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Abstract

The ground states of different Hubbard Hamiltonians are investigated with tensor networks by
placing them on cylinders and helices. The way these effective Hamiltonians can be obtained using
electronic structure methods is briefly explained, before expanding upon the theory behind tensor
networks. The Heisenberg model is used as a benchmark to evaluate the used methods. There is
an emphasis on the influence of using finite-size systems like cylinders and helices, together with a
discussion on spontaneous symmetry breaking.

The two-dimensional Hubbard model is examined for U{t ą 0. The competition of stripe order and
superconducting order is investigated. The results confirm previous calculations and show the
existence of filled stripes on a two-leg cylinder and half-filled stripes on a four-leg cylinder. The
density and pair correlation functions are fitted to obtain the Luttinger exponents. It is concluded
that bond dimensions D ą 2336 need to be used to resolve the competition between stripe and
superconducting order, which was not feasible within this thesis.

The benchmarked methods are then applied to the cuprates, a class of materials that can exhibit
high-temperature superconductivity. The one-band model of HgBa2CuO4 is investigated as a case
study. The charge density was modulated along the length of the cylinder, whereas pair-forming
was found along the circumference. The Luttinger exponents were fitted for a wide range of hole
doping levels δ, and showed that the phase is superconducting for δ P rδmin, δmaxs, where
4.45% ≲ δmin ≲ 12.47% and 24.25% ≲ δmax ≲ 30.36%. This is in accordance with the general form
of the phase diagram of the cuprates at zero temperature. It is also shown that this
superconductivity can coexist with stripe order.
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obtain the Luttinger exponents. It is concluded that bond
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I. Introduction

Superconductors have vanishing electrical resistance un-
der a certain temperature, called the critical temperature
Tc. They were first discovered by the Dutch physicist Heike
Kamerlingh Onnes in 1911, when he found that mercury
exhibits superconductivity with Tc = 4.2K [1]. Thus be-
gan the search for materials exhibiting superconductivity
at room temperature. A big step in this search was the dis-
covery of high-temperature superconductivity in 1986 [2].
Here, they found a critical temperature of 30K, the highest
at the time, for a system consisting of barium, lanthanum,
copper, and oxide, specifically BaxLa5−xCu5O5(3−y) with
x = 1 and 0.75 and y > 0. The original theory to de-
scribe superconductivity proposed by Bardeen, Cooper,
and Schrieffer, called BCS theory, failed to describe this
high-temperature superconductivity [3, 4]. A complete the-
ory of this effect is still missing, more than 40 years after
its discovery.

The La-Ba-Cu-O system where high-Tc superconductiv-
ity was first found is part of a more general class of mate-
rials called the cuprates. They consist of sheets of CuO2-
planes, which are shown in figure 1. Here, the d-orbitals
of the copper atoms are shown in red and form a square
lattice. The px and py-orbitals of oxygen are shown in
blue and are situated between two copper atoms. These
CuO2-planes are stacked on top of each other and are sep-
arated by insulating charge reservoirs, consisting of oxygen

and heavier elements. The conduction occurs within these
CuO2-planes, which makes it a 2-dimensional problem [5].
The copper d-orbitals and the oxygen p-orbitals are respon-
sible for the (super)conductivity.

Figure 1: A CuO2-plane [6].

The Hubbard model was proposed as a simple model
that could describe the cuprates. Despite its simplicity, ba-
sic questions about the ground state in different parameter
regimes of the Hubbard model remain unanswered. Only
in 1D, where the Hubbard model can be exactly solved
by the Bethe ansatz [7], have those questions been set-
tled. For higher dimensions, the only option is to resort
to numerical methods. Many new methods have been de-
veloped over the years to obtain the desired accuracy of
such quantum many-body problems. These methods in-
clude quantum Monte Carlo (QMC), density matrix em-
bedding theory (DMET), density matrix renormalization
group (DMRG), dynamical cluster approximation (DCA),
unrestricted coupled cluster theory, and tensor networks
[8]. These methods allowed us to explore the rich physics
inherent to the Hubbard model, and in recent years have
reached a consensus on the ground state in many of its
parameter regimes [9].

