
Performance over Decentralized Environments
Adaptive Query Planning to Improve Query
Using Discovery of Pre-Generated Metadata with

Academic year 2022-2023

Master of Science in de informatica

Master's dissertation submitted in order to obtain the academic degree of

Vercruysse, Jonni Hanski, Bryan-Elliott Tam
Counsellors: Prof. dr. ir. Ruben Verborgh, Ir. Wout Slabbinck, Arthur
Supervisors: Dr. ir. Ruben Taelman, Prof. dr. Pieter Colpaert

Student number: 01702644

Simon Van Braeckel

Acknowledgments

I am deeply grateful to Ruben and Jonni for their guidance, support, and consistent advice which

has been invaluable throughout this journey. Their willingness to assist whenever I faced chal-

lenges was a true testament to their dedication. They not only helped me move forward during
difficult times but also fostered an environment of collaborative learning that greatly enriched my

experience. It is their exceptional mentorship that made thesis possible.

I extend my heartfelt thanks to IDLab for providing me with access to their outstanding facilities.
Being surrounded by enthusiastic and like-minded individuals in such an inspiring environment
played a significant role in keeping me motivated and focused during my thesis work.

Lastly, I want to express my deepest appreciation to my friends and family for their unwavering

support and patience throughout this endeavor.

Together, the guidance of Ruben and Jonni, the support of IDLab, and the love and encouragement of
my friends and family have been instrumental in shaping this thesis. I am truly grateful to everyone
who has played a part in this journey, and I could not have accomplished this without each and every
one of you.

ii

Usage

The author gives permission to make this master dissertation available for consultation and to copy

parts of this master dissertation for personal use. In the case of any other use, the copyright terms

have to be respected, in particular with regard to the obligation to state expressly the source when
quoting results from this master dissertation.

Simon Van Braeckel, August 15, 2023

iii

Summary

Current decentralization efforts such as Solid offer a higher degree of decentralization than ever

before, a development with which querying techniques have struggled to keep pace.

As integrated querying techniques are outperformed twofold by their two-phase counterparts, the

lack of upfront information available in these environments begins to show it’s issues. To bridge
this gap, there is a growing need for better query planning in this context.

We developed extensions to the integrated Link-Traversal-based approach, facilitating the gath-
ering of planning-relevant information, particularly cardinality estimates, and updating the query

plan during execution.

We demonstrate an average performance improvement of 32.57% as a result of providing up front
information to the query engine, showing that simple methods of providing up-front information

provide a valuable basis for future work on query planning in decentralized environments.

iv

Samenvatting

Huidige decentralisatie-initiatieven zoals Solid bieden een hogere mate van decentralisatie dan

ooit tevoren, een ontwikkeling waarop querytechnieken achterop lopen.

Het gebrek aan vooraf beschikbare informatie voor query planners in deze omgevingen begint zijn

problemen te tonen, aangezien geïntegreerde querytechnieken twee keer slechter presteren dan
hun tegenhangers. Om deze kloof te overbruggen is er een groeiende behoefte aan betere query-

planning in deze context.

We hebben uitbreidingen ontwikkeld voor de geïntegreerde Link-Traversal-gebaseerde aanpak om

het verzamelen van planningsrelevante informatie, met name kardinaliteitsschattingen, en het bi-
jwerken van het queryplan tijdens de uitvoering mogelijk te maken.

Door deze informatie vooraf te verstrekken aan de query engine bekomen we een gemiddelde

prestatieverbetering van 32,57%, waaruit blijkt dat eenvoudigemethoden voor het vooraf verstrekken
van informatie een waardevolle basis vormen voor toekomstig werk op het gebied van queryplan-
ning in gedecentraliseerde omgevingen.

v

Using Discovery of Pre-Generated Metadata
with Adaptive Query Planning to Improve
Query Performance over Decentralized

Environments

Simon Van Braeckel
Supervisors: Dr. ir. Ruben Taelman, Jonni Hanski, Prof. dr. Pieter Colpaert, Prof. dr. ir. Ruben Verborgh

Abstract—Current decentralization efforts such as
Solid offer a higher degree of decentralization than ever
before, a development with which querying techniques
have struggled to keep pace. As integrated querying
is significantly outperformed by its two-phase counter-
part, the lack of upfront information available in these
environments begins to show it’s issues. To bridge this
gap, there is a growing need for better query planning in
this context. We developed extensions to the integrated
Link-Traversal-based approach, facilitating the gather-
ing of planning-relevant information, particularly car-
dinality estimates, and updating the query plan during
execution. We demonstrate an average performance
improvement of 32.57% as a result of providing up front
information to the query engine, showing that simple
methods of providing up-front information provide a
valuable basis for future work on query planning in
decentralized environments.

Keywords—Adaptive, Query Planning, Semantic Web,
Linked Data, Link-Traversal, Join ordering

I. Introduction

The web has become increasingly centralized in re-
cent years. To counter this development, decentraliza-
tion initiatives like Solid [4], which attempt to put data
control back in the hands of end-users, have gained
popularity. Currently, there is a lack of efficient query-
ing techniques for such heavily decentralized contexts,
due to most existing techniques focusing on the use
case of centralized environments [1]

Link-Traversal-based Query Processing (LTQP) [2] is
an approach that shows promise in this context, but
has not been widely adopted in practice due to perfor-
mance concerns related to lack of upfront information
about the data. This thesis aims to address these
performance limitations by extending the existing zero-
knowledge query planning technique [3]. Our approach
involves gathering planning-relevant information, such

as cardinality estimates, and updating the query plan
accordingly during execution.
In the next section, the relevant related work will

be discussed, after which our complete solution is
presented. Next, we explain the use case on which
the experiments are based. The results are presented
thereafter. Finally, some concluding remarks will be
made, followed by suggestions for future work.

II. Related Work

By examining the current state of research, we can
identify gaps and opportunities for further advance-
ments.

A. Link-Traversal Query Processing

Link-Traversal-based Query Processing (LTQP) [2] is
a querying paradigm that was introduced as a way to
query the Web of Linked Data, without the need to first
index it in a single location [1]. In LTQP, the sources are
not known in advance. Instead, data source discovery
and query execution happen simultaneously.
Compared to traditional query processing, inte-

grated approaches like LTQP cannot rely on pre-
execution optimization algorithms that require prior
dataset statistics. Instead, it uses a zero-knowledge
query planning technique [3] to order triple patterns
based on link traversal-specific heuristics.
According to related work [1], the main area of

improvement within LTQP is related to the query plan
rather than the discovery of relevant documents.
1) Evaluation of Link-Traversal Query Execution

over Decentralized Environments with Structural As-
sumptions: This related paper presents a comparison
between an integrated approach and a two-phase ap-
proach in query execution. The two-phase approach
acts as a theoretical case, it makes use of an oracle
which provides all query-relevant links, allowing it

to leverage traditional optimize-then-execute [6], [7]
query planning. The two-phase approach is on average
two times faster compared to the integrated approach,
which can be attributed to its ability to perform tradi-
tional query planning, leveraging cardinality estimates
among other information. This potential for significant
performance improvements highlights the need for
more effective query planning strategies. Our work
aims to bridge the gap by changing the query plan
during execution.

B. Comunica

Comunica [9] is an adaptive query engine framework
which facilitates putting together a query engine that
performs integrated query planning and execution. The
implementations contributed in this thesis have been
created as extensions upon Comunica.

III. Related Concepts

A. The Query Process

Query processing traditionally involves three key
steps: parsing, planning, and execution. The first step,
parsing, is where the SPARQL query string is trans-
formed into an algebraic expression. The second phase,
the planning phase, transforms the algebraic expres-
sion into a query plan. A query plan is a step-by-
step manual that specifies the sequence of operations
required to retrieve the desired data. After obtaining
the query plan from the planning phase, it is executed
in the third and final phase of the query process.
The separation of query planning and execution leads

to suboptimal query execution times in heavily decen-
tralized environments, where optimization of the query
plan is hindered since it relies on up-front information
about the data.
As mentioned in the introduction, LTQP is an impor-

tant query processing technique within these environ-
ments. It copes with the fact that relevant data sources
are unknown before query execution by integrating
source discovery and execution. However, the naivety
within LTQP has been shown to lead to suboptimal
query plans, making it twice as slow as a solution
where the query plan is optimal [1].
To bridge this gap, in this thesis we describe using

adaptive query processing techniques, which leverage
runtime feedback and adjusts the plan or scheduling
space [5] during execution, thus tightly intertwining
the query planning and execution phases. Adaptive
techniques are promising in this case because they
facilitate the use of better query plans. By changing
the query plan as more information about the data
becomes available during execution, the query plan
may become closer to the ideal.

We introduce adaptivity through the re-ordering of
join operation entries. A join operation refers to the
process of combining triple patterns within a query.
Triple patterns are combinations of values or variables
for subject, object, and predicate, imposing a specific
structure on triples. These triple patterns often con-
tain common variables, requiring them to be joined,
where bindings for a variable of one triple pattern
are matched with bindings for the same variable in
another triple pattern. We choose the correct order of
join entries using their cardinality, which is the amount
of bindings present in the data.
By carefully selecting the order in which the entries

are joined, we can reduce the generation of interme-
diate results and avoid unnecessary work, which leads
to faster query execution.
Unfortunately, as the exact cardinalities of join en-

tries are not known in in our use case, we work with
estimate cardinalities. To use these estimated cardi-
nalities to order join entries, we assume that it’s best
to join the entries with the smallest cardinalities first.
These are likely to lead to a small number of results,
reducing the amount of bindings in subsequent joins,
in turn reducing the amount of work required in total.
As join operations occur on triple patterns, knowing

the exact cardinality of a triple pattern enables the
query engine to make accurate predictions regarding
intermediate results during join operations. As a result,
TP cardinalities are an ideal criterion for sorting join
entries and optimizing query performance.

IV. Use Case

We have tested out solutions with the Solidbench
[1] benchmark, which builds upon the well-established
Social Network Benchmark (SNB) [10], [11]. It models
a query workload and data structure as one would find
in a social network scenario, fragmented to simulate
decentralized workloads similar to those found in Solid.
While this benchmark simulates the context of Solid,
the solutions are generalizable to other Linked Data
environments.

V. Solution

In this section, we present three distinct configura-
tions that aim to improve query execution in decentral-
ized environments.

A. Counting Triple Pattern Cardinalities & Timeout

While cardinalities of join entries are important for
making informed join order decisions, such informa-
tion about the data is unavailable in a distributed,
decentralized context. To address this limitation, we
implemented a method of counting the occurrences of

triple patterns (TP) as they appear while also intro-
ducing a timeout mechanism. This timeout mechanism
restarts the join operation after a certain amount of
time, providing the potential for more accurate TP
cardinality information to be available.
The main advantage is this approach’s independence

of the existence of any pre-generated data. This inde-
pendence enhances the flexibility and adaptability of
the query engine.
The second advantage of this approach that it allows

the usage of TP cardinalities without demanding the
use of excessive disk space for generating them and
saving them in a file prior to query execution.

B. Predicate Cardinality File

While TP cardinalities are valuable, creating a file
containing the cardinality of each possible Triple Pat-
tern is infeasible in many real-world scenario’s due
to the sheer volume of possible combinations in a
Solid pod. However, it may be possible for smaller
Solid pod’s, and using the correct compression algo-
rithms. Discussed in our future work section. We turn
to predicate cardinalities as a middle ground, using
the cardinality of each join entry’s predicate as an
approximation of the TP cardinality. We investigate
whether this approximation is sufficiently accurate to
result in performance improvements.
This configuration obtains predicate cardinalities at

the beginning of query execution. After the cardinali-
ties have been retrieved, subsequent execution contin-
ues as usual, and the newly discovered cardinalities are
used to sort future join entries. We investigate whether
this approximation is sufficiently accurate to result in
performance improvements, and assess the impact of
having access to the cardinalities right from the outset.

C. Combining Predicate Cardinality File and Timeout

The third approach combines predicate cardinalities
with triple pattern cardinalities. We start our execution
by fetching predicate cardinalities from the Solid pod.
During query execution, as Triple Pattern cardinalities
are counted, we use them when predicate cardinalities
are not available for a given join entry.

VI. Experimental Design

We evaluated six distinct approaches, including the
baseline approach and a variation of it. The evaluated
approaches are as follows: nosep

• base_zero: Zero-knowledge based query planning.
[3] Also referred to as baseline approach in the
remainder of this document.

• base_card: Baseline approach, changed to employ
a cardinality-based sort algorithm. This approach

was compared to the zero-knowledge query plan-
ning approach to assess its effectiveness.

• index_card: Extension to the baseline, making use
of predicate cardinalities as detailed in Section
V-B.

• index_zero: Index_card approach, instead
equipped with the zero-knowledge sort. Used
to verify the effectiveness of sorting by predicate
cardinalities.

• count: Extension to the baseline which counts
Triple Patterns and restarts joins, as detailed in
Section V-A.

• count+index: count approach combined with in-
dex_card approach, as detailed in Section V-C.

We employed the SolidBench [1] benchmark de-
scribed in Chapter IV. However, we found that each of
the complex queries resulted in a timeout. As a result,
we omitted these complex queries from our analysis.
We executed each remaining query three times and
calculated average metrics to obtain reliable results
with reduced noise. To prevent excessively long query
execution, we set a timeout of 1 minute.
Our experiments were conducted on a 64-bit

Pop!_OS 22.04 LTS machine equipped with an 8-core
Intel i7-10510U 1.80 GHz CPU and 16 GB of RAM.
Both the server serving the Solid data and the client
performing the queries were executed on the same
machine.
We measured execution times for each query and

configuration, the full results can be found in the full
thesis. The next section shows our summarized results.

VII. Results

A. Subsetting the query set

We identified certain query categories that war-
ranted exclusion from further analysis based on their
characteristics.
• Queries discover-3, discover-4 and short-4 exhib-

ited exceptionally low execution times in the baseline
configuration. As a result, variances which might not
hold much significance can result in a substantial
percentage change in execution time. Including these
queries in our calculations severely skewed the aver-
ages.
• The baseline approach experienced timeouts in

queries short-2, short-3, and short-7, which compli-
cates comparison with these approaches.
• For queries short-1, short-3 and short-5 our

"count" and "count+index" approaches failed to re-
trieve the correct number of results.
• Query discover-8 exhibited higher execution times

with the index approach. The cause is that this query
accesses multiple Solid pods during its execution. This

is something our implementation was not specifically
tailored to. As such, the predicate cardinalities from
the starting pod would still be used to guide join order
decisions, while the data are coming from the new
pod. We exclude this query from future evaluations and
mention the important use case it represents as our
main point for future work.

B. Discussion

1) There is no globally optimal timeout value: In our
counting-based approach, we utilize a timeout value to
restart join operations after a certain amount of time
has elapsed. Figure 1 shows how the execution time of
the "count" method evolves depending on this timeout
value.

Figure 1: Optimal timeout value and execution time
for query discover 1 in configuration timeout without

index

This outcome emphasizes the absence of a univer-
sally optimal timeout value for all queries. In fact,
employing a singular timeout value across all join oper-
ations within a single query might be unrealistic, given
the distinct nature of each join operation. Instead, we
evaluate the execution time of this configuration using
the timeout that nets its best execution time. In our
future work section, we discuss how this approach can
be improved upon.

2) Interference in timeout measurements: A sub-
stantial number of queries exhibit ideal timeout values
that surpass the execution time. In these cases, there
is no occurrence of a join being restarted. We can con-
clude that these particular cases reap no benefit from
join restarts, which implies that the counted cardinali-
ties adversely affect the join order, or the overhead of
restarting is excessive. However, this conclusion might
be considerably influenced by the uniform application
of the same timeout value to all joins. For instance,
a query possessing a join that would ideally benefit
from a 10ms timeout might exhibit better execution
times when another timeout value is employed, solely
because the other join operations do not gain from
restarting at the 10ms interval. This facet requires
more thorough investigation.

3) Analysis using the representative subset: This
table compares different approaches against the base-
line. The first two columns display the percentage of
queries for which each approach exhibits execution
times at least 10% higher or lower than the baseline,
while the last column displays the average improve-
ment in execution time as a fraction of the baseline
approach’s performance.

% of queries
better worse average improvement

index_zero 0.00% 5.33% -6.79%
index_card 20.00% 1.33% 32.57%
count 5.33% 5.33% 0.23%
count+index 14.67% 1.33% 29.39%

Table I: Percentage of queries from representative
subset with execution time of at least 10% better

(resp. 10 worse) than the baseline

Figure 2 shows the amount of queries for which each
approach had the best execution time.

