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Abstract

Artificial intelligence has already been utilized in various areas of metallurgical research. How-
ever, as far as our knowledge extends, there has been no prior investigation on applying AI
for pattern recognition of microscopic images of fracture surfaces to analyze the metallurgical
properties of materials. This thesis aims to address this gap by developing a framework for clus-
tering metallurgical images into groups with a similar toughness property. The first step of the
proposed framework consists of splitting the images into patches of size 64 × 64. By employing
and comparing different feature extraction techniques we obtain compact representations that
contain the necessary information regarding the properties of each image patch. On these com-
pact representations we applied various clustering algorithms to identify the optimal method
for assigning these images into groups. The outcomes are evaluated using the Davies-Bouldin
index. Minimizing this metric results in more compact and separated clusters. Using a majority
vote, we combine the image patch cluster labels into a label for the whole image. Using these
labels the toughness properties per cluster can be evaluated by visualizing the resulting tough-
ness distributions using a boxplot. The gray level co-occurrence matrix feature extraction and
a combination of the discrete wavelet transform and local binary patterns proved to be the two
best feature extraction methods among the utilized techniques. When these feature vectors were
used as input for k-means clustering, which is the best performing clustering algorithm that was
investigated in this work, the metal samples could be separated based on their toughness prop-
erty. In summary, this thesis presents a comprehensive framework for clustering metallurgical
images based on their toughness properties. The use of various feature extraction techniques
and clustering algorithms allows for effective analysis and classification of these images. The
evaluation metrics and visualizations employed provide a clear understanding of the capabilities
of the resulting models.

Index Terms — Pattern recognition, Feature extraction, Clustering, Metallurgy
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Abstract—Artificial intelligence has already been used for a
number of applications in metallurgical research, but to the
best of our knowledge, no research has been done for pattern
recognition of microscopic images of fracture surfaces to analyze
the metallurgical properties of the material. In this thesis, we
develop a framework to cluster metallurgical images into groups
with a similar toughness property. We apply and compare feature
extraction techniques to find a compact representation of the
image contents and different clustering algorithms To assign the
images into groups based on different similarity metrics. We
will evaluate these result with the Davies-Bouldin index [1] and
plot the resulting toughness distributions of the clusters using
a boxplot to asses the capabilities of the resulting models. With
both the gray level co-occurrence matrix feature extraction and a
combination of first the discrete wavelet transform and next local
binary patterns, the framework was able to find a set of sample
groups that were related based on their toughness property.

Index Terms—Pattern recognition, Feature extraction, Cluster-
ing, Metallurgy

I. INTRODUCTION

Metals have already been used by humanity for millennia
and are still a very common material. Currently a wide variety
of metals is used in numerous applications. Metallurgical ma-
terials are used from industries like the aerospace industry, to
electrical applications like computers and power distribution.
The reasons that metals are this often used is due to the fact
that metals are a collection of material with each their own
specific properties that suit different applications. The common
characteristics for metals are their high tensile strength and
durability [2], making them often a good choice instead of
other materials. When choosing a kind of metal, the key
properties to take into account are: stiffness, strength, hardness
and toughness.

Metallurgical development consists of researching the pro-
cess to make a material with properties that suit the chosen
application. The engineering process consists of different
sequential steps. A metal composition must be chosen to create
a pure metal or an alloy. Using different heated processes,
the microstructure and phase of the material are shaped to
express the desired properties. Cold processing techniques can
then deform the metal with the aim to change the mechanical
properties of said metal. There exist numerous processes
with each their own parameters that influence the resulting
properties, making the process of developing the ’perfect’

metal a difficult process. Executing these processes, studying
the results and optimizing is financially expensive and time
consuming [3]. In this thesis we specifically focus on the
toughness property of a material. The toughness property is in
summary the fracture resistance of a material. If the material
has a high toughness, then it is considered a ductile material
and it absorbs a high amount of energy, in the form of plastic
deformation, before fracturing. Otherwise it is a brittle material
and instead of plastic deformation, the material will just
fracture without absorbing much energy. In some applications
like nuclear reactors, aerospace applications and gas pipelines,
fractures can have catastrophic consequences. For this reason,
depending on the application, the toughness property of the
used materials is a crucial factor to consider [4].

Using scanning electron microscopic images from fracture
surfaces, experts are able to identify the features that contribute
to the amount of energy a material absorbs before fracturing. A
quantitative analysis of the influence that each feature exerts
on the toughness property of a material is not yet possible.
Artificial intelligence and in particular feature extraction algo-
rithms can be utilized to aid in the quantitative analysis of the
microstructure appearing in the microscopic images.

Artificial intelligence and pattern recognition techniques
have already been applied to metallurgical research. AI has
been used to optimize the parameters in the production pro-
cesses [5]. Pattern recognition and AI also have already shown
the capabilities transform metallurgical microstructures in a
compact low-dimensional representation [6] and to classify
metals regarding their chemical composition [6]. However, to
the best of our knowledge, there has been no research into
grouping microscopic images from fracture surfaces together
into groups of related metallurgical properties, in this case the
toughness property. In this thesis we present methods to opti-
mize the separation of clusters from metallurgical images and
to find groups of similar samples relating to their toughness
property. We evaluate the clustering results using the Davies-
Bouldin index [1] and the toughness distribution present in the
clusters.

The structure of this paper can be described as follows, first,
we cover the necessary preliminaries. Next, we discuss the
problem formulation and we present our original work. Finally
we discuss the experimental results and draw a conclusion.



II. PRELIMINARIES

A. Metallurgical Background

The toughness of a material is defined as the amount of
energy a material absorbs before fracturing [2]. The absorp-
tion of energy is done in the form of plastic deformation.
Fracture toughness is a similar property that is expressed as
the amount of energy absorbed before a preexisting the crack
propagates [7]. A material with a high toughness is called
ductile and will deform before a fracture initiates. Brittle
materials have a low toughness and will barely deform before
fracturing. A good example of a brittle and ductile material
are cold glass and a steel wire. When glass is put under strain
it will deform very little and shatter into pieces, it is thus
considered a brittle material. A steel wire, however, is able to
bend a significant amount before it breaks.

Toughness is heavily influenced by temperature. Increasing
the temperature of a material will increase its toughness and
vice versa. So when taking toughness into account, it is
important to evaluate the materials at the temperatures it will
experience while being used.

Toughness can be assessed by using different methods,
with a Charpy impact test being one of the more common
ones [8]. The first step of the test is to drill a notch in
the metal sample to facilitate the breaking process. Then a
hammer is dropped on the sample via a pendulum. After the
sample is broken, using the maximum height the hammer
reaches in the remainder of the swing, the absorbed energy
can be calculated and thus the toughness can be determined.
Microscopic images of the obtained fracture surfaces can then
be used to analyze the properties of the material. A dataset of
images from samples that were fractured in the Charpy test is
being used in this thesis.

B. Feature extraction algorithms

Using a raw image as a feature representation will results
in high-dimensional input vectors. High-dimensional input
spaces lead to high computational complexity when analyzing
the data and due to the fact that each feature introduces some
kind of noise, noisy inputs, which leads to high chances of
overfitting. However, the high dimensionality of the data is
not truly high dimensional. The important features normally
reside in a much lower dimensional space. For this reason,
feature extraction techniques are used to transform the data
to such a low-dimensional vector. In this thesis, the feature
extraction techniques used are: first order statistics (FOS) [9],
gray level co-occurrence matrix (GLCM) [10], histograms of
oriented gradients (HOG) [11], local binary patterns (LBP)
[12], discrete wavelet transform (DWT) [13], Weyl transform
[14] and autoencoders [15].

FOS is the most simple feature extractor, it calculates
the following statistical measures: the minimal, maximal and
average pixel intensities, the variance of the pixel intensities
and the skewness and kurtosis of the pixel intensities. The
latter two are statistical measures that describe respectively
the symmetry and the frequency of outliers.

GLCM represents an image in a matrix using the spatial
relations between pixels. Using this matrix we can extract 5
features, namely: correlation, contrast, energy, homogeneity
and entropy. These features are sometimes called the Haralick
features named after the original author [16].

HOG is a technique that calculates the gradients present in a
m×n cell in the image. The dominant gradient is then pooled
from each cell and added to a histogram bin. This histogram
can finally be defined as the resulting feature vector. HOG is
a feature extractor often used in object detection.

LBP: transforms each pixel into a binary encoding. Pixels
are compared to p pixels surrounding the central pixel with
radius R. For each of these comparisons if the central pixel
has a higher value 1 is appended to the encoding, otherwise
zero is added. By adding these encodings into a histogram, a
feature vector can be constructed.

Weyl Transform is a method that first concatenates all the
pixels in a raster scanning fashion into a vector which is then
transformed into a feature vector using the autocorrelations of
the stacked patch.

An Autoencoder is an unsupervised deep learning tech-
nique [17], that learns to compress an image into a low-
dimensional latent space, and reconstructing the image from
this latent representation. Using this technique the autoencoder
learns to transform an image into a low-dimensional feature
vector containing the necessary features.

C. Clustering Algorithms

Clustering is an unsupervised machine learning method.
This means that the data does not contain any labels that
can be used for an artificial intelligence model to learn the
correct classification. Clustering algorithms assign the data
points based on similarity into groups called clusters [18]. In
this thesis we evaluate three clustering algorithms, namely: k-
means [18], Elastic Net Sparse Subspace (ENSSC) [19] and
hierarchical clustering [20].

K-means clustering is an iterative algorithm that optimizes
the resulting clusters by first randomly generating the cluster
centers in the feature space. Then, it iteratively assigns the data
points to the closest clusters, based on the euclidean distance.
Finally, the algorithm regenerates the cluster centers as the
average of the data points assigned to that cluster.

Elastic Net Sparse Subspace clustering is a relaxation
of the sparse subspace clustering (SSC) algorithm. SSC is
based on the principle that each particular data classes resides
a in lower-dimensional subspace and the self-expressiveness
property of the data, meaning that a data point can be repre-
sented as a linear combination of other data points. Finding a
sparse linear combination for each data point can be formally
expressed as

min
C

∥C∥0 s.t. Y = YC, diag(C) = 0,

with Y the dataset and C the sparse coefficient matrix. A
visualization of the sparse optimization problem is presented
in Figure 1 Finding the most sparse solution, i.e., solving for
the ℓ0 norm is an NP-hard problem so a possible relaxation



Fig. 1. A visual representation of the Sparse Optimization Problem. [22]

is the ENSSC algorithm where the optimization problem is
reduced to

c∗ (xj ,X−j) := argmin
c

f(c; xj ,X−j),

where f is defined as

f(c;b,A) := λ∥c∥1 +
1− λ

2
∥c∥22 +

γ

2
∥b − Ac∥22.

The optimization problem can be solved efficiently as f is
a highly convex function. The next steps in the algorithms
are to normalize the columns of the coefficient matrix C
and construct the similarity graph as W = 1

2 (|C| + |C|T ).
Then spectral clustering [21] can be applied using W as the
similarity graph. Spectral clustering is an extension of the k-
means algorithm that uses a similarity graph instead of the
euclidean distances to compare datapoints.

Hierarchical clustering is similar to k-means clustering
in the perspective that it uses the euclidean distance as a
similarity measure, but the big difference is that, contrary to
k-means that is a top-down approach, hierarchical clustering
is a bottom-up approach. Hierarchical clustering starts with
treating each data point as its own cluster and then constructing
a merge tree or dendrogram to merge the most similar data
points until a specified number of clusters is reached or a
similarity threshold has been exceeded.

III. PROBLEM FORMULATION

In this thesis, the objective is to develop a framework
which can cluster microscopic images of fracture surfaces
together into groups with similar metallurgical properties and
more specifically the toughness property, using feature extrac-
tion techniques and unsupervised machine learning. Secondly
the goal is to evaluate which feature extraction technique
is capable of finding a low-dimensional representation for
the microstructure of a metal sample and which clustering
algorithm produces the best results using the resulting feature
vectors.

IV. PROPOSED METHODS

In this thesis, two methods were developed. The first method
uses a dataset, which does not contain any data on the tough-
ness of the metal samples included. The goal of this method
is to find which combination of image magnification, feature
extraction technique and clustering algorithm result in the
highest quality clusters. For the optimization and evaluation

of the clustering algorithms, the Davies-Bouldin index was
used [1]. The Davies-Bouldin index is formally defined as

db =
1

n

∑

i

max
j ̸=i

(
σi + σj

d (ci, cj)

)
,

where n is the number of clusters, ci is the cluster center
of cluster i, σi is the dispersion of a cluster and d (ci, cj)
is the distance between two cluster centers. Minimizing the
Davies-Bouldin index means that the inter-cluster distances is
maximized. This evaluation can both be used as optimization
of the parameters and comparison between different combina-
tions of feature extraction and clustering algorithm. The first
method is shown in the gray section of Figure 2. The first
step serves to crop the image, in order to remove additional
textual information added at the bottom of the image, and
then divide the image into (64× 64) patches. These patches
are then transformed into a lower-dimensional feature vector
that serves as input for the clustering algorithm. Using the
Davies-Bouldin index we can optimize the parameters of the
feature extraction methods and the clustering algorithms.

The second proposed method is developed for a data set
containing the toughness values of each sample in addition
to the images that are included in the data set. This method
aims to find classes of materials in the data set that are
related in terms of their toughness property. The additional
changes we made in comparison to the first method, are
visualized outside of the gray area in Figure 2. The images are
classified with the most frequent label of its patches. Using
these labels we can then evaluate the performance of the
model, by assessing the resulting distributions in the clusters.
For this assessment, boxplots are used as they give a good
summary of the distribution and allow for a good comparison
of the separation of toughness distributions between clusters.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this Section, the results obtained by applying the pre-
viously described methods are presented. First we optimized
the discussed algorithms by applying the clustering on the
first data set. Secondly we evaluated the capabilities of the
algorithms to cluster the samples together based on their
toughness similarity in an unsupervised manner.