Figure 2 shows the current phase diagram of the non-
extended 2D Hubbard model at zero temperature as a func-
tion of doping for intermediate interaction strengths [9].
This shows great similarity with the experimental phase
diagram of the cuprates, which is the reason why the Hub-
bard model has been identified as a good model to describe
these materials. Many different phases have been identified
in both the cuprates and the Hubbard model, such as the
antiferromagnetism, stripe order, d-wave superconductiv-
ity, and the Fermi liquid [10–13].

Figure 2: The phase diagram of the Hubbard model at zero
Kelvin for intermediate interaction strengths [9]

The Hubbard model can be extended by introducing ex-
tra terms with new parameters, which will be introduced



in the next section. In order to accurately describe the
cuprates with an extended Hubbard model, a reliable way
to calculate its parameters is needed. This can be done by a
procedure called downfolding. First, a calculation based on
density functional theory is performed. For strongly corre-
lated systems such as cuprates, this does not yield reliable
results on the electronic structure. However, the strong
electron correlations which DFT can not describe, occur
only for a few electron states in the many-electron system.
Methods like the constrained random phase approximation
[14–16] and the constrained GW approximation [17, 18]
can predict parameters for the (extended) Hubbard model.
This Hubbard model is an effective Hamiltonian describ-
ing these few states, taking into account the interactions
between these states, as well as the interactions with the
neglected states [18].

In this thesis, we try to solve these low-energy effective
Hamiltonians for the strongly interacting states using ten-
sor networks. For this, the physical Hilbert space of the
tensors is based on the occupancy of localized orbitals cen-
tered on the atoms, namely the maximally localized Wan-
nier functions (MLWF). Using this basis allows for a lat-
tice description of the system with local, finite-dimensional
Hilbert spaces.

Section II will introduce the different models and meth-
ods. Section III applies these to the two-dimensional
Heisenberg and Hubbard model, together with the one-
band model of HgBa2CuO4. Finally, a conclusion is given
in section IV.

II. Methods

A. The Heisenberg model

The Heisenberg XXX model has only nearest-neighbor
interactions with interaction Hamiltonian

Hij = S⃗i · S⃗j (1)

with Si the spin operator on site i. In 1D, this can describe
a chain of spin- 12 particles [19–21].

B. The Hubbard model

The Hubbard model was proposed in 1963 as a simple
model describing interacting fermions on a lattice by Hub-
bard, Kanamori, and Gutzwiller [9]. It is defined as [9, 22–
24]

H = −
∑

i,j∈Λ

∑

σ

tij

(
c†iσcjσ + c†jσciσ

)
+
∑

i∈Λ

Uini↑ni↓ (2)

i and j denote sites on a lattice Λ. c†iσ is the creation
operator for an electron with spin σ on site i. niσ is the
number operator and counts how many electrons of spin σ
are present on site i. The sites have an interaction strength
Ui and sites i and j interact with a hopping term tij . For
the translationally invariant case, Ui = U and tij = t. This
is the simple Hubbard model, which can be extended to in-
clude further-reaching hopping terms and off-site repulsive
interactions of the form

HV =
∑

i,j∈Λ

Vijninj (3)

The ground states of these Hamiltonians have been calcu-
lated using the Variational Uniform Matrix Product State
(VUMPS) algorithm [25, 26].

C. Describing the cuprates

The one-band model of the cuprates is a model in which
only the d-orbitals of copper are taken into account explic-
itly. It is a Hubbard model with nearest-neighbor and next-
to-nearest neighbor hopping, and nearest-neighbor off-site
Coulomb interaction terms. The Hamiltonian is given by

H = − t
∑

⟨ii′⟩σ

(
c†iσci′σ + h.c.

)
− t′

∑

⟨⟨ii′⟩⟩σ

(
c†iσci′σ + h.c.

)

+ U
∑

i

niσniσ + V
∑

⟨ii′⟩σσ′

niσni′σ′ (4)

Here, ⟨· · · ⟩ denotes nearest-neighbor interactions and
⟨⟨· · · ⟩⟩ denotes next-to-neighbour interactions, i.e. interac-
tions along a diagonal. The one-band model is visualized
in figure 3. Doping a cuprate changes the electron filling f
of the Hubbard model.

