the CoGhent data, notably Getty Vocabularies links, do not return an RDF compliant docu-

ment, presenting a challenge for the Comunica link traversal engine. Workarounds are needed to reach the RDF compliant

counterparts of these non-RDF compliant documents.

To make the discovery of CoGent collections accessible and assist art enthusiasts or professionals without a technical back-

ground in constructing SPARQL queries for a link traversal engine, two web application ideas are proposed. The first allows

users to select predetermined properties of artworks, accompanied by a question indicating the purpose of the property.

Each property corresponds to a sequence of predicates, which the application can ultimately use to generate a query. The

second idea enables users to start from a resource of their choice, build a tree of predicates and objects, and eventually

select objects of interest for query construction.

Ultimately, the discovered data can be incorporated in a IIIF Manifest, allowing display using a IIIF Viewer. This approach

enhances the accessibility of art collections and provides a novel way to explore the rich cultural heritage in the CoGhent

data.

v

Nederlands

Deze masterproef onderzoekt hoe digitale kunstcollecties met behulp van Link-Traversal-based Querying verkend kunnen

worden. De focus ligt daarbij op de data die gepubliceerd werd door de Collectie van de Gentenaar (CoGent). Dit gewezen

samenwerkingsverband digitaliseerde collecties van culturele instellingen en publiceerde de gegevens als Linked Data in

RDF-formaat. Door link traversal te gebruiken, kunnen deze gegevens op nieuwe manieren worden verkend, wat leidt tot

nieuwe inzichten in kunstcollecties.

Het Comunica-platform speelt een centrale rol in dit proces. Het maakt link traversal van RDF-datasets mogelijk, waardoor

waardevolle gegevens kunnen worden verkregen. In de CoGent-data, bijvoorbeeld, verwijst elke entiteit die wordt aange-

duid als een Mensgemaakt Object, zoals een kunstwerk, naar een IIIF Manifest. Dit manifest is een JSON-LD-document dat

kunstwerkgegevens specificeert en mogelijk instructies geeft voor digitale weergave. In het bijzonder bevat het een link

naar een afbeelding van het stuk.

Echter, sommige resource-links in de CoGent-data, met name Getty Vocabularies-links, geven geen RDF-conform document

terug. Hier kan Comunica nietmee aan de slag. Er zijn dus oplossingen nodig om de RDF-conforme tegenhangers te bereiken.

Om de ontdekking van CoGent-collecties toegankelijk te maken en kunstliefhebbers of professionals zonder technische

achtergrond te helpen bij het opstellen van SPARQL-queries voor een link traversal engine, worden twee ideeën voor webap-

plicaties voorgesteld. Het eerste stelt gebruikers in staat om vooraf bepaalde eigenschappen van kunstwerken te selecteren,

vergezeld van een vraag die het doel van de eigenschap aangeeft. Elke eigenschap komt overeen met een aaneenschakel-

ing van predicaten, waarmee de applicatie uiteindelijk een query kan genereren. Het tweede idee stelt gebruikers in staat

om vanuit een resource naar keuze, een boom van predicates en objecten op te bouwen, en finaal objecten van belang te

selecteren voor queryconstructie.

Uiteindelijk kunnen de ontdekte gegevens worden toegewezen aan een IIIF Manifest, waarna een IIIF Viewer ze kan visualis-

eren. Deze benadering vergroot de toegankelijkheid van kunstcollecties en biedt een nieuwe manier om het rijke culturele

erfgoed in de CoGent-data te verkennen.

vi

Discovering Digital Art Collections using
Link-Traversal–based Query Processing

Martijn Bogaert
Ghent University
Ghent, Belgium

martijn.bogaert@ugent.be

Abstract—This master’s thesis explores the exploration of
digital art collections through Link-Traversal-based Querying,
with a focus on the Collections of Ghent. The Comunica platform
plays a key role in harnessing valuable data in RDF format,
although some links pose challenges with RDF compatibility. Two
web application ideas are proposed to assist both non-technical
users and professionals in exploring the CoGhent collection.
The ultimate goal is to associate discovered data with IIIF
Manifests for visualization, thus increasing the accessibility of
art collections.

Keywords—Linked Data, Link Traversal, LTQP, CoGhent, IIIF

INTRODUCTION

Digital art collections embody human creativity and cultural
development. Through technological advancements, these
collections have been digitized, rendering them globally acces-
sible and open to profound exploration. However, navigating
and interrogating this data presents challenges, particularly
for non-technical professionals and art enthusiasts. These
limitations impede their ability to gain insights and become
fully immersed in the realm of digital art.

The cultural data of the Collections of Ghent (CoGhent)
are published following the principles of Linked Data, firmly
anchoring them within the semantic web. Yet, to fully harness
the potential of these extensive data, Link-Traversal–based
Query Processing (LTQP) is required. LTQP, in essence,
empowers users to transcend the boundaries of the dataset,
unveiling layers of knowledge and connections that would
otherwise remain concealed.

The research dissects the exploration of CoGhent data into
three fundamental components: formulating queries, executing
queries using link traversal — the focal point of the study —
and processing query results, notably their visualization and
storage. This dissected approach lays the groundwork for a
more profound exploration of the CoGhent data and potentially
digital art collections at large.

I. RELATED WORK

A. Collections of Ghent

This research primarily focuses on the data of the Col-
lections of Ghent (CoGhent), or Collectie van de Gentenaar
(CoGent) in Dutch. CoGhent is a collaboration between the
city of Ghent, Design Museum Gent, Digipolis, and other
local organizations. Together, their objective is to gather

and digitize the city’s cultural heritage into a centralized
collection, encouraging the residents of Ghent to contribute
their own heritage stories and objects. Although the CoGhent
partnership concluded in June 2023, the infrastructure remains
intact. [1] [2]

The data from the participating cultural institutions, namely
Design Museum Gent (DMG), Huis van Alijn (HVA), Indus-
triemuseum, STAM, and Archief Gent, are managed using
Linked Data Event Streams (LDES). LDESs are collections
of immutable objects represented by RDF triples. The im-
mutability of these objects implies that once an object is added,
it remains unchanged. New versions of objects are introduced
instead of updating existing ones. [3] [4]

The LDESs of CoGhent, in particular, encompass Human-
Made Objects, or Mensgemaakte Objecten in Dutch. These
objects represent both tangible and intangible items created
or influenced by humans, ranging from artworks and books
to traditions and crafts. The Open Standaarden voor Linkende
Organisaties (OSLO) initiative plays a pivotal role in standard-
izing these Human-Made Objects. Furthermore, these objects
are fully aligned with international standards to ensure seman-
tic interoperability within the domain of cultural heritage. [5]
[6]

B. International Image Interoperability Framework

Each Human-Made Object within CoGhent’s collections
contains, alongside its descriptive data, a link to a IIIF
Manifest. These manifests are structured RDF resources that
aggregate specific information about an object, ranging from
details such as dimensions and notes to copyright informa-
tion. The International Image Interoperability Framework
(IIIF) defines, through its Presentation and Image APIs, the
guidelines for constructing these manifests. In the case of
CoGhent manifests, the structure is straightforward: each
manifest comprises a single sequence, which in turn contains a
single canvas, which subsequently includes a single annotation
with the image link and metadata. [7] [8] [3]

In addition to data storage, IIIF Manifests are particularly
advantageous for visualizing cultural data. Multiple IIIF
Viewers exist that facilitate this process. For a given manifest,
these viewers offer a standardized representation of the data
it contains. [9]

C. Link-Traversal-based Query Processing

The fact that the CoGhent collections are part of the
Linked Data web implies that they can potentially generate
far more knowledge than when querying the CoGhent data
in isolation. However, attempting to access this external data
with a single SPARQL query can only be accomplished if the
executing query engine can jump from resource to resource.
Link Traversal-based Query Processing (LTQP) makes this
practically feasible by dynamically following links between
documents. [10]

Nevertheless, without imposing constraints on the links to
be followed, LTQP becomes impractical. Therefore, O. Hartig
introduced three reachability criteria [11]:

• cAll follows all links without restriction.
• cNone follows no links at all.
• cMatch follows only links that are part of quads matching

a quad pattern in the query.
Thanks to its modularity and adaptability, the above-

mentioned capacities and others can be endowed to a Comu-
nica engine, thus making LTQP feasible in practice. [12] [13]

II. COGHENT DATA AND LINK TRAVERSAL

A. CoGent Data Sources

CoGhent provides a separate LDES for each participating
cultural institution. This can be useful to differentiate between
various collections at the beginning of the querying process.
In theory, the order in which the URIs of these LDESs are
provided as data sources to a Comunica link traversal engine
determines which collection will be queried first and ultimately
yield the initial results. However, in practice, the situation
differs. When a link traversal engine performs multiple HTTP
requests, it cannot be predetermined in which sequence the
corresponding HTTP responses will reach the engine. Put
differently, as the engine progresses in its link traversal
process, a higher degree of randomness can be observed.

This not only implies that the sequence in which LDESs
are specified is, in principle, of limited importance, but
also that the Human-Made Objects present within a specific
LDES may not necessarily be returned in the same order.
Alongside its numerous advantages, it is essential to be acutely
aware that LTQP also presents clear drawbacks. However,
given that the CoGhent collections are inherently LDESs, one
should never assume that the same query will yield identical
results at different instances. Indeed, LDESs are effectively
characterized by their significant variability.

B. Comunica Link Traversal Engine Configuration

Comunica already provides several modules and configura-
tions to facilitate LTQP in various ways. When constructing
a configuration for a link traversal engine, certain actors
must be considered initially. They are responsible for the
fundamental functionality of any link traversal engine. This
foundational configuration is presented in a distinct configu-
ration file, config-base.json, and should therefore certainly be

incorporated into the final configuration deemed most suitable
for executing LTQP on the CoGhent LDESs.

A pivotal decision that needs to be made for each con-
figuration, involves the selection of a link extractor. This
type of actor determines, for each incoming document, which
links should be added to the link queue and subsequently
visited. The most straightforward choices in this regard are the
All Extract Links Actor and the Quad Pattern Query Extract
Links Actor. In essence, these are implementations of the
respective cAll and cMatch reachability criteria. However, it
comes as no surprise that the All Extract Links Actor, without
additional constraints, is not practically feasible. After all, an
engine that simply follows every link could potentially traverse
links ad infinitum, ultimately leading to documents that do
not contain the sought-after query information. Conversely,
the Quad Pattern Query Extract Links Actor is a viable
option, particularly from the perspective of this research.
Namely, the research seeks data points that are specifically
associated with Human-Made Objects. In other words, the
paths from a Human-Made Object to the relevant data points
are predetermined. Since these paths are represented by the
query, a Quad Pattern Query Extract Links Actor will at least
follow the correct links and, above all, disregard a potentially
large number of incorrect links.

In addition to these standard link extractors, Comunica
offers several supplementary ones. Among them, the Pred-
icates Extract Links Actor is particularly intriguing for this
research. In fact, the Predicates Extract Links Actor conducts
an even more targeted search for links, considering only those
that appear as objects in quads. However, these links are
added to the link queue only when their predicate matches
one of the regexes defined in the actor configuration. Since
the predetermined paths from Human-Made Objects to the
sought-after data points are typically determined solely by
sequences of predicates, this link extractor guarantees the
fastest execution time. Yet, a significant drawback of this
actor is that a new engine must be created for each new
query, making its use less accessible. However, within the
scope of this research, this should not pose a considerable
problem. After all, the research ultimately leads to user-centric
applications that, alongside their primary functionalities, can
also abstract away this technical complexity from users.

With the explicit setting of predicates, a new challenge
arises: the links referring to the previous and/or next page for a
given LDES page are no longer followed, causing the engine
to consider only one page per specified LDES. The various
predicates leading to these links could therefore potentially be
added to the predicate list, were it not for the existence of a
link extractor that explicitly seeks TREE-specific links. Indeed,
as the LDES specification is built upon the TREE specification,
it is advisable to expand the current configuration with this
Extract Links Tree Actor to encompass the entire collections
in the query process. [14]

C. Links to Follow
Having the described configuration at hand, the next step

should involve crafting queries. However, the practical querya-
bility of the semantic web turns out to be less seamless than
anticipated. A significant problem arises from the fact that
certain resources are not hosted in full compliance with the
RDF guidelines. Additionally, some of the resource types to
which CoGhent Human-Made Objects refer, are affected by
this issue, making it notably challenging and sometimes even
impossible to include them during the link traversal process.

1) CoGhent IIIF Manifests: Starting with the positive news:
the IIIF Manifests that describe the visual component of
Human-Made Objects are readily accessible and interpretable
for a link traversal engine. In other words, the digital image
of a Human-Made Object can be fetched without difficulty
alongside any other (textual) data.

2) Wikidata: Likewise, link traversal engines should gener-
ally encounter no issues with Wikidata resources. However, a
note of caution is warranted. Wikidata provides two URIs
for each resource and property. The standard URIs that
Wikidata prominently advertises are the type of URIs that
other sources - including the CoGhent LDESs - typically
reference. Nonetheless, these are not the URIs that Wikidata
employs behind the scenes to describe its RDF data. For a link
traversal engine, this poses no problem, as it automatically
gets redirected to the correct RDF URI. However, users must
remain vigilant. When a Wikidata URI needs to appear in a
query, it is imperative to explicitly employ the RDF-specific
variant. As a matter of fact, this is crucial for the types
of queries central to this research. After all, they typically
attempt to reach data points through paths comprised of one
or multiple explicitly defined predicate URIs.

3) Stad Gent data: Unfortunately, when a Comunica link
traversal engine attempts to query a Stad Gent resource, it
consistently fails. This can be attributed to a configuration
error on the Stad Gent server. The server consistently responds
with a Content-Type of application/json to the Accept header
set by Comunica for its HTTP requests, even though the
content is indeed a valid JSON-LD document. Ideally, this
should not pose an issue, except that the server fails to provide
a context link header alongside its JSON file, which Comunica
(rightfully) expects. Until the Stad Gent server is configured
correctly - not the case at the time of this research - its
resources cannot be accessed by a Comunica link traversal
engine.

4) Getty Vocabularies: The Getty Vocabularies server ap-
pears to suffer from a similar configuration error. It also
returns JSON content based on Comunica’s Accept header
without the expected context link header. Fortunately, there is
a workaround for Getty Vocabularies resources: by explicitly
adding the .json-ld extension to their URIs, the server will
actually respond with a Content-Type of application/ld+json.
However, to provide a Comunica link traversal engine with this
capability, a custom actor must be created that iterates over
each link in a given document and, if necessary, appends the
extension. Thanks to this intervention, it becomes possible

to involve Getty Vocabularies resources in the link traversal
process. Yet, it is evident that this solution is not optimal.

III. TOOLS FOR QUERY BUILDING

An important goal of the research is to provide non-
technical users with the ability to explore the CoGhent col-
lections in conjunction with all referenced data. In other
words, users without technical backgrounds should be enabled
to formulate the necessary queries — albeit simple ones. In
this context, the research introduces two user-friendly tools to
assist in this process. However, both tools rely on the same
fundamental idea: generating queries based on provided input.
Hence, they both utilize a different, more low-level application.

A. Building Queries from Predicate Sequences

While SPARQL queries can assume complex forms, this
research focuses on the simpler kind of queries that retrieve
one or more characteristic properties for a specific type of
resource — Human-Made Objects — by specifying paths of
predicates —predicate sequences — in the query. This specific
approach allows for the creation of a simple application that
can generate a query based on a predefined sequence — can
be just one — of property names, each specifying a sequence
of predicates. Additionally, each property can be marked as
optional and/or filtered.

B. User-centric Tools

Furthermore, two additional applications are introduced,
primarily aiming to offer user-friendly interfaces for query
construction while relying on the preceding tool for the actual
query generation process.

The first application is intended for the least technical users
and is consequently the simplest: users are presented with
a list of pre-defined properties from which they can make a
selection. Moreover, among other features, they are also given
the option to specify certain filters. Finally, with a simple click
of a button, they get to see the corresponding query.

The second application is slightly more challenging to use
but does not limit users to only the properties that have been
pre-selected by others. Users are expected to manually provide
a resource from which they can branch out a tree of predicates
and other resources. This not only provides insight into the
kind of data the given resource type provides access to, but
also allows users to select resources from the obtained tree as
properties and, among other features, set filters. Once again,
users are presented with the corresponding query through a
simple click of a button.

IV. HANDLING QUERY RESULTS

A. Visualizing Query Results

Given the research’s focus on art collections, visual data
holds significant importance. In the case of the CoGhent
collections specifically, each Human-Made Object has a digital
image associated with it. To display these images, one
option would be to map all the data to a IIIF Manifest and
subsequently visualize it using a IIIF Viewer of choice. The

advantage of this method lies in the avoidance of the need to
build a IIIF Viewer from scratch. However, in situations where
more flexibility is desired, the option to develop a custom
visualization tool may be preferable.

B. Saving Query Results

Finally, saving query results might also be a crucial require-
ment for certain users. Once again, IIIF Manifests can be
employed here. However, it is worth noting that this method
necessitates some mapping system. On the other hand, the
significant advantage of this approach — unlike simply storing
results as flat files or in a database — is that the stored data
can immediately be visualized.

The notion of query results can also be viewed from an
entirely different angle. After all, in some situations, the desire
might be to not hold on to specific query results but rather
to the instructions that led to those results. The previously
introduced concept a data structure that maps property names
onto predicate sequences, for instance, meets this criterion.
Nevertheless, although maintaining such a data structure might
mean it can serve as input to the aforementioned applications,
it obviously presents a somewhat niche method of storing
valuable data. From this perspective, the more straightforward
approach of retaining the SPARQL query itself seems to be the
better idea. However, when a query is crafted with LTQP in
mind, it is important to note that it cannot simply be executed
with any standard SPARQL query engine. Therefore, to yield
results, a users should always fall back on a link traversal
engine, perhaps even the same one consistently.

CONCLUSION

The research into the discovery process of digital art collec-
tions, specifically CoGent’s, demonstrates that LTQP can add
valuable insights beyond the already known data. However,
the success of this approach depends not only on well-crafted
queries but also on the chosen link traversal engine. When
using Comunica, the Quad Pattern Query Extract Links Actor
proves to be an excellent link extractor. However, if the
predicates to follow are extractable from the query - or
the mapping between properties and predicate sequences -
the combination of the Predicates Extract Links Actor and
the Extract Links Tree Actor offers better time guarantees.
Therefore, while technical knowledge is required, configuring
a Comunica link traversal engine is manageable.

A more significant challenge arises from servers that are
not set up in strict adherence to RDF standards. Such
servers often hinder the proper functioning of Comunica link
traversal engines. This is observed with Stad Gent and Getty
Vocabularies resources. A specific actor has however been
developed for Getty Vocabularies to work around this issue,
yet this solution remains suboptimal.

In summary, the research provides valuable insights and
tools for discovering digital art collections, while also high-
lighting the inherent challenges of the process. Link traversal
undoubtedly holds the potential to uncover hidden data, but

challenges like its unpredictability and typically long execu-
tion time persist. Tools that make query construction more
accessible unfortunately cannot change these fundamental
aspects. Provided that link traversal becomes more reliable
and faster through further technological advancements, it could
potentially become widely accessible in the future. However,
currently, the technology still demands a certain level of
technical expertise.

ACKNOWLEDGMENT

I would like to express my gratitude to several people. First
and foremost, Bryan-Elliott Tam, for his invaluable assistance
regarding link traversal, as well as his encouraging words. I
would also like to thank Pieter Colpaert and Brecht Van de
Vyvere for introducing me to and guiding me in the realm of
Linked Data. Additionally, I am deeply appreciative of Olivier
Van D’huynslager for his numerous insights into the CoGent
data.

Furthermore, I want to expressly thank my family. To my
parents, brother, and sister, thank you for your unwavering
support. I am also very grateful to my grandparents for their
constant care. And, of course, I am immensely thankful
to my girlfriend for continuously boosting my spirits during
challenging moments and helping me successfully conclude
my research.

REFERENCES

[1] P. Van Leemputten, “Gent gaat cultureel erfgoed virtueel samenbren-
gen,” DataNews, July 2020, https://datanews.knack.be/nieuws/gent-gaat-
cultureel-erfgoed-virtueel-samenbrengen/.

[2] W. Schouppe, “Gent roept inwoners op erfgoed in te sturen
én te onderzoeken op een nieuw online platform: ”we
hopen op 50.000 inzendingen”,” VRT NWS, September 2022,
https://www.vrt.be/vrtnws/nl/2022/09/27/gent-vraagt-inwoners-erfgoed-
in-te-sturen-en-te-onderzoeken-op-e/.

[3] “Coghent data,” June 2023, https://coghent.github.io/LDES/.
[4] P. Colpaert, “Linked data event streams,” W3C, W3C Living Standard,

April 2023, https://semiceu.github.io/LinkedDataEventStreams/.
[5] B. Van de Vyvere, O. V. D’Huynslager, A. Atauil, M. Segers,

L. Van Campe, N. Vandekeybus, S. Teugels, A. Saenko, P.-J. Pauwels,
and P. Colpaert, “Publishing cultural heritage collections of ghent with
linked data event streams,” in Metadata and Semantic Research: 15th
International Conference, MTSR 2021, Virtual Event, November 29–
December 3, 2021, Revised Selected Papers. Springer, 2022, pp. 357–
369.

[6] N. Vanderperren, “Publicatie:oslo cultureel erfgoed,” June 2021,
https://www.projectcest.be/wiki/Publicatie:OSLO Cultureel Erfgoed.

[7] “Presentation api 2.1.1,” June 2017, https://iiif.io/api/presentation/2.1/.
[8] J. P. Emanuel, “Stitching together technology for the digital humanities

with the international image interoperability framework (iiif),” in Digital
Humanities, Libraries, and Partnerships. Elsevier, 2018, pp. 125–135.

[9] S. Snydman, R. Sanderson, and T. Cramer, “The international image
interoperability framework (iiif): A community & technology approach
for web-based images,” in Archiving conference, vol. 2015. Society
for Imaging Science and Technology, 2015, pp. 16–21.

[10] R. Taelman, “Link traversal-based query processing,” May 2023,
https://www.rubensworks.net/raw/slides/2023/ugent-webfundamentals-
linktraversal/.

[11] O. Hartig and J.-C. Freytag, “Foundations of traversal based query
execution over linked data,” in Proceedings of the 23rd ACM
conference on Hypertext and social media, 2012, pp. 43–52,
https://arxiv.org/pdf/1108.6328.pdf.

[12] R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh,
“Comunica: a modular sparql query engine for the web,” in Proceedings
of the 17th International Semantic Web Conference, Oct. 2018. [Online].
Available: https://comunica.github.io/Article-ISWC2018-Resource/

[13] R. Taelman, “Link traversal for comunica,” 2019,
https://github.com/comunica/comunica-feature-link-traversal.

[14] P. Colpaert, “The tree hypermedia specification,” W3C, W3C Draft, May
2023, https://treecg.github.io/specification/.

Digitale kunstcollecties ontdekken door middel van
Link-Traversal–based Query Processing

Martijn Bogaert
Universiteit Gent

Gent, België
martijn.bogaert@ugent.be

Abstract—Deze masterproef onderzoekt het verkennen van
digitale kunstcollecties via Link-Traversal-based Querying, met
de focus op de Collectie van de Gentenaar. Het Comunica-
platform speelt een sleutelrol bij het benutten van waarde-
volle data in RDF-formaat, hoewel sommige links uitdagingen
met RDF-compatibiliteit opleveren. Twee webapplicatie-ideeën
worden voorgesteld om zowel gebruikers zonder technische
achtergrond als professionals te helpen bij het verkennen van de
CoGent-collectie. Het einddoel is om ontdekte data te koppelen
aan IIIF Manifests voor visualisatie en zo de toegankelijkheid
van kunstcollecties te vergroten.

Trefwoorden—Linked Data, Link Traversal, LTQP, CoGent,
IIIF

INLEIDING

Digitale kunstcollecties belichamen menselijke creativiteit
en culturele ontwikkeling. Door technologische vooruitgang
zijn deze verzamelingen gedigitaliseerd, waardoor ze wereld-
wijd toegankelijk zijn en diepgaand kunnen worden verkend.
Toch brengt het navigeren en bevragen van deze gegevens
uitdagingen met zich mee, vooral voor niet-technische profes-
sionals en kunstliefhebbers. Deze beperking belemmert hun
vermogen om inzichten te verwerven en volledig op te gaan
in de wereld van digitale kunst.

De culturele data van de Collectie van de Gentenaar (Co-
Gent) worden gepubliceerd volgens de principes van Linked
Data, waardoor ze stevig verankerd zijn in het semantische
web. Maar om het volledige potentieel van deze uitgebreide
gegevens te benutten, is Link-Traversal–based Query Proces-
sing (LTQP) vereist. LTQP stelt gebruikers namelijk in staat
om buiten de grenzen van de dataset te treden, waardoor lagen
van kennis en verbindingen kunnen worden blootgelegd die
anders verborgen zouden blijven.

Het onderzoek ontleedt het ontdekken van de CoGent-
gegevens in drie fundamentele onderdelen: het opstellen van
queries, het uitvoeren van queries met behulp van link traversal
- de van het onderzoek - en het verwerken van queryresultaten,
met name de visualisatie en opslag ervan. Deze opgedeelde
aanpak legt de basis voor een diepgaandere verkenning van
de CoGent-data en mogelijks digitale kunstcollecties in het
algemeen.

I. GERELATEERD WERK

A. Collectie van de Gentenaar

Dit onderzoek richt zich voornamelijk op de gegevens van
de Collectie van de Gentenaar (CoGent), of Collections of

Ghent (CoGhent) in het Engels. CoGent is een samenwer-
kingsverband tussen de stad Gent, Design Museum Gent,
Digipolis en andere lokale organisaties. Samen hebben ze als
doel het cultureel erfgoed van de stad te verzamelen en te
digitaliseren in een centrale collectie, waarbij bewoners van
Gent worden aangemoedigd om hun eigen erfgoedverhalen en
objecten ook toe te voegen. Hoewel de CoGent-partnerschap
in juni 2023 werd beëindigd, blijft de infrastructuur behouden.
[1] [2]

De gegevens van de deelnemende culturele instellingen,
namelijk Design Museum Gent (DMG), Huis van Alijn (HVA),
Industriemuseum, STAM en Archief Gent, worden beheerd in
Linked Data Event Streams (LDES). LDES’en zijn collecties
onveranderlijke objecten die voorgesteld worden door RDF
triples. Dat de objecten onveranderlijk zijn, betekent dat zodra
een object wordt toegevoegd, het ongewijzigd blijft. Nieuwe
versies van objecten worden geı̈ntroduceerd in plaats van
bestaande objecten te updaten. [3] [4]

De LDES’en van CoGent in het bijzonder, bevatten Mens-
gemaakte Objecten, of Human-Made Objects in het Engels.
Deze vertegenwoordigen zowel tastbare als ontastbare items
die door mensen zijn gemaakt of beı̈nvloed, variërend van
kunstwerken en boeken tot tradities en ambachten. Het Open
Standaarden voor Linkende Organisaties-initiatief (OSLO)
speelt een cruciale rol in de standaardisatie deze Mensge-
maakte Objecten. Mensgemaakte Objecten zijn ook volledig
in lijn met internationale normen met het oog op semantische
interoperabiliteit binnen het domein van cultureel erfgoed. [5]
[6]

B. International Image Interoperability Framework

Elk Mensgemaakt Object in de collecties van CoGent
bevat, naast zijn beschrijvende data, een link naar een IIIF
Manifest. Deze manifests zijn gestructureerde RDF-bronnen
die specifieke informatie over een object groeperen, variërend
van details zoals dimensies en notities tot auteursrechtelijke
informatie. Het International Image Interoperability Frame-
work (IIIF) legt via haar Presentation en Image API’s vast hoe
deze manifests opgebouwd dienen te worden. In het geval van
CoGent manifests, is die opbouw zeer eenvoudig: elk manifest
bevat één sequence, die op haar beurt één canvas bevat, die
op haar beurt dan weer één annotation met de afbeeldingslink
en -metadata bevat. [7] [8] [3]

Naast de opslag van deze gegevens, zijn IIIF Manifests
vooral bijzonder handig om culturele data te visualiseren. Er
bestaan reeds meerdere IIIF Viewers die dit bewerkstelligen.
Voor een gegeven manifest bieden deze viewers een gestan-
daardiseerde weergave van de data die erin aanwezig zijn. [9]

C. Link-Traversal-based Query Processing

Dat de CoGent-collecties deel uitmaken van het Linked Data
web, maakt dat ze in principe veel meer knowledge kunnen
voortbrengen dan wanneer de enkel de CoGent-data op zich
bevraagd wordt. Deze externe data proberen te bereiken met
één SPARQL query, kan echter enkel wanneer de uitvoerende
query engine van resource naar resource kan springen. Link
Traversal-based Query Processing (LTQP) maakt dit praktisch
mogelijk door dynamisch links tussen documenten te volgen.
[10]

Echter, zonder beperkingen op te leggen aan de te volgen
links, is LTQP onpraktisch. Daarom introduceerde O. Hartig
[11] drie reachability criteria:

• cAll volgt alle links zonder beperking.
• cNone volgt geen enkele link.
• cMatch volgt alleen links die deel uitmaken van quads

die overeenkomen met een quad pattern uit de query.
Dankzij haar modulariteit en aanpasbaarheid, kunnen de

bovengenoemde en andere capaciteiten aan een Comunica en-
gine gegeven worden, waardoor LTQP in de praktijk mogelijk
wordt. [12] [13]

II. COGENT DATA EN LINK TRAVERSAL

A. CoGent-bronnen

CoGent biedt voor elke deelnemende culturele instelling een
aparte LDES aan. Dit kan handig zijn om bij aanvang van het
querying proces een onderscheid te maken tussen verschillende
collecties. In theorie is het ook zo dat de volgorde waarin de
URI’s van deze LDES’en als datasources aan een Comunica
link traversal engine meegeven worden, bepaalt welke collectie
eerst bevraagd wordt en uiteindelijk de eerste resultaten terug
zal geven. In de praktijk ligt dat echter anders. Wanneer een
link traversal engine verschillende HTTP requests uitvoert, is
het immers niet op voorhand vast te leggen in welke volgorde
de overeenkomstige HTTP responses de engine weer zullen
bereiken. Of nog: hoe verder de engine in haar link traversal
proces gevordered is, hoe meer willekeur vastgesteld kan
worden.