A. Clustering optimization

The first objective of this part is to analyze which magnifica-
tion level of the images works best with the feature extractors.
For this reason we fixed the clustering algorithm to k-means
and optimized the combinations of input magnification and
feature extractions. The included image magnification levels
where: 100×, 500× and 1500×. These were chosen as they
were all fairly well represented in the data set and were nicely
spread in the different magnification levels. The resulting
Davies-Bouldin scores are presented in Table I. The table
shows that there are four feature extraction algorithms that
consequently beat the FOS feature extraction, namely: GLCM,
LBP, DWT and Weyl Transform. For these feature extractors,
the 500× magnification proves each time to be the best. In the



Fig. 2. The presented methods included in this thesis

Fig. 3. The Davies-Bouldin score of GLCM with k-means in function of the
number of clusters

following we will keep the magnification levels fixed to 500×.
LBP produces the clusters with the lowest Davies-Bouldin
index, but we consider the GLCM feature extraction to be the
best here as the evaluation of GLCM is significantly lower for
a higher number of numbers, this is illustrated in Figure 3.
In this figure it is shown that the GLCM algorithm remains
stable for a higher number of clusters while the quality of LBP
rapidly decreases. A higher number of clusters is better as it
allows for a more fine classification later.

Next, we combined the clustering algorithms earlier de-
scribed, with the feature extraction techniques. These com-
binations where then compared using the Davies-Bouldin
index, these results are presented in Table II. These results
show us that GLCM and DWT can be slightly improved
when using hierarchical clustering. Elastic Sparse Subspace
clustering was never able to achieve a lower Davies-Bouldin
index than the other clustering algorithms. From these results

we can conclude that when only assessing the quality of
the resulting clusters, LBP with k-means produces the lowest
Davies-Bouldin scores, but when the number of clusters is
taken into account GLCM with hierarchical clustering is better.
It is important to note that a low Davies-Bouldin score does
not necessarily mean that the algorithms are able to find
meaningful clusters based on the toughness property and that
the number of clusters with the lowest score will eventually
result in the most meaningful clusters. When working with
unsupervised techniques an evaluation of the clustering tech-
niques is however the best that we can do as there are no
labels available to evaluate the results.

B. From clusters to Toughness Classification

In the second phase of the experiments we aim to find the
best feature extractor and clustering algorithm to cluster the
samples based on their toughness property. The second data
set contains the toughness values of the metal samples and
the included samples are more closely related due to the fact
that the test were executed multiple times for similar samples
at different temperatures. For this reason we see a drop in
the Davies-Bouldin scores for most of the feature extraction
techniques. Using the most frequently appearing labels of
the patches we can assign the full images to the clusters
and evaluate the toughness distribution in each cluster. In
the following paragraphs we will present the most promising
results for the feature extraction techniques and clustering
results.

GLCM is just like when using the Davies-Bouldin index a
great feature extractor for clustering based on toughness. The
clustering results using k-means with 9 clusters are shown
in Figure 4. In this figure we see that there are two clusters
that are more general and contain a variety of samples, but
using the other clusters the data set can be divided into three



TABLE I
THE DAVIES-BOULDIN EVALUATION OF THE FEATURE EXTRACTION TECHNIQUES TOGETHER WITH K-MEANS,

FOR EACH IMAGE MAGNIFICATION USING THE FIRST UNLABELED DATA SET.

Feature extraction 100× 500× 1500×

FOS 0.85 0.91 0.91
GLCM 0.50 0.50 0.50
HOG 1.25 2.86 3.03
LBP 0.53 0.44 0.82
DWT 0.76 0.75 0.76
Weyl 0.88 0.86 0.77

Auto-encoder - 2.6 2.5

TABLE II
THE DAVIES-BOULDIN INDEX OF THE DIFFERENT CLUSTERING ALGORITHMS USING THE FIRST DATA SET,

WITH AN IMAGE MAGNIFICATION LEVEL OF 500×.

Feature extraction K-means Hierarchical Sparse subspace clustering

FOS 0.91 0.93 1.93
GLCM 0.50 0.48 0.69
HOG 2.86 1.25 1.60
LBP 0.44 0.62 1.12
DWT 0.75 0.73 2.0

Fig. 4. The results of using GLCM feature extraction with k-means clustering
for 9 clusters.

to four classes based on toughness. Note that we see here
more clusters than final classes. The reason for this is that
when fewer clusters are used, the results are less fine and
more general clusters appear. Increasing the number makes
the distributions found in the clusters narrower even though
some clusters will represent the same class of materials.

LBP achieved the lowest Davies-Bouldin index in compar-
ison to extraction techniques. It is thus able to divide the
data into clusters that have the best quality based on inter-
cluster distance and compactness. This should result in a more
stable when combining the image patch cluster labels into
an image label. It is however no guarantee for clusters that
are meaningful with respect to toughness. The Hierarchical
algorithm however, was able to separate the data for the

Fig. 5. The resulting clusters produced by hierarchical clustering with 7
clusters on the LBP feature vectors.

most part in three classes fairly well separated classes. These
results are presented in Figure 5. The downside was that there
was still one cluster containing samples with both high and
low toughness values. LBP does suffer from the compression
artifacts introduced by the JPEG compression. So reducing the
noise introduced by these artifacts could improve the results.

DWT reduces the blocking artifacts introduced by compres-
sion. By first extracting the HH representation of the discrete
2D-wavelet transform, and using the resulting image as input
for the LBP algorithm, we can reduce the noise in the resulting
feature vectors. This is shown in the results presented in Figure
6, where k-means clustering for 9 clusters is used and the
algorithm is able to divide all data into three classes based
on the toughness properties without the occurrence of a more



Fig. 6. The results of using first DWT and then LBP feature extraction with
k-means clustering for 9 clusters.

general cluster. As the LBP pattern is a binary combination
there are no real drawbacks of the first DWT step.

The other previously mentioned feature extraction tech-
niques were not able to find meaningful clusters based on
toughness with a similar quality as with LBP. Our baseline
FOS resulted a few clusters that all had a similar distribution.
HOG and DWT were able to group the data somewhat together
based on the toughness, but significantly worse than GLCM
or DWT-LBP. The Weyl features showed in the k-means
experiment the capability to separate the data quite well into 3
classes, but a few clusters contained very broad distributions
making the classification not always meaningful. Finally the
autoencoder was not retrained on the new data set, because of
the high Davies-Bouldin score.

The other feature extraction techniques were mostly able to
find some toughness separation in the data, but most cluster-
ing results contained many clusters with both high and low
ductility measurements making most of these classifications
not always informative.

We can conclude that GLCM and a combination of DWT
and LBP results in the clusters when considering the toughness
property of the samples. These both show that the data can be
separated into three to four classes. In future research it may
be beneficial to extend on this work using supervised or semi-
supervised techniques as these are able to learn from the given
labels.

VI. CONCLUSION

In this thesis we developed a method to evaluate feature
extraction techniques and clustering algorithms based on their
ability to assign the dataset into well separated and compact
clusters. We showed that LBP and GLCM were the feature
extraction techniques producing the best results based on the
Davies-Bouldin index. The results of GLCM showed that this
technique did not only produced high quality clusters, but that
it was capable of separating the data based on the toughness

property by using only microscopic images. The second great
technique was the combination of first executing DWT and
using the results as input for the LBP algorithm. The DWT
step serves as a transformation to reduce the noise present in
the image and LBP performs the final feature transformation.
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1 Introduction

Metals have already been used for millennia in human history. Copper, for example, has already
been used for more than seven thousand years [1], but the use of metals is not limited to copper.
In practice a wide variety of metals and alloys are used for numerous applications, from [2–4].
The reason that metals appear in this many applications, is due to the fact that there is a
wide variety of different metals available that each have their own specific properties that suit
different applications. The relation between these different kinds of metals, is their high tensile
strength and durability. When a choosing a metal, the key properties to take into account are:
stiffness, strength, hardness and toughness [5].

The applications of metal range from construction to aerospace industry. It is possible to use
metals for these different applications, due to the fact that its metallurgical material can be
to engineered to have the properties that exactly suit the application. The engineering process
consists of different sequential steps. A chemical material composition must be chosen for the
metal or alloy. Then using different heated processes, the microstructure of the final metal can
be influenced and adapted to the desired application. Using cold processing techniques, the
microstructure can be deformed with the aim to change the mechanical properties. All these
steps are time intensive and each process has a wide variety of possible parameters, making
it very difficult to find the perfect production process for a metal with certain properties. To
reduce the time cost of metallurgical development [6], it is important to have a very good
understanding of the influence of all aspects present in the microstructures of metals. With a
better understanding, it is possible to make more informed decisions to design the production
process, thus requiring less development cycles [7]. In this thesis we will specifically focus on the
toughness property of materials. The toughness property of a material can be summarized as
the resistance to fractures of that material. In some applications like nuclear reactors, aerospace
applications and gas pipelines, fractures can have catastrophic consequences. For this reason,
depending on the application, the toughness property of the used materials is a crucial factor to
consider [8].

1
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Using microscopic images from fracture surfaces, experts can currently identify the features that
indicate the metallurgical properties found in the tests. A quantitative evaluation of the feature
influences to predict the metallurgical and more specific the toughness property is not possible
yet. In this part, artificial intelligence and feature extraction techniques in particular can be
utilized for assessing the microstructures of materials. When pattern recognition algorithms
combined with classification models can be used as a tool for pattern analysis in the microscopic
images, then a deeper evaluation of the microstructural characteristics is possible and the relation
to the metallurgical properties of a given metal sample can be found. For researchers this could
be useful to improve the understanding on the quantitative effect the features in an image have
on the resulting metallurgical properties.

Artificial intelligence and pattern recognition are, by no means, recent subjects in metallurgical
research. Evolutionary methods have already been developed to optimize the process parameters
in the production of metals [9]. Feature extraction techniques and neural networks have already
been used to find compact representations of these microstructures and classify them by their
chemical composition [10, 11]. However, to the best of our knowledge, no models have yet
been developed as a tool for metallurgical property analysis. In this thesis we will develop
unsupervised clustering models, that can find a natural classification of metal samples based on
the toughness properties of these samples.

We would like to thank OCAS, Lode Duprez, and John Vande Voorde for composing the data
sets and provide the necessary guidance concerning the metallurgical part of this thesis. Their
knowledge and help was essential for the completion in the best manner possible.

1.1 Objective and Research Methodology

This work focuses on discovering patterns in microscopic metallurgical images, from fracture
surfaces, that are related to the toughness property of the metal samples and can thus be used
to cluster the samples together in clusters of related toughness properties. Due to the fact that
available data is unlabeled, i.e., the data does not contain any classes in which the samples
should be classified. Thus, in this manuscript we will focus on unsupervised machine learning
techniques as the goal is not to classify the samples into an existing set of classes, but to find a
natural set of groups, with related toughness, residing in the data.

The high-dimensional data is not truly high-dimensional. The features usually reside in a lower
dimensional space, so the intrinsic features can typically be represented in a lower dimensional
space. Using feature extraction techniques, we aim to obtain such a lower-dimensional represen-
tation. The utilized feature extraction techniques already exist for a very long time and found
their applications in many different fields of science and engineering and they represent a well
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researched topic. We will base ourselves on the existing feature extraction techniques and we
will compose a set of feature extractors that are used in similar applications and adapt these for
the use on metallurgical images. We will then evaluate which algorithms are able to remove the
additional dimensions and reduce some of the noise, but still capture the underlying information
that can be used to efficiently cluster the samples, based on their metallurgical properties. In the
following we will examine which feature extraction technique can find the most representative
lower-dimensional representations of the metallurgical images.

The toughness property of a material is a continuous physical quantity and is not suitable for
the purpose of classification. The values can be divided into buckets to create discrete labels,
but then the number of classes and optimal extreme values of each bucket must be known. As
these are unknown at the moment, a supervised classification algorithm cannot be trained on
the data and we must utilize unsupervised methods to find the classes naturally residing in the
data, even when the toughness labels of the metal samples are available. We can evaluate the
unsupervised classification using the provided labels.

Clustering is such an unsupervised machine learning method that groups similar data points
together into groups called clusters. In this work we will research which clustering algorithms
can be combined to the feature extraction methods to assign the images of metal samples into
groups of a similar toughness property. We will investigate which techniques provide the most
meaningful results and which are the most suitable to divide the available data in to groups
related to their toughness.

1.2 Main Contributions

The application of artificial intelligence and more specifically clustering algorithms on micro-
scopical metallurgical images of fracture surfaces has, to the best of our knowledge, not been
researched before. Research on classifying different kinds of metals has already been published
[10, 11], but not yet on finding a relation between the metallurgical properties and the mi-
crostructure of metals.

The main contributions of this work can be summarized as follows:

• Feature extraction techniques for pattern recognition have already been used for numerous
applications, but not yet for classifying metals based on their metallurgical properties. In
this work we investigate the state-of-the-art feature extraction techniques on their ability
to find feature vectors that can be used to assign the metallurgical microscopical images
of fracture surfaces into well separated clusters. Secondly, we compare the features in
their ability to extract informative features relating to the toughness property of the given
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microstructure.
• In this work unsupervised clustering methods are utilized to find latent data structures

present in the resulting feature vectors of a feature extraction technique. Using cluster
evaluation metrics, such as the Davies-Bouldin index or silhouette score, we determine for
each feature extractor the most suited clustering algorithm to find well separated clusters
in the data. The algorithms are also compared in their ability to assign the given feature
vectors into clusters of samples that are closely related based on their toughness property.

• We propose a general pipeline for classifying metal samples based on their toughness
property. Metal classification algorithms based on microscopic images have already been
developed [10, 11], but determining the relations of metallurgical properties between the
given samples, was not in the scope of their research. In this work, we develop a framework
that can be used for the analysis of the metal samples, based on their toughness property.

Furthermore, we made some original visualization that serve for a better understanding of the
presented models and their presented results. We also have written a well organized Python code
base that can be used by metallurgical experts for their research in the field of metal properties
or as a baseline for future developments on the subject.

1.3 Thesis Outline

This thesis is organised as follows:

• Chapter 2: Background and Related Work presents the necessary metallurgical knowledge
used in this work. The characteristics of the toughness property and the difference between
brittle and ductile materials are explained. The Charpy test for toughness measurement
is covered and the most important features, relating to toughness, in fracture images are
listed. Furthermore the feature extraction algorithms and their use in pattern recognition
are researched. Finally both classical and more advanced clustering algorithms are shown.

• Chapter 3: Proposed Methods presents the different methods that were developed in this
work. We present a method to optimize the quality of clusters resulting from feature
extraction and clustering algorithms. Secondly we present a framework to classify metal
samples into groups that are related in terms of their toughness property.