Figure 2: Amount of queries where configurations are
the fastest

The results using the representative subset (Section
VII-A) demonstrate that the "index_zero" approach is
less effective compared to the baseline approach, re-
sulting in an average performance decrease of 6.79%.
The evidence supports the importance of sorting join
entries with cardinality information for achieving bet-
ter query plans. Future work may determine whether
the approach’s negative impact on performance is at-
tributed to the overhead in our implementation of index
discovery.
The "index_card" approach stands out as the most

effective among the evaluated techniques. On average,
it outperforms the baseline "index_zero" approach by a
substantial 32.57%. The results demonstrate the signif-
icance of leveraging predicate cardinalities to improve
query planning.
The findings indicate that the "count" approach does

not consistently lead to significant improvements in

query execution time, suggesting that counting triple
pattern cardinalities and incorporating them by restart-
ing join operations may not be sufficient for achieving
effective adaptive querying.

Contrary to our expectations, which suggested that
"count+index" would outperform both "count" and "in-
dex_card", we observe a decrease in performance when
comparing "index" and "count+index". The inclusion of
the "count" approach appears to have an adverse im-
pact on the positive effects offered by the "index_card"
approach. This finding implies that the synergy be-
tween these approaches is not favorable.

In conclusion, the results suggest that the "count"
approach is not an effective strategy for adaptive
querying, and its combination with the "index_card"
approach in the "count+index" approach does not yield
promising results. Instead, the findings emphasize
that the "index_card" approach, which considers pre-
generated predicate cardinalities, is the most effective
approach for improving query performance in highly
decentralized environments.

VIII. Conclusion

We compared diverse methods of acquiring cardinal-
ity information in order to identify the most suitable
one to enhance the efficiency and performance of Link-
Traversal-based Query Processing. This encompassed
exploring the process of counting triple pattern occur-
rences during query execution on one hand, and exam-
ining the feasibility of utilizing pre-generated predicate
cardinalities on the other hand.

We introduced three configurations. Our "index" con-
figuration, fetching predicate cardinalities from the
starting Solid pod of each query to guide join order
decisions shows significant promise.

IX. Future Work

The concepts brought forward in this work are
straightforward, and only form a first step towards
improved query processing in heavily decentralized
environments. This thesis identified many open ques-
tions and avenues for further research in the field,
summarized in this section.

• By moving beyond the timeout-based method in
the "count" approach, future approaches can allow a
different restart timing for each join, potentially sur-
passing the performance demonstrated in this thesis.
This avenue offers the potential to remain independent
from user-generated information.

• Future work can combine counted cardinalities
with those from the index in a more intricate way,
provided they have reached a certain level of accuracy

during query execution. Future work will have to in-
vestigate the point at which counted cardinalities can
be deemed sufficiently accurate.
• Future work offers the potential to take indices into

consideration from each pod encountered during query
execution, this would lead to a more broadly applicable
approach, as it would solve the performance limitations
of query discover-8. Challenges that may arise in this
context include obstructed query progress with queries
that constantly traverse new pods, and intricacies in
combining cardinalities from multiple sources in joins
with entries drawing from various pods at once.
• The impact of our research on query response

times, the time to generate a specific number of results,
could be an interesting avenue for future work as query
response time significantly influences the perceived
performance of an information system.
• Using the right compression algorithms might con-

siderably reduce the size of a file containing triple
pattern cardinalities. This might make it feasible to
use them, future research can investigate whether
the impact on execution times is worth the resulting
increased storage usage, potentially giving users the
choice.
• Determining what patterns of deviation emerge

between the real cardinalities and the approximations
could form a comprehensive guide for future research,
giving a clear idea of whether current research is on
the right track.

References

[1] Ruben Taelman, Ruben Verborgh (2023) Evaluation of Link
Traversal Query Execution over Decentralized Environments
with Structural Assumptions

[2] Ghent University imec (2023) Comunica: Link Traversal
[3] Olaf Hartig (2011) Zero-Knowledge Query Planning for an Iter-

ator Implementation of Link Traversal Based Query Execution,
978-3-642-21033-4

[4] Solid team Solid: your data, your choice.
[5] Amol Deshpande, Zachary Ives, Vijayshankar Raman (2007)

Adaptive Query Processing, Foundations and Trends in
Databases

[6] Michael Schmidt, Georg Lausen (2010) Foundations of SPARQL
query optimization

[7] Markus Stocker, Andy Seaborne, Abraham Bernsteinn, Christoph
Kiefer, Dave Reynolds (2008) SPARQL Basic Graph Pattern Op-
timization Using Selectivity Estimation

[8] Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande,
Ruben Verborgh (2018) Comunica: A Modular SPARQL Query
Engine for the Web, The Semantic Web – ISWC 2018

[9] Ghent University imec (2023) Comunica: A knowledge graph
querying framework

[10] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, An-
drey Gubichev, Arnau Prat, Minh-Duc Pham, Peter Boncz (2015)
The LDBC Social Network Benchmark: Interactive Workload

[11] Sijin Cheng, Olaf Hartig (2022) LinGBM: A Performance Bench-
mark for Approaches to Build GraphQL Servers (Extended Ver-
sion)

Queryprestaties in Gedecentraliseerde
Omgevingen Verbeteren met Vooraf
Gegenereerde Metadata en Adaptieve

Queryplanning

Simon Van Braeckel
Supervisors: Dr. ir. Ruben Taelman, Jonni Hanski, Prof. dr. Pieter Colpaert, Prof. dr. ir. Ruben Verborgh

Abstract—Huidige decentralisatie-initiatieven zoals
Solid bieden een hogere mate van decentralisatie dan
ooit tevoren, een ontwikkeling waarop querytechnieken
achterop lopen. Het gebrek aan vooraf beschikbare
informatie voor query planners in deze omgevingen be-
gint zijn problemen te tonen, aangezien geïntegreerde
querytechnieken twee keer slechter presteren dan hun
tegenhangers. Om deze kloof te overbruggen is er
een groeiende behoefte aan betere queryplanning in
deze context. We hebben uitbreidingen ontwikkeld voor
de geïntegreerde Link-Traversal-gebaseerde aanpak om
het verzamelen van planningsrelevante informatie, met
name kardinaliteitsschattingen, en het bijwerken van
het queryplan tijdens de uitvoering mogelijk te maken.
We demonstrate an average performance improvement
of 32.57% as a result of providing up front information
to the query engine, showing that simple methods
of providing up-front information provide a valuable
basis for future work on query planning in decen-
tralized environments. Door deze informatie vooraf te
verstrekken aan de query engine bekomen we een
gemiddelde prestatieverbetering van 32,57%, waaruit
blijkt dat eenvoudige methoden voor het vooraf ver-
strekken van informatie een waardevolle basis vormen
voor toekomstig werk op het gebied van queryplanning
in gedecentraliseerde omgevingen.

Keywords—Adaptive, Query Planning, Semantic Web,
Linked Data, Link-Traversal, Join ordering

I. Introduction

De afgelopen jaren is het web steeds meer ge-
centraliseerd geraakt. Om deze ontwikkeling tegen
te gaan, zijn decentralisatie-initiatieven zoals Solid
[4] populair geworden, die proberen de controle
over gegevens terug te geven aan eindgebruikers.
Momenteel ontbreken efficiënte zoektechnieken voor
dergelijk sterk gedecentraliseerde contexten, omdat
de meeste bestaande technieken zich richten op het
gebruik in gecentraliseerde omgevingen [1].
Link-Traversal-gebaseerde Query Processing (LTQP)

[2] is een aanpak die veelbelovend lijkt in deze context,

maar die in de praktijk niet wijdverspreid wordt ge-
bruikt vanwege prestatieproblemen, mede veroorzaakt
door het gebrek aan vooraf beschikbare informatie
over de gegevens. Deze thesis heeft tot doel deze
prestatiebeperkingen aan te pakken door de bestaande
techniek van zero-knowledge query planning [3] uit
te breiden. Onze aanpak omvat het verzamelen van
relevante planningsinformatie, zoals schattingen van
kardinaliteit, en het bijwerken van het queryplan tij-
dens de uitvoering.

In de volgende sectie wordt het relevante ver-
wante werk besproken, waarna onze volledige oploss-
ing wordt gepresenteerd. Vervolgens leggen we de use
case uit waarop de experimenten zijn gebaseerd. De re-
sultaten worden daarna gepresenteerd. Ten slotte wor-
den enkele afsluitende opmerkingen gemaakt, gevolgd
door suggesties voor verder werk.

A. Link traversal query processing

Link-Traversal-gebaseerde Query Processing (LTQP)
[2] is een queryparadigma dat werd geïntroduceerd als
een manier om het Web van Linked Data te bevragen
zonder dat het eerst in een centrale locatie geïndex-
eerd hoeft te worden [1]. Binnen LTQP zijn de bronnen
niet van tevoren bekend. In plaats daarvan vinden ont-
dekking van gegevensbronnen plaats tijdens de query-
uitvoering.

In vergelijking met traditionele queryverwerking
kunnen geïntegreerde aanpakken zoals LTQP niet
vertrouwen op algoritmen die de query optimaliseren
voor de uitvoering omdsat die veelal voorafgaande
statistieken van datasets vereisen. In plaats daarvan
maakt het gebruik van een zero-knowledge query plan
techniek [3] om triple-patronen te ordenen op basis van
specifieke heuristieken voor Link Traversal.

Volgens gerelateerd onderzoek [1] ligt het belangrijk-
ste werkpunt binnen LTQP vooral op het gebied van het
queryplan in plaats van de ontdekking van relevante
documenten.
1) Evaluation of Link Traversal Query Execution

over Decentralized Environments with Structural As-
sumptions: Dit gerelateerde artikel presenteert een
vergelijking tussen een geïntegreerde aanpak en een
two-phase aanpak van query-uitvoering. De two-phase
aanpak fungeert als een theoretisch geval en maakt ge-
bruik van een orakel dat alle query-relevante links lev-
ert, waardoor het gebruik kan maken van traditionele
pre-executie optimaliseeralgoritmen [6], [7]. De two-
phase aanpak is gemiddeld twee keer sneller dan de
geïntegreerde aanpak, wat kan worden toegeschreven
aan zijn vermogen om traditionele queryplanning uit te
voeren, waarbij onder andere gebruik wordt gemaakt
van kardinaliteitsschattingen. Dit aanzienlijke poten-
tieel benadrukt de behoefte aan effectievere query-
planningstrategieën. Ons werk streeft ernaar om deze
kloof te overbruggen door het queryplan tijdens de
uitvoering aan te passen.

B. Comunica

Comunica [9] is een adaptief query-engine frame-
work dat het mogelijk maakt om een query-engine
samen te stellen die geïntegreerde queryplanning en
-uitvoering doet. De implementaties die in dit proef-
schrift zijn bijgedragen zijn gemaakt als uitbreidingen
op Comunica.

II. Related Concepts

A. The Query Process

Query-verwerking omvat traditioneel gezien drie be-
langrijke stappen: parsing, planning en uitvoering. De
eerste stap, parsing, is waar de SPARQL-query wordt
omgezet in een algebraïsche expressie. De tweede fase,
de planningsfase, transformeert de algebraïsche ex-
pressie tot een queryplan. Een queryplan is een staps-
gewijze handleiding die de volgorde van bewerkingen
specificeert die nodig zijn om de gewenste gegevens
op te halen. Nadat het queryplan is verkregen uit de
planningsfase wordt het uitgevoerd in de derde en
laatste fase van het queryproces.
De scheiding van queryplanning en -uitvoering leidt

tot suboptimale uitvoeringstijden in sterk gedecen-
traliseerde omgevingen, waarbij optimalisatie van het
queryplan wordt belemmerd omdat het afhankelijk is
van vooraf beschikbare informatie over de gegevens.
Zoals vermeld in de inleiding, is LTQP een belan-

grijke techniek binnen deze context. Het gaat om het
feit dat relevante gegevensbronnen voorafgaand aan
de query-uitvoering onbekend zijn door de integratie

van bronontdekking en uitvoering. Het is echter aange-
toond dat de eenvoud binnen LTQP kan leiden tot
suboptimale queryplannen, waardoor het twee keer zo
langzaam is als een oplossing waarbij het queryplan
optimaal is [1].
Om deze kloof te overbruggen, beschrijven we in

dit proefschrift het gebruik van adaptieve queryver-
werkingstechnieken, die gebruik maken van runtime-
feedback, en zo het plan of de planningruimte [5]
aanpassen tijdens de uitvoering, waarbij de planning-
en uitvoeringsfasen nauw met elkaar verweven zijn.
Adaptieve technieken zijn veelbelovend in dit geval,
omdat door het queryplan te wijzigen naarmate meer
informatie over de gegevens beschikbaar wordt het
queryplan dichter bij het ideaal komen.
We introduceren adaptiviteit in de vorm van de

herordening van entries voor join-operaties. Een join-
operatie verwijst naar het proces van het combineren
van triple patronen binnen een query. Triple patronen
zijn combinaties van waarden of variabelen voor sub-
ject, object en predicaat, die een specifieke structuur
opleggen aan triples. Deze triple patronen bevatten
vaak gemeenschappelijke variabelen, waarbij bindings
voor een variabele van het ene triple patroon worden
vergeleken met bindings voor dezelfde variabele in
een ander triple patroon. We kiezen de juiste volgorde
van join entries op basis van hun kardinaliteit, dat wil
zeggen de hoeveelheid bindings aanwezig in de entries.
Door zorgvuldig de volgorde te kiezen waarin de en-

tries worden samengevoegd, kunnen we de generatie
van tussenresultaten verminderen en onnodig werk
vermijden, wat leidt tot snellere query-uitvoering.
Helaas zijn de exacte kardinaliteiten van join entries

in ons geval niet bekend, dus werken we met geschatte
kardinaliteiten. Om deze geschatte kardinaliteiten te
gebruiken om join entries te ordenen, gaan we ervan
uit dat het het beste is om eerst de entries met de
kleinste kardinaliteiten samen te voegen. Deze leiden
waarschijnlijk tot een klein aantal resultaten, wat het
aantal bindings in latere joins vermindert en op zijn
beurt de totale benodigde inspanning vermindert.
Aangezien join-operaties plaatsvinden op triple pa-

tronen, stelt het kennen van de exacte kardinaliteit
van een triple patroon de query-engine in staat om
nauwkeurige voorspellingen te doen met betrekking tot
tussenresultaten tijdens join-operaties. Hierdoor zijn
TP-kardinaliteiten een ideaal criterium om join entries
te sorteren en de query-prestaties te optimaliseren.

III. Use Case

We hebben onze oplossingen getest met de Solid-
bench [1] benchmark, die voortbouwt op de geves-
tigde Social Network Benchmark (SNB) [10], [11].

Deze benchmark modelleert een query-workload en
gegevensstructuur zoals men zou vinden in een sociaal-
netwerkscenario, opgesplitst om gedecentraliseerde
werklasten te simuleren die vergelijkbaar zijn met die
in Solid. Hoewel deze benchmark de context van Solid
simuleert, zijn de oplossingen in deze thesis gener-
aliseerbaar naar andere Linked Data-omgevingen.

IV. Solution

In deze sectie leiden we onze drie verschillende con-
figuraties in, deze hebben als doel om query executie
in gedecentraliseerde omgevingen te optimaliseren.

A. Counting Triple Pattern Cardinalities & Timeout

Ondanks het belang van informatie over de kardi-
naliteiten van join entries bij het maken van geïn-
formeerde beslissingen over de volgorde van joins, is
dergelijke informatie veelal niet beschikbaar in een
gedistribueerde, gedecentraliseerde context.
Om deze beperking aan te pakken, hebben we een

methode geïmplementeerd om de voorkomens van
Triple Patterns (TP) te tellen tijdens executie van de
query, dit combineren we met een timeout mecha-
nisme. Het timeout mechanisme herstart de join oper-
atie na een bepaalde tijd, waardoor er potentieel meer
nauwkeurige kardinaliteitsinformatie beschikbaar is.
Het belangrijkste voordeel van deze aanpak is diens

onafhankelijkheid van het beschikbaar zijn van vooraf
gegenereerde gegevens. Deze onafhankelijkheid verg-
root de flexibiliteit en toepasbaarheid van de query-
engine.
Het tweede voordeel is dat deze aanpak het ge-

bruik van TP-kardinaliteiten mogelijk maakt zonder
overmatig schijfruimtegebruik te vereisen om deze kar-
dinaliteiten op te slaan in een bestand.