Figure 3: Definition of the hopping terms of the one-band
Hubbard model with the appropriate conventions. V -terms
act on the same locations as t-terms.

D. Modelling two-dimensional systems

In 1D, tensor networks represent the quantum many-
body state as a Matrix Product State (MPS). Even though
this MPS description is one-dimensional, it can neverthe-
less be used to describe two-dimensional systems by wrap-
ping it around a cylinder. The 2D system is made 1D by
considering a chain of lattice points looping around the
cylinder, thus perfect for the MPS language. Each site in
the bulk i is connected to the sites i + 1,i− 1, i + N , and
i−N , where N is called the circumference of the cylinder.
The system is still infinite in the x-direction, but finite in
the y-direction. This is shown in figure 4. Either peri-
odic or spiral boundary conditions can be applied along
the y-direction, corresponding to cylinders and helices re-
spectively.

E. Extrapolation to bond dimension D → ∞
An MPS has a certain bond dimension D, which is re-

lated to the accuracy of the description. For accurate re-
sults, this should be infinite. In numerical calculations,
however, D has to be finite, and thus a way of extrapolat-
ing the results to D → ∞ is needed.



Figure 4: 2D system wrapped around a cylinder [27]

A possible way to do this is by looking at the transfer
matrix, which is a tensor that can be calculated based on
the ground state MPS [26]. The eigenvalues of this transfer
matrix can be written as

λn = e−(ϵn+iθn) (5)

where ϵn, θn ∈ R and ϵm ≥ ϵn, if m > n. Normalisation
fixes ϵ1 = 0 and θ1 = 0. ϵ2 is related to the effective cor-
relation length as ϵ2 = 1/ξeff, and θ2 captures the leading
oscillations of the correlation function. These definitions
are visualized in figure 5.

In theory, this spectrum should have a gap to ϵ2, after
that possibly some separate bands, and eventually a con-
tinuum. Due to the finite bond dimension used in the cal-
culations, this continuum will be discrete. Deviations from
the continuum, and by extension deviations from infinite
bond dimension, can thus be characterized in the variable
δ

δ = ϵ3 − ϵ2 (6)

If the system is degenerate and ϵ2 = ϵ3, then δ42 = ϵ4 − ϵ2
can be used instead.

Figure 5: Visualization of the extrapolation measure

The bigger the bond dimension, the closer the spectrum
will be to a continuum, and the smaller δ will be. This
δ can be used in a scaling hypothesis [28], where it is as-
sumed that an observable g obeys the following function

g(δ) = ge + aδb (7)

where ge is the extrapolated value. b is usually close to
1, allowing for a linear fit in many cases. Alternatively to
δ, the inverse bond dimension 1/D can also be used as an
error measure [28].

F. Determination of the phase

To determine whether the ground state is superconduct-
ing in the 2D model, the Luttinger exponents of the pair
and charge correlation functions N(r) and Φαβ(x) are cal-
culated. These correlation functions correspond to the op-
erators

Φαβ(x) =
1

N

N∑

y=1

〈
∆†
α(x0, y)∆β(x0 + x, y)

〉

N(r) = ⟨n̂in̂i+r⟩ − ⟨n̂i⟩ ⟨n̂i+r⟩
(8)

∆†
α(x, y) is the spin-singlet pair-field creation operator, de-

fined as [29, 30]

∆†
α(x, y) =

1√
2

(
c†(x,y),↑c

†
(x,y)+α,↓ − c†(x,y),↓c

†
(x,y)+α,↑

)
(9)

These correlation functions can be used to determine the
charge and pair Luttinger exponents Kρ and KSC as

N(r) ∝ r−Kρ

Φyy(x) ∝ x−KSC
(10)

The ground state is said to be superconducting when
KSC < Kρ, whereas it exhibits stripe order and charge
density waves (CDW) when KSC > Kρ [29, 31].

The correlation functions can be fitted by subdividing
the logarithm of the distances r in bins, and calculating
the maximal value of the correlation function within that
bin. These maximal values together with their respective r-
values are then used in a linear log-log fit to obtain the Lut-
tinger exponent. The bin widths correspond to the biggest
difference between successive local maxima of the correla-
tion function. This procedure is similar to the method used
in references [30, 32]. Only the range beyond the short-
range effects and before the onset of exponential decay is
considered.

