
Paintings
Image Analysis Applied to Crack Detection in
DAL-ART: Deep Active Learning Tool for Multimodal

Academic year 2022-2023

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Yoann Arhant, Srdan Lazendic
Supervisors: Prof. dr. ir. Aleksandra Pizurica, Prof. dr. Maximiliaan Martens

Student number: 01604354
Sebastiaan Verplancke

Paintings
Image Analysis Applied to Crack Detection in
DAL-ART: Deep Active Learning Tool for Multimodal

Academic year 2022-2023

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Yoann Arhant, Srdan Lazendic
Supervisors: Prof. dr. ir. Aleksandra Pizurica, Prof. dr. Maximiliaan Martens

Student number: 01604354
Sebastiaan Verplancke

Permission of use of loan

The author gives permission to make this master dissertation available for consultation and to
copy parts of this master dissertation for personal use. In all cases of other use, the copyright
terms have to be respected, in particular with regard to the obligation to state explicitly the
source when quoting results from this master dissertation.

Sebastiaan Verplancke
25th Mai 2023

iv

Preface

With the end of this master’s dissertation I am also writing an end to my book as a Computer
Science Engineering student. I have gained invaluable knowledge and skills during my time in
this program that I will carry with me throughout my career. As I move on to the next chapter
of my life, I am excited to apply what I have learned and continue to grow as a professional
in the field. I am grateful for the opportunity to pursue my passion for technology and look
forward to contributing to the ever-evolving world of computer science.

In this preface, I would be delighted to take the opportunity to express my gratitude for those
who were willing to offer me a helping hand to accomplish my thesis:
First and foremost, I would like to thank my supervisors: Prof. dr. ir. Aleksandra Pižurica and
Prof. dr. Maximiliaan Martens for their advice and guidance, which allowed me to bring this
thesis to an even better level.
Secondly I would like to thank my counsellors: Srdan Lazendić and Yoann Arhant without
whom my research would be impracticable in the first place and for sharing their point of view,
which lead to interesting conversations broadening my field of knowledge.
Furthermore, I want to thank Roman Sizyakin for his previous research to build upon and
Philippe Serbruyns for providing the technical capacity to make the work come to life.
Last but not least I want to thank my family, friends and girlfriend for the proofreading and all
other kinds of support they offered to me.

I hope this thesis may help extend the research space, and I hope you enjoy reading it.

Sebastiaan Verplancke

v

Acknowledgements

The DAL-ART deep active learning tool resulted from long-term research on crack detection
in paintings using deep learning in the research group GAIM at Ghent University, led by Prof.
Aleksandra Pizurica. At the core of this tool is the method for detecting features of interest
(cracks) from multimodal images, developed in the PhD thesis of Roman Sizyakin: “Deep learn-
ing methods for crack detection and image restoration with application to digitized paintings”,
Ghent University (2022), supervised by Prof. A. Pižurica. The current web-based application
allowing active learning was developed in the Master thesis of Sebastiaan Verplancke: “DAL-
ART: Deep Active Learning Tool for Detecting Features of Interest in Images with Application
to Digital Painting Analysis”, Ghent University 2023, promotors Prof. A. Pižurica and Prof.
Max Martens, supervisors Yoann Arhant and Srdan Lazendić. Hosting of the web-based tool
was made possible with the help of Philippe Serbruyns, system administrator at the Department
TELIN of Ghent University.

Team

Prof. Aleksandra Pižurica, PI, Scientific leader and coordinator of the project.
Dr. Roman Sizyakin, Doctoral research on deep learning for crack detection in paintings
using multimodal images (2018-2022). PhD thesis: “Deep learning methods for crack detection
and image restoration with application to digitized paintings”, Ghent University, 2022 (Promo-
tor A. Pizurica).
Sebastiaan Verplancke, Master thesis research and developing DAL-ART tool: deep active
learning tool and web-based application. Master thesis: DAL-ART: Deep Active Learning Tool
for Detecting Features of Interest in Images with Application to Digital Painting Analysis, Ghent
University, 2023 (Promotors: A. Pizurica and M. Martens).
Yoann Arhant, Master thesis supervisor and contributor to DAL-ART tool: deep active learn-
ing design and web-based application.
Srdan Lazendić, Master thesis supervisor and contributor to DAL-ART tool: deep active
learning design and web-based application

vi

vii

Prof. Max Martens, Inputs and feedback from art-historical point of view, user requirements
for the interface, analysis of the results
Philippe Serbruyns, System administrator Department TELIN@UGent, inputs and advice
for the web-based application, enabled hosting the tool.

GAIM@UGent

viii

DAL-ART: Deep Active Learning Tool for Multimodal Image Analysis
Applied to Crack Detection in Paintings

Sebastiaan Verplancke

Supervisors: Prof. dr. ir. Aleksandra Pižurica, Prof. dr. Maximiliaan Martens
Counsellors: Yoann Arhant, Srd̄an Lazendić

Master’s dissertation submitted in order to obtain the academic degree of
Master of Science in Computer Science Engineering

Academic year 2022-2023

Abstract

The digitization of artworks has led to the growing importance of digital painting analysis,
particularly in crack detection for restoration and conservation treatments. In the context of
the ongoing restoration project of the Ghent Altarpiece since 2012, the manual identification of
crack detection and other defects for damage mapping proves to be a time-consuming task. To
address this challenge, the GAIM research team has developed several State-Of-The-Art deep
learning methods that can automatically detect cracks in digital paintings. While these models
deliver excellent performance when trained on the adequate datasets with sufficient labelled
data, applying them on new paintings is always challenging. The primary objective of this
thesis is to develop a deep active learning tool that can continuously learn and improve from
user interactions. Moreover, we want this tool to be easily accessible by the users as a web-
application, allowing robust performance. We believe that our tool named DAL-ART can be
utilized by art restorers in the future to actively improve the current models. To this end, a
user interface has been designed and developed to facilitate manual annotations by the user,
enabling the model to be actively learned. Several active learning and retraining strategies
were analyzed in this study. The obtained results not only highlight the potential of active
learning strategies for crack detection but also demonstrate the possibility of extending these
strategies to other areas of digital image processing. The findings of this research open avenues
for future applications of active learning techniques in various domains of art restoration and
digital painting analysis.

Index Terms — digital painting analysis, restoration, conservation, active learning, deep active
learning, DAL-ART, CNN, U-Net

DAL-ART: Deep Active Learning Tool for
Multimodal Image Analysis Applied to Crack

Detection in Paintings
Sebastiaan Verplancke

Supervisors: Prof. dr. ir. Aleksandra Pižurica, Prof. dr. Maximiliaan Martens
Counsellors: Yoann Arhant, Srdan Lazendić

Abstract—The digitization of artworks has led to the growing
importance of digital painting analysis, particularly in crack
detection for restoration and conservation treatments. In the
context of the ongoing restoration project of the Ghent Altarpiece
since 2012, the manual identification of crack detection and other
defects for damage mapping proves to be a time-consuming
task. To address this challenge, the GAIM research team has
developed several State-Of-The-Art deep learning methods that
can automatically detect cracks in digital paintings. While these
models deliver excellent performance when trained on the ad-
equate datasets with sufficient labelled data, applying them on
new paintings is always challenging. The primary objective of
this paper is to develop a deep active learning tool that can
continuously learn and improve from user interactions. Moreover,
we want this tool to be easily accessible by the users as a web-
application, allowing robust performance. We believe that our
tool named DAL-ART can be utilized by art restorers in the
future to actively improve the current models. To this end, a user
interface has been designed and developed to facilitate manual
annotations by the user, enabling the model to be actively learned.
Several active learning and retraining strategies were analyzed in
this study. The obtained results not only highlight the potential of
active learning strategies for crack detection but also demonstrate
the possibility of extending these strategies to other areas of
digital image processing. The findings of this research open
avenues for future applications of active learning techniques in
various domains of art restoration and digital painting analysis.

Index Terms—digital painting analysis, restoration, conserva-
tion, active learning, deep active learning, DAL-ART, CNN

I. INTRODUCTION

Digital painting analysis is the process of examining and
evaluating digitized paintings to automatically discover fea-
tures of interest. The ability to detect these features can have
significant implications for the analysis and understanding of
paintings. It can aid in authenticating the origins of a painting
and detect potential instances of plagiarism or copying, as
well as preserving the integrity of the artwork [1]. One
particular challenge here is the accurate and efficient detection
of craquelure, which is the web of cracks that forms on the
surface of paintings over time resulting in permanent damage
to valuable artworks like the Ghent Altarpiece.

Created by the Early Dutch speaking painters Hubert and
Jan van Eyck in the mid-15th century, the Ghent Altarpiece
- also known as the Adoration of the Mystic Lamb - is an

intricate masterpiece of European art. The altarpiece took
approximately seven years to complete and can be found in
St Bavo’s Cathedral in Ghent, Belgium. It is regarded as
one of the world’s most prized treasures and is particularly
noteworthy for being the ”first major oil painting” [2]. The
Ghent Altarpiece, shown in Figure 1, is currently undergoing
a major restoration campaign where crack detection has proven
to be very useful in assisting art restorers during the restoration
and conservation treatments.

The research group GAIM, at Ghent University, has an
extensive expertise in the field of digital image processing
and in particular in digitized paintings analysis. A series of
important results contributing to the preservation of the Ghent
Altarpiece has been published during the last decade [3]–[5],
starting from the original article of prof. Aleksandra Pižurica
and her student Tijana Ružić. [6] as a joint work with Bruno
Cornelis [3]. The research group addressed a wide range of
problems, with most of the results related to the automatic
detection of cracks in digitized paintings were obtained by
Roman Sizyakin whose publications led to a PhD thesis [7]
in 2022 in research group GAIM at Ghent University. In this
PhD study, the researchers presented models that demonstrate
exceptional performance when trained on certain parts of
the Ghent Altarpiece. However, when it comes to applying
these models to new paintings or different Panels from the
Ghent Altarpiece, it poses a significant challenge. To overcome
that challenge, this paper introduces the DAL-ART tool that

Figure 1: The Ghent Altarpiece, Hubert and Jan Van Eyck,
completed in 1432 [2].

1

facilitates effortless and efficient deep active learning. The tool
is hosted on a UGent server and can be accessed through the
following URL: https://dal4art.ugent.be/.

The paper is structured in the following manner: Section II
provides the essential information required for the remainder
of the paper including the SOTA crack detection and an
review of deep active learning. The problem formulation is
presented in Section III where we dissect the requirements of
the DAL-ART tool. The development and uses of DAL-ART
tool are outlined in Section IV. In Section V, we examine the
quantitative and qualitative experimental results obtained on
different patches of the Ghent Altarpiece. Finally, Section VI
presents the concluding remarks of this paper.

II. PRELIMINARIES

A. State-Of-The-Art crack detection

The SOTA in crack detection is build upon Convolutional
Neural Networks (CNNs). CNNs are a type of deep learn-
ing algorithm specifically designed for analyzing visual data
such as images and videos. The key component of CNNs
is the convolutional layer, which applies a set of filters to
the input, capturing local patterns and spatial dependencies.
These learned features are then passed through pooling layers
to reduce dimensionality and increase invariance to small
variations. CNNs have revolutionized various fields, including
computer vision, by achieving state-of-the-art performance in
tasks like image classification, object detection, and image
segmentation [8].

Sizyaking et al. [5] proposed a CNN as SOTA for crack
detection in 2020. The model consist of a first step where
morphological features are extracted [3]. This step is added to
enable efficient and safe eliminations of areas where it makes
little sense to run the learning process. Because of the small
amount of data is the CNN model rather small consisting of
only two layers, the kernel sizes are 4×4 and 3×3 respectively.
At the end of the network a FCNN with 300 neurons is added.
The model was trained and compared on different parts on the
panel which showed that a model trained on one part of the
panel, did not perform too well on another part.

B. Deep Active learning

Active learning (AL) is a machine learning approach that
focuses on improving the efficiency of the learning process
by involving a human in the training of the model. It aims to
reduce the labeling cost of large datasets and more efficiently
and accurately train a model. Deep Active Learning (DAL) is
AL applied on deep learning models. It is particularly useful
when dealing with data that is difficult to annotate, as is the
case for the crack detection problem.

The key idea behind DAL is to train a model on a small
labeled subset of data initially, and use it to select the most
informative samples for further labeling by a human. This
iterative process continues until the desired performance is
achieved, with the model being retrained on the newly labeled
data at each step. The main advantage of this method is that
it significantly reduces the human effort required for labeling

the data, as only the most informative samples are selected
for labeling [9]. Furthermore, the model’s predictions can
improve the annotation speed, enabling the human to validate
the generated annotation rather than creating it from scratch. In
summary, DAL provides a powerful strategy for efficient data
labeling and model training, allowing for better performance
with less human effort.

When actively learning a deep learning model, there are
three things to consider. Firstly, how do we choose the samples
which will improve the model’s accuracy most, alias which are
most informative to the model. These are called the querying
strategy. Secondly, the training strategy decides how we will
retrain the model. At last, we need some measure to decide
when a model will not improve anymore and is ready to be
solely used for predictions and does not need new annotations
from the oracle. This is called the stopping strategy [10].

III. PROBLEM FORMULATION

In the work of Syziakin [5], the aspects of transfer learning
and pretraining the model with newly added annotations
were already explored. However, the presented results and
discussions were still in a preliminary form, leaving room for
further investigation and optimization. The promising results
obtained from their approach warrant a more in-depth study
and optimization, with the aim of making it applicable to a
wider range of digital painting analysis tasks. For continious
improvement and integration of these kind of models, we
needed to develop the DAL-ART tool with the following
requirements:

• The front-end must be user-friendly and have tools to edit
and compare images and masks ensuring that users with
diverse hardware specifications can seamlessly engage in
model training or retraining.

• The platform must enable users to annotate multiple
models simultaneously and use existing machine learning
models to improve the annotation process.

• The platform must support various programming lan-
guages and machine learning frameworks to use different
models for different tasks.

• The platform must be web-based to be accessible from
anywhere.

IV. PROPOSED METHODS

The DAL-ART tool has been developed to apply to any
multi-modal digital painting analysis task. One key element
of this is ensuring that the platform can support a wide range
of models written in various programming languages. In
addition to supporting different programming languages, the
platform is also designed to support a wide range of machine
learning frameworks and libraries. This includes popular
options such as TensorFlow, PyTorch, and Keras, as well as
more specialized libraries for tasks like image processing and
segmentation.

To review the DAL-ART tool and its features, we start
where any user starts: in the login screen. This screen requires

2

Figure 2: Annotate new data with the previously trained model.

users to provide login credentials to access the data and trained
models.

After, a user can create a project to actively train a model.
Logically we would have a 1-to-n relationship to the existing
models where we start one project per feature of interest
that we want to detect. Here the color can be set for the
labels to easily differentiate the drawn masks from the original
image. On the project, data with different modalities would be
uploaded.