• Chapter 4: Experimental Results and Discussion discusses the experimental results by
applying the previously mentioned methods to two data sets. We start by analyzing
the influence of inputs, feature extraction and the clustering algoritms on the resulting
cluster quality metrics. Afterwards, we compare the ability of different feature extractors
combined with clustering algorithms to find metallurgical samples related in toughness
property.
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• Chapter 5: Conclusion and Future Work gives a summary of the contributions and results
presented in this thesis and lists the possible future research directions for which our work
could serve as a baseline.



2 Background and Related Work

In this Chapter, we will provide an overview of the fundamental metallurgical knowledge re-
quired for this work, as outlined in Section 2.1. We will delve into the concept of toughness
as a critical material property, analyzing its significance. Additionally, we will examine the key
characteristics present in fracture images that serve as indicators of toughness. Moreover, Sec-
tions 2.2 and 2.3 will focus on the various algorithms employed in this thesis. These algorithms
are divided into two main categories. Firstly, we will discuss the feature extraction algorithms,
which facilitate the transformation of an image into a low-dimensional feature vector. We will
explain their functionality and discuss their relevance in the context of metallurgical images.
Secondly, we will explore clustering algorithms, encompassing both traditional and more recent
approaches.

2.1 Metallurgical Background

Metals possess various properties that define their behavior in the world, such as density, hard-
ness, yield strength, and toughness. For the purpose of this thesis, our focus will be solely on
exploring one specific metallurgical property: toughness. Toughness refers to the ability of a
material to absorb energy before fracturing [5]. Fracture toughness is a related property, as it
determines the amount of energy required for a preexisting fracture to propagate [12]. Given
that metals often encounter high stresses, the toughness property becomes crucial in selecting
the appropriate metal for a particular application. For instance, in an oil pipeline, it is vital
to ensure that if a failure occurs and a crack appears, the crack does not propagate due to
the pressure exerted by the oil. This prevents further leaks and damages. Numerous similar
examples highlight the significance of toughness in various scenarios.

6
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Figure 2.1: The charpy set up for toughness measurement [14].

2.1.1 The Charpy Impact Test

The toughness property of a metal sample, can be measured using a Charpy impact test [13].
In this test a notch is drilled into a metal sample The notch is 2mm deep and as an angle of 45
degrees. Then, a hammer fixed to a pendulum is dropped on the sample in order to break it.
After breaking the metal, the toughness can be found, by measuring the remaining mechanical
energy in the hammer, which can be calculated by measuring the maximum height the hammer
reaches in the second part of the swing, after breaking the sample. By subtracting the second
measurement from the initial energy, we can calculate the energy absorbed by the material
sample. An illustration of the test setup is given in Figure 2.1. It shows how a sample is placed
and how the hammer swings to break the sample. Finally, it can be seen how the measurement
of maximum height reached by the remainder of the swing, can be obtained. Due to the influence
of temperature on the toughness property, the Charpy test is often repeated multiple times at
different temperatures. It should be noted that other tests for toughness measurement exist,
but in this work only the Charpy impact test is considered, as the data sets used only contain
Charpy test samples.

2.1.2 Classification Based on Toughness

Materials can be divided into two general groups based on their toughness. The first group is the
brittle group, these materials absorb very little energy and barely deform while breaking. Glass
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Figure 2.2: The Charpy impact energy depending on the temperature. [13]

is an ideal example for a brittle material, at cold temperatures it does not deform, meaning
permanently, but rather breaks instead. The other category of materials is the ductile group,
these absorb a lot of energy by deforming before actually fracturing. The deformation mentioned
is plastic deformation, meaning permanent. When the stress is removed the deformation stays.
A good example for a ductile material is a metal wire, which you can deform into most shapes
without a fracture appearing.

As mentioned in the previous paragraph, the amount of deformation and thus absorbed energy
is dependent on the temperature. Hot glass will absorb energy instead of breaking, but cold
glass shatters instead of deforming. For this reason a Charpy impact test must be performed at
different temperatures to gather all information about the toughness property of the material.
A graph can be constructed when multiple Charpy tests have been performed, such a graph
is shown in Figure 2.2. The shape of this curve is one that is very similar for most materials.
Often it is crucial to investigate how the toughness changes for different temperatures as the
material may require to be able to withstand different temperatures. A plane, for example, must
be able to withstand the same stresses close to the ground while landing or taking of as when
encountering turbulence in a freezing cloud. To summarize, knowledge of the temperature curve
is crucial for the suitable applications of the material.

After a Charpy impact test a broken metal sample remains. These fractures scraps of metal can
provide crucial insights into the microstructure of the material. We can examine the fracture
surface of the sample with a scanning electron microscope (SEM) and identify features that
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contribute to the measured toughness value. The following patterns in an image give hints
about the toughness value:

• The microstructure of a material gives important insights into the properties of a mate-
rial. For metals, characteristics such as grain size, and alignment that have a big impact
on the behavior of the material. Often the effects of the different processing steps can be
analyzed, making the evaluation of the process possible.

• Pre-existing cracks have a major influence on the toughness of a material. Some mate-
rials have due to their production more pre-existing cracks present in their microstructure,
reducing the toughness of that material. The cracks act as a weaker point than the rest
of a metal where the fracture can initiate.

• An inclusion is the incapsulation of a different material or metal phase in the sample.
Inclusions often do not have the same strong bonds at their grain borders as grains of
the same materials have. Inclusions can thus give an indication that the material will be
weaker and show a more brittle behavior.

• Dimple structures are often found in images of fracture surfaces. They are caused by
local shear planes that formed a cluster of grains, that were unable to sustain plastic
deformation, due to their misorientation. Dimples are considered to be a sign of a ductile
fracture [15].

The feature described above can be used to analyze the toughness property of a given metal
sample. They can also be used to find similarities in toughness between different samples and
group them together to form clusters of similar materials.

2.1.3 Microscopic fracture surface images

The fracture surfaces of the metallurgical samples are captured using Scanning Electron mi-
croscopy (SEM). in contrast to traditional microscopes. SEM is based on the electron emission
instead of light, the electrons are accelerated to the sample with an acceleration voltage. The
reason to use SEM is that very high magnifications are possible using these microscopes. In
contrast to optical or light microscopy, where the wavelength characteristics limit the maximum
magnification [16]. The microscope is used to capture images of fracture surfaces. The reason to
use fracture surfaces is due to the fact that fracture surfaces show characteristics of the behavior
of the material while fracturing. The difference between normal images of the microstructure of
a metal and a fracture surface is shown in Figure 2.3. The image of the fracture surface is more
complicated, but contains more information about the metallurgical properties of the material.

The datasets of images used in this work, contain compressed JPEG images [17]. The JPEG
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(a) A SEM image of a metal microstructure. (b) A SEM image of a fracture surface.

Figure 2.3: A comparison between a SEM image of a metal microstructure and a fracture
surface.

compression algorithm allows to reduce the size of images using quantization and by exploit-
ing spatial correlations between pixels intensities with pixel predictions. The downside of the
algorithm is that due to quantization, it is not lossless and the image quality will be reduced
when the image is reconstructed. This information loss expresses itself in certain visual errors
called compression artifacts. The two compression artifacts mentioned in this work are banding
and blocking artifacts. The first is visible when neighboring pixels, with small pixel intensity
differences, are reconstructed as the same pixel after compression, thus creating a band of the
same pixels intensity.

The latter is due to the predictive algorithm in JPEG. JPEG divides an image into 8 × 8 blocks
and applies quantization on each block separately. Inside the block a predictive algorithm and
compression is then used to represent the block in a more compact way. The combination of the
quantization and predictive algorithm makes that sometimes the block borders are visible. The
two artifacts are shown in Figure 2.4. The first image shows the banding is shown as multiple
pixels have the same values and the second presents the visible block borders in the image.

These artifacts are mentioned due to the fact that they have an impact on the feature extraction
techniques mentioned below by introducing new features that have no relation to the actual
material characteristics. Some of the following methods may drop in performance because of
the presence of these artifacts.
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(a) A banding artifact. (b) A blocking artifact.

Figure 2.4: Two compression artifacts.

2.2 Feature Extraction Techniques

As previously mentioned, the necessary features often reside in a lower-dimensional space than
the full image. Using the raw image directly as input for artificial intelligence algorithms will
increase the computational complexity. Secondly, an increased dimensionality is correlated with
a higher amount of noise present and an increased chance of overfitting. To alleviate these
problems, we use feature extraction techniques to transform the input data into low-dimensional
feature vectors [18].

2.2.1 First Order Statistics

The simplest feature extraction technique consists of taking the first order statistical measures
of a grayscale image. These statistical measures are:

• The average pixel intensity.
• The variance of the pixel values.
• The maximum pixel intensity.
• The minimum pixel intensity.
• The skewness of the gray value distribution. Skewness is a statistical measure that indicates

the symmetry of the distribution. A high skewness value means that the distribution has
a long tail to the right. While a very small skewness indicates a long tail on the left. A
skewness value close to zero indicates a symmetrical distribution.
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• The kurtosis of the gray value distribution. Kurtosis is a statistical measure that indicates
how often outliers occur. A low kurtosis means that the variance of the distribution is
caused by a few extreme outliers, while a higher kurtosis means that the variance is caused
by more less extreme values.

While this technique is attractive because it is very simple to implement and has a low compu-
tational complexity, it is often unable to capture more complex patterns in the image. Another
disadvantage is that lighting circumstances of the image has a big impact on the some of the
measures that are used in this technique.

2.2.2 Histograms of Oriented Gradients

Histograms of oriented gradients (HOG) [19] is a widely used feature extraction technique for
images. The technique is most known for human detection in images. In the algorithm three
steps have to be executed. The first step is an optional normalization step. Normalizing the
input values reduces the influence of variances in illumination. Then, the second step consists
of computing the first order image gradients. Here the gradients of contours and textures are
computed in cells of size m × n. The computation of the gradients in a cell is defined as

Gx(r, c) = I(r, c + 1) − I(r, c − 1), Gy(r, c) = I(r − 1, c) − I(r + 1, c),

where r and c are respectively the row and column indices and Gx and Gy are the horizontal
and vertical component of the gradient, respectively. These two components can now be used
to calculate the magnitude and orientation of the gradient using

µ =
√

I2
x + I2

y and θ = 180
π

(
tan−1

2 (Iy, Ix) mod π
)

,

where µ and θ are the magnitude and orientation of the gradient and tan−1
2 is the four-quadrant

inverse tangent yielding values between −π and π. The third step pools the gradients from
image patches. The dominant gradient, i.e. the gradient with the highest µ, of each cell is then
matched to a gradient bin. These bins can then be used as a 1-dimensional feature vector. In
this work the implementation of the python library Scikit-Image is used [20].

2.2.3 Grey Level Co-Occurrence Matrix

Texture characterization can be done using the Grey-Level Co-occurence Matrix (GLCM).
GLCM is a second-order histogram based approach. This means that it is based on correla-
tions among pixels [24]. The GLCM of an (M × N) image, is constructed as

M (i, j) =
M∑

x=1

N∑
y=1

1, if I (x, y) = i and I (x + ∆x, y + ∆y) = j,

0, Otherwise,
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Figure 2.5: The GLCM feature extraction process, where first a GLCM matrix is calculated
and then 5 feature are extracted from the matrix. [26]

where (∆x, ∆y) is a specified displacement vector and I (x, y) is the pixel value of the image at
row x and column y. The construction of such histogram in four directions with a displacement
of 1 pixel is shown in Figure 2.5. From the resulting GLCM matrix, 5 features are extracted:
correlation, contrast, energy, homogeneity and entropy. These features are sometimes called the
Haralick features, named after the original author [25].

2.2.4 Local Binary Pattern

Local Binary Pattern (LBP) is a very popular method for texture analysis [27]. Each pixel gets
binary encoded by a comparison with the neighboring pixels on a circle. For each comparison,
if the central pixel is greater of equal than the compared pixel, a one is encoded, else a zero gets
encoded. By combining these binary figures for a specified number of pixel comparisons, the
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LBP encoding is achieved. The LBP encoding is formally defined as

LBPP,R =
P∑

p=0
s (gp − pc) 2p, (2.1)

where P is the number of pixels that are compared in the LBP encoding, R is the radius on
which the comparison pixels are located, gc is the central pixel and gp is the comparison pixel.
s(x) is the comparison function and is defined as

s(x) =

1, x ≥ 0,

0, x < 0.
(2.2)

A histogram can be constructed using pixel encodings to represent the entire image. By con-
structing an LBP histogram, patterns within the image can be identified and the frequency of
occurrence of these patterns can be quantified. The LBP feature extraction technique is known
for its simplicity of implementation and computational efficiency. In this thesis the implemen-
tation of Scikit-Image [20] is used for LBP feature extraction.

2.2.5 Discrete Wavelet Coefficients

The discrete wavelet transform (DWT) is a technique used in signal analysis [21], but it can
also be expanded to images. The rows and columns of pixels are treated as 1D signals. The
wavelet transform for image analysis consists thus of a horizontal and a vertical transformation.
Each time the transform in a certain direction is executed, the dimension in that direction of
the image halves. The iterative transformation process is visualized in Figure 2.6. There are
different versions of the wavelet transform, but for edge detection, often the Haar wavelets are
used, which can be calculated by multiplying the input to the Haar transformation matrix. In
this work we will also use this transformation as it can be efficiently calculated using matrix
multiplications and it is often used in feature extraction for classification tasks. The Discrete
Wavelet transform, with both the vertical and horizontal transformation, consists of the following
steps, with an input N × N input image:

• Divide the image into neighborhoods, which are non-overlapping blocks of size 2 × 2.
• Apply the Haar wavelet transform on each block individually.
• From these coefficients, four approximations of size N

2 × N
2 can be calculated:

– LL which is an approximation of the original image and is calculated by taking the
average of each pixel.

– HL is the vertical detail and is calculated by subtracting the average of the 2 pixels
from the average of the highest pixels in a block.

– LH is the horizontal detail, calculated by subtracting the average of the left pixels
from the average of the right pixels.
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Figure 2.6: The Process of the DWT transformation on an image, with the horizontal and
vertical transform alternately.[23]

– HH is the diagonal detail and is calculated by a subtraction of the averages of top-left
and bottom-right.

From the DWT images the features must still be extracted as these are still an matrices. In this
work we extract the average and standard deviation of the pixel intensities from each quadrant
achieved after doing one horizontal and vertical transformation. The used implementation is
from a the library Pywavelets [22].