G. Filling fraction

The filling fraction FF of a CDW is defined as

FF = δλCDW (11)

FF = 1 and FF = 1/2 correspond to filled and half-filled
stripes, respectively.

III. Results

A. 2D Heisenberg model

The 2D Heisenberg model defined in (1) can be used as
a benchmark, since there exists considerably more consen-
sus on this model than the Hubbard model [33–35]. The
ground state energy of cylinders and of helices were calcu-
lated for various values of the circumference N . Figure 6
shows that the ground state energy indeed approaches the
correct value for large circumferences, while the smaller
systems can show significant deviations.

Figure 6: Ground state energy per site of the 2D XXX
Heisenberg model for helices and cylinders. The 2D value
is taken from [36].



B. 2D simple Hubbard model

The simple Hubbard model only has nearest neighbor in-
teractions and was simulated using the U(1)⊗SU(2)⊗fZ2
symmetry. For U/t = 8 and f = 7/8, CDWs are seen,
which have a charge modulation along the x-direction and
are uniform along the y-direction. For N = 2 cylinders, a
CDW with period λ = 8 is found, whereas the period is 4
for N = 4. These results correspond to filled and half-filled
stripes, respectively, and are shown in figure 7. The same
conclusions were drawn in references [29, 37–39]. The re-
sults are reproduced without imposing the U(1) symmetry
for the charge sector, to make sure the number of rungs
does not influence the resulting period. The eigenvalues
of the transfer matrix are used for this and are shown in
figure 8. These confirm that a CDW with period λ = 8
exists for N = 2.

(a)

(b)

Figure 7: Hole occupancies for the simple Hubbard model
with t = 1, U = 8, and f = 7/8 on a 8-rung cylinder with
(a) N = 2, D = 600 and (b) N = 4, D = 767.

To determine the phase of the simple Hubbard model,
the density and pair correlation functions were calculated
and their Luttinger exponents were fitted. This was done
by imposing the SU(2) ⊗ fZ2 symmetry. Figure 9 shows
the results.

The Luttinger exponents from these fits can be extracted
from calculations at different bond dimensions, and are ex-
trapolated using (7). The results are given in figure 10.
For the extrapolation of Kρ, b was set to 1. Unfortunately,
the 95% confidence intervals of the Luttinger exponents
overlap, so it can not be determined which correlations are
dominant. This is a result of the strong competition of

Figure 8: Spectrum of the transfer matrix for the simple
Hubbard model with t = 1, U = 8, and f ≈ 7/8 on a
cylinder with N = 2 and 1 rung, using the SU(2) ⊗ fZ2
symmetry and D = 2336. The dashed lines correspond to
multiples of θ = π

4 = 2πδ.

(a)

(b)

Figure 9: Fit of the (a) density and (b) pair correlation
function for the simple Hubbard model with t = 1, U = 8,
and f ≈ 7/8 on a cylinder with N = 2 and D = 2336

stripe and superconducting order. The heaviest calcula-
tions used D = 2336, and performing these calculations for
even higher bond dimensions was not feasible due to the
limited computational resources.



Figure 10: Luttinger exponents of the simple Hubbard
model with t = 1, U = 8, and f ≈ 7/8 together with
their extrapolation and error bars. Only the five most ac-
curate calculations are used to obtain Kρ for better results.

C. one-band model of HgBa2CuO4

The one-band model of HgBa2CuO4 was investigated as
a case study. The parameters of (4) for this cuprate were
taken from [40]. The hole occupancies for N = 4 are shown
in figure 11. This shows that there is charge modulation
with a period λ = 4 along the x-direction, while there is
pair-forming along the y-direction.

Figure 11: Hole occupancies for the one-band model on a
cylinder with N = 4 at f = 7/8 and D = 300

In the same way as for the simple Hubbard model, the
density and pair correlation functions are fitted and the
corresponding Luttinger exponents are calculated. They
are then also extrapolated as a function of δ. Figure 12
shows the result for two values of the electron filling. It is
concluded that for f = 0.8732, the phase is SC, whereas for
f = 0.9555 it is a CDW. By varying the electron filling, a
phase diagram of the one-band model of HgBa2CuO4 can
be constructed. This is shown in figure 13.