Dit maakt niet alleen dat de volgorde waarin LDES’en
opgegeven worden, in principe weinig uitmaakt, maar ook dat
de Mensgemaakte Objecten die in één bepaalde LDES voor-
komen, niet per se in diezelfde volgorde teruggegeven zullen
worden. Naast de vele voordelen, moet men er zich dus goed
bewust van zijn dat LTQP ook duidelijk zijn nadelen heeft.
Echter, aangezien de CoGent-collecties in principe LDES’en
zijn, zou er sowieso nooit van uit gegaan mogen worden dat
dezelfde query op verschillende momenten dezelfde resultaten
terug zou geven. LDES’en worden immers precies gekenmerkt
door hun grote variabiliteit.

B. Comunica link traversal engine configuratie

Comunica biedt reeds meerdere modules en configuraties
aan die LTQP op allerhande verschillende manieren mogelijk
moeten maken. Bij het opstellen van een configuratie voor een
link traversal engine, moeten in eerste instantie in principe
telkens dezelfde actoren aan bod. Zij staan in voor de basis-
functionaliteit van elke link traversal engine. Deze basiscon-
figuratie wordt aangeboden in een apart configuratiebestand,
config-base.json en moet dus zeker opgenomen worden in de
uiteindelijke configuratie die het meest geschikt geacht zal
worden voor het uitvoeren van LTQP op de CoGent-LDES’en.

Een essentiële keuze die wel voor elke configuratie gemaakt
moet worden, is de selectie van een link extractor. Dergelijk
type actor bepaalt immers voor elk document dat binnenkomt,
welke links daaruit toegevoegd dienen te worden aan de
link queue en dus bezocht moeten worden. De meest voor
de hand liggende keuzes zijn in dat opzicht de All Extract
Links Actor en Quad Pattern Query Extract Links Actor.
In principe zijn zij implementaties van de respectievelijke
cAll en cMatch reachability criteria. Het hoeft echter niet te
verbazen dat de All Extract Links Actor zonder bijkomende
begrenzingen in de praktijk geen valabele keuze is. Een engine
die zomaar elke link volgt, kan immers tot in het oneindige
links blijven volgen wiens documenten uiteindelijk toch niet
de informatie bevatten waarnaar de query op zoek is. De Quad
Pattern Query Extract Links Actor is daarentegen wel een
valabele optie, zeker vanuit de optiek van dit onderzoek. Het
onderzoek gaat immers op zoek naar datapunten die specifiek
toebehoren aan Mensgemaakte Objecten. Het is met andere
woorden vanop voorhand geweten welke paden vanuit een
Mensgemaakt Object naar de datapunten in kwestie gevolgd
dienen te worden. Aangezien dit weergegeven wordt door de
query, zal een Quad Pattern Query Extract Links Actor op
zijn minst de juiste links volgen, maar bovenal een potentieel
groot aantal verkeerde links negeren.

Naast deze standaard link extractors, biedt Comunica nog
enkele bijkomende aan. Eén daarvan, de Predicates Extract
Links Actor is voor dit onderzoek in het bijzonder een erg
interessante. De Predicates Extract Links Actor gaat namelijk
nog gerichter op zoek naar links door uitsluitend links die
als object in een quad voorkomen, te beschouwen, maar pas
aan de link queue toe te voegen wanneer hun predicate over-
eenkomt met een van de regexen die in de actor configuratie
bepaald zijn. Aangezien de op voorhand bekende paden van
Mensgemaakte Objecten naar gezochte datapunten in principe
uitsluitend bepaald worden door sequenties van predicaten,
garandeert deze link extractor dan ook de snelste uitvoerings-
tijd. Het grote nadeel aan deze actor is echter dat voor elke
nieuwe query een nieuwe engine aangemaakt moet worden,
waardoor het gebruik ervan minder toegankelijk is. Toch hoeft
dit in het kader van dit onderzoek geen probleem te vormen.
Het onderzoek culmineert immers sowieso in enkele gebrui-
kersgerichte applicaties, die naast hun hoofdfunctionaliteiten
evengoed ook deze technische complexiteit van gebruikers
kunnen wegabstraheren.

Door het expliciet instellen van predicaten, steekt een
nieuwe uitdaging de kop op: de links die voor een gegeven
LDES-pagina naar de voorgaande en/of volgende pagina ver-
wijzen, worden niet meer gevolgd, waardoor de engine per
opgegeven LDES slechts één pagina kan beschouwen. De
verschillende predicaten die naar deze links lopen, zouden
in principe aan de predicatenlijst toegevoegd kunnen worden,
ware het niet dat er reeds een link extractor bestaat die nadruk-
kelijk op zoek gaat naar TREE-specifieke links. Aangezien de
LDES-specificatie gebouwd is op de TREE-specificatie, is het
dan ook aangewezen de huidige configuratie uit te breiden met
deze Extract Links Tree Actor en zo de volledige collecties bij
het queryproces te betrekken. [14]

C. Te volgen links

Met de beschreven configuratie, zou de volgende stap het
opstellen van queries moeten zijn. Alleen blijkt het semanti-
sche web in de praktijk minder querybaar te zijn als verhoopt.
Een groot probleem is namelijk dat bepaalde resources niet
volledig volgens de RDF-richtlijnen worden gehost. Ook en-
kele van de types resources waarnaar CoGent Mensgemaakte
Objecten refereren, lijden aan dergelijk euvel, waardoor het
bijzonder moeilijk en soms zelfs onmogelijk wordt om hen te
betrekken tijden het link traversalproces.

1) CoGent IIIF Manifests: Beginnen met het goede nieuws:
de IIIF Manifests die de visuele component van Human-
Made Objects beschrijven, zijn zonder meer bereikbaar en
interpreteerbaar voor een link traversal engine. De digitale
afbeelding van een Human-Made Object kan met andere woor-
den probleemloos opgehaald worden naast eventuele andere
(tekstuele) data.

2) Wikidata: Ook met Wikidata resources heeft een link
traversal engine in principe geen probleem. Toch moet hierbij
een opmerking gemaakt worden. Wikidata voorziet voor elke
resource en property immers twee URIs. De standaard URIs
die Wikidata zeer expliciet adverteert, zijn het soort URIs waar
andere bronnen - ook de CoGent LDESs - doorgaans naar
verwijzen. Echter, dit zijn niet de URIs die Wikidata achter
de schermen gebruikt om haar RDF-data mee te beschrijven.
Voor een link traversal engine is dit geen probleem, die wordt
immers automatisch geredirectet naar de juist RDF-URI, maar
gebruikers moeten wel op hun hoede zijn. Wanneer in een
query een Wikidata-URI dient voor te komen moet namelijk
expliciet gebruik gemaakt worden van de RDF-specifieke
variant. Dit is belangrijk voor het soort queries centraal in
dit onderzoek, aangezien deze typisch datapunten proberen
te bereiken door middel van paden die bestaan uit één of
meerdere expliciet bepaalde predicaat-URIs.

3) Stad Gent data: Wanneer een Comunica link traversal
engine een Stad Gent resource probeert te bevragen, zal dit
helaas steeds mislukken. Dit valt toe te wijzen aan een configu-
ratiefout van de Stad Gent server. Deze zal immers steeds met
een Content-Type van application/json reageren op de Accept
header die Comunica voor haar HTTP requests instelt, terwijl
de content wel degelijk een volwaardig JSON-LD-document
is. Nochtans zou dit in principe geen probleem mogen zijn,

ware het niet dat de server bij haar JSON-bestand geen context
link header meegeeft, terwijl Comunica dit (terecht) verwacht.
Totdat de Stad Gent server correct geconfigureerd is - niet het
geval bij publicatie van het onderzoek - kunnen hun resources
dan ook niet bereikt worden door een Comunica link traversal
engine.

4) Getty Vocabularies: Ook de Getty Vocabularies server
lijkt aan een gelijkaardige configuratiefout te lijden. Ook die
geeft op basis van Comunica’s Accept header JSON content
terug zonder context link header. Gelukkig kan voor de Getty
Vocabularies resources een omweg genomen worden: wan-
neer expliciet de .json-ld-extensie aan hun URIs toegevoegd
wordt, reageert de server immers met een Content-Type van
application/ld+json. Om een Comunica link traversal engine
van deze capaciteit te voorzien, moet echter een custom actor
aangemaakt worden die elke link uit een gegeven document
overloopt en er zo nodig de extensie aan toevoegt. Dankzij
deze tussenkomst is het mogelijk Getty Vocabularies resources
in het link traversalproces te betrekken, maar het is duidelijk
dat deze oplossing niet optimaal is.

III. TOOLS VOOR DE CONSTRUCTIE VAN QUERIES

Een belangrijk doel van het onderzoek is om gebruikers
zonder technische achtergrond toch de mogelijkheid te geven
de CoGent-collecties, in combinatie met alle data waarnaar ze
verwijzen, te ontdekken. Zij moeten met andere woorden in
staat gesteld worden de nodige queries - zij het eenvoudige
- daarvoor op te stellen. In het licht daarvan introduceert het
onderzoek dan ook twee gebruiksvriendelijke tools om in dit
proces te helpen. Beide tools steunen echter op hetzelfde idee:
op basis van gegeven input een query opstellen. Daarom ma-
ken beiden gebruik van een andere, meer low-level applicatie.

A. Queryconstructie door middel van predicaatsequenties

SPARQL queries kunnen zeer complexe vormen aannemen,
maar in dit onderzoek wordt gefocust op het eerder eenvoudige
soort queries dat voor een bepaald type resources - Mensge-
maakte Objecten - één of meerdere kenmerkende properties
ophaalt door paden aan predicaten - predicate sequences - in
de query te stipuleren. Deze specifieke manier van werken
staat toe een eenvoudige applicatie te bouwen die een query
kan genereren op basis van een op voorhand bepaalde reeks
- kan er ook één zijn - property-namen die dan weer elk een
reeks predicaten specificeert. Daarnaast kan elke property ook
als optioneel bestempeld en/of gefilterd worden.

B. Gebruikersgerichte applicaties

Bijkomend worden twee andere applicaties geı̈ntroduceerd.
Hun voornaamste doel is het aanbieden van een gebruiksvrien-
delijke interface om queries op te bouwen, terwijl ze voor
het effectieve query-generatieproces op de voorgaande tool
kunnen rekenen.

De eerste applicatie is voor de minst technische gebruikers
bedoeld en is dan ook de meest eenvoudige: gebruikers krij-
gen een overzicht van vooraf bepaalde properties te zien en
kunnen hieruit een keuze maken. Daarnaast krijgen ze onder

andere ook de mogelijkheid filters te specificeren. Dankzij
een eenvoudige klik op de knop krijgen ze ten slotte de
overeenkomstige query te zien.

De tweede applicatie is wat uitdagender in gebruik, maar
beperkt gebruikers in hun keuze niet uitsluitend tot de proper-
ties die door anderen voorgekauwd zijn. Gebruikers worden
geacht eigenhandig een resource op te geven, vanwaaruit ze
een boom aan predicaten en andere resources kunnen doen
vertakken. Dit geeft hen niet alleen een inkijk in het soort data
waartoe het opgegeven type resource toegang verleent, maar
biedt ook de mogelijkheid uit de bekomen boom resources als
properties te selecteren en er onder andere filters voor in te
stellen. Opnieuw krijgen gebruikers dankzij een eenvoudige
klik op de knop ten slotte de overeenkomstige query te zien.

IV. QUERYRESULTATEN VERWERKEN

A. Queryresultaten visualiseren

Het onderzoek focust op kunstcollecties waardoor visuele
data van bijzonder groot belang zijn. In het geval van de
CoGent-collecties heeft elk Mensgemaakt Object één digitale
afbeelding. Om die weer te geven, kan ervoor geopteerd
worden alle data naar een IIIF Manifest te mappen en die
vervolgens weer te laten geven door een IIIF Viewer naar
keuze. Dat die IIIF Viewer daarbij niet meer zelf gebouwd
hoeft te worden worden, is natuurlijk het grootste voordeel
van deze methode. Echter, in situaties waarbij meer flexibiliteit
gebaat is, draagt de optie om zelf een visualisatietool op poten
te zetten, mogelijks toch de voorkeur weg.

B. Queryresultaten opslaan

Ten slotte kan het archiveren van queryresultaten nog een
belangrijke vereiste zijn voor bepaalde gebruikers. Zo kan er
opnieuw gewerkt worden met IIIF Manifests. Daarbij moet
echter opnieuw de kanttekening worden gemaakt dat deze me-
thode een of ander mappingsysteem vergt. Het grote voordeel
ervan - in tegenstelling tot de resultaten plat op te slaan in
een tekstbestand of databank - is dan weer dat de opgeslagen
data meteen gevisualiseerd kan worden.

De idee van queryresultaten kan ook vanuit een volledig
ander ooghoek bekeken worden. In bepaalde situaties kan
namelijk de wens uitgedrukt worden niet vast te houden aan
specifieke queryresultaten, maar eerder aan de instructies die
ertoe geleid hebben. Het voorheen geı̈ntroduceerde idee van
een mapping tussen property-namen en predicate sequences
voldoet hier bijvoorbeeld aan. Echter, hoewel het bijhouden
van dergelijke datastructuur dan wel mag betekenen dat ze
eenvoudig als invoer kan dienen voor de eerder beschreven
applicaties, is het een nogal bijzonder niche methode om
vermoedelijk waardevolle data mee op te slaan. Vanuit dat
opzicht lijkt de meer voor de hand liggende methode om
de SPARQL query zelf eenvoudigweg bij te houden, een
beter idee. In geval een query opgesteld is met LTQP in het
achterhoofd, moet echter wel de kanttekening gemaakt worden
dat deze niet zomaar met de eerste de beste SPARQL query
engine uitgevoerd kan worden. Om resultaten op te leveren, zal

immers steeds naar een link traversal engine gegrepen moeten
worden, misschien zelfs steeds dezelfde.

CONCLUSIE

Het onderzoek naar het ontdekkingsproces van digitale
kunstcollecties, specifiek die van CoGent, toont aan dat LTQP
waardevolle kennis kan toevoegen bovenop reeds gekende
data. Het succes hiervan hangt echter niet alleen af van de
juiste queries, maar ook van de gekozen link traversal engine.
Bij gebruik van Comunica blijkt de Quad Pattern Query
Extract Links Actor een uitstekende link extractor. Als echter
de te volgen predicaten uit de query - of de mapping tussen
properties en predicate sequences - te halen zijn, biedt de
combinatie van Predicates Extract Links Actor en Extract
Links Tree Actor betere tijdsgaranties. Hoewel technische
kennis vereist is, is het configureren van een Comunica link
traversal engine dus goed te doen.

Wat een grotere uitdaging vormt, zijn servers die niet
volgens de letter van de RDF-voorschriften zijn ingesteld. Ze
belemmeren Comunica link traversal engines immers vaak in
hun functioneren. Dat blijkt ook het geval te zijn voor Stad
Gent en Getty Vocabularies resources. Voor Getty Vocabularies
is wel een specifieke actor ontwikkeld om het probleem te
omzeilen, maar deze oplossing is suboptimaal.

Samenvattend biedt het onderzoek waardevolle inzichten en
tools voor het ontdekken van digitale kunstcollecties en belicht
het ook de inherente uitdagingen van het proces. Link traversal
heeft onmiskenbare potentie om verborgen data te onthullen,
maar er zijn ook uitdagingen zoals zijn onvoorspelbaarheid
en doorgaans lange uitvoeringstijd. Daar kunnen tools die de
constructie van queries toegankelijker maken, helaas weinig
aan veranderen. Op voorwaarde dat link traversal door verder
technologisch onderzoek betrouwbaarder en sneller wordt,
kan het in de toekomst door het grote publiek aangewend
worden. Momenteel vereist de technologie echter nog steeds
een bepaalde mate van technische expertise.

DANKWOORD

Ik wil graag enkele mensen bedanken. In de eerste plaats
Bryan-Elliott Tam voor zijn vele hulp aangaande link traversal,
alsook zijn vele bemoedigende woorden. Daarnaast wil ik ook
Pieter Colpaert en Brecht Van de Vyvere bedanken om me
zowel te introduceren als op weg te helpen in de wereld van
Linked Data. Ook Olivier Van D’huynslager ben ik bijzonder
dankbaar voor zijn vele inzichten in de CoGent-data.

Verder wil ik ook uitdrukkelijk mijn familie bedanken.
Dankjewel aan mijn ouders, broer en zus voor de vele steun.
Ook dankjewel aan mijn grootouders voor het goede zorgen
dag na dag. En uiteraard ben ik ook mijn vriendin ontzettend
dankbaar om me op de moeilijke momenten opnieuw moed in
te spreken en mijn onderzoek zo tot een goed einde te brengen.

REFERENTIES

[1] P. Van Leemputten, “Gent gaat cultureel erfgoed virtueel samenbren-
gen,” DataNews, July 2020, https://datanews.knack.be/nieuws/gent-gaat-
cultureel-erfgoed-virtueel-samenbrengen/.

[2] W. Schouppe, “Gent roept inwoners op erfgoed in te sturen
én te onderzoeken op een nieuw online platform: ”we
hopen op 50.000 inzendingen”,” VRT NWS, September 2022,
https://www.vrt.be/vrtnws/nl/2022/09/27/gent-vraagt-inwoners-erfgoed-
in-te-sturen-en-te-onderzoeken-op-e/.

[3] “Coghent data,” June 2023, https://coghent.github.io/LDES/.
[4] P. Colpaert, “Linked data event streams,” W3C, W3C Living Standard,

April 2023, https://semiceu.github.io/LinkedDataEventStreams/.
[5] B. Van de Vyvere, O. V. D’Huynslager, A. Atauil, M. Segers,

L. Van Campe, N. Vandekeybus, S. Teugels, A. Saenko, P.-J. Pauwels,
and P. Colpaert, “Publishing cultural heritage collections of ghent with
linked data event streams,” in Metadata and Semantic Research: 15th
International Conference, MTSR 2021, Virtual Event, November 29–
December 3, 2021, Revised Selected Papers. Springer, 2022, pp. 357–
369.

[6] N. Vanderperren, “Publicatie:oslo cultureel erfgoed,” June 2021,
https://www.projectcest.be/wiki/Publicatie:OSLO Cultureel Erfgoed.

[7] “Presentation api 2.1.1,” June 2017, https://iiif.io/api/presentation/2.1/.
[8] J. P. Emanuel, “Stitching together technology for the digital humanities

with the international image interoperability framework (iiif),” in Digital
Humanities, Libraries, and Partnerships. Elsevier, 2018, pp. 125–135.

[9] S. Snydman, R. Sanderson, and T. Cramer, “The international image
interoperability framework (iiif): A community & technology approach
for web-based images,” in Archiving conference, vol. 2015. Society for
Imaging Science and Technology, 2015, pp. 16–21.

[10] R. Taelman, “Link traversal-based query processing,” May 2023,
https://www.rubensworks.net/raw/slides/2023/ugent-webfundamentals-
linktraversal/.

[11] O. Hartig and J.-C. Freytag, “Foundations of traversal based query
execution over linked data,” in Proceedings of the 23rd ACM
conference on Hypertext and social media, 2012, pp. 43–52,
https://arxiv.org/pdf/1108.6328.pdf.

[12] R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh,
“Comunica: a modular sparql query engine for the web,” in Proceedings
of the 17th International Semantic Web Conference, Oct. 2018. [Online].
Available: https://comunica.github.io/Article-ISWC2018-Resource/

[13] R. Taelman, “Link traversal for comunica,” 2019,
https://github.com/comunica/comunica-feature-link-traversal.

[14] P. Colpaert, “The tree hypermedia specification,” W3C, W3C Draft, May
2023, https://treecg.github.io/specification/.

Contents

Abstract v

List of Figures xx

List of Tables xxi

List of Code Fragments xxiii

Introduction 1

1 Related Work 3

1.1 Linked Data . 3

1.1.1 Introduction and Principles . 4

1.1.2 Resource Description Framework . 6

1.1.3 RDF Syntaxes . 8

1.1.4 SPARQL . 15

1.2 Link-Traversal-based Query Processing . 16

1.2.1 Link Traversal Basics . 16

1.2.2 Reachability Criteria . 17

1.3 Comunica . 18

1.3.1 Building Blocks . 18

1.3.2 Link Traversal Engines . 19

1.4 Collections of Ghent . 20

1.4.1 Linked Data Event Streams . 20

1.4.2 Human-Made Objects . 21

1.4.3 Example Queries . 21

1.4.4 Query Builder . 22

1.5 International Image Interoperability Framework . 24

1.5.1 IIIF Manifests . 24

1.5.2 IIIF Viewers . 28

2 CoGhent Data and Link Traversal 31

2.1 CoGhent Data Sources . 31

xvii

2.1.1 URI Redirection . 31

2.1.2 Non-deterministic results . 32

2.1.3 Duplicate Human-Made Objects . 35

2.1.4 Conclusion . 35

2.2 Comunica Link Traversal Engine Configuration . 35

2.2.1 Base Configuration . 36

2.2.2 Basic Link Extractors . 36

2.2.3 Extracting Links based on Predicates . 37

2.2.4 Comparing Link Extractors . 39

2.2.5 Traversing LDES Pages . 42

2.2.6 Conclusion . 42

2.3 Links to Follow . 43

2.3.1 IIIF Manifest . 44

2.3.2 Wikidata . 47

2.3.3 Stad Gent . 48

2.3.4 Getty Vocabularies . 51

2.3.5 Conclusion . 58

2.4 Conclusion . 58

3 Tools for Query Building 60

3.1 Building Queries from Predicate Sequences . 61

3.1.1 Arrays of Triple Patterns . 61

3.1.2 Arrays of Predicates . 62

3.1.3 User-Defined Variable Names and Property Path Sequences . 64

3.1.4 Filtered and Optional Properties . 65

3.1.5 Limit and Offset . 67

3.1.6 Overview . 68

3.2 A Modular Query Builder . 70

3.2.1 Modularity . 70

3.2.2 Signifying Intent with Questions . 71

3.3 Discovering Predicate Sequences . 71

3.3.1 Tree Data Structure and Visualization . 72

3.3.2 Tree Expansion . 73

3.3.3 Predicate Sequences Selection . 74

3.4 Conclusion . 75

4 Handling Query Results 77

4.1 Visualizing Query Results . 77

4.1.1 IIIF Viewers . 77

4.1.2 Custom Viewer . 78

xviii

4.2 Saving Query Results . 78

4.2.1 IIIF Manifest . 79

4.2.2 SPARQL Query . 79

4.2.3 Predicate Sequences . 79

4.3 Conclusion . 79

Conclusion 81

Ethical and social reflection . 82

References 83

Appendices 86

A Notes on the usage of AI . 87

B GitHub Repositories . 88

xix

List of Figures

1.1 Representation of a web of documents without unambiguous indications of what the documents and the links

between them represent . 4

1.2 Representation of a web of documents composed according to the spirit of Linked Data 5

1.3 Representation of an RDF description . 8

1.4 Screenshot of CoGhent Query Builder . 23

1.5 Presentation API 2.1.1’s resource types visualization taken from IIIF (2017) 27

1.6 Presentation API 2.1.1’s primary resource types visualization taken from IIIF (2017) 28

1.7 Presentation API 3.0’s primary resource types visualization taken from IIIF (2020) 29

1.8 Screenshot of Mirador IIIF Viewer . 30

3.1 Screenshot of RDF Predicates Explorer . 73

xx

List of Tables

2.1 CoGhent LDES endpoints as published by CoGhent (2022) . 32

2.2 (Part of) results after first execution of query displayed in Code Fragment 2.1 33

2.3 (Part of) results after second execution of query displayed in Code Fragment 2.1 34

2.4 (Part of) results after execution of query displayed in Code Fragment 2.1 with Design Museum Gent (DMG)

LDES endpoint as first data source and Huis Van Alijn (HVA) LDES endpoint as second data source 34

2.5 (Part of) results after execution of query displayed in Code Fragment 2.1 with Huis Van Alijn (HVA) LDES end-

point as first data source and Design Museum Gent (DMG) LDES endpoint as second datasource 35

2.6 Results from experiment comparing different Comunica link traversal engines 39

2.7 Results of long query displayed in Code Fragment 2.11 and RDF document displayed in Code Fragment 2.10 . . . 46

2.8 Results of short query displayed in Code Fragment 2.12 and RDF document displayed in Code Fragment 2.10 . . 46

2.9 Results from experiment examining Content-Types of Getty Vocabularies server’s HTTP responses 54

xxi

xxii

List of Code Fragments

1.1 RDF description depicted using a human-centric RDF syntax . 9

1.2 RDF description depicted using the N-Triples syntax . 9

1.3 RDF description depicted using the N3 and Turtle syntaxes . 10

1.4 RDF description depicted using the RDF/XML syntax . 10

1.5 RDF description with nested objects depicted using the JSON-LD syntax . 12

1.6 RDF description spread over two documents depicted using the JSON-LD syntax 12

1.7 RDF description as a graph depicted using the JSON-LD syntax . 13

1.8 Example of context use in JSON-LD, proposed by Sporny et al. (2020) . 14

1.9 Example of an expanded JSON-LD document, proposed by Sporny et al. (2020) 15

1.10 SPARQL query querying data that is spread over the two documents displayed in Code Fragment 1.6 17

1.11 SPARQL query fetching Human-Made Objects’ titles containing Gent as proposed by CoGhent (2023a) 21

1.12 SPARQL query fetching Human-Made Objects’ objectname’s titles as proposed by CoGhent (2023a) 22

1.13 SPARQL query fetching ordered unique versions of all Human-Made Objects as proposed by CoGhent (2023a) . 24

1.14 Example of SPARQL query created by original CoGhent Query Builder . 25

2.1 SPARQL query fetching ten Human-Made Object’s IIIF Manifest URIs, image heights and image file URIs 33

2.2 Custom link traversal engine configuration using Predicates Extract Links Actor 37

2.3 Comunica Predicates Extract Links Actor configuration with predicate regexes set to predicates from query

displayed in Code Fragment 2.1 and subject checking enabled . 38

2.4 (Cleaned up) logs outputted during execution of engine configured by files displayed in Code Fragments 2.2

and 2.3 . 40

2.5 Comunica Predicates Extract Links Actor configuration with predicate regexes set to predicates from query

displayed in Code Fragment 2.1 and subject checking disabled . 41

2.6 Custom link traversal engine configuration using Predicates Extract Links Actor and Extract Links Tree Actor . . 43

2.7 Turtle file representing hypothetical Human-Made Objects (does not follow CoGhent schema) 44

2.8 Turtle file representing first hypothetical IIIF Manifest (does not follow IIIF schema) 44

2.9 Turtle file representing second hypothetical IIIF Manifest (does not follow IIIF schema) 44

2.10 Turtle file representing combination of hypothetical Human-Made Objects and IIIF Manifests 45

2.11 Long query fetching Human-Made Object and image . 45

2.12 Short query fetching Human-Made Object and image . 46

2.13 SPARQL query fetching ten Human-Made Object’s institute’s countries . 48

2.14 Implementation of ActorRdfResolveHypermediaLinksStadGentReplaceId’s run function . 50

xxiii

2.15 Implementation of ActorRdfResolveHypermediaLinksStadGentReplaceId’s test function . 50

2.16 Accept header for HTTP requests made by Comunica engine . 51

2.17 (Cleaned up) logs outputted during execution of engine with data source set to Getty Vocabulary resource . . . 52

2.18 Implementation ofActorRdfResolveHypermediaLinksGettyJsonldExtension’srun func-

tion . 55

2.19 Implementation ofActorRdfResolveHypermediaLinksGettyJsonldExtension’stest func-

tion . 56

2.20 Extend Getty Links Actor configuration . 56

2.21 Final custom link traversal engine configuration . 57

2.22 SPARQL query fetching Human-Made Object’s types in German . 57

3.1 WHERE clause statements to query for objectname stored as elements in an array 61

3.2 All possible PREFIX statements of the original CoGhent Query Builder . 62

3.3 Prefixes and predicates for WHERE clause statements to query for objectname stored as elements in an array . 62

3.4 WHERE clause statements with object variable names constructed using numbers 63

3.5 WHERE clause statements with object variable names constructed from preceding statements 63

3.6 WHERE clause statements with overlapping statements . 63

3.7 WHERE clause statements without overlapping statements . 64

3.8 Properties and prefixes ready to be consumed by query building function . 65

3.9 SPARQL query generated from input displayed in Code Fragment 3.8 . 66

3.10 Example of properties dictionary to illustrate use of filters and optionals . 67

3.11 SPARQL query generated from input displayed in Code Fragment 3.10 . 68

3.12 Function returning a SPARQL query for completing a resource subject’s triple pattern 74

xxiv

Introduction

Digital art collections have long stood as a testament to human creativity and cultural evolution. With the advent of tech-

nology, many of these collections have undergone digitization, making them more accessible to a global audience. This

digitization not only preserves the integrity of the artworks but also offers an opportunity for deeper exploration and un-

derstanding. However, with this digital transformation comes a set of challenges, especially for those without a technical

background. Professionals in the cultural domain and general art enthusiasts, while passionate about art, may not possess

the technical expertise to navigate and query these digitized datasets. This limitation can hinder their ability to make new

discoveries and truly immerse themselves in the digital art world.