2.2.6 Weyl Transform

Weyl transform is a statistical feature extraction method used in pattern recognition as a low di-
mensional data representation. The transform uses a mapping from signal to its autocorrelation
coefficients based on the Heisenberg-Weyl group [28].
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Figure 2.7: The process of extracting the Weyl coefficients [29].

Let a = (a0, ..., am−1) ∈ Zm
2 and b = (b0, ..., bm−1) ∈ Z, and let

x =
(

0 1
1 0

)
, z =

(
1 0
0 −1

)

For
D(a, 0) = xam−1 ⊗ · · · ⊗ xa0

and
D(0, b) = zbm−1 ⊗ · · · ⊗ zb0 ,

where ⊗ is the Kronecker product, we can now define the signed permutation matrices from the
binary Heisenberg-Weyl group as

D(a, b) = D(a, 0)D(0, b).

Given real symmetric matrices R, S ∈ VSym, we can associate with the vector space VSym the
inner product

⟨R, S⟩ := Tr(RT S),

which subsequently induces the Frobenius norm

∥S∥ = Tr(ST S)1/2.

The matrices D(a, b) with abT = 0 form an orthonormal basis of the vector space VSym. Thus,
each symmetric matrix R ∈ R2m×2m can be expanded as

R =
∑

a,b∈Zm
2

abT =0

{ 1
2m/2 Tr [R · D(a, b)]

} 1
2m/2 D(a, b)
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We can thus expand the correlation matrix yyT of a vectorized signal y ∈ R2m as

yyT =
∑

a,b∈Zm
2

abT =0

{ 1
2m/2 Tr

[
yyT · D(a, b)

]} 1
2m/2 D(a, b)

=
∑

a,b∈Zm
2

abT =0

ωa,b(y) 1
2m/2 D(a, b)

The coefficients ωa,b(y) are known as Weyl coefficients of y. The mapping

yyT 7→ ωa,b(y)

is known as the Weyl transform. In practice this means that an image patch of shape (4,4)
gets vectorized to a vector of length 16. Here the autocorrelation mapping can be executed to
achieve the Weyl representation of that patch. The process is shown in Figure 2.7. This figure
shows the steps required to achieve the Weyl representation of an image. First overlapping 4×4
patches are sampled from the image. These patches are then stacked into a 16 × 1 vector and
on that vector, the Weyl transform is performed.

The Weyl transform has very good results in pattern recognition for cloth fabrics in [28] and
also in seafloor classifications [29].

2.2.7 Autoencoders

To delve into the topic of autoencoders, it is essential to first explore the principles and foun-
dations of deep learning. Deep learning is a very powerful technique in machine learning often
outperforming most other techniques if enough data is available. The result is a neural network
that is optimized to give the desired output given an input [30]. The most simple neural networks
are often called the multilayer perceptron, which consists of perceptrons, often called neurons,
organized in a layered formation. An example of a multilayer perceptron is shown in Figure 2.8.
These neurons are universal approximators, meaning that given an a vector of inputs an a bias,
the perceptron will learn a function. Perceptrons can be connected to each other to repeat this
process a number of times until the final output is reached. It is said that any function can be
approximated by a multilayer perceptron that has two hidden layers, where a hidden layer is
not the input layer and not the output, but hidden from the outside world. Deep learning uses
as the name says deeper neural networks, because a deeper model will need less neurons and
learn the desired function faster. The loss function evaluates the quality of the outputs from
the neural network and using this loss function and an algorithm called backpropagation [31],
the model is optimized to generate outputs with the lowest possible errors.

When using these techniques on images every pixel is fixed to an input in the neural network.
Meaning that the neural network has to learn every combination of pixels to learn what is inside
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Figure 2.8: An example of the multilayer perceptron architecture with one hidden layer.

the image. This is not very efficient, because if it tries to recognize a car for example, when the
car moves a little bit to the left, the inputs have not changed a lot, but it seems like a completely
different input to the model. Convolutional layers contain filter matrices. The convolutional
multiplies small patches of the image with filters matrices. This way very localized features can
be detected by the neural network. When multiple convolutional layers are used serially, the
deeper the layer the more complex feature it will be able to recognize. [32]

An autoencoder is an unsupervised deep learning technique that first encodes the input data into
a lower dimensional latent space and then tries to reconstruct the original input [33]. The model
architecture consists of two components: the encoder and decoder. The autoencoder technique
can be applied to images, where the decoder is optimized to find a low-dimensional latent
representation for the image and the decoder then learns to reconstruct the images using the
latent spaces. For image applications, often a combination of convolutional and fully connected
layers is used for optimal results.

The model is trained by combining encoder and decoder into one neural network and using a
reconstruction error as a loss function. A loss function shows the error the neural network is
still making. For autoencoders the mean squared error (MSE) is often used as a loss function.
Using the loss function and backpropagation, the neural network then learns to minimize the
differences between the original image and the reconstructed image. Training results can be
evaluated using unseen data, by calculating MSE and visually checking the reconstruction of
the images. When the algorithm is fully trained the encoder has learned an effective way to
compress an image with a minimal loss of information in the compressed representation. Then
the decoder learns how to reconstruct the image. We can then use both of these neural networks
individually. The encoder can be used to compress the images while the encoder can transform
low-dimensional vectors into an image.
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In this work an autoencoder will be used for feature extraction. During training the autoencoder
learns to represent the images into a low-dimensional space. Due to the fact that the decoder
is able to reconstruct the image using the latent space, the latent space contains all crucial
information on the microstructure. The transformation from image to latent space is thus a
feature extraction method, where the transformation is learned from the available training data.

2.3 Clustering

Most of the machine learning approaches can be categorized as supervised learning, unsupervised
learning or a combination of the two. Other machine learning paradigms, like reinforcement
learning, are outside the scope of this work. The most commonly known is supervised learning,
where a model is optimized to approximate a given function. In many cases labeled samples are
not available and then we turn to unsupervised learning, the model is used to analyze datasets
without requiring labels as in supervised learning. The goal of unsupervised learning models
is to hidden patterns in the data. The last part is called semi-supervised learning and is a
combination of supervised and unsupervised learning. A small part of the data contains labels
and the majority is unlabeled, reducing the cost of labeling the complete data set. [34]

Clustering is a part of unsupervised machine learning. The algorithms group data points together
into a cluster, based on a certain similarity function. The unsupervised nature of the algorithms
mean that there are no labels available to evaluate the clustering performance. The algorithms
can only be optimized using metrics taking into account characteristics like shape and distance
between clusters. Many clustering algorithms exist, but in this work only k-means, spectral
clustering, sparse subspace clustering and hierarchical clustering algorithms are covered.

2.3.1 K-Means Clustering

K-means clustering is the most used yet, most simple clustering technique. The algorithm
searches in incremental manner for the best cluster solution, minimizing the euclidean distances
inside the clusters. The basic steps, given the amount of clusters n, for the algorithm are the
following:

• Randomly initialize n cluster centers in the N -dimensional euclidean space, with N the
dimension of the feature vectors.

• Iteratively execute the following steps for a previously defined amount of steps:

– Assign every data point to the nearest cluster center using the euclidean distance of
the feature vectors.
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– Compute the new cluster centers by taking the average of all the points assigned to
a cluster.

The downside of this algorithm is that it falls into local minima. To alleviate this problem
the base k-means clustering algorithm is often executed multiple times. Because of the random
initialization of the cluster centers the algorithm may optimize to a new local minima or in the
best case scenario a global minimum. From the different initializations the best clustering is
chosen minimizing the inertia or the sum of squared distances of all samples to their closest
cluster centers. In this work we will use the Sci-Kit learn implementation for k-means clustering
[35].

When using k-means there are some factors we need to consider. Firstly, because the algorithm
is based on euclidean distances of feature vectors it is important that every feature in the vector
is scaled to the same scale, otherwise a few features with a high differences may dominate the
clustering decisions while others have little influence. Secondly because the distance to one
point, the cluster center is minimized, the cluster shapes will always be round. If the relation
in the euclidean space has another shape, this algorithm will not always be able to capture that
relation.

2.3.2 Spectral Clustering

The spectral clustering algorithm optimizes the clusters based on a similarity graph G = (V, E)
[36]. The vertices represent the data points. In the graph, two data points, yi and yj , are
connected if their similarity sij exceeds a threshold. A similarity graph is an undirected weighted
graph, this means that all edges are weighted by sij . After a similarity graph is constructed the
clustering problem is now reduced to finding the partition of G that minimizes the weight of the
edges going between the different clusters. In this algorithm a graph has two matrices linked
to it. The first matrix is the weight matrix W with Wij is the weight between xi and xj . The
second matrix is the diagonal degree matrix D. The degree of an undirected weighted matrix
is defined as di = ∑n

j=1 wij or the sum of all weights of connected edges. D is thus given by
Dii = ∑

j Wij . In the following we list the individual steps of the spectral clustering algorithm
for a dataset with N datapoints and n clusters [37].

• If no similarity matrix is given calculate the weight matrix W = [Wij ]Ni,j=1, where

Wij =

exp
(

−||yi−yj ||2
2σ2

)
, i ̸= j,

0, i = j.

• Now the normalized Laplacian L can be calculated using L = I − D−1/2WD−1/2, with W
the weight matrix and D the degree matrix of the similarity graph.
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• Take the n smallest eigenvalues from L and determine the corresponding eigenvectors. By
stacking these eigenvectors as column vectors we can construct the matrix B ∈ RN×n.

• Next we can construct E by normalizing each row of B.

• Finally, using a clustering algorithm, we can cluster the rows of E as datapoints in Rn.
For example k-means could be used.

Spectral clustering often outperforms k-means clustering, as it is able to capture more complex
relations in the data. The downside is that the calculation of the eigenvectors is computationally
expensive for large data sets.

2.3.3 Sparse Subspace Clustering

High-dimensional data belonging to a specific class or category can be effectively represented us-
ing a lower-dimensional subspace within the larger high-dimensional space. As a result, the data
associated with these classes can be found within the combined set of these lower-dimensional
subspaces. Subspace clustering algorithms tackle the clustering task by partitioning the data
based on the underlying subspaces they inhabit [38].

Sparse subspace clustering (SCC), uses the self-expressiveness of the data. This means that
every data point in a union of subspaces can be represented as a linear or affine combination of
other points. A data point can generally be represented using different combinations, but ideally
a sparse representation uses some points from its own subspace. Finding these representations
using a sparse optimization program, will lead to a few other points chosen from the same
subspace, but these do not necessarily have to be close [38].

The sparse subspace clustering algorithm is defined as follows: Let {Sl}n
l=1 be an arrangement

of n linear subspaces of RD of dimension {dl}n
l=1. Consider a given collection of N data points

that lie in the union of the n subspaces. All the data points can be represented as a matrix Y =
[ y1 y2 ... yN ]. Following the previously described self-expressiveness property , we can assume
that each vector yi ∈ RD, for i = 1, ..., N can be represented as

yi = Yci, cii = 0 (2.3)

With Ci = [ci1 ci2 ... ciN ]T . The constraint cii = 0 ensures that the data point itself is not
used in alternative representation of that data point, thus eliminating the trivial solution for
the linear combination. A visual representation of the self-expressiveness property is shown in
Figure 2.9. The most sparse solution, i.e. the solution with the least non-zero elements can be
found by minimizing the ℓ0 norm of the solution vector C. If we rewrite Equation 2.3 for all
data points, we get:

min
C

∥C∥0 s.t. Y = YC, diag(C) = 0 (2.4)
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Figure 2.9: A visual representation of the self-expressiveness property in sparse subspace
clustering [40]

.

Minimizing the ℓ0-norm is the NP-hard problem of finding the most sparse representation. To
improve efficiency, the tightest convex relaxation of the ℓ0-norm is used, namely the ℓ1-norm. If
we rewrite the optimization problem for all data points:

min
C

∥C∥1 s.t. Y = YC, diag(C) = 0 (2.5)

The sparse subspace clustering algorithm can be summarized as follows:

• Solve the sparse optimization problem.

• Normalize the columns of the coefficient matrix C.

• Construct the similarity graph as: W = 1
2(|C| + |C|T ).

• Apply spectral clustering using W as the similarity graph.

2.3.3.1 Scalable Elastic Net Sparse Subspace Clustering

Instead of finding, for each data point, a linear combination of as few other data points as pos-
sible. The optimal solution can be found by solving Equation 2.4. Because of efficiency reasons
the optimization problem is often relaxed to Equation 2.5. Using the ℓ1 regularization, the solu-
tion guarantees to have only connections between data points from the same subspace, i.e. the
solution is subspace-preserving, but may not be connected. The ℓ2 regularization optimization
solves this problem, but does not guarantee subspace-preservation. Using a mixture between ℓ1

and ℓ2 regularization, also called elasticnet regularization a balance between the two properties
can be found [39]. The elastic optimization function is defined as

f(c; b, A) := λ∥c∥1 + 1 − λ

2 ∥c∥2
2 + γ

2 ∥b − Ac∥2
2, (2.6)
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where b ∈ RD, A = [a1, ..., aN ] ∈ RD×N , γ > 0 and λ ∈ [0, 1). We assume that banda are
normalized using the ℓ2-norm. The elastic model then computes

c∗ (b, A) := arg min
c

f(c; b, A). (2.7)

Due to the fact that f(c; b, A) is a stronly convex function, c∗ (b, A) is a unique solution. This
optimization technique can be applied to the sparse subspace clustering algorithm. Consider
the data set X = [x1, ..., xN ], where each xj is a different data entry. The Elastic Net model
computes

c∗ (xj , X−j) := arg min
c

f(c; xj , X−j). (2.8)

where X−j is X without the j-th column. When using this technique to construct the matrix
C, we can balance the conectiveness of the clusters and the subspace preserving property while
still having a lower computational complexity than the ℓ0-norm optimization. In this work we
use the implementation from You et al. [39].

2.3.4 Hierarchical Clustering

The final clustering technique that will be covered in this work is hierarchical cluster, sometimes
also called agglomerative clustering [41]. The hierarchical clustering algorithm consists of build-
ing a binary merge tree, called a dendrogram. The leaves of this tree are all the data points in
the data set. Every level going up through the tree merges the two most similar clusters. Such
a dendrogram is shown in Figure 2.10. In other words, hierarchical clustering is a bottom up
method for the clustering problem. The individual steps in the hierarchical clustering algorithm
are described as follows:

• Treat each individual data point as its own cluster.
• Calculate the similarities between clusters. The default affinity metric between clusters is

the euclidean distance: d =
√∑

i (yi1 − yi2)2.
• Merge the clusters with the closest cluster centers.
• Repeat until desired amount of clusters is reached or until the smallest similarity is above

a certain threshold.