B. Predicate Cardinality File

Hoewel TP-kardinaliteiten waardevol zijn is het
creëren van een bestand met de kardinaliteit van elk
mogelijk Triple Pattern in vele real-world scenario’s
onhaalbaar vanwege de enorme hoeveelheid mogelijke
combinaties in een Solid-pod. Voor kleinere Solid-pods
ligt dit mogelijks anders, vooral als de geschikte com-
pressiealgoritmen worden gebruikt. Dit wordt in meer
detail besproken in onze sectie over toekomstig werk.
We kiezen voor predicaat kardinaliteiten als een

tussenoplossing en gebruiken de kardinaliteit van het
predicaat van elke join entry als een aanpak van de
TP-cardinaliteit. We onderzoeken of deze aanpak vol-
doende nauwkeurig is om prestatieverbeteringen te
realiseren.
Binnen deze configuratie verkrijgen we predicaat

kardinaliteiten aan het begin van de query-uitvoering.
Nadat de kardinaliteiten zijn verkregen, wordt de

daaropvolgende uitvoering voortgezet zoals gebruike-
lijk, waarbij de kardinaliteiten worden gebruikt om
toekomstige join entries te sorteren. We beoordelen
de impact van directe toegang tot de predicaat kar-
dinaliteiten.

C. Combining Predicate Cardinality File and Timeout

De derde aanpak combineert predicaat-
kardinaliteiten met TP-kardinaliteiten. We beginnen
onze uitvoering door predicaat-kardinaliteiten op te
halen uit de Solid-pod zoals in de tweede methode.
Tijdens de query-uitvoering, worden de getelde Triple
Pattern kardinaliteiten gebruikt wanneer predicaat-
kardinaliteiten niet beschikbaar zijn voor een bepaalde
join entry.

V. Experimental Design

We hebben zes verschillende aanpakken geëval-
ueerd, waaronder de baseline aanpak en een variatie
daarop. De geëvalueerde aanpaken zijn als volgt: nosep

• base_zero: zero-knowledge query planning [3].
Hier wordt ook naar verwezen als de baseline
aanpak.

• base_card: Baseline aanpak, aangepast zodat
het een sorteeralgoritme op basis van kardi-
naliteiten gebruikt. Deze aanpak werd vergeleken
met de queryplanning aanpak op basis van zero-
knowledge om de effectiviteit van zero-knowledge
te beoordelen.

• index_card: Uitbreiding op de baseline aanpak
waarbij gebruik wordt gemaakt van predicaat-
kardinaliteiten zoals beschreven in Sectie IV-B.

• index_zero: Index_card aanpak, uitgerust met
de zero-knowledge sorteerwijze. Deze aanpak
wordt vergeleken met de index_card om de effec-
tiviteit van het sorteren op basis van predicaat-
kardinaliteiten te verifiëren.

• count: Uitbreiding op de baseline aanpak die
Triple Patterns telt en joins opnieuw start, zoals
beschreven in Sectie IV-A.

• count+index: Count aanpak gecombineerd met
index_card aanpak, zoals beschreven in Sectie
IV-C.

We hebben de SolidBench [1] benchmark gebruikt
zoals beschreven in Hoofdstuk III. We hebben echter
gemerkt dat elk van de complexe queries resulteerde
in een timeout. Als gevolg daarvan hebben we deze
complexe queries uit onze analyse weggelaten. We
hebben elke overgebleven query drie keer uitgevoerd
en gemiddelden van metingen berekend om betrouw-
bare resultaten met minder ruis te verkrijgen. Om te
voorkomen dat de query-uitvoering te lang duurde,
hebben we een maximale duur van 1 minuut ingesteld.

Onze experimenten zijn uitgevoerd op een 64-bits
Pop!_OS 22.04 LTS-machine met een 8-core Intel i7-
10510U 1,80 GHz CPU en 16 GB RAM. Zowel de server
die de Solid-data levert als de client die de queries
uitvoert, werden op dezelfde machine uitgevoerd.

We hebben de uitvoeringstijden gemeten voor elke
query en configuratie; de voltallige resultaten zijn te
vinden in de volledige scriptie. In de volgende sectie
bespreken we enkel onze samengevatte resultaten.

VI. Results

A. Subsetting the query set

We hebben bepaalde querycategorieën geïdenti-
ficeerd die op basis van hun kenmerken niet verder
in de analyse zijn opgenomen. Naar deze subset wordt
verder verwezen als de representatieve subset.

• Query discover-8 vertoonde langere uitvoeringsti-
jden als de index aanpak werd gebruikt. De oorzaak
hiervan is dat deze query tijdens de uitvoering toegang
benodigd tot meerdere Solid pods. Onze implementatie
was hier niet specifiek op afgestemd. Hierdoor zouden
de predicaat-cardinaliteiten van de startpod nog steeds
worden gebruikt om beslissingen over de joinvolgorde
te sturen, terwijl de gegevens afkomstig zijn van de
nieuwe pod. We sluiten deze query uit van toekomstige
evaluaties en vermelden de belangrijke use case die ze
vertegenwoordigt als ons voornaamste aandachtspunt
voor toekomstig onderzoek.

• Queries discover-3, discover-4 en short-4 vertoon-
den uitzonderlijk lage uitvoeringstijden in de base-
line configuratie. Als gevolg hiervan kunnen kleine,
insignificante variaties in uitvoeringstijd resulteren in
aanzienlijke procentuele veranderingen. Het opnemen
van deze queries in onze berekeningen zou de gemid-
delden sterk verstoord hebben.

• De baseline aanpak ondervond timeouts in queries
short-2, short-3 en short-7, wat de vergelijking met
deze aanpakken compliceerde.

• Voor queries short-1, short-3 en short-5 lukte het
onze "count" en "count+index" aanpakken niet om het
juiste aantal resultaten op te halen.

B. Discussion

1) There is no globally optimal timeout value: In
onze op tellen gebaseerde benadering maken we ge-
bruik van een timeoutwaarde om join-operaties op-
nieuw te starten nadat een bepaalde hoeveelheid tijd
is verstreken. Figuur 1 laat zien hoe de uitvoeringstijd
van de "count" methode evolueert afhankelijk van deze
timeoutwaarde.

Figure 1: Optimale timeoutwaarde en uitvoeringstijd
voor query discover 1 in configuratie "count"

Dit resultaat benadrukt het ontbreken van een uni-
verseel optimale timeoutwaarde voor alle queries. In
feite is het gebruik van een enkele timeoutwaarde voor
alle join-operaties binnen een enkele query mogelijks
onrealistisch, gezien de verschillende aard van elke
join-operatie. In plaats de globaal optimale timeout-
waarde te proberen vinden evalueren we de uitvo-
eringstijd van deze configuratie met behulp van de
timeoutwaarde die de beste uitvoeringstijd oplevert
per query. In ons toekomstige werk bespreken we hoe
deze aanpak kan worden verbeterd.

2) Interference in timeout measurements: Een
aanzienlijk aantal queries vertoont ideale timeout-
waarden die de uitvoeringstijd overschrijden. In deze
gevallen wordt er geen enkele join opnieuw gestart. We
kunnen concluderen dat deze specifieke gevallen geen
voordeel halen uit het opnieuw starten van de join,
wat impliceert dat de getelde kardinaliteiten nadelige
effecten hebben op de join-volgorde, of dat de overhead
van het opnieuw starten significant hoog ligt.

Deze conclusie kan echter aanzienlijk beïnvloed zijn
door de uniforme toepassing van dezelfde timeout-
waarde op alle joins. Bijvoorbeeld, een query met een
join die optimaal een timeout van 10ms zou hebben,
kan betere uitvoeringstijden vertonen wanneer een
andere globale timeoutwaarde wordt gebruikt, enkel
omdat de andere join-operaties geen baat hebben bij
het opnieuw starten na 10ms. Dit onderdeel vereist een
grondiger onderzoek.

3) Analysis using the representative subset: Deze
tabel vergelijkt verschillende aanpakken met de base-
line aanpak. De eerste twee kolommen tonen het per-
centage queries waarvoor elke aanpak uitvoeringstij-
den vertoont die minstens 10% hoger of lager zijn dan
de baseline, terwijl de laatste kolom de gemiddelde
verbetering in uitvoeringstijd weergeeft als een fractie
van de prestaties van de baseline aanpak.

% van queries
10% lager 10% hoger gemiddelde verbetering

index_zero 0,00% 5,33% -6,79%
index_card 20,00% 1,33% 32,57%
count 5,33% 5,33% 0,23%
count+index 14,67% 1,33% 29,39%

Table I: Percentage van de queries uit representatieve
subset met een uitvoeringstijd die minstens 10%

lager (resp. 10 hoger) is dan de basislijn

Figuur 2 laat zien in hoeveel queries elk van de
aanpakken de snelste uitvoeringstijd had.

Figure 2: Aantal queries waarin configuraties het
snelst zijn

De resultaten met behulp van de representatieve
subset (Sectie VI-A) tonen aan dat de "index_zero" aan-
pak, resulterend in een gemiddelde prestatiedaling van
6,79%, minder effectief is in vergelijking met de base-
line aanpak. Het bewijs ondersteunt het belang van
het sorteren van join entries met kardinaliteitsinfor-
matie om betere queryplannen te realiseren. Toekom-
stig werk kan bepalen of de negatieve invloed van de
aanpak op de prestaties te wijten is aan de overhead
in onze implementatie van indexontdekking, of aan de
resultaten van de join entry sorteringen.
De "index_card" aanpak blijkt de meest effectieve

van de geëvalueerde technieken. Gemiddeld presteert
deze beter dan de baseline "index_zero" aanpak met
een aanzienlijke 32,57%. De resultaten tonen het be-
lang aan van het benutten van predicaatkardinaliteiten
om queryplanning te verbeteren.
De bevindingen geven aan dat de "count" aanpak

niet leidt tot significante verbeteringen in de uitvo-
eringstijd van queries, wat suggereert dat het tellen
van kardinaliteiten van triple patronen en het opnieuw
starten van join-operaties mogelijks niet voldoende is
voor effectieve adaptieve querying.
In tegenstelling tot onze verwachting, die sug-

gereerde dat "count+index" zowel "count" als "in-
dex_card" zou overtreffen, zien we een afname in
prestaties in "count+index". De opname van de "count"

aanpak lijkt een negatieve invloed te hebben op de
positieve effecten die de "index_card" aanpak biedt.
Als conclusie, uit de resultaten blijkt dat de "in-

dex_card" aanpak, die pre-generatie predicaatkardi-
naliteiten in overweging neemt, de meest effectieve
aanpak is voor het verbeteren van de query-prestaties
in sterk gedecentraliseerde omgevingen.

VII. Conclusion

We hebben verschillende methoden voor het verkri-
jgen van cardinaliteitsinformatie vergeleken om de
meest geschikte methode te identificeren om de ef-
ficiëntie en prestaties van Link-Traversal-gebaseerde
Query Processing te verbeteren. Deze verkenning om-
vatte zowel het onderzoeken van het tellen van het aan-
tal voorkomens van Triple Patterns tijdens de query-
uitvoering als het evalueren van de haalbaarheid van
het gebruik van vooraf gegenereerde predicaatkardi-
naliteiten.
We hebben drie configuraties geïntroduceerd. On-

der deze configuraties toont onze "index" configuratie,
die predicaatcardinaliteiten ophaalt vanuit de initiële
Solid-pod van elke query om de volgorde van joins te
begeleiden, veelbelovende resultaten.

VIII. Future Work

De concepten die in dit werk worden gepresenteerd,
zijn eenvoudig en vormen slechts een eerste stap
richting verbeterde queryverwerking in sterk gede-
centraliseerde omgevingen. Dit proefschrift heeft veel
open vragen en onderzoekspaden geïdentificeerd, die
worden samengevat in deze sectie.
• Door verder te gaan dan de timeout-gebaseerde

methode in de "count" benadering, kunnen toekom-
stige benaderingen verschillende momenten van her-
starten voor elke join toestaan. We verwachten dat het
mogelijk is om het prestatieniveau gedemonstreerd in
dit proefschrift te overstijgen. Deze benadering biedt
het potentieel om onafhankelijk te blijven van gebruik-
ersgegenereerde informatie.
• Toekomstig werk kan getelde kardinaliteiten op

een meer complexe manier combineren met die van
de index, op voorwaarde dat ze een bepaald niveau
van nauwkeurigheid hebben bereikt. Toekomstig on-
derzoek zal manieren moeten vinden om te bepalen
of getelde kardinaliteiten als voldoende nauwkeurig
kunnen worden beschouwd.
• Toekomstig werk biedt de mogelijkheid om in-

dices in overweging te nemen van elke pod die tij-
dens de query-uitvoering wordt aangetroffen. Dit zou
leiden tot een breder toepasbare benadering, omdat
het de prestatiebeperkingen van query discover-8 zou
oplossen. Uitdagingen die in deze context kunnen

ontstaan, omvatten belemmerde query uitvoering bij
query’s die voortdurend nieuwe pods ontdekken, en
complexiteiten bij het combineren van kardinaliteiten
uit meerdere bronnen wanneer een join operatie en-
tries uit meerdere pods gebruikt.
• Het effect van ons onderzoek op de responstijden

van queries, de tijd die het vergt om een specifiek
aantal resultaten te genereren, kan een interessante
richting zijn voor toekomstig onderzoek, aangezien de
responstijd van queries een aanzienlijke invloed heeft
op de ervaren prestatie van een informatiesysteem.
• Het gebruik van de juiste compressiealgoritmen

kan de omvang van een bestand met kardinaliteiten van
Triple Patterns aanzienlijk verminderen. Dit zou het
mogelijk kunnen maken om ze te gebruiken. Toekom-
stig onderzoek kan onderzoeken of de impact op uitvo-
eringstijden de resulterende toegenomen opslagruimte
waard is, mogelijks kan de keuze tussen predikaat en
Triple Pattern kardinaliteiten bij de gebruikers worden
gelaten.
• Het bepalen van de afwijkingenpatronen tussen de

echte kardinaliteiten, zoals tegengekomen tijdens de
uitvoering, en de benaderingen kan een gedetailleerde
gids vormen voor toekomstig onderzoek. Door de echte
kardinaliteiten te meten kan men een duidelijk beeld
geven of het huidige onderzoek op de juiste weg is.