Discovering art collections can be interpreted in myriad ways. At its core, discovery is about unearthing new insights, un-

derstanding the nuances of each artwork, and drawing connections that might not be immediately apparent. This research

primarily focuses on retrieving the inherent properties of cultural objects, delving into the intricate details that make each

piece unique. However, the true potential of discovery lies in going beyond the confines of a single dataset. Link traversal

offers this opportunity, allowing for a broader exploration that extends beyond the immediate dataset, unveiling new layers

of knowledge and understanding.

By employing link traversal, one can uncover hidden relationships, gain a deeper understanding of cultural objects, and

even compare different artworks in novel and enlightening ways. This approach is particularly beneficial when exploring

Digitale kunstcollecties belichamen menselijke creativiteit en culturele ontwikkeling. Door technologische vooruitgang zijn

deze verzamelingen gedigitaliseerd, waardoor ze wereldwijd toegankelijk zijn en diepgaand kunnen worden verkend. Toch

brengt het navigeren en bevragen van deze gegevens uitdagingen met zich mee, vooral voor niet-technische professionals

en kunstliefhebbers. Deze beperking belemmert hun vermogen om inzichten te verwerven en volledig op te gaan in de

wereld van digitale kunst.

De gegevens van de Collecties van Gent (CoGhent) worden gepubliceerd volgens de principes van Linked Data, waardoor ze

stevig verankerd zijn in het semantische web. Maar om het volledige potentieel van deze uitgebreide gegevens te benut-

ten, is het gebruik van op Link-Traversal–gebaseerde queryverwerking (LTQP) vereist. Deze innovatieve aanpak verrijkt de

verkenning, onthult verborgen verbanden, biedt dieper inzicht in culturele objecten en vergemakkelijkt nieuwe vergelijkin-

gen tussen kunstwerken. LTQP stelt gebruikers in staat om buiten de grenzen van de dataset te treden, waardoor lagen van

kennis en verbindingen worden blootgelegd die anders verborgen zouden blijven.

Het onderzoek ontledigt het ’ontdekken’ van de CoGhent-gegevens in drie fundamentele onderdelen: het formuleren van

vragen, het uitvoeren van vragenmet behulp van linktraversal - het kernaspect van het onderzoek - en het verwerken van de

resultaten van vragen, met name visualisatie en opslag. Deze opgedeelde aanpak legt de basis voor een diepere verkenning

van de subtiliteiten binnen het domein van digitale kunst en biedt een alomvattend begrip van het onderwerp.the Collections

of Ghent (CoGhent), a collaborative initiative between various cultural institutions. Published in a Linked Data format, the

CoGhent collections are primed for link traversal, enabling a richer and more comprehensive exploration.

This research situates itself at the intersection of art and technology, aiming to bridge the gap between the two. It seeks to

empower both professionals and art enthusiasts to navigate the digital art landscape, harnessing the power of link traversal

tomake new discoveries and drawmeaningful connections. Through a systematic exploration of the Collections of Ghent and

1

0 Introduction

the development of tools tailored for query formulation, this research offers a roadmap for discovering digital art collections

in their entirety.

Chapter 1 elucidates the foundational concepts of Linked Data and their real-world applications. It delves into the core prin-

ciples, datamodeling, and various RDF syntaxes, setting the stage for a deeper exploration of link traversal in the subsequent

chapters.

Chapter 2 focuses on the CoGhent collections, highlighting the potential of link traversal for discovering properties of Human-

Made Objects. It provides an overview of the available data sources and the development of a link traversal engine optimized

for the objectives of this research.

In Chapter 3, the emphasis shifts to the development of user-centric tools for query formulation. Two conceptual web

applications are introduced, designed to alleviate the technical complexities of query formulation for users. The chapter

also discusses the fundamental functionality shared by both web applications, ensuring a cohesive exploration throughout.

Lastly, Chapter 4 addresses the challenges of visualizing and preserving query results. It offers an overview of potential so-

lutions, outlining their advantages and drawbacks, ensuring that the treasures within the CoGhent collections are accessible

and meaningful to all.

2

1
Related Work

The realm of Linked Data, particularly in the context of digital art collections, has witnessed significant advancements. This

chapter seeks to elucidate the foundational concepts and their real-world applications.

Section 1.1 provides an introduction to Linked Data, emphasizing its core principles, data modeling, and various RDF syntaxes.

The section underscores the importance of unique URIs, dereferencing, and data interlinking.

In Section 1.2, the spotlight is on Link-Traversal-based Query Processing (LTQP). Through an example, the intricacies of query-

ing across different documents are unraveled, highlighting the challenges and the specific reachability criteria for link traver-

sal.

Section 1.3 delves into Comunica, a SPARQL query engine. The discussion revolves around its modularity, the foundational

building blocks, and the potential to craft custom engine configurations tailored for distinct link traversal requirements.

Section 1.4 presents the Collections of Ghent (CoGhent) initiative, a collaborative venture between cultural institutions in

Ghent. The adoption of Linked Data Event Streams (LDES) for publishing digital collections is explored, alongside the CoGhent

Query Builder application that aids in query formulation.

Concluding the chapter, Section 1.5 introduces the International Image Interoperability Framework (IIIF). Namely, the role of

IIIF Manifests and IIIF Viewers in the visualization of cultural data is discussed.

These sections provide the foundation for the subsequent chapters, which delve into various stages of a systematic process

for discovering digital art collections. Each chapter builds upon the insights and methodologies presented in this chapter,

ensuring a cohesive exploration throughout.

1.1 Linked Data

This section presents a comprehensive exploration of Linked Data, encompassing its fundamental principles, data modeling,

syntax, query interfaces, and the associated challenges and advantages. In Section 1.1.1, the concept of Linked Data and its

principles are introduced, highlighting the significance of unique URIs, dereferencing, and data interlinking. Section 1.1.2

focuses on the Resource Description Framework (RDF) as the cornerstone for representing relationships and knowledge

connections within Linked Data. Section 1.1.3 provides an overview of RDF syntax, including popular formats such as XML,

3

1 Related Work

Turtle, N-Triples, and JSON-LD, which facilitate the flexible expression and exchange of RDF data. Lastly, Section 1.1.4 briefly

introduces SPARQL, the query language for RDF data This comprehensive examination serves as a solid foundation for the

subsequent discussions on Linked Traversal-based Query Processing.

1.1.1 Introduction and Principles

To better understand the origins of the idea behind Linked Data, it is important to examine the origins of the World Wide Web.

For example, its first, but still rather primitive, underlying technology was introduced in 1989 at CERN. Tim Berners-Lee was

the man responsible for its development. By using HyperText Markup Language (HTML), it enabled scientists, and later the

rest of the world, to publish documents that could contain links to other documents. This helped create amesh of documents

and information. However, since these documents in fact contained nothing more than raw data dumps and links between

documents represented simply an indication of how to reach the document, these documents and their relationships lacked

semantics. Figure 1.1 illustrates what a web of documents without unambiguous indications of what their contents and the

links between them represent, might look like. It is necessary to note here that the used icons are not the contents of their

respective documents, but only a representation of their contents. Nevertheless, in themselves, they prove the weakness of

such web as much as when the effective content of the documents had been represented. After all, just from the raw content

of documents and their mutual links, a person cannot clearly infer exactly what their constellation represents, let alone a

computer. From that deficiency, therefore, emerged the idea of Linked Data. (Jacksi and Abass, 2019) (Bizer et al., 2011)

Figure 1.1: Representation of a web of documents without unambiguous indications of what the documents and the links

between them represent

Simply put, data coming from different sources can be labeled as Linked Data as soon as they are linked by typed links.

In other words, links are no longer just an indication of how to reach another document. Indeed, within the Linked Data

story, they also contain information about what exactly the link in question represents. Linked Data thereby ensures the

4

1 Related Work

meaning of data is explicitly defined, in turn rendering the data machine-readable. Figure 1.2 represents the same web of

documents as Figure 1.1, but this time in accordance with the idea of Linked Data. Indeed, the documents have been given an

unambiguous indication of what they represent, and their mutual semantics have also been clarified thanks to the labeling

of their links. (Bizer et al., 2011)

Figure 1.2: Representation of a web of documents composed according to the spirit of Linked Data

Although several technologies exist to achieve the goals of Linked Data, the use of URIs is essential. After all, since URIs

are unique, they can unambiguously reference a particular entity. Practically speaking, the URIs that appear in a Linked

Data document can be dereferenced using the HTTP protocol in order to retrieve the underlying entities. For instance,

https://stad.gent/id/concept/530010539, is a URI that can be dereferenced using the HTTP(S) protocol.

By dereferencing URI after URI in this way, little by little a - what could be called - field of information unfolds, whose

semantics can be unambiguously determined by both man and machine. (Bizer et al., 2011)

To clarify the concept of Linked Data, Berners-Lee (2006) put forth four principles to be taken into consideration.

1. Use URIs as names for things

The principle of using URIs has already been discussed above.

2. Use HTTP URIs so that people can look up those names

The principle of using the HTTP protocol to dereference URIs was also touched on above. Nevertheless, it is important

to reiterate its importance, as there are other protocols besides HTTP for dereferencing URIs. However, these will

technically differ from the HTTP protocol, each in its own different ways. For example, not using the ubiquitous

Domain Name System (DNS), is, among others, a common practice among alternative protocols. However, in light of

clarity and uniformity, as well as for other technical reasons, the HTTP protocol should be adhered to. (Berners-Lee,

2006)

5

1 Related Work

3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL)

Obviously, it would not fit within the spirit of Linked Data to obtain a raw data dump when dereferencing a URI that

was included from another document as a Linked Data link. The obtained data itself must comply with Linked Data

principles. Therefore, there are some standards that clearly indicate how ontologies can be described. Consequently,

to enable the construction of applications that deal with Linked Data, it goes without saying that a Linked Data

document should be built according to the principles of an existing standard. RDF is the most common such standard

and is therefore discussed further in Sections 1.1.2. In addition, Section 1.1.4 introduces the SPARQL query interface.

After all, large datasets are expected to also provide such interface. (Berners-Lee, 2006)

4. Include links to other URIs so that they can discover more things

The fourth and final principle, too, is rather obvious. After all, by definition, one can only speak of Linked Data when

a document refers to at least one other document. In addition, to help advance the cause of transforming the World

Wide Web in its current form into a semantic World Wide Web, aided by the concepts of Linked Data, it is preferable

to also include links to documents belonging to other sites. (Berners-Lee, 2006)

In conclusion, Linked Data plays a crucial role in giving meaning to the Web by enabling the interconnection and integration

of diverse data sources. By adhering to the principles of unique URIs, dereferencing, linking, and using standardized formats,

Linked Data fosters a more structured and interconnected web of knowledge. Examples such as DBpedia1 , which provides a

structured representation of Wikipedia data, and Friend of a Friend (FOAF), which allows for the description of people and

their relationships, illustrate how publishing data as Linked Data benefits from enhanced data discoverability, interlinking

with other datasets, and enabling novel applications and insights. Local initiatives like Collections of Ghent (CoGhent2), which

digitizes art collections from cultural houses in Ghent and will be further discussed in Section 1.4, similarly demonstrate the

potential of Linked Data for local organizations in contributing to the broader web of knowledge. (Auer et al., 2007) (Golbeck

and Rothstein, 2008) (Van de Vyvere et al., 2022)

1.1.2 Resource Description Framework

The idea behind Linked Data is interesting in itself, but does not yet describe exactly how to get started with it. There-

fore, this section introduces the Recourse Description Framework (RDF). Developed under the auspices of the World Wide

Web Consortium (W3C), RDF is an infrastructure that allows for the construction of Linked Data datasets and their meta-

data. Consequently, this not only allows data publishers to lay out their data as Linked Data, but also gives data consumers

clear guidance on how the data can be understood. Note here that data consumers can be both individuals and computer

applications. (Miller, 1998)

An interesting way to understand RDF is to first make a jump to the English language. Take the sentence below:

The birthplace of Georges Seurat is France.

According to English grammar, the who or what around which a sentence revolves, is called the subject of the sentence.

Therefore, when looking at the sentence above, Georges Seurat is its subject. In addition, the part of a sentence that gives

1https://www.dbpedia.org
2https://www.collections.gent

6

https://www.dbpedia.org
https://www.collections.gent

1 Related Work

more information about the subject, is referred to as the predicate, making the birthplace the predicate in the above sentence.

Finally, the matching value complementing the predicate and completing the sentence, is also of importance. Logically, in

the case of the sentence above, that would be France. Together, these three components form the most basic building blocks

of a sentence. In fact, no matter their lengths, combined, they will always establish a piece of knowledge, exactly what RDF

also seeks to accomplish. (Powers, 2003)

The building blocks of RDF data are basically exactly the same as those of linguistic sentences. After all, they are also three

in number and even partly share the same names. Moreover, much like with sentences, combined, they form a single yet

very clear piece of knowledge. Unlike the English language, however, they are not referred to as sentences. Rather, they are

called triples. (Powers, 2003)

• Resource

Miller (1998) defines a resource as any object that is uniquely identifiable by a URI. This enables it to come in different

forms: as a web page, as an entire website or simply as any resource on the Web that conveys information in one

way or another. (Candan et al., 2001)

To make the comparison with the English language again, in a triple, the resource corresponds to the subject in a

sentence. Moreover, in practice, the term subject is often preferred over resource. (Powers, 2003)

• Property Type

A property type, or simply a property, introduces a specific aspect, characteristic, attribute, or relationship of a re-

source. A property type always expects a value to ultimately define the piece of knowledge represented by a triple.

(Candan et al., 2001) (Miller, 1998)

As for property types, in practice, the corresponding term from the English language, predicate, is also frequently

used as opposed to the more theoretical property type. (Powers, 2003)

• Value

A value resolves the concept or relationship initiated by a property type. In this way, it captures the knowledge

conveyed by the triple. Values can be represented as text strings, numbers, or any atomic data. However, they

can also be resources themselves. This characteristic allows triples therefore to be the building blocks of a web of

knowledge. (Miller, 1998)

It is evident that a value in a triple corresponds to a value in an English sentence. However, in practice, the term

object is often preferred. (Powers, 2003)

While triples convey a clear and distinct piece of knowledge, a collection of triples can naturally convey amore comprehensive

knowledge. Such a collection of triples, interconnected by values that are themselves resources, is also referred to as an RDF
description. Figure 1.3 illustrates what such an RDF description might look like. Additionally, it is important to note that each

of its components, whether it be a resource, property type, or value, does not necessarily have to be a digital concept. After

all, Web assets can perfectly represent real-life concepts. (Miller, 1998) (Candan et al., 2001)

Clearly, different terms exist to denote the same RDF concepts. For instance, in addition to the synonyms mentioned above,

in literature, the term statement is sometimes preferred over triple. However, in light of uniformity and clarity, throughout

7

1 Related Work

Figure 1.3: Representation of an RDF description

Circles represent resources, arrows represent property types and values are situated at the end of arrows

the rest of this text, the terms triple, subject, predicate and object will be used instead of their counterparts. (Candan et al.,

2001)

1.1.3 RDF Syntaxes

What constitutes RDF exactly, should be clear by now, but the question of how to actually write down RDF descriptions, still

remains to be answered. Therefore, this section introduces some RDF syntaxes. However, since they are not the focus of this

research, they will not be discussed in detail. Instead, their outlines will be illustrated by presenting the RDF description

from Figure 1.3 in the syntax in question. Incidentally, since the schema presented in Figure 1.3 also has clear guidelines on

how to be used, in itself, it also qualifies as an RDF syntax, albeit a graphical one. (Miller, 1998)

All the syntaxes to be discussed are instantiations of the RDF Model and Syntax Specification, providing concrete implemen-

tations. However, the first syntax stands apart from the rest as it primarily serves as a notation recommendation for humans

to express RDF descriptions in a manner that is unambiguous yet simple. Unlike the other syntaxes, this particular one is

not intended for machine consumption. Code Fragment 1.1 demonstrates how the RDF description, as schematically depicted

in Figure 1.3, can be represented using this human-centric syntax. In this representation, resources are enclosed in straight

brackets, while property types are represented by arrows. Furthermore, the representation of values varies depending on

their types. As denoted, resources are encapsulated within brackets. However, if the values are atomic in nature, they are

simply enclosed in quotation marks. (Miller, 1998)

The example from Code Fragment 1.1 is easy to read, but at the same time rather confusing. Indeed, certain resource names

correspond to certain atomic values. One could of course try to give the resources a more generic name to indicate what

exactly the resource in questionmeans. However, thatwouldmake little sense given theway the followingmachine-readable

8

1 Related Work

[The Circus] ------name--------> "The Circus"
[The Circus] ------painter-----> [Georges Seurat]
[Georges Seurat] --name--------> "Georges Seurat"
[Georges Seurat] --birthplace--> [France]

Code Fragment 1.1: RDF description depicted using a human-centric RDF syntax

RDF syntaxes refer to resources. After all, they use URIs, allowing for a more clear distinction between resources and atomic

values.

• N-Triples

Code Fragment 1.2 depicts the representation of the RDF description using N-Triples. In this syntax, each line corre-

sponds to a triple, wherein the subject, predicate, and object are delimited by spaces or tabs. The triple is terminated

by a period and a new line character. (Beckett, 2014)

<http://example.org/The_Circus> <http://example.org/name> "The Circus" .
<http://example.org/The_Circus> <http://example.org/painter> <http://example.org/Georges_Seurat> .
<http://example.org/Georges_Seurat> <http://example.org/name> "Georges Seurat" .
<http://example.org/Georges_Seurat> <http://example.org/birthplace> <http://dbpedia.org/resource/France> .

Code Fragment 1.2: RDF description depicted using the N-Triples syntax

Furthermore, absolute URIs are employed to denote resources, while atomic values are enclosed within quotation

marks. With that in mind, it is important to note that if a value itself contains a quotation mark, it must be properly

escaped to ensure correct interpretation. (Beckett, 2014)

• N3

Parsing an RDF description in N-Triples syntax is relatively straightforward for computers, but it can be challenging

for humans to comprehend at a glance. The use of absolute URIs in N-Triples can lead to visual clutter and hinder

readability. To address this, the N3 syntax builds upon N-Triples by introducing the concept of relative URIs. (Beckett,

2014)

In N3, it is possible to specify a base URI by including a @base <URI> directive at the beginning of the document.

When a relative URI is encountered elsewhere in the document, the parser appends it to the specified base URI. This

allows for a more concise representation of URIs. (Berners-Lee and Connolly, 2011)

However, RDF descriptions may contain URIs with different base URIs, making a single base URI insufficient. To

overcome this limitation, N3 allows the document to be preceded by one or more @prefix prefix: <URI>
directives. These directives associate prefixes with URIs, and the parser appends any relative URI preceded by a prefix

to the corresponding base URI associated with that prefix. This mechanism enables the use of multiple base URIs

within the same document and enhances the flexibility and expressiveness of the N3 syntax. Code Fragment 1.3

illustrates the use of prefixes for the N3 syntax. (Berners-Lee and Connolly, 2011)

• Turtle

The Turtle syntax is very similar to N3. In fact, Turtle is a subset of N3. Specifically, Code Fragment 1.3 can be processed

9

1 Related Work

@prefix ex: <http://example.org/> .
@prefix dbp: <http://dbpedia.org/resource/> .

ex:The_Circus ex:name "The Circus" .
ex:The_Circus ex:painter ex:Georges_Seurat .
ex:Georges_Seurat ex:name "Georges Seurat" .
ex:Georges_Seurat ex:birthplace dbp:France .

Code Fragment 1.3: RDF description depicted using the N3 and Turtle syntaxes

by a Turtle parser just as well. However, while N3 allows for more expressiveness in principle, Turtle keeps things

simpler, making it a popular choice for human readability. (Berners-Lee and Connolly, 2011) (Beckett et al., 2014)

Providing an exhaustive list of the precise differences between the two syntaxes would exceed the scope of this text

since the intricacies of RDF syntaxes are not the primary focus here.

• RDF/XML

RDF/XML is one of the earliest RDF syntaxes and remains widely used. To introduce this syntax, Code Fragment 1.4

serves as a guide.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex="http://example.org/"
xmlns:dbp="http://dbpedia.org/resource/">

<rdf:Description rdf:about="http://example.org/The_Circus">
<ex:name>The Circus</ex:name>
<ex:painter rdf:resource="http://example.org/Georges_Seurat"/>

</rdf:Description>
<rdf:Description rdf:about="http://example.org/Georges_Seurat">

<ex:name>Georges Seurat</ex:name>
<ex:birthplace rdf:resource="http://dbpedia.org/resource/France"/>

</rdf:Description>
</rdf:RDF>

Code Fragment 1.4: RDF description depicted using the RDF/XML syntax

The RDF description in RDF/XML is enclosedwithinrdf:RDF elements, where necessary prefixes can also be defined.

While an XML declaration like <?xml version="1.0"?> can precede the RDF/XML document, it is optional and

omitted in Code Fragment 1.4 to focus primarily on the basics of RDF syntaxes. (Gandon et al., 2014)

Upon encountering therdf:RDF tag, a parser recognizes that it should process an RDF description. In RDF/XML, such

anRDF description is constructed using one ormorerdf:Description elements. In fact, eachrdf:Description
element represents a subject, and its optional rdf:about attribute denotes the subject’s URI. Consequently, the

triples associated with the subject are enclosed within the correspondingrdf:Description tags. Predicates on

the one hand, whether represented using a prefix or not, have their own elements. The representation of subjects, on

the other hand, depends on their nature: for atomic values, they can simply be placed between opening and closing

10

1 Related Work

subject tags, while for resource subjects, their URIs are included as the value of anrdf:resource attribute within

the subject tag. (Gandon et al., 2014)

Once again, it is important to note that the Code Fragments used in this section provide only an introductory glimpse

of the proposed syntaxes. They cover only a small portion of the potential scope of a syntax. Code Fragment 1.4, in

particular, demonstrates that RDF/XML syntax can obscure simplicity, especially when dealing with more extensive

RDF descriptions. Consequently, RDF/XML is not commonly used for human-readable purposes but rather as a syntax

primarily intended for machine consumption. (Dongo and Chbeir, 2019)

• JSON-LD

The final RDF syntax introduced is called JSON-LD. Similar to RDF/XML, JSON-LD builds upon an existing syntax for

representing data on the web. However, JSON-LD representations are generally more human-readable. As most

resources and examples in the following text will be presented in JSON-LD, a slightly more comprehensive overview

of this syntax is provided compared to the previous ones. Nevertheless, what follows is not an exhaustive listing

of all the intricacies of the syntax. Instead, it aims to offer readers a concise introduction to JSON-LD without prior

knowledge, making the rest of the text more easily comprehensible. For those seeking more in-depth information

about JSON-LD, it is recommended to consult other sources3 .

It is evident that the same data can be represented in various ways, and this applies to RDF data as well. While the

visual representation of an RDF description, as depicted in Figure 1.3, is relatively straightforward, converting it into

a fully textual format poses certain choices to be made. After all, there are numerous possibilities regarding the

exact data representation. In the introduction of previous syntaxes, a specific representation was chosen each time.

However, in this section, three different approaches for representing the same set of data using the JSON-LD syntax

are presented.

To start off, Code Fragment 1.5 closely resembles the previous examples, using nesting to store all the data in a single

JSON-LD document. However, somemay questionwhether it is appropriate tomake theGeorge_Seurat resource

a child of The_Circus resource, implying a hierarchical relationship that may not be relevant.

Subsequently, in Code Fragment 1.6, the data is split into two JSON-LD documents. Utilizing URIs, the documents can

still refer to each other uniquely, without suggesting any hierarchical relationship between the resources.

Finally, Code Fragment 1.7 takes a distinct approach by using the @graph property. This allows listing the necessary

resources in a JSON array, placing them on equal footing within a single document. However, this method introduces

extra clutter and overhead compared to the previous approaches. (Sporny et al., 2020)

Ultimately, the choice of representation depends on the specific use case and the desired balance between simplicity

and expressiveness. Each approach has its advantages and trade-offs, showcasing the flexibility of the JSON-LD

syntax in accommodating different data representation needs.

Understanding Code Fragments 1.5, 1.6, and 1.7 becomes relatively straightforward after having discussed the previous

syntaxes. However, two aspects deserve further attention: the use of @id and @context keywords in JSON-LD.

3The W3C JSON-LD 1.1 Recommendation provides very in-depth information about the JSON-LD syntax: https://www.w3.org/TR/json-ld11/.

11

https://www.w3.org/TR/json-ld11/

1 Related Work

{
"@context": {

"ex": "http://example.org/",
"dbp": "http://dbpedia.org/resource/"

},
"@id": "ex:The_Circus",
"ex:name": "The Circus",
"ex:painter": {

"@id": "ex:Georges_Seurat",
"ex:name": "Georges Seurat",
"ex:birthplace": "dbp:France"

}
}

Code Fragment 1.5: RDF description with nested objects depicted using the JSON-LD syntax

Document 1:
{
"@context": {

"ex": "http://example.org/"
},
"@id": "ex:The_Circus",
"ex:name": "The Circus",
"ex:painter": "ex:Georges_Seurat"

}

Document 2:
{
"@context": {

"ex": "http://example.org/",
"dbp": "http://dbpedia.org/resource/"

},
"@id": "ex:Georges_Seurat",
"ex:name": "Georges Seurat",
"ex:birthplace": "dbp:France"

}

Code Fragment 1.6: RDF description spread over two documents depicted using the JSON-LD syntax

12

1 Related Work

{
"@context": {

"ex": "http://example.org/",
"dbp": "http://dbpedia.org/resource/"

},
"@graph": [

{
"@id": "ex:The_Circus",
"ex:name": "The Circus",
"ex:painter": {
"@id": "ex:Georges_Seurat"

}
},
{
"@id": "ex:Georges_Seurat",
"ex:name": "Georges Seurat",
"ex:birthplace": {
"@id": "dbp:France"

}
}

]
}

Code Fragment 1.7: RDF description as a graph depicted using the JSON-LD syntax

13

1 Related Work

Firstly, the @id keywords uniquely identify the proposed resources using URIs. Indeed, in the given examples, the

id’s do exactly that. (Sporny et al., 2020)

Secondly, the@context keyword plays a crucial role in JSON-LD. It introduces specifics that can be taken for granted

in the actual data, reducing the need for repetitive information and cleaning up the actual JSON. While Code Frag-

ments 1.5, 1.6, and 1.7 use the context in a straightforward way by introducing prefixes, in practice, it can do more than

that. Essentially, the context maps terms to URIs. These terms can be freely chosen to enhance human readability.

(Sporny et al., 2020)

W3C’s JSON-LD Recommendation4 offers a valuable example of how the context is typically used, as illustrated in

Code Fragment 1.8. The provided context clearly indicates that when the key name appears in the data, it refers

to http://schema.org/name. Similarly, for image and homepage, their respective values are expanded
into objects that hold additional information. The @type keyword is also used in the example to indicate the type

of the final value. In Code Fragment 1.8, it shows that the image and homepage keys are followed by an @id,
representing unique resources. Moreover, JSON-LD supports various other types, and custom types can be defined to

suit specific requirements. (Sporny et al., 2020)

{
"@context": {

"name": "http://schema.org/name",
"image": {
"@id": "http://schema.org/image",
"@type": "@id"

},
"homepage": {
"@id": "http://schema.org/url",
"@type": "@id"

}
},
"name": "Manu Sporny",
"homepage": "http://manu.sporny.org/",
"image": "http://manu.sporny.org/images/manu.png"

}

Code Fragment 1.8: Example of context use in JSON-LD, proposed by Sporny et al. (2020)

To further enhance the cleanliness of a JSON-LD document, one can opt to store the context as a separate resource

rather than embedding it directly in the document. Using this approach, the JSON-LD document includes the URI that

references the context as the value for the @context key. Storing the context separately allows for greater mod-

ularity and reusability, making it easier to manage and maintain complex JSON-LD documents. The use of separate

contexts can significantly improve the organization and readability of JSON-LD data, enhancing its compatibility with

RDF and Linked Data principles. (Sporny et al., 2020)

4https://www.w3.org/TR/json-ld11/

14

https://www.w3.org/TR/json-ld11/

1 Related Work

To finish off this section on JSON-LD, it is interesting to note that when the JSON-LD document presented in Code

Fragment 1.8 is expanded, the data takes on its typical RDF form, adhering fully to the Linked Data principles. This

expansion, as shown in Code Fragment 1.9, reveals the underlying structure of the data and its connection to other

resources. (Sporny et al., 2020)

[{
"http://schema.org/name": [{"@value": "Manu Sporny"}],
"http://schema.org/url": [{ "@id": "http://manu.sporny.org/" }],
"http://schema.org/image": [{ "@id": "http://manu.sporny.org/images/manu.png" }]

}]

Code Fragment 1.9: Example of an expanded JSON-LD document, proposed by Sporny et al. (2020)

In summary, the @id and @context keywords in JSON-LD contribute to the readability, expressiveness, and flexi-

bility of representing RDF data, enabling a more human-friendly approach to data serialization.

Before concluding this section on RDF syntaxes, it is crucial to reiterate that the explanations provided are not exhaustive.

Only a surface-level overview of these syntaxes was covered, and there is much more to explore and learn about them.