Annotating data can be done with the screen shown in
Figure 2. To make sure you have the clearest view, you can use
the arrows on top of the screen to scroll through the different
modalities. Clicking on the pencil tool will prompt a pop-up
where you can select the size of the pencil. You can also select
the gum tool to correct any errors that have been made by you
or the model. For areas that are more difficult to annotate,
you can zoom in using the mouse-pad or scroll-wheel. If
you want a clearer view of a certain part, you can adjust the
image’s saturation, contrast, or brightness. This can be done
through the panel that pops-up at the bottom of the screen. It
is best to annotate areas where the features of interest, such
as cracks, are clearest to annotate when creating the mask.
For instance, when detecting cracks, the infra-red image may
show the straight lines more clearly, while the RGB image
provides a cleaner overview of the corners where the cracks
intersect. At last, there is an x-ray image, showing variations
in height, highlighting the valleys formed by the cracks. If you
have initiated the annotation process on the RGB modality, but
wish to continue annotating on the X-ray image for example,
you can click the propagate button located on the right-hand
side of the screen. It is crucial to delete the previous mask
when making corrections, as we utilize an OR operator on all
annotated masks at prediction time. Failing to delete the old
mask could result in the older mask from a different modality
overwriting the correction made on the newer mask. In Figure
2 the last and maybe most powerful feature of the annotation
screen is visualised. Here, the patch is automatically annotated
with a CNN model in the first iteration of its active learning
process. To use this feature, you should click on the wand on
the left-hand side of the screen. Once clicked, a pop-up will
appear allowing you to select a model to use for automatic

Figure 3: Choose how to activly train a model in the DAL-
ART tool.

annotations. By doing this, the annotation task is reduced from
full annotations to cleaning of the automatically generated
mask.

At last, a training process can be started through the UI
in Figure 3. There, you will be able to see a list of available
models, along with a description, supported labels and their
corresponding framework. At the end of the list, there is an
actions drop-down that provides the option to start an active
training session for the model. If you select a training option,
a modal will appear prompting you to select the version that
requires retraining and from which project the training data
needs to be taken. In the DAL flow, a user would then go
back and annotate more data using the previously trained
model. To streamline the development process, we have
created an interface that enables AI engineers to seamlessly
incorporate new models. By doing so, the DAL model
handler ensures the handling of model saving, loading, and
versioning. Additionally, it simplifies the process of handling
data by abstracting it away.

The tool is deployed on an UGent server and can be
accessed via the following link: https://dal4art.ugent.be/. By
utilizing this web address, users can easily access the tool and
take advantage of its functionalities.

V. EXPERIMENTAL RESULTS AND DISCUSSION

When following an active learning flow, our iterative process
begins with manual annotation of new data. Subsequently, we
actively train a model and repeat this cycle. In our experiments,
we will follow the same flow for one of these iterations. Ini-
tially, we start from new data along with a previous checkpoint
from a crack detection model developed by Sizyakin et al. [5].
Next, we will employ the tool to actively annotate a portion
of this data and assess the process and its outcomes. After,
we deploy three active learning techniques that have been
identified and developed, evaluating their performance in terms
of active learning, generalization, and catastrophic forgetting.
For the experiments we used data taken from the Book, Joos
Vijd and Singing Angels panels from the Ghent Altarpiece.

3

A. Actively Annotating

Before, we discussed the different challenges faced by
current crack detection models [5], [11], such as limited
data availability and lack of generalization. To address these
challenges, we need a way for augmenting the dataset. We
compared the usability, annotation time, and visual quality
of annotations using three different methods. For this, we
annotated three patches using GIMP, the DAL-ART tool
without active learning, and the DAL-ART tool with active
learning.

Previously, annotations were made using tools like GIMP,
which is a powerful and popular open-source image editing
software. Unfortunately, we do not have precise time measure-
ments for the GIMP annotations, but it was estimated to take
around 10-20 minutes per patch. The DAL-ART tool without
active annotating took slightly longer, averaging around 20
minutes per patch. Compared to GIMP, DAL-ART active
annotating showed a 49% improvement in annotation time
and a 58% gain compared to manual annotation. All the
measurements are shown in Table I.

An explanation for the longer annotations time when using
the DAL-ART tool without active annotating could be the
quality of the annotations, which are a lot more complete
compared to using GIMP. Visually comparing the annotations,
the DAL-ART tool with active learning assistance produced
the most precise and detailed annotations. It captured finer
lines, because the model tended to over predict slightly,
allowing to almost only use the gum option when creating
the mask.

Usability-wise, both DAL-ART and GIMP offer similar ba-
sic editing features, but DAL-ART’s web-based nature allows
collaboration and easier setup on different systems.

B. Actively Learning

From literature, we derived three active learning strategies:
re-learning, continuously learning, and transfer learning [12],
[13]. We tested these strategies using the CNN model created
by Sizyakin et al. [5] with the DAL-ART tool. In the re-
learning strategy, we retrained the model from scratch using
the previously newly annotated patch along with the old
dataset. The results showed that adding the new patch through
active learning improved the model’s performance on both the
new patch, shown in Figure 4b, and a generalization patch.
However, the model suffered from catastrophic forgetting,
losing some of its previous knowledge, which can be seen
in Figure 5b. Therefore, re-learning is not recommended with
the current dataset.

In the continuously learning strategy, we fine-tuned the
model using the weights of the old model. The results were
similar to re-learning, with improved performance on the
new patch, shown in Figure 4c, and generalization patches.
However, in this case the model did almost not suffer from
catastrophic forgetting, retaining most of its previous knowl-
edge, which can be seen in Figure 5c.

For transfer learning, we modified the pre-trained CNN
model by only fine-tuning the last 4 layers (the FCNN part)

while keeping the CNN part frozen. The results show in
Figure 4d that transfer learning did not significantly improve
the model’s performance on any of the new patches. So, we
froze too many layers and did not allow enough flexibility for
the model to learn new features. Since continuously learning
already gives us good very good results without almost any
catastrophic forgetting, it is not worth to explore transfer
learning further for this model as it would not give us any
benefit.

(a) Prediction with old CNN
model.

(b) Prediction with re-learned
model.

(c) Prediction with continuously
learned model.

(d) Prediction with transfer
learned model.

Figure 4: Different predictions after active learning on the
JoosVijd panel patch 1438 taken from the Ghent Altarpiece.

C. Discussions

Our experiments show that the DAL-ART tool and the active
learning of the CNN model can be very effective. The tool
also makes it easy and fast to conduct further experiments,
as it offers a smooth user experience. For the case of ac-
tively annotating, the DAL-ART tool shows, particularly when
combined with active learning assistance, improved annotation
efficiency and precision compared to traditional methods like
GIMP. Additionally is its usability slightly better because of
the DAL-ART’s web-based nature. It is important to note
that these findings are specific to the CNN model used in
this evaluation. Different models employed for other digital
painting analysis tasks or in earlier iterations of active learning
process may yield different results, potentially with slightly
lower performance gain.

4

Annotation time 1 Annotation time 2 Annotation time 3 Average time
GIMP 10-20 min 10-20 min 10-20 min 15min
Manual DAL-ART 16min 20s 18min 31s 20min 15s 18min 22s
Active DAL-ART 6min 41s 8min 55s 7min 9s 7min 35s

Table I: Measured annotation times for three patches of the Ghent Altarpiece.

(a) Prediction with original
model.

(b) Prediction with re-learned
model.

(c) Prediction with continuously
learned model.

(d) Prediction with transfer
learned model.

Figure 5: Different predictions after active learning on an old
training patch taken from the Ghent Altarpiece.

When actively learning the CNN model, continuously learn-
ing came out on top, as it retained most information and
showed good generalization capabilities. It has some draw-
backs however where active learning does not seem to resolve
the problems with the noisy predictions. Further research is
needed to see if a bigger model or newer model like U-Net
[11] can reduce the noise in the predictions while actively
learning. Another drawback of the model is that the optimal
threshold is different after every training process. This makes
evaluating the model quite difficult.

At last we have a look at the robustness of the DAL-ART
tool and the CNN model. Ensuring the robustness of software
research is a critical factor when transitioning from the re-
search phase to a practical implementation, particularly for a
UI designed to be actively used by diverse groups with varying
backgrounds. Throughout the course of our experiments, we
did a thorough assessment of the code’s robustness with the
outcome of a good user experience without any identified bugs.

Moreover, we specifically focused on testing the robustness
of the CNN implementation within the DAL-ART tool. Our
attention turned to addressing a common challenge encoun-

Figure 6: Predictions based on
3 modalities.

Figure 7: Predictions based on
1 modality.

tered in real-world scenarios, where certain digital panels may
lack specific modalities. To accommodate this, we extended
the implementation to allow the model to make accurate
predictions solely based on the visual modality.

Figure 6 visually demonstrates the predictions based on the
integration of three modalities, while Figure 7 showcases the
predictions based on a single modality. Upon observation, the
differences between the two are barely visible to the human
eye. There is a slight change of only 15 pixels, which translates
to a negligible loss of 0.02% in accuracy.

VI. CONCLUSION

In this research paper, we developed the DAL-ART frame-
work, a practical and user-friendly tool for multi-modal digital
painting analysis. By seamlessly integrating a deep learning
model into an active learning environment, the framework
enables users to view and correct model predictions, leading
to active learning over time. The tool’s effectiveness has been
demonstrated by integrating a state-of-the-art crack detection
model and actively training it on patches. We have confirmed
the tool’s and CNN’s reliability and effectiveness in generat-
ing accurate predictions, even when dealing with incomplete
modalities in new panels. This ensures the tool’s practicality
and its potential for successful other real-world applications on
various feature detection tasks in digital paintings. This work
not only advances active learning and crack detection research
but also paves the way for improved collaboration between AI
developers and end-users in the field of art conservation.

5

REFERENCES

[1] B. Cornelis, A. Dooms, J. Cornelis, F. Leen, and P. Schelkens, “Digital
painting analysis, at the cross section of engineering, mathematics and
culture,” in 2011 19th European Signal Processing Conference. IEEE,
2011, pp. 1254–1258.

[2] The ghent altarpiece by jan van eyck. [Online]. Available: https://www.
worldhistory.org/image/12908/the-ghent-altarpiece-by-jan-van-eyck/

[3] B. Cornelis, T. Ružić, E. Gezels, A. Dooms, A. Pižurica, L. Platiša,
J. Cornelis, M. Martens, M. De Mey, and I. Daubechies, “Crack
detection and inpainting for virtual restoration of paintings: The case
of the ghent altarpiece,” Signal Processing, vol. 93, no. 3, pp. 605–619,
2013.

[4] A. Pizurica, L. Platisa, T. Ruzic, B. Cornelis, A. Dooms, M. Martens,
M. De Mey, and I. Daubechies, “Virtual restoration and mathematical
analysis of pearls in the adoration of the mystic lamb,” in Het Lam Gods
Series of Lectures, 2014.

[5] R. Sizyakin, B. Cornelis, L. Meeus, H. Dubois, M. Martens, V. Voronin
et al., “Crack detection in paintings using convolutional neural net-
works,” IEEE Access, vol. 8, pp. 74 535–74 552, 2020.

[6] T. Ruzic, B. Cornelis, L. Platisa, A. Pizurica, A. Dooms, M. Martens,
M. De Mey, and I. Daubechies, “Craquelure inpainting in art work,” in
Vision and material : interaction between art and science in Jan van
Eyck’s time, Abstracts, 2010.

[7] Sizyakin, Roman, “Deep learning methods for crack detection and image
restoration with application to digitized paintings,” Ph.D. dissertation,
Ghent University, 2022.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[9] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” Journal of big data, vol. 2, no. 1, pp. 1–21,
2015.

[10] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-class
active learning by uncertainty sampling with diversity maximization,”
International Journal of Computer Vision, vol. 113, pp. 113–127, 2015.

[11] R. Sizyakin, V. Voronin, and A. Pižurica, “Virtual restoration of paintings
based on deep learning,” in Fourteenth International Conference on
Machine Vision (ICMV 2021), vol. 12084. SPIE, 2022, pp. 422–432.

[12] C. Shui, F. Zhou, C. Gagné, and B. Wang, “Deep active learning:
Unified and principled method for query and training,” in International
Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp.
1308–1318.

[13] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, “A survey of deep active learning,” ACM computing surveys
(CSUR), vol. 54, no. 9, pp. 1–40, 2021.

6

Contents

List of Figures xvii

List of Tables xviii

1 Introduction 1
1.1 Objective and Research Methodology . 2
1.2 Main Contributions . 5
1.3 Thesis Outline . 7

2 Motivation and Background 8
2.1 Computer Vision . 8

2.1.1 Fully Connected Neural Network . 12
2.1.2 Convolutional Neural Network . 14
2.1.3 U-Net . 16

2.2 Deep Active Learning . 17
2.2.1 Querying strategies . 18
2.2.2 Training Strategies . 19
2.2.3 Stopping Strategies . 19

2.3 Conclusion . 20

3 Proposed Methods and Implementation 21
3.1 DAL-ART Active Learning . 21
3.2 DAL-ART Design . 23

3.2.1 Requirements . 23
3.2.2 Technologies . 24

3.2.2.1 User Interface . 25
3.2.2.2 REST Backend . 26
3.2.2.3 Model Training API . 27
3.2.2.4 Deployment . 28

3.2.3 Integration . 28
3.3 DAL-ART Characteristics . 31

3.3.1 Login Screen . 31
3.3.2 Project Screen . 31
3.3.3 Task Screen . 37
3.3.4 Annotation Screen . 37
3.3.5 Model Screen . 38

xv

CONTENTS xvi

4 Experimental Results and Discussion 44
4.1 Experimental Setup . 44
4.2 Actively Annotating . 45
4.3 Actively Learning . 47

4.3.1 Re-learning . 47
4.3.2 Continuously Learning . 48
4.3.3 Transfer Learning . 50

4.4 Discussions . 51

5 Conclusion and Future Work 54

Bibliography 56

A Appendix 62

List of Figures

1.1 The Ghent Altarpiece, Hubert and Jan Van Eyck, completed in 1432 [17]. 2

2.1 Object detection. Source: [23] . 9
2.2 Original digital painting. 9
2.3 Semantic segmentation. 9
2.4 Instance segmentation. 9
2.5 Fully connected network [33]. 12
2.6 Convolutional Neural Network [40]. 15
2.7 U-Net architecture [42]. 16
2.8 A visualiszation of how DAL could work in practice [51]. 18

3.1 Flow an oracle would follow to actively train a crack detection model. 22
3.2 Architecture of the DAL-ART tool. 25
3.3 Nuclio API to add a model. 29
3.4 Login screen of the DAL-ART tool. 33
3.5 Project screen of the DAL-ART tool. 34
3.6 Screen to start a new project in the DAL-ART tool. 35
3.7 Screen to add new data to the project in the DAL-ART tool. 36
3.8 Screen to have an overview of the tasks. 39
3.9 Screen to annotate new data in the DAL-ART tool. 40
3.10 Annotate new data with the previously trained model. 41
3.11 Choose how to activly train a model in the DAL-ART tool. 42
3.12 Pop-up for propagating a mask to the following page. 43
3.13 Error handling in the case of an invalid configuration. 43

4.1 Comparison of annotated patch 3 of Book 16 taken from the Ghent Altarpiece. . 46
4.2 Different predictions after active learning on the JoosVijd panel patch 1438 taken

from the Ghent Altarpiece. 48
4.3 Different predictions after active learning on the JoosVijd panel patch 1518 taken

from the Ghent Altarpiece. 49
4.4 Different predictions after active learning on an old training patch taken from the

Ghent Altarpiece. 50
4.5 Predictions based on 3 modalities. 52
4.6 Predictions based on 1 modality. 52

xvii

List of Tables

4.1 Measured annotation times for three patches of the Ghent Altarpiece. 45

xviii

1 Introduction

Over the past few decades, the field of computer vision has seen an enormous advancement due to
the development of deep learning models. These models have revolutionized the way computers
process images and have played a crucial role in various image analysis tasks. Among these
tasks, object detection has been one of the most extensively studied areas in computer vision,
enabling numerous practical applications such as self-driving cars, medical image analysis, and
digital painting analysis [1].

Digital painting analysis is the process of examining and evaluating digitized paintings to auto-
matically discover features of interest. The ability to detect these features can have significant
implications for the analysis and understanding of paintings. It can aid in authenticating the
origins of a painting and detect potential instances of plagiarism or copying, as well as preserv-
ing the integrity of the artwork [2]. One particular challenge here is the accurate and efficient
detection of craquelure, which is the web of cracks that forms on the surface of paintings over
time resulting in permanent damage to valuable artworks like the Ghent Altarpiece.

Created by the Early Dutch speaking painters Hubert and Jan van Eyck in the mid-15th cen-
tury, the Ghent Altarpiece - also known as the Adoration of the Mystic Lamb - is an intricate
masterpiece of European art. The altarpiece took approximately seven years to complete and
can be found in St Bavo’s Cathedral in Ghent, Belgium. It is regarded as one of the world’s
most prized treasures and is particularly noteworthy for being the ”first major oil painting”
[3]. The Ghent Altarpiece, shown in Figure 1.1, is currently undergoing a major restoration
campaign where crack detection has proven to be very useful in assisting art restorers during
the restoration and conservation treatments.

The research group GAIM, at Ghent University, has an extensive expertise in the field of digital
image processing and in particular in digitized paintings analysis. A series of important results
contributing to the preservation of the Ghent Altarpiece has been published during the last
decade [4–9], starting from the original article of prof. Aleksandra Pižurica and her student

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The Ghent Altarpiece, Hubert and Jan Van Eyck, completed in 1432 [17].

Tijana Ružić. [10] as a joint work with Bruno Cornelis [4]. The research group addressed
a wide range of problems, from the pearl detection and style analysis [11], image inpainting
[12], to paint-loss [13–15] and crack detection [4, 7, 8]. GAIM’s, most important results in the
automatic detection of cracks in digitized paintings based on deep learning were obtained by
Roman Sizyakin whose publications led to a PhD thesis [16] in 2022 in research group GAIM at
Ghent University.

The research group GAIM has a longstanding involvement in the digital analysis of the Ghent
Altarpiece, spanning over 15 years. They have collaborated closely with renowned experts,
including art historian Prof. Max Martens from Ghent University, art restorers from KIK-IRPA
(Hélène Dubois and Bart Devolder), Prof. Ingrid Daubechies from Duke University, KVAB
representatives (Em. Prof. Marc De Mey and Prof. M. Martens), and scholars from VUB (B.
Cornelis and A. Dooms). For this master’s thesis, we have continued our collaboration with
them and the tool that we will develop will be made accessible for further research.

1.1 Objective and Research Methodology

The digitization of artistic paintings has sparked an increasing demand for virtual restoration
techniques, particularly in the field of crack detection in digital paintings. To address this need,
the GAIM research group has developed a series of deep learning models for crack detection, in
the PhD thesis of R. Sizyaking [16] and reported in [7, 8]. However, supervised, and in particular
deep learning, models typically require substantial amounts of data to achieve good performance.
Next to that poses acquiring new labeled data for digital painting analysis a significant challenge,

CHAPTER 1. INTRODUCTION 3

as it relies on art historians to annotate the data. This process can be both time-consuming
and expensive, making it difficult to obtain a sufficient quantity of labeled data for supervised
learning. The limited availability of labeled data hampers the training of deep learning models
for specific tasks in such domains.

Transfer and active learning techniques help address the challenge of limited labeled data by
enabling models to leverage knowledge acquired during pre-training or from a limited set of
labeled samples. These techniques offer promising avenues for improving model performance
in domains where data scarcity is a concern. In the work of Syziakin [7], the aspects of trans-
fer learning and pretraining the model with newly added annotations were already explored.
However, the presented results and discussions were still in a preliminary form, leaving room
for further investigation and optimization. The promising results obtained from their approach
warrant a more in-depth study and optimization, with the aim of making it applicable to a wider
range of digital painting analysis tasks. By delving deeper into the potential of transfer and
active learning techniques, it is possible to unlock their full capabilities and enhance the perfor-
mance of the already existing deep learning models. Further research and optimization efforts
can contribute to the development of new practical frameworks that empower art historians and
researchers to actively improve models and deploy it on new images.

To address the challenge of limited availability of labeled data, Deep Active Learning (DAL)
techniques offer a viable solution. Deep active learning combines active learning with deep
learning algorithms, aiming to enhance the learning process’s efficiency by involving a user in the
training of the model. This approach is particularly advantageous when dealing with challenging
data annotation tasks, as it is the case in crack detection in paintings. The fundamental concept
behind deep active learning is to train the model initially on a small subset of the available data.
Instead of using the entire dataset, the model is trained on a selected subset, and then the most
informative samples are chosen for labeling by the user. This iterative process continues, with
the model being retrained on the newly labeled data at each step, until the desired performance
is achieved [18]. Deep active learning offers several key benefits. Firstly, it enables the model
to continuously learn from newly labeled data, mitigating the necessity of annotating a vast
amount of data upfront. This adaptive learning approach allows for a more efficient use of
resources and accelerates the annotation process. Additionally, the model’s predictions can be
utilized to improve annotation speed. Instead of annotating from scratch, a user can validate
and refine the model’s generated annotations, streamlining the annotation workflow.

The second challenge pertains to the continuous improvement and use of the improved model.
To address this challenge, the development of a user interface is essential. This interface should
prioritize reactivity and responsiveness, ensuring that users with diverse hardware specifications
can seamlessly engage in model training or retraining. It is crucial for the tool to possess a
modular design, facilitating the easy integration of deep learning models in a plug-and-play

CHAPTER 1. INTRODUCTION 4

fashion. Moreover, the user interface should support different types of input data and accom-
modate any number of multi-model input channels. An additional vital feature for the user
interface is the capability to fine-tune models specifically on selected areas of paintings. This
functionality holds great significance for art historians who wish to apply the already trained
models in practical scenarios. By enabling fine-tuning on specific parts of the paintings, the user
interface empowers art historians to refine the models according to their expertise and domain-
specific requirements. Furthermore, in order to expand the usability of our model, our objective
is to develop a specialized web-based user interface tool that caters to the needs of domain
experts. Creating a user interface is in itself a challenging task, and developing a web-based
user interface introduces additional complexities. The development of a web-based tool requires
addressing multiple additional aspects, including intuitive interface design, optimized frontend
and backend performance, cross-browser compatibility, scalability, data management, and secu-
rity measures. All of the aforementioned factors contribute to the challenge of developing an
optimized web-based user interface that effectively meets the needs of the user.

Notably, in the classical active deep learning approach, researchers have proposed various sam-
pling strategies such as uncertainty sampling, query-by-committee, and expected model change
[19]. These strategies aim to select samples that can provide valuable information to the model
during the training process. However, the choice of strategy depends on the specific problem
domain and dataset characteristics. In our work, we take a different approach. Rather than
relying on predefined sampling strategies, we emphasize the expert user’s control in selecting the
parts of the crack map to be corrected and adding new annotations. This user-centric approach
allows for more flexibility and customization in the annotation process. By giving the expert
user the ability to make targeted corrections and add annotations without utilizing sampling
strategies beforehand, we empower them to leverage their expertise effectively. It is worth noting
that while there are various deep active learning approaches discussed in the literature [19], none
of them have been specifically applied or validated for problems similar to the one addressed
in our manuscript. Our focus lies on crack detection in very high-resolution and multimodal
images, which presents unique challenges and necessitates tailored solutions.

In conclusion, the main objective of this master’s thesis is to create a practical DAL framework
with an interactive interface. To develop such a tool, we will pursue the following research
methodology:

• In order to enhance crack detection research and actively improve model learning, we
will conduct thorough research in order to identify the limiting factors in the current
State-Of-The-Art (SOTA) approaches. Specifically, deep active learning techniques will
be investigated to discover effective ways of actively training a model.

• To facilitate deep active learning, certain modifications to the SOTA crack detection mod-
els will be made. These modifications will enable continuous learning, re-learning, and

CHAPTER 1. INTRODUCTION 5

transfer learning processes.

• Once we have a functional and well-organized deep active learning model at our disposal,
we will proceed to design and develop the DAL-ART tool. This will involve carefully
selecting the appropriate software packages to allow for the required implementation. The
framework should integrate the deep learning models developed by research group GAIM
into an active learning environment, enabling users to interact with the model’s predictions
on selected images and correct any errors by adding new annotations.

• After deploying the models in the DAL-ART tool, we will conduct thorough testing and
evaluation to ensure its effectiveness. For this, we will evaluate what the best active
learning method was and made sure the model was robust for practical use.

By developing this framework, the results of this thesis will contribute to the advancement of
deep learning models in real-world applications. The interactive interface fosters a collaborative
environment, allowing AI developers to closely collaborate with end-users, such as art historians,
in refining the models and tailoring them to specific tasks.

1.2 Main Contributions

The presented motivation and problem formulation highlight the significant need for an auto-
mated web-based user interface for crack detection. To the best of our knowledge, no existing
tool has been specifically developed to address these requirements, making our tool the first
efficient and user-friendly interface tailored to the needs of field experts. Moreover, it is worth
noting that our developed tool is versatile enough to be extended to other digital painting
analysis tasks, beyond crack detection.

In this thesis, our main contributions can be summarized as follows:

• To enable deep active learning, we began by utilizing the deep learning models previously
developed within the GAIM research group [7] as a foundation. We made crucial ad-
ditions to these models, including re-learning and continuous learning techniques, while
also identifying the most effective approach for transfer learning. By incorporating these
enhancements, we ensured that the models can be easily compared with future iterations,
promoting efficient and accurate evaluation of their performance.

• Subsequently, we designed and developed the DAL-ART tool, which serves as a practical
framework for the continuous development and fine-tuning of deep learning models using
various active learning techniques. The interface of the DAL-ART tool was carefully

CHAPTER 1. INTRODUCTION 6

designed to facilitate efficient annotations. It includes important features such as zooming
into the picture, scrolling through multi-modal input, and adjusting transparency settings
for annotated masks. These features aim to enhance the annotation process and provide
a seamless user experience, ensuring that users can easily correct errors and contribute to
the continuous improvement of the model’s performance.

• Another contribution of this work is the web-based development of the DAL-ART tool,
which is specifically designed to meet the needs of domain experts. Developing a web-
based tool adds multiple aspects, including intuitive interface design, optimized frontend
and backend performance, cross-browser compatibility, scalability, data management, and
implementing robust security measures. Furthermore, it involved ensuring that the DAL-
ART tool was made production-ready and successfully deployed. This process entailed
thorough testing, debugging, and refining the tool to ensure its stability, reliability, and
efficient performance in a real-world environment.

• To offer a comprehensive overview, we integrated the previously mentioned deep learn-
ing models into the DAL-ART tool. As part of this integration, we developed a DAL
model handler that simplifies the process of adding new models to the deep active learning
framework. This model handler significantly reduces the time-to-market for new research,
enabling the rapid incorporation of novel models into the tool within a day. This efficient
system ensures that the DAL-ART tool remains up-to-date with the latest advancements
in crack detection research.

• Finally, we conducted a comprehensive comparative analysis of various deep active learning
techniques using the enlisted models. This evaluation allowed us to assess the strengths
and weaknesses of each technique, providing valuable insights for further enhancing the
performance of these models. Additionally, we demonstrated the robustness of the models
when dealing with data that has missing modalities. Moreover, we showcased a significant
improvement in annotation speed which will lead to faster active learning by utilizing the
DAL-ART tool.

The DAL-ART tool, which has been successfully developed, is now deployed and available
for use in a production environment. It can be accessed through the following link: https:
//dal4art.ugent.be/.

https://dal4art.ugent.be/
https://dal4art.ugent.be/

CHAPTER 1. INTRODUCTION 7

1.3 Thesis Outline

The thesis is organized as follows:

• In Chapter 2: Motivation and Background, we start with an introduction computer vision
and deep learning. After, we have a look at the SOTA deep learning models developped
for crack detection. Finally, we examine how active learning can help deep learning and
have a look at different DAL techniques.

• In Chapter 3: Proposed Methods and Implementation, we will explain the approach we
took to design and implement the DAL-ART tool. We then also deploy some SOTA deep
learning models and explain how others can be added in the future.

• In Chapter 4: Experimental Results and Discussion, we will put the DAL-ART tool to the
test and see how different models can be actively learnt. Here we will do a comparison on
how well different models can be fine-tuned for practical use.

• In Chapter 5: Conclusion and Future Work, we summarize the conducted research and
obtained results. To improve our proposed methods, we list several possible directions for
future research.

2 Motivation and Background

This chapter will focus on the motives and give an overview of the knowledge required for the
remainder of this masters thesis. It also includes an overview of the related work. Firstly, in Sec-
tion 2.1, we discuss the fundamental concepts of computer vision and its important components.
We explore various learning techniques, including supervised, unsupervised, and reinforcement
learning. After, we review the most common Deep Learning (DL) architectures used for feature
detection in digital paintings and zoom in on semantic classification/segmentation. Additionally,
we review the SOTA models used for crack detection. In Section 2.2, we delve into deep active
learning and the various techniques employed in this field. Finally, we conclude the chapter in
Section 2.3.

2.1 Computer Vision

Artificial Intelligence (AI) is a wide discipline that involves creating computer systems that can
perform tasks that would normally require human intelligence, such as recognizing speech, un-
derstanding natural language, making decisions based on complex data and computer vision.
One area of computer vision that has seen significant progress in recent years is object local-
ization. These algorithms aim to identify and locate a single object within an image, group of
images or video [20]. We can accommodate this by drawing bounding boxes around the objects
of interest, which we would call object detection. This can be seen in Figure 2.1. We could
also use image segmentation where we will divide the image in various parts called segments
where each pixel will be assigned to a class or to the background [21]. There are different types
of image segmentation, including semantic segmentation and instance segmentation. Semantic
segmentation involves assigning a label to each pixel in an image to identify the category of
the object it belongs to. This is visualised in Figure 2.3. Instance segmentation on the other

8

CHAPTER 2. MOTIVATION AND BACKGROUND 9

Figure 2.1: Object detection. Source: [23] Figure 2.2: Original digital painting.

Figure 2.3: Semantic segmentation. Figure 2.4: Instance segmentation.

hand, entails identifying each individual instance of an object represented by it’s mask within
an image [22]. This is depicted in Figure 2.4 where we would try to identify and separate each
crack indicated with Roman numerals.
In this masters thesis we will focus on the group of problems that is considered as computer
vision where a mask needs to be generated for an image, thus semantic segmentation, to visualise
and test the tool. The tool we will build however, will allow to do any computer vision tasks.

CHAPTER 2. MOTIVATION AND BACKGROUND 10

As research develops in this area, numerous mathematical models have been developed to solve
these problems. These algorithms we call Machine Learning (ML) algorithms [24]. The idea
is to develop statistical models that can learn patterns and relationships from data, and use
that knowledge to make predictions about new data. These algorithms can be trained on large
datasets and aim to make predictions without being pre-programmed with specific rules or
instructions. There are many different types of machine learning algorithms, including super-
vised learning, unsupervised learning, and reinforcement learning. Each approach has its own
strengths and weaknesses, and the choice of algorithm depends on the problem being solved and
the available data. Since we are working with crack detection data, we will mostly focus on
the subset of supervised ML algorithms in the remainder of this masters thesis. The different
subgroups are often intertwined and used together for optimal training. This will be further
explained in Section 3.1.