It is interesting to look at the eigenvalues of the trans-
fer matrix for the various values of the electron filling to
see whether there exists a spatial modulation. Figure 14
shows the results. It is seen that these are consistent with
filled stripes. This holds for all the values for electron fill-
ing that were considered, i.e. f ∈ [0.6254, 0.9555]. These
results point to the coexistence of stripe and superconduct-
ing order, or to the presence of pair density waves [41].

(a) f = 0.8732

(b) f = 0.9555

Figure 12: Luttinger exponents of the one-band model of
HgBa2CuO4, together with their extrapolation and error
bars.

IV. Conclusion

Tensor networks were discussed as a reliable way to inves-
tigate high-temperature superconductivity in the cuprates.
The Hubbard model was introduced, together with possi-
ble extensions using further reaching hopping terms and
off-site repulsive interactions. The one-band model of the
cuprates was presented as a minimal model to investigate
high-temperature superconductivity. It was explained how
a two-dimensional system can be investigated by placing it
around a cylinder, while applying either periodic or spiral
boundary conditions. It was described how different calcu-
lations at different finite bond dimensions can be used to
postulate a scaling hypothesis. This allows us to extrapo-
late the results to infinite bond dimensions to obtain more
accurate results. The pair and charge correlation functions
were defined. It was demonstrated that the Luttinger ex-
ponents of these correlation functions can be used to de-
termine what the dominant correlations are.

The different methods were benchmarked by looking at
the two-dimensional Heisenberg model. It was seen that
using large values of the circumference can lead to accurate
results on the energy of the two-dimensional system, while
smaller systems can show considerable deviations.

The two-dimensional Hubbard model was investigated
with an emphasis on the competition between stripe order
and superconductivity. For U/t = 8 and f = 7/8, filled



Figure 13: Sketch of the phase diagram of the one-band model of HgBa2CuO4 in function of the hole density δ = 1− f .
The phase transitions are simply said to occur in the middle between two successive data points.

Figure 14: Eigenvalues of the transfer matrix for f =
0.8010 for the one-band model of HgBa2CuO4 and D =
1460. The results that are expected for filled stripes are
denoted by black dashed lines.

stripes were seen for N = 2, whereas half-filled stripes were
seen for N = 4. The charge and pair correlation functions,
together with the corresponding Luttinger exponents, were
calculated to determine the ground state phase. It was
concluded that bond dimensions D > 2336 are needed to
resolve their competition.

Lastly, the one-band model of HgBa2CuO4 was inves-
tigated in the same way as the two-dimensional Hubbard
model. This showed that the model is superconducting
for δ ∈ [δmin, δmax], where 4.45% ≤ δmin ≤ 12.47% and
24.25% ≤ δmax ≤ 30.36%. It was also shown that this
superconducting phase can coexist with stripe order. This
allowed us to sketch a phase diagram, which shows strik-
ing similarities with the experimental phase diagram of the
cuprates.
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1 Introduction

Superconductors are materials that have a vanishing resistance below a certain critical tempera-
ture. They can then conduct current without energy loss, a property that would be very useful in
modern technology. Furthermore, the lack of energy loss also means that very high currents can be
conducted. This technology is being used in certain high-tech applications like CERN and ITER,
where high magnetic fields are needed. However, the problem with all these superconductors is
that the critical temperature is significantly colder than room temperature, thus needing coolants
like liquid nitrogen or helium. The holy grail in the field of superconductivity is hence to find a
material that remains superconducting up to room temperature and at ambient pressure. A class of
materials that currently shows the highest critical temperature are the cuprates, consisting of layers
of copper and oxide. The mechanism behind this high-temperature superconductivity is different
from the Bardeen–Cooper–Schrieffer (BCS) theory that applies to other superconductors, however,
and is still not fully understood. To get more insight into this mechanism, the (electronic) structure
of the cuprates needs to be investigated. This is a quantum many-body problem in which many of
the electrons in the cuprate interact strongly with each other, and is thus far from a trivial task.

The quantum many-body problem has been a central problem in physics for a long time. The main
problem in solving it is the fact that the Hilbert space associated with it scales exponentially in the
system size. Since it is generally infeasible to find the ground state in such a large Hilbert space,
the question arises whether the ground state wave function could be approximated or described in
a condensed way. This condensed description should have far fewer parameters to be able to find it
classically, while still allowing measurable quantities to be calculated accurately and efficiently from
it. This ground state can then be found by a variational method, where the full Hilbert space is
approximated by a low-dimensional manifold in which the energy is minimized. If the ground state
in the full Hilbert space is well approximated by the one in the variational manifold, the problem is
solved.

One of the first variational techniques in many-body physics was the Hartree-Fock (HF) method
[1, 2]. Here, the Born-Oppenheimer (BO) approximation is assumed, which treats the motions of
the nuclei and the electrons separately [2, 3, 4, 5]. Furthermore, HF assumes that the states of
the variational manifold are single Slater determinants, which are fully antisymmetric product-like
wave functions. Being a product state, the electron correlations are thus neglected. Because of
these approximations, the properties derived from the HF formalism are in many cases not accurate
enough.

An improvement on HF came with the development of density functional theory (DFT) [5, 6, 7, 8].
DFT tries to solve the problem of the exponentially large electronic Hilbert space by not looking for
the wave function, but by looking for the electron density. In a system with N electrons, each electron
has three degrees of freedom, and the full wavefunction is thus a function of 3N parameters. Since
the electron density is only a function of three spatial directions, this serves as a huge simplification
of the complexity of the solution. Due to the Hohenberg-Kohn theorems, DFT is formally exact,
and the only approximations that need to be made are due to the unknown exchange-correlation
functional. This proves that condensed ways of describing many-body wave functions do not neces-
sarily introduce errors [5, 6, 7, 8].
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DFT turned out to be a big improvement on HF, mostly because it incorporated electron corre-
lations. However, because of the problem mentioned above, namely the fact that DFT relies on
approximations of the exchange-correlation functional, these correlations are still not taken into
account accurately. This explains why materials in which electron correlations are amongst the
dominant factors, such as cuprates, are not well described by DFT.

The problem with both HF and DFT is that they approximate the true electron-electron interactions
with average potentials [1, 2, 5, 8]. Electron entanglement is thus not well described. The problem is
the one of locality. Electrons and their interactions are inherently local, whereas average potentials
act at a distance and are defined in such a way as to mimic these local interactions. A way to amend
this is to introduce objects in a local Hilbert space, which carry additional entanglement degrees of
freedom (DOF), which can describe the interactions between these local objects.

That is where tensor networks (TN) come in [9]. Here, the full wave function is described by a
network of interconnected tensors. These will have both physical and entanglement DOF, thus con-
necting the two. They will correspond to a physical and virtual Hilbert space, respectively. The
entanglement will be defined between two neighboring tensors, but will nevertheless be able to carry
long-range correlations. The set of states that can be described by TN is the variational manifold
contained in the much bigger Hilbert space. They will obey an area law for entanglement and can
be efficiently represented with TN [10, 11, 12, 13]. Finding the ground state tensor within this
manifold relies on efficient variational algorithms developed over the years, such as (infinite) Density
Matrix Renormalization Group ((i)DMRG) [14, 15], Corner Transfer Matrix Renormalization Group
(CTMRG) [16, 17], and Variational Uniform Matrix Product States (VUMPS) [18, 19]. Both the
local and global properties of the ground state of the system can then be calculated based only on
this tensor.

TN can not only be useful for materials science, but have also helped the description of more funda-
mental 1D and 2D systems, where entanglement has prohibited mean field methods to give accurate
results. The monogamy property of entanglement is an important notion in this regard [9, 20, 21].
It says that the more entanglement a site has with a second site, the less entanglement it can have
with a third site. As a result, the more neighbors a site has, the less entanglement it can have with
each neighbor. Entanglement thus has a bigger influence in 1D and 2D systems than in 3D, and
mean field methods are especially problematic in 1D and 2D. There, it was discovered that, under
the influence of entanglement, many different phases can exist, like superconductivity, Néel order,
etc. The classification of these phases can prove useful in the current discussion, since it can give
qualitative information on the system under investigation. The emergence and competition of the
different phases, together with their phase transitions, can give new insights into the fundamental
mechanisms behind e.g. high-temperature superconductivity.