This section serves as a reference for those with limited or no prior knowledge of RDF syntaxes, aiming to facilitate their

understanding of the remaining text. In the following sections, several RDF examples will be presented, with the majority

of them using the Turtle and JSON-LD syntaxes. However, there will be no further elaboration on new elements that are

specific to each syntax unless they are essential for a clear understanding of the text. For readers seeking a more in-depth

understanding of the syntaxes, additional resources are recommended to further explore their intricacies and capabilities.

1.1.4 SPARQL

SPARQL is a set of specifications that describes how to work with RDF data. The latest version of SPARQL is SPARQL 1.1,
which, among others, stipulates the workings of an update language, query results formats, and federated querying. But

arguably most importantly, it defines the SPARQL query language. (Buil-Aranda et al., 2013)

The SPARQL query language is designed for querying RDF data sources. While CONSTRUCT queries return results as new

RDF data, queries with a SELECT clause return specific data points. This research exclusively focuses on the latter type of

queries. (Seaborne and Harris, 2013)

The SELECT clause specifies which variables - in their original form or modified - should be returned as results from the

WHERE clause. The WHERE clause in turn defines the basic graph pattern (BGP) that the datasource(s) need to match. Such

a BGP consists of one or more triple patterns that are matched one by one with the triples from the queried dataset(s). Triple

patterns are similar to regular triples, but the subject, predicate, and/or object can be replaced with a variable. When a triple

patternmatches a triple, each of its variables is combinedwith the value of the corresponding triple’s corresponding element,

into a binding. In subsequent triple patterns, previously encountered variables can reappear, allowing their corresponding

bindings to already narrow down the list of possible matching triples. (Seaborne and Harris, 2013)

The SELECT and WHERE clauses are essential to SPARQL queries, but SPARQL provides many other keywords to further

specify queries. For instance, FILTER statements can subject variable values to additional tests, wrapping certain triple

15

1 Related Work

patterns in an OPTIONAL clause alleviates them from necessarily being matched, and requesting only unique results can

be done using DISTINCT. More advanced options include merging different result sets using the UNION keyword, ag-

gregating results with a GROUP BY statement, and manipulating variable values on the spot using a BIND form. Basic

query necessities like setting a limit (LIMIT) and an offset (OFFSET) are also available. Finally, queries can be made

more readable and organized by using PREFIX statements at the top of the query, preventing the need of writing out full

URIs. In conclusion, the use and combination of any of these keywords make it possible to craft a wide range of queries. The

queries presented throughout this research can generally be considered simple and should therefore be comprehensible to

readers who are new to the subject. However, for those interested, Section 1.4.3 already provides some example queries to

explore. (Seaborne and Harris, 2013) (DuCharme, 2013)

Up to this point, the terms triple and triple pattern have been used exclusively. However, it is important to note that in

literature, the terms quad and quad pattern also often appear. Essentially, quads are the same as triples but they introduce a

fourth element, namely a named graph. In fact, these named graphs group certain triples and allow datasets to be subdivided

further. This research does not further discuss nor employ named graphs, yet since the term quad is more specific, from this

point onward, it will be used in favor of the term triple. (Taelman, 2020)

1.2 Link-Traversal-based Query Processing

The vision behind Linked Data is a compelling one: a web of interconnected data that can be seamlessly queried and navi-

gated. However, the practicalities of querying this vast, decentralized network using tools like SPARQL over RDF represen-

tations present challenges. How does one effectively access and integrate data scattered across diverse sources? This is

where Link Traversal-based Query Processing (LTQP) - often simply referred to using the broader term link traversal - be-

comes indispensable. By dynamically traversing links between documents, LTQP offers a solution that is not confined to a

static dataset but instead capitalizes on the web’s inherent interconnectivity. Through this method, the promise of Linked

Data moves a step closer to its practical realization in a decentralized web environment. In Section 1.2.1, a deeper dive into

the foundational mechanisms of link traversal is presented, leading to Section 1.2.2 exploring possible criteria that determine

which links should be pursued during the query process. (Hartig and Freytag, 2012) (Taelman, 2023)

1.2.1 Link Traversal Basics

Whereas conventional SPARQL query processing is confined to the scope of the predetermined dataset(s), link traversal

can, in principle, involve the entire RDF web in the query process by following the URIs - links - between RDF documents.

The querying dataset is, in other words, dynamically expanded. To discuss this link traversal query process, the documents

depicted in Code Fragment 1.6 are used. The query engine is instructed to find the birthplace of the painter of the painting

The Circus, but initially only receives the URI to the first document. The specific query is shown in Code Fragment 1.10.

1. Initialization

The process starts with a link queue populated with seed URIs, either user-defined or derived from the query. For

this example, the seed URI is derived from the query and points to the document containing the The Circus painting’s
resource.

16

1 Related Work

2. Iteration and Appending

During the iteration process, the link at the head of the queue is accessed, leading to the associated document. All

URIs from that document are then added back into the queue. In this example, after accessing the document with

the The Circus resource, the link associated with the Georges Seurat resource leads to the second document in Code

Fragment 1.6. Furthermore, during this process, the http://dbpedia.org/resource/France link would

also be added to the link queue. From this resource’s document, other links might be discovered and added to the

queue, and so on.

3. Query Execution

The query runs over the union of all the RDF triples from the discovered documents. For this example, this results in

identifying France as the birthplace of the painter of The Circus.

(Taelman, 2023)

PREFIX ex:<http://example.org/>

SELECT ?birthplace

WHERE {
ex:The_Circus ex:painter ?painter.
?painter ex:birthplace ?birthplace.

}

Code Fragment 1.10: SPARQL query querying data that is spread over the two documents displayed in Code Fragment 1.6

It is important to note that link traversal is theoretically an infinite process. As links lead to more documents, which in

turn contain more links, the process can continue indefinitely. This is also apparent from the example. Indeed, during the

iteration process, it is very likely the query engine would have had to follow an enormous - possibly infinite - collection of

links, as the http://dbpedia.org/resource/France resource might introduce other links, which in turn might

introduce other links as well, and so on. This highlights the importance of introducing criteria to determine which links

should be pursued and which should be ignored, ensuring more efficient query processing. (Taelman, 2023) (Hartig and

Freytag, 2012)

1.2.2 Reachability Criteria

In LTQP, determining which links to traverse is essential. Hartig and Freytag (2012) introduced the concept of reachability
criteria to guide this decision-making process:

• cAll
This criterion represents themost unrestricted approach to link traversal. It allows for arbitrary paths to reach Linked

Data documents by following every possible link without any constraints. This approach adheres to the most basic

idea of link traversal, ensuring comprehensive data retrieval but potentially leading to information overload.

17

1 Related Work

• cNone
This is the exact opposite of cAll. It is the most restrictive criterion, where no links are pursued at all. Effectively, link

traversal is disallowed, confining the process strictly to the initial document.

• cMatch
This criterion is based on query pattern-based reachability. Specifically, a link is pursued only if the quad it is part

of corresponds to a specific quad pattern in the executed query. This approach offers a more targeted traversal,

ensuring that only relevant links corresponding to the query patterns are followed.

(Hartig and Freytag, 2012)

While these criteria provide foundational strategies for traversal, they represent theoretical approaches. In practice, the

actual traversal might be influenced by various factors, and more intricate rules can be devised to steer an LTQP engine.

In the section that follows, namely Section 1.3, a system is introduced that allows for easy configuration of custom SPARQL

query engines - link traversal engines as well - in turn allowing for the practical implementation of the aforementioned link

traversal strategies, as well as new ones.

1.3 Comunica

While various solutions exist for querying RDF data using SPARQL, Comunica5 stands out for several reasons. Beyond its

capability to support heterogeneous interfaces, allowing for seamless querying across diverse data sources like data dumps,

RDF documents, SPARQL endpoints and Triple Pattern Fragments (TPF) interfaces, it is built on and using web-based tech-

nologies. This ensures broad compatibility and easy integration with browsers and web applications. However, Comunica’s

defining characteristic is arguably its modularity. Users can choose from existing configurations or craft custom ones, cre-

ating query engines tailored to specific needs. The technical foundations that enable this modular approach are elaborated

upon in Section 1.3.1. (Taelman et al., 2018)

1.3.1 Building Blocks

Comunica’s unique modularity is achieved through an architectural design in which three types of components are core.

• Actors

Actors are the primary computational units in Comunica. They are responsible for processing specific messages they

receive via the buses they are subscribed to. Each actor is designed to accept certain types of messages and respond

accordingly, ensuring efficient and targeted processing.

• Buses

Buses serve as communication channels in Comunica. They facilitate the interaction between actors and mediators.

To optimize performance and prevent congestion, Comunica employs multiple buses, each catering to different types

of messages. This separation ensures that each bus handles specific tasks, streamlining the communication process.

5https://comunica.dev

18

https://comunica.dev

1 Related Work

• Mediators

Mediators play a pivotal role in determining the best actor for a given task. They are connected to a single bus and

operate in two phases: the test phase and the run phase. Initially, in the test phase, mediators evaluate the conditions

under which each actor on the bus can perform a task. Once the most suitable actor is identified, the run phase is

initiated, where the chosen actor processes the message and returns the result.

(Taelman et al., 2018)

Comunica is not only modular, but it also boasts a highly adaptable interface thank to its integration with Component.js,
a dependency injection framework. This framework allows for the semantic description of Comunica components in JSON-

LD format, facilitating the dynamic selection and combination of components based on configuration files. As a result,

Comunica can serve diverse purposes, from executing SPARQL queries to custom RDF parsing. The platform already offers a

wide range of modules6 , including buses, mediator types, and actors. Moreover, while it also already offers predetermined

engine configurations7 that combine these modules, users are also empowered to craft their own configurations, tailoring

engines to their specific needs. (Taelman et al., 2018)

1.3.2 Link Traversal Engines

A review of the Comunica GitHub repository8 reveals a comprehensive set ofmodules and configurations. Many of thesemod-

ules serve to establish Comunica as a proficient standard query engine. However, a distinct subset is dedicated to enhancing

the engine with LTQP capabilities, and these components are systematically organized in a separate GitHub monorepo9 .

Central to this repository are various link extractors, which determine which links the engine should add to its link queue,

effectively defining its reachability criteria. For instance, the All Extract Links Actor10 and the Quad Pattern Query Extract
Links Actor11 are two actors that implement the cAll and cMatch reachability criteria that were introduced in Section 1.2.2.

Furthermore, the repository includes additional methodologies. Actors such as the Predicates Extract Links Actor12 and the

Tree Extract Links Actor13 introduce strategies that were not discussed. Specifically, the former instructs the query engine

to solely follow links from quads that align with a series of given predicate rules, while the latter ensures the traversal of

links that typically appear in documents that follow the TREE specification - this specification will be briefly mentioned in

Section 1.4.1. (Taelman, 2019)

6https://github.com/comunica/comunica/tree/master/packages
7https://github.com/comunica/comunica/tree/master/engines
8https://github.com/comunica/comunica
9https://github.com/comunica/comunica-feature-link-traversal
10https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-all
11https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-quad-pattern-query
12https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-predicates
13https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-extract-tree

19

https://github.com/comunica/comunica/tree/master/packages
https://github.com/comunica/comunica/tree/master/engines
https://github.com/comunica/comunica
https://github.com/comunica/comunica-feature-link-traversal
https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-all
https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-quad-pattern-query
https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-predicates
https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-extract-tree

1 Related Work

In summary, Comunica’smodular and adaptable design allows for diverse and profound capabilities in LTQPwithin the Linked

Data landscape.

1.4 Collections of Ghent

This research mainly focuses on the data of Collections of Ghent14 (CoGhent), or Collectie van de Gentenaar15 (CoGent) in

Dutch. CoGhent is a collaborative effort involving the city of Ghent, Design Museum Gent, Digipolis, and other local organi-

zations in Ghent. CoGhent was established with the aim of collecting and digitizing the city’s cultural heritage into a central

collection. This collection serves not only as an archive but also as an interactive platform. Residents of Ghent are encour-

aged to contribute their own heritage stories and objects, creating a vibrant blend of official history and personal narratives

within the collection. (Van Leemputten, 2020) (Schouppe, 2022)

However, more important for this research is the data specifically published by the participating cultural institutions. These

institutions include Design Museum Gent (DMG), Huis van Alijn (HVA), Industriemuseum, STAM, and Archief Gent. Like many

other cultural institutions, they use a content management system (CMS) to manage their data. However, to make their

data interoperable and open, CoGhent decided to build Linked Data Event Stream (LDES) endpoints on top of these systems.

(CoGhent, 2023b) (Van de Vyvere et al., 2022)

Before delving deeper into these LDESs, it should be noted that the CoGhent partnership was terminated in June 2023 due to

the discontinuation of project funding. However, the infrastructure remains up and running, allowing working with the data

to continue. This information was obtained through personal email correspondence with Olivier Van D’huynslager, Strategic
Project Manager and Content Lead at CoGhent.

1.4.1 Linked Data Event Streams

The CoGhent data, being hosted in LDES, inherently adopts the RDF format, positioning the data within the web of Linked

Data. An LDES is characterized by its collection of immutable objects, with each object being represented by RDF triples. This

immutability is crucial, signifying that once an object is added to the LDES, it remains unchanged. Instead of updating existing

objects, new versions are introduced. The LDES specification provides guidelines on versioning, enabling data consumers to

differentiate between various versions of the same object. Furthermore, the inherent immutability suggests that objects are

not to be deleted by default. Only when the LDES specifies a particular retention policy (or a combination of them), is the

server allowed to delete objects. (Colpaert, 2023a)

LDESs are highly suitable for involving rapidly growing and evolving datasets in the Linked Data web. However, even when

speed is not the primary concern, LDESs are a great option for publishing collections of equivalent objects. For sure, this is the

casewith the CoGhent LDESs. Additionally, LDESs can becomequite large. Therefore, they are fragmented into different pages.

To describe this technically, LDESs rely on the TREE specification. The TREE specification allows various relationships between

HTTP resources to be defined. As the name suggests, this can even establish very complex tree-like structures. To put it simply,

all resources belong to the same tree:Collection but are divided into different tree:Nodes. These nodes are then

14https://www.collections.gent
15https://www.collectie.gent

20

https://www.collections.gent
https://www.collectie.gent

1 Related Work

linked together in specific ways using tree:Relations. These relations can describe various types of relationships, but

in the case of LDESs, the different tree:Nodes - pages - are simply interconnected in a two-dimensional manner using

tree:LessThanRelations and tree:GreaterThanRelations. The pages’ timestamps ultimately help these

two types of relations in arrangin the pages from newest to oldest. (Colpaert, 2023a) (Colpaert, 2023b)

1.4.2 Human-Made Objects

CoGhent’s LDESs, specifically, consist of various Human-Made Objects (HMO). These HMOs represent tangible and intangible

items crafted or influenced by humans, ranging fromartworks, books, andmonuments to traditions, crafts, and the ideas they

convey. The Open Standaarden voor Linkende Organisaties (OSLO) initiative plays a pivotal role in standardizing the way they

are described and exchanged. Essentially, OSLO is a framework set by the Flemish government to ensure a uniform method

of data exchange. In addition, as is the case with all OSLO’s standards, HMOs align with international standards to ensure

semantic interoperability and a consistent approach to data representation within the cultural heritage domain. Throughout

the rest of this research, Human-Made Objects (HMOs)will be predominantly equatedwith artworks for the sake of simplicity.

Nonetheless, it is imperative to underscore that this terminology is a notable simplification, as the termHuman-Made Object
encompasses a broad spectrum of items beyond just artworks. (Van de Vyvere et al., 2022) (Vanderperren, 2021) (van der

Linden, 2021)

1.4.3 Example Queries

On its documentation website16 , CoGhent (2023a) provides some examples of queries that can be used to query their LDESs.

Three of them are discussed here because they not only offer an initial insight into the type of data present in the LDESs but

also potentially highlight challenges.

The first example is presented in Code Fragment 1.11 and is very straightforward. Initially, it retrieves all titles of Human-

Made Objects. However, they are immediately filtered in order to make sure only those titles containing the word Gent are
ultimately returned. (CoGhent, 2023a)

PREFIX cidoc: <http://www.cidoc-crm.org/cidoc-crm/>

SELECT ?title

WHERE {
?object cidoc:P102_has_title ?title.
FILTER (regex(?title, "Gent", "i"))

}

Code Fragment 1.11: SPARQL query fetching Human-Made Objects’ titles containing Gent as proposed by CoGhent (2023a)

The second example is depicted in Code Fragment 1.12 and is not much more complex. This time, it retrieves each Human-

Made Object’s objectname’s label. It is worth noting that the objectname essentially represents a resource URI pointing to

16https://coghent.github.io

21

https://coghent.github.io

1 Related Work

an external vocabulary resource. However, for each objectname, the LDESs themselves also specify a preferred label, which

is an atomic value. In fact, these are the values the query is looking for. (CoGhent, 2023a)

PREFIX cidoc: <http://www.cidoc-crm.org/cidoc-crm/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT ?label

WHERE {
?object cidoc:P41i_was_classified_by ?identifier.
?identifier cidoc:P42_assigned ?objectname.
?objectname skos:prefLabel ?label

}

Code Fragment 1.12: SPARQL query fetching Human-Made Objects’ objectname’s titles as proposed by CoGhent (2023a)

Interestingly, a regular query engine that only has access to one or more of the CoGhent LDESs can retrieve nothing more

than these preferred labels. This is rather unfortunate however, as the vocabulary resource represented by the objectname
contains much more additional information, including labels in different languages. Still, this additional information can in

fact be accessed using a link traversal-capable query engine. Since this is more intricate than it sounds, this is one of the

topics covered later on in this research.

The third and final query is shown in Code Fragment 1.13 and highlights a significant challenge that arises when querying

LDESs. After all, it is quite reasonable to assume that users would want to retrieve only the latest version of LDES objects.

Code Fragment 1.13 demonstrates how this can be achieved in query form by cleverly utilizing a nested WHERE clause, along

with the ORDER BY and DISTINCT keywords. However, aside from arguably overcomplicating the query, this approach

also results in the delivery of results at the absolute end of query execution. After all, the results can only be sorted once

they are all available. For this reason, this method cannot be considered optimal for achieving the desired outcome. Again,

a different approach is suggested later on in the research, albeit it briefly. (CoGhent, 2023a)

1.4.4 Query Builder

This research is primarily centered on simplifying the query construction process, especially for culture enthusiasts who may

not possess a technical background. In line with this objective, it is pertinent to introduce the CoGhent Query Builder17 , a
user-friendly web application designed with the same goal in mind. As depicted in Figure 1.4, the application allows users

to select various properties and even filter them based on specific string values. These properties, in essence, represent

specific data points associated with Human-Made Objects. However, accessing these often involves navigating through a

series of predicates. The CoGhent Query Builder simplifies this process by presenting them as a singular property. For a

clearer understanding, Code Fragment 1.14 showcases the query generated when the selections illustrated in Figure 1.4 are

made.

17http://collectievandegentenaar.pythonanywhere.com/querybuilder

22

http://collectievandegentenaar.pythonanywhere.com/querybuilder

1 Related Work

Figure 1.4: Screenshot of CoGhent Query Builder

23

1 Related Work

PREFIX purl: <http://purl.org/dc/terms/>

SELECT DISTINCT ?priref

WHERE {
SELECT ?object ?priref

WHERE {
?object purl:isVersionOf ?priref.

}

ORDER BY DESC(?object)
}

Code Fragment 1.13: SPARQL query fetching ordered unique versions of all Human-Made Objects as proposed by CoGhent

(2023a)

Furthermore, the application provides additional features to enhance the user experience. In concrete terms, users have

the flexibility to choose which cultural collection(s) they wish to query, decide if the results should be unique or counted,

and even set a limit on the number of results. With its intuitive user interface and these functionalities, the CoGhent Query

Builder stands out as a valuable tool for those new to query creation.

1.5 International Image Interoperability Framework

In Section 1.4.3, only query examples were provided that focus solely on textual data. Within the context of digital art

collections, however, this is certainly not sufficient. After all, their most important information is arguably visual in nature.

However, visual information typically encompasses more than just an image; often, metadata such as dimensions, notes, and

legal information are equally important. In the case of CoGhent, it was decided not to directly include this rather technical
information in the LDESs. Instead, each CoGhent Human-Made Object refers to an IIIF Manifest. These are fully-fledged

RDF resources specifically used to group this kind of information. Their specification is determined by the International
Image Interoperability Framework (IIIF), an organization described by Snydman et al. (2015) as a community of academic
and national libraries, research institutions, museums, archives, nonprofits and commercial organizations that are committed
to interoperable image delivery on the web. (CoGhent, 2023b) (Snydman et al., 2015)

1.5.1 IIIF Manifests

IIIF Manifests are central structured documents within the IIIF framework. They provide the overall description of the struc-

ture and properties of the digital representation of an object. Each manifest describes how to present a single object, such

as a book, photograph, or statue, and carries essential information needed for a viewer to present the digitized content to

the user, such as a title and other descriptive details about the object or the intellectual work it represents. (IIIF, 2017)

24

1 Related Work

PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>
PREFIX adms:<http://www.w3.org/ns/adms#>
PREFIX skos:<http://www.w3.org/2004/02/skos/core#>
PREFIX la:<https://linked.art/ns/terms/>

SELECT ?title ?note ?associatie ?creator ?plaats ?techniek ?materiaal

WHERE {
Title
?o cidoc:P102_has_title ?title.

Description
?o cidoc:P3_has_note ?note.

Association
?o cidoc:P128_carries ?carries.
?carries cidoc:P129_is_about ?about.
?about cidoc:P2_has_type ?type.
?type skos:prefLabel ?associatie.

Creator
?o cidoc:P108i_was_produced_by ?production.
?production cidoc:P14_carried_out_by ?producer.
?producer la:equivalent ?equivalent.
?equivalent rdfs:label ?creator.

Place
?o cidoc:P108i_was_produced_by ?produced.
?produced cidoc:P7_took_place_at ?tookplace.
?tookplace la:equivalent ?plaatsequivalent.
?plaatsequivalent skos:prefLabel ?plaats.

Technique
?o cidoc:P108i_was_produced_by ?produced.
?produced cidoc:P32_used_general_technique ?technique.
?technique cidoc:P2_has_type ?hastype.
?hastype skos:prefLabel ?techniek.

Material
?o cidoc:P45_consists_of ?consists.
?consists cidoc:P2_has_type ?materiaaltype.
?materiaaltype skos:prefLabel ?materiaal.

}

Code Fragment 1.14: Example of SPARQL query created by original CoGhent Query Builder

25

1 Related Work

The structure of IIIF Manifests is stipulated by the IIIF Presentation API. However, multiple versions of this API exist. Figure 1.5

and the following overview briefly introduce the components that are puth forth by Presentation API 2.1.1, as described

by IIIF (2017):

• Sequence

Defines the order of the views of the object. Multiple sequences can account for situations where there are various

valid orders through the content.

• Canvas

A virtual container representing a page or view. It provides a frame of reference for content layout.

• Annotation

Content resources and commentary are linked to a canvas via annotations.

• AnnotationList

An ordered list of annotations, typically linked to a single canvas.

• Layer

An ordered list of annotation lists, allowing for higher-level groupings of annotations.

• Range

Groups canvases or parts thereof in an ordered list. This can be for textual reasons or physical features.

• Collection

An ordered list of manifests or further collections, allowing hierarchical structuring and advertising of manifests.

Beyond the Presentation API, IIIF also offers the Image API, which delivers the pixels of an image through a structure speci-

fying the image’s source, region, size, rotation, quality, and format. This API simply brings the pixels, specifying the image’s

source, region, size, rotation, quality, and format. The Presentation API then provides just enoughmetadata to drive a remote

viewing experience. (Emanuel, 2018)

To accomodate each Human-Made Object’s technical image data, CoGhent specifically relies on Presentation API2.*. In fact,

since each Human-Made Object only has one image, its corresponding IIIF Manifest is structured in a very straightforward

manner. Namely, each CoGhent manifest holds one sequence, which in turn holds one canvas, which in turn holds one

annotation to house the image resource and its metadata. This structure broadly corresponds to the structure visualized in

Figure 1.6. (CoGhent, 2023b)

Despite the CoGhentmanifests relying on Presentation API2.*, there is in fact a newer version availble, namely Presentation

API 3.0. For the sake of completeness, Figure 1.7 visualizes its components, with the following overview briefly introducing

the most notable updates, as described by IIIF (2020):

• Canvas

The concept has been expanded to provide a frame of reference for content layout, both spatially and temporally.

26

1 Related Work

Figure 1.5: Presentation API 2.1.1’s resource types visualization taken from IIIF (2017)

27

1 Related Work

Figure 1.6: Presentation API 2.1.1’s primary resource types visualization taken from IIIF (2017)

• Annotation Page

Introduced as an ordered list of Annotations typically associated with a Canvas. Annotation Pages collect and order

lists of Annotations.

• Annotation Collection

A new concept introduced as an ordered list of Annotation Pages, allowing for higher-level groupings of Annotations.

• Content

Defined as web resources, such as images or texts, associated with a Canvas via an Annotation.

Whatever the Presentation API version, together with the Image API, it provides a cohesive framework for the representation

and delivery of digital images across various platforms and institutions. In fact, it allows for easy visualization using a IIIF

Viewer. (Snydman et al., 2015)

1.5.2 IIIF Viewers

IIIF Manifests are not only invaluable tools for archiving but also play a pivotal role in visualization. After all, thesemanifests,

which describe the structure and properties of digital representations, provide essential instructions for visualization. In

this context, a variety of IIIF Viewers18 are available that ingest a IIIF Manifest resource and visualize its contents in user-

friendlyways. Harnessing the IIIF framework, these viewers ensure consistent features such asmulti-image object rendering,

pan, deep zoom, and annotation across different platforms. Among the array of IIIF-compatible viewers, Mirador stands

18IIIF maintains a useful overview of some prominent IIIF Viewers: https://github.com/IIIF/awesome-iiif#iiif-viewers

28

https://github.com/IIIF/awesome-iiif#iiif-viewers

1 Related Work

Figure 1.7: Presentation API 3.0’s primary resource types visualization taken from IIIF (2020)

29

1 Related Work

out. Developed collaboratively by multiple institutions, Mirador exemplifies the capabilities of a viewer built on the IIIF

framework, offering users a seamless and interoperable viewing experience. Figure 1.8 displays a screenshot of the Mirador

web app in action. (Snydman et al., 2015)

Figure 1.8: Screenshot of Mirador IIIF Viewer

30

2
CoGhent Data and Link Traversal

The primary focus of this research is the development of tools for constructing queries that target specific properties of

CoGhent Human-Made Objects. These queries can either be confined to data within the CoGhent LDESs or extend beyond

them by employing Link Traversal to follow links and traverse the corresponding documents. This approach facilitates the

acquisition of new insights into the CoGhent data by not only enhancing the understanding of specific Human-Made Objects

but also enabling their comparison in novel ways.

In the subsequent sections of this research, Comunica’s link traversal capabilities will be utilized, as its modularity allows

for the creation of link traversal engines tailored to the structure of the CoGhent data and the specific needs of this research.

However, it is important to note that link traversal, despite its potential, remains an active area of research and can be

configured in various ways.

This chapter therefore aims to explore the use of link traversal for discovering properties of Human-Made Objects, starting

from the CoGhent LDESs. The chapter begins by providing an overview of the available data sources that can serve as start-

ing points for the link traversal process. It then delves into the development of a link traversal engine optimized for the

objectives outlined above. Finally, the chapter examines the most pertinent and intriguing types of resources to which the

CoGhent Human-Made Objects link. These resources will be crucial for achieving the goal of broadening the knowledge of

the CoGhent data.

2.1 CoGhent Data Sources

CoGhent provides a set of LDESs for each participating institution. These LDESs are accessible through specific endpoints, as

listed in Table 2.1

2.1.1 URI Redirection

When accessing any of the URIs listed in Table 2.1, it is resolved to the same URI but with an additional query parameter

generatedAtTime. For example, accessing the LDES from Industriemuseum results in the original URI being extended

with ?generatedAtTime=2023-08-17T00:07:32.016Z1 .

1Since the query parameter’s value is time-dependent, this specific value serves only as an example of how it is structured.

31

2 CoGhent Data and Link Traversal

Table 2.1: CoGhent LDES endpoints as published by CoGhent (2022)

Publishing organisation Endpoint URI

Design Museum Gent (DMG) https://apidg.gent.be/opendata/adlib2eventstream/v1/dmg/objecten

Huis van Alijn (HVA) https://apidg.gent.be/opendata/adlib2eventstream/v1/hva/objecten

Industriemuseum https://apidg.gent.be/opendata/adlib2eventstream/v1/industriemuseum/objecten

STAM https://apidg.gent.be/opendata/adlib2eventstream/v1/stam/objecten

Archief Gent https://apidg.gent.be/opendata/adlib2eventstream/v1/archiefgent/objecten

This behavior is confirmed by running the following command:

curl -i "https://apidg.gent.be/opendata/adlib2eventstream/v1/industriemuseum/objecten"

This returns an HTTP 302 Found response code and a Location header with the extended URI, indicating a redirect to

that link. Eventually, when a client (e.g. a browser or Comunica) sends a GET request to the updated link, the server returns

the last (most recent) page of the requested LDES in JSON-LD format. (MDN Web Docs, 2023)

2.1.2 Non-deterministic results

When configuring a query engine, any or multiple of the CoGhent endpoints can be chosen as data sources, depending on

the specific data of interest. Naturally, due to the nature of LDESs, the same query should never be assumed to yield the

same results across multiple executions. It is essential to understand that, in theory, link traversal engines should produce

deterministic results in both content and order. In practice, however, this deterministic nature is often disrupted. The timing

of HTTP responses, crucial for fetching documents, can introduce variability. Even if the LDESs remain unchanged, these

responses can arrive at varied intervals, affecting the engine’s predetermined processing order.