References

[1] Ruben Taelman, Ruben Verborgh (2023) Evaluation of Link
Traversal Query Execution over Decentralized Environments
with Structural Assumptions

[2] Ghent University imec (2023) Comunica: Link Traversal
[3] Olaf Hartig (2011) Zero-Knowledge Query Planning for an Iter-

ator Implementation of Link Traversal Based Query Execution,
978-3-642-21033-4

[4] Solid team Solid: your data, your choice.
[5] Amol Deshpande, Zachary Ives, Vijayshankar Raman (2007)

Adaptive Query Processing, Foundations and Trends in
Databases

[6] Michael Schmidt, Georg Lausen (2010) Foundations of SPARQL
query optimization

[7] Markus Stocker, Andy Seaborne, Abraham Bernsteinn, Christoph
Kiefer, Dave Reynolds (2008) SPARQL Basic Graph Pattern Op-
timization Using Selectivity Estimation

[8] Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande,
Ruben Verborgh (2018) Comunica: A Modular SPARQL Query
Engine for the Web, The Semantic Web – ISWC 2018

[9] Ghent University imec (2023) Comunica: A knowledge graph
querying framework

[10] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, An-
drey Gubichev, Arnau Prat, Minh-Duc Pham, Peter Boncz (2015)
The LDBC Social Network Benchmark: Interactive Workload

[11] Sijin Cheng, Olaf Hartig (2022) LinGBM: A Performance Bench-
mark for Approaches to Build GraphQL Servers (Extended Ver-
sion)

Table of contents

List of Figures xx

List of Tables xxi

Source Code xxii

1 Preface 1

1.1 Introduction . 1

1.2 Outline . 2

2 Overview of Relevant Semantic Web Technologies 3

2.1 The Semantic Web . 3

2.2 Resource Description Framework . 4

2.3 SPARQL . 4

2.4 Linked Data . 5

2.5 Solid . 6

3 Query Processing 8

3.1 Overview of Query Processing . 8

3.2 Join Operations . 9

3.3 Significance of Join Ordering in Query Execution . 10

4 Related Work 12

4.1 Link-Traversal-based Query Processing . 12

4.1.1 Ranking-Based Traversal for Querying Linked Data 13

4.1.2 Evaluation of Link Traversal Query Execution over Decentralized Environmentswith

Structural Assumptions . 14

4.2 Query federation . 14

4.3 Adaptive Query Processing . 15

xvii

4.4 Comunica . 16

4.5 SPLENDID: Query federation optimization using statistical data 16

5 Basic Use Case 17

6 Problem Statement 18

6.1 Approximating Triple Pattern Cardinalities Using Predicate Cardinalities 19

6.2 Research Questions . 19

6.3 Hypotheses . 20

7 Solution 22

7.1 Preliminaries . 22

7.1.1 Elaboration on Cardinalities . 22

7.1.2 Counting Triple Pattern Cardinalities . 23

7.1.3 Predicate Cardinality File Discovery . 24

7.2 General Explanation of the Different Configurations in Our Solution 25

7.2.1 Configuration 1: Counting Triple Pattern Cardinalities & Timeout 25

7.2.2 Configuration 2: Predicate Cardinality File . 26

7.2.3 Configuration 3: Combining Predicate Cardinality File and Timeout 26

8 Results 28

8.1 Experimental Design . 28

8.2 Experimental Results . 29

8.2.1 Subsetting the Query Set . 34

8.2.2 Discussion . 35

9 Conclusion 38

10 Future Work 40

10.1 Enhancing Restart Strategies for the Count Method 40

10.2 Refining the Combination of Index and Count Cardinalities 40

10.3 Cardinality File Discovery in Encountered Pods . 41

10.4 Evaluating the Impact of our Approaches On Query Response Times 42

10.5 Pre-generated Triple Pattern Cardinalities . 42

10.6 Assessing Approaches against Ground Truth Triple Pattern Cardinalities 43

References 44

Appendices 47

List of Figures

8.1 Optimal timeout value and execution time for query discover 1 in configuration time-

out without index . 32

8.2 Amount of queries where configurations are the fastest 33

1 Optimal timeout value and execution time for query discover 8 in configuration time-
out without index . 48

2 Optimal timeout value and execution time for query discover 5 in configuration time-
out without index . 48

3 Optimal timeout value and execution time for query short 7 in configuration timeout
without index . 49

xx

List of Tables

8.1 Execution time per query of each configuration . 30

8.2 Execution time per query of each configuration (cont.) 31
8.3 Percentage of queries with execution time of at least 10% better (resp. 10 worse)

than the baseline . 32

8.4 Percentage of queries from representative subset with execution time of at least 10%
better (resp. 10 worse) than the baseline . 33

8.5 Percentage of queries from representative subset and low execution time with exe-
cution time of at least 10% better (resp. 10 worse) than the baseline 34

8.6 Percentage of queries from representative subset and query ”discover-8” with exe-
cution time of at least 10% better (resp. 10 worse) than the baseline 35

1 Timout value yielding the lowest execution time per query and configuration 51
2 Timout value yielding the lowest execution time per query and configuration 52

xxi

Source Code

The implementation presented in this work can be found on different branches in the repository

https://github.com/simonvbrae/comunica-feature-link-traversal.

• baseline: https://github.com/simonvbrae/comunica-feature-link-traversal/tree/feature/adaptive-join-
cardinalities-baseline

• baseline cardinality sort: https://github.com/simonvbrae/comunica-feature-link-traversal/tree/feature/adaptive-

join-cardinalities-baseline-card
• index: https://github.com/simonvbrae/comunica-feature-link-traversal/tree/feature/adaptive-join-
cardinalities-index

• count: https://github.com/simonvbrae/comunica-feature-link-traversal/tree/feature/adaptive-join-

cardinalities-count
• count+index: https://github.com/simonvbrae/comunica-feature-link-traversal/tree/feature/adaptive-
join-cardinalities-count-index

The code for executing the experiments and plotting their results can be found at
https://github.com/simonvbrae/LTQP_cardinalities_experiments.

xxii

1
Preface

1.1 Introduction

Today, the majority of data on the Web is flowing towards isolated data silos, which are in the
hands of large companies. This ever-increasing siloization of data leads to a host of challenges
including issues with cross-silo interoperability, vendor lock-in, privacy concerns, and individuals’
lack of control over their own data. As data flows towards isolated data silos, users find themselves
constrained by limited portability and interoperability between services, motivated by companies’
prioritization of their own product over facilitating data portability with competitors. As a result,
this increased centralization stifles technological development and restricts user autonomy.

The implications of this centralization extend beyond the realm of user experience and into broader
societal concerns. Companies like Facebook and Google, serving as identity providers for various
applications, amass vast amounts of data pertaining to individuals’ social activities and service
consumption [18]. The information collected by these companies is exploited to shape consumer

behavior by delivering targeted advertisements. Moreover, this data has been used to target tai-

lored advertisements for presidential campaigns catered to specific demographic groups, building
psychographic profiles [27] of voters and targeting ads to influence voting behavior [19].

To address these issues and empower users, decentralization initiatives like Solid [24] have gained

popularity. Solid offers an alternative by allowing users to store their data in personal data vaults,

known as pods, distributed across the web. This decentralized storage model gives individuals full

control to determine which applications can interact with their data.

These personal data vaults form Knowledge Graphs [17], which are collections of Linked Data docu-

ments [3] containing RDF triples [6]. Building applications on top of this decentralized Knowledge

Graph presents significant technical challenges. Traditional centralized aggregation prior to query

1

Chapter 1. Preface

processing is not feasible due to legal restrictions, and existing federated querying techniques are

ill-suited [26] for the large-scale distribution of data in environments like Solid.

Currently, there is a lack of efficient querying techniques specifically designed for environments
like Solid, which are significantly more decentralized than ever before. Link-Traversal-based Query

Processing (LTQP) [11] shows promise as an approach for heavily decentralized environments such
as Solid. LTQP enables querying in a context where documents are being discovered during query

execution, following the principles of the Linked Data paradigm.

Despite its potential, LTQP has not been widely adopted in practice due to performance concerns
related to lack of upfront information about the data. This thesis aims to address these performance

limitations by gathering planning-relevant information, such as cardinality estimates, and updating

the query plan accordingly during execution. We focus our analysis and evaluation on the Solid
ecosystem, but the concepts and techniques developed in this work may have broader applicability
to other decentralization initiatives.

1.2 Outline

The remainder of this thesis is structured as follows. Chapter 2 provides an overview of related Se-
mantic Web technologies, while Chapter 3 delves into the intricacies of query processing. In Chapter
4, we discuss existing related work and compare it to our work. Moving forward, Chapter 5 intro-
duces a use case that serves as the basis for testing our proposed approaches. We then proceed to
Chapter 6, where we formally present the problem statement, research questions, and hypotheses.
Chapter 7 details the architecture of our different implementations. We evaluate these approaches
in Chapter 8, followed by concluding remarks and a discussion of future work in Chapter 9.

2

2
OverviewofRelevant SemanticWeb Technolo-
gies

In this chapter, we give important background information on technologies related to this work.
Firstly, we discuss the Semantic Web, after which we give a brief overview of the Resource Descrip-
tion Framework and SPARQL. Finally, we discuss the Linked Data principles and the Solid specifica-
tions.

2.1 The Semantic Web

The current generation of search engines primarily functions as location finders[4], searching for
the location of text-based information on the web but lacking the capability to fully understand the
meaning and context behind the data they retrieve.

One promising solution to address this limitation is the integration of Artificial Intelligence (AI)
into search engines. By incorporating AI technologies, such as computational linguistics, search
engines can enhance their ability to comprehend and interpret the content they index, leading to

more sophisticated and accurate information retrieval.

An alternative approach to enable more intelligent information retrieval is through the Semantic

Web initiative. This initiative aims to represent web content in a format that is easily machine-
processable. By employing standardized data models and intelligent techniques, the Semantic Web

seeks to add semanticmeaning to theweb, making itmore structured andmaintaining or increasing

it’s heavy interconnectedness.

RDF, Linked Data, and SPARQL form the foundational technologies that support the concept of the

Semantic Web. By utilizing these technologies, the Semantic Web aims to create a web of intercon-

3

Chapter 2. Overview of Relevant Semantic Web Technologies

nected knowledge, where data is not only human-readable but also machine-processable.

2.2 Resource Description Framework

RDF (Resource Description Framework) [6] is a framework for representing data on the web. It

extends the URI-based linking structure of the web, enabling the representation of relationships
between different entities. In RDF, these relationships are captured as triples, which consist of a
subject, predicate, and object. In their simplest form, the subject, object, and predicate are rep-

resented as Internationalized Resource Identifiers (IRIs). However, the object can also be a data

literal, allowing the mixing of structured and semi-structured data.

RDF data can be imagined as a table with three columns: subject, predicate, and object, similar

to a relational database in SQL. This straightforward and flexible data model possesses significant
expressive power, capable of representing complex situations and relationships while maintaining
an appropriate level of abstraction.

For example, following triple can be used to express the information that there is a Person identified
by the URI http://www.w3.org/contact#me, whose name is John Coltrane.

<http://www.w3.org/contact#me> <http://www.w3.org/contact#fullName> ”John Coltrane” .

This linking structure forms a directed, labeled graph, where the edges represent named links be-
tween two resources, represented by the graph nodes. This graph view is a simple mental model
for understanding RDF’s structure.

2.3 SPARQL

SPARQL [1] is the W3C-standardized query language for retrieving and manipulating data stored in

RDF format. With SPARQL query engines, users gain the ability to search the Web of Data or any RDF

4

Chapter 2. Overview of Relevant Semantic Web Technologies

database to uncover relevant triples that match their queries.

SPARQL is a declarative language, similar to SQL, where the focus lies on defining what data to

find rather than the precise method of finding it. This declarative nature of SPARQL allows for a
clear separation between query specification and execution. Consequently, the execution process

becomes independent of the query engine’s implementation, fostering a higher degree of flexibility

and simplicity.

2.4 Linked Data

LinkedData [3], one of the core pillars of the SemanticWeb, is a set of design principles that facilitate
the sharing of machine-readable interlinked data on the Web. Introduced by Sir Tim Berners-Lee in

2006, these principles lay the foundation for a more interconnected and accessible data landscape.
Let’s explore the four fundamental principles of Linked Data:

1. Use URIs as names for things. Uniform Resource Identifiers (URIs) serve as unique identi-
fiers for different entities, allowing us to distinguish between items or recognize equivalent
entities across various datasets. By providing a standardized naming mechanism, URIs fos-
ter interoperability and data integration.

2. Use HTTP URIs for easy look-up. Employing HTTP URIs enables straightforward resource
retrieval through the Hypertext Transfer Protocol (HTTP). This means that when items are
identified using URIs combined with HTTP, they become easily discoverable and accessible,
making the process of publishing and incorporating data into the global data space more

efficient.

3. Provide useful information when URIs are looked up. When someone queries a URI, it should
return useful information about the entity it represents. This is typically achieved using

standardized data representation formats like RDF (Resource Description Framework) and
SPARQL (SPARQL Protocol and RDF Query Language). These standards ensure that data is

semantically meaningful and can be effectively processed by machines.

4. Include links to other URIs for further exploration. Just like the hypertext web, Linked Data

relies on interlinking resources through URI references. By linking new information to ex-

isting resources, we create a richly interconnected network of data with immense potential

for data exploration. This interlinking maximizes data reuse and facilitates the discovery of

new relationships between different entities.

5

Chapter 2. Overview of Relevant Semantic Web Technologies

The benefits of employing Linked Data are substantial. It dismantles the barriers between data silos

and allows integration of diverse data formats from various sources. As a result, data integration
and exploration become more straightforward and efficient. Additionally, the linking of disparate

sources and formats enables the inference of new knowledge from existing facts. By leveraging

Linked Data, organizations can connect their proprietary knowledge with open-world or specialized
knowledge.

2.5 Solid

Solid is a set of specifications that enables individuals to securely store their data in decentralized

data stores called Pods. These Pods act as personal web servers and provide users with control over

their data. With Solid, any type of information can be stored in a Pod. [24]

One of the key features of Solid is that it puts users in control of their data access. Solid enables
users to decide what data to share and with whom, whether it be individuals, organizations, or ap-
plications. This control also extends to the ability to revoke access to data at any time. By using
standard, open, and interoperable data formats and protocols, Solid facilitates seamless interoper-
ability between applications.

In the introduction, we mentioned the challenges posed by isolated data silos, centralization, and
the resulting vendor lock-in. These issues not only raise concerns about privacy but also pose threats
to our political and personal freedom. Fortunately, Solid is a technology that holds the potential to
mitigate these threats.

To illustrate the benefits of Solid, let’s consider the example of messaging. Imagine your messages
are stored in your personal Solid pod by Facebook, and WhatsApp also adopts Solid for its messag-
ing platform. In this scenario, users have the freedom to port their messages from Facebook to

WhatsApp seamlessly. Furthermore, the accessibility of their own data empowers users to write

their own conversion script, even if the two platforms use different data formats.

By enabling such platform choices and data portability, Solid encourages competition in markets

currently dominated by monopolies. Fostering a more transparent and user-centric ecosystem.

Despite the advantages Solid may bring, it presents novel challenges with querying. The main chal-

lenge arises as a result of its large-scale decentralization. Compared to federated approaches that

deal with a relatively small number of sources, usually around 10, Solid involves a vast number

of sources, potentially reaching millions [26]. This exponential increase in decentralization poses

6

Chapter 2. Overview of Relevant Semantic Web Technologies

unique challenges for query processing.

Another notable complication that has been identified is due to the lack of statistics available prior

to query execution. The absence of statistics makes it difficult to perform accurate query planning.
Instead, query engines rely on heuristics to plan the queries effectively [14]. However, heuristics

may not always yield optimal query plans, leading to suboptimal execution times.

To overcome the limitations of heuristic-based query planning and improve query performance in

Solid environments, there is a need for adaptive query planning approaches (Section 4.3), which we
aim to address in this thesis.

7

3
Query Processing

3.1 Overview of Query Processing

Query processing is a fundamental aspect of executing SPARQL queries over Knowledge Graphs. It
involves three key steps: parsing, planning, and execution.

The first step, parsing, is where the SPARQL query string is transformed into an algebraic expression.
The second phase, the planning phase, transforms the algebraic expression into a query plan. A
query plan is a step-by-step manual that specifies the sequence of operations required to retrieve
the desired data. The planning phase is essential because queries are declarative, meaning they
state what needs to be done, but not how it should be done. Multiple ways exist to execute the
same query, and the planning phase determines the high-level approach used during execution.

After obtaining the query plan from the planning phase, there are still many ways to execute it. This
variability is part of the query execution phase, which involves carrying out the steps specified in

the query plan. While this phase is crucial for actualizing the query plan, this thesis’s primary focus

is contained within the planning phase.

It is worth noting that in adaptive systems (Section 4.3), such as the approach proposed in this
thesis, query execution and query planning are tightly intertwined. The adaptivity aspect allows

for dynamic changes to the query plan during execution, providing opportunities for optimization

based on ongoing data discovery and processing.

This thesis aims to incorporate adaptivity into the query process. By re-ordering join entries during

execution, thus changing the query plan adaptively, we seek to reduce query execution times. The

sequence in which joins are executed heavily influences the overall query execution time. In this

chapter, we delve into join operations and emphasize the importance of their proper ordering to

8

Chapter 3. Query Processing

optimize query execution efficiency.

3.2 Join Operations

In executing a query, the declarative query first gets converted to a query plan, which serves as a
blueprint or roadmap for the query engine to follow. The query plan specifies the order of executing
operations, such as filtering, sorting, and joining, to efficiently retrieve and combine the relevant

data.

As the query plan is often riddled with join operations, they play a crucial role in query execution.

There are different types of logical join operations, including inner join, optional join, andminus join
[9]. Each logical join has different semantics, implying distinct meanings and functioning methods.

Each logical join type can be implemented using multiple physical join algorithms. However, the
choice of physical join algorithms is the responsibility of the query engine, and we will not delve
further into physical join algorithms for the purpose of this thesis.

As a result of the prominence of join operations within the query plan, the efficiency of the query
process significantly depends on how the join operations are planned. In this work we will focus
on enhancing query performance by improving the planning of join operations through adaptive
techniques and leveraging pre-generated metadata. This section provides a brief introduction to
the key concepts and considerations related to join operations.

Consider the following SPARQL query:

S E L E C T * WHERE {
? s t a r t < e x : p 1 > ? p .
? p < e x : p2 > ? e n d .

}

This query requires two Triple Patterns to be joined.

1. ?start <ex:p1> ?p.
2. ?p <ex:p2> ?end.

A query engine can represent this as two join entries, each with bindings for specific variables:

• Join entry 1 with bindings for variables ?start and ?p
• Join entry 2 with bindings for variables ?p and ?end

9

Chapter 3. Query Processing

Joining these two entries results in an intermediary join operation that produces bindings for the

variables ?start, ?p, and ?end. The bindings in this intermediary operation will contain all existing
combinations of these variables based on the triples present in the two underlying join entries.

As an illustrative example of the join operation with example data, let’s consider the following
bindings for the two join entries:

• Join entry 1:
{ start: ”ex:s1”; p: ”ex:p1” }

{ start: ”ex:s2”; p: ”ex:p2” }

{ start: ”ex:s3”; p: ”ex:p3” }

• Join entry 2:
{ p: ”ex:p1”, end: ”ex:o1” }

{ p: ”ex:p1”, end: ”ex:o2” }
{ p: ”ex:p3”, end: ”ex:o3” }

If we determine the possible combinations of these join entries following the inner join semantics,
then we will obtain the following bindings:

• Joined bindings:
{ start: ”ex:s1”; p: ”ex:p1”; end: ”ex:o1” }
{ start: ”ex:s1”; p: ”ex:p1”; end: ”ex:o2” }
{ start: ”ex:s3”; p: ”ex:p3”; end: ”ex:o3” }

Note that the second binding of the first join entry does not appear in the final results. This is
caused by the value ”ex:p2” for the variable ?p not occurring in the second join entry’s bindings.

3.3 Significance of Join Ordering in Query Execution

Building on the previous example, this section illustrates the crucial role of join ordering in optimiz-
ing the efficiency of query execution in a Linked Data context. This example aims to illustrate that

the order in which join operations are performed can significantly alter how the data is processed,

without necessarily having an impact on result completeness or correctness. This change can influ-

ence the amount of computational effort required and the size of intermediate results generated

during the execution of a query.

10

Chapter 3. Query Processing

Consider the following SPARQL query, which consists of three Triple Patterns that need to be joined:

S E L E C T * WHERE {
? s t a r t < e x : p 1 > ? p .
? p < e x : p2 > ? q .
? q < e x : p3 > ? e n d .

}

Assume the following bindings for the join entries:

• Join entry 1:

{ s: ”ex:s1”; p: ”ex:p1” }

{ s: ”ex:s2”; p: ”ex:p2” }
{ s: ”ex:s3”; p: ”ex:p3” }

• Join entry 2:

{ p: ”ex:p1”, q: ”ex:q1” }
{ p: ”ex:p1”, q: ”ex:q2” }
{ p: ”ex:p3”, q: ”ex:q3” }

• Join entry 3:
{ q: ”ex:q4”, o: ”ex:o1” }
{ q: ”ex:q5”, o: ”ex:o2” }
{ q: ”ex:q6”, o: ”ex:o3” }

In the provided example, no triples are obtainedwhen joining entries 2 and 3, indicating that joining
entry 1 is unnecessary. Consequently, joining entries 1 and 2 as the first step would result in wasted
effort. By carefully selecting the order in which join entries are joined, we can reduce the generation
of intermediate results and avoid unnecessary work, which leads to faster query execution.

11

4
Related Work

The objective of this thesis is to address the performance limitations of Link-Traversal-based Query

Processing [11]. We extend this approach with a method of adaptively changing the query plan in

order to incorporate approximate join entry cardinalities into the query process. With this approach
we aim to improve the efficiency of the query execution process. While we focus our analysis and
evaluation on the Solid ecosystem, the concepts and techniques developed in this work may have
broader applicability to other decentralization initiatives.

To provide an understanding of the research landscape, it is important to explore existing work and
related research in this field. By examining the current state of research, we can identify gaps and
opportunities for further advancements. Moreover, it is crucial to outline the distinctive aspects of
my work and clarify why direct comparisons with existing approaches may not always be appropri-
ate. By highlighting these differences, we can establish the unique contributions of this thesis.

4.1 Link-Traversal-based Query Processing

Link-Traversal-based Query Processing (LTQP) [11] is a querying approach where Linked Data docu-

ments are queried over by following links between them. LTQP was introduced as a way to query

the Web of Linked Data as a globally distributed dataspace, without the need to first index it in a

single location [26]. In LTQP, the sources are not known in advance. Instead, it employs the follow-
your-nose principle of Linked Data during query execution, continuously adding new RDF triples to

a local dataset while discovering new sources by following links between documents. As noted in

[26], this integrated approach includes parallel source discovery and query execution. It differs from

traditional approaches, also called two-phase approaches, that require data retrieval and indexing

before query execution.

12

Chapter 4. Related Work

Compared to traditional query processing, integrated approaches like LTQP cannot rely on pre-

execution optimization algorithms that require prior dataset statistics. Instead, it uses a zero-
knowledge query planning technique [14] to order Triple Patterns based on link traversal-specific

heuristics.

LTQP overcomes the limitations of centralized repository approaches by treating the Web of Linked
Data itself as a distributed database. This approach allows for immediate query results, ensures

up-to-date data, and harnesses the potential of up-to-date data and data sources. Research in this
field focuses on optimizing query plans, as traditional pre-execution optimization algorithms are
not applicable in this context.

In the field of LTQP, there is ongoing research that specifically focuses on its application within Solid

environments, which is relevant to our use case. One notable finding from this work is that themain
area of improvement within LTQP is related to the query plan rather than the discovery of relevant
documents [26].

4.1.1 Ranking-Based Traversal for Querying Linked Data

In the field of index-based [15] Linked Data Query Processing, a notable paper focuses on prioritizing
URIs to speed up the retrieval of query results [16]. This approach aims to minimize response time
by estimating which links contain result-relevant data and processing them first.

It is important to highlight the difference between response time and query execution time. While
this paper primarily focuses on optimizing response times, which refers to the time required to

find a specific number of result elements, our work emphasizes improving query execution times.

Query execution time encompasses the time needed to complete the entire query execution process,

ensuring that all discovered documents are fully processed and all results have been emitted.

The paper under consideration investigates the impact of join orderings on the amount of interme-

diate solutions processed in different test webs or datasets. Surprisingly, the study concludes that

optimizing the local work, occurring after the data has been downloaded, has no measurable effect

on response times. It identifies the number of requests as being the most important factor in query

execution time.

13

Chapter 4. Related Work

4.1.2 Evaluation of Link Traversal Query Execution over Decentralized Envi-

ronments with Structural Assumptions

The paper presents a comparison between an integrated approach and a two-phase approach in

query execution. The two-phase approach acts as a theoretical case which is not feasible in prac-
tice. It makes use of an oracle which provides all query-relevant links which allows it to leverage

traditional optimize-then-execute [23, 25] query planning. In contrast to the two-phase approach,

the integrated approach relies on zero-knowledge query planning [14]. The two-phase approach is
on average two times faster compared to the integrated approach.

The superior performance demonstrated by the two-phase approach can be attributed to its ability

to perform traditional query planning, leveraging an indexed triple store with planning-relevant

information, including cardinality estimates. In contrast, the integrated approach relies on the zero-
knowledge query planning technique which employs heuristics to plan the query prior to execution.

The only difference between the integrated and two-phase approach explored in the paper lies
in their respective query planning strategies. This makes it evident that the query plan derived
by the integrated approach is highly ineffective. The performance comparison between the two
approaches demonstrates the potential for significant performance improvements, with the two-
phase approach performing twice as good on average. This highlights the need for improved query
planning in integrated execution.

To address this need for better query planning, our work aims to introduce adaptivity into the inte-
grated execution, resulting in a query plan that’s dynamically adjusted during query execution. This
allows for the integration of planning-relevant information discovered during query execution. By
incorporating adaptivity, we aim to decrease the performance gap between the two-phase and the

integrated query planning approach.

Another difference highlighted in the paper is the significance of cardinality estimates in the two-

phase approach, which contribute to its superior performance compared to the integrated approach.
This observation serves as a motivation for our research, as we aim to incorporate cardinality esti-

mates into the integrated query execution process.

4.2 Query federation

Query federation is a technique employed in distributed information systems to facilitate querying

over multiple heterogeneous data sources. In a query federation scenario, data sources can be

14

Chapter 4. Related Work

distributed across different locations and different types of interfaces. The primary objective is to

provide users with a unified way to retrieve information from distributed sources as if they were
part of a single source. Query federation differs from LTQP, which is specifically tailored for querying

over interlinked sets of Linked Data documents.

Traditional query federation approaches typically implement a two-phase approach, where data

retrieval and indexing are performed before query execution. In contrast, LTQP adopts an inte-
grated approach that includes parallel source discovery and query execution, eliminating the need

for separate data retrieval and indexing phases.

Recent work in the field of query federation has focused on addressing the problem of decompos-

ing a SPARQL query into sub-queries that can be executed by existing endpoints. Some approaches
let the decision rely on statistics collected from the sources, approaches also exist that simply con-

sider all possible sub-queries and choose the most promising ones. Other methods implement
heuristic-based solutions to identify the sub-queries that can be executed by the available sources
or endpoints [21].

Although research has been done to explore integrated approaches in query federation [20], most
query federation approaches use a two-phase approach. Therefore, traditional optimize-then-execute
techniques as they are often found in the optimization of SQL databases are applicable within this
field, allowing for more efficient optimization compared to the Linked Data context. Furthermore,
LTQP performs source discovery during query execution, while federated approaches assume prior
knowledge of the data sources. Consequently, the performance of query federation is not compa-
rable to that of LTQP.

4.3 Adaptive Query Processing

In traditional query processing, the optimize-then-execute paradigm may fall short in scenarios
where reliable cardinality estimates are unavailable. The process of cost estimation heavily re-

lies on accurate cardinality estimates of query sub-expressions. Despite various efforts to improve

statistics structures and data collection schemes, many real-world settings suffer from either inac-

curate or missing statistics [7]. Another issue that traditional query planning has in a Linked Data

context is the lack of upfront knowledge about the data sources. This limitationmakes it impossible

to apply the traditional optimize-then-execute approaches. Alternative approaches are necessary

to overcome these limitations.

Adaptive query processing (AQP) techniques have emerged as a solution to address the challenges

15

Chapter 4. Related Work

posed by missing statistics and unknown data sources. AQP techniques aim to find execution plans

and schedules that are well-suited to runtime conditions by leveraging runtime feedback and ad-
justing the plan or scheduling space [7] during execution. The objective is to achieve better response

times and more efficient CPU utilization.

4.4 Comunica

Comunica[10] is an adaptive query engine which performs part of its query planning during query
execution. This adaptivity is necessary as Comunica aims to query remote data sources, where

knowing all sources in advance and determining the optimal query plan in advance are impossible.
Instead, the choices for query planning are made as soon as the relevant information about the
sources becomes available [9].

The work presented in this thesis is situated within the context of an adaptive query engine, specifi-
cally within the query planner. The query planner plays a crucial role in optimizing query execution.
In subsequent sections, we will identify problems and goals within this context and present our
contributions. However, before going into more detail about our work, we will discuss relevant
related studies.

4.5 SPLENDID: Query federation optimization using statistical

data

SPLENDID [12] is a strategy for executing SPARQL queries over distributed data sources, addressing
the challenges ofmissing cooperation between SPARQL endpoints and the absence of data statistics
for estimating query execution plan costs. It enables transparent query federation over distributed

SPARQL endpoints and leverages statistical information from VOID descriptions to optimize query

execution times.

Unlike our approach, which focuses on the retrieval of pre-generated cardinalities, SPLENDID uses

dynamic programming for cardinality estimation. Dynamic programming is a technique commonly
employed in traditional relational databases for optimizing the order of join entries.

16

5
Basic Use Case

The objective of this thesis is to address the performance limitations of Link-Traversal-based query
processing [11]. We extend this approach with an adaptive method, changing the query plan during

execution in order to incorporate approximate Triple Pattern cardinalities into the query process.

In this chapter, we introduce a use case that involves SPARQL queries in a social network context.
The decision to utilize this specific use case was influenced by several factors. Firstly, data and
query generation tools, as well as server code were readily available in this context, facilitating the
creation and manipulation of datasets for experimentation. Additionally, the use case seamlessly
integrated with the query engine utilized in this thesis.

The benchmark used in this thesis, SolidBench, [26] builds upon thewell-established Social Network
Benchmark (SNB) [8, 5] which models a query workload and data structure as one would find in
a social network scenario. SolidBench adds a fragmentation layer on top of the SNB in order to
enable it to simulate decentralized workloads, where the data is spread across many Linked Data
documents. To illustrate the workload, In the appendix, we have provided examples of queries for

reference.

While the solutions presented in this work are specifically evaluated using this benchmark, which

simulates the context of Solid, it is important to recognize their generalizability to other Linked Data
environments. The approach of using approximate Triple Pattern cardinalities for improved query

planning may be applied to various Linked Data querying contexts, benefiting query performance

in diverse scenarios.

17

6
Problem Statement

When executing a query over decentralized data using Link-Traversal-basedQuery Processing (LTQP),

the generation of an efficient query plan is crucial. This plan typically involves many join opera-
tions that are responsible for connecting data from different sources. These join operations play
a significant role within link traversal query execution due to the heavily interlinked nature of the
data.

In practice, join orders in LTQP are chosen using a zero-knowledge query planning technique [14].
Due to the inherent lack of upfront information about the data in the context of LTQP, this choice
is often not optimal [26]. Results of this naivety include an excessive number of intermediate join
results, causing congestion in the pipeline.

All applications utilizing link traversal query engines to query decentralized data suffer from the

same problem since this issue arises in the query engine, which functions as part of their backend.

Addressing this issue could benefit LTQP as a whole, facilitating the transition to decentralized data.

The goal of this thesis is to investigate the advantages of exposing structural information about the

data pod to the query engine to be used during the query plan generation. The researchwill define a

suitable format for representing the structural information and propose an approach for discovering

this information during query execution. Additionally, this thesis will evaluate and compare ways

of incorporating the structural information into the query processing pipeline.

The objective of this thesis is to address the performance limitations of Link-Traversal-based query-

ing. [11] We extend this approach with an adaptive method, changing the query plan during execu-

18

Chapter 6. Problem Statement

tion in order to incorporate approximate cardinality estimates into the query process.

6.1 Approximating Triple Pattern Cardinalities Using Predicate

Cardinalities

Join operations occur on a Triple Pattern basis, meaning that each join entry corresponds to a triple
pattern and the efficiency of a join operation. The optimal order of join entries depends largely on

the cardinalities of the corresponding Triple Patterns.

To optimize the query plan, it would be ideal to have access to the cardinalities of each triple pat-
tern during the stage of sorting join entries. However, generating precise cardinality information

for every possible Triple Pattern is impractical due to the large number of potential combinations.
Considering the number of subjects, predicates, and objects as s, p, and o respectively, the total
number of possible Triple Patterns amounts to s * p * o.

Our work addresses the challenge of managing cardinality information for all possible triple pat-
terns by focusing on approximating Triple Pattern cardinalities. In the solution section of this the-
sis, we provide detailed explanations of our approach. However, for now, it is enough to emphasize
that we rely on predicate cardinalities as an alternative. One aspect of our work is to explore the
effectiveness of utilizing predicate cardinalities as a substitute for Triple Pattern cardinalities.

6.2 Research Questions

The main research question of this thesis is

• How much can we improve the efficiency of Link-Traversal-based Query Processing by in-
corporating adaptivity and Triple Pattern cardinalities into the query planning process?

To answer the main research question, several sub-questions need to be addressed:

1. Where can we place the predicate cardinalities to effectively leverage themwithin the query

execution process?

2. What are the most effective strategies of combining structural information with adaptive

querying techniques?

19

Chapter 6. Problem Statement

3. How do the proposed adaptive algorithms perform compared to the zero-knowledge query

planning technique [14]?

To address the sub-questions effectively, the following requirements need to be fulfilled:

• The first sub-question requires the extension of existing query execution algorithms to allow
discovery and utilization of structural information.

• The second sub-question calls for the development of one or more strategies of integrating

the available structural information into the query execution process.

• The third sub-question necessitates a comparison between the zero-knowledge approach

and at least one approach related to the second sub-question.

By the end of this work, these sub-questions and their corresponding requirements will have been
addressed. By doing so we can gain insights into how incorporating Triple Pattern cardinalities into
the query process can enhance the efficiency of Link-Traversal-based Query Processing.

6.3 Hypotheses

The following hypotheses have been formulated in relation to the research questions:

1. Storing a file with predicate cardinalities within a user’s Solid pod allows for the query en-
gine to discover it.

2. Extending the query planning approach with algorithms that are based on straightforward
concepts, restarting the join operation after a timeout, yields an improvement in the overall
query execution time of all queries by 10% or more.

3. There are situationswhere the overhead of restarting join operations outweighs the speedup

achieved by using cardinality estimates.

4. Restarting join entries to sort its entries based on Triple Pattern cardinalities counted during

execution improves zero-knowledge querying performance by at least 10%.

5. Sorting join entries with pre-generated predicate cardinalities outperforms zero-knowledge

query planning by at least 15% on average.

6. Combining approaches of restarting joins and using pre-generated predicate cardinalities

yields better query execution time than each approach individually.

20

Chapter 6. Problem Statement

These will be confirmed or rejected by the end of this work.

21

7
Solution

The core objective of this section is to present our solution for extending the Link-Traversal-based

query planning approach [11] with an adaptive method that utilizes approximate Triple Pattern car-
dinalities to optimize join operations. Our proposed approaches incorporate the concept of restart-
ing join operations and approximating Triple Pattern cardinalities with predicate cardinalities.

Central to our investigation is the exploration of different methods to obtain cardinality informa-
tion. We analyze the process of counting Triple Pattern occurrences as they appear during query
execution and examine the discovery of pre-generated predicate cardinalities. By comparing these
two separate approaches, we hope to identify the most suitable method for optimizing efficiency
and performance of Link-Traversal-based Query Processing.

7.1 Preliminaries

7.1.1 Elaboration on Cardinalities

In this section, we will delve into the concept of cardinalities, a critical aspect of our solution. It is
important to note that we deal with multiple types of cardinalities within the context of our work,

specifically predicate cardinalities and Triple Pattern (TP) cardinalities. This distinction has already

been touched upon in Section 6.1. In this section we elaborate on the difference and contextualize

it within this work.

While Triple Patterns and predicates both play essential roles in the RDF data model, they differ

significantly in their characteristics. Triple patterns are combinations of values or variables for

subject, object, and predicate, imposing a specific structure on triples. In contrast, predicates repre-

sent individual relationships between subject and object. As join operations (Section 3.2) primarily

22

Chapter 7. Solution

occur on Triple Patterns, knowing the exact cardinality of a Triple Pattern enables the query engine

to make accurate predictions regarding intermediate results during join operations. As a result, TP
cardinalities are an ideal criterion for sorting join entries and optimizing query performance.

While TP cardinalities are valuable, creating a file containing the cardinality of each possible Triple

Pattern is infeasible in practice due to the sheer volume of available combinations in a Solid pod.

To address this challenge, we turn to predicate cardinalities as a substitute. When joining two
entries, we work with the cardinality of each entry’s predicate as an approximation of the TP cardi-

nality. We investigate whether this approximation is sufficiently accurate to result in performance

improvements of query execution over Solid pods.

7.1.2 Counting Triple Pattern Cardinalities

As explained in detail in section 3.3, knowing how many Triple Patterns are associated with each
join entry is crucial for efficient join order implementation. However, due to the lack of upfront
information inherent to Link-Traversal-based query processing, this information is generally not
available. To address this limitation, we implemented a method of counting the occurrences of
Triple Patterns as they appear to allow the query engine to make informed join order decisions,
thus improving query execution times.

The first advantage of this approach is its independence from pre-generated predicate informa-
tion. Unlike predicate cardinalities, which rely on the availability of pre-discovered information,
the approach of counting Triple Patterns does not require any pre-existing data. This independence
enhances the flexibility and adaptability of the query engine, making it more suitable for handling
dynamic and evolving datasets in decentralized environments like Solid.

The second advantage of this approach is its striking a middle ground between the pre-generation

of Triple Pattern cardinalities and the use of predicate cardinalities. The former approach becomes

impractical due to the vast number of possible combinations, causing increased storage and com-
putation power requirements, while the latter approach was theorized to be potentially suboptimal

as predicate cardinalities may not as effective predictors of join result size and join complexity. By

counting Triple Patterns as they appear, we aim to harness the benefits of both worlds: obtaining

good cardinality estimates without incurring excessive processing overhead or requiring significant

additional disk space.

The counting Triple Pattern approach also comes with certain downsides. One significant drawback

is that the count needs time to warm up. It requires a time period to accumulate enough patterns

23

Chapter 7. Solution

being counted before it can be used to form accurate predictions.

This work aims to investigate the effects of the counting approach when paired with a mechanism

which restarts join operations after a certain amount of time. We benchmark different timeout
values over a number of distinct queries, measuring when results come in and how the overall

query execution time is affected. Further discussion can be found in Section [TODO ref].

7.1.3 Predicate Cardinality File Discovery

In this particular section, more details are provided about the cardinality file. We discover and access

its contents in order to obtain accurate predicate cardinalities, which serve as a summary over the
entire pod. Code to generate this file can be found at https://github.com/surilindur/catalogue. [13]

It’s important to note that while we obtain predicate cardinalities from this file, their practical

applicability in estimation join entry cardinalities during query execution might still be uncertain.
The reason being that the cardinality of a predicate may significantly differ between the pod as a
whole and the specific document we are currently accessing.

Below is an example document containing predicate cardinalities of a pod. This document includes
counts of the number of triples, distinct subjects, and distinct objects in the pod. It’s important
to note that these counts are currently not utilized in our implementation. However, they provide
valuable insights into the pod’s data structure and may be of use in the future.

Additionally, the document lists the number of predicates for which cardinalities are specified. Al-
though not used in our current implementation, this information could be helpful in estimating the
effort required to process the document effectively.

We leverage the VoID vocabulary [2] within our predicate cardinality file, as it was specifically de-
signed for expressing metadata about RDF datasets, making it an ideal choice for our purposes.

@base <http://localhost:3000/pods/> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

<pod> rdfs:type void:Dataset .
<pod> void:triples ”2936”^^xsd:integer . # This pod contains 2936 triples
<pod> void:distinctSubjects ”332”^^xsd:integer . # This pod contains 332 distinct subjects
<pod> void:distinctObjects ”110”^^xsd:integer . # This pod contains 110 distinct objects

<pod> void:properties ”1”^^xsd:integer . # This document lists the cardinality of one predicate

24

Chapter 7. Solution

<pod> void:propertyPartition _:df_0_36031 . # Definition a subset of the pod
_:df_0_36031 rdfs:type ”332”^^xsd:integer . # In this pod, predicate rdfs:type occurs 332 times

To locate the cardinality file, we built upon the card file, which contains profile details of the user
who owns the Solid pod. We extended this file with a link to the cardinality file. By using such a link,

we foster flexibility and customizability, giving each user the freedom to place their cardinality file

anywhere, as long as their reference is set up correctly.

For ease of implementation, we decided to create a predicate which is not part of the Solid vocab-

ulary. An example of the link within the card file can be found below.

@base <http://localhost:3000/pods/> .
@prefix solidt: <http://www.w3.org/ns/solid/terms#> .

<pod/profile/card#me> solidt:voidDescription <pod/profile/voiddescription> .

To ensure acquiry of relevant cardinalities without the overhead of accessing multiple indices, we
only access the predicate cardinality file of the pod where our search begins, rather than accessing
the indices of all pods encountered during the query process. However, it may be worthwhile to
look into discovering indices in each pod encountered during query execution. An aspect omitted in
our work due to time constraints.

7.2 General Explanation of the Different Configurations in Our

Solution

In this section, we present three distinct configurations that aim to improve query execution in
decentralized environments.

7.2.1 Configuration 1: Counting Triple Pattern Cardinalities & Timeout

The first configuration introduces a timeout mechanism that starts whenever a join operation is

initiated. During the join’s execution, Triple Pattern occurrences are counted as they appear, pro-

viding the potential for more accurate TP cardinality information to be available once the time

limit is reached. The join operation is then restarted, incorporating the newly acquired cardinality

information. For these tests, the cardinality sort algorithm is used in both phases.

25

Chapter 7. Solution

We have conducted tests using multiple different timeout values, which allows us to investigate the

tradeoff between the overhead and benefits of the restart mechanism. For each query, its optimal
timeout value was determined empirically, the results of which serve as a theoretically optimal

execution time within this approach.

One of the key advantages of the timeout approach, which leverages Triple Pattern cardinalities

counted during query execution, is its independence fromup-front information provided by the user.
This characteristic makes the approach widely applicable and holds promise for its effectiveness in
various contexts.

While this configuration offers a valuable comparison between the baseline approach and the po-

tential enhancement achieved through incorporation of counted Triple Pattern cardinalities, it’s im-

portant to acknowledge that determining the optimal moment for restarting join operations could
benefit from further research.

7.2.2 Configuration 2: Predicate Cardinality File

The second configuration, focuses on obtaining predicate cardinalities at the beginning of query
execution. In our experiments, each query starts from a Solid pod, which serves as the source
for fetching cardinalities. After having successfully retrieved cardinalities, subsequent execution
continues as usual, as the newly discovered cardinalities are used to sort future join entries. This
approach enables us to assess the impact of having access to the starting pod’s cardinalities right
from the outset.

The initial implementation of this approach closely resembled the timeout approach, with a call-
back mechanism to restart the join operation once a cardinality file was discovered. However, it

turned out that the cardinality file is discovered at the start of execution, rendering the callback

mechanism unused. Despite this, such an implementation does offer the advantage of adaptabil-
ity and extensibility, especially when combined with functionality to find each encountered pod’s

predicate cardinality file.

7.2.3 Configuration 3: Combining Predicate Cardinality File and Timeout

The third approach combines predicate cardinalities with TP cardinalities. We start our execution

by fetching predicate cardinalities from the Solid pod. During query execution, as Triple Pattern

cardinalities are counted, we use them when predicate cardinalities are not available for a given

26

Chapter 7. Solution

join entry. Similarly to Configuration 1, we evaluate the ideal timeout to assess the potential benefits

of this combined approach.

By exploring these three configurations, we lay the foundation for enhancing query planning and
execution in decentralized environments. The subsequent sections will provide further analysis,

evaluation, and discussions, showcasing the effectiveness of our solution and outlining potential
topics for future work.

27

8
Results

In this section, we tackle the research question ”How much can we improve the efficiency of Link-

Traversal-based Query Processing by incorporating adaptivity and Triple Pattern cardinalities into
the query planning process?”. We simulate Solid data vaults using the benchmark tool discussed
in Chapter 5, evaluating different approaches based on the implementation discussed in Section 7.
Our experiments take place within the decentralized environment provided by Solid, but findings
may be generalizable to other decentralized environments. We begin by introducing the design of
our experiment, after which we present our experimental results, followed by a discussion of our
results to answer our research question.

8.1 Experimental Design

We conducted an evaluation encompassing six distinct approaches, which includes the baseline
approach and a variation of it. The evaluated approaches are as follows:

• base_zero: Zero-knowledge based query planning. [14] Also referred to as baseline ap-
proach in the remainder of this document.

• base_card: Baseline approach, changed to employ a cardinality-based sort algorithm. This

approach was compared to the zero-knowledge query planning approach to assess its ef-

fectiveness.
• index_card: Extension to the baseline, making use of predicate cardinalities as detailed in

Section 7.2.2.

• index_zero: Index_card approach, instead equipped with zero-knowledge sort. We compare

this approach to index_card to able to verify the effectiveness of sorting join entries by

predicate cardinalities in isolation.

28

Chapter 8. Results

• count: Extension to the baseline which counts Triple Patterns and restarts joins, as detailed

in Section 7.2.1.
• count+index: count approach combined with index_card approach, as detailed in Section

7.2.3.

In our experimentation, we employed the SolidBench [26] benchmark described in Chapter 5. How-

ever, after testing the queries denoted by the benchmark as complex queries, we found that each
of them resulted in a timeout. As a result, we made the choice to omit these complex queries from
our analysis. We did execute all other queries from the benchmark as part of our investigation.

To evaluate an approach, we executed each query three times and calculated average metrics to

obtain reliable results with reduced noise. The measured metrics include timestamps of result ar-
rivals and the total execution time. To prevent excessively long query execution, we set a timeout
of 1 minute.

Our experiments were conducted on a 64-bit Pop!_OS 22.04 LTS machine equipped with an 8-core
Intel i7-10510U 1.80 GHz CPU and 16 GB of RAM. While the execution of queries over Linked Data
on the World Wide Web serves as the primary use case for the concepts discussed in this paper,
conducting experiments directly on the World Wide Web is impractical due its unpredictable nature.
Therefore, we executed our experiments in a controlled environment. Both the server serving the

Solid data and the client performing the queries were executed on the same machine.

8.2 Experimental Results

In our experimental evaluation, wemeasured the execution times for each query and configuration,

as shown in Table 8.1.

29

Chapter 8. Results

base_zero base_card index_zero index_card count count+index

discover-1-0 11072 12410 11170 2670 12704 4217
discover-1-1 531 551 547 484 792 520
discover-1-2 271 261 289 241 411 280
discover-1-3 9366 9549 11722 10843 9478 12217
discover-1-4 10268 11278 10526 3366 8671 4518
discover-2-0 13630 15230 17880 3198 14420 4107
discover-2-1 764 807 750 483 877 697
discover-2-2 392 399 425 322 414 394
discover-2-3 14467 14595 15038 13997 12515 9891
discover-2-4 13660 14558 16395 4297 12397 5181
discover-3-0 3 2 5 3 2 3
discover-3-1 2 1 6 60000 2 60000
discover-3-2 5 2 1 1 1 2
discover-3-3 8 10 5 60000 5 13
discover-3-4 6 8 4 4 4 6
discover-4-0 1 1 1 1 0 0
discover-4-1 1 1 1 1 0 0
discover-4-2 1 1 1 1 0 0
discover-4-3 1 1 1 1 0 0
discover-4-4 1 1 2 3 0 0
discover-5-0 3915 3999 3935 3781 3723 3992
discover-5-1 216 222 201 150 166 213
discover-5-2 116 135 117 102 105 113
discover-5-3 3396 3407 3375 3160 3240 3239
discover-5-4 3424 3439 3486 3334 3359 3401
discover-6-1 423 419 431 143 410 132
discover-6-2 260 285 296 111 248 106
discover-6-4 11980 12115 12930 8448 11440 8144
discover-7-1 445 458 488 190 450 156
discover-7-2 293 323 311 150 276 110
discover-7-4 18596 18700 20017 15044 9561 6640

Table 8.1: Execution time per query of each configuration

30

Chapter 8. Results

base_zero base_card index_zero index_card count count+index

discover-8-0 8355 60000 7218 25624 19270 25409

discover-8-1 11468 29084 8451 60000 13486 33157

discover-8-2 12945 15130 6231 15371 15377 14653

discover-8-3 18704 9413 36921 60000 10137 60000

discover-8-4 19160 60000 26702 60000 15865 60000
short-1-0 590 603 2081 5630 10 17

short-1-1 102 104 1053 2564 4 7

short-1-2 85 94 422 2181 9 9

short-1-3 852 824 60000 6160 7 9

short-1-4 438 441 60000 5351 5 6

short-2-0 60000 60000 60000 60000 5081 60000

short-2-3 60000 60000 60000 60000 7326 7525

short-3-0 60000 60000 60000 60000 5 4

short-3-1 60000 60000 60000 60000 19 6

short-3-2 60000 60000 60000 60000 8 34

short-3-3 60000 60000 60000 60000 6 11

short-3-4 60000 60000 60000 60000 28 262

short-4-0 12 9 9 16 7 7
short-4-1 6 5 4 7 393 1

short-4-2 13 10 9 11 12 6

short-4-3 13 11 14 18 134 193

short-4-4 1 1 1 1 4 0

short-5-0 352 321 415 434 232 385

short-5-1 326 305 339 405 2 5

short-5-2 676 682 746 782 207 428

short-5-3 279 247 314 313 4 11

short-5-4 308 298 337 372 302 433

short-7-0 60000 60000 60000 60000 26 12

short-7-1 60000 60000 60000 60000 12 10

short-7-2 60000 60000 60000 60000 357 24

short-7-3 60000 60000 60000 60000 34 84

short-7-4 60000 60000 60000 60000 82 103

Table 8.2: Execution time per query of each configuration (cont.)