DFT is a very mature theory that can describe 3D materials to sometimes impressive accuracy, while
suffering from electron-electron correlations. TN, on the other hand, can handle entanglement well,
but most of the research is being done on 1D and 2D toy models and not on 3D systems of real
materials, due to the computational complexity. One could ask if these two seemingly very different
descriptions of reality can be complemented, and thus whether a framework can be devised that ex-
ploits the advantages of each description. That is the goal of the project of which this thesis is a part.

Luckily for us, the strong electron correlations because of which DFT fails, occur only for a few
states in a material, not per se for all states. Methods exist that can devise effective Hamiltonians
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describing these few states, taking into account the interactions between these states, as well as the
interactions with the neglected states [8]. This is a procedure called downfolding and this will be a
very important part of the project. Downfolding is based on the theory of renormalization group [8,
22], and some of the approaches to make the calculations computationally feasible are constrained
local-density approximation (cLDA) [23, 24, 25, 26], linear response approach [27], constrained ran-
dom phase approximation (cRPA) [23, 28, 29], and constrained GW approximation (cGW) [30, 8].

This thesis, on the other hand, tries to solve these low-energy effective Hamiltonians for the strongly
interacting states, which can be done by TN. For this, the physical Hilbert space of the tensors
will be based on the occupancy of localized orbitals centered on the atoms, namely the maximally
localized Wannier functions (MLWF) [8]. Using this basis allows for a lattice description of the
system with local, finite-dimensional Hilbert spaces, which does not have to take the underlying
continuous system into account explicitly. The only things that need to be known are the structure
of the lattice and the effective Hamiltonian defined on it.
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2 From DFT to effective Hamiltonians

”The fundamental laws necessary for the
mathematical treatment of large parts of
physics and the whole of chemistry are
thus fully known, and the difficulty lies
only in the fact that application of these
laws leads to equations that are too
complex to be solved.”

Paul Dirac (Nobel Prize 1933)

A lot of effort in the 20th and 21st centuries has been devoted to finding an accurate description
of the electronic structure of materials. Solving these quantum many-body systems, consisting of
nuclei and electrons, has proven to be far from trivial. The time-independent Schrödinger equation
for a quantum many-body system can be written down as [31]

ĤψptR⃗IuPI“1, txiuNi“1q “ EψptR⃗IuPI“1, txiuNi“1q (2.1)

Where Ĥ is the Hamiltonian of the model, R⃗I are the positions of the nuclei, xi are the quantum
numbers of the electrons (xi “ pr⃗i, siq, with r⃗i the position and si the spin of the electron). There
are P nuclei and N electrons. ψ is the many-body wave function and the sought-after quantity,
since all measurable quantities can be derived from it.

The molecular Hamiltonian Ĥ in atomic units is given by [8]

Ĥ “ ´
N
ÿ

i“1

1

2
∇⃗2
i ´

P
ÿ

I“1

1

2MI
∇⃗2
I ` 1

2

N
ÿ

i“1

N
ÿ

j“1
j‰i

1

|r⃗i ´ r⃗j | ´
N
ÿ

i“1

P
ÿ

I“1

ZI

|r⃗i ´ R⃗I | ` 1

2

P
ÿ

I“1

P
ÿ

J“1
J‰I

ZIZJ

|R⃗J ´ R⃗I | (2.2)

This Hamiltonian includes the kinetic energy of the electrons (T̂e) and the nuclei (T̂N ), and the po-
tential energy due to the Coulomb interaction between the electrons (V̂ee), the nuclei and electrons
(V̂eN ), and the nuclei (V̂NN ).