This phenomenon is demonstrated by running the query displayed in Code Fragment 2.12 twice, using Design Museum Gent’s

LDES as data source and making sure it does not get updated during the experiment. Tables 2.2 and 2.3 show, for both

executions respectively, each result’s IIIF Manifest URI, as well as the order in which the results were returned. Comparing

both outputs clearly proves the results from the two executions differ in both content and order.

For similar reasons, the order in which CoGhent endpoint URIs are given to the engine as data sources, in practice does not

necessarily imply that one endpoint’s data has priority over the other. This is illustrated by running the same query (see Code

Fragment 2.1) with the Design Museum Gent LDES first and the Huis Van Alijn LDES second, and then reversing the order. The

results from both executions, as shown in Tables 2.4 and 2.5 respectively, once again show variations in content and order,

yet most importantly do not seem to show any notable correlation to the order in which the endpoints were given to the

engine.

2The query’s specifics are discussed in Section 2.3.1.

32

https://apidg.gent.be/opendata/adlib2eventstream/v1/dmg/objecten
https://apidg.gent.be/opendata/adlib2eventstream/v1/hva/objecten
https://apidg.gent.be/opendata/adlib2eventstream/v1/industriemuseum/objecten
https://apidg.gent.be/opendata/adlib2eventstream/v1/stam/objecten
https://apidg.gent.be/opendata/adlib2eventstream/v1/archiefgent/objecten

2 CoGhent Data and Link Traversal

PREFIX iiif: <http://iiif.io/api/presentation/2#>
PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX w3-exif: <http://www.w3.org/2003/12/exif/ns#>
PREFIX w3-oa: <http://www.w3.org/ns/oa#>

SELECT ?manifest ?height ?image

WHERE {
Manifest URI
?human_made_object cidoc:P129i_is_subject_of ?manifest.

Image height
?manifest iiif:hasSequences/rdf:first/iiif:hasCanvases/rdf:first/w3-exif:height ?height.

Image URI
?canvas iiif:hasImageAnnotations/rdf:first/w3-oa:hasBody ?image.

}

LIMIT 10

Code Fragment 2.1: SPARQL query fetching ten Human-Made Object’s IIIF Manifest URIs, image heights and image file URIs

Table 2.2: (Part of) results after first execution of query displayed in Code Fragment 2.1

IIIF Manifest URI

1 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3086_3-5

2 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1992-0068

3 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3130

4 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1990-0051_0-5

5 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3054

6 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3124

7 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0284

8 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0296

9 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0305

10 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0281_21-21

33

2 CoGhent Data and Link Traversal

Table 2.3: (Part of) results after second execution of query displayed in Code Fragment 2.1

IIIF Manifest URI

1 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3075

2 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0305

3 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3054

4 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1563

5 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1987-0447

6 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1987-1127_1-2

7 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0271

8 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0284

9 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0296

10 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2990_0-4

Table 2.4: (Part of) results after execution of query displayed in Code Fragment 2.1 with Design Museum Gent (DMG) LDES

endpoint as first data source and Huis Van Alijn (HVA) LDES endpoint as second data source

IIIF Manifest URI

1 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-015

2 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2015-024-001

3 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3223

4 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3086_3-5

5 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1563

6 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-001

7 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1987-1127_2-2

8 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-002

9 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:1987-0447

10 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-003

34

2 CoGhent Data and Link Traversal

Table 2.5: (Part of) results after execution of query displayed in Code Fragment 2.1 with Huis Van Alijn (HVA) LDES endpoint

as first data source and Design Museum Gent (DMG) LDES endpoint as second datasource

IIIF Manifest URI

1 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-002

2 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-001

3 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2014-031-003

4 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2009-018-568

5 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2009-018-568

6 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2015-024-004

7 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0261

8 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2990_4-4

9 https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:2018-0260

10 https://api.collectie.gent/iiif/presentation/v2/manifest/hva:2015-024-001

2.1.3 Duplicate Human-Made Objects

It is also important to note that, since updates to an LDES object are performed by adding a new version of the object to

the LDES, it is possible to receive multiple results for the same Human-Made Object. As discussed in Secion 1.4.3, a potential

workaround would be to use a combination of distinct and order by clauses in the query itself, to only retrieve the

newest versions. However, since ordering can only occur when all results are in, this approach prevents them from appearing

in a streaming manner. A more efficient solution, therefore, is to let the application that initiated the query, keep track of

Human-Made Object URIs while the results are coming in. That way, when the application encounters duplicate Human-Made

Objects, it can decide to only retain the latest version’s results. Since implementing such a solution is considered trivial, the

issue will not be discussed further in this research.

2.1.4 Conclusion

In conclusion, the CoGhent LDES endpoints work perfectly well to initiate the Link Traversal-based Querying process from.

Each institution having a separate LDES is an added bonus, as this gives users the flexibility to choose which institutions’

data to query. However, it is essential to be aware that the results and order of results are not predictable due to the nature

of LDESs as well as Comunica’s LTQP implementation. Additionally, Human-Made Objects are spread over multiple pages in

the LDES, which needs to be taken into consideration when building the Comunica link traversal engine configuration.

2.2 Comunica Link Traversal Engine Configuration

As discussed in Section 1.3, the Comunica engine offers a wide range of configurability for link traversal. Numerous link

traversal-specific actors have been developed. Some of those have already matured, while others are still in active devel-

opment. In this section, some of these actors will be considered for configuring a Comunica link traversal engine that meets

35

2 CoGhent Data and Link Traversal

the requirements of this research, as well as performs up to a standard that is acceptable for real-world use. The resulting

configuration should ultimately determine the engine used throughout the rest of this research.

2.2.1 Base Configuration

The Comunica Link Traversal repository3 already provides several predefined configurations4 that are out of the box available

to Comunica users to kick-start with LTQP. A common feature of these configurations is the initial import of

config-base.json5 . This configuration file imports all actors and mediators necessary for the basic functionality

of a Comunica Link Traversal engine, such as HTTP fetching, query operations, and RDF parsing. In other words, such a

base configuration is essential to having a working link traversal engine. However, since this research does not focus on

these basic functionalities, the intricacies of setting up a base configuration will not be discussed further. Rather, as is

the case with the predefined configurations, the configuration specific to this research will also start with importing the

config-base.json file.

2.2.2 Basic Link Extractors

The most important type of actors that should be considered when setting op a link traversal engine, are arguably the link

extractors. When a new RDF document is encountered during the link traversal process, these actors determine which links

from that document should be added to the link queue. In other words, they are the ones deciding which resources should

be queried.

The most basic link extractor is the All Extract Links Actor6 . This actor essentially implements the cAll criterion, as discussed

in Section 1.2. Simply put, it adds all links it encounters to the link queue. However, this approach is not suitable for the

purposes of this research, as it may lead to traversing too many documents that will most certainly not aid in resolving the

query at hand, in turn leading to impractical execution times.

As already discussed, this research focuses on queries that fetch data specific to Human-Made Objects. This means that the

specific paths to follow - starting from a Human-Made Object and ending in the object of interest - are known beforehand.

In other words, the queries already specify these sequences of predicates, allowing for a more targeted approach. Therefore,

another interesting link extractor to consider, is the Quad Pattern Query Extract Links Actor7 . Essentially, this actor is an

implementation of the cMatch criterion that was discussed in Section 1.2. It adds only those links to the link queue that are

part of quads that match at least one quad pattern in the query. Given the knowledge of the starting subject - Human-Made

objects - and the specific sequence of predicates to follow, this actor should better guide the engine in the right direction,

leading to faster results. However, it is possible for certain documents to, by change, contain quads that do not lead to the

data the query was set up for, still leading to wrong documents being visited.

3https://github.com/comunica/comunica-feature-link-traversal
4https://github.com/comunica/comunica-feature-link-traversal/tree/master/engines/config-query-sparql-link-traversal/config
5https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-base.json
6https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-all
7https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-quad-pattern-query

36

https://github.com/comunica/comunica-feature-link-traversal
https://github.com/comunica/comunica-feature-link-traversal/tree/master/engines/config-query-sparql-link-traversal/config
https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-base.json
https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-all
https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-quad-pattern-query

2 CoGhent Data and Link Traversal

2.2.3 Extracting Links based on Predicates

Having in mind that sequences of predicates are already known beforehand, the most promising link extractor is the Predi-
cates Extract Links Actor8 . This type of link extractor was not discussed before, but its workings are straightforward. Essen-

tially, for every quad in a document, the actor only considers objects. Apart from the object naturally needing to be a URI,

the only links that are added to the link queue are those objects’ links that have a predicate matching one of the regexes set

in the actor’s configuration. In other words, the sequences of predicates that define the queries considered in this research,

can literally serve as the regexes this actor uses to evaluate predicates. Additionally, the rules can even be tightened by

obliging every quad’s subject to match the URI of the document currently being processed. This extra requirement further

narrows down the selection of links to follow, potentially speeding up the querying process even further.

To test this approach, a Comunica link traversal query engine is built using the configuration as depicted in Code Frag-

ment 2.2, in turn tasked with resolving the query displayed in Code Fragment 2.1. Once again, the data source is set to the

Design Museum Gent LDES endpoint. As can be seen in Code Fragment 2.2, the configuration’s second import is a custom

configuration file. This file is displayed in Code Fragment 2.3 and not only tasks the engine being built to use the Predicates

Extract Links Actor, but also instructs this link actor to only consider object links whose predicates match the query’s pred-

icates and whose subjects match the current document’s URI. The keys that specify these settings are respectively called

predicateRegexes and checkSubject.

{
"@context": [

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
config-query-sparql/^2.0.0/components/context.jsonld",

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
config-query-sparql-link-traversal/^0.0.0/components/context.jsonld"

],
"import": [

"ccqslt:config/config-base.json",
"./actors/extract-links-predicates-custom.json"

]
}

Code Fragment 2.2: Custom link traversal engine configuration using Predicates Extract Links Actor

However, after building the engine and instructing it to resolve the query, no results are returned. To uncover the reason for

this failure, the logs9 outputted by the engine during execution and displayed in Code Fragment 2.4, can be consulted. From

these logs, it can be inferred that the engine initially fetches the provided data source, in this case, the Design Museum Gent

LDES. Then, it retrieves the documents referenced in the context of the LDES in order to expand the LDES. Finally, once this

expansion is completed successfully, the LDES is marked as identified. As for the rest of the logs, there are no significant

actions taking place. In other words, no other documents are identified, let alone requested. From this, it can be deduced that

8https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-predicates
9Logging can be enabled as explained here: https://comunica.dev/docs/query/advanced/logging/.

37

https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-predicates
https://comunica.dev/docs/query/advanced/logging/

2 CoGhent Data and Link Traversal

{
"@context": [

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
runner/^2.0.0/components/context.jsonld",

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
actor-extract-links-predicates/^0.0.0/components/context.jsonld"

],
"@id": "urn:comunica:default:Runner",
"@type": "Runner",
"actors": [

{
"@id": "urn:comunica:default:extract-links/actors#predicates-common",
"@type": "ActorExtractLinksPredicates",
"checkSubject": true,
"predicateRegexes": [
"http://www.cidoc-crm.org/cidoc-crm/P129i_is_subject_of",
"http://iiif.io/api/presentation/2#hasSequences",
"http://www.w3.org/1999/02/22-rdf-syntax-ns#first",
"http://iiif.io/api/presentation/2#hasCanvases",
"http://www.w3.org/2003/12/exif/ns#height",
"http://iiif.io/api/presentation/2#hasImageAnnotations",
"http://www.w3.org/1999/02/22-rdf-syntax-ns#first",
"http://www.w3.org/ns/oa#hasBody"

]
}

]
}

Code Fragment 2.3: Comunica Predicates Extract Links Actor configuration with predicate regexes set to predicates from

query displayed in Code Fragment 2.1 and subject checking enabled

38

2 CoGhent Data and Link Traversal

no links are being added to the link queue while traversing the LDES. This suggests that the configuration of the Predicates

Extract Links Actor needs to be reviewed.

Through debugging, it can be determined that only two quads pass the test comparing their subject URIs to the URI of the

current document, in this case the LDES. These quads in question are both TREE-related quads - as mentioned in Section 1.4.1,

LDESs are built on the TREE specification. It comes as no surprise that these quads fail the subsequent test that compares

predicates with the provided regexes. However, the fact that only these two quads pass the first test, and every other quad

fails, highlights why the configuration of the Predicates Extract Links Actor, as shown in Code Fragment 2.3, does not work

for the query presented in Code Fragment 2.1: since the starting point of the query is expected to be a Human-Made Object

subject - the first predicate cidoc:P129i_is_subject_of achieves this as only Human-Made Object subjects have

this predicate in the LDES - these subjects will never match the URI of the LDES. As a result, the Predicates Extract Links Actor

will disregard these quads.

One possible solution is to modify the query by providing the LDES page itself as the starting point and extending the

sequence of predicates to bridge the gap between the LDES root node and the Human-Made Objects. However, as part

of the aim of this research is to assist people without a technical background in constructing and better comprehending

queries, making the queries unnecessarily long and complex is not desirable. Consequently, the decision is made to set the

checkSubject key in the configuration of the Predicates Extract Links Actor to false. This ultimately leads to the

configuration presented in Code Fragment 2.5.

2.2.4 Comparing Link Extractors

In an attempt to compare the discussed link extractors not only in terms of functionality but also in terms of performance,

a small experiment is conducted. Similar to before, the query shown in Code Fragment 2.1 is used, with the Design Museum

Gent LDES serving as the data source. The first engine utilizes the All Extract Links Actor, the second one employs the

Predicates Extract Links Actor, and the third utilizes the Predicates Extract Links Actor in the configuration outlined in Code

Fragment 2.5. Consequently, the final engine configurations corresponded to the existing Follow All10 and Follow Match
Query11 configurations present in the Comunica Link Traversal GitHub repository, along with the custom configuration as

illustrated in Code Fragment 2.2. To ensure reliability, each engine executes the query consecutively three times, with the

engine’s complete HTTP cache being invalidated after each run. The outcomes of the experiment are presented in Table 2.6.

Table 2.6: Results from experiment comparing different Comunica link traversal engines

Engine Total time (s) Average time single execution (s)

Follow All Runtime error Runtime error

Follow Match Query 66.08 22.03

Custom (using configuration displayed in Code Fragment 2.5) 54.34 18.11

10https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-follow-

all.json
11https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-follow-

match-query.json

39

https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-follow-all.json
https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-follow-all.json
https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-follow-match-query.json
https://github.com/comunica/comunica-feature-link-traversal/blob/master/engines/config-query-sparql-link-traversal/config/config-follow-match-query.json

2 CoGhent Data and Link Traversal

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
dmg/objecten
{ ... , method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

...

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
context/cultureel-erfgoed-object-ap.jsonld
{ ..., method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
context/persoon-basis.jsonld
{ ..., method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
context/cultureel-erfgoed-event-ap.jsonld
{ ..., method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
context/organisatie-basis.jsonld
{ ..., method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
context/generiek-basis.jsonld
{ ..., method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] INFO: Requesting
https://apidg.gent.be/opendata/adlib2eventstream/v1/
context/dossier.jsonld
{ ..., method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] INFO: Identified as file source:
https://apidg.gent.be/opendata/adlib2eventstream/v1/
dmg/objecten?generatedAtTime=2023-08-12T00:01:27.217Z
{ actor: 'urn:comunica:default:rdf-resolve-hypermedia/actors#none' }

...

Code Fragment 2.4: (Cleaned up) logs outputted during execution of engine configured by files displayed in Code

Fragments 2.2 and 2.3

40

2 CoGhent Data and Link Traversal

{
"@context": [

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
runner/^2.0.0/components/context.jsonld",

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
actor-extract-links-predicates/^0.0.0/components/context.jsonld"

],
"@id": "urn:comunica:default:Runner",
"@type": "Runner",
"actors": [

{
"@id": "urn:comunica:default:extract-links/actors#predicates-common",
"@type": "ActorExtractLinksPredicates",
"checkSubject": false,
"predicateRegexes": [
"http://www.cidoc-crm.org/cidoc-crm/P129i_is_subject_of",
"http://iiif.io/api/presentation/2#hasSequences",
"http://www.w3.org/1999/02/22-rdf-syntax-ns#first",
"http://iiif.io/api/presentation/2#hasCanvases",
"http://www.w3.org/2003/12/exif/ns#height",
"http://iiif.io/api/presentation/2#hasImageAnnotations",
"http://www.w3.org/1999/02/22-rdf-syntax-ns#first",
"http://www.w3.org/ns/oa#hasBody"

]
}

]
}

Code Fragment 2.5: Comunica Predicates Extract Links Actor configuration with predicate regexes set to predicates from

query displayed in Code Fragment 2.1 and subject checking disabled

41

2 CoGhent Data and Link Traversal

The results immediately indicate that the Follow All engine struggles to execute the query successfully. It is important to

note that the success rate is subject to a variety of factors, encompassing both client and server circumstances, such as the

machine’s specifications and the state of the internet connection. However, in this specific instance, the runtime error that

emerged following unsuccessful link traversal was attributed to an excessive number of listeners assigned to a TLS socket.

This situation may be associated with an overflow of HTTP requests. The combination of this issue with the absence of any

valid results even after a considerable time span underscores that, for the objectives of this research, the Follow All engine,

without additional configuration or the integration of supplementary actors, is unsuitable.

Fortunately, both the Follow Match Query and Custom engines were able to successfully execute their tasks. It is noteworthy,

however, that the average times to resolve the query differ by only a few seconds. As expected, the custom engine performs

better, but the marginal time saved initially might not seem significant compared to the drawback of having to adjust its

configuration for each query. Nevertheless, it is reasonable to expect that the custom engine’s advantage will become more

pronounced when handling queries that target data distributed across multiple documents and situated at deeper levels.

Moreover, it is entirely feasible to develop a user-friendly application that constructs the necessary configuration based on

the specific query before executing the engine. This way, the configuration complexity can be abstracted from the end-users,

providing a smoother user experience while harnessing the benefits of the custom engine’s efficiency.

2.2.5 Traversing LDES Pages

Despite the custom engine’s capacity to retrieve highly targeted data, its present form only accounts for a fraction of the

available dataset. This limitation arises from the fact that an LDES comprises multiple pages, technically TREE nodes, neces-

sitating both forward and backward browsing to encompass the entirety of the dataset. However, the predicates leading to

the objects providing access to these other TREE nodes are presently absent from the regex array in the configuration of the

Predicates Extract Links Actor.

While incorporating these predicates is straightforward, an even more effective approach involves introducing a second link

extractor to the custom engine configuration. The Extract Links Tree Actor12 possesses the capability to introduce links to the

preceding and succeeding LDES pages –as identified by the greater than and less than relationships as defined within the

TREE specification –into the link queue. This modest addition to the configuration profoundly enhances the capabilities of

the resultant engine.

The revised configuration, as presented in Code Fragment 2.6, not only facilitates finely targeted searches for the requested

data but also encompasses the complete dataset of the specified CoGhent institution(s) by leveraging the Extract Links Tree

Actor.

2.2.6 Conclusion

In summary, an engine constructed using the Follow Match Query configuration, which utilizes the Quad Pattern Query Ex-

tract Links Actor, effectively addresses specific query requirements without necessitating additional actor configuration.

However, for queries demanding more extensive traversal across documents or encompassing data distributed across mul-

12https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-extract-tree

42

https://github.com/comunica/comunica-feature-link-traversal/tree/master/packages/actor-extract-links-extract-tree

2 CoGhent Data and Link Traversal

{
"@context": [

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
config-query-sparql/^2.0.0/components/context.jsonld",

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
config-query-sparql-link-traversal/^0.0.0/components/context.jsonld"

],
"import": [

"ccqslt:config/config-base.json",
"./actors/extract-links-predicates-custom.json",
"ccqslt:config/extract-links/actors/tree.json"

]
}

Code Fragment 2.6: Custom link traversal engine configuration using Predicates Extract Links Actor and Extract Links Tree

Actor

tiple documents, a tailored configuration that integrates both the Predicates Extract Links Actor and the Extract Links Tree

Actor can significantly enhance performance.

It is important to acknowledge that this approach does require a specific configuration outlining the predicates for each

query. Nevertheless, this configuration complexity can be effectively abstracted from end-users through the development

of tools that manage the technical intricacies behind the scenes. This approach ultimately strikes a balance between query

performance optimization and user accessibility, aligning with the overarching goals of the research.

2.3 Links to Follow

Now that the data sources and engine to use have been determined, the focus can shift to creating queries. The exact data

that these queries should retrieve is a choice left to the end-user. Chapter 3 delves deeper into the development of tools

that can aid end-users in this process. However, before delving into that, this section first provides a closer look at various

types of resources directly referenced from the CoGhent LDESs. These resources have the potential to generate interesting

knowledge.

The types of resources discussed are as follows:

• CoGhent IIIF Manifests

• Wikidata

• Stad Gent (City of Ghent) data

• Getty Vocabularies

Unfortunately, some of these resources reveal certain technical limitations. These limitations are therefore also discussed,

along with potential workarounds.

43

2 CoGhent Data and Link Traversal

2.3.1 IIIF Manifest

As discussed in Section 1.4, each Human-Made Object within the CoGhent data links to a unique IIIF Manifest. An example of

a link to such a CoGhent IIIF Manifest is https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3091. While the CoGhent

LDESs contain descriptive data on Human-Made Objects, these CoGhent IIIF manifests specifically emphasize technical meta-

data for each Human-Made Object’s digital copy. Typically, a CoGhent IIIF Manifest encompasses a single sequence, which in

turn contains a single canvas, which further encapsulates an individual image.

The significance of image data in the cultural context of this research cannot be overstated. Or as the adage goes: A picture is
worth a thousand words. In the realm of cultural heritage and art, images often convey intricate details, historical contexts,

and artistic nuances that might be challenging to articulate through words alone.

Given the decision to employ the custom engine as discussed in Section 2.2, the queries are required to trace a sequence of

predicates, initiating from Human-Made Objects and culminating in the desired object(s). However, the depth at which the

valuable image data is nested within the manifest necessitates extensive predicate sequences, making the query notably

lengthy. Due to this complexity, it might be tempting to gravitate towards the less stringent Follow Match engine, allowing

queries to not necessarily contain long uninterrupted sequences of predicates. However, this approach can yield results

erroneously associating Human-Made Objects with unrelated manifests.

To illustrate this hurdle, three hypothetical RDF documents are presented. They are hypothetical and are displayed in Turtle

syntax in Code Fragments 2.7, 2.8 and 2.9. The first one depicts quads linking Human-Made Objects to their IIIF Manifests,

and the other two respectively depict these two manifest. It must be noted that these examples in no way follow any of the

schemas puth forth by CoGhent and IIIF. Notably, the IIIFManifest examples deviate from the actual IIIF schemaby eliminating

the utilization of arrays. Instead, the examples assume a simplified scenario in which each manifest encompasses only one

sequence, one canvas, and one image annotation.

ex:human_made_object1 ex:hasManifest ex:manifest1 .
ex:human_made_object2 ex:hasManifest ex:manifest2 .

Code Fragment 2.7: Turtle file representing hypothetical Human-Made Objects (does not follow CoGhent schema)

ex:manifest1 ex:firstSequence ex:sequence1 .
ex:sequence1 ex:firstCanvas ex:canvas1 .
ex:canvas1 ex:firstImageAnnotation ex:annotation1 .
ex:annotation1 iiif:hasBody ex:image1 .

Code Fragment 2.8: Turtle file representing first hypothetical IIIF Manifest (does not follow IIIF schema)

ex:manifest2 ex:firstSequence ex:sequence2 .
ex:sequence2 ex:firstCanvas ex:canvas2 .
ex:canvas2 ex:firstImageAnnotation ex:annotation2 .
ex:annotation2 iiif:hasBody ex:image2 .

Code Fragment 2.9: Turtle file representing second hypothetical IIIF Manifest (does not follow IIIF schema)

44

https://api.collectie.gent/iiif/presentation/v2/manifest/dmg:3091

2 CoGhent Data and Link Traversal

Naturally, the document containing the Human-Made Objects is designated as the initiation point for the link traversal

process. If, and when, the chosen link traversal engine reaches the manifest links within this document and appends them

to the link queue, the related manifest documents will subsequently be recognized and amalgamated with the previously

identified document encompassing the Human-Made Objects. Code Fragment 2.10 presents the potential appearance of this

amalgamation of documents.

Human-Made Objects
ex:human_made_object1 ex:hasManifest ex:manifest1 .
ex:human_made_object2 ex:hasManifest ex:manifest2 .

Manifest 1
ex:manifest1 ex:firstSequence ex:sequence1 .
ex:sequence1 ex:firstCanvas ex:canvas1 .
ex:canvas1 ex:firstImageAnnotation ex:annotation1 .
ex:annotation1 iiif:hasBody ex:image1 .

Manifest 2
ex:manifest2 ex:firstSequence ex:sequence2 .
ex:sequence2 ex:firstCanvas ex:canvas2 .
ex:canvas2 ex:firstImageAnnotation ex:annotation2 .
ex:annotation2 iiif:hasBody ex:image2 .

Code Fragment 2.10: Turtle file representing combination of hypothetical Human-Made Objects and IIIF Manifests

Subsequently, two queries are introduced: a long query that meticulously delineates the path from a Human-Made Object

to its image, as portrayed in Code Fragment 2.11, and a short query that seeks to streamline this process by eliminating the

intermediary quad patterns, as displayed in Code Fragment 2.12. While these queries might appear, at first glance, to target

the same data, the outcomes they yield are different. The outcomes of the long query are detailed in Table 2.7, whereas the

outcomes of the short query are outlined in Table 2.8.

SELECT ?humanMadeObject ?image

WHERE {
?humanMadeObject ex:hasManifest ?manifest .
?manifest ex:firstSequence ?sequence .
?sequence ex:firstCanvas ?canvas .
?canvas ex:firstImageAnnotation ?annotation .
?annotation iiif:hasBody ?image .

}

Code Fragment 2.11: Long query fetching Human-Made Object and image

The inadequacy of the short query becomes apparent as it erroneously associates all conceivable Human-Made Objects with

all potential images, unlike the accurate outcomes of the long query. Revisiting the amalgamation of documents presented

in Code Fragment 2.10 and reevaluating the two queries provides insight into the root cause of the short query’s shortfall.

45

2 CoGhent Data and Link Traversal

SELECT ?humanMadeObject ?image

WHERE {
?humanMadeObject ex:hasManifest ?manifest .
?annotation iiif:hasBody ?image .

}

Code Fragment 2.12: Short query fetching Human-Made Object and image

Table 2.7: Results of long query displayed in Code Fragment 2.11 and RDF document displayed in Code Fragment 2.10

?humanMadeObject ?image

ex:human_made_object1 ex:image1

ex:human_made_object2 ex:image2

Table 2.8: Results of short query displayed in Code Fragment 2.12 and RDF document displayed in Code Fragment 2.10

?humanMadeObject ?image

ex:human_made_object1 ex:image1

ex:human_made_object1 ex:image2

ex:human_made_object2 ex:image1

ex:human_made_object2 ex:image2

46

2 CoGhent Data and Link Traversal

Specifically, the short query neglects to establish a linkage between specific images and their corresponding Human-Made

Objects. Conversely, the long query adeptly maintains this linkage by distinctly defining a path connecting Human-Made

Objects to their associated images. Consequently, irrespective of the selected engine, queries should consistently formulate

a well-defined trajectory from Human-Made Objects leading to the targeted objects.

Emphasizing the evident, this observation’s relevance goes beyond queries exclusively targeting data within IIIF Manifests.

Instead, this principle holds applicability across all types of queries and data sources that will continue to be explored within

the scope of this research.

Guided by the aforementioned deliberations, one can construct working document-overarching queries - this time operating

on real-world data - aimed at surveying the Human-Made Objects’ IIIF Manifest data. For instance, Code Fragment 2.1 that

was introduced at the beginning of this chapter, displays a query designed to extract the manifest URIs of ten specific

Human-Made Objects, along with the corresponding height values and URIs leading to the associated image files within

these manifests. It is noteworthy that the potential drawback stemming from extended queries due to lengthy predicate

sequences is somewhat mitigated through the utilization of property path sequences.

2.3.2 Wikidata

Wikidata is a major player when it comes to RDF data. In simplified terms, Wikidata encompasses Wikipedia’s key data

points, but it presents them as structured Linked Data, adhering to RDF principles. Given that CoGhent’s Human-Made Objects

frequently reference Wikidata resources, this significantly opens the door to a wealth of additional knowledge. (van Veen,

2019)

While Wikidata as an organization seems to encourage users to primarily use their SPARQL endpoint, the data can also be

retrieved in separate RDF documents. Furthermore, Wikidata operates a website13 that enables very user-friendly and visual

browsing through the data. However, here comes Wikidata’s major pitfall: the resource and predicate URIs Wikidata uses for

its SPARQL endpoint and website differ from the URIs the organization employs for its actual RDF data. In other words, to

access the RDF documents, one needs to use URIs that Wikidata does not openly advertise. (Wikidata, 2023)

At first glance, this might seem to pose an issue for the link traversal process. After all, just like Wikidata advertises, the

CoGhent data references the standard Wikidata URIs, not the RDF-specific ones. Fortunately, this does not disrupt the link

traversal process, as these standard URIs are automatically resolved to their RDF-specific counterparts through content

negotiation. For instance, an HTTP request asking for RDF data to the resource

http://www.wikidata.org/entity/Q42

is automatically redirected to

https://www.wikidata.org/wiki/Special:EntityData/Q42,

and a similar request to the predicate

https://www.wikidata.org/wiki/Property:P17
13https://www.wikidata.org/wiki/Wikidata:Main_Page

47

https://www.wikidata.org/wiki/Wikidata:Main_Page

2 CoGhent Data and Link Traversal

is automatically redirected to

https://www.wikidata.org/wiki/Special:EntityData/P17.