31

Chapter 8. Results

The table denotes the best execution time per query in boldface. Queries for which each configura-

tion timed out were omitted for brevity.

Along with this table, we also plotted the execution time in function of different timeout values. An
example can be found in Figure 8.1, with more examples in Figures 1, 2, 3 in the appendix.

Figure 8.1: Optimal timeout value and execution time for query discover 1 in configuration timeout
without index

Table 8.3 presents the comparison of different approaches against the baseline. The first two
columns display the percentage of queries for which each approach exhibits execution times at
least 10% higher or lower than the baseline, while the last column displays the average improve-
ment in execution time as a fraction of the baseline approach’s performance.

% of queries

better worse average improvement

index_zero 12.00% 12.00% -7.86%

index_card 24.00% 16.00% -91472.15%
count 21.33% 13.33% -171.86%

count+index 28.00% 12.00% -73188.57%

Table 8.3: Percentage of queries with execution time of at least 10% better (resp. 10 worse) than

the baseline

As we delve into the results, we observe that some queries exhibit distinct patterns of execution

which can significantly impact the overall analysis. As such, we decided to base our further anal-

ysis of average execution time improvement on the representative subset of queries discover-1,

32

Chapter 8. Results

discover-2, discover-5, discover-6, discover-7. We recalculated the metrics from table 8.3, obtaining

the results shown in table 8.4.

% of queries

better worse average improvement

index_zero 0.00% 5.33% -6.79%

index_card 20.00% 1.33% 32.57%

count 5.33% 5.33% 0.23%
count+index 14.67% 1.33% 29.39%

Table 8.4: Percentage of queries from representative subset with execution time of at least 10%
better (resp. 10 worse) than the baseline

Figure 8.2 shows the amount of queries for which each approach had the best execution time.

Figure 8.2: Amount of queries where configurations are the fastest

33

Chapter 8. Results

8.2.1 Subsetting the Query Set

We carefully considered the inclusion of each query to ensure the reliability and accuracy of our
results. During this process, we identified certain query categories that warranted exclusion from

further analysis based on their characteristics. We outline the reasons for excluding these queries
below.

Queries with Very Low Execution Time: Some queries exhibited exceptionally low execution times

in the baseline configuration, namely discover-3, discover-4 and short-4. Due to this phenomenon,

even a minor variance in execution time, which might not hold much significance and could poten-
tially be attributed to chance or a minor disturbance, can result in a substantial percentage change

in execution time. Including these queries in our calculations severely skewed the averages, as dis-

played in table 8.5. Tomaintain the integrity of our findings and provide amore focused assessment,
we decided to exclude these queries from further analysis.

% of queries
better worse average improvement

index_zero 4.00% 8.00% -7.70%
index_card 20.00% 8.00% -104146.55%
count 8.00% 9.33% -192.84%
count+index 14.67% 8.00% -83330.31%

Table 8.5: Percentage of queries from representative subset and low execution time with
execution time of at least 10% better (resp. 10 worse) than the baseline

Queries Timing Out in the Baseline Approach: As shown in table 8.1, we observed that the base-

line approach experienced timeouts for certain query groups, namely short-2, short-3, and short-7.
As these timeouts obscure the real execution time and correct amount of results of the baseline
approach, we can’t compare this to other approaches. To ensure the trustworthiness of our results,

we made the decision to omit these queries from further consideration.

Short Queries with Incorrect Results During the course of our experimental evaluation, we en-

countered a limitation that necessitated the exclusion of certain short queries from the analysis.

Specifically, for queries short-1, short-3 and short-5 an implementation issue related to measuring

times resulted in incorrect results for the ”count” and ”count+index” approaches. As a result, includ-

ing these short queries in the evaluation would have introduced a significant bias and compromised

the integrity of our findings.

34

Chapter 8. Results

Query ”discover-8” with Distinct Behavior: During our analysis, an intriguing distinction emerged

regarding the behavior of query group ”discover-8”. This query exhibited higher execution times
with the index approach, significantly diverging from the other queries and causing a noteworthy

shift in the average execution time as shown in table 8.6. The reason for this difference might be

the fact that this query encounters multiple pods during it’s execution, it is the only query where
this happens and doesn’t result in a timeout in every configuration. This is something our imple-

mentation was not specifically tailored to. As such, the predicate cardinalities from the starting

pod would still be used to guide join order decisions, while the Triple Patterns are coming from the
new pod. This effect might be leading to counterintuitive join order decisions and resulting in a
heavy increase in execution time. In light of the significant impact of ”discover-8” on the overall

averages, we intend to exclude it from future evaluations to maintain the integrity and accuracy of

our results.

% of queries
better worse average improvement

index_zero 4.00% 8.00% -7.22%
index_card 20.00% 8.00% -15.33%
count 8.00% 9.33% -3.82%
count+index 14.67% 8.00% -8.59%

Table 8.6: Percentage of queries from representative subset and query ”discover-8” with
execution time of at least 10% better (resp. 10 worse) than the baseline

8.2.2 Discussion

Absence of Globally Optimal Timeout Value

In our counting-based approach, we utilize a timeout value to restart join operations after a certain

amount of time has elapsed. In the initial stages of our investigation, our goal was to identify

which timeout value would yield optimal query execution performance. However, as we analyzed

the results, it became evident that no single timeout value performed exceptionally well across all

queries.

Figures 8.1, 1, 2 and 3 illustrate the execution times recorded when using different timeout values.

Each figure focuses on 5 variations of a similar query structure, as detailed in Chapter 5. Table 1

shows the complete list of ideal timeout values.

35

Chapter 8. Results

Despite the similarity in query structures, each query exhibits a distinct optimal timeout value. One

cause could be the difference in data over which the query is executed.

This outcome emphasizes the absence of a universally optimal timeout value for all queries. In

fact, employing a singular timeout value across all join operations within a single query might be
unrealistic, given the distinct nature of each join operation.

Given these findings, instead of trying to find the timeout value leading to optimal results for all
queries, we determined the optimal timeout value individually for each query. This provided us with

a theoretical optimum, to which we then compared the performance of other approaches.

While this configuration offers a valuable insight into the potential enhancement achievable through

incorporation of counted Triple Pattern cardinalities, we propose exploring smarter approaches to

determine when to restart the query. We anticipate that, by replacing the timeout method with
more sophisticated strategies, query execution times can be improved beyond the optimumdemon-
strated in this thesis.

Interference in Timeout Measurements

As demonstrated in Table 1, a substantial number of queries exhibit high ideal timeout values. In
fact, in some of these queries the timeout value surpasses the execution time, which means that in
these cases, there is no occurrence of a join being restarted. We can conclude that these particular
cases reap no benefit from join operation restarts, which implies that the counted TP cardinalities,
acquired during join execution, adversely affect the join order when a restart is triggered.

However, this conclusion might be considerably influenced by the uniform application of the same

timeout value to all joins. For instance, a query possessing a join that would ideally benefit from

a 10ms timeout might exhibit better execution times when another timeout value is employed,
solely because the other join operations do not gain from restarting at the 10ms interval. This facet

requires more thorough investigation omitted in this work due to time constraints.

Analysis Within the Representative Subset

The results using the representative subset discussed in Section 8.2.1 clearly demonstrate that the

”index_zero” approach is less effective compared to the baseline approach. It shows a 10% per-

formance decline in 5.33% of the queries, while improving none of the queries by more than 10%,

resulting in an average performance decrease of 6.79%. These findings align with our assumption

36

Chapter 8. Results

that sorting join entries on estimated cardinality yields more favorable query plans. The evidence

supports the importance of considering cardinality information for achieving better query plans.

The ”index_card” approach stands out as the most effective among the evaluated techniques. On
average, it outperforms the baseline ”index_zero” approach by a substantial 32.57%. The results

demonstrate the significance of leveraging predicate cardinalities to improve query planning, on
the basis of these results we can accept hypothesis 5, saying that this approach performs 15% better

or more on average.

The findings indicate that the ”count” approach does not consistently lead to significant improve-
ments in query execution time. While it shows over 10% improvement in a small percentage of

queries (5.33%), this is negated by it’s decrease of 10% or more in 5.33% of the cases and the fact

that its overall average improvement is not favorable. This result allows us to reject hypothesis
4 which predicted improved performance. Furthermore, it suggests that counting Triple Pattern
cardinalities and restarting join operations to incorporate them alone may not be sufficient for
achieving effective adaptive querying.

The integration of the ”count” approachwith the ”index_card” approach, leading to the ”count+index”
approach, demonstrates an average improvement of 29.39% relative to the baseline approach. The
observed decrease in performance allows us to reject hypothesis 6, which suggested that ”count+index”
would outperform both ”count” and ”index_card”. The inclusion of the ”count” approach appears to
have an adverse impact on the positive effects offered by the ”index_card” approach. This finding
implies that the synergy between these approaches is not favorable.

Based on our experimental findings, we cannot accept hypothesis 3 stating that the overhead out-
weighs the merits of join restarting. While we expect the existence of overhead and expect it to
be too small to be significant, the determination of its actual impact remains a topic for future

investigation.

In conclusion, the results suggest that the ”count” approach is not an effective strategy for adaptive

querying, and its combination with the ”index_card” approach in the ”count+index” approach does

not yield promising results. Instead, the findings emphasize that the ”index_card” approach, which

considers pre-generated predicate cardinalities, is the most effective approach for improving query

performance in highly decentralized environments.

37

9
Conclusion

The primary objective of this thesis was to address the performance limitations of Link-Traversal-

based Query Processing (LTQP), caused by a lack of up-front information about the data sources.
To achieve this, we implemented different techniques of incorporating cardinalities to improve join
order decisions.

We compared diverse methods of acquiring cardinality information in order to identify the most
suitable one to enhance the efficiency and performance of Link-Traversal-based Query Processing.
This encompassed exploring the process of counting Triple Pattern occurrences during query exe-
cution on one hand, and examining the feasibility of utilizing pre-generated predicate cardinalities
on the other hand.

We introduced three configurations to optimize query execution in decentralized environments:

The ”count” configuration acquires Triple Pattern cardinalities by counting them during query exe-
cution, potentially offering more accurate cardinality information over time. Additionally, this ap-
proach lets join operations execute for a set amount of time, after which it restarts them, allowing

them to employ the counted Triple Pattern cardinalities.

In the ”index” configuration, we fetch predicate cardinalities from the starting Solid pod of each
query. These cardinalities assist in sorting join entries and optimizing query execution. The ap-

proach was implemented with a callback mechanism for increased extensibility.

The ”count+index” configuration combines predicate cardinalities with Triple Pattern cardinalities.

It starts with fetching predicate cardinalities from the Solid pod, after which it behaves exactly

like the ”count” method, counting Triple Pattern cardinalities and restarting join operations using

a timeout.

To validate our implementations, we simulated Solid data vaults using the benchmark tool dis-

38

Chapter 9. Conclusion

cussed in Chapter 5. We measured execution times of our approaches across a set of test queries.

By comparing these results to a baseline approach, we quantified the impact of our adaptive im-
plementations.

Informing join ordering decisions through pre-generated predicate cardinalities obtained from a

dedicated file within the Solid pod emerged as the most potent strategy for enhancing query ex-
ecution times. This affirmation underscores predicate cardinalities’ capacity to serve as effective

approximations of join entry cardinalities.

The count approach appears to perform similarly to what we would expect from random cardinality
assignment. As a result, combining this approach with the ”index” approach leads to performance

degradation. This outcome implies that solely relying on counting Triple Pattern cardinalities and

subsequently restarting join operations to incorporate them does not offer sufficiently accurate
cardinalities for guiding better join order decisions.

Our evaluation of the ”count” approach across different queries revealed an absence of a univer-
sally effective timeout value. Even queries with similar structures didn’t share a common optimal
timeout. This may be the result of differences in the data over which the queries are evaluated. We
conclude that applying a uniform timeout value for all queries, even for all join operations within a
query, is infeasible due to the differences between join operations and data specifics. Consequently,
we propose researching more intricate methods of determining the join restart timing.

With the pre-generated predicate cardinality files emerging as the most promising solution, we
were able to take a step forward toward managing the limitations posed by missing information
about the data when querying in heavily decentralized environments.

39

10
Future Work

In this chapter we discuss limitations of this research and provide avenues for future work.

10.1 Enhancing Restart Strategies for the Count Method

Since our initial exploration of the count approach didn’t yield significant improvements, it prompts
us to consider the possibility of refining this approach to enhance its results. A promising direction
for future investigation involves figuring out more sophisticated strategies to determine the op-
portune moment for restarting join operations. By moving beyond the timeout-based method into
methods which allow a different restart timing for each join, there’s potential to surpass the per-
formance demonstrated in this thesis. Discovering methods to improve this approach to a point
where it’s applicable in real-world scenario’s would enable performance improvements in a more
general case, without having to rely on the presence of user-generated structural information.

10.2 Refining the Combination of Index and Count Cardinalities

In our current investigation, our focus has primarily been on the pragmatic aspect of combining

index and count cardinalities. Our approaches prefer index cardinalities over counted cardinalities

whenever they are available, without extensively considering the distinction between the two types

of cardinalities.

However, an avenue for future work lies in the possibility of applying more intricate decision-

making into the combination. This could involve incorporating counted cardinalities into the ap-

proach, provided they have reached a certain level of accuracy during query execution. An important

question emerges: at what point in the execution canwe deem the counted cardinalities sufficiently

40

Chapter 10. Future Work

reliable to drive query planning decisions?

This future research direction opens up the possibility of creating a nuanced approach that dynami-
cally adapts its reliance on counted cardinalities based on their accuracy and usefulness. This could

lead to even more effective and finely-tuned adaptive query processing strategies, further advanc-

ing the realm of decentralized query optimization.

10.3 Cardinality File Discovery in Encountered Pods

Our exploration of index-based methods thus far didn’t extend beyond using the starting pod’s

cardinality file to guide join order decisions. While this approach provided improved performance,
future work offers the potential to take indices into consideration from each pod we encounter
during query execution, this would lead to an approach applicable in more scenarios.

We look to query discover-8 as a motivator for future research, as it is the only query that discov-
ers multiple pods during execution and doesn’t time out in all configurations. When the ”index”
approach is used, query discover-8 performs significantly worse than the baseline approach, dis-
tinguishing it from the other queries, which show the opposite trend. We expect that incorporating
usage of index files of encountered pods will solve these performance issues, thus making our ap-
proach more broadly applicable.

One approach to consider is executing a join restart whenever an index is discovered during query
execution. However, this approach may face obstructed query progress when applied to queries

that constantly traverse new pods, as the nature of these queries might trigger an exceedingly high

number of restarts.

Additionally, the presence of multiple pods could introduce complexities when considering joins

with entries drawing from various pods simultaneously. In these cases, the query process will need

to recognize that this is taking place and combine the cardinalities from the relevant pods accord-

ingly.

Despite the challenges, research in this direction could broaden the applicability of the optimization

41

Chapter 10. Future Work

approaches proposed in this thesis.

10.4 Evaluating the Impact of our ApproachesOnQueryResponse

Times

In this thesis, we evaluated each approach with themain focus on improving query execution times,

which is the time to fully process all discovered sources. We neglected query response times, the

time to generate a specific number of results, due to time constraints. However, the impact of our
research on query response times could be an interesting avenue for future work, as it is a metric
that significantly influences the perceived performance of an information system. Improvements in

query response times could improve the look of decentralized querying in the public’s eye, leading
to more widespread adoption.

10.5 Pre-generated Triple Pattern Cardinalities

We have acknowledged that an exhaustive list of Triple Pattern cardinalities is infeasible due to the
vast number of possible combinations in Solid pods. However, using the right compression tech-
niques, the size of a file containing Triple Pattern cardinalities might be considerably reduced. This
raises the question of whether Triple Pattern cardinalities lead to significantly better join order de-
cisions than predicate cardinalities, and whether this improvement is worth the resulting increased
storage usage.

If a lot of disk space is required to save Triple Pattern cardinalities, it may be beneficial to allow

users to decide their preferred method individually.

A promising method for reducing required disk space is through the utilization of characteristic

sets. [22] The characteristic set of a dataset G and subject s represents the set of predicates p
so that a triple s-p-?o exists in G (where ?o is variable). Approaches exist which enable effective

prediction of result cardinalities for specific join operations using only the characteristic sets of the

dataset. This approach capitalizes on the observation that datasets often utilizemultiple predicates

to describe the same subject, albeit with different objects, resulting in a relatively small number of

characteristic sets in real-world data sets. As a result, incorporating characteristic sets in the future

42

Chapter 10. Future Work

may allow for reduced storage requirements which facilitate the use of Triple Pattern cardinalities.