Supervised learning When supervised learning, we will build a model based on a labeled
dataset where the outcome variable is known. The algorithm then makes use of this information
to forecast the outcome variable for new, unobserved data. [24]. Decision trees, linear regression,
logistic regression, and support vector machines are commonly used examples of supervised
learning algorithms [25–27]. We can represent supervised learning mathematically as

y = f(x), (2.1)

where f is the function that we are trying to learn that returns the the output variable y based
on an input x. When in the process supervised learning, we are given a set of labeled examples
(X, Y), where X is a matrix of input features and Y is an array of output labels. The goal is to
learn the function f that best maps the input features X to the output labels Y . The variable
θ denotes the parameters of the function that are learned and are static at inference time in
Equation 2.1. We will represent this mathematically as

Y = f(X, θ), (2.2)

with the aim to minimize the error between the predicted output and the actual output. For
this, we will use a cost function, which measures the difference between the predicted output
and the actual output. The most commonly used ones in machine learing are Mean Squared
Error (MSE) and Cross Entropy (CE), also known as negative log-likelihood. MSE is mostly
used in regression problems with a model like linear or logistic regression regression for example.
CE on the other hand, is mostly used in multi-class classification problems, with models like
neural networks [28]. In Section 2.1.1 we discuss how these functions are used in practice. MSE

CHAPTER 2. MOTIVATION AND BACKGROUND 11

and CE are defined respectively as

MSE = 1
n

n∑
i=1

(yi − ŷi)2, (2.3)

CE = − 1
n

n∑
i=1

C∑
j=1

yi,j log(ŷi,j), (2.4)

where n is the number of training examples and class and j the number of classes. yi is the true
output, and ŷi is the predicted output. The objective is then to find the set of parameters θ and
function f that minimizes the cost function.
The inputs X and outputs Y can vary significantly depending on the specific problem being
addressed. For digital painting analysis and more specifically crack detection, where we do
semantic segmentation, the output Y takes the form of a mask, represented by a matrix that
matches the size of the input image. The inputs X often contain multiple modalities, with the
most common example being an RGB image providing red, green, and blue input channels.
When working on the Ghent Altarpiece, we have next to the RGB input, an infrared image
that reveals straight lines very clearly. In contrast, the RGB image provides a clearer view of
the corners where cracks collide. At last, we also have an x-ray image, showing variations in
height and highlighting the valleys formed by the cracks. In total, we will use 5 modalities:
red, green, blue, infra-red and x-ray. Using these extra modalities has proven to be very useful
during earlier research [29].

Unsupervised learning Unsupervised learning involve models which can learn without ex-
plicit labels or supervision. Their objective can be twofold: either to uncover hidden patterns
within the data itself or to learn features in the data. The process involves identifying patterns
or structure in a set of unlabeled examples, represented as X, with the aim of determining the
underlying structure Y that can best explain the observed data. This can be achieved through
various techniques, including clustering and dimensionality reduction [24].

Reinforcement learning Reinforcement learning is a type of machine learning algorithm
that involves training a model to make decisions in a dynamic environment. The model learns
through trial and error by receiving feedback in the form of rewards or penalties, which it utilizes
to adjust its behavior and improve its performance over time. The so-called agent interacts with
its environment, perceiving and interpreting the surroundings, taking actions, and learning from
the consequences of its actions. It uses a combination of exploration and exploitation to optimize
its decision-making process. This training method is particularly valuable for tasks like game
playing, robotics, and autonomous driving [24]. Recently, reinforcement learning, specifically
Reinforcement Learning with Human Feedback (RLHF), was employed to train the SOTA GPT-
4 language model, highlighting the ongoing advancements in this field [30].

CHAPTER 2. MOTIVATION AND BACKGROUND 12

Figure 2.5: Fully connected network [33].

Deep learning is a specialized subset of machine learning that uses neural networks to learn from
data. Neural networks are ML algorithms that are modeled after the structure and function
of the human brain, and they are able to learn complex patterns and relationships in data
by processing large amounts of information through layers of interconnected nodes [31]. It
has become particularly popular in recent years because it has been able to achieve SOTA
performance in a wide range of tasks. This is mostly due to the fact that deep learning models
are able to learn from larger amounts of data than standard machine learning algorithms. In
the following paragraphs we will describe and explain different deep learning architectures which
are used in the state-of-the-art crack detection research. Firstly we will describe how neurons
make up a fully connected network [32]. After, we’ll show how Convolutional Neural Networks
(CNN) extend these units to achieve better crack detection [7]. We end with describing the
current SOTA which is a U-Net architecture composed by Sizyakin et al. [8].

2.1.1 Fully Connected Neural Network

The Fully Connected Neural Network (FCNN), also known as a dense neural network. It is a
type of artificial neural network where each neuron in one layer is connected to every neuron in

CHAPTER 2. MOTIVATION AND BACKGROUND 13

the previous layer. This creates a fully connected graph between the layers. This is visualised
at the bottom of Figure 2.5. Let’s say our network is comprised of one single neuron with an
input matrix X and output Y , Equation 2.2 can be written as follows

Y = f(X, θ) = f(X, W) = a(W T X) = a

(
n∑

i=1
wixi + b

)
. (2.5)

Here, W corresponds to a set of learnable weights W = [w0, w1, w2, . . . , wn]T ∈ Rn with a bias
b which is often set to 1. The function a is a non-linear activation function which allows, with
enough neurons, to construct any relation between X and Y . Without the non-linear activation
function the algorithm is the linear regression ML algorithm. The nonlinearity is thus added to
be able to learn more complex (nonlinear) correlations between the input matrix and the desired
output. Most common examples of activation functions are the sigmoid (binary classification),
Rectified Linear Unit (ReLU) and softmax [34]. Their formulas are defined respectively as

σ(z) = 1
1 + e−z

, (2.6)

ReLU(z) = max(0, z), (2.7)

softmax(zi) = ezi∑n
j=1 ezj

. (2.8)

For Equation 2.8, z is the input to the activation function and n is the number of elements in
the input vector for the softmax function.
If we combine multiple of these neurons together we get a FCNN which could in theory approx-
imate any possible relation between input X and output Y [35]. Such an architecture can be
seen in Figure 2.5. This network is constructed with an input layer consisting of n units and an
output layer consisting of m units. Additionally, there may be multiple hidden layers situated
between the input and output layer. The formula in the picture shows that the neurons in each
hidden layer i receive inputs from the neurons in the previous hidden layer i−1. The connection
between the kth neuron in layer i − 1 and the jth neuron in layer i is represented by the weight
w(k).

To train such a network when supervised learning, we want to optimise the weights as specified
in Equation 2.2. This process is called gradient descent with backpropagation and would go
in iterations of 3 steps. Before we can start that, the weights are randomly initialised or in
some more recent research set based on the network [36]. Gradient descent can be performed
in three ways: stochastic (one sample at a time), batch (entire training set), and mini-batch
(small groups of samples). Each has different trade-offs in convergence speed, efficiency, and
stability [37]. In the following explanation we will explain the most common approach which is
the mini-batch gradient descent, where we call each group of samples a batch.
In the first step of the iteration we will pass the batch through the network and use the network
to make predictions. This is called the forward pass.

CHAPTER 2. MOTIVATION AND BACKGROUND 14

After that, we will compute the loss, which is the difference between the predicted output of
the neural network and the true output. There are several different types of loss functions to
compute this loss, and the choice of which to use depends on the type of problem being solved
and the model being used. For example, the loss function CE, specified in Equation 2.4, is used
often in neural networks for multi-class classification problems since it penalizes confident but
incorrect predictions more heavily than predictions that are uncertain. The second reason this
loss function is used often in neural networks is that it is differentiable. This comes in very
handy in the next step of the iteration.
In Step 3, the backward pass, we calculate the gradient of the loss function with respect
to the weights and biases of the network, to then update them in the direction of the negative
gradient. This gradient tells us how much each weight and bias contributes to the overall error of
the network, and allows us to update the weights and biases to reduce this error. The calculation
of the gradient is done using the chain rule of calculus, which allows us to break down the overall
gradient into smaller gradients that can be calculated at each layer of the network. Starting from
the output layer, we propagate the gradients backward through the network, as the gradient at
each layer depends on the gradient of the layer above it [38]. We formulate this mathematically
as:

Wk+1 = Wk + ∆Wk, (2.9)

with ∆Wk calculated as

∆Wk = −η∇wE = −η

(
∂E

∂w1,k

∂E
∂w2,k

... ∂E
∂wd,k

)
, (2.10)

where, η is the learning rate, ∇wE is the gradient of the loss function E with respect to the
weights w, and d is the number of weights in the network.

There are several optimization algorithms that can be used instead of, or in combination with
gradient descent to improve the efficiency and effectiveness of model training. One such example
used in the SOTA crack detection is Adam, which is derived from adaptive moment estimation.
Where the classical stochastic gradient descent has a fixed learning rate α, maintains an adaptive
learning rate for each model parameter. This adaptive learning rate helps the algorithm converge
faster and provides better performance on many types of data and models [39].

2.1.2 Convolutional Neural Network

Some pragmatic implementations have shown that FCNNs can perform quite well on confined
problems like digit classification in images [41] where overfitting is allowed. FCNNs lose a lot of
spatial information in images however by flatting the data into a 1d vector to be fed to the input
layer. This becomes even more of a problem when we use multi-modal images where the pixels
of the first image are highly correlated to the same spatial location pixels of the second image.

CHAPTER 2. MOTIVATION AND BACKGROUND 15

Figure 2.6: Convolutional Neural Network [40].

When flattened into one long vector, a lot of this information would get lost. To better exploit
structured data such as images, we must extend the basic fully connected neural network. This
is where convolutional neural networks (CNNs) come into play.

The two main components of a CNN, visualised in Figure 2.6, are the convolution layer to extract
spatial features, and a pooling layer often used to reduce the dimensionality. Convolution layers
apply filters to there input data to extract local patterns while preserving spatial information.
These filters are nxn dimensional matrices called kernels. The second hyperparamter of a CNN
is the stride s. It determines the spacing between adjacent kernels of the filter. A stride of
1 means that the filter moves one pixel at a time, while a stride of 2 means that the filter
moves two pixels at a time, and so on. A larger stride can be used to reduce the computational
complexity and dimensionality, but can also be useful for detecting larger features in the image
without a having a really big kernel. In addition to the convolutional layers, a CNN also
typically includes pooling layers, which reduces the dimensionality of the output feature maps
by subsampling them. The most common type of pooling layer is the max pooling layer, which
takes the maximum value within a pooling region. The pooling operation can also have a stride
parameter s, which determines the spacing between adjacent pooling regions. At the end of a
CNN we will often add a small FCNN to convert the extracted features to the right output. As
denoted in Figure 2.6, the CNN would be considered the feature extraction part and the FCNN
the classification part.

Sizyaking et al. [7] proposed a CNN as SOTA for crack detection in 2020. The model consist of
a first step where morphological features are extracted [4]. This step is added to enable efficient

CHAPTER 2. MOTIVATION AND BACKGROUND 16

Figure 2.7: U-Net architecture [42].

and safe eliminations of areas where it makes little sense to run the learning process. Because of
the small amount of data is the CNN model rather small consisting of only two layers, the kernel
sizes are 4 × 4 and 3 × 3 respectively. At the end of the network a FCNN with 300 neurons is
added. For the loss function they used (Binary)CE loss (Equation 2.4). The activation function
is ReLU and for the optimizer they used Adam.
The model was trained and compared on different parts on the panel which showed that a model
trained on one part of the panel, did not perform too well on another part. This we will try to
solve with Deep Active Learning in Sections 2.2 and 3.1.

2.1.3 U-Net

As a consequence of the recent advancements and improvements in computer vision using CNNs,
the research in architecture of such networks has increased a lot. One of the first big CNN
networks is called AlexNet and it competed in the ImageNet Large Scale Visual Recognition
Challenge on September 30, 2012. The network achieved a top-5 error of 15.3%, more than 10.8
percentage points lower than that of the runner up [43]. By utilizing ReLU’s and implementing
dropout on the fully-connected layers, Sutskever et al. [44] showcased an improvement in training
efficiency while also mitigating over-fitting. More recently even bigger networks like VGG16 and
VGG19 have been proposed by Simonyan et al. These days they are used in any field where
deep learning is applied ranging from medical applications to malware detection [45, 46].

More recent advances are the development of U-Nets proposed by Ronneberger et al. [47]. These
U-shaped CNN networks have since then become a popular choice for any image segmentation
problem [48, 49]. The architecture’s distinctive shape, visualised in Figure 2.7, consists of a
contracting path and an expanding path, with a bottleneck layer in between. The contracting
path is a traditional CNN architecture consisting of convolutional and pooling layers, which

CHAPTER 2. MOTIVATION AND BACKGROUND 17

gradually reduce the spatial size of the input while increasing the number of feature channels.
The expanding path consists of upsampling and convolutional layers, which gradually increase
the spatial size of the output while reducing the number of feature channels. One of the main
advantages of UNETs is their ability to segment images with high accuracy, even when the
images have complex and irregular shapes. This is due to the architecture’s ability to capture
both local and global features of the input.

Sizyaking et al. used this kind of architecture to improve upon there earlier mentioned model [8].
For their network all convolutional layers have a spatial filter size of 3 × 3 pixels. When training
they used the common Adam optimizer with a learning rate of 0.00002. To improve the model’s
practical utility, they have implemented a smaller 20 × 20 × 5 pixel input tensor with reduced
spatial size. Their research has revealed certain advantages of the architecture, including precise
crack localization and fast network learning [29]. However, it is crucial to ensure complete and
accurate annotations of training data when such a model is used since inadequate or imprecise
annotations will result in poor model performance or convergence issues.

2.2 Deep Active Learning

The SOTA in crack detection has come up with a lot of powerful and accurate deep learning
models to detect cracks in digital paintings as shown in Sections 2.1.2 and 2.1.3 [7, 8]. Most
mention however, that one of the main limitations of their models is the amount of data available
to train it and its robustness against data drift. This semantic segmentation problem requires a
lot of manually annotated data which is preferably created by experts in the field and annotated
on multi-modal data. All this makes data very expensive. This problem will be solved in this
masters thesis by using deep active learning (DAL).

Active Learning (AL) is a machine learning approach that focuses on improving the efficiency
of the learning process by involving a human in the training of the model. It aims to reduce the
labeling cost of large datasets and more efficiently and accurately train a model. DAL is AL
applied on deep learning models. It is particularly useful when dealing with data that is difficult
to annotate, as is the case for the crack detection problem.

The key idea behind DAL is to train a model on a small labeled subset of data initially, and use it
to select the most informative samples for further labeling by a human. This iterative process,
visualised in Figure 2.8, continues until the desired performance is achieved, with the model
being retrained on the newly labeled data at each step. The main advantage of this method is
that it significantly reduces the human effort required for labeling the data, as only the most
informative samples are selected for labeling [50]. Furthermore, the model’s predictions can
improve the annotation speed, enabling the human to validate the generated annotation rather

CHAPTER 2. MOTIVATION AND BACKGROUND 18

Figure 2.8: A visualiszation of how DAL could work in practice [51].

than creating it from scratch. In summary, DAL provides a powerful strategy for efficient data
labeling and model training, allowing for better performance with less human effort.

When actively learning a deep learning model, there are three things to consider. Firstly, how
do we choose the samples which will improve the model’s accuracy most, alias which are most
informative to the model. These are called the querying strategy. Secondly, the training
strategy decides how we will retrain the model. At last, we need some measure to decide when
a model will not improve anymore and is ready to be solely used for predictions and does not
need new annotations from the oracle. This is called the stopping strategy.

2.2.1 Querying strategies

Querying strategies in active learning determine how to select the most informative samples from
the unlabeled data pool. Deep active learning has several querying strategies that are commonly
used to select the next batch of samples for labeling. We identified the following strategies as
most interesting:

CHAPTER 2. MOTIVATION AND BACKGROUND 19

• Uncertainty Sampling This strategy selects the samples for which the model is the
most uncertain in its prediction. The model may have low confidence or high entropy
about a particular sample. The idea is that labeling these samples will lead to the greatest
reduction in uncertainty and therefore the greatest improvement in model performance
[52].

• Diversity Sampling This strategy selects the samples that are the most dissimilar from
the labeled data. The idea is to cover a wide range of feature space to ensure that the
model is exposed to a diverse set of examples [53].

• Query by Committee This strategy involves training multiple models on the same
dataset and selecting the samples that have the most disagreement among the models.
The idea is that these samples are more difficult to classify and therefore require additional
labeled data to improve model performance [54].

2.2.2 Training Strategies

While the focus of most research lies on the querying strategy, it is crucial not to overlook
the training strategy of the model. Based on the literature [18, 55, 56], we have identified three
effective training strategies for actively retraining a model. The first strategy involves relearning
the model from scratch. In this approach, we incorporate new data into the existing dataset
and train a completely new model. The second strategy is known as continuous learning. Here,
we take a previous checkpoint of the model and fine-tune it using the new data. At last we have
transfer learning. This method is commonly employed in training larger models like Unets and
is prevalent in both the deep learning field as the DAL domain to ensure more efficient learning
and mitigate catastrophic forgetting. Typically, the feature extractor is frozen or fine-tuned with
a smaller starting learning rate, while the classifier part, which may consist of multiple layers,
is retrained.

2.2.3 Stopping Strategies

In deep active learning, the stopping strategy refers to the conditions under which we should
stop querying training data from the oracle. These strategies are critical because they ensure
that the model does not over-fit on the training data and that it generalizes effectively to
previously unknown data without terminating the training process prematurely. In literature
a fixed stopping criteria for training the model is often defined as the stopping strategy. This
can for example be a threshold on the accuracy or loss, together with the maximum number
of iterations or minimum number of labeled samples are examples [57, 58]. More advanced

CHAPTER 2. MOTIVATION AND BACKGROUND 20

stopping criteria used in deep learning like a minimum improvement of accuracy or a certain
validation loss plateau are also transferred to the DAL field [59, 60].

Bloodgood et al. [61] state however that these stopping criteria might go against the idea of AL
since stopping too early based on fixed criteria might lead to a big loss in model performance.
Next to that defeats annotating a separate set of data for a validation loss plateau the purpose
of AL. Instead, the authors propose using the predictions of consecutively learned models on
unlabeled examples to identify when to stop the AL. Specifically, the authors suggest monitoring
stabilized predictions on a representative set of examples known as the stop set, which should
be available for querying by the active learner. The authors acknowledge the conflicting factors
involved in determining the optimal size of the stop set. They would prefer a small set to speed
up the process of active learning and limit the amount of data gathering that needs to be done.
On the other hand would a bigger stop set be preferred to accurately measure the agreement
between successive models predictions while avoiding statistical variability.

2.3 Conclusion

This chapter has provided an in-depth introduction to the essential background knowledge re-
quired for this master’s thesis. We started with an overview of the field of computer vision,
where we discussed its key components. We then focused on the prevailing DL architectures
utilized for feature detection in digital paintings, which included FCNNs, CNNs and U-Nets, as
explained in Section 2.1.

Furthermore, in Section 2.2, we delved into the domain of deep active learning, where we ex-
plained the various techniques employed with the most common querying strategies, training
strategies and stopping strategies. This background knowledge will serve as the foundation for
the following chapter, where we will explore the application of DAL for crack detection in digital
paintings and design and develop the DAL-ART tool.

3 Proposed Methods and
Implementation

In this chapter, our main focus will be on the creation of the DAL-ART tool. We will explore the
various steps involved in its development, starting with an overview of how deep active learning
is utilized in our particular use-case. Next, we will delve into the design decisions that were
made to elevate this tool to a higher level of functionality. This will include an examination of
the different factors that were considered during the design process, as well as the challenges
that were faced and overcome. Once we have established the design framework, we will take a
closer look at the features that have resulted from it, and how these can be utilized to actively
train a DL model. We will explore the different ways in which the tool can be used, as well as
the benefits that it offers for practitioners working in the field of digital painting analysis.

3.1 DAL-ART Active Learning

Deep active learning can take on many forms depending on which problem is being solved with
which kind of model. The different strategies that can be used are described in Section 2.2. For
the general DAL-ART tool we designed we developed a custom flow that would work to develop
any model to detect any features of interest in digital paintings. The generalisation of this tool
is a very important aspect for it to be applicable to as many problems as possible.

The flow an oracle would take to actively train a ML algorithm can be seen in Figure 3.1. In
this flow, an oracle is tasked with training a model using a set of data. The first step is to
upload all of the data to a server, which will serve as the training environment. That data
is then used to train a new model from scratch. After the first training session the stopping
criteria are most likely not reached. So, the oracle can then choose which new data to annotate.
To assist with this process, the already trained ML model can be used to pre-compute a mask,
which can help the oracle identify which data points may be most useful to annotate. Once the
oracle has selected the data points to annotate, they can begin the process of annotating the

21

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 22

data. This involves labeling the data points with their respective classes or categories. After the
annotation process is complete, the oracle can then press a button to actively train the machine
learning model. If the model’s stopping criteria have been reached, then no new data should be
selected for annotation. If the criteria have not been met, then the oracle will be redirected to
the beginning of the process, where they can choose new data to annotate. Here, it will again
be helpful to look at the data where the model made most mistakes.

Figure 3.1: Flow an oracle would follow to actively train a crack detection model.

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 23

3.2 DAL-ART Design

In this section, we will have a look at the infrastructure of our DAL-art tool and explore the
ways in which we implemented our ideas in a pragmatic and user-friendly way. To achieve this,
we leveraged a combination of cutting-edge technologies that enabled us to build a powerful and
intuitive tool. We start by identifying the requirements of DAL-ART to be able to choose the
right tools for the job. After, we give an introduction to Django, Computer Vision Annotation
Tool (CVAT), Docker and Nuclio, which are the technologies used in our tool. Next, we look at
the design of our tool and how these technologies are integrated to create a great user experience.

3.2.1 Requirements

The process of designing software involves a lot of decisions, from the architecture to the User
Interface (UI). Among these decisions, the choice of which technologies to use is undoubtedly
one of the most crucial [62]. The success of a software project can largely depend on whether the
chosen technologies are appropriate for the project’s goals and requirements. Choosing the right
technology stack will ultimately contribute to the success of the software project and ensure its
longevity in the dynamic landscape of software development.
When considering which technologies to incorporate into a software project, it’s essential to
have a clear understanding of the project’s objectives, the needs of its users and the capacity
of the team. For instance, if the software needs to be fast and responsive, the technology stack
should be designed to optimize performance. If software stack is too difficult to integrate, and
the project is not finished, the DAL-ART tool will most likely never be used.

First and foremost, it is crucial to have a front-end that is user-friendly and intuitive. This
means that the interface must be easy to navigate and understand, without requiring extensive
training or a lengthy instruction manual. Art historians, who are often busy professionals, may
not have the time or patience to learn complex software.

In addition to being user-friendly, the UI should also include a range of tools and features that
facilitate the annotation process. These include tools to, change the brush sizes or correct when
a mistake is made in the mask, zoom in and out of parts of the image, change the mask and
image’s properties like opacity, saturation, contrast and brightness, but also give the ability to
change the mask’s opacity to see on the overlay if an annotation is done correctly.
Another very important feature is the ability to to choose the modality on which the crack -
or any other feature of interest - is clearest to annotate when creating a mask. For the case of
crack detection for example, the infra-red image shows the straight lines more clearly, where the
RGB image gives a cleaner overview on the corners where cracks collide.
Next to that, would it be very beneficial to allow users to work on multiple models simultaneously.

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 24

This can be achieved by dividing the model’s data into separate projects, each with its own set
of users and resources. It is also important to maintain links between the different modalities
to ensure consistency and avoid duplicate work. To accomplish this, the platform could create
separate tasks for each user to complete, assigning them specific sections of each model to
annotate.
To further enhance the usability of the annotation platform, it will also be helpful to use the
already trained ML algorithms to improve the annotation process. For example, after the first
iteration of the AL process or a model from a previous project can be used to annotate. This
will save time during the AL process and will reduce the risk of errors or inconsistencies in the
annotation process [63].

In order to create an effective and versatile DAL-ART annotation platform, it is important to
prioritize flexibility and adaptability in the development process. One key element of this is
ensuring that the platform can support a wide range of models written in various programming
languages. In addition to supporting different programming languages, the platform should also
be designed to support a wide range of machine learning frameworks and libraries. This could
include popular options such as TensorFlow, PyTorch, and Keras, as well as more specialized
libraries for tasks like image processing and segmentation.

At last, we have chosen to develop a fully web-based tool for a number of reasons:

• Accessibility and maintenance: A web-based tool can be accessed from any device with a
web browser and does not suffer from operating system incompatibilities. This makes a
web-based tool more accessible and convenient for users who need to access the tool from
different locations or devices.

• User experience: Web-based tools can offer a more modern and interactive user experience,
with features such as real-time data updates, online collaboration, and responsive design.

• Scalability: A web-based tool can be easily scaled up to support a large number of users,
or when having to train a deep learning model, the computing power can be scaled more
easily. This is novel compared to currently existing DAL strategies [64, 65].

3.2.2 Technologies

Once the requirements have been taken into account, the technology stack can be determined.
This stack includes programming languages, frameworks, libraries, databases, and other tools.
Each component of the stack is of course evaluated for its compatibility with the others, as well
as its performance and maintainability.

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 25

Figure 3.2: Architecture of the DAL-ART tool.

To establish our DAL-ART tool and meet all set requirements, we need three logical components.
A UI which allows to annotate masks for the uploaded image. A Representational State Transfer
(REST) back-end which allows to save and load the images, masks, and models. And a part
which can actively train the model with an Application Programming Interface (API) call. In
Figure 3.3, the architecture of the DAL-ART tool is shown with the these 3 different segments
shown in light blue boxes. How they work together to create the DAL-ART tool will be further
explained in Section 3.2.3 .

3.2.2.1 User Interface

The UI has a lot of requirements it needs to satisfy. With the time constraints of a thesis we
need to look for a combination of softwares that will work well together and provide some of the
needed features out-of-the-box. However, the need for a good UI can not be overlooked during
the development process and thus was one of the main priorities.

For the UI of the tool, we utilize React [66]. React is a widely used JavaScript, and TypeScript,
library for building UIs. It offers a range of tools and features that make it easy to build highly
interactive, responsive and visually appealing UIs. React’s virtual DOM and component-based
architecture make it a very popular choice for building complex web applications which make it
used by companies like Facebook and Netflix.
While there are other frameworks and libraries that could have been used to build the UI of our
tool, we felt that React was the best fit for our specific needs. Other popular options, such as

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 26

Angular [67] and Vue [68], also have their strengths and weaknesses, but we ultimately decided
that React offered the right combination of flexibility and community support.

There are quite some software packages available already that provide some of the requirements
we have for the annotation process of our DAL-ART tool. Most are not licensed under an open
source license or do not provide mask annotations however and become thus unavailable for us.
The three software packages that made it to the shortlist are LabelMe [69] and Common Objects
in Context (COCO) Annotator [70] and CVAT [71]. LabelMe is a web-based image annotation
tool that is widely used in research, but it does not offer the same level of customization and
flexibility as CVAT. COCO Annotator, on the other hand, is a lightweight image annotation
tool that is specifically designed for annotating images in the COCO format, so it will not be
suitable for projects with different annotation requirements.
So, for most of the low level annotation functionality of the tool, we leverage CVAT. CVAT is an
open-source platform that is specifically designed for image and video annotation [71]. The tool
already provides the majority of the UI requirements outlined in Section 3.2.1 out-of-the-box
without requiring extensive customization. A notable drawback however is the project’s size
and complexity, which may pose challenges when attempting to extend its functionality.

By using CVAT for the annotation functionality and React for the UI, we are able to take
advantage of the strengths of both technologies. CVAT provides a powerful and customisable
annotation platform, while React provides a flexible and responsive UI. Together, these tech-
nologies enable us to build a robust and user-friendly tool that can be customised to meet the
specific needs of DAL-ART.

3.2.2.2 REST Backend

We opted for a web-based application, so we need a REST backend that can provide data
to our UI. One of the key benefits of using a REST backend is its flexibility. RESTful APIs
are designed to be language-agnostic, which means they can be accessed by UI written in any
programming language. This makes it easy to build applications that can communicate with
the backend, regardless of the technology stack used on the front end. If later during the use of
the DAL-ART tool, one would want to change the UI, the interchange should be fairly easy.

When deciding on a technology for the backend of our tool, we evaluated several options, includ-
ing Flask [72], and Django [73]. All of the options were python frameworks however, because
python is currently the most used language for writing backends [74]. This will allow an easy
continuation and ensure the longevity of the DAL-ART tool. Ultimately, we choose Django
because of its powerful features, ease of use, and strong community support.

Django is a Python-based web framework that provides a wide range of features for build-

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 27

ing web applications, including a powerful Object-Relational Mapping (ORM) for interacting
with databases, built-in admin interface, and support for user authentication and authorization.
These features make it easy to build complex web applications quickly and efficiently.
In addition to its built-in features, Django has a large and active community of developers who
have contributed a vast ecosystem of third-party packages and libraries. This means that there
are many resources available for developers who use Django, such as tutorials, and support fo-
rums.
Another factor that influenced our decision to use Django is its ease of use. Django’s documen-
tation is very comprehensive and easy to follow, which makes it easy to get up to speed quickly.
Django’s built-in admin interface also makes it very easy to manage the application’s data and
content without writing any custom code for this.

The most commonly used databases used with the Django framework are SQLite [75], and Post-
greSQL [76]. While both PostgreSQL and SQLite are popular open-source relational database
management systems, they have different strengths and weaknesses. SQLite is a lightweight, and
self-contained database that can be easily embedded into an application. It is also the default
database used in the Django documentation. PostgreSQL on the other hand, is a more advanced
and powerful database that provides support for complex queries, indexing, and transactions.
It is designed to handle large amounts of data and can be more easily scaled by adding more
servers or instances than SQLite. Therefore, in the end, we decided to go with PostgreSQL.

3.2.2.3 Model Training API

The last and most important part of the DAL-ART tool that is missing, is a way to train
and deploy machine learning models. As specified in Section 3.2.1, there are some very hard
requirements for this part of the tool. Namely, we want to be able to use any programming
language and any ML framework. This is where the Nuclio framework comes in [77].

Nuclio is a serverless framework for deploying and running functions or microservices wherever
you want. It provides a simple and scalable way to run code without having to deal with the
underlying infrastructure, and it can be easily integrated with other services and platforms.
Since a Docker [78] container is created per deployed model, we can use any programming
language and any framework. Deploying a new model and actively training it, is as simple as
creating only two files and pressing a button, a feature that we have further explained in Section
3.2.3. This way we enable AI developers to focus on writing code rather than worrying about
the infrastructure and how to integrate their models into the system.

Nuclio is originally not designed to load and store models. It would preferably load it’s models
from the cloud. We chose to store the models on disk instead of in a database to save time.
While this may not follow best practices, it can be a practical solution for smaller applications

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 28

and helped to be able to finish the tool in due time. Next to that, allows storing the models
on disk us to quickly and easily retrieve them when needed, without having to worry about the
overhead of managing an extra database.

3.2.2.4 Deployment

For the deployment we use Docker [78] containers because they provide a highly portable and
efficient solution for running applications across different platforms and environments. Docker
allows us to package all the dependencies and configurations needed to run the application into
a group of containers, making it easier to deploy and scale the tool. With Docker, we can
ensure consistency and reproducibility across different environments, which allows us to deploy
the DAL-ART tool wherever we want. Additionally, Docker provides a lightweight and isolated
environment that minimizes the risk of conflicts and interference with other applications running
on the same machine. Using this, the tool is deployed on an UGent server and can be accessed
via the following link: https://dal4art.ugent.be/. By utilizing this web address, users can
easily access the tool and take advantage of its functionalities.

3.2.3 Integration

The used software stack lays a robust foundation for the DAL-ART tool. As shown by the links
in Figure 3.3, we have four integrations that need to work seamlessly together to guarantee
a practically usable DAL-ART tool with a smooth user experience. The connection between
the REST backend and the database is facilitated by the Django ORM system. This ensures
a reliable and robust link between the backend and the database, handling data storage and
retrieval. Secondly, is the integration between the models and the Nuclio API handled by Nuclio
itself, eliminating the need for further explanation in these two integrations. Our focus however,
is on the integration between the UI, backend, and model training API. To allow deep active
learning of models, we must establish communication channels between the UI and the model
training API through the Django backend. These are all API’s communicating with each other
and will be clarified with the flow of training a model, obtaining predictions from a model and
adding a model.

Model Training The training of a model will be started on the UI in the Models screen (see
Section 3.3.5). This will make a synchronous call to the backend which starts preparing the
dataset. The dataset is then exported to the disk in a folder which is mounted to the model’s
Docker container. This way the data can easily be loaded by the DAL model handler. If any
errors occur in these steps, they will be displayed on the screen for the user to see, as shown

https://dal4art.ugent.be/

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 29

Figure 3.3: Nuclio API to add a model.

in Figure 3.13. After, the preparation for a training session is done, a call to the Nuclio API
is made. This call is set-up asynchronously since the training of a model can take quite some
time, and a synchronous call will block the user’s experience.

Model Prediction The call to get predictions from a model is started from the Annotation
screen (see Section 3.3.4). Since we need an immediate response back from the model, all these
calls are set-up synchronously. Firstly, the UI makes a call to the backend which gathers the
required modalities for the prediction. Then, the call is forwarded to the Nuclio API which
loads the latest model and gets a prediction in the form of a binary list. On the way back, this
prediction is translated to be visualised in the UI.

Model Incorporation Before training a model and obtaining predictions, it is of course
necessary to add a model to the DAL-ART tool. This is done with the help of the Nuclio API.
To deplou a model, Nuclio requires two files to be written. A function.yml file specifying what
the requirements for the Docker container are and a file with the name main a function handler
making the predictions.
The .yml file specifies the programming language that needs to be used and which packages
should be part of the Docker container. Next to that, one should also specify the path where
the models need to be stored and some other configurations for the predictions [77].
The code file can contain code from any programming language. However, due to Python’s
widespread adoption as the primary framework for ML models, it was the logical choice for
implementing our crack detection use case. Consequently will the following paragraphs solely
focus on an integrating with Python. It’s worth mentioning that with minimal additional effort,

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 30

any programming language can be utilized.

To ease the development process, we built an interface for AI engineers to follow and easily add
new models. This interface can be seen in Listing A.2. Any new model should implement a way
for itself to load and save a model from/to a given path. Next to that, it should also implement
the three ways to actively train the model and a way to make it predict the features of interest.
At last nuclio requires a handler fucntion to be written, which is abstracted away and is now
the boiler plate code shown in Listing A.1. All the other tasks are taken care of by the DAL
model handler.
The first responsibility of the DAL model handler is versioning. The implemented versioning
system adopts a format consisting of two numbers separated by a dot. The first number signifies
a completely new model, while the second number denotes a fine-tuned model. For instance,
when retraining a model, a brand new model is created, resulting in an increment of the first
version number. Consider the scenario where versions 1.0, 1.1, and 2.0 already exist, and model
1.0 is retrained. In such a case, a new model with version number 3.0 is generated. Subsequently,
if transfer learning or continuous learning is applied to model 3.0, a new model is created with
version number 3.1.
The second responsibility it handles is data loading. All the training functions receive a DataSet
object as input, as demonstrated in Listing A.2. This DataSet is a list of samples, each containing
modalities and their corresponding gold data. By abstracting away the data loading process and
re-using it for a lot of models, the AI engineer can achieve a more efficient. If necessary, a custom
data loading method can be implemented to cater to specific model requirements or dataloaders.
Lastly, it manages the mundane tasks such as converting predictions to the CVAT format and
selecting the appropriate function to invoke based on the incoming event.

There are two distinct ways to add a model: using the Nuclio UI or deploying it with Docker
on the server.
The first option is to utilize the user interface provided by Nuclio, which offers a convenient
graphical interface for adding models. This interface, shown in Figure 2, simplifies the process
and allows users to easily upload and test their desired models in the DAL-ART tool. It provides
a user-friendly experience and even includes pre-configured examples that specify the correct
Python version and framework, enabling users to focus solely on their Python code. However,
there are a few drawbacks to consider. Firstly, the DAL model handler needs to be copied in,
instead of imported. This way of coding is not really optimal. Secondly, this approach does not
support reproducibility on different servers.
Alternatively, users can opt for the more technical and robust approach by adding models
through the backend using Nuclio commands. This method provides greater flexibility and
control over the model integration process. By leveraging Nuclio and Docker commands, the
users can precisely manage the deployment and configuration of models within the DAL-ART
tool. The following DAL-ART command is then used to deploy a new model on the server:

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 31

nuct l deploy −−pro j e c t −name cvat \
−−path s e r v e r l e s s / t en so r f l ow / d e e p c r a c k d e t e c t i o n / n u c l i o \
−−volume ‘pwd‘ / s e r v e r l e s s /common/ dal : / opt/ n u c l i o /common \
−−volume ‘pwd‘ / . . / data : / opt/ n u c l i o / data \
−−plat form local

The path option should contain both the function.yml and the main.py code for the model.
Next to that we mount the DAL model handler so it can be imported from common, as shown
in Listing A.1. At last we mount the path where the datasets are exported. This way multiple
models can be trained from the same project’s dataset without duplicating that data.

3.3 DAL-ART Characteristics

To review the DAL-ART tool, we start where any user starts: in the login screen, which is shown
in Figure 3.4. After, a user can create a project to actively train a model in Figure 3.5. To
train a supervised learning model, we of course need data which can be uploaded in the Data
screen, depicted in Figure 3.7. Here data can be uploaded in different tasks. To annotate the
data, the user needs to go to the Task screen in Figure 3.8 and select on which task they want
to add annotations. After, the annotations can be added in the Annotation screen, shown in
Figure 3.9. At last, we look how a model can be added to the DAL-ART tool and how a training
process can be started through the UI (Figure 3.11). In the DAL flow, a user would then go
back and annotate more data using the previously trained model.

3.3.1 Login Screen

Given the high value of annotated data and trained ML models, it is essential to protect them
from unauthorized access. One way to do this is by implementing a login screen, as shown in
Figure 3.4. This screen requires users to provide login credentials to access the data and trained
models. If no account is created yet, one can of course create a new one.
When working in teams is required, an organization can be created to streamline collaboration
and ensure that everyone has access to the same projects, data and models. To invite users to
an organization, an invitation email needs to be sent.

3.3.2 Project Screen

Once we are logged in and joined the right organization, we go automatically to the projects
screen shown in Figure 3.5. This screen can also be reached by clicking in the top bar on the

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 32

projects button. Here we have an overview of which projects are currently being developed.
Logically we would have a 1-to-n relationship to the existing models where we start one project
per feature of interest that we want to detect. Starting a new project can be done with the
blue plus in the right top corner. In Figure 3.6 we would create a new project, give the project
a name and specify the labels for the features of interest that we want to extract. Here the
color can be set for the labels to easily differentiate the drawn masks from the original image.
Additionally, the project screen allows you to create new projects, adjust their settings, and add
team members to help with the annotation process.
Another very useful feature of this screen is the ability to import previously annotated datasets,
or export datasets for training elsewhere in different formats. Some commonly known formats
which can be used are: Segmentation mask, ImageNet, YOLO and COCO.

Figure 3.4: Login screen of the DAL-ART tool.

Figure 3.5: Project screen of the DAL-ART tool.

Figure 3.6: Screen to start a new project in the DAL-ART tool.

Figure 3.7: Screen to add new data to the project in the DAL-ART tool.

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 37

3.3.3 Task Screen

The task screen serves as the platform for adding and organizing the different annotation tasks
required for each project. When accessing this screen, all the tasks for all the projects are
displayed, making it easier to manage and oversee different annotation processes. However, if
you want to focus on the tasks associated with a specific project, you can simply click on that
project’s name in the project screen. By doing so, you will be directed to a new screen that only
displays the tasks linked to that particular project.
To add data to the project and create a new task, click the blue plus button located in the top
right corner of the screen which takes you to Figure 3.7. When adding new data, it is crucial
that the appropriate modalities that the model needs for training are uploaded in the right
order; otherwise, we could see inconsistencies and unexpected behaviour during training and
inference time. The expected order for the crack detection model is first the RGB image, then
the infra-red image and lastly the x-ray image. If too many modalities are present, the model
will only use the first ones uploaded.
Files can be uploaded from local sources, cloud sources, or remote sources such as GitHub URLs.
If desired, a partially annotated dataset can also be uploaded, with the original files and the
corresponding annotations.

3.3.4 Annotation Screen

When you select a task and its corresponding job, you will be taken to the annotation screen -
which can be seen in Figure 3.9 - where you can create a mask for a patch of the digital painting.
To make sure you have the clearest view, you can use the arrows on top of the screen to scroll
through the different modalities. Once you have selected the appropriate modality, you can start
drawing a mask with the pencil tool located on the left-hand side of the screen. Clicking on the
pencil tool will prompt a pop-up where you can select the size of the pencil. You can also select
the gum tool to correct any errors that have been made by you or the model.
For areas that are more difficult to annotate, you can zoom in using the mouse-pad or scroll-
wheel. If you want a clearer view of a certain part, you can adjust the image’s saturation,
contrast, or brightness. This can be done through the panel that pops-up at the bottom of the
screen.
On the right-hand side of the screen, there is a panel that allows you to adjust the mask’s
opacity. This feature comes in very handy when trying to distinguish between different features
of interest such as cracks and the original picture.
During training, the different masks of one patch are added together using an OR operator.
Therefore, it is best to annotate areas where the features of interest, such as cracks, are clearest
to annotate when creating the mask. For instance, when detecting cracks, the infra-red image

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 38

may show the straight lines more clearly, while the RGB image provides a cleaner overview of the
corners where the cracks intersect. At last, there is an x-ray image, showing variations in height,
highlighting the valleys formed by the cracks. If you have initiated the annotation process on
the RGB modality, but wish to continue annotating on the X-ray image for example, you can
click the propagate button located on the right-hand side of the screen, as illustrated in Figure
3.10. This action will trigger a pop-up window, allowing you to select the modality to which you
want to propagate the selected mask. The available options are depicted in Figure 3.12. First,
you can specify the number of modalities to which you wish to propagate the mask, followed
by selecting the desired target modality. It is crucial to delete the previous mask when making
corrections, as we utilize an OR operator on all annotated masks at prediction time. Failing
to delete the old mask could result in the older mask from a different modality overwriting the
correction made on the newer mask.
In Figure 3.10 the last and maybe most powerful feature of the annotation screen is visualised.
Here, the patch is automatically annotated with a CNN model in the first iteration of its active
learning process. To use this feature, you should click on the wand on the left-hand side of the
screen. Once clicked, a pop-up will appear allowing you to select a model to use for automatic
annotations. By doing this, the annotation task is reduced from full annotations to cleaning of
the automatically generated mask.

3.3.5 Model Screen

To access the different models available, click on the Models button located on the top bar of the
screen. Once there, you will be able to see a list of available models, along with a description,
supported labels and their corresponding framework. This is shown in Figure 3.11.
At the end of the list, there is an actions drop-down that provides the option to start an active
training session for the model. As outlined in Section 2.2, three methods of active training are
available, including re-learning, continuous learning and transfer learning.
If you select a training option, a modal will appear prompting you to select the version that
requires retraining and from which project the training data needs to be taken, which can be
seen in Figure 3.13. If no project or version is selected before starting a training session, the
error prompt will appear on top of the screen, asking you to choose a project and version.
For older models that do not support active learning, it is not possible to initiate a training
session. In such cases, the text ”No Retrainable Versions” will appear when selecting a version,
indicating that the model is not compatible with active learning.

Figure 3.8: Screen to have an overview of the tasks.

Figure 3.9: Screen to annotate new data in the DAL-ART tool.

Figure 3.10: Annotate new data with the previously trained model.

Figure 3.11: Choose how to activly train a model in the DAL-ART tool.

CHAPTER 3. PROPOSED METHODS AND IMPLEMENTATION 43

Figure 3.12: Pop-up for propagating a mask
to the following page.

Figure 3.13: Error handling in the case of an
invalid configuration.

4 Experimental Results and Discussion

This chapter focuses on the execution and experiments with the previously described models,
techniques, and DAL-ART tool, aiming to present how to best use it in practice. Building upon
the features presented in Chapter 3, we start by annotating some new data with the tool in
Section 4.2. Then, in Section 4.3, we use different active training techniques on the CNN model
developed by Sizyakin et al. [7] to improve it on the parts where it needs active learning. We end
this chapter with a conclusion and some discussions about our experiments and the DAL-ART
tool in Section 4.4.

4.1 Experimental Setup

When following the active learning flow previously shown in Figure 3.1, our iterative process
begins with manual annotation of new data. Subsequently, we actively train a model and repeat
this cycle. In our experiments, we will follow the same flow for one of these iterations. Initially,
we start from new data along with a previous checkpoint from a crack detection model developed
by Sizyakin et al. [7]. Next, we will employ the tool to actively annotate a portion of this data
and assess the process and its outcomes. After, we deploy three active learning techniques that
have been identified and developed, evaluating their performance in terms of active learning,
generalization, and catastrophic forgetting. For the experiments we used data taken from the
Book, Joos Vijd and Singing Angels panels.
As a consequence of certain technicalities with UGent domain names, the DAL-ART tool was
not publicly accessible yet during the experiments. This limited our ability to conduct an very
in-depth experiment with real users on how the annotation and active learning procedure would
change with its usage. Nonetheless did we evaluate it to the fullest extent possible.

44

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 45

4.2 Actively Annotating

As discussed in Chapter 2, the current SOTA models for crack detection show impressive ca-
pabilities. However, they face challenges such as limited data availability and a lack of full
generalization when encountering data drift or the need for predictions on new panels. For that
reason it is very important that we have a straightforward method for augmenting our dataset.
To assess its performance, we compare the usability, annotation time, and visual quality of
annotations across various annotation methods. To conduct this evaluation, we performed a
small comparative analysis by annotating three patches using an old annotation method, the
DAL-ART method without active learning, and the DAL-ART method with active learning
assistance. Previously, annotations were done using tools like GNU Image Manipulation Pro-
gram (GIMP) [79]. GIMP is a powerful, free, and open-source software widely used for editing
and manipulating digital images. It offers a variety of tools and features for image retouching,
resizing, and advanced editing, making it a popular choice when manipulating images.

Unfortunately, we do not have precise time measurements for the annotation process using
GIMP, as it was never measured at that time. However, based on estimations, it took approxi-
mately 10-20 minutes to annotate a 256 × 256 patch, which gives an average time of 15 minutes.
The other measurements are visualised in Table 4.1. The average time required for annotating
with the DAL-ART tool is close to 20 minutes, as shown in the average time column. This is
slightly higher than the GIMP annotations. On average, we observe a 49% improvement in an-
notation time compared to the GIMP annotation process, while achieving a 58% gain compared
to the manual annotation process when using the DAL-ART tool.

One possible reason for the longer annotation time of the DAL-ART annotation without active
annotations is that the annotations created with GIMP are often intentionally incomplete. Fig-
ure 4.1 displays the different annotations clearly, indicating that some cracks are missing or are
too small due to the challenging nature of crack annotations. Fortunately is the CNN model,
when combined with proper pre-processing techniques, relatively resilient to these incomplete
annotations and can still learn from such data. However, providing more accurate data will only
benefit the model further. For more recent models the research state that precise and accurate
annotations are crucial for achieving good predictions, especially when using a U-Net model [8].

Annotation time 1 Annotation time 2 Annotation time 3 Average time
GIMP 10-20 min 10-20 min 10-20 min 15min
Manual DAL-ART 16min 20s 18min 31s 20min 15s 18min 22s
Active DAL-ART 6min 41s 8min 55s 7min 9s 7min 35s

Table 4.1: Measured annotation times for three patches of the Ghent Altarpiece.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 46

(a) Original image of patch. (b) GIMP annotated patch.

(c) Manual DAL-ART annotated patch. (d) Active DAL-ART annotated patch.

Figure 4.1: Comparison of annotated patch 3 of Book 16 taken from the Ghent Altarpiece.

If we compare the different annotations visually in Figure 4.1, are the annotations generated
through active learning arguably the most precise and finely detailed. It captured the finest
lines because the used model tends to over predict a little bit.

When comparing DAL-ART and GIMP for usability, both tools offer the same basic image
editing features like brushes, zooming, and visibility adjustments. However, GIMP provides

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 47

more advanced image editing features. The main advantage of the DAL-ART tool over GIMP
is the decision to have a web-based tool. This allows multiple annotators to collaborate on
the same project, which is beneficial when working with larger datasets. Additionally enables
the DAL-ART’s setup anyone with any hardware setup and an internet connection to perform
annotation work. In contrast can setting up GIMP on different operating systems be more
challenging and require extra work.

4.3 Actively Learning

In Section 2.2, we discussed how we can actively train a model in three different ways: re-
learning, continuously learning, and transfer learning. We will now test the CNN model created
by Sizyakin et al. [7] for these 3 active learning strategies with the DAL-ART tool. To compare
how much information the model can retain and how well it can handle catastrophic forgetting,
we will measure its performance on the patch shown in Figure 3.10. As explained in the research
paper and shown in the picture, the predictions can be very accurate on data close to the training
set. However, for some patches, active learning is necessary. One of those patches we identified
is shown in Figure 4.2a, where there are clearly some mistakes in the predictions.

4.3.1 Re-learning

When re-learning, use the newly annotated patch to re-train our model from scratch, along with
the old dataset. Then we will evaluate how this affects the performance of our model on three
different types of patches: the original patch that we used to train the model initially, the new
patch that we added through active learning, and a generalization patch that is similar to the
new patch but has not been seen by the model before.
The results of our experiment in Figure 4.2b, Figure 4.3b, and Figure 4.4b. Each figure shows
the predictions of our model on the corresponding patch of data. We can observe that adding
the new patch through active learning improves the performance of our model significantly on
both the new patch and the generalization patch. This means that our model can learn from
the new data and generalize to unseen data that has similar characteristics. However, we also
notice that our model suffers from catastrophic forgetting, which means that it forgets some of
the information that it learned from the old dataset. This is mainly because the old dataset
has changed over time and does not contain the original training sample anymore. This is a
common challenge in ML problems, especially when the data distribution changes over time.
Therefore, we do not recommend re-learning for the CNN model, as it may lose some of its
previous knowledge and accuracy.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 48

(a) Prediction with old CNN model. (b) Prediction with re-learned model.

(c) Prediction with continuously learned model. (d) Prediction with transfer learned model.

Figure 4.2: Different predictions after active learning on the JoosVijd panel patch 1438 taken
from the Ghent Altarpiece.

4.3.2 Continuously Learning

We can now use continuously learning to fine-tune our model. However, instead of training
the model from scratch, we start from the weights of the old model that we trained on the old
dataset. We want to see how this affects the performance of our model on the same types of

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 49

(a) Prediction with old CNN snapshot. (b) Prediction with re-learned model.

(c) Prediction with continuously learned model. (d) Prediction with transfer learned model.

Figure 4.3: Different predictions after active learning on the JoosVijd panel patch 1518 taken
from the Ghent Altarpiece.

patches as before. The results of our experiment can be seen in Figure 4.2c, Figure 4.3c, and
Figure 4.4c. We can see that fine-tuning our model on the new patch through continuously
learning has similar results on both the new patch and the generalization patch as re-learning.
This means that our model can still learn from this and generalize. Moreover, we can also see
that our model does not suffer from catastrophic forgetting, which means that it remembers

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 50

(a) Prediction with original snapshot. (b) Prediction with re-learned model.

(c) Prediction with continuously learned model. (d) Prediction with transfer learned model.

Figure 4.4: Different predictions after active learning on an old training patch taken from the
Ghent Altarpiece.

most of the information that it learned from the old dataset.

4.3.3 Transfer Learning

Transfer learning is another technique that allows us to use a pre-trained model and fine-tune it
to a new task. In our case, we use transfer learning to modify the CNN model that we trained

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 51

on the old dataset. However, instead of fine-tuning the full model, we only fine-tune the last
4 layers which is the FCNN part, which is the classifier that makes the final predictions. The
CNN part, which is the feature extractor that extracts the relevant features from the data, is
frozen and not updated. We again want to see how this affects the performance of our model
on the same types of patches as before.
The results of this experiment can be seen in Figure 4.2d, Figure 4.3d, and Figure 4.4d. We can
see that transfer learning our model on the new patch does not improve the performance of our
model a lot on any of the patches. This means that our model cannot adapt well to the new
data by only changing the FCNN part. So, we froze too many layers and did not allow enough
flexibility for the model to learn new features. Since continuously learning already gives us good
very good results without almost any catastrophic forgetting, it is not worth to explore transfer
learning further for this model as it would not give us any benefit.

4.4 Discussions

Our experiments show that the DAL-ART tool and the active learning of the CNN model can
be very effective. The tool also makes it easy and fast to conduct further experiments, as it
offers a smooth user experience. For the case of actively annotating, the DAL-ART tool shows,
particularly when combined with active learning assistance, improved annotation efficiency and
precision compared to traditional methods like GIMP. Additionally is its usability slightly better
because of the DAL-ART’s web-based nature. It is important to note that these findings are
specific to the CNN model used in this evaluation. Different models employed for other digital
painting analysis tasks or in earlier iterations of active learning process may yield different
results, potentially with slightly lower performance gain.

When actively training on this data, we can see that the CNN benefits from that while retaining
most information on previously learned data. Next to that it shows quite good generalisation
capabilities when actively learning. The best method based on this one patch example was
clearly continuously learning as the new data set is not exactly the same as the original one and
transfer learning would not add a lot of benefit since the model does not suffer from catastrophic
forgetting too much. It has some drawbacks however where active learning does not seem to
resolve the problems with the noisy predictions. Further research is needed to see if a bigger
model or newer model like U-Net [8] can reduce the noise in the predictions while actively
learning. Another drawback of the model is that the optimal threshold is different after every
training process. This makes evaluating the model quite difficult.

At last we have a look at the robustness of the DAL-ART tool and the CNN model. Ensuring the
robustness of software research is a critical factor when transitioning from the research phase
to a practical implementation, particularly for a UI designed to be actively used by diverse

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 52

Figure 4.5: Predictions based on 3 modalities. Figure 4.6: Predictions based on 1 modality.

groups with varying backgrounds. Throughout the course of our experiments, we did a thorough
assessment of the code’s robustness with the outcome of a good user experience without any
identified bugs.

Moreover, we specifically focused on testing the robustness of the CNN implementation within
the DAL-ART tool. Our attention turned to addressing a common challenge encountered in
real-world scenarios, where certain digital panels may lack specific modalities. To accommodate
this, we extended the implementation to allow the model to make accurate predictions solely
based on the visual modality.
Figure 4.5 visually demonstrates the predictions based on the integration of three modalities,
while Figure 4.6 showcases the predictions based on a single modality. Upon observation, the
differences between the two are barely visible to the human eye. There is a slight change of only
15 pixels, which translates to a negligible loss of 0.02% in accuracy.
During the training phase, we can encounter the same problem. Unfortunately would allow-
ing the model to be trained with less modalities require an entirely new model, which would
undermine the purpose of utilizing the existing model. To overcome this, we implemented a so-
lution wherein the model logs the patches that lack certain modalities during training. So these
patches can be skipped during the training process, allowing the training to proceed smoothly.
This adaptive approach ensures that the model continues to learn effectively despite the absence
of certain modalities in specific patches.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 53

By conducting these tests and thoroughly evaluating the robustness of the DAL-ART tool and
the CNN implementation, we have confirmed its reliability and effectiveness in generating ac-
curate predictions, even when dealing with incomplete modalities in new panels. This ensures
the tool’s practicality and its potential for successful other real-world applications on various
feature detection tasks in digital paintings.

5 Conclusion and Future Work

Researchers have been investigating automatic crack detection on the Ghent Altarpiece for the
last years to replace the burden of manually identifying these cracks. They realized that using
automated techniques could help identify and analyze cracks on this famous artwork, which
opened up exciting possibilities for art restoration and conservation. To wrap up this thesis, we
reflect on the significant impact of this work in the field and the valuable contributions it has
made to preserving and understanding the Ghent Altarpiece, as well as the wider field of art
conservation.

This master’s thesis has successfully achieved its primary objective of creating a practical DAL
framework with the DAL-ART tool. The framework has been designed and implemented to
seamlessly integrate an existing deep learning model into an active learning environment. By
enabling users to view and correct the model’s predictions through annotations, a model can
actively improve over time. Essential features, such as zooming into images, scrolling through
multi-modal inputs, adjusting transparency settings for annotated masks, and active annotating
have been incorporated to facilitate effective annotation. At last makes the web-based nature
of the tool it usable for everyone without any setup cost.

Upon the completion of the tool, we successfully integrated a SOTA crack detection model
and actively trained it on patches in a remarkably efficient manner. This demonstrated the
robustness of the tool and how it can be used by other researchers for any multi-modal digital
painting analysis task. Next to that we showed that the most effective approach to enhance
the model’s performance was through continuous learning, showing generalization capabilities
on certain patches while avoiding catastrophic forgetting.

The successful completion of this thesis sets the stage for further advancements in the fields
of active learning and crack detection research. The developed DAL-ART framework not only
accomplishes the integration of deep learning models into interactive environments but also
establishes a foundation for more effective collaboration between AI developers and end-users

54

CHAPTER 5. CONCLUSION AND FUTURE WORK 55

allowing for efficient future work. To that extent we now propose several directions for future
work and research to elevate crack detection research and the tool to new heights. We present
two research-focused directions, followed by one pragmatic improvement aimed at enhancing the
usability and efficiency of the tool:

• Expanding CNN Experiments: This thesis already conducted several experiments
using the SOTA CNNs for crack detection, showing very promosing results. There is a
scope for further exploration however as the experiments were done on a limited datset.
It is recommended that future work includes a more comprehensive exploration of CNN-
based approaches, enabling a deeper understanding of their potential and further refining
the models used in the DAL-ART tool.

• Exploring Newer Model Experiments: Due to the substantial time investment in
designing and building a production-ready DAL-ART tool, there was no opportunity to
conduct experiments on the latest SOTA U-Net models. However, the literature highlights
the high promise of these newer models. Exploring and experimenting with these advanced
U-Net architectures can provide valuable insights into their performance and potential
enhancements in crack detection with DAL.

• Enhancing Model Training: While the current model training process is functional,
there is room for improvement to optimize its effectiveness. Currently, the training logs
are simply written to a log file, but a more favorable approach would be to integrate the
training process with a dedicated training API, such as W&B (Weights & Biases). By
leveraging a training API, the model training process can be elevated to a more efficient
and streamlined workflow, empowering researchers to achieve better results and insights.

Bibliography

[1] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, et al., “Deep learning for
computer vision: A brief review,” Computational intelligence and neuroscience, vol. 2018,
2018.

[2] B. Cornelis, A. Dooms, J. Cornelis, F. Leen, and P. Schelkens, “Digital painting analysis, at
the cross section of engineering, mathematics and culture,” in 2011 19th European Signal
Processing Conference, IEEE, 2011, pp. 1254–1258.

[3] “The most stolen work of art.” (), [Online]. Available: https://www.britannica.com/
story/the-most-stolen-work-of-art. (accessed: 22.04.2023).

[4] B. Cornelis, T. Ružić, E. Gezels, A. Dooms, A. Pižurica, L. Platǐsa, J. Cornelis, M. Martens,
M. De Mey, and I. Daubechies, “Crack detection and inpainting for virtual restoration of
paintings: The case of the ghent altarpiece,” Signal Processing, vol. 93, no. 3, pp. 605–619,
2013.

[5] A. Pizurica, L. Platisa, T. Ruzic, B. Cornelis, A. Dooms, M. Martens, M. De Mey, and
I. Daubechies, “Virtual restoration and mathematical analysis of pearls in the adoration
of the mystic lamb,” in Het Lam Gods Series of Lectures, 2014.

[6] A. Pizurica, L. Platisa, T. Ruzic, B. Cornelis, A. Dooms, M. Martens, H. Dubois, B.
Devolder, M. De Mey, and I. Daubechies, “Digital image processing of the ghent altarpiece:
Supporting the painting’s study and conservation treatment,” IEEE Signal Processing
Magazine, vol. 32, no. 4, pp. 112–122, 2015.

[7] R. Sizyakin, B. Cornelis, L. Meeus, H. Dubois, M. Martens, V. Voronin, et al., “Crack de-
tection in paintings using convolutional neural networks,” IEEE Access, vol. 8, pp. 74 535–
74 552, 2020.

[8] R. Sizyakin, V. Voronin, and A. Pižurica, “Virtual restoration of paintings based on deep
learning,” in Fourteenth International Conference on Machine Vision (ICMV 2021), SPIE,
vol. 12084, 2022, pp. 422–432.

[9] R. Sizyakin, V. Voronin, A. Zelensky, and A. Pižurica, “Virtual restoration of paintings
using adaptive adversarial neural network,” Journal of Electronic Imaging, vol. 31, no. 4,
p. 043 025, 2022.

56

https://www.britannica.com/story/the-most-stolen-work-of-art
https://www.britannica.com/story/the-most-stolen-work-of-art

BIBLIOGRAPHY 57

[10] T. Ruzic, B. Cornelis, L. Platisa, A. Pizurica, A. Dooms, M. Martens, M. De Mey, and I.
Daubechies, “Craquelure inpainting in art work,” eng, in Vision and material : interaction
between art and science in Jan van Eyck’s time, Abstracts, Brussels, Belgium, 2010.

[11] L. Platisa, B. Cornelis, T. Ruzic, A. Pizurica, A. Dooms, M. Martens, M. De Mey, and
I. Daubechies, “Spatiogram features to characterize pearls and beads and other small ball-
shaped objects in paintings,” eng, in Vision and material : interaction between art and
science in Jan Van Eyck’s time, ser. Speciale Uitgaven, M. De Mey, M. Martens, and C.
Stroo, Eds., vol. 6, KVAB PRESS, 2012, pp. 315–329.

[12] T. Ruzic and A. Pizurica, “Context-aware image inpainting with application to virtual
restoration of old paintings,” eng, in IEICE Information and Communication Technology
Forum, Proceedings, Sarajevo, Bosnia&Herzegovina, 2013.

[13] S. Huang, W. Liao, H. Zhang, and A. Pizurica, Paint loss detection in old paintings by
sparse representation classification, eng, 2016.

[14] L. Meeus, S. Huang, N. Zizakic, X. Xie, B. Devolder, H. Dubois, M. Martens, and A.
Pizurica, “Assisting classical paintings restoration: Efficient paint loss detection and descriptor-
based inpainting using shared pretraining,” eng, in Optics, Photonics and Digital Technolo-
gies for Imaging Applications VI, P. Schelkens and T. Kozacki, Eds., vol. 11353, France,
2020, p. 12.

[15] S. Huang, B. Cornelis, B. Devolder, M. Martens, and A. Pizurica, “Multimodal target
detection by sparse coding: Application to paint loss detection in paintings,” eng, IEEE
Transactions on Image Processing, vol. 29, pp. 7681–7696, 2020.

[16] Sizyakin, Roman, “Deep learning methods for crack detection and image restoration with
application to digitized paintings,” eng, Ph.D. dissertation, Ghent University, 2022, XXIV,
136.

[17] “The ghent altarpiece by jan van eyck.” (), [Online]. Available: https://www.worldhistory.
org/image/12908/the-ghent-altarpiece-by-jan-van-eyck/. (accessed: 22.04.2023).

[18] B. Settles, “Active learning,” Synthesis lectures on artificial intelligence and machine learn-
ing, vol. 6, no. 1, pp. 1–114, 2012.

[19] X. Zhan, Q. Wang, K.-h. Huang, H. Xiong, D. Dou, and A. B. Chan, “A comparative
survey of deep active learning,” arXiv preprint arXiv:2203.13450, 2022.

[20] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep
learning for generic object detection: A survey,” International journal of computer vision,
vol. 128, pp. 261–318, 2020.

[21] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image
segmentation using deep learning: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 7, pp. 3523–3542, 2021.

https://www.worldhistory.org/image/12908/the-ghent-altarpiece-by-jan-van-eyck/
https://www.worldhistory.org/image/12908/the-ghent-altarpiece-by-jan-van-eyck/

BIBLIOGRAPHY 58

[22] J. Huyan, W. Li, S. Tighe, Z. Xu, and J. Zhai, “Cracku-net: A novel deep convolutional
neural network for pixelwise pavement crack detection,” Structural Control and Health
Monitoring, vol. 27, no. 8, e2551, 2020.

[23] “Computer vision tutorial: A step-by-step introduction to image segmentation techniques
(part 1).” (), [Online]. Available: https://www.analyticsvidhya.com/blog/2019/04/
introduction-image-segmentation-techniques-python/. (accessed: 09.04.2023).

[24] T. M. Mitchell et al., Machine learning. McGraw-hill New York, 2007, vol. 1.

[25] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis.
John Wiley & Sons, 2021.

[26] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic regression. Springer,
2002.

[27] S. R. Gunn et al., “Support vector machines for classification and regression,” ISIS tech-
nical report, vol. 14, no. 1, pp. 5–16, 1998.

[28] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural net-
works with noisy labels,” Advances in neural information processing systems, vol. 31, 2018.

[29] R. Sizyakin, V. Voronin, N. Gapon, A. Zelensky, and A. Pizurica, “A deep learning-
based approach for defect detection and removing on archival photos,” in 2020 IS&T
International Symposium on Electronic Imaging (EI 2020), 2020, pp. 029–1.

[30] OpenAI, Gpt-4 technical report, 2023.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[32] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61,
pp. 85–117, 2015.

[33] J. Janssens, “Demystifying convolutional neural networks using sparse coding: Application
to medical image segmentation,” 2021.

[34] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv
preprint arXiv:1710.05941, 2017.

[35] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

[36] S. K. Kumar, “On weight initialization in deep neural networks,” arXiv preprint arXiv:1704.08863,
2017.

[37] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[38] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceed-
ings of COMPSTAT’2010: 19th International Conference on Computational Statistic-
sParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers, Springer,
2010, pp. 177–186.

https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/

BIBLIOGRAPHY 59

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[40] V. H. Phung and E. J. Rhee, “A high-accuracy model average ensemble of convolutional
neural networks for classification of cloud image patches on small datasets,” Applied Sci-
ences, vol. 9, no. 21, 2019.

[41] M. A. Nielsen, Neural networks and deep learning. Determination press San Francisco, CA,
USA, 2015, vol. 25.

[42] “Image segmentation with monte carlo dropout unet and keras.” (), [Online]. Available:
https://nchlis.github.io/2019_10_30/page.html. (accessed: 20.04.2023).

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, pp. 211–252, 2015.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[45] M. Chhabra and R. Kumar, “An advanced vgg16 architecture-based deep learning model
to detect pneumonia from medical images,” in Emergent Converging Technologies and
Biomedical Systems: Select Proceedings of ETBS 2021, Springer, 2022, pp. 457–471.

[46] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, and P. d. Geus, “Ma-
licious software classification using vgg16 deep neural network’s bottleneck features,” in
Information Technology-New Generations: 15th International Conference on Information
Technology, Springer, 2018, pp. 51–59.

[47] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III 18, Springer, 2015, pp. 234–241.

[48] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang, “Swin-unet: Unet-
like pure transformer for medical image segmentation,” in Computer Vision–ECCV 2022
Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III, Springer, 2023,
pp. 205–218.

[49] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, “H-denseunet: Hybrid densely
connected unet for liver and tumor segmentation from ct volumes,” IEEE transactions on
medical imaging, vol. 37, no. 12, pp. 2663–2674, 2018.

[50] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic,
“Deep learning applications and challenges in big data analytics,” Journal of big data,
vol. 2, no. 1, pp. 1–21, 2015.

[51] “Active learning in machine learning [guide & examples].” (), [Online]. Available: https:
//www.v7labs.com/blog/active-learning-guide. (accessed: 24.10.2022).

https://nchlis.github.io/2019_10_30/page.html
https://www.v7labs.com/blog/active-learning-guide
https://www.v7labs.com/blog/active-learning-guide

BIBLIOGRAPHY 60

[52] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-class active learning
by uncertainty sampling with diversity maximization,” International Journal of Computer
Vision, vol. 113, pp. 113–127, 2015.

[53] Q. Jin, M. Yuan, Q. Qiao, and Z. Song, “One-shot active learning for image segmentation
via contrastive learning and diversity-based sampling,” Knowledge-Based Systems, vol. 241,
p. 108 278, 2022.

[54] R. Burbidge, J. J. Rowland, and R. D. King, “Active learning for regression based on
query by committee,” Lecture Notes in Computer Science, vol. 4881, pp. 209–218, 2007.

[55] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and X. Wang, “A
survey of deep active learning,” ACM computing surveys (CSUR), vol. 54, no. 9, pp. 1–40,
2021.

[56] C. Shui, F. Zhou, C. Gagné, and B. Wang, “Deep active learning: Unified and principled
method for query and training,” in International Conference on Artificial Intelligence and
Statistics, PMLR, 2020, pp. 1308–1318.

[57] J. Folmsbee, X. Liu, M. Brandwein-Weber, and S. Doyle, “Active deep learning: Improved
training efficiency of convolutional neural networks for tissue classification in oral cavity
cancer,” in 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018),
IEEE, 2018, pp. 770–773.

[58] C. Schröder and A. Niekler, “A survey of active learning for text classification using deep
neural networks,” arXiv preprint arXiv:2008.07267, 2020.

[59] P. Liu, H. Zhang, and K. B. Eom, “Active deep learning for classification of hyperspectral
images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 10, no. 2, pp. 712–724, 2016.

[60] S. Budd, E. C. Robinson, and B. Kainz, “A survey on active learning and human-in-the-
loop deep learning for medical image analysis,” Medical Image Analysis, vol. 71, p. 102 062,
2021.

[61] M. Bloodgood and K. Vijay-Shanker, “A method for stopping active learning based on sta-
bilizing predictions and the need for user-adjustable stopping,” arXiv preprint arXiv:1409.5165,
2014.

[62] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design process for large
systems,” Communications of the ACM, vol. 31, no. 11, pp. 1268–1287, 1988.

[63] J. Fonseca, G. Douzas, and F. Bacao, “Increasing the effectiveness of active learning: Intro-
ducing artificial data generation in active learning for land use/land cover classification,”
Remote Sensing, vol. 13, no. 13, p. 2619, 2021.

[64] “Deep active learning with pytorch.” (), [Online]. Available: https://github.com/cure-
lab/deep-active-learning/. (accessed: 24.10.2022).

https://github.com/cure-lab/deep-active-learning/
https://github.com/cure-lab/deep-active-learning/

BIBLIOGRAPHY 61

[65] “Deepal: Deep active learning in python.” (), [Online]. Available: https://github.com/
ej0cl6/deep-active-learning. (accessed: 24.10.2022).

[66] Facebook. “Introduction to the react docs.” (), [Online]. Available: https://react.dev/.
(accessed: 10.11.2022).

[67] “Introduction to the angular docs.” (), [Online]. Available: https://angular.io/docs.
(accessed: 10.11.2022).

[68] “Introduction to the vue docs.” (), [Online]. Available: https://vuejs.org/guide/
introduction.html. (accessed: 10.11.2022).

[69] “Welcome to labelme, the open annotation tool.” (), [Online]. Available: http://labelme.
csail.mit.edu/Release3.0/. (accessed: 10.11.2022).

[70] “Coco annotator, made with vue.js.” (), [Online]. Available: https://madewithvuejs.
com/coco-annotator. (accessed: 10.11.2022).

[71] “Computer vision annotation tool (cvat).” (), [Online]. Available: https://github.com/
opencv/cvat. (accessed: 15.12.2022).

[72] “Django makes it easier to build better web apps more quickly and with less code.” (),
[Online]. Available: https : / / flask . palletsprojects . com / en / 2 . 2 . x/. (accessed:
25.04.2023).

[73] “Django makes it easier to build better web apps more quickly and with less code.” (),
[Online]. Available: https://www.djangoproject.com/. (accessed: 25.04.2023).

[74] “11 most in-demand programming languages.” (), [Online]. Available: https://bootcamp.
berkeley.edu/blog/most-in-demand-programming-languages/. (accessed: 25.04.2023).

[75] “Sqllite.” (), [Online]. Available: https://sqlite.org/index.html. (accessed: 25.04.2023).

[76] “Postgresql: The world’s most advanced open source relational database.” (), [Online].
Available: https://www.postgresql.org/. (accessed: 25.04.2023).

[77] “Nuclio: Serverless platform for automated data science.” (), [Online]. Available: https:
//nuclio.io/. (accessed: 22.03.2023).

[78] “Develop faster. run anywhere.” (), [Online]. Available: https : / / www . docker . com/.
(accessed: 25.04.2023).

[79] “The free & open source image editor.” (), [Online]. Available: https://www.gimp.org/.
(accessed: 24.05.2023).

https://github.com/ej0cl6/deep-active-learning
https://github.com/ej0cl6/deep-active-learning
https://react.dev/
https://angular.io/docs
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
http://labelme.csail.mit.edu/Release3.0/
http://labelme.csail.mit.edu/Release3.0/
https://madewithvuejs.com/coco-annotator
https://madewithvuejs.com/coco-annotator
https://github.com/opencv/cvat
https://github.com/opencv/cvat
https://flask.palletsprojects.com/en/2.2.x/
https://www.djangoproject.com/
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://sqlite.org/index.html
https://www.postgresql.org/
https://nuclio.io/
https://nuclio.io/
https://www.docker.com/
https://www.gimp.org/

A Appendix

Listing A.1: Nuclio handler in python
import json
from common . dal_model_handler import ModelHandler
from nuclio_sdk . context import Context
from nuclio_sdk .event import Event

def handler (context : Context , event: Event):
model_handler = CrackModelHandler (event)

result = model_handler (event , context)

return context . Response (body=json.dumps(result), headers ={},
content_type =’application /json ’, status_code =200)

class CrackModelHandler (ModelHandler):

....

62

APPENDIX A. APPENDIX 63

Listing A.2: Interface for the DAL ModelHandler in python
import os
from typing import Any , TypeVar
import numpy as np
from PIL import Image
from nuclio_sdk . context import Context
from nuclio_sdk .event import Event

Model = TypeVar (’Model ’)
DataSet = list[tuple [tuple [Image , ...] , dict[str , Image]]]

class ModelHandler :

model_path : str = "opt/ nulcio /"
...
def load(self , path: str):

""" Load model from given path """
raise NotImplementedError

def save(self , path: str , model: Model):
""" Save model on given path """
raise NotImplementedError

def predict (self , event: Event , context : Context) -> list:
""" Add a prediction method for your model here """
raise NotImplementedError

def transfer_learn (self ,
context : Context ,
dataset : DataSet

) -> Model:
""" Transfer learn your model here """
raise NotImplementedError

def continiously_learn (self ,
context : Context ,
dataset : DataSet

) -> Model:
""" Continiously learn your model here """
raise NotImplementedError

def re_learn (self , context : Context , dataset : DataSet) -> Model:
""" Re -learn your model here """
raise NotImplementedError

Paintings
Image Analysis Applied to Crack Detection in
DAL-ART: Deep Active Learning Tool for Multimodal

Academic year 2022-2023

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Yoann Arhant, Srdan Lazendic
Supervisors: Prof. dr. ir. Aleksandra Pizurica, Prof. dr. Maximiliaan Martens

Student number: 01604354
Sebastiaan Verplancke

	List of Figures
	List of Tables
	Introduction
	Objective and Research Methodology
	Main Contributions
	Thesis Outline

	Motivation and Background
	Computer Vision
	Fully Connected Neural Network
	Convolutional Neural Network
	U-Net

	Deep Active Learning
	Querying strategies
	Training Strategies
	Stopping Strategies

	Conclusion

	Proposed Methods and Implementation
	DAL-ART Active Learning
	DAL-ART Design
	Requirements
	Technologies
	User Interface
	REST Backend
	Model Training API
	Deployment

	Integration

	DAL-ART Characteristics
	Login Screen
	Project Screen
	Task Screen
	Annotation Screen
	Model Screen

	Experimental Results and Discussion
	Experimental Setup
	Actively Annotating
	Actively Learning
	Re-learning
	Continuously Learning
	Transfer Learning

	Discussions

	Conclusion and Future Work
	Bibliography
	Appendix