However, caution must be exercised when using Wikidata URIs in queries themselves. The link traversal engine being used

is unaware of Wikidata’s approach and thus will not be able to map quad patterns with standard Wikidata URIs in the query

to quads with the RDF-specific URIs that appear in a fetched Wikidata RDF document. In other words, it is up to the user to

translate the advertised Wikidata URIs into their RDF-specific counterparts. The application that controls the relevant link

traversal engine could however also assist with this task.

Given these findings, queries can also be formulated to retrieve specific Wikidata information from Human-Made Objects.

For instance, Code Fragment 2.13 presents such a query. Specifically, the query seeks to find the country where the cultural

institution that possesses the particular Human-Made Object is located. Note that the Wikidata predicate URI indeed follows

the same format as stored in the Wikidata RDF documents themselves.

PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>
PREFIX wiki-prop:<http://www.wikidata.org/prop/direct/>

SELECT ?human_made_object ?country

WHERE {
?human_made_object cidoc:P50_has_current_keeper/wiki-prop:P17 ?country.

}

LIMIT 10

Code Fragment 2.13: SPARQL query fetching ten Human-Made Object’s institute’s countries

2.3.3 Stad Gent

The most common types of links in the CoGhent LDESs are arguably Stad Gent links. Stad Gent, which translates to City of
Ghent in English, indeed also publishes a significant amount of its own data. This data often pertains to specific aspects

of the city and might not be found in other thesauri. Since the city is inherently connected to CoGhent, its resources are

certainly worth discussing.

Unfortunately, the Stad Gent links that provide context to the Human-Made Objects do not directly resolve to RDF documents.

To illustrate this, two HTTP requests are executed, each targeting different Stad Gent URIs. Since these URIs might return

various types of data depending on the request, the Accept value in the request header is explicitly set to ”application/ld+json”

each time.

Firstly, when running the command

curl -H "accept:application/ld+json"
-iv "https://stad.gent/id/mensgemaaktobject/dmg/530005252/2023-08-12T00:01:27.217Z",

48

2 CoGhent Data and Link Traversal

the server responds with an HTTP 406 Not Acceptable response status along with the message

https://stad.gent/id/mensgemaaktobject/dmg/530005252/2023-08-12T00:01:27.217Z is not available in the requested format.
However, if the word id in the request URI is changed to data, the server responds successfully.

Secondly, running the command

curl -H "accept:application/ld+json"
-iv "https://stad.gent/id/blank_node/bccb2bda-7563-4e94-82a4-ba8e9559d679"

results in an HTTP 404 Not Found response status along with the message

no linked data representation of https://stad.gent/id/blank_node/bccb2bda-7563-4e94-82a4-ba8e9559d679was found. For-
tunately, this issue can again be fixed by replacing id in the request URI with data.

While the server’s treatment of distinct categories of Stad Gent URIs might not be immediately apparent, a single solution

can be uniformly applied: substituting id with data. However, due to the CoGhent LDESs often referencing the types of

CoGhent URIs that do not yield RDF data, the Comunica link traversal engine, attempting to request these URIs, will inevitably

encounter the aforementioned error responses as well. Hence, the engine necessitates the capability to dynamically update

any Stad Gent link that contains the string id before adding it to the link queue.

To achieve this, a new Comunica actor is built14 . This actor is coined

ActorRdfResolveHypermediaLinksStadGentReplaceId15 and extends the

ActorRdfResolveHypermediaLinks actor. The latter provides the new actor with access to the links that are

being considered for addition to the link queue. Code Fragment 2.14 presents the run function of the new actor. Initially,

the available links are iterated over, and using a regex, it is determined whether they match the pattern of a Stad Gent link

containing an id path. Any link that meets this criteria is then modified by replacing the old path with a data path. At the

end of the function, all the links, including the modified ones, are passed back to the bus allowing any subsequent actor to

continue to work with them.

However, the actor also needs a way to indicate when its action has already been performed. If this is not done, the actor

will be queried repeatedly, causing the engine to get stuck in an infinite loop. For this reason, just before concluding the

run function, a key specific to the current action is set to true. This KEY_CONTEXT_REPLACED key then indicates

during the actor’s testing that the actor has already completed its task and should not be re-executed. The test function

responsible for this behavior is depicted in Code Fragment 2.15.

After implementing the actor, it is given its own actor configuration, which is then imported into the custom engine config-

uration. This small addition ultimately enables an engine using it to involve Stad Gent resources in responding to a query.

Or at least, that is the theory. In practice, however, Stad Gent documents are still not being identified. The reason for this is

straightforward but unfortunate.

The Comunica engine executes its HTTP requests with a much broader Accept statement in the header compared to the

one used in the manual curl tests from before. Code Fragment 2.16 shows exactly what this Accept statement looks

14Tutorial on building custom Comunica actor: https://comunica.dev/docs/modify/getting_started/contribute_actor/
15Implementation: https://github.com/thesis-Martijn-Bogaert-2022-2023/comunica-feature-link-traversal/blob/feature/change-gettyvocab-

stadgent-links/packages/actor-rdf-resolve-hypermedia-links-stad-gent-replace-id/lib/ActorRdfResolveHypermediaLinksStadGentReplaceId.ts

49

https://comunica.dev/docs/modify/getting_started/contribute_actor/
https://github.com/thesis-Martijn-Bogaert-2022-2023/comunica-feature-link-traversal/blob/feature/change-gettyvocab-stadgent-links/packages/actor-rdf-resolve-hypermedia-links-stad-gent-replace-id/lib/ActorRdfResolveHypermediaLinksStadGentReplaceId.ts
https://github.com/thesis-Martijn-Bogaert-2022-2023/comunica-feature-link-traversal/blob/feature/change-gettyvocab-stadgent-links/packages/actor-rdf-resolve-hypermedia-links-stad-gent-replace-id/lib/ActorRdfResolveHypermediaLinksStadGentReplaceId.ts

2 CoGhent Data and Link Traversal

public async run(action: IActionRdfResolveHypermediaLinks):
Promise<IActorRdfResolveHypermediaLinksOutput> {

const stadGentUriRegex = /^https?:\/\/stad\.gent\/id\/.+$/u;

const links = action.metadata.traverse.map((link: { url: string }) => {
if (this.stadGentUriRegex.test(link.url)) {

const oldUrl = link.url;
const newUrl = oldUrl.replace('/id/', '/data/');
link.url = newUrl;
this.logInfo(action.context, `Updated ${oldUrl} to ${newUrl}`);

}
return link;

});

// Update metadata in action
const context = action.context.set(KEY_CONTEXT_REPLACED, true);
const subAction = { ...action, context, metadata: { ...action.metadata, traverse: links }};

// Forward updated metadata to next actor
return this.mediatorRdfResolveHypermediaLinks.mediate(subAction);

}

Code Fragment 2.14: Implementation of ActorRdfResolveHypermediaLinksStadGentReplaceId’s run
function

public async test(action: IActionRdfResolveHypermediaLinks): Promise<IActorTest> {
if (action.context.get(KEY_CONTEXT_REPLACED)) {

throw new Error('Already checked for Stad Gent links');
}
return true;

}

Code Fragment 2.15: Implementation of ActorRdfResolveHypermediaLinksStadGentReplaceId’s test
function

50

2 CoGhent Data and Link Traversal

like. And while RFC 723116 prescribes that Content-Types with higher quality values, denoted by q, indicate that they

are preferred over lower ones, the Stad Gent server seems to ignore this and selects text/html as the Content-Type.
Of course, this is not RDF data, meaning the Comunica engine cannot process it further. (Fielding and Reschke, 2014)

accept: 'application/n-quads,application/trig;q=0.95,application/ld+json;q=0.9,
application/n-triples;q=0.8,text/turtle;q=0.6,application/rdf+xml;q=0.5,
application/json;q=0.45,text/n3;q=0.35,application/xml;q=0.3,
image/svg+xml;q=0.3,text/xml;q=0.3,text/html;q=0.2,
application/xhtml+xml;q=0.18,text/shaclc;q=0.1,text/shaclc-ext;q=0.05’

Code Fragment 2.16: Accept header for HTTP requests made by Comunica engine

Making changes to the Comunica engine to remove text/html as an option is not feasible because it could negatively

affect its overall functionality. Moreover, the issue clearly comes from the Stad Gent server’s side. A simple adjustment on

their end could potentially resolve the issue. But until that happens, the Stad Gent data, unfortunately, cannot be considered

suitable for link traversal.

2.3.4 Getty Vocabularies

The last type of links found in the CoGhent LDESs are links to resources from Getty Vocabularies. On their official website,

these resources are described as follows:

Getty Vocabularies are structured resources for the visual arts domain, including art, architecture, decorative arts, other
cultural works, archival materials, visual surrogates, and art conservation. Compliant with international standards for
structured and controlled vocabularies, they provide authoritative information for catalogers, researchers, and data

providers.
(Getty Vocabularies, 2023)

In fact, The Getty Vocabularies encompass different thesauri. However, the one directly used by the CoGhent data, is called

the Art & Architecture Thesaurus. Once again, the Getty Vocabularies website explains what this Thesaurus can be useful for:

The AAT includes generic terms, and associated dates, relationships, and other information about concepts related to or
required to catalog, discover, and retrieve information about art, architecture, and other visual cultural heritage, including

related disciplines dealing with visual works, such as archaeology and conservation, where the works are of the type
collected by art museums and repositories for visual cultural heritage, or that are architecture.

(Art & Architecture Thesaurus, 2023)

It is clear that the Getty Vocabularies data, in combination with link traversal, can facilitate interesting and novel discoveries

regarding Human-Made Objects. However, much like the previous resource providers, obtaining Getty Vocabularies data is

not without its challenges. This is illustrated by the following quad pattern:

16https://datatracker.ietf.org/doc/html/rfc7231

51

https://datatracker.ietf.org/doc/html/rfc7231

2 CoGhent Data and Link Traversal

?human_made_object
cidoc:P41i_was_classified_by/cidoc:P42_assigned/<http://purl.org/dc/terms/created>

?created .

When attempting to execute a query with this quad pattern in the WHERE clause, no results are returned. To identify the

issue, the first step is to retrieve only the URIs to the Getty Vocabularies documents. Note that due to the consequent

truncation of the property path sequence, the query no longer needs to traverse to documents outside the CoGhent LDESs,

therefore allowing a standard SPARQL engine to be used. Subsequently, one of the obtained URIs (e.g., http://vocab.getty.

edu/aat/300037772) can be set as the data source for an engine with a simple task: retrieving the predicates and objects

of those quads where the set data source is the subject. Consequently, this query yields the same situation as before: no

results are retrieved.

When examining the query logs, as shown in Code Fragment 2.17, one thing stands out. One of the logs mentions a missing
context link header and indicates the involvement of a document of type application/json. It is indeed rather sur-

prising to see the Getty Vocabularies server return a JSON file. After all, Getty (2023) clearly states that Data is delivered
to a requesting agent through a standard triple serialization using HTTP RDF/XML, Notation-3 (N3), Turtle, N-Triples, RDFa,
JSON, JSON-LD. This indicates that the server should be capable of offering JSON-LD documents, which in turn seems to

indicate that the Getty Vocabularies server is not configured correctly either. After all, as illustrated in Code Fragment 2.16,

the Comunica engine clearly indicates it prefers JSON-LD documents over JSON documents.

[...] INFO: Requesting http://vocab.getty.edu/aat/300037772
{ ... , method: 'GET', actor: 'urn:comunica:default:http/actors#fetch' }

[...] ERROR: Missing context link header for media type application/json
on http://vocab.getty.edu/aat/300037772
{ actor: 'urn:comunica:default:dereference-rdf/actors#parse' }

[...] INFO: Identified as file source: http://vocab.getty.edu/aat/300037772
{ actor: 'urn:comunica:default:rdf-resolve-hypermedia/actors#none' }

Code Fragment 2.17: (Cleaned up) logs outputted during execution of engine with data source set to Getty Vocabulary

resource

However, it would be reasonable to assume that Comunica can handle JSON documents as long as they are valid RDF. To

confirm this, the following command is executed:

curl -H "accept:application/ld+json" -iv "http://vocab.getty.edu/aat/300037772"

As observed before, the server returns a document with Content-Type of application/json. Yet, at first glance,
this document appears to be a valid RDF document. This is confirmed by an RDF validator17 . In addition, Getty Vocabularies

resource documents can also be retrieved by appending one of the supported extensions to the bare resource URI. With that

in mind, a final comparison can be made between the already obtained JSON content and the content that http://vocab.getty.

edu/aat/300037772.jsonld leads to. This proves that both documents match word for word. The only difference lies in some

17https://www.w3.org/RDF/Validator/

52

http://vocab.getty.edu/aat/300037772
http://vocab.getty.edu/aat/300037772
http://vocab.getty.edu/aat/300037772.jsonld
http://vocab.getty.edu/aat/300037772.jsonld
https://www.w3.org/RDF/Validator/

2 CoGhent Data and Link Traversal

special characters in one document being represented by their Unicode escape sequences, while in the other they appear in

their literal form.

Nevertheless, whether the returned data has aContent-Type ofapplication/ld+json orapplication/json
should ideally not make a significant difference. After all, they both yield valid RDF content. However, to understand why

the Comunica engine still seems to struggle with the JSON documents from the Getty Vocabularies server, a deeper dive into

the log of the RDF Parse Actor mentioning Missing context link header is necessary.

To gain a better understanding of the engine’s behavior, an examination of the tests18 within theActorRdfParseJsonLd
actor is conducted. Even without delving into the implementation details, the titles of two tests offer insights. One test as-

serts that the actor should run for a JSON doc with a context link header, while the other asserts that the actor should error
on a JSON doc without a context link header. The log in question aligns with what the latter test examines. Put simply, the

Getty Vocabularies server provides its JSON content without a context link header, whereas the RDF Parse Actor expects such

a header to be present. (Taelman et al., 2018)

This prompts two important questions: what is a context link header, and is the Comunica engine perhaps too strict? The

answers can be found in W3’s documentation19 . Firstly, a context link header is a Link statement that can be included in

the HTTP response header when returning JSON. This statement contains a URI that points to a JSON-LD context, enabling

the JSON data to be interpreted as RDF data. Secondly, it can be confidently stated that Comunica rightfully expects a JSON

response to be accompanied by such a context link header. Apart from using an Alternate Document Location, this is the

only way to send JSON-LD syntax as JSON content. In other words, the behavior of the Comunica engine aligns perfectly with

prescribed standards, while the behavior of the Getty Vocabularies server does not. (Sporny et al., 2020)

The Getty Vocabularies server’s shortcomings lie in two aspects. Firstly, when the server receives a request explicitly asking

for JSON-LD content, it should respondwith JSON-LD content, especially considering that it indeed has such content available.

Secondly, when the server receives a request specifically asking for JSON content, it should refrain from returning JSON with

an@context property and instead provide a context link header in the response. This adherence to established conventions

is essential for seamless interoperability between servers and clients in the RDF ecosystem.

Fortunately, there is still a way to salvage the Getty Vocabularies data without discarding it. As briefly mentioned be-

fore, there exists an alternative approach to explicitly instruct the Getty Vocabularies server to provide JSON-LD content.

This involves adding a .json-ld extension to the URI in the request. However, to ensure clarity about the server’s re-

sponse behavior and to avoid any further unexpected outcomes, a small experiment is conducted. The experiment delves

into two key aspects. First, it evaluates the effect of appending the .json-ld extension to the request URI on the

returned content’s Content-Type. Second, it investigates the potential influence of setting the Accept header to

application/ld+json on the previous outcome. Finally, to ensure the findings are robust and not dependent on

specific parameters like the queried Getty Vocabularies thesaurus or the type of resource (whether a concept or a term), the

experiment is performed six times. Table 2.9 provides details about the queried URIs, the status of each request’s Accept
header, whether the .json-ld extension is used, and the Content-Type of the corresponding HTTP responses. The

different abbreviations that appear in the Thesaurus column are AAT, ULAN and TGN, and respectively stand for Art & Ar-

18https://github.com/comunica/comunica/blob/master/packages/actor-rdf-parse-jsonld/test/ActorRdfParseJsonLd-test.ts
19https://www.w3.org/TR/json-ld/#interpreting-json-as-json-ld

53

https://github.com/comunica/comunica/blob/master/packages/actor-rdf-parse-jsonld/test/ActorRdfParseJsonLd-test.ts
https://www.w3.org/TR/json-ld/#interpreting-json-as-json-ld

2 CoGhent Data and Link Traversal

chitecture Thesaurus, Union List of Artist Names and Getty Thesaurus of Geographic Names. Moreover, the six URIs defin-

ing the table’s results, are http://vocab.getty.edu/aat/300043071, http://vocab.getty.edu/ulan/500115588, http://vocab.getty.

edu/tgn/1000070, http://vocab.getty.edu/aat/term/1000043071-en, https://vocab.getty.edu/ulan/term/1500088448-en and

https://vocab.getty.edu/tgn/term/26679-en, respectively.

Thesaurus Type JSON-LD extension JSON-LD Accept header Content-Type

AAT Concept 7 7 text/html
7 3 application/json
3 7 application/json
3 3 application/ld+json

ULAN Concept 7 7 text/html
7 3 application/json
3 7 application/json
3 3 application/ld+json

TGN Concept 7 7 text/html
7 3 application/json
3 7 application/json
3 3 application/ld+json

AAT Term 7 7 text/html
7 3 application/ld+json
3 7 404 Not Found
3 3 application/ld+json

ULAN Term 7 7 text/html
7 3 application/ld+json
3 7 404 Not Found
3 3 application/ld+json

TGN Term 7 7 text/html
7 3 application/ld+json
3 7 404 Not Found
3 3 application/ld+json

Table 2.9: Results from experiment examining Content-Types of Getty Vocabularies server’s HTTP responses

The results of the experiment show that the different thesauri are treated in the sameway. Still, requests to ConceptURIs and
Term URIs appear to be handled differently by the Getty Vocabularies server. However, there is one particular combination

that consistently returns application/ld+json content for every type of URI. This occurs when a request is sent

that includes both a URI with the .json-ld extension and requests application/ld+json in the Accept header.

Nevertheless, as mentioned several times, the Comunica engine makes HTTP requests with a much more extensive Accept

54

http://vocab.getty.edu/aat/300043071
http://vocab.getty.edu/ulan/500115588
http://vocab.getty.edu/tgn/1000070
http://vocab.getty.edu/tgn/1000070
http://vocab.getty.edu/aat/term/1000043071-en
https://vocab.getty.edu/ulan/term/1500088448-en
https://vocab.getty.edu/tgn/term/26679-en

2 CoGhent Data and Link Traversal

header. Fortunately, for the Getty Vocabularies server, this doesn’t matter. As long as a .json-ld extension is used, the

server returns actual JSON-LD data.

While all these findings are indeed interesting, they don’t immediately solve the issue with a Comunica engine not being

able to request actual JSON-LD data. For this reason, just as in Section 2.3.3, a new actor20 is constructed that extends the

ActorRdfResolveHypermediaLinks actor. Similarly to before, all available links are iterated through for potential

adjustments. The implementation of the run function is shown in Code Fragment2.18, illustrating how the actor not only

checks whether a link matches the template of a Getty Vocabularies resource URI, but also whether it doesn’t already have

an extension. If the link successfully passes both tests, it is eventually appended with a .json-ld extension. The test
function, as shown in Code Fragment 2.19, functions similarly to previously, checking whether the actor has already been

executed.

public async run(action: IActionRdfResolveHypermediaLinks):
Promise<IActorRdfResolveHypermediaLinksOutput> {

const gettyUriRegex = /^https?:\/\/vocab\.getty\.edu\/.+$/u;
const extensions = ['.json', '.jsonld', '.rdf', '.n3', '.ttl', '.nt'];

const links = action.metadata.traverse.map((link: { url: string }) => {
if (this.gettyUriRegex.test(link.url)) {

const hasExtension = this.extensions.some(ext => link.url.endsWith(ext));
if (!hasExtension) {

const oldUrl = link.url;
const newUrl = `${oldUrl}.jsonld`;
link.url = newUrl;
this.logInfo(action.context, `Updated ${oldUrl} to ${newUrl}`);

}
}
return link;

});

// Update metadata in action
const context = action.context.set(KEY_CONTEXT_EXTENDED, true);
const subAction = { ...action, context, metadata: { ...action.metadata, traverse: links }};

// Forward updated metadata to next actor
return this.mediatorRdfResolveHypermediaLinks.mediate(subAction);

}

Code Fragment 2.18: Implementation of ActorRdfResolveHypermediaLinksGettyJsonldExtension’s
run function

20https://github.com/thesis-Martijn-Bogaert-2022-2023/comunica-feature-link-traversal/blob/feature/change-gettyvocab-stadgent-

links/packages/actor-rdf-resolve-hypermedia-links-getty-jsonld-extension/lib/ActorRdfResolveHypermediaLinksGettyJsonldExtension.ts

55

https://github.com/thesis-Martijn-Bogaert-2022-2023/comunica-feature-link-traversal/blob/feature/change-gettyvocab-stadgent-links/packages/actor-rdf-resolve-hypermedia-links-getty-jsonld-extension/lib/ActorRdfResolveHypermediaLinksGettyJsonldExtension.ts
https://github.com/thesis-Martijn-Bogaert-2022-2023/comunica-feature-link-traversal/blob/feature/change-gettyvocab-stadgent-links/packages/actor-rdf-resolve-hypermedia-links-getty-jsonld-extension/lib/ActorRdfResolveHypermediaLinksGettyJsonldExtension.ts

2 CoGhent Data and Link Traversal

public async test(action: IActionRdfResolveHypermediaLinks): Promise<IActorTest> {
if (action.context.get(KEY_CONTEXT_EXTENDED)) {

throw new Error('Already checked for Getty links');
}
return true;

}

Code Fragment 2.19: Implementation of ActorRdfResolveHypermediaLinksGettyJsonldExtension’s
test function

To make this new actor operational, a dedicated configuration file is provided. This configuration file is then integrated

into the custom engine configuration. Code Fragment 2.20 illustrates the configuration for the new actor, while Code Frag-

ment 2.21 showcases the final configuration for the custom engine. This final configuration ultimately enables Comunica to

build a link traversal engine that can not only precisely follow a query’s predicate sequences and other LDES pages but also

successfully incorporate Getty Vocabularies data into the query. This enhanced engine facilitates the execution of queries

like the one proposed in Code Fragment 2.22. Notably, this query capitalizes on one of the most intriguing aspects of the

Getty Vocabularies data: its extensive multilingual coverage. By integrating this data, the scope of the CoGhent dataset is

significantly expanded, encompassing a diverse array of languages beyond just Dutch.

{
"@context": [

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
runner/^2.0.0/components/context.jsonld",

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
actor-rdf-resolve-hypermedia-links-getty-jsonld-extension/^1.0.0/components/context.jsonld"

],
"@id": "urn:comunica:default:Runner",
"@type": "Runner",
"actors": [

{
"@id": "urn:comunica:default:rdf-resolve-hypermedia-links/actors#getty-jsonld-extension",
"@type": "ActorRdfResolveHypermediaLinksGettyJsonldExtension",
"beforeActors":
{ "@id": "urn:comunica:default:rdf-resolve-hypermedia-links/actors#traverse" },

"mediatorRdfResolveHypermediaLinks":
{ "@id": "urn:comunica:default:rdf-resolve-hypermedia-links/mediators#main" }

}
]

}

Code Fragment 2.20: Extend Getty Links Actor configuration

56

2 CoGhent Data and Link Traversal

{
"@context": [

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
config-query-sparql/^2.0.0/components/context.jsonld",

"https://linkedsoftwaredependencies.org/bundles/npm/@comunica/
config-query-sparql-link-traversal/^0.0.0/components/context.jsonld"

],
"import": [

"ccqslt:config/config-base.json",
"./actors/extract-links-predicates-custom.json",
"ccqslt:config/extract-links/actors/tree.json",
"./actors/rdf-resolve-hypermedia-links-traverse-extend-getty-links.json"

]
}

Code Fragment 2.21: Final custom link traversal engine configuration

PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>
PREFIX skos-xl:<http://www.w3.org/2008/05/skos-xl#>
PREFIX getty:<http://vocab.getty.edu/ontology#>

SELECT *

WHERE {
?human_made_object cidoc:P41i_was_classified_by ?classifier.
?classifier cidoc:P42_assigned ?assignation.
?assignation skos-xl:prefLabel ?prefLabel.
?prefLabel getty:term ?thing.

FILTER(LANG(?thing) = "de")
}

LIMIT 10

Code Fragment 2.22: SPARQL query fetching Human-Made Object’s types in German

57

2 CoGhent Data and Link Traversal

2.3.5 Conclusion

In this section, the four types of resources that arguably appear most frequently in the CoGhent LDESs were introduced and

discussed. The challenges of accessing these resources through link traversal vary from type to type.

Firstly, the default link traversal functionality of Comunica has no problem reaching data within each Human-Made Object’s

IIIF Manifest. However, it is important to note that queries interrogating manifests, should explicitly navigate the complete

(long) path from Human-Made Object to the object(s) of interest.

Next, accessing Wikidata resources also poses no issue for Comunica’s default link traversal functionality. However, queries

involving Wikidata URIs must match the RDF-specific URIs, not the regular ones advertised by Wikidata.

As for Stad Gent data, the responsibility lies with the Stad Gent server administrators. They need to adjust their server

implementation to adhere to the prevailing standards so that Stad Gent resources can be successfully retrieved and parsed

by a link traversal engine. At the time of publishing this research, this wasn’t the case, making it impossible to involve the

Stad Gent data in the link traversal process.

Lastly, the Getty Vocabularies server implementation also needs adjustment to conform to the established standards. How-

ever, to still enable a Comunica link traversal engine to query Getty Vocabularies documents, a temporary workaround can be

used. This involves using a custom actor that explicitly requests valid JSON-LD content from the Getty Vocabularies server.

2.4 Conclusion

The investigation into CoGhent’s data landscape, primarily focused on its characteristic Human-Made Objects, has brought

to the forefront the pivotal role of link traversal in uncovering specific attributes of these objects. Expanding the scope of

queries beyond the confines of CoGhent’s internal data has opened up a wider range of insights and comparisons, thereby

enabling unprecedented data exploration.

The distinctive Linked Data Event Streams (LDESs) associated with each institution within the CoGhent framework have

emerged as crucial gateways for the Link Traversal-based Querying process. This distinction offers a nuanced approach,

empowering users to selectively query information from individual institutions. However, it is important to acknowledge

the inherent unpredictability of outcomes, inherent to LDESs and link traversal.

Leveraging theflexibility of the Comunica engine, a custom link traversal engine has been tailored to alignwith the distinctive

demands of this research. Its configuration, which amalgamates the Predicates Extract Links Actor and the Extract Links Tree

Actor, strikes a balance between enhancing query efficiency and ensuring user-friendly access.

Furthermore, the examination of resources directly linked from CoGhent’s LDESs has illuminated potential domains rich in

knowledge. While certain resources, such as CoGhent IIIF Manifests and Wikidata, are readily accessible, others like Stad

Gent data and Getty Vocabularies present certain challenges. Nonetheless, proactive solutions have been identified, offering

partial and temporary avenues to navigate these challenges.

Building on the foundation laid in this chapter, Chapter 3 will introduce tools designed to assist individuals without a techni-

cal background in formulating queries. Rooted in the principles discussed during the past chapter, these tools will generate

58

2 CoGhent Data and Link Traversal

queries optimized for a link traversal engine, constructed based on the specified custom configuration. This approach aims

to seamlessly bridge the technical intricacies with user convenience, thereby ensuring an enriched and accessible user ex-

perience.

59

3
Tools for Query Building

Discovering digital art collections encompasses a wide array of possibilities, each with its unique interpretations and im-

plementations. This research, however, primarily centers on the facilitation aspect of this discovery process. The CoGhent

collections undoubtedly harbor a treasure trove of potentially captivating insights, yet professionals and art enthusiasts can

only unlock these treasures if they can formulate the right SPARQL queries. This task is far from simple, particularly when

considering that these individuals might lack the technical proficiency required to construct such queries. Consequently, this

chapter introduces and partially develops two conceptual web applications designed to significantly alleviate the technical

complexities of query formulation for users.

The first application draws inspiration from the existing CoGhent Query Builder proposed in Section 1.4.4. The fundamental

concept remains unchanged: users are presented with a list of properties, and based on their selections, the application

constructs a query with the necessary triple patterns to retrieve the desired data. However, the enhanced iteration of this

application takes two further strides. Firstly, it introducesmodularity by ensuring that the properties and their corresponding

triple patterns are not hard-coded into the application. Instead, they are provided as sequences of predicates through JSON

files. Secondly, the application supports the generation of cross-dataset queries that can be effectively resolved through a

link traversal engine, as elaborated in Chapter 2.

The second application targets users with a slightly more advanced understanding of RDF. It empowers them to explore the

predicate sequences of properties of interest themselves. This exploration journey begins with an RDF resource provided

by the user. From this initial root resource, users can progressively construct a tree comprising of predicates and objects.

Based on users’ choices, the application executes queries to fetch the predicates and objects associated with an already-

present resource in the tree. As users gain a deeper understanding of the data accessible through the given root resource,

they can select specific objects within the tree. The application then deduces the predicate sequences leading from the root

resource to these chosen objects and subsequently generates a corresponding query. Crucially, since this query solely relies

on predicate sequences, it empowers users to perform a generalized inquiry on their entire dataset(s), not just the resource

specified at the beginning of the process.