Some advantages of the hierarchical clustering algorithm are a more intuitive relation between
data points and clusters, visualized in a dendrogram. It is also possible to let the algorithm
stop at an ideal amount of clusters during the clustering process. When a similarity threshold is
specified it is possible to stop merging clusters when their distance is above that threshold. The
biggest downside of hierarchical clustering is the computational complexity for large datasets
or high feature dimensions. The hierarchical clustering algorithm used in this work is the
agglomerative clustering from Scikit-Learn [35].
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Figure 2.10: A dendrogram built using the hierarchical clustering algorithm on a metallurgical
dataset. This figure shows information of when the different clusters were merged.

2.4 Conclusion

In this chapter the knowledge required for this thesis was presented. The necessary metallurgical
background was provided to understand how the toughness property of a metal is defined and
how it can be measured with the Charpy test. The microstructural characteristics visible on
microscopic images that influence the toughness were presented and discussed. Then different
techniques to transform images into a low-dimensional representation were analyzed. Finally
an overview on four clustering methods was given with the goal to gain insight in their base
principles.

These three different subjects were researched to gain all knowledge required to combine them
into one framework. In the following sections we will analyze the ability of the given feature
extraction techniques to compress the dimensions of microscopic metallurgical images, but still
retain the necessary information relating to the toughness property of given material. Then we
will cluster the resulting feature vectors and compare the different clustering algorithms based
on the resulting cluster quality metrics and the distribution of the toughness for each cluster.



3 Proposed Methods

This Chapter presents our contribution to pattern recognition in microscopic images from met-
allurgical research. The main focus of our work is to utilize and assess the potential of dif-
ferent feature extraction and clustering techniques for analyzing metallurgical images. These
techniques have been sourced from relevant literature and previous applications with similar
objectives. We explore various combinations of feature extraction and clustering techniques to
classify microscopic images based on the toughness property of the metal samples. To the best
of our knowledge there have been no reported works that analyze the metallurgical properties
of materials from fracture images. So the goal of these methods is to develop a framework that
is capable of evaluating the properties from fracture images and analyzing which techniques can
achieve the best results in this context.

Our evaluation process consists of two steps. Firstly, we employ a dataset comprising randomly
selected metal sample images to evaluate the techniques in an unsupervised manner. The pri-
mary objective is to maximize the quality of clustering. To achieve this, we assess different
combinations of algorithms and fine-tune their parameters to identify the optimal configuration
yielding the highest quality clusters. In the second step, we utilize a second dataset is composed
with metal samples chosen specifically for their diverse toughness properties. This dataset is
employed to evaluate the unsupervised algorithms based on their ability to effectively group
the samples according to similar properties. By employing these evaluation steps, we aim to
contribute to the advancement of pattern recognition in metallurgical research, particularly in
the analysis of microscopic images.

3.1 Evaluating Clustering of the First Dataset

The following method is developed to cluster microscopic images of metallurgical fracture sur-
faces. It is an unsupervised method so there is no ground truth or information about the

25



CHAPTER 3. PROPOSED METHODS 26

toughness properties of the metal samples available. The only possible evaluation, is the cluster
quality. The method consists of the following steps: dividing the image into patches, feature
extraction, clustering and finally cluster evaluation. The goal of this method is to optimize and
compare the different combinations of feature extractors and clustering techniques and to find
what the optimal number of clusters is for these techniques.

3.1.1 Division into Patches

The fracture surfaces that are analyzed are obtained using a Charpy test, described in Chapter
2. During the breaking process of the metal sample, the actual stresses on the fracture line may
vary. This is caused by: imperfections in the material, deformation and other factors during the
crack propagation. For this reason a material may behave more ductile or brittle in certain areas
of the fracture surface. There is thus a need to be able to differentiate between different parts
of the image in order to classify the differences in behavior. The final clustering classification of
a metal sample can than be decided using a majority vote between the clustered patches.

By dividing the images into patches the analysis becomes localized instead of the whole image
which may contain sections with a different behavior, the analysis becomes localized and isolates
these areas. There are other additional benefits such as increased computational complexity and
an increased amount of data points for the unsupervised machine learning algorithms later in
the process.

When dividing images into patches it is important to choose the right size. Take too small
patches and they will not contain enough information, to big and the benefits of working with
patches decrease. In this work patches of shape (64 × 64) pixels where chosen, as an optimal
compromise to contain enough information, but still be of a small enough size. An added benefit
of taking this patch size, is that the JPEG block size is often a divisor of 64, minimizing the
amount of blocking artifacts in the input images.

3.1.2 Feature extraction

Microscopic metallurgical images have a high dimensionality, the images used have a shape
of (832 × 1280) and have does a feature vector of 1 064 960 dimensions. These contain extra
information that is not relevant for toughness classification. This is still the case after dividing
the images into patches of shape (64 × 64) as described in the previous part. By reducing the
dimensions of the data we can eliminate unnecessary data and retain the useful information. The
reason we want to decrease the amount of features is the curse of dimensionality, meaning that
the algorithms will need more time for training and classification. A high dimensionality also
correlates to a higher chance of the algorithms overfitting and to an increased amount of noise
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present in the data, as each feature will always introduce some noise. The necessary information
relating to toughness, resides in a lower-dimensional space than the full image dimensions. In
summary the goal of the feature extraction step consists of creating a compact representation of
the image patch that still contains all necessary features to classify the images into meaningful
clusters.

To create these compact data representations feature extraction techniques are used. These
aim to extract the features that reflect the intrinsic contents of the images that relate to the
application at hand [18]. This work uses features often used in pattern recognition, to try and
identify the different patterns that appear based on the toughness property of the material. The
algorithms must thus be able to process the form of the microstructure and and the structures
present in the image that influence the toughness of a material. The algorithms used in this
work, are covered in detail in Chapter 2, but for completeness we will list them here:

• First Order Statistics (FOS),
• Histograms of Oriented Gradients (HOG),
• Grey Level Co-occurence Matrix (GLCM),
• Local Binary Pattern (LBP),
• Discrete Wavelet Transform (DWT),
• Weyl Transform,
• Autoencoders.

These feature extraction algorithms will each be optimized and evaluated in combination of a
cluster to select the best performing algorithm for toughness classification.

3.1.3 Clustering

After feature extraction, unsupervised classification is performed. The reason for the choice
of unsupervised techniques is twofold. First, due to the lack of previous work on the same
subject it is unclear how many classes and what kind of classes can be classified based on the
toughness property. Second, labeling all the images into their respective classes is a difficult
and time consuming process. Using clustering techniques, it is possible to find a classification
based on the latent structures in the data. Because the unsupervised classification does not try
and replicate a currently existing classification method, the results may also be interesting for
experts in the metallurgical field.

The clustering algorithms used are also described in Chapter 2, but for completeness they are
listed below:
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Figure 3.1: An overview of the first method we developed.

• K-means clustering,
• Sparse subspace clustering,
• Hierarchical clustering.

The reason for comparing all these algorithms is the fact that each of these algorithms uses
different methods to express the similarity between data points. The clustering results may
differ and some algorithms may find a better relation to the toughness property than others.
Beforehand there is no real indication to which one will perform better.

3.1.4 Clustering evaluation

The clustering algorithms must be optimized to find their best solution and the resulting so-
lutions must be compared to find the best algorithm. Due to the fact that clustering is an
unsupervised machine learning method, there are no labels to calculate the accuracy of the clus-
tering algorithms. For this reason, other evaluation methods must be used. The two most used
metrics for cluster evaluation are the Silhouette score [42] and the Davies-Bouldin index [43].
The silhouette score is defined as

s = b − a

max (a, b) ,

where a is the mean intra-cluster distance and b the mean nearest cluster distance. The default
metric used for these distances, is the euclidean distance. The downside of the silhouette score
is its high time complexity for big data sets, making the optimization process for all algorithms
very time consuming. The second evaluation metric is the Davies-Bouldin index [43]. The lower
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the index, the higher the inter-cluster distance is. The Davies-Bouldin index is formally defined
as

db = 1
n

∑
i

max
j ̸=i

(
σi + σj

d (ci, cj)

)
,

where n is the number of clusters, ci is the cluster center of cluster i, σi is the dispersion of
a cluster and d (ci, cj) is the distance between two cluster centers. The advantage of using the
Davies-Bouldin index, is that the time complexity is significantly lower than the silhouette score,
while the results are often similar, as reported in literature [44]. In this work the Davies-Bouldin
index is used for the improved time complexity. Using the index it is possible to determine
an optimal amount of clusters and compare the clustering quality to other feature extraction
or clustering methods. However, it must be noted that these evaluation metrics optimize the
separation and compactness of the resulting clusters, it has no direct relation with the toughness
property of the metals. We can thus use these to optimize the algorithms and compare quality of
the resulting clusters, but a worse evaluation does not necessarily mean that the combination of
feature extractor and clustering algorithm has worse results relating to the toughness property.
A summary of the first method is presented by Figure 3.1. In this figure an overview is given of
all necessary steps in this method and where the optimization process is located.

3.2 From Clusters to Toughness Classification

The goal of the previous method was to optimize the different feature extraction and clustering
algorithms. In this method a second data set is used where the labels of toughness per metal
sample is provided. A second difference for this data set is, that it is composed of metals
chosen for their toughness properties and contain the same material multiple times, but tested
at different temperatures. For this reason we will perform the previous method again on the data
set, to compare the differences between feature extraction algorithms when the data contains
more samples that are closely related and for which combinations of algorithms this impacts the
clustering quality.

As mentioned in the previous method, the images will be divided into (64 × 64) shaped image
patches. These patches will undergo the feature extraction algorithms to transform them into
compact feature vectors. Subsequently, we will cluster these low-dimensional representations.
For each combination of algorithms, we will optimize the number of clusters to achieve the lowest
Davies-Bouldin index. By comparing these results with the other algorithms on the dataset and
outcomes from the previous test, we can determine which algorithms are capable of achieving a
distinct separation between the samples.
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3.2.1 Image Classes

When the clustering process is complete, it produces numerous image patches with cluster
labels. However, evaluating these results solely based on the toughness properties present in
each cluster of patches, is not directly possible since the objective is to group the images and
not the individual patches. To assign a label to each image, the patch results need to be combined
in a manner that considers the majority of the patches. A disadvantage of applying this method
is that when a cluster only contains a small amount of sample, that cluster may not appear in
any of the final image clusters.

To achieve this, a majority vote approach is employed. All labels present in the patches of an
image are counted, and the label that occurs most frequently is considered the final clustering
label for that image. Other methods are often not viable since there is no known relationship
between the clusters. However, it is possible to calculate the algorithm’s certainty for each
cluster label. The certainty can be measured by determining the percentage of patches with
the most frequent label. If the most occurring label has only a slight majority, it indicates that
a significant number of patches were assigned to different clusters, resulting in less confidence
compared to a scenario where all patches were assigned to the same cluster.

In summary, the majority vote method is employed to combine patch results and assign labels to
images. The certainty of the algorithm can be assessed by analyzing the percentage of patches
with the most frequent label, providing insight into the algorithm’s confidence level. A small
margin in the most occurring label suggests less certainty due to patches being assigned to
different clusters, while a larger majority indicates higher confidence when all patches belong to
the same cluster.

3.2.2 Toughness evaluation methods

The evaluation of the toughness properties of the samples in each cluster is not as straightforward
as it seems. One of the goals of this thesis is to assess how many classes can be found in the
data set, based on the toughness property. These classes are thus not predefined and a metric
like accuracy measurement is not an option. In addition, the average toughness value measured
in each cluster does not contain enough information to actually evaluate if the cluster contains
samples that are related in respect to toughness. To enable a good evaluation of the resulting
clusters, the distributions of the toughness properties per cluster should be compared.

A boxplot is an excellent solution to compare the toughness distributions per cluster. It shows
the average, maximum and median value, while also showing the first and third quartile. The
information displayed by a boxplot allows us to evaluate if there is a good separation between
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Figure 3.2: An visualization of the second method developed.

the distributions and how narrow the window of toughness values is per distribution. These
boxplots can be generated for the different algorithm combinations and numbers of clusters,
to evaluate which models can make the best separation between the different sample based on
their toughness. Finally using these plots enables for an assessment of which pipelines are able
to capture the toughness data from the microscopic fracture surface images and grouped these
samples then correctly together. The certainty measure is an extra metric that shows us how
stable the clustering of the model is. A visualization of the second method is shown in Figure
3.2. The figure shows the developed steps for this method and visualize the majority voting
process that leads to the cluster label for one image instead of each of the patches.

3.3 Conclusion

The described methods share a common objective: to identify the optimal combination of fea-
ture extraction and clustering algorithms that can effectively group metal samples with similar
toughness properties. The first method focuses on an unlabeled dataset, aiming to optimize
the algorithms and achieve the highest possible cluster quality given this dataset. The second
method involves evaluating the cluster labels in relation to the toughness property of each image.

In the second method, the distributions of toughness for each cluster are visualized using a
boxplot, allowing for a comparison between clusters. This comparison enables the assessment of
how well the clustering algorithm has grouped metal samples with similar toughness properties.



CHAPTER 3. PROPOSED METHODS 32

By utilizing the first method for parameter optimization and the second method for toughness
evaluation, both the compact data representation obtained through feature extraction and the
clustering algorithm itself can be evaluated in the context of the given subject. This comprehen-
sive evaluation approach facilitates the selection of the best combinations of feature extraction
techniques and clustering algorithms, providing insights into their effectiveness in grouping metal
samples based on toughness properties.



4 Experimental Results and Discussion

Here we present a detailed account of the experimental results obtained from applying the devel-
oped methods to metallurgical images. The experiments were conducted with dual objectives.
Firstly, the aim was to optimize the proposed method by identifying the ideal combination of
feature extraction techniques and clustering algorithms, utilizing optimally tuned parameters.
This optimization process ensures that the method performs at its best capability.

Secondly, the goal was to establish a framework that represents an advancement in the field of
metallurgical research. To evaluate the efficacy of the framework, the relationship between the
clustering classification and the actual properties of the metal samples from the Charpy tests
was assessed. By examining this relationship, the framework’s ability to accurately capture the
real properties of the metal samples could be gauged.