10.6 Assessing Approaches against Ground Truth Triple Pattern

Cardinalities

An interesting avenue for future exploration involves an in-depth determination of ground truth

Triple Pattern cardinalities and optimal join ordering on a per-join basis. Determining what pat-

terns of deviation emerge between the real cardinalities and the approximations could form a com-
prehensive guide for future research.

This endeavor could involve the creation of an oracle, providing the exact Triple Pattern cardinality

values measured for each join during an execution of the query. After collecting the oracle cardi-
nalities, they can be compared with the approximations used in our approaches.

A next step in this comparison could be to evaluate the ordering achieved by our approximations
against the theoretically optimal ordering provided by the oracle. The resulting insights could shed
light on the extent to which the techniques in this thesis, as well as future work, bridge the gap
toward optimal decentralized query execution.

43

References

[1] Sparql query language for rdf, 2008. URL https://www.w3.org/TR/rdf-sparql-query/.

[2] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing linked datasets with the void
vocabulary. URL http://www.w3.org/TR/2011/NOTE-void-20110303/.

[3] T. Berners-Lee. Linked data., 2009. URL https://www.w3.org/DesignIssues/LinkedData.html.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):24–26,
2001. ISSN 00368733, 19467087. URL http://www.jstor.org/stable/26059207.

[5] S. Cheng and O. Hartig. Lingbm: A performance benchmark for approaches to build graphql
servers (extended version), 2022.

[6] R. Cyganiak, D. Wood, and M. Lanthaler. Rdf 1.1: Concepts and abstract syntax., 2014. URL
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[7] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations and Trends® in
Databases, 1(1):1–140, 2007. ISSN 1931-7883. doi: 10.1561/1900000001. URL http://dx.doi.org/
10.1561/1900000001.

[8] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D. Pham, and P. Boncz. The
ldbc social network benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, page 619–630, New York, NY,
USA, 2015. Association for Computing Machinery. ISBN 9781450327589. doi: 10.1145/2723372.
2742786. URL https://doi.org/10.1145/2723372.2742786.

[9] Ghent University imec. Comunica: Adaptive query planning, . URL https://comunica.dev/docs/
modify/advanced/joins/.

[10] Ghent University imec. Comunica: A knowledge graph querying framework, . URL https://

comunica.dev/.

[11] Ghent University imec. Comunica: Link traversal, . URL https://comunica.dev/research/link_

traversal/.

[12] O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void descriptions. 2011.

[13] J. Hanski. Github: catalogue, 2023.

[14] O. Hartig. Zero-knowledge query planning for an iterator implementation of link traversal

44

https://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2011/NOTE-void-20110303/
https://www.w3.org/DesignIssues/LinkedData.html
http://www.jstor.org/stable/26059207
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://dx.doi.org/10.1561/1900000001
http://dx.doi.org/10.1561/1900000001
https://doi.org/10.1145/2723372.2742786
https://comunica.dev/docs/modify/advanced/joins/
https://comunica.dev/docs/modify/advanced/joins/
https://comunica.dev/
https://comunica.dev/
https://comunica.dev/research/link_traversal/
https://comunica.dev/research/link_traversal/

Chapter 10. References

based query execution. volume 6643, pages 154–169, 05 2011. ISBN 978-3-642-21033-4. doi:

10.1007/978-3-642-21034-1_11.

[15] O. Hartig. An overview on execution strategies for linked data queries. Datenbank-Spektrum,

13, 07 2013. doi: 10.1007/s13222-013-0122-1.

[16] O. Hartig and M. T. Özsu. Walking without a map: Ranking-based traversal for querying linked

data. 10 2016. doi: 10.1007/978-3-319-46523-4_19.

[17] A. Hogan, C. Gutierrez, M. Cochez, G. de Melo, S. Kirrane, A. Polleres, R. Navigli, A.-C. N. Ngomo,

S. M. Rashid, L. Schmelzeisen, S. Staab, E. Blomqvist, C. d’Amato, J. E. L. Gayo, S. Neumaier, A. Rula,

J. Sequeda, and A. Zimmermann. Knowledge graphs. synthesis lectures on data, semantics, and
knowledge. 2021.

[18] P. Honigman. The social linked data (solid) project of tim berners lee: An organizational
take. URL https://hackernoon.com/the-social-linked-data-solid-project-of-tim-berners-lee-
an-organizational-take-m94u3z74.

[19] J. Isaak and M. J. Hanna. User data privacy: Facebook, cambridge analytica, and privacy pro-
tection. Computer, 51(8):56–59, 2018. doi: 10.1109/MC.2018.3191268.

[20] X. Li, Z. Niu, and C. Zhang. Active discovery based query federation over the web of linked
data. In Y. Wang and T. Li, editors, Foundations of Intelligent Systems, pages 239–248, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-25664-6.

[21] G. Montoya, M.-E. Vidal, and M. Acosta. A heuristic-based approach for planning federated
sparql queries. ISWC 2012 Workshop on Consuming Linked Data, CEUR-WS.org 2012 CEUR
Workshop Proceedings, 2012. URL https://www.researchgate.net/publication/241277898_A_
Heuristic-Based_Approach_for_Planning_Federated_SPARQL_Queries.

[22] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estimation for rdf

queries with multiple joins. In 2011 IEEE 27th International Conference on Data Engineering,
pages 984–994, 2011. doi: 10.1109/ICDE.2011.5767868.

[23] M. Schmidt and G. Lausen. Foundations of sparql query optimization. pages 4–33, 12 2010.

[24] Solid team. Solid: Your data, your choice. URL https://solidproject.org/.

[25] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. Sparql basic graph pat-

tern optimization using selectivity estimation. In Proceedings of the 17th International Con-
ference on World Wide Web, WWW ’08, page 595–604, New York, NY, USA, 2008. Associa-

45

https://hackernoon.com/the-social-linked-data-solid-project-of-tim-berners-lee-an-organizational-take-m94u3z74
https://hackernoon.com/the-social-linked-data-solid-project-of-tim-berners-lee-an-organizational-take-m94u3z74
https://www.researchgate.net/publication/241277898_A_Heuristic-Based_Approach_for_Planning_Federated_SPARQL_Queries
https://www.researchgate.net/publication/241277898_A_Heuristic-Based_Approach_for_Planning_Federated_SPARQL_Queries
https://solidproject.org/

Chapter 10. References

tion for Computing Machinery. ISBN 9781605580852. doi: 10.1145/1367497.1367578. URL

https://doi.org/10.1145/1367497.1367578.

[26] R. Taelman and R. Verborgh. Evaluation of link traversal query execution over decentralized
environments with structural assumptions. 2023. URL https://arxiv.org/abs/2302.06933.

[27] The Guardian. Cambridge analytica’s blueprint for trump victory. URL https:

//www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-

for-trump-victory.

46

https://doi.org/10.1145/1367497.1367578
https://arxiv.org/abs/2302.06933
https://www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-for-trump-victory
https://www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-for-trump-victory
https://www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-for-trump-victory

Appendices

47

Appendix A: Execution Time per Timeout Value

Figure 1: Optimal timeout value and execution time for query discover 8 in configuration timeout
without index

Figure 2: Optimal timeout value and execution time for query discover 5 in configuration timeout

without index

Figure 3: Optimal timeout value and execution time for query short 7 in configuration timeout

without index

Appendix B: Optimal Timeout Values

count count+index

discover-1-0 2000 1000

discover-1-1 3 6000
discover-1-2 9 6000
discover-1-3 1000 100

discover-1-4 2000 3

discover-2-0 10 9
discover-2-1 9 6000
discover-2-2 9 6000

discover-2-3 1000 100
discover-2-4 10 1000
discover-3-0 6000 4000
discover-3-1 100 6000
discover-3-2 6000 6000
discover-3-3 1000 6000
discover-3-4 100 2000
discover-4-0 6000 10
discover-4-1 6000 2000
discover-4-2 6000 2000
discover-4-3 6000 2000
discover-4-4 6000 2000
discover-5-0 9 6000

discover-5-1 3 6000
discover-5-2 9 4000
discover-5-3 9 4000

discover-5-4 7 6000

discover-6-0 6000 6000

discover-6-1 7 10

discover-6-2 9 10

discover-6-3 6000 6000
discover-6-4 2000 10

discover-7-0 6000 6000

discover-7-1 3 7

discover-7-2 7 10

discover-7-3 6000 6000

discover-7-4 4000 1000

Table 1: Timout value yielding the lowest execution time per query and configuration

discover-8-0 100 10

discover-8-1 100 6000
discover-8-2 2000 9

discover-8-3 3 6000
discover-8-4 7 6000

short-1-0 7 10

short-1-1 3 3
short-1-2 7 7
short-1-3 3 3

short-1-4 3 1

short-2-0 1000 6000
short-2-1 6000 6000
short-2-2 6000 6000

short-2-3 4000 6000
short-2-4 6000 6000
short-3-0 3 7
short-3-1 10 3
short-3-2 3 10
short-3-3 3 7
short-3-4 3 3
short-4-0 6000 1000
short-4-1 4000 6000
short-4-2 10 7
short-4-3 7 2000
short-4-4 10 1000
short-5-0 10 3

short-5-1 7 7

short-5-2 10 1
short-5-3 3 10

short-5-4 7 1

short-6-0 6000 6000

short-6-1 6000 6000

short-6-2 6000 6000

short-6-3 6000 6000

short-6-4 6000 6000

short-7-0 10 10

short-7-1 10 9
short-7-2 10 9

short-7-3 3 9

short-7-4 7 1

Table 2: Timout value yielding the lowest execution time per query and configuration

Appendix C: Queries

Examples to illustrate the queries we evaluated.

All sub-queries of discover-1 have the following structure. The only difference is the card file refer-

enced.

P R E F I X r d f : < h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f − s y n t a x − n s # >
P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /

l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >
S E L E C T ? i d ? c r e a t i o n D a t e ? c o n t e n t WHERE {

? m e s s a g e s n v o c : h a s C r e a t o r < POD / p r o f i l e / c a r d #me > ;
r d f : t y p e s n v o c : P o s t ;
s n v o c : c o n t e n t ? c o n t e n t ;
s n v o c : c r e a t i o n D a t e ? c r e a t i o n D a t e ;
s n v o c : i d ? i d .

}

Listing 1: Structure of the discover-1 queries.

All sub-queries of discover-2 have the following structure. The placeholder POD is filled in with a
different pod in each case.

P R E F I X r d f : < h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f − s y n t a x − n s # >
P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /

l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >
S E L E C T ? m e s s a g e I d ? m e s s a g e C r e a t i o n D a t e ? m e s s a g e C o n t e n t WHERE

{
? m e s s a g e s n v o c : h a s C r e a t o r < POD / p r o f i l e / c a r d #me > ;
s n v o c : c o n t e n t ? m e s s a g e C o n t e n t ;
s n v o c : c r e a t i o n D a t e ? m e s s a g e C r e a t i o n D a t e ;
s n v o c : i d ? m e s s a g e I d .
{ ? m e s s a g e r d f : t y p e s n v o c : P o s t . }
UN I ON
{ ? m e s s a g e r d f : t y p e s n v o c : C ommen t . }

}

Listing 2: Structure of the discover-2 queries.

All sub-queries of discover-5 have the following structure. The placeholder POD is filled in with a

different pod in each case.

P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /
l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >

S E L E C T D I S T I N C T ? l o c a t i o n I p WHERE {
? m e s s a g e s n v o c : h a s C r e a t o r < POD / p r o f i l e / c a r d #me > ;
s n v o c : l o c a t i o n I P ? l o c a t i o n I p .

}

Listing 3: Structure of the discover-5 queries.

All sub-queries of discover-6 have the following structure. The placeholder POD is filled in with a
different pod in each case.

P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /
l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >

S E L E C T D I S T I N C T ? f o r u m I d ? f o r u m T i t l e WHERE {
? m e s s a g e s n v o c : h a s C r e a t o r < POD / p r o f i l e / c a r d #me > .
? f o r um s n v o c : c o n t a i n e r O f ? m e s s a g e ;
s n v o c : i d ? f o r u m I d ;
s n v o c : t i t l e ? f o r u m T i t l e .

}

Listing 4: Structure of the discover-6 queries.

All sub-queries of discover-7 have the following structure. The placeholder POD is filled in with a
different pod in each case.

P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /
l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >

S E L E C T D I S T I N C T ? f i r s t N a m e ? l a s t N a m e WHERE {
? m e s s a g e s n v o c : h a s C r e a t o r < POD / p r o f i l e / c a r d #me > .
? f o r um s n v o c : c o n t a i n e r O f ? m e s s a g e ;
s n v o c : h a s M o d e r a t o r ? m o d e r a t o r .
? m o d e r a t o r s n v o c : f i r s t N a m e ? f i r s t N a m e ;
s n v o c : l a s t N a m e ? l a s t N a m e .

}

Listing 5: Structure of the discover-7 queries.

All sub-queries of discover-8 have the following structure. The placeholder POD is filled in with a

different pod in each case.

P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /
l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >

S E L E C T D I S T I N C T ? c r e a t o r ? m e s s a g e C o n t e n t WHERE {
< POD / p r o f i l e / c a r d #me > s n v o c : l i k e s _ : g _ 0 .
_ : g _ 0 (s n v o c : h a s P o s t | s n v o c : h a s C omme n t) ? m e s s a g e .
? m e s s a g e s n v o c : h a s C r e a t o r ? c r e a t o r .
? o t h e r M e s s a g e s n v o c : h a s C r e a t o r ? c r e a t o r ;
s n v o c : c o n t e n t ? m e s s a g e C o n t e n t .

}
L I M I T 1 0

Listing 6: Structure of the discover-8 queries.

All sub-queries of short-5 have the following structure. The placeholder COMMENT_URL is filled in

with a different pod in each case.

P R E F I X s n v o c : < h t t p : / / l o c a l h o s t : 3 0 0 0 / www . l d b c . e u /
l d b c _ s o c i a l n e t / 1 . 0 / v o c a b u l a r y / >

S E L E C T ? p e r s o n I d ? f i r s t N a m e ? l a s t N a m e WHERE {
< COMMENT _URL > s n v o c : i d ? m e s s a g e I d ;
s n v o c : h a s C r e a t o r ? c r e a t o r .
? c r e a t o r s n v o c : i d ? p e r s o n I d ;
s n v o c : f i r s t N a m e ? f i r s t N a m e ;
s n v o c : l a s t N a m e ? l a s t N a m e .

}

Listing 7: Structure of the short-5 queries.

	List of Figures
	List of Tables
	Source Code
	Preface
	Introduction
	Outline

	Overview of Relevant Semantic Web Technologies
	The Semantic Web
	Resource Description Framework
	SPARQL
	Linked Data
	Solid

	Query Processing
	Overview of Query Processing
	Join Operations
	Significance of Join Ordering in Query Execution

	Related Work
	Link-Traversal-based Query Processing
	Ranking-Based Traversal for Querying Linked Data
	Evaluation of Link Traversal Query Execution over Decentralized Environments with Structural Assumptions

	Query federation
	Adaptive Query Processing
	Comunica
	SPLENDID: Query federation optimization using statistical data

	Basic Use Case
	Problem Statement
	Approximating Triple Pattern Cardinalities Using Predicate Cardinalities
	Research Questions
	Hypotheses

	Solution
	Preliminaries
	Elaboration on Cardinalities
	Counting Triple Pattern Cardinalities
	Predicate Cardinality File Discovery

	General Explanation of the Different Configurations in Our Solution
	Configuration 1: Counting Triple Pattern Cardinalities & Timeout
	Configuration 2: Predicate Cardinality File
	Configuration 3: Combining Predicate Cardinality File and Timeout

	Results
	Experimental Design
	Experimental Results
	Subsetting the Query Set
	Discussion

	Conclusion
	Future Work
	Enhancing Restart Strategies for the Count Method
	Refining the Combination of Index and Count Cardinalities
	Cardinality File Discovery in Encountered Pods
	Evaluating the Impact of our Approaches On Query Response Times
	Pre-generated Triple Pattern Cardinalities
	Assessing Approaches against Ground Truth Triple Pattern Cardinalities

	References
	Appendices