Both of these applications are briefly introduced in Sections 3.2 and 3.3, respectively, by discussing their main features and

most essential implementation details. For the complete implementations, readers are referred to their respective GitHub

repositories: https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder-ui and https://github.com/thesis-

Martijn-Bogaert-2022-2023/rdf-predicates-explorer. However, prior to this, Section 3.1 first covers the fundamental func-

60

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder-ui
https://github.com/thesis-Martijn-Bogaert-2022-2023/rdf-predicates-explorer
https://github.com/thesis-Martijn-Bogaert-2022-2023/rdf-predicates-explorer

3 Tools for Query Building

tionality shared by both web applications. As to avoid repeating code and to ensure separation of concerns, this functionality

lives on its own and is incorporated into the other two applications by importing its implementation as a package. The de-

tailed implementation of this essential tool can be found in the following GitHub repository: https://github.com/thesis-

Martijn-Bogaert-2022-2023/sparql-query-builder.

3.1 Building Queries from Predicate Sequences

To provide user-oriented applications with the capability to obtain the corresponding query based on an input of predicate

sequences, this section introduces a Node.js application that accomplishes precisely that. The application does not have a

user interface; it solely exports a function that performs the described functionality. This allows other Node.js applications

to use the function by installing the application as a package.

The actual implementation can be found in the following GitHub repository:

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder.

3.1.1 Arrays of Triple Patterns

The simplest but somewhat naive way to build queries in the application is by maintaining the necessary triple patterns for

each property they represent in a single string. Based on the properties selected by the user, the application can then place

the corresponding strings one by one in the WHERE clause of a new query. However, starting from such completely hard-

coded chunks of triple patterns not at all meets the requirement of working with predicate sequences, makes it difficult to

clean up the query, and is simply no elegant solution.

The next logical approach is to keep an array of strings for each property, with each string representing a single triple pattern.

Code Fragment 3.1 provides an example of what such an array might look like. Note that the array itself effectively becomes

the value of a key-value pair, the key being the property name. This allows to feed the function responsible for the actual

query building with a dictionary of such key-value pairs.

objectname: [
'?s cidoc:P41i_was_classified_by ?classified.',
'?classified cidoc:P42_assigned ?assigned.',
'?assigned skos:prefLabel ?objectname.',

]

Code Fragment 3.1: WHERE clause statements to query for objectname stored as elements in an array

An important and convenient feature of SPARQL is the ability to use prefixes. Code Fragment 3.1, for instance, assumes that

the provided triple patterns are already utilizing prefixes. Naturally, in this case, the application should construct a query that

begins with the necessary prefix statements. The simplest, yet again naive, way to achieve this is by including the same

set of prefix statements at the start of each query. Code Fragment 3.2 illustrates what this set of prefix statements

might look like.

61

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder
https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder
https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder

3 Tools for Query Building

PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>
PREFIX adms:<http://www.w3.org/ns/adms#>
PREFIX skos:<http://www.w3.org/2004/02/skos/core#>
PREFIX la:<https://linked.art/ns/terms/>

Code Fragment 3.2: All possible PREFIX statements of the original CoGhent Query Builder

It hardly needs mentioning that the solutions described above come with several issues. First, breaking down the chunks of

triple patterns into separate array members still does not allow for a clean query generation process. Second, hard-coded

prefixes hinder the modularity of the app. After all, only accepting triple statements with prefixes from such a limited

predefined list is hardly user-friendly. Moreover, even if the app aims to accommodate as many types of prefixes as possible,

the question arises: how extensive should that list - and thus each query - become?

3.1.2 Arrays of Predicates

To address both of these shortcomings, an improved approach is proposed. It is important to realize that due to the nature of

the queries being formulated in this research, only the predicate of each triple pattern is of real importance. The subjects and

objects are consistently variables, and storing their names along with the predicate does not serve much purpose. Therefore,

the elements in each property’s array do not need to correspond directly to explicit triple patterns, but solely to predicates.

This really brings the concept of predicate sequences to the forefront. Additionally, to have a better understanding of which

prefixes are potentially used, these can also be extracted from the predicate strings and stored separately. With these

observations in mind, Code Fragment 3.3 introduces a new data structure. In it, each property to be included in the query,

holds an array of objects. In turn, each of these objects includes a mandatory predicate field and, in case the latter is no URI,

a prefix field as well.

objectname: [
{ prefix: 'cidoc', predicate: 'P41i_was_classified_by' },
{ prefix: 'cidoc', predicate: 'P42_assigned' },
{ prefix: 'skos', predicate: 'prefLabel' },

]

Code Fragment 3.3: Prefixes and predicates for WHERE clause statements to query for objectname stored as elements in an

array

Immediately, it becomes apparent that using this new data structure is much more elegant than the initially proposed

approach. However, the downside is that the query building function now has more work to do. Since variable names are no

longer specified, the function needs to generate them. This can be approached in two ways.

Firstly, the function could use a generic variable name like var and append an ever increasing number to it. The major

drawback of this solution, though, is that generic variable names can make the query less readable. For instance, while Code

Fragment 3.4 required introducing only four such variable names, it becomes evident that a larger number of them would

make the final query less user-friendly.

62

3 Tools for Query Building

Objectname
?var1 cidoc:P41i_was_classified_by ?var2.
?var2 cidoc:P42_assigned ?var3.
?var3 skos:prefLabel ?var4.

Code Fragment 3.4: WHERE clause statements with object variable names constructed using numbers

As a second approach, the function could use variable names determined by the preceding variable names and predicates.

Code Fragment 3.5 demonstrates that this type of variable naming indeed clearly indicates their purpose. However, in terms

of user-friendliness, this approach scores even worse than the previous one. Queries quickly become overloaded with overly

long variable names, rendering them barely understandable and certainly not readable.

Objectname
?s

cidoc:P41i_was_classified_by
?s_cidoc_P41i_was_classified_by.

?s_cidoc_P41i_was_classified_by
cidoc:P42_assigned

?s_cidoc_P41i_was_classified_by_cidoc_P42_assigned.
?s_cidoc_P41i_was_classified_by_cidoc_P42_assigned

skos:prefLabel
?s_cidoc_P41i_was_classified_by_cidoc_P42_assigned_skos_prefLabel.

Code Fragment 3.5: WHERE clause statements with object variable names constructed from preceding statements

It is evident that none of the approachesmentioned above is the optimal solution. Therefore, in Section 3.1.3, things are being

approached differently one last time. However, before proceeding, another dilemma needs to be addressed. Namely, when

multiple properties are involved in a query, it is entirely possible that parts of their paths toward their respective end objects,

overlap. In other words, it is plausible that the query function needs to add the same triple pattern to the WHERE clause

multiple times. Code Fragment 3.6 illustrates what such a query might look like. Indeed, in principle, the second occurrence

of the triple pattern ?o cidoc:P108i_was_produced_by ?produced is redundant. After all, once a SPARQL

engine reaches this triple pattern, it will utilize the existing bindings for the variables ?o and ?produces, rendering this

triple pattern dispensable.

Place
?o cidoc:P108i_was_produced_by ?produced.
?produced cidoc:P7_took_place_at ?tookplace.
?tookplace la:equivalent ?plaatsequivalent.
?plaatsequivalent skos:prefLabel ?plaats.
Date
?o cidoc:P108i_was_produced_by ?produced.
?produced cidoc:P4_has_time-span ?timespan.

Code Fragment 3.6: WHERE clause statements with overlapping statements

63

3 Tools for Query Building

Code Fragment 3.7 depicts the same query as displayed in Code Fragment 3.6, but without duplicate triple patterns. Such a

query is indeedmore compact, but the query-building process becomes slightlymore complicated. For instance, to keep track

of the various predicates already used, along with their subject and object variables, the entered flat predicates dictionary

could be transformed into a tree structure, where branches represent unique predicates and nodes denote intermediary

variable names. This approach would subsequently allow for building queries void of duplicate triple patterns. However,

one might question whether it is worthwhile to implement such complex logic. In fact, even though permitting duplicate

triple patterns might potentially lengthen the resulting queries, it simultaneously contributes to more comprehensible and

lucid queries. This is evidenced by the query in Code Fragment 3.6: it is readily apparent, both for the place property and

the data property, which paths must be traversed to retrieve their respective objects of interest. Bearing this in mind, this

research prioritizes the creation of these clear queries.

Place
?o cidoc:P108i_was_produced_by ?produced.
?produced cidoc:P7_took_place_at ?tookplace.
?tookplace la:equivalent ?plaatsequivalent.
?plaatsequivalent skos:prefLabel ?plaats.
Date
?produced cidoc:P4_has_time-span ?timespan.

Code Fragment 3.7: WHERE clause statements without overlapping statements

3.1.3 User-Defined Variable Names and Property Path Sequences

As discussed in the previous section, a way must be devised to handle the usage of variable names. Since this research

aims to assist individuals without the necessary technical knowledge in comprehending too complex queries, two additional

functionalities are introduced. These functionalities aim to both condense queries and make them more intelligible.

To fulfill the first objective, property path sequences are employed. These sequences essentially concatenate consecutive

predicates, eliminating the need for variable names. To achieve the second objective, users are provided with the option

to add an object_variable_name key to the triple pattern descriptions in the properties dictionary. For instance,

when the query-building function encounters an object_variable_name, it will not concatenate the next predicate

to the current one using a property path sequence. Instead, it will use the specified variable name for the object of the

current triple pattern, as well as for the subject of the next one. Additionally, a subject_variable_name can also be

included. However, to avoid clashes with potential object_variable_names, this will only be respected for the first

triple pattern description in an array. This should provide the capability to deviate the starting point of a sequence of triple

patterns from the default starting point.

In principle, the functionality described above should suffice for building clear, albeit very simple queries. For that reason,

before discussing a handful additional features in Sections 3.1.4 and 3.1.5 Code Fragments 3.8 and 3.9 are introduced. Code

Fragment 3.8 presents two dictionaries intended to be passed to the query-building function. The properties dictio-

nary attempts to illustrate the concepts discussed earlier. Specifically, the dictionary outlines paths to several objects of

interest. For the title and description properties, only one predicate is needed each, while the objectname
and association properties require three and four predicates, respectively. For each element in the property arrays, a

64

3 Tools for Query Building

predicate is provided; logically, this is the only mandatory named value. Additionally, prefixes are added where nec-

essary. The query-building function will place these prefixes before their corresponding predicates. To ensure a functional

query, however, it is assumed that the URIs representing the prefixes are provided separately to the query-building function.

The latter will subsequently use them to create PREFIX statements at the beginning of the query. Moving on, no beginning

array element is assigned a subject_variable_name, which should result in a query where each path starts from

the same subject variable. However, two object_variable_name specifications are provided. Their corresponding

variable names should appear in the resulting query, essentially breaking the regular property path sequences. Indeed, as

depicted in Code Fragment 3.9, the output of the query-building function matches the expectations perfectly.

const properties = {
title: [

{ prefix: 'cidoc', predicate: 'P102_has_title' }
],
description: [

{ prefix: 'cidoc', predicate: 'P3_has_note', object_variable_name: 'note' },
],
objectname: [

{ prefix: 'cidoc', predicate: 'P41i_was_classified_by' },
{ prefix: 'cidoc', predicate: 'P42_assigned' },
{ predicate: 'http://www.w3.org/2004/02/skos/core#prefLabel' },

],
association: [

{ prefix: 'cidoc', predicate: 'P128_carries' },
{ prefix: 'cidoc', predicate: 'P129_is_about', object_variable_name: 'about' },
{ prefix: 'cidoc', predicate: 'P2_has_type' },
{ predicate: 'http://www.w3.org/2004/02/skos/core#prefLabel' },

],
};

const prefixes = {
cidoc: 'http://www.cidoc-crm.org/cidoc-crm/',

};

Code Fragment 3.8: Properties and prefixes ready to be consumed by query building function

3.1.4 Filtered and Optional Properties

As with the original CoGhent Query Builder, this application should provide the ability to filter and/or make properties op-

tional. While, technically, a SPARQL query can have these specifications defined anywhere in its WHERE clause, in the orginal

CoGhent Query Builder’s and this application’s case, these specifications are intended to be defined per property. This only

makes sense, as from the perspective of simplicity and consistency, both applications aim to abstract the complexities of

query building to a large extent. Therefore, it might be inappropriate to provide users with the ability to manipulate the

65

3 Tools for Query Building

PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>
PREFIX skos:<http://www.w3.org/2004/02/skos/core#>

SELECT ?title ?note ?objectname ?association

WHERE {
title
?human_made_object cidoc:P102_has_title ?title.

description
?human_made_object cidoc:P3_has_note ?note.

objectname
?human_made_object

cidoc:P41i_was_classified_by/cidoc:P42_assigned/skos:prefLabel
?objectname.

association
?human_made_object cidoc:P128_carries/cidoc:P129_is_about ?about.
?about cidoc:P2_has_type/skos:prefLabel ?association.

}

Code Fragment 3.9: SPARQL query generated from input displayed in Code Fragment 3.8

66

3 Tools for Query Building

abstracted triple patterns at the beginning. Besides, once the query is generated, users can obviously still modify it as they

wish.

To include the filtering functionality, one approach is to provide a new dictionary to the query-building function where prop-

erty names can be listed along with their filter details. However, introducing a third dictionary might become a bit cluttered

for developers. Therefore, an alternative approach is to incorporate the filter details into the existing properties array.

For this, a slight modification to the data structure is needed. Code Fragment 3.10 demonstrates what this entails. Specif-

ically, the array containing predicate information is no longer the direct value of its predicate key. Instead, the value of

the predicate key becomes a dictionary that has room for a statements key, which in turn houses the original array of

statements.

const properties = {
title: {

statements: [
{ prefix: 'cidoc', predicate: 'P102_has_title' }

],
},
description: {

statements: [
{ prefix: 'cidoc', predicate: 'P3_has_note', object_variable_name: 'note' },

],
filters: { string: 'luchter', language: 'nl' },
optional: true,

},
};

Code Fragment 3.10: Example of properties dictionary to illustrate use of filters and optionals

Now that each property in the properties array can host various types of data, there is finally space for a filters key.

This key specifies a new dictionary where multiple types of filters can be accommodated. In fact, unlike the original CoGhent

Query Builder, this opens up the possibility of allowing different kinds of filters alongside a regex-based and case-insensitive

string filter. Of course, this is provided that the query-building function knows how to handle them. At the time of pub-

lishing this research, an additional feature has been implemented which allows specifying a language filter value. Code

Fragment 3.11 presents the corresponding query based on the properties dictionary in Code Fragment 3.10 and demonstrates

how the language filter is reflected in the query.

Code Fragments 3.10 and 3.11 also illustrate how a property can be made optional. This can be achieved simply by adding the

optional key to the property details and setting its value to true.

3.1.5 Limit and Offset

Finally, the application is also capable of adding a LIMIT and/or OFFSET statement to the query. Their corresponding

parameters, limit and offset, can simply be passed as parameters to the query-building function. However, it is worth

noting that, in the context of a link traversal engine, an offset might not be very meaningful due to the unpredictable nature

67

3 Tools for Query Building

PREFIX cidoc:<http://www.cidoc-crm.org/cidoc-crm/>

SELECT ?title ?note

WHERE {
title
?human_made_object cidoc:P102_has_title ?title.

description
OPTIONAL {

?human_made_object cidoc:P3_has_note ?note.

FILTER(REGEX(?note, "luchter", "i"))
FILTER(LANG(?note) = "nl")

}
}

Code Fragment 3.11: SPARQL query generated from input displayed in Code Fragment 3.10

of the order in which results are discovered, as discussed in Section 2.1.2. Nonetheless, in case a user really desires to see

different results, adjusting the offset might increase the likelihood of retrieving previously unseen results. On the other

hand, providing a limit is very much advantageous. Since link traversal can be slow and theoretically even infinite, a limit

partly alleviates these issues by instructing the query engine to stop gathering links and results after a certain count.

3.1.6 Overview

The application is clearly highly powerful when it comes to constructing simple queries, specifically queries that target

specific data points. Creating input for the query-building function is less tedious than manually composing the correspond-

ing query. Nevertheless, throughout the previous sections, numerous rules have been presented, making it appropriate to

summarize them. It is important, however, to understand that the use, and therefore the preparation of input for the query-

building function, is not intended for the end user. On the contrary, the described application is designed to be incorporated

by other applications that ultimately - and hopefully - provide the end user with a user-friendly user interface. In other

words, the developers of these end applications are the ones who need to know how to properly provide the query-building

function with the right parameters.

Specifically, the query-building, or in fact buildQuery1 function can be provided with five parameters. The following

overview discusses them in order:

1. properties (required)

This should be a dictionary with each key indicating a property. In turn, each property specifies a dictionary containing

the following named values:

1https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder/blob/main/index.js

68

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder/blob/main/index.js

3 Tools for Query Building

• statements (required)

This should be an array containing one or more dictionary elements. The order of the elements decides the

path to follow. Each element contains the following named values:

– predicate (required)

Specifies the predicate as a string. This can be a full URI or only the end of one, thus expecting a prefix.

– prefix (optional)

Specifies the prefix as a string. Should only be used if the predicate expects a prefix.

– subject_variable_name (optional)

Explicitly sets the subject variable name of the corresponding triple pattern and will solely be handled

upon in case it is part of an array’s first element. In case an array’s first element does not have this

specified, the subject variable name will be set to ?o.

– object_variable_name (optional)

Explicitly sets the object variable name of the corresponding triple pattern, as well as the subject variable

name of the subsequent triple pattern. In case an array’s last element does not have this specified, the

object variable name will be set to the property key. In case an array’s any other element does not

have this specified, the current and subsequent predicates will be concatenated using a property path

sequence.

• filters (optional)

This should be a dictionary containing the following names values:

– string (optional)

Specifies the string to filter this property’s last triple pattern’s object name on as a string.

– language (optional)

Specifies the language to filter this property’s last triple pattern’s object name on as a string.

• optional (optional)

Specifies whether or not to make the retrieval of this property optional as a boolean.

2. prefixes (optional)

This should be a dictionary that specifies which PREFIX statements to add to the start of the query. Each key

represents the prefix name, while each value represents the corresponding URI.

3. datasets2 (optional)

This should be an array of string elements. Each element specifies the URI of a specific graph to query against and

will be mapped to the value of a FROM statement in the query

2This functionality was not discussed since the various CoGhent LDESs already inherently partition the entire CoGhent dataset. Therefore, the use

of FROM statements for the type of queries addressed in this research is not relevant.

69

3 Tools for Query Building

4. limit (optional)

This should be an integer and will be mapped to the query’s LIMIT statement.

5. offset (optional)

This should be an integer and will be mapped to the query’s OFFSET statement.

3.2 A Modular Query Builder

The application introduced in this section closely mirrors the functionality of the original CoGhent Query Builder. However,

due to its reliance on the query-building function as outlined in Section 3.1, the resultant queries possess the potential to

target a broad spectrum of datasets beyond just CoGhent’s.

There are two other substantial differences with the original CoGhent Query Builder as well. Firstly, the application’s mod-

ularity is evident in the sense that the presented properties are not rigidly embedded within the application’s codebase.

Instead, they are dynamically retrieved from distinct JSON files. Secondly, the generated queries have the capacity to tra-

verse beyond single documents, necessitating execution through a link traversal engine.

Just like the query builder application introduced in Section 3.1, this section too introduces aNode.js application. However, this

one now boasts a user interface (UI). Nonetheless, the UI is so user-friendly and intuitive that these technical intricacies do

not find coverage within this research. Simply put, users are initially presented with an overview of availablemodules. They
can then open these modules and make selections from the displayed properties. With each modification of this selection,

the application updates the corresponding query. It is worth noting that while the original CoGhent Query Builder generates

its queries only when a button is clicked, this application aims to provide users with a better understanding of the query-

building process by translating their actions into results in real-time.

The actual implementation can be found in the following GitHub repository:

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder-ui.

3.2.1 Modularity

As announced, this application introduces a form of modularity by offering property selection based on independent JSON

files. On the one hand, the application looks into the config/ directory at the root of the project, and on the other,

users can upload their own JSON files. The key property of such JSON files is, of course, its properties key. It aligns

perfectly with the type of properties dictionary that needs to be passed to the query-building function from Section 3.1. Its

schema thus corresponds entirely to the schema outlined in Section 3.1.6. When forwarding the data of the user-selected

properties to the query-building function, the application subsequently merely needs to parse the selected JSON properties

into JavaScript objects and aggregate them together in a JavaScript dictionary. This dictionary is then ready to be passed as

the first parameter of the query-building function.

In addition to the properties key, a JSON file can optionally include a prefixes key. This key specifies a dictionary

that maps prefixes to their URIs. When the selected properties are passed to the query-building function, the application will

70

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder-ui

3 Tools for Query Building

check for any used prefixes in their statements arrays. Using this information, the application can retrieve the necessary

prefix definitions from the prefixes JSON dictionary and pass them to the query-building function.

Modularity is a useful feature, but it’s important to consider that the targeted config/ directory can potentially contain a

large number of JSON files. To prevent the application from performing toomany and potentially unnecessary I/O operations

on start-up, the application initially refrains from loading the contents of the JSON files. Instead, it reads all the JSON file

names and uses them to provide users with an overview of the available modules. Only when a user decides to expand a

module, the contents of the corresponding JSON file are loaded, and its properties are presented to the user as selectable

blocks.

It must be acknowledged that working with these bare JSON files does not entirely align with the spirit of Linked Data. The

use of such independent resources could indeed prompt their publication in RDF format. However, since this part of the

research mainly focuses on the query-building process, this functionality has not been developed. Nonetheless, if the need

arises in the future, this is a direction that can certainly be investigated more extensively.

3.2.2 Signifying Intent with Questions

As a reminder, the UI of the application essentially displays a list of selectable properties. Each property is represented by

a block displaying the property’s name and providing the option to select the property. What hasn’t been mentioned yet is

that these blocks also provide filtering options. Specifically, a user can provide a string filter and select a language from the

corresponding dropdown list.

While many of these UI elements are also present in the original CoGhent Query Builder, this application introduces an

additional component that could potentially make the query-building process more comprehensible and powerful for users.

Namely, for each property in a JSON file, a question key can be included. This should give an indication of the kind of

question that can be answered by selecting the respective property. Of course, these questions are not passed to the query-

building function; they are only used to be displayed in each property block and assist the user in constructing queries.

3.3 Discovering Predicate Sequences

The previous tool, while making query construction very accessible for absolute beginners, does have a clear drawback: the

queries that can be created depend on the already available properties. In other words, users rely on the work of others.

To cater to users who are a bit more adventurous and want access to the theoretically complete list of properties without

requiring them to have prior knowledge of the schema of the data source they’re querying, an additional tool is introduced

in this section.

This application allows users to gain a better understanding of how the data in their dataset is structured before selecting

properties of interest. This is achieved by letting users provide a specific resource URI that should indicate the kind of

predicates and objects that can be reached by starting from essentially any such resource. In other words, this starting
resource serves as a blueprint for the schema of all its colleague resources. For instance, consider the CoGhent LDESs; they

encompass a plethora of Human-Made Objects. If a user wants to query the CoGhent LDESs but has no idea about the kind of

data that Human-Made Objects grant access to, they can provide the URI of any Human-Made Object as the starting point for

71

3 Tools for Query Building

the application. The application then allows the user to freely explore all branches and sub-branches departing from this

resource. Armed with that knowledge, the user can subsequently select specific data points that sound interesting to them.

The query builder application from Section 3.1 can then generate a query from the corresponding predicate paths, which can

be executed across the entire CoGhent LDESs, using all available Human-Made Objects as starting points.

It must be acknowledged, however, that the system of solely relying on the user to specify the starting resource’s URI goes

somewhat against the goal of user-friendliness. After all, to get this URI, the user is essentially expected to have queried

their dataset before - at least partially. While not implemented in the code provided with the research, several ways can be

brought into place to alleviate this issue. For instance, the application could potentially ask the user to initially only provide

access to their dataset. From that dataset, the application could then extract the resource URIs itself - one per type - and let

the user choose on of them as the starting point. Additionally, a very simple search system could even be integrated to help

the user find an even more thought out starting point.

The actual implementation can be found in the following GitHub repository:

https://github.com/thesis-Martijn-Bogaert-2022-2023/rdf-predicates-explorer.

3.3.1 Tree Data Structure and Visualization

As illustrated by Figure 1.2, a web of Linked Data can typically be represented using a graph. In this representation, nodes

represent resources or atomic values, and edges represent predicates. For the development of the application central to this

section, relying on a graph structure is therefore a good option. However, in the interest of clarity for users and to avoid

unnecessarily complicating the development process of the application, the choice is made to avoid working with cycles. In

other words, the discovery of new predicates and resources is supported by a tree structure. After all, opting for a tree data

structure not only enhances the visualization aspect of the application but also aids in storing the data.

Developing a tree data structure itself is no insurmountable task. However, developing a tree’s visualization aspect is less

straightforward. Therefore, existing systems are leveraged. Given that the application is a Node.js application, there are

numerous libraries that can be considered. For instance, a very popular choice for any kind of data visualization is D3.js3 .
However, while this library offers a lot of possibilities, achieving a user-friendly tree interface still requires substantial im-

plementation work. Therefore, a better approach would be to seek out libraries specifically focused on tree visualization.

One such library is visjs-network45 . This library does indeed make it remarkably simple to provide nodes and edges with

custom data and neatly visualize the entire tree, including pan and zoom functionality. However, during its use within the

context of this research, it became evident that this package still presents challenges regarding visualization customization.

After all, there needs to be enough space in the nodes and at the edges to accommodate the corresponding resource and

predicate URIs. A more fitting alternative is therefore cytoscape.js6 . This library too makes tree data management exceed-

ingly simple, but it also allows for a fairly straightforward arrangement of the tree’s design so that even custom data can

be made legible.

3https://www.npmjs.com/package/d3
4https://www.npmjs.com/package/visjs-network
5The visjs-network library is a fork of the now depricated vis.js library
6https://www.npmjs.com/package/cytoscape

72

https://github.com/thesis-Martijn-Bogaert-2022-2023/rdf-predicates-explorer
https://www.npmjs.com/package/d3
https://www.npmjs.com/package/visjs-network
https://www.npmjs.com/package/cytoscape

3 Tools for Query Building

Figure 3.1 displays a screenshot of the application, illustrating the final tree design.

Figure 3.1: Screenshot of RDF Predicates Explorer

3.3.2 Tree Expansion

Another advantage to using cytoscape.js is the ease with which event listeners for node clicks can be added. This is necessary

as users need to interact with nodes. For instance, if a node represents a resource, not an atomic value, users should be able

to expand it. This involves retrieving the predicate and object for every triple pattern in which the resource is the subject.

Consequently, for each such predicate-object pair found, a corresponding edge-node pair is added to the resource node. This

73

3 Tools for Query Building

system allows users to build a tree of predicates and resources, providing insights into the part of the web of Linked Data

that the starting resource grants access to.

Naturally, behind this expanding operation lies a SPARQL query. That query is not at all complicated, as exemplified by Code

Fragment 3.12. Here, the function that returns the necessary query for a given resource URI is presented. To execute the query,

the application uses Comunica’s standard SPARQL engine7 , rather than a link traversal engine. The latter isn’t necessary for

this type of query, as there is no need for a link traversal engine that might needlessly search for potentially followable links

and carries some overhead anyways. Furthermore, the used query engine naturally requires a datasource. Logically, the

resource URI should suffice for this. At least, that is the theory. Because in practice and as attested to in Section 2.3, certain

resource URIs –for various reasons –do not always lead directly to a queryable document. For instance, Getty Vocabularies

URIs only return correct JSON-LD content when a .json-ld extension is appended to them. Therefore, to also enable

users to expand these affected resources, the application provides the possibility to modify the datasource before executing

the query from Code Fragment 3.12. As a bonus, this also enables users to specify a SPARQL endpoint as the datasource,

potentially speeding up querying.

function buildQuery(subjectResource) {
return `

SELECT ?p ?o
WHERE {

<${subjectResource}> ?p ?o.
}

`;
}

Code Fragment 3.12: Function returning a SPARQL query for completing a resource subject’s triple pattern

3.3.3 Predicate Sequences Selection

The purpose of the application central to this section is, of course, to compose queries. To achieve this, this application

also utilizes the query builder application discussed in Section 3.1. The query builder function of the latter expects several

parameters, with the most important being the properties parameter. In other words, for each type of property the

user wants to include in their query, at least the corresponding predicate sequence, and optionally some filter details and an

optional value, must be provided. Compiling all of this into a valid properties dictionary is a trivial task for the ap-

plication. However, to understand the user’s preferences, the necessary UI elements need to be provided. Code Fragment 3.1

already provides a visual indication of those.

Specifically, the application presents an input form when a node is clicked. Initially, it only offers the option to enter a

property name. The intention is for this to briefly describe the type of data obtained by following the predicate sequence to

the node in question –whether a resource or an atomic value. Subsequently, once the property name is provided, the user

can add the property to the query. This step presents them with a few additional yet optional fields. Specifically, the user

can provide a string filter –the label of the node in question is automatically offered as an option –choose a language, and

designate the property as required or optional. Each node included as a property in the query is highlighted in the tree.
7https://github.com/comunica/comunica/tree/master/engines/query-sparql

74

https://github.com/comunica/comunica/tree/master/engines/query-sparql

3 Tools for Query Building

Consequently, when the user is satisfied with their choices, they can press the Generate Query button. Upon this signal,

the application first collects all properties with their respective details into a dictionary, structured according to the rules

defined in Section 3.1.6. For each chosen node, this also requires the various predicates leading from the starting resource

to that node. Fortunately, cytoscape.js can help with this too. After all, for each node, it offers the predecessors()8

function. This leaves the application only with filtering each selected node’s predecessors for just edges –predicates –and
reversing their order. Eventually, once the complete predicates dictionary is determined, the application passes it to

the query-building function, which ultimately presents the generated query to the user. As an added bonus, the application

can even convert the dictionary to a JSON file, allowing it to be used as a module in the application discussed in Section 3.2.