Solving (2.1) has been a long-standing problem in physics. Due to the exponentially large number
of degrees of freedom, the only viable way of finding an appropriate solution is by means of approx-
imations. (2.1) itself is already an approximate Hamiltonian, since spin effects are neglected and
the nuclei are considered to be point particles. However, even the Schrödinger equation with this
simpler Hamiltonian remains too complex to be solved. One of the most famous and widely used
approximations in this regard is the BO approximation, which assumes that the wave function of
the electrons and the nuclei can be treated separately. This approach consists of first solving the
Schrödinger equation of the electrons for a fixed set of nuclear coordinates, yielding electronic wave
functions ϕn. This assumes the nuclei to be fixed in place, called the clamped nuclei approximation,
which can be justified by their higher mass and thus lower speeds [32, 33]. The total wave func-
tion ψm can then be written as a linear combination of electronic wave functions with expansion
coefficients χnm depending on the nuclear coordinates.
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ψmptR⃗IuPI“1, txiuNi“1q “
ÿ

n

χnmptR⃗IuPI“1q ϕnptR⃗IuPI“1, txiuNi“1q (2.3)

In the BO approximation, T̂N can be neglected since the nuclei are assumed to be fixed in place
and V̂NN is a constant depending on the nuclear coordinates. V̂eN can be considered as an external
potential for the electrons v representing the electron-nuclei interactions. With these approximations,
the Hamiltonian governing the motion of the electrons reduces to

Ĥe “ ´
N
ÿ

i“1

1

2
∇⃗2
i ` 1

2

N
ÿ

i“1

N
ÿ

j“1
j‰i

1

|r⃗i ´ r⃗j | `
N
ÿ

i“1

vpr⃗iq (2.4)

The Schrödinger equation based on this Hamiltonian can be solved for each set of nuclear coordinates.
This yields the electronic energies UBOn ptR⃗IuPI“1q and electronic wave functions ϕnptR⃗IuPI“1, txiuNi“1q.
The electronic energies UBOn for all nuclear configurations form the BO surfaces.

Afterwards, on each BO surface UBOn , the nuclear eigenvalue equation can be solved, with the nuclear
Hamiltonian ĤN .

ĤN “ ´
P
ÿ

I“1

1

2MI
∇⃗2
I ` UBOn ptR⃗IuPI“1q (2.5)

This yields a set of nuclear energy levels EBOm and nuclear wave functions χnmptR⃗IuPI“1q. These are
the expansion coefficients from (2.3) [32].

The problem is reduced to solving the Schrödinger equation with the electronic Hamiltonian of (2.4).
Because of this simplification, many theories try to solve the electronic structure problem starting
from the BO approximation. The first of these, and also the most simple, is called the HF formalism
[1, 2]. HF assumes a non-interacting system, in which the electrons occupy single-particle orbitals
ϕm. The electronic wave function will then be a product state. However, electrons are fermions
and have to obey the Pauli-exclusion principle [34]. To accommodate for this, the wave function is
written down as a Slater determinant, i.e. [35]

ψHF
`txiuNi“1

˘ “ 1?
N !

∣∣∣∣∣∣∣∣∣

ϕ1px1q ϕ1px2q ¨ ¨ ¨ ϕ1pxN q
ϕ2px1q ϕ2px2q ¨ ¨ ¨ ϕ2pxN q

...
...

. . .
...

ϕN px1q ϕN px2q ¨ ¨ ¨ ϕN pxN q

∣∣∣∣∣∣∣∣∣
“ ∣∣ϕ1 ϕ2 ¨ ¨ ¨ ϕN

∣∣ (2.6)

The Slater determinants fully neglect the entanglement present in the system 1.

Another important theory is DFT [5, 6, 7, 8]. Here, instead of looking at the 3N -dimensional wave
function ψ, the total ground state electronic density ρ is searched for, which is only 3-dimensional.

ρpr⃗q “ N
ÿ

s1,¨¨¨ ,sN

ż

¨ ¨ ¨
ż

ψ˚pr⃗, s1, r⃗2, s2, ¨ ¨ ¨ , r⃗N , sN qψpr⃗, s1, r⃗2, s2, ¨ ¨ ¨ , r⃗N , sN qdr⃗2 ¨ ¨ ¨ dr⃗N (2.7)

1apart from the exchange interaction
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Due to the Hohenberg-Kohm theorem, the ground state density ρ of the Hamiltonian H⃗e of (2.4) is
completely determined by the external potential v, and vice versa [6, 7].

Inspired by the Hohenberg-Kohm theorems, DFT does not look to the interacting system, but
instead considers a non-interacting system with a special effective external potential veff . This
external potential is chosen such that the ground state density of the non-interacting system is equal
to the ground state density of the interacting system. To this end, the effective