In this Chapter, the techniques were fine-tuned and optimized to enhance their performance,
taking into account the feedback received from the experimental results. The overall objective
was to develop a robust framework that improves upon existing methodologies in the field of
metallurgical research.

4.1 Experimental Setup

In this section, the experimental setup, used in this work, is covered. The goal of the ex-
periments is to evaluate which combination of input data, feature extraction techniques and
clustering algorithms is able to separate the metal samples based on their metallurgical proper-
ties, specifically the toughness property. Firstly, the data sets are discussed and their particular
characteristics. Secondly, the implementation of the feature extraction techniques on the data
set is discussed. Furthermore, the clustering algorithms and the parameter tuning of these
algorithms are presented. Finally, the evaluation process of the previous algorithms is covered.

33
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Parameter Definition
Acceleration voltage The voltage at which electrons are accelerated.

Spot Size The diameter of the spot that can be captured.
Magnification level Amount of times the image is magnified.
Working distance The distance between the aperture of the microscope and the specimen.

Table 4.1: The main parameters and their definition of a scanning electron microscope.

4.1.1 Data Sets

In this section we present the experimental setup that will be used while conducting the ex-
periments described in this work. In this work we define a model or a pipeline the process
that divides the image into patches, extracts features, and clusters these feature vectors. As
a baseline model we consider first order statistics with k-means clustering. These are the two
most simple algorithms and are expected to be outperformed by most other algorithms. First
we will use all feature extraction methods and image magnification levels in combination with
k-means. This gives us already an insight in how the feature extraction methods compare to
each other and what magnification level should be used going forward. Then the other clustering
techniques are evaluated to get the complete results.

4.1.1.1 The Unlabeled Data Set

We refer to this data set as the unlabeled data set as no information about the metal samples
is provided. This data set contains SEM microscopic images from fracture surfaces of metal
samples. The only metadata provided, for each image, are the ID of the metal sample and the
settings of the SEM. The parameters provided in the scanning electron microscope are shown in
Table 4.1. Increasing the acceleration voltage reduces the spot size. A small spot size captures
a smaller region of the specimen, but achieves a higher signal to noise ratio. For this reason a
small spot size is necessary for large magnification levels. The working distance parameter is
related to the depth-of-field.

The data set contains 784 images, from 53 different metal samples. Statistics of the number of
images per sample and the previously described parameters can be found in Table 4.2. For the
clustering process the most important parameter is the magnification level, as images from the
same sample, but with different magnifications, will not seem similar in images for the clustering
algorithms. For this reason we split the data sets into sets of the same magnification level. We
chose to use three magnification levels in the experiments. A very high magnification level, one
relatively small level and something in between. Based on the most occurring magnification
levels shown in Figure 4.1. We chose the levels: 100, 500 and 1500. One of each magnification
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Parameter Minimum Average Maximum
Images per sample 6 14.8 29

Acceleration Voltage 20 20 20
Spot size 50 52.9 75

Magnification level 30 480.8 5000
Working distance 9 11.1 14

Table 4.2: Statistics on the SEM settings in the unlabeled data set.

Figure 4.1: The occurrences of magnification levels in the unlabeled data set.

(a) Metal sample with
magnification level 100×.

(b) Metal sample with
magnification level 500×.

(c) Metal sample with
magnification level 1500×.

Figure 4.2: The same metal sample with magnification 100×, 500× and 1500×.

levels is shown in Figure 4.2.
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Parameter Description
Absorbed Energy The energy absorbed by the sample during the Charpy impact test.

Specific Absorbed Energy The absorbed energy per unit mass of crushed material.
Temperature The temperature of the sample during the test.

Table 4.3: The extra data provided in the labeled data set with their description.

Figure 4.3: The occurrences of magnification levels in the unlabeled data set.

4.1.1.2 The Labeled Data Set

The second data set is very similar to the first unlabeled set. A collection of microscopic images
of metal samples broken in a Charpy impact test. The difference is that here information
about the metallurgical images is provided together with the images. The extra data and their
description is listed in Table 4.3.

Another notable difference is that this data set, contains multiple samples of the same material,
that were tested at different temperatures. There is less variety in materials available in this
set.

The labeled data set contains less images than unlabeled set, but there is again a good amount
of images with magnification levels 100, 500 and 1500. The magnification level occurrences are
shown in Figure 4.3. Therefore the same magnification levels were used in this data set.

To compare the toughness properties of each cluster, the specific absorbed energy in the Charpy
impact test, is used. The specific absorbed energy as this value takes into account variations in
sample size and mass.
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4.1.2 Data Preprocessing

For this data, there is only two steps necessary in preprocessing. Pixel values range from zero to
255, but these were not rescaled, as some of the feature extraction techniques use this range as
standard input. The first necessary step was the removal of the textual data at the bottom of
each image. This was achieved, by cropping the bottom 128 pixels from each image. Secondly
each image was divided into image patches of shape (64 × 64). For each image 260 patches are
obtained.

4.1.3 Feature extraction

The feature extraction techniques used in this work are described in 2.2, but we will show the
implementation of these algorithms here.

• FOS: the baseline feature extraction technique. Extracts 6 first order statistical features
from each image patch. It is a simple technique that should be outperformed by the other
feature extraction methods as it is often not capable of capturing microstructural features.

• HOG: transforms an image patch by extracting the gradients in cells of (16 × 16) pixels.
A visualization of the gradient extraction on a full image is shown in Figure 4.4. These
gradients are then collected into a histogram to create the feature vector. The reason HOG
could work well in this instance, is that the microstructural features all have very harsh
gradients making them easy to pick up for this feature extraction algorithm.

• GLCM: extracts second order statistics of the image. GLCM maps spatial relations
between pixels. From this matrix 5 features are extracted, namely, correlation, contrast,
energy, homogeneity and entropy. These features have a very low dimension, but give a
good overview of the geometry in the microstructure.

• LBP: consists making an encoding for each pixel in de image using a binary comparison
with p points evenly spread on a circle with radius r. In this work, the best parameters
were found to be p = 8 and r = 1. All the frequency of each pixel encoding is counted and
combined into a histogram that can then subsequently be used as a feature vector.

• DWT: Uses Haar wavelet transform and filters to create an image only containing certain
frequencies. From these images the mean and standard deviation are extracted to form
the feature vector. A visualization can be seen in Figure 4.5. The Haar transform is used
for edge detection, so all the edges in the microstructure are highlighted while other noise
is removed.
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Figure 4.4: A visualization of the gradients obtained by HOG feature extraction.

• Weyl Transform: Creates a feature vector of an image patch based on the autocorrela-
tions between pixels. This feature extraction technique was implemented in python for this
work, so that the full pipeline can be executed with python only. For the Weyl Transform
the results of overlapping patches can be averaged for increased accuracy. For this reason
the Weyl Transform is the only feature extractor with overlapping patches.

• Convolutional Autoencoder: Learns a feature vector for the data set, by learning how
to reconstruct the image after passing it through a compression bottleneck. The archi-
tecture of the autoencoder is shown in Figure 4.6 and an input and reconstructed image
is shown in Figure 4.7. The reconstruction is a bit more blurred, but the microstructure
from the first image is clearly the same. We can thus conclude that this autoencoder is
able to compress the input without loss of microstructural information.

The aim of using these feature extraction techniques, is to create a noise free and compact
representation of the image patches. The sizes of the resulting feature vectors in this work are
shown in Table 4.4. These vectors are a huge reduction in dimensions as the original feature
vector size of an image patch is 4096 and the biggest feature vector of the autoencoder is still a
reduction of almost 94%.

4.1.4 Training process

In training it is necessary to tune the parameters of the algorithms, in order to find the optimal
amount of clusters, used in the clustering process. To find the optimal amount, the algorithms
are trained multiple times, with the number of clusters ranging from two to 9. After each
training run the Davies-Bouldin index is calculated to compare with other training runs. The
number of clusters that achieves the lowest Davies-Bouldin index is considered the best model.
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Figure 4.5: A visualization of the haar wavelet transform image in the HH quadrant.

32 16 8 512 256 512 8 15 32

Encoder Decoder

Figure 4.6: A visualization of the network architecture used for the autoencoder. The purple
elements are convolutional layers. The green elements are fully connected layers and the yellow

is the latent space

Feature extraction Vector Size
Original Patch 4096

FOS 8
GLCM 5
HOG 128
LBP 128
DWT 6
Weyl 24

Autoencoder 256

Table 4.4: The feature vector sizes after each extraction technique.
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Figure 4.7: A comparison between the input in the autoencoder (left) and the reconstructed
image (right).

4.1.5 Evaluation methods

In this work we evaluate two aspects of each model: the clustering quality and the relation
between clusters and the toughness properties of a metal samples. Each of these aspects are
connected, but can be evaluated individually.

For all clustering models, the Davies-Bouldin index was already calculated to define the optimal
number of clusters. These indices can be compared over the different clustering algorithms and
feature extraction methods. Were a lower Davies-Bouldin index indicates that there is a high
inter-cluster distance and a low intra-cluster variability. A model lower DB-index is assumed
to be capable of creating a nice separation between the different image classes. For a visual
evaluation method, the feature vectors are reduced into two dimensions using a T-stochastic
neighbor embedding (TSNE) [45], with random initialization, and principal component analysis
(PCA) [46]. Using these two techniques it is possible to visualize the clustering results in a
2-dimensional scatter plot.

The comparison of the clusters to their respective metallurgical classes is difficult. Firstly as
there is no previous research to that classifies metal samples into classes of toughness values,
we can not make buckets to use accuracy as estimate for the clusters. Secondly an average
value for each cluster does not contain enough information to evaluate the clustering process
as some extremes may shift the average or the toughness values are not compactly grouped in
a cluster and the average no representation for the majority of metal samples classified into
that particular cluster. To enable us to evaluate the clusters thoroughly, we chose to plot the
toughness values per cluster in a box plot. A box plot allows us to compare the distribution of
values in each cluster and make a more informed evaluation.
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Feature extraction 100× 500× 1500×
FOS 0.85 0.91 0.91

GLCM 0.50 0.50 0.50
HOG 1.25 2.86 3.03
LBP 0.53 0.44 0.82
DWT 0.76 0.75 0.76
Weyl 0.88 0.86 0.77

Auto-encoder - 2.6 2.5

Table 4.5: The Davies-Bouldin evaluation of the feature extraction techniques together with
k-means, for each image magnification. The data used came from the unlabeled data set

4.2 Optimizing the Cluster Quality

The initial experiments aimed to evaluate the impact of the magnification level of input images
and various feature extraction techniques. For each magnification level, al feature extraction
techniques were individually optimized and evaluated using the Davies-Bouldin index. The best
performance was compared to a baseline model using first-order statistics. The best Davies-
Bouldin index for each combination of magnification and feature extractor is presented in Table
4.5. Based on the cluster quality, it can be concluded that four techniques consistently out-
performed the baseline model across all magnification levels: GLCM, LBP, DWT, and Weyl
transform. Among these techniques, LBP performed the best for a magnification level of 500,
while GLCM outperformed the others at different magnification levels. A scatter plot of the
clusters from FOS feature extraction together with two best performing algorithm, GLCM and
LBP, and HOG, are shown in Figure 4.9. In this figure Is illustrated why HOG has such a high
Davies-Bouldin score in comparison to the other algorithms, and that GLCM can be reduced
into two dimensions in a very particular manner. The optimization process contains valuable
information as well. It shows us for each feature extractor how well it can handle clustering with
a different number of clusters. In this problem setting, a higher number of clusters is better
as it can result in a more precise grouping of the metal samples. In Figure 4.8, a comparison
of the DB-optimization for each of the three best feature extraction techniques and the FOS
baseline, is shown for the 500× magnified images. In this image we can see that the most stable
algorithm for a high number of clusters is GLCM that performs best for 6 clusters. The other
algorithms start relatively low, but the Davies-Bouldin index rapidly increases with the number
of clusters. For each algorithm and image magnification, the optimal number of clusters is shown
in Table 4.6. This table shows that most algorithms perform best for two clusters, but in some
configurations the algorithm perform better with higher numbers.

Going further mostly the magnification level of 500× is used. The reason for this is that for the
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(a) FOS clustering. (b) GLCM clustering.

(c) LBP clustering. (d) HOG clustering.

Figure 4.8: The Davies-Bouldin index in function of the number of clusters using k-means and
an image magnification of 500 for three clusters. The included results are the FOS baseline

and the two best performing feature extractors. The final result included is the HOG feature
extraction to illustrate clustering results with a high Davies-Bouldin index.

Feature extraction 100× 500× 1500×
FOS 3 2 2

GLCM 8 4 6
HOG 2 2 4
LBP 2 2 2
DWT 4 2 2
Weyl 3 3 2

Auto-encoder - 2 2

Table 4.6: The optimal amount of clusters for the each feature extraction technique per
magnification level for the first data set.
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(a) The TSNE representation of FOS. (b) The TSNE representation of GLCM.

(c) The TSNE representation of LBP. (d) The TSNE representation of HOG.

Figure 4.9: A clustering visualization using TSNE dimensionality reduction. The results
included are that of the baseline and the two highest performing feature extractors and HOG

of an image magnification of 500.

best performing clustering algorithms this input generally results in the best clustering qualities.

Next the clustering qualities of different clustering methods were evaluated. This time we
optimized each feature extraction technique with the following clustering algorithms: k-means,
hierarchical clustering, elastic net sparse subspace clustering subspace clustering. These different
methods were chosen because of their differences in basic principles. k-means optimizes the
cluster centers and assigns all data points closest in euclidean distance, hierarchical clustering
also is based on the euclidean distance, but works in a bottom-up manner instead of top-down
like k-means. The final two clustering algorithms solve the self-expressiveness optimization
problem where sparse representations are sought. Orthogonal matching pursuit solves this in
a greedy manner and Elastic net optimization relaxes the problem to a convex problem. The
Davies-Bouldin evaluation of these models can be found in Table 4.7.

From this table we can conclude that in most cases k-means is the best clustering algorithm,
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Feature extraction K-means Hierarchical Sparse subspace clustering
FOS 0.91 0.93 1.93

GLCM 0.50 0.48 0.69
HOG 2.86 1.25 1.60
LBP 0.44 0.62 1.12
DWT 0.75 0.73 2.0

Table 4.7: The Davies-Bouldin index of the different clustering algorithms using the first data
set, with an image magnification level of 500×.

except for the feature extraction method GLCM and DWT. For these techniques is hierarchical
clustering a small improvement. Sparse subspace clustering seems to always be outperformed
by the other two algorithms.