3.4 Conclusion

The applications presented in Sections 3.2 and 3.3 are primarily user-centric. The application in Section 3.2, for instance, serves

as a great starting point for absolute beginners to get a high-level idea of certain datasets, as well as how the selection of

specific properties, accompanied by questions, translates into the construction of a SPARQL query. However, the drawback is

that users rely on existing modules tailored to specific datasets. Without these modules, the application has no use. This is

why the application discussed in Section 3.3 was developed. It allows users to select properties based on the branches and

sub-branches of a specific resource in their dataset. However, this application expects a bit more technical understanding

from users. Not only do users need to provide the URI of the starting resource themselves, expanding the tree can also be a

somewhat tedious process.

Certainly, both applications have their distinct strengths and weaknesses. However, the key functionality of both, which is

query building, is performed by a separate application. This application provides a query-building function that enables

developers to build various user-centric applications around it. The only prerequisite is to provide the function with the

appropriate parameters. Once again, the specific details of these parameters are set out in Section 3.1.6.

In any case, the ultimate goal of each application discussed in this chapter is the creation of a query. The logical next step

is for a user to execute this query. However, given that the generated queries are document-transcending, users need an

appropriate link traversal engine to execute them. The custom engine developed at the end of Chapter 2 serves this purpose.

However, it is important to note that improperly configured servers might react unexpectedly to requests from such engines,

and there is thus no guarantee that every query will yield results. Temporary workarounds can however be implemented to

handle such cases. For instance, the custom engine from Chapter 2 can work with Getty Vocabularies resources thanks to a

newly-created actor. At the time of publication, this research therefore recommends using this custom engine.

Nevertheless, the question now becomes where users are expected to consult these engines. One option would be to man-

ually build a standalone application around the engine, another to simply host a Comunica SPARQL jQuery Widget9 with the

necessary configuration. However, to save users from unnecessary copying and pasting, this research has chosen to expand

the functionality of the applications from Sections 3.2 and 3.3. Specifically, when a query is generated in either application,

users are provided with the option to execute it immediately.

8https://js.cytoscape.org/#nodes.predecessors
9https://github.com/comunica/jQuery-Widget.js/

75

https://js.cytoscape.org/#nodes.predecessors
https://github.com/comunica/jQuery-Widget.js/

3 Tools for Query Building

This leaves only one last question to answer: what to do with these query results? Chapter 4 delves into exploring potential

resolutions to the challenge of handling those.

76

4
Handling Query Results

Chapter 3 introduced tools for formulating queries, and Chapter 2 covered executing these queries using a link traversal

engine. Yet, certain questions remain unanswered. This chapter addresses these concerns.

Firstly, it deals with a crucial aspect pertinent to the core datasets of this study: digital art collections. Given the significance

of visual data in these collections, the challenge of visualizing query results, arises. This is explored in Section 4.1.

Secondly, a more universal issue is addressed; the need for saving query results for future reference. How can this be effec-

tively achieved? This preservation issue is discussed in Section 4.2.

It is important to clarify that this chapter does not strive to offer exhaustive analyses of these topics. Instead, it provides an

overview of potential solutions, outlining their advantages and drawbacks. Moreover, no single solution is deemed inherently

superior to the other(s).

4.1 Visualizing Query Results

Given the research’s focus on retrieving data as properties of specific CoGhent Human-Made Objects, the visual aspect of

these objects revolves around displaying their corresponding digital images. The fact that each object is associated with a

single image simplifies matters. Additionally, the provision to also showcase textual data for each object is crucial. Code

Fragment 2.1 serves as an example of a query that acquires some textual attributes for every Human-Made Object, alongside

the object’s digital image URI.

Sections 4.1.1 and 4.1.2 delve into the advantages and disadvantages of two visualization approaches. Irrespective of the

method chosen, a key requirement is the ability to map the query results into the tool’s internal structure. This entails that

the visualization tools cannot possibly accommodate any query results without user instructions. They either solely accept

results that strictly adherence to a predefined schema, or they offer a mapping interface empowering users to define how

and where specific properties should be displayed.

4.1.1 IIIF Viewers

As discussed in Section 1.5, IIIF Viewers are commonly used tools for visualizing cultural data. Therefore, they are also suitable

candidates for visualizing query results that may arise from this research. The greatest advantage of using IIIF Viewers is, of

77

4 Handling Query Results

course, that they don’t need to be developed from scratch. Users have a wide range to choose from. Moreover, since these

viewers are generally open-source projects, users can even customize an existing IIIF Viewer to their liking.

Using a IIIF Viewer also implies that the query results need to be mapped to a IIIF Manifest. However, since these manifests

can be structured in various ways, there can be different approaches to this mapping. Certain decisions need to be made,

such as which Presentation API version the manifest should support - whereas Presentation API 3.* is the latest and most

capable version, some IIIF Viewers only support Presentation API 2.* - as well as how the results should be organized. In

the context of this research, a proof-of-concept mapper was developed, supporting Presentation API 2.* and providing one

canvas per Human-Made Object, all grouped together in a single sequence.

The actual implementation can be found in the following GitHub repository:

https://github.com/thesis-Martijn-Bogaert-2022-2023/iiif-generator.

While using an existing IIIF Viewer indeed eliminates a lot of implementation work, it has one major drawback. IIIF Viewers

expect the IIIF Manifest they are supposed to visualize, to be provided via its resource URI. While this aligns with the Linked

Data principles, it restricts a true discovery process. Since IIIF Manifests must be hosted –whether locally or externally –the
IIIF Viewer cannot dynamically update itself when new results prompt changes in the corresponding IIIF Manifest. Hence, if

such live update feature holds significance, alternative solutions must be explored.

4.1.2 Custom Viewer

To have a true real-time visualizer at their disposal, developers need to take matters into their own hands. Fortunately, they

can still rely on existing open-source tools. For instance, developers can work with the Annona Library1 . This library offers

a somewhat more makeshift IIIF Viewer, allowing the flexibility of presenting a IIIF Manifest as a string and deliberately

abstaining from being classified as an official IIIF Viewer. In principle, extending such a viewer to react in real-time to the

results of a query engine should be achievable.

However, relying solely on existing tools might impose restrictions on certain customization aspects. Consequently, devel-

oping a custom viewer from the ground up is also a valid approach. Nevertheless, the considerable implementation effort

involved in this approach must be thoughtfully evaluated.

4.2 Saving Query Results

The query results acquired through this research might uncover new insights into the employed datasource(s). This naturally

raises the need to archive these findings for future reference. There are various methods to achieve this, each approaching

the notion of results from a distinct angle.

Initially, as discussed in Section 4.2.1, results can be retained through direct storage –that is, by saving the corresponding

bindings objects for each bindings. This approach ensures that the results remain accessible at any point. However, it also

introduces the risk of the retained data not being up-to-datewith the original data anymore. After all, the original datamight

1https://github.com/ncsu-libraries/annona

78

https://github.com/thesis-Martijn-Bogaert-2022-2023/iiif-generator
https://github.com/ncsu-libraries/annona

4 Handling Query Results

have undergone changes or even been removed since the last retention. Moreover, while retaining query results literally,

can be beneficial and deliberate, it could also present legal considerations. For instance, in case the copyright information

for a CoGhent Man-Made Object’s image is updated, this change will not be reflected in the stored results.

In contrast, Sections 4.2.2 and 4.2.3 adopt a fundamentally different perspective on the concept of results. Here, the focus

is not so much on the specific query outcomes but rather on the instructions to reproduce them. Consequently, in both

cases, these instructions themselves are viewed as the data worthy of retention. While this approach implies that users

don’t possess specific results at their fingertips, it guarantees that upon executing these instructions, the obtained results

consistently align with the current state of the utilized datasource(s).

4.2.1 IIIF Manifest

The most straightforward way to store query results literally is by using a text-based file format. Examples include .csv
and .txt files. Using a custom database is also an option, albeit a somewhat more advanced one. Alternatively, a IIIF

Manifest can be used, identical to what was discussed in Section 4.1.1. However, in this scenario, the query results must be

accurately integrated into the relevant sections of the manifest. Still, this approach offers the advantage of immediate and

perpetual visualization of the results.

4.2.2 SPARQL Query

To retain the instructions for acquiring query results, a direct approach is to store the actual SPARQL query. This can be

accomplished by saving it in a .rq file. However, when retrieving the query later on, it is essential to determine which

query engine should execute it. This is due to the fact that certain queries are closely tied to the engine they were tailored

to. This holds true for the type of queries central to this study as well. Notably, many of these queries are tailored to the

custom engine introduced in Section 2.2 and may not function correctly when executed by others.

4.2.3 Predicate Sequences

For queries specifically targeting Human-Made Objects in CoGhent’s collections, an alternative method exists to preserve

the instructions leading to query results. Section 3.2 namely introduced a JSON data structure to maintain corresponding

predicate sequences for various properties. The associated query builder application subsequently translates these JSON

files into executable queries. One benefit of this approach is that it allows for the files to be shared as modules with other

users. However, this storage method is arguably quite niche, and users who are unfamiliar with the application may struggle

to interpret these JSON files. Therefore, if the retention of query instructions is a significant consideration, it is advisable to

store them directly as SPARQL queries.

4.3 Conclusion

This chapter has delved into the intricate nuances of handling query results, building upon the foundational knowledge

established in the preceding chapters on formulating and executing queries. The emphasis on digital art collections, partic-

ularly the CoGhent Human-Made Objects, has underscored the importance of visualizing and preserving query results.

79

4 Handling Query Results

The visualization of query results, as discussed in Section 4.1, given the visual nature of the datasets, poses unique challenges.

While existing tools like IIIF Viewers offer a ready-made solution, they come with their own set of limitations, particularly in

terms of real-time updates. On the other hand, custom viewers, though demanding in terms of development, offer greater

flexibility and real-time capabilities.

The preservation of query results, as elaborated in Section 4.2, presents a dilemma: retaining the actual results versus

preserving the instructions to reproduce them. While direct storage methods, such as text-based files or IIIF Manifests, offer

immediate access to results, they risk becoming outdated or misaligned with the original data. In contrast, storing the

SPARQL query or predicate sequences ensures that results are always up-to-date with the current state of the data source,

albeit at the cost of immediate accessibility.

In essence, the handling of query results is a multifaceted process, with each method offering its own set of advantages and

drawbacks. The choice largely depends on the specific requirements and constraints of the user or project. While the tools

and methods presented in this chapter provide a comprehensive overview of the possibilities, it is essential to approach the

handling of query results with a clear understanding of the desired outcome and the limitations of each method.

80

Conclusion

The exploration of digital art collections using Link-Traversal–based Query Processing has been a multifaceted journey,

intertwining the realms of art and technology. As digital art collections have become more accessible, challenges have

arisen, particularly for individuals without a technical background. This research embarked on addressing these challenges,

aiming to provide tools and methodologies that empower both professionals and art enthusiasts to delve deeper into the

digital art landscape, making new discoveries and drawing meaningful connections.

The systematic process of discovering digital art collections can be broadly categorized into three main steps: building

queries, executing them―with a specific focus on link traversal in this research―and handling the results through visu-

alization and storage. Each chapter of this research has meticulously addressed one of these steps.

Chapter 2 delved into the execution of queries using Link-Traversal-based Query Processing. The chapter emphasized the

potential of link traversal in uncovering specific attributes of the Collections of Ghent’s Human-Made Objects, offering in-

sights that would remain hidden with traditional querying methods. However, it also highlighted the inherent challenges

and unpredictability associated with link traversal. For instance, due to server misconfigurations, certain resources like Stad

Gent’s could not be accessed, while the use of others’, like Getty Vocabularies’, required workarounds. These challenges

underscored the fragility of Link Traversal-based Query Processing compared to traditional SPARQL querying.

Chapter 3 introduced tools that simplify the intricate task of query formulation, making it more accessible to a broader

audience. While these tools are valuable, they are not presented as the definitive solutions. Instead, their core query-building

functionality is designed to be modular, allowing others to adapt and use it for their own discovery applications.

Chapter 4 addressed the post-query phase, focusing on the visualization and preservation of query results. The chapter

weighed the advantages and disadvantages of different visualization and preservationmethods. However, it also highlighted

areas for further exploration, such as the adaptability of visualization tools to real-time query updates and the potential for

presenting query results as immersive, interactive narratives. These areas present exciting avenues for future research.

In conclusion, this research has provided valuable insights and tools for the discovery process of digital art collections, while

also shedding light on the inherent challenges of the process. Specifically, the fragility of link traversal, its slower perfor-

mance compared to traditional SPARQL querying, and the unpredictability of outcomes due to server misconfigurations or

other unforeseen technical issues, pose significant hurdles. However, the undeniable potential of link traversal to uncover

hidden data and offer deeper insights into digital art collections offers a promising future. As technology evolves and these

challenges are addressed, it is anticipated that link traversal and its associated tools will becomemoremainstream, benefit-

81

4 Conclusion

ing a wider audience. Yet, it is important to note that, at the time of this research’s publication, harnessing its full capabilities

still demands a certain level of technical expertise.

Ethical and social reflection

In examining the ethical and societal dimensions of the research, it is instructive to consider its alignment with the 17

Sustainable Development Goals2 (SDG) of the United Nations’ 2030 Agenda for Sustainable Development3 .

Primarily, the research’s emphasis on open-source applications seeks to broaden access to the discovery of art and culture,

irrespective of technical expertise. This approach has parallels with SDG 44 , which highlights inclusive education, and SDG

105 , which addresses the reduction of inequalities.

Furthermore, the use of Linked Open Data in the research provides a mechanism for global cultural representation. With

the study primarily focusing on Ghent’s cultural heritage, its objectives intersect with SDG 116 , which is concerned with the

preservation of global cultural heritage. The collaborative nature of the CoGhent partnership also reflects the spirit of SDG

177 , which underscores the importance of partnerships.

The research’s utilization of the semantic web offers a method for accessible art collection discovery, which can be related

to SDGs 88 and 99 , centered around economic growth and innovation. Additionally, the semantic web’s approach to data

control aligns with SDG 16’s10 emphasis on transparency and accountability.

In summary, although the research does not directly address all the SDGs mentioned above, its utilization of the semantic

web and the introduction of various open-source tools at least provide avenues for potentially aligning with them.

2https://sdgs.un.org/goals
3https://sdgs.un.org/2030agenda
4https://sdgs.un.org/goals/goal4
5https://sdgs.un.org/goals/goal10
6https://sdgs.un.org/goals/goal11
7https://sdgs.un.org/goals/goal17
8https://sdgs.un.org/goals/goal8
9https://sdgs.un.org/goals/goal9
10https://sdgs.un.org/goals/goal16

82

https://sdgs.un.org/goals
https://sdgs.un.org/2030agenda
https://sdgs.un.org/goals/goal4
https://sdgs.un.org/goals/goal10
https://sdgs.un.org/goals/goal11
https://sdgs.un.org/goals/goal17
https://sdgs.un.org/goals/goal8
https://sdgs.un.org/goals/goal9
https://sdgs.un.org/goals/goal16

References

Art & Architecture Thesaurus (2023). About the aat. https://www.getty.edu/research/tools/vocabularies/aat/about.html.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. In

The Semantic Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007+ ASWC
2007, Busan, Korea, November 11-15, 2007. Proceedings, pages 722–735. Springer.

Beckett, D. (2014). RDF 1.1 n-triples. W3C recommendation, W3C. https://www.w3.org/TR/2014/REC-n-triples-20140225/.

Beckett, D., Berners-Lee, T., Prud’hommeaux, E., and Carothers, G. (2014). RDF 1.1 turtle. W3C recommendation, W3C. https:

//www.w3.org/TR/2014/REC-turtle-20140225/.

Berners-Lee, T. (2006). Linked data-design issues. http://www.w3.org/DesignIssues/LinkedData.html.

Berners-Lee, T. and Connolly, D. (2011). Notation3 (n3): A readable rdf syntax. W3C team submission, W3C. http://www.w3.

org/TeamSubmission/2011/SUBM-n3-20110328/.

Bizer, C., Heath, T., and Berners-Lee, T. (2011). Linked data: The story so far. In Semantic services, interoperability and web
applications: emerging concepts, pages 205–227. IGI global.

Buil-Aranda, C., Corby, O., Das, S., Feigenbaum, L., Gearon, P., Glimm, B., Harris, S., Hawke, S., Herman, I., Humfrey, N., Michaelis,

N., Ogbuji, C., Perry, M., Passant, A., Polleres, A., Prud’hommeaux, E., Seaborne, A., and Williams, G. T. (2013). SPARQL 1.1

overview. W3C recommendation, W3C. https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.

Candan, K. S., Liu, H., and Suvarna, R. (2001). Resource description framework: metadata and its applications. Acm Sigkdd
Explorations Newsletter, 3(1):6–19.

CoGhent (2022). Linked data event streams. https://coghent.github.io/apiendpoints.html.

CoGhent (2023a). Basic queries. https://coghent.github.io/basicqueries.html.

CoGhent (2023b). Coghent data. https://coghent.github.io/LDES/.

Colpaert, P. (2023a). Linked data event streams. W3C living standard, W3C. https://semiceu.github.io/

LinkedDataEventStreams/.

Colpaert, P. (2023b). The tree hypermedia specification. W3C draft, W3C. https://treecg.github.io/specification/.

Dongo, I. and Chbeir, R. (2019). S-RDF: A New RDF Serialization Format for Better Storage Without Losing Human Readability.

In On the Move to Meaningful Internet Systems: OTM 2019 Conferences, 28th International Conference on COOPERATIVE

INFORMATION SYSTEMS, pages 246–264, Rhodes, Greece. Springer International Publishing.

DuCharme, B. (2013). Learning SPARQL: querying and updating with SPARQL 1.1. ” O’Reilly Media, Inc.”. http://www.snee.com/

semwebmeetup/2011-09-15/SPARQLBobDuCharme.pdf.

Emanuel, J. P. (2018). Stitching together technology for the digital humanities with the international image interoperability

framework (iiif). In Digital Humanities, Libraries, and Partnerships, pages 125–135. Elsevier.

83

https://www.getty.edu/research/tools/vocabularies/aat/about.html
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://coghent.github.io/apiendpoints.html
https://coghent.github.io/basicqueries.html
https://coghent.github.io/LDES/
https://semiceu.github.io/LinkedDataEventStreams/
https://semiceu.github.io/LinkedDataEventStreams/
https://treecg.github.io/specification/
http://www.snee.com/semwebmeetup/2011-09-15/SPARQLBobDuCharme.pdf
http://www.snee.com/semwebmeetup/2011-09-15/SPARQLBobDuCharme.pdf

4 References

Fielding, R. T. and Reschke, J. (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC 7231.

Gandon, F., Schreiber, G., and Becket, D. (2014). RDF 1.1 XML syntax. W3C recommendation, W3C. https://www.w3.org/TR/2014/

REC-rdf-syntax-grammar-20140225/.

Getty (2023). Getty vocabularies and linked open data (lod). https://www.getty.edu/research/tools/vocabularies/Linked_

Data_Getty_Vocabularies.pdf.

Getty Vocabularies (2023). Getty vocabularies. https://www.getty.edu/research/tools/vocabularies/index.html.

Golbeck, J. and Rothstein, M. (2008). Linking social networks on the web with foaf: A semantic web case study. In AAAI,
volume 8, pages 1138–1143.

Hartig, O. and Freytag, J.-C. (2012). Foundations of traversal based query execution over linked data. In Proceedings of the
23rd ACM conference on Hypertext and social media, pages 43–52. https://arxiv.org/pdf/1108.6328.pdf.

IIIF (2017). Presentation api 2.1.1. https://iiif.io/api/presentation/2.1/.

IIIF (2020). Presentation api 3.0. https://iiif.io/api/presentation/3.0/.

Jacksi, K. and Abass, S. M. (2019). Development history of the world wide web. Int. J. Sci. Technol. Res, 8(9):75–79.

MDN Web Docs (2023). 302 found. https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302.

Miller, E. (1998). An introduction to the resource description framework. ディジタル図書館, 13:3–11.

Powers, S. (2003). Practical RDF: solving problems with the resource description framework. O’Reilly Media, Inc.

Schouppe, W. (2022). Gent roept inwoners op erfgoed in te sturen én te onderzoeken op een nieuw online platform: ”we

hopen op 50.000 inzendingen”. VRT NWS. https://www.vrt.be/vrtnws/nl/2022/09/27/gent-vraagt-inwoners-erfgoed-in-

te-sturen-en-te-onderzoeken-op-e/.

Seaborne, A. and Harris, S. (2013). SPARQL 1.1 query language. W3C recommendation, W3C. https://www.w3.org/TR/2013/REC-

sparql11-query-20130321/.

Snydman, S., Sanderson, R., and Cramer, T. (2015). The international image interoperability framework (iiif): A community

& technology approach for web-based images. In Archiving conference, volume 2015, pages 16–21. Society for Imaging

Science and Technology.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.-A., and Lindström, N. (2020). JSON-ld 1.1. W3C recommendation,

W3C. https://www.w3.org/TR/2020/REC-json-ld11-20200716/.

Taelman, R. (2019). Link traversal for comunica. https://github.com/comunica/comunica-feature-link-traversal.

Taelman, R. (2020). Quad pattern fragments. W3C draft, W3C. https://linkeddatafragments.org/specification/quad-pattern-

fragments/.

84

https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.getty.edu/research/tools/vocabularies/Linked_Data_Getty_Vocabularies.pdf
https://www.getty.edu/research/tools/vocabularies/Linked_Data_Getty_Vocabularies.pdf
https://www.getty.edu/research/tools/vocabularies/index.html
https://arxiv.org/pdf/1108.6328.pdf
https://iiif.io/api/presentation/2.1/
https://iiif.io/api/presentation/3.0/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://www.vrt.be/vrtnws/nl/2022/09/27/gent-vraagt-inwoners-erfgoed-in-te-sturen-en-te-onderzoeken-op-e/
https://www.vrt.be/vrtnws/nl/2022/09/27/gent-vraagt-inwoners-erfgoed-in-te-sturen-en-te-onderzoeken-op-e/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://github.com/comunica/comunica-feature-link-traversal
https://linkeddatafragments.org/specification/quad-pattern-fragments/
https://linkeddatafragments.org/specification/quad-pattern-fragments/

4 References

Taelman, R. (2023). Link traversal-based query processing. https://www.rubensworks.net/raw/slides/2023/ugent-

webfundamentals-linktraversal/.

Taelman, R., Van Herwegen, J., Vander Sande, M., and Verborgh, R. (2018). Comunica: a modular sparql query engine for the

web. In Proceedings of the 17th International Semantic Web Conference.

Van de Vyvere, B., D’Huynslager, O. V., Atauil, A., Segers, M., Van Campe, L., Vandekeybus, N., Teugels, S., Saenko, A., Pauwels,

P.-J., and Colpaert, P. (2022). Publishing cultural heritage collections of ghent with linked data event streams. InMetadata
and Semantic Research: 15th International Conference, MTSR 2021, Virtual Event, November 29–December 3, 2021, Revised
Selected Papers, pages 357–369. Springer.

van der Linden, H. (2021). Cultureel erfgoed object (applicatieprofiel). htthttps://data.vlaanderen.be/doc/applicatieprofiel/

cultureel-erfgoed-object/erkendestandaard/2021-04-22/.

Van Leemputten, P. (2020). Gent gaat cultureel erfgoed virtueel samenbrengen. DataNews. https://datanews.knack.be/

nieuws/gent-gaat-cultureel-erfgoed-virtueel-samenbrengen/.

van Veen, T. (2019). Wikidata: From“an”identifier to“the”identifier. Information Technology and Libraries, 38:72–81.

Vanderperren, N. (2021). Publicatie:oslo cultureel erfgoed. https://www.projectcest.be/wiki/Publicatie:OSLO_Cultureel_

Erfgoed.

Wikidata (2023). Wikidata:data access. https://www.wikidata.org/wiki/Wikidata:Data_access.

85

https://www.rubensworks.net/raw/slides/2023/ugent-webfundamentals-linktraversal/
https://www.rubensworks.net/raw/slides/2023/ugent-webfundamentals-linktraversal/
htthttps://data.vlaanderen.be/doc/applicatieprofiel/cultureel-erfgoed-object/erkendestandaard/2021-04-22/
htthttps://data.vlaanderen.be/doc/applicatieprofiel/cultureel-erfgoed-object/erkendestandaard/2021-04-22/
https://datanews.knack.be/nieuws/gent-gaat-cultureel-erfgoed-virtueel-samenbrengen/
https://datanews.knack.be/nieuws/gent-gaat-cultureel-erfgoed-virtueel-samenbrengen/
https://www.projectcest.be/wiki/Publicatie:OSLO_Cultureel_Erfgoed
https://www.projectcest.be/wiki/Publicatie:OSLO_Cultureel_Erfgoed
https://www.wikidata.org/wiki/Wikidata:Data_access

Appendices

86

A Notes on the usage of AI

In accordance with the guidelines11 on the master’s thesis for students pursuing the Master of Science in Industriële Weten-
schappen: informatica at Ghent University, this appendix provides a detailed account of the AI tools utilized during the

research and composition of this thesis.

Primarily, it is crucial to stress that the research itself was solely conducted through human endeavor. However, during

the research process, AI tools, particularly OpenAI’s ChatGPT, were occasionally consulted for assistance. Specifically, the

capabilities of the GPT-3.5 LLM were instrumental in two specific areas of the thesis development.

Firstly, ChatGPT was frequently consulted during the development of the applications associated with this research. This

involved the kind of questions that developers typically consult forums like Stack Overflow for. The advantage of directing

such questions to ChatGPT, however, lies in its ability to tailor responses based on the specific context provided, offering

more personalized solutions.

Secondly, ChatGPTwas invaluable during the thesis writing phase. After all, given that GPT-3.5 is an LLM, it excels in producing

coherent and fluent texts. However, it is imperative to clarify that the tool was never used to generate original content or

insights. Such an approach would not only exceed the capabilities of GPT 3.5 but also and most importantly violate academic

integrity. Instead, ChatGPTwas employed for tasks like translating the given sentence(s) or rewrite the following sentence(s)
in smoother English. This facilitated the writing process for a non-native English speaker and ensured the final text to be

more comprehensible.

11https://masterproef.tiwi.ugent.be/scriptie/inhoud/Richtlijn%20AI%20gebruik%20in%20masterproef.pdf

https://masterproef.tiwi.ugent.be/scriptie/inhoud/Richtlijn%20AI%20gebruik%20in%20masterproef.pdf

B GitHub Repositories

In the context of this research, several applications were developed. Their implementations can be found in the following

GitHub repositories:

• application for generating queries, as mentioned in Section 3.1:

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder;

• application for generating queries from user selection, as mentioned in Section 3.2:

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder-ui;

• application for generating queries from tree visualization, as mentioned in Section 3.3:

https://github.com/thesis-Martijn-Bogaert-2022-2023/rdf-predicates-explorer;

• proof of concept for populating IIIF Manifest, as mentioned in Section 4.1.1:

https://github.com/thesis-Martijn-Bogaert-2022-2023/iiif-generator.

In fact, all repositories created during the research, are conveniently grouped in the following GitHub organization:

https://github.com/thesis-Martijn-Bogaert-2022-2023.

https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder
https://github.com/thesis-Martijn-Bogaert-2022-2023/sparql-query-builder-ui
https://github.com/thesis-Martijn-Bogaert-2022-2023/rdf-predicates-explorer
https://github.com/thesis-Martijn-Bogaert-2022-2023/iiif-generator
https://github.com/thesis-Martijn-Bogaert-2022-2023

	Abstract
	List of Figures
	List of Tables
	List of Code Fragments
	Introduction
	Related Work
	Linked Data
	Introduction and Principles
	Resource Description Framework
	RDF Syntaxes
	SPARQL

	Link-Traversal-based Query Processing
	Link Traversal Basics
	Reachability Criteria

	Comunica
	Building Blocks
	Link Traversal Engines

	Collections of Ghent
	Linked Data Event Streams
	Human-Made Objects
	Example Queries
	Query Builder

	International Image Interoperability Framework
	IIIF Manifests
	IIIF Viewers

	CoGhent Data and Link Traversal
	CoGhent Data Sources
	URI Redirection
	Non-deterministic results
	Duplicate Human-Made Objects
	Conclusion

	Comunica Link Traversal Engine Configuration
	Base Configuration
	Basic Link Extractors
	Extracting Links based on Predicates
	Comparing Link Extractors
	Traversing LDES Pages
	Conclusion

	Links to Follow
	IIIF Manifest
	Wikidata
	Stad Gent
	Getty Vocabularies
	Conclusion

	Conclusion

	Tools for Query Building
	Building Queries from Predicate Sequences
	Arrays of Triple Patterns
	Arrays of Predicates
	User-Defined Variable Names and Property Path Sequences
	Filtered and Optional Properties
	Limit and Offset
	Overview

	A Modular Query Builder
	Modularity
	Signifying Intent with Questions

	Discovering Predicate Sequences
	Tree Data Structure and Visualization
	Tree Expansion
	Predicate Sequences Selection

	Conclusion

	Handling Query Results
	Visualizing Query Results
	IIIF Viewers
	Custom Viewer

	Saving Query Results
	IIIF Manifest
	SPARQL Query
	Predicate Sequences

	Conclusion

	Conclusion
	Ethical and social reflection

	References
	Appendices
	Notes on the usage of AI
	GitHub Repositories