From these experiments we can conclude that for this data set, LBP with k-means is the best
performing combination. Shortly followed by GLCM with hierarchical and k-means clustering
and DWT with Hierarchical clustering. HOG and the autoencoder perform significantly worse
than the FOS techniques in all possible combinations.

We repeated the analysis of the influence of the image magnification levels on the different
feature extraction techniques

4.3 From Clusters to a Toughness Classification

The toughness data from the second data set makes it possible to compare different clusters in
respect to the specific absorbed energy in the samples. There are also other differences present
in this data set, namely the composition. This data set contains many very similar samples
with only small differences in chemical composition, processing parameters or even the same,
but tested on a different temperature. This causes the data set to have a more natural division
of clusters as these similar samples can be more easily grouped together.

4.3.1 Toughness Classification using K-means Clustering

In this section we will repeat the steps from the previous section to compare the results of
the two data sets. This will give us a better understanding on the factors influencing the
performance of the clustering algorithms. These results are summarized in Table 4.8. Due to
the bad performance of the autoencoder feature extraction in the first data set, it was decided
not to retrain an autoencoder to obtain the latent codes for the second data set, for this reason
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Feature extraction 100× 500× 1500×
FOS 0.20 0.19 0.53

GLCM 0.46 0.48 0.33
HOG 2.70 3.58 3.9
LBP 0.20 0.18 0.16
DWT 0.17 0.16 0.76
Weyl 0.88 0.86 0.77

Table 4.8: The Davies-Bouldin evaluation of the feature extraction techniques together with
k-means, for each image magnification. The used data came from the labeled data set

this technique is absent from the table.

In this table we can see that the Davies-Bouldin evaluation of the cluster quality is significantly
better than for the first data set. The main cause for this should be the more closely related
samples in the second data set making the clustering process easier. However, some of the
feature extraction techniques do not experience this improvement. GLCM produces, for the
smaller magnification levels, very similar results and HOG performs even worse than on the
first data set. By reducing the dimensions of the feature vectors with a T-Stochastic Neighbor
Embedding, we could plot 2-dimensional visualizations of the clustering results.

With the new data set we now have access to the toughness values of each sample. As previously
described we (64, 64) clustered image patches of these samples. Before we could compare the
toughness values, we had to recombine the patches into their respective samples. For this we
used the most frequent cluster label per sample, as other methods such as averaging are not
usable, because the average of cluster classes has no real meaning. The downside of recombining
these patches before classification is that, when using a higher number of clusters, some clusters
will not be present in the final classification. To combat this we also experimented with using the
patch classification as the final result, but due to the high amounts of patches and inconsistencies
between the images, this lead to very similar clusters. Using this technique it is also possible
to estimate a certainty measure of a classification. This certainty is valuable information when
using such a classification as it gives an insight on how similarly the patches are classified. This
certainty measure is calculated as the percentage of patches that was classified in the same
cluster as the complete sample. Where a high certainty means the model thinks similarly for all
individual patches and a lower certainty means that a significant number of image patches were
assigned to a different cluster.

In the following paragraph, the toughness classification results of the k-means clustering algo-
rithms are discussed. Firstly, first order statistics had good clustering evaluation, but when
comparing the toughness distributions over the clusters, we can see that this technique does not
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(a) The toughness distribution of the FOS
k-means clustering results for 2 clusters.

(b) The toughness distribution of the FOS
k-means clustering results for 2 clusters.

Figure 4.10: Two toughness distributions with a different number of clusters, using FOS and
k-means.

actually capture enough information from the image to make an informed decision on toughness
values. Most clustering results show to have a very similar distribution, as shown in Figure 4.10.
From these results, we can conclude that, although FOS only achieves a slightly higher DB-
score than the best performing feature extraction techniques, it does not translate to clusters
of samples with a similar toughness. In the following we will cover the other feature extraction
algorithms with k-means clustering.

Firstly, we will discuss GLCM, this technique performed, in contrast to the other algorithms,
very similar to the first data set in terms of clustering performance. When evaluating the
toughness distributions of the clusters, we could see that a small amount of clusters was not
able to separate the samples based on their toughness, but a larger amount of clusters has a
more precise separation of clusters, a comparison of clustering with two clusters and with 9,
is presented in Figure 4.11. The problem with these clusters is that there remain still some
clusters that have a very broad distribution of samples. Clusters 4 and 5 in Figure 4.11b, do
not provide any value in the classification process. The other cluster, however, have a relative
narrow distribution of samples.

Histograms of oriented gradients is the next feature extractor. HOG did not achieve good DB-
scores in both of the data sets. The distributions of the clusters are also not very distinguished
from the other clusters, for all magnifications level inputs. The clustering distributions for 2 and
five clusters are given in Figure 4.12. A major reason for this could be the low image qualities, as
blocking and posterization artifacts introduce gradients that do not relate to the microstructure
of the metal sample. These added gradients result in noisy feature vectors, making it very
difficult to assign the samples into meaningful clusters. The algorithm partly succeeds for a
higher number of clusters, as shown in 4.12b, but not as good as for example GLCM.

Local Binary Patterns achieved the best Davies-Bouldin indices for both data sets. This feature
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(a) The toughness distribution of the GLCM
k-means clustering results for 2 clusters.

(b) The toughness distribution of the GLCM
k-means clustering results for 2 clusters.

Figure 4.11: Two toughness distributions with a different number of clusters, using GLCM and
k-means.

(a) The toughness distribution of the HOG
k-means clustering results for 2 clusters.

(b) The toughness distribution of the HOG
k-means clustering results for 2 clusters.

Figure 4.12: Two toughness distributions with a different number of clusters, using HOG and
k-means.

extraction algorithm can thus find a set of clusters better separated than other clustering tech-
niques. Using k-means clustering however, it does not succeed as well as GLCM into assigning
the metal samples into meaningful clusters. The clustering results using two and eight clusters,
are shown in Figure 4.13. These results show again the same phenomenon as in other feature
extraction techniques, namely one clusters contains a very wide distribution of samples. How-
ever the other clusters show to be quite narrow and meaningful. LBP can suffer from the same
problems as HOG, making the feature vector contain more noise due to the JPEG compression.
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(a) The toughness distribution of the LBP
k-means clustering results for 2 clusters.

(b) The toughness distribution of the LBP
k-means clustering results for 8 clusters.

Figure 4.13: Two toughness distributions with a different number of clusters, using LBP and
k-means.

The k-means clustering of LBP vectors often resulted in a some large clusters and the other
clusters would contain a very small amount of patches. The LBP clustering algorithms can be
concluded to be quite successful, but not the best

The final feature extraction algorithm, using the same pipeline architecture as the previously
discussed techniques, is the Discrete Wavelet Transform. In this technique we use again first
order statistics, but first a DWT was performed on the image patch. This removes a lot of
variance of lighting conditions and highlights edges in the image. DWT achieves together with
LBP the best DB-index, and performs very good for the two lowest image magnification levels.
The classification results of the DWT-pipeline are shown in Figure 4.14. In Figure 4.14b, is shown
that k-means can also infer meaningful clusters from these feature vectors. Only cluster 4 is a
miscellaneous cluster, where a very broad variety of metal samples is assigned to. Compared to
the results of the GLCM feature extraction, the DWT-pipeline has a less granular classification
with a few clusters indicating a more ductile material others indicate more brittle material.
There are no distinct classes in between, as in Figure 4.11b. DWT reduces the variability
present in FOS, but it still extracts edges caused by compression artifacts in the images.

The pipeline for the Weyl transform is as previously described, different from the previous
pipelines. In this pipeline, instead of taking the most frequent sample to classify an image, the
feature vectors of the image patches are averaged before the clustering is performed. The reason
for this is twofold: Firstly, the Weyl Transform currently only supports (16 × 16) patches. In
these small patches alone there is not enough information available to infer details about the
microstructure of the metal sample and subsequently about the toughness property. The Weyl
Transform works very well when averaging overlapping patches, so for this reason the coefficients
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(a) The toughness distribution of the DWT
k-means clustering results for 2 clusters.

(b) The toughness distribution of the DWT
k-means clustering results for 9 clusters.

Figure 4.14: Two toughness distributions with a different number of clusters, using DWT and
k-means.

(a) The results for 2 clusters. (b) The results for 8 clusters.

Figure 4.15: Two toughness distributions with a different number of clusters, using the Weyl
Transform and k-means.

of these overlapping image patches are calculated and then averaged before clustering. The
consequences of changing the pipeline in this manner means that there are fewer data points
available to train the clustering algorithms, which may make it more difficult to find a good
meaningful clustering and may require more data to train more complex models. The resulting
toughness distributions of the clusters for two pipelines with 2 and 8 clusters respectively is
shown in Figure 4.15. The results for two clusters are very similar to other feature extraction
techniques, but the results for 8 clusters show a more granular classification, similar to the
results of the GLCM feature extraction. These are a bit unexpected as the Weyl Transform can
only take the autocorrelations of very small patches into account and just averages the features.
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(a) The toughness distribution of the
DWT-LBP k-means clustering results for 2

clusters.

(b) The toughness distribution of the
DWT-LBP k-means clustering results for 9

clusters.

Figure 4.16: Two toughness distributions with a different number of clusters, using DWT-LBP
and k-means.

As a final experimental technique, we first calculated the DWT and afterwards LBP on the one
of the resulting filtered images. The reason for this idea comes from the problems seen in using
LBP on its own and the improvement DWT brings with very simple metrics on these filtered
images. DWT helps to remove noise in the image that is problematic for LBP. An example of
an image patch in the HH quadrant is shown in Figure 4.5. In the previous data set this was
shown to have a big improvement on the clustering evaluation, achieving the lowest DB-index
for the k-means algorithm. Clustering results of this pipeline are shown in Figure 4.16. These
results are quite promising. Using these clusters with 9 clusters. We can divide the data into
three separated classes based on their toughness.

4.3.2 Hierarchical clustering and Sparse Subspace Clustering

In this section, we will discuss the results obtained from hierarchical clustering and sparse
subspace clustering algorithms. These two methods differ significantly from k-means clustering
in their underlying principles. k-means clustering follows a top-down iterative approach to
optimize cluster centers and assign data points based on their Euclidean distance. On the other
hand, hierarchical clustering is a bottom-up approach. It starts with each data point being
treated as its own cluster and then gradually merges the most similar clusters until the desired
number of clusters is reached or a distance threshold between clusters is exceeded. Sparse
Subspace Clustering (SSC), like k-means, is a top-down algorithm. However, it does not employ
a distance metric to cluster data points. Instead, it solves a sparse optimization problem to
determine an optimal representation for each data point. This representation can then be used
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Feature extraction K-means Hierarchical Sparse subspace clustering
FOS 0.19 0.19 1.93

GLCM 0.48 0.48 0.56
HOG 3.58 4.34 1.60
LBP 0.18 0.19 0.19
DWT 0.16 0.16 1.56
Weyl 0.72 0.87 1.18

Table 4.9: The Davies-Bouldin index of the different clustering algorithms using the second,
labeled, data set, with an image magnification level of 500×.

to construct a similarity graph, which is utilized for clustering. The significant advantage of SSC
is its ability to capture complex relationships among data points. However, one drawback is that
the results may be less stable, with a few clusters dominating over others. Another downside is
the substantial increase in computational complexity associated with both hierarchical clustering
and sparse subspace clustering. These algorithms take considerably longer to run compared to
their k-means counterpart, especially when dealing with feature vectors of larger sizes.

These algorithms will be compared to each other and the k-means baseline of each feature ex-
tractor. Just like in the previous data set, we collected all the best DB-indices for each clustering
algorithm. The results are summarized in Table 4.9. The table shows that the cluster quality
evaluation of hierarchical and k-means clustering mostly have very similar metrics and that
sparse subspace clustering performs worse in general. However, it must be noted that previous
results have already shown that the a the Davies-Bouldin index does not directly correlate with
the quality of the toughness distributions. In the following paragraphs we will compare the
image toughness distributions per cluster for hierarchical and sparse subspace clustering to the
baseline of each feature extraction technique, k-means. The goal is to compare if the more ad-
vanced clustering algorithms can better infer information about the metallurgical properties of
a metal sample from a feature vector resulting from the feature extraction technique and which
clustering algorithm performs best in combination with each feature extraction technique.

FOS is once again considered as the baseline algorithm since it is unable to capture any geomet-
ric features from the image. When using k-means, FOS demonstrated a good DB-evaluation.
However, the resulting toughness classification was not meaningful due to the clusters having
very similar distributions. The best results from k-means, hierarchical, and SSC clustering algo-
rithms are depicted in Figure 4.17. As expected, the more complex clustering algorithms did not
improve the distributions of the resulting clusters. Therefore, it can be concluded that FOS is
incapable of extracting meaningful information about the toughness property from microscopic
images. The extracted features lack sufficient information and are heavily influenced by lighting
variations between images, which have no correlation with the metallurgical properties.
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(a) K-means clustering (b) Hierarchical clustering (c) Sparse subspace clustering.

Figure 4.17: The relation between the number of clusters and the Davies-Bouldin index, when
using different clustering algorithms on the FOS feature vectors.

GLCM was the best performing feature extraction when only k-means is taken into considera-
tion. It also showed very good Davies-Bouldin evaluations for a higher number of clusters. A
good clustering performance when using more clusters is desirable as it means that when the
clustering gets more fine, the separation distance of the clusters does not suffer. This is not
the case anymore for when using these other algorithms. The Davies-Bouldin index of hierar-
chical clustering increases dramatically after using more than 5 clusters and SSC has one low
Davies-Bouldin index, namely for three clusters. The relation between the number of clusters
and the Davies-Bouldin index is shown in Figure 4.18. For k-means we can see that the cluster
quality improves steadily until 7 clusters where the best DB-index is achieved. For the other
clustering algorithms the opposite is true. The graph shows an early minimum followed by a
steady increase. For the actual distributions of the image toughness, the best results for each
clustering algorithm are shown in Figure 4.19. In the results of the SSC clusters, there are only
three clusters present, the cause of the small number of clusters is that the SSC algorithm, only
adds very small clusters when more clusters are specified. When in the final step of the process,
the most frequent cluster labels are selected, these clusters do not show up in the final results.
From the Davies-Bouldin optimization and the final distributions of the clusters we can conclude
that for GLCM, the k-means clustering algorithm performs the best, the hierarchical algorithm
shows some meaningful results and SSC is not applicable in practice together with GLCM.

The HOG pipeline was able to distinguish the differences is toughness between metal samples
quite good, considering the significantly worse cluster quality evaluation in comparison with
other feature extractors. One of the possible reasons we found for HOG, having noisy and
thus less informative feature vectors, are the compression artifacts from the JPEG compression
algorithm. In figure 4.20. The k-means and sparse subspace clustering algorithms are able to
find some interesting classification for the metal samples, but the hierarchical algorithm is able to
split the samples quite nicely. only two clearly separated groups can be taken from the boxplot,
but there really is a minimal overlap between these groups, making the clustering results have
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(a) K-means clustering (b) Hierarchical clustering (c) Sparse subspace clustering.

Figure 4.18: The relation between the number of clusters and the Davies-Bouldin index,
achieved by the different clustering algorithms on the GLCM feature vectors.

(a) K-means with 9 clusters. (b) Hierarchical with 7 clusters. (c) SSC with 3 clusters.

Figure 4.19: A comparison of the best clustering results of k-means, hierarchical and sparse
subspace clustering using the GLCM features.

a strong correlation with the toughness properties of the samples. These results contradict
the earliest predictions from Table 4.9, because there Hierarchical clearly has the worst cluster
quality and SSC has the lowest Davies-Bouldin index, by a clear margin. This shows again that
a result of compact and clearly separated clusters has no guarantee to correlate strongly with
the toughness properties of the images. HOG clearly looks at the amount of gradients present
in each image patch, capturing crucial microstructural information to base the clustering on.
Considering these results it may be interesting to try this feature extraction algorithm on the
raw image formats without the problematic compression artifacts.

LBP is always able to extract feature vectors that lead to the most compact an separated
clusters. In every previously shown result, LBP has produced one of the best Davies-Bouldin
scores. The toughness distributions per cluster, however, showed some separation, but not as
clearly separated or narrowly distributed as other feature extraction methods. The best results
for each clustering algorithm are shown in Figure 4.21. In this case sparse subspace clustering is
not really able to improve the results given by the k)means algorithm. There is some separation,
but the cluster classification is not really informative. The Hierarchical algorithm shows a similar
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(a) K-means with 5 clusters. (b) Hierarchical with 8 clusters. (c) SSC with 9 clusters.

Figure 4.20: A comparison of the best clustering results of k-means, hierarchical and sparse
subspace clustering using the HOG features.

(a) K-means with 8 clusters. (b) Hierarchical with 7 clusters. (c) SSC with 5 clusters.

Figure 4.21: A comparison of the best clustering results of k-means, hierarchical and sparse
subspace clustering using the LBP features.

performance where we can distinguish one general cluster and the other clusters combined can
be separated into three classes of toughness. We can conclude the LBP is not the best suited
feature extraction technique for clustering based on toughness.

The DWT feature extraction attains the lowest Davies-Bouldin scores for the second data set for
both k-means clustering and hierarchical clustering. The sparse subspace clustering results are,
however, subpar compared to most other feature extractions. The best toughness distributions
per cluster for all three clustering algorithms are displayed in Figure 4.22. The results of k-
means showed already some separation in toughness distributions, but cluster 2 contained both
very brittle and very ductile samples, meaning that a classification into this cluster gave no real
meaningful information about the toughness property of the sample. When clustering with the
hierarchical and sparse subspace algorithms this problem did not disappear, although most other
clusters did show separated distributions. The problem with the DWT feature vectors is that
after the discrete wavelet transform is calculated, the dimensions are further reduced by taking
first order statistics of the results. To improve on this problem in the next paragraph we put
another transformation after the DWT, namely LBP. This way the discrete wavelet transform
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(a) K-means with 9 clusters. (b) Hierarchical with 6 clusters. (c) SSC with 6 clusters.

Figure 4.22: A comparison of the best clustering results of k-means, hierarchical and sparse
subspace clustering using the DWT features.

can reduce noise and dimensions in the image and LBP can then extract the feature from the
improved image patch. In this manner the results could improve greatly.

In the k-means experiment, the fusion of the discrete wavelet transform with local binary pat-
terns has demonstrated itself as a promising technique for grouping samples according to their
toughness property. The primary objective behind combining these two methods is to initially
diminish the noise caused by compression artifacts and other variables. Figure 4.23 illustrates
the resulting classifications obtained for the all clustering algorithms. the k-means algorithm is
capable to separate the samples into three categories based on their toughness. Two classes can
be defined, but cluster one is not really meaningful. Hierarchical clustering with six clusters,
however, shows some very nice clusters. Only five clusters show up in the final result, but apart
from the first one, which contains all sorts of samples, each cluster can be seen as its own class,
with a very distinct separation. The SSC results showed again quite nice results, but not as
good as the hierarchical version. Two classes can be identified based on the toughness property
here. The reason that this works quite will is due to the fact that the discrete wavelet transform
reduces the noise introduced by compression, but still retains all other information, useful for the
LBP algorithm. We can conclude that the combination of DWT with LBP is an improvement
on both LBP and DWT and that it is best combined with the k-means clustering algorithm.

The last feature extraction method used in this work, is the Weyl Transform. The Weyl Trans-
form is based on a mapping of multiscale autocorrelations in a signal. To achieve this, the image
patch is stacked into a vector to create the information vector on which the transform is per-
formed. Using as a feature extraction technique, the cluster evaluation via the Davies-Bouldin
index is average. The k-means toughness distribution, however, was better than most other fea-
ture extractors. All the best classification results are shown in Figure 4.24. From these images
we can conclude that the k-means produces the best results and that hierarchical and sparse
subspace clustering do not provide a good separation of toughness values between clusters. The
k-means clustering already shows some decent results being able to separate between the lower
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(a) K-means with 9 clusters. (b) Hierarchical with 6 clusters. (c) SSC with 8 clusters.

Figure 4.23: A comparison of the best clustering results of k-means, hierarchical and sparse
subspace clustering by first applying DWT and then LBP on the image patches.

(a) K-means with 8 clusters. (b) Hierarchical with 9 clusters. (c) SSC with 8 clusters.

Figure 4.24: A comparison of the best clustering results of k-means, hierarchical and sparse
subspace clustering using the Weyl features.

half and upper half of toughness samples. Except for one cluster that contains an average in the
lower half, but also some of the highest toughness values. In the hierarchical clustering results,
the distributions of the clusters is much more narrow and it is even possible to classify these
results into three to four classes. The clear separation between clusters in this example is the
best so far. The downside of this result is that the clustering was performed using 8 clusters,
but only six of them show up in the final image classifications. This means that we cannot
know what the remaining two clusters would contain if more images were available and some
would be classified into that cluster. The sparse subspace clustering results only divided the
dataset in more or less two categories, clusters 2, 6 and 7 contain the more ductile materials,
while the other clusters contain the more brittle materials. For the Weyl Transform we can
thus conclude that the k-means algorithm produces the best results with 3 fairly well separated
classes of clusters, although one cluster contains a more widely spread contains both brittle and
ductile samples.
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4.4 Conclusion

During the experimental phase, our initial focus was to assess the different models using clus-
tering evaluation metrics exclusively. The primary objective of this phase was to fine-tune the
parameters of the feature extraction techniques and clustering methods based on cluster quality.
To compare the resulting clusters from various combinations, we employed the Davies-Bouldin
index as our evaluation metric. From this first phase of experimentation, we reached the con-
clusion that overall, k-means clustering exhibited the best performance. However, it is worth
noting that for certain feature extraction algorithms, hierarchical clustering showed a slight
improvement. Sparse subspace clustering, on the other hand, did not outperform the k-means
clusters in any scenario. Among the feature extraction techniques, the Local Binary Patterns
(LBP) approach achieved the lowest Davies-Bouldin index, with the Gray-Level Co-occurrence
Matrix (GLCM) technique coming in a close second. However, it is important to highlight that
GLCM showcased a significant advantage in terms of generating superior cluster quality when
a higher number of clusters was employed.

In the second part of the experiments, we compared the resulting distributions relating to the
toughness property of the samples. In this part a second data set was used that contained the
specific absorbed energy measured in each Charpy test which is the toughness property of the
sample. Due to the fact that toughness is related to the temperature of testing, this data set
contained a lot of samples that were very similar, but tested on another temperature. This
caused the Davies-Bouldin evaluations for most of the algorithms to be lowered by a serious
amount. The observations from the Davies-Bouldin scores in Table 4.8, is that most of the
algorithms that previously outperformed FOS, based on the cluster evaluation, still do. Only
GLCM produced very similar results from the first data set lowering its Davies-Bouldin score
from 0.50 to 0.48. The Davies-Bouldin score does not evaluate the link between the samples in
a cluster and their respective toughness properties. It does give an indication on how well the
model is able to separate the patches into classes, with a better performance relating to a more
stable and reliable model.

The final analysis of the toughness distributions for each model is still the most important part.
In this part of the experiments we solve 2 questions. First, how many classes of samples with
related toughness properties can be naturally found in the data set. Second, which feature
extractor and clustering algorithm show the best capability to recognize the toughness property
of a material and can group them well together. Before we give a conclusion on the results, the
first observation made, was that a higher number of clusters resulted in clusters containing more
similar samples, but some some of these clusters then represented a similar group of samples. We
could thus conclude that more clusters did not necessarily find more classes, but the separation
of classes was improved. The clustering results of GLCM with 9 clusters showed a very nice
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separation of clusters. Only two clusters had quite a wide spread of samples, but the mean
samples showed that these clusters were still quite informative on the toughness property of the
samples. Secondly, the Weyl Transform combined with k-means, produces very similar results.
When comparing the distributions we can distinguish three fairly well separated classes. The
final clustering algorithm we would like to discuss is a combination of DWT and the LBP feature
extraction algorithm. This combination was, when clusters with k-means, able to separate the
data into three distinct well separated classes and median of the first cluster is taken into account,
a case could be made for four clusters. The reason this feature extractor is able to improve on the
base LBP algorithm is due to the fact that DWT removes noise without removing information
information that is necessary for the LBP feature extractor.

In summary, the recommended approach for analyzing the images is as follows:

• Utilize images captured at a magnification level of 500×
• Crop the images to remove the added textual data and divide the images into patches of

size (64, 64).
• Apply the Gray-Level Co-occurrence Matrix (GLCM) feature extraction technique on the

patches
• Finally, cluster the resulting feature vectors using the k-means algorithm with 9 clusters.

The GLCM model demonstrates a high level of stability, as indicated by its low Davies-Bouldin
index. Additionally, it has the capability to differentiate between three to four classes of materials
with distinct toughness properties. By following this approach, the most reliable results can be
expected for material classification and characterization based on the analyzed images.



5 Conclusion and Future Work

Pattern recognition is not a new subject and there are countless publications evaluating and
improving recognition techniques or applying the techniques to a new subject. Even in metal-
lurgical research, the chemical composition of metal samples can already be accurately classified
using pattern recognition techniques on microscopic images [10, 11]. However, there is, to the
best of our knowledge no research yet that tries to evaluate the metallurgical properties of metal
samples via pattern recognition techniques, without using the knowledge of chemical composi-
tion or other classification results. Defining a relation between microstructure and metallurgical
properties can reduce the financial an time costs for development of new custom materials, as it
allows the developer to make more informed decisions and obtain a better understanding about
the relations between the processing steps and the final properties of the developed material.

In this thesis, we conducted an unsupervised analysis on microscopic images obtained from
metallurgical research. The decision to employ unsupervised analysis was motivated by the
characteristics of the datasets used. The first dataset did not contain any information regarding
the metallurgical properties of the samples, while the second dataset included the absorbed
energy values obtained from Charpy tests conducted on each sample, which are directly related
to the toughness property of the material. Dividing these energy values into distinct classes was
not straightforward, and the objective set by OCAS was to identify inherent classes within the
data, rather than training an algorithm to distinguish between predefined classes.

The clustering process consisted of multiple steps. The images were first cropped to remove
any textual data. Then the image were divided into patches of shape (64, 64). These patches
were subject to a transformation using different feature extraction techniques. The aim of
transforming the image patches was to represent them in a low-dimensional feature vector that
contained all information regarding the microstructure to enable the clustering algorithms to find
the necessary similarities regarding the toughness property of the metal samples. The clustering
method can then group these patches together in clusters based on their toughness. The results

59
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could then be evaluated using the Davies-Bouldin index. These evaluation allowed to analyze
and select the optimal amount of clusters for each clustering and feature selection algorithm to
achieve the best possible cluster results.

For the second data set there were a few additional steps. For each image, the most frequent
cluster label assigned to its patches, was considered to be the cluster of that image. Using the
cluster labels for each image it was possible to evaluate the distribution of the toughness values
assigned to a cluster. With boxplot the resulting distributions could be compared and the best
model could be chosen.

In conclusion the best model to use is the combination of the GLCM feature extractor with k-
means clustering for 9 clusters. In Figure 4.18a, the resulting cluster distributions are presented.

Finally, we propose some future work that can lead to improvements on this subject:

• To develop a model for toughness classification, supervised learning may provide dramat-
ically better results than unsupervised as the model will learn to use certain features for
clustering classification. The disadvantage is that the classes have to be specified instead of
learned from the data, but the final results may be more based on the toughness property.

• The labeling process of all the images may be difficult and time consuming. To keep
the advantages of supervised learning while reducing the required amount of labels, semi
supervised machine learning techniques can be utilized.

• In this work we used images that were severely compressed using the JPEG algorithm.
This resulted in different compression artifacts being present in the images. These artifacts
introduce noise that will have an influence on the final clustering results. In future it may
be beneficial to re evaluate the different techniques presented in this work on uncompressed
formats such as ppm or png.

• There are other more advanced clustering algorithms that were not included in this thesis.
These may provide better and or more stable results, but this is no guarantee as in this
work the most simple algorithm often performed the best.

In summary this was the first step in the direction of deriving metallurgical properties from
fracture surfaces using artificial intelligence. The techniques in this work still allow for opti-
mizations, but they show that AI techniques can successfully be implemented in metallurgical
research as a tool for toughness analysis of the metal samples.
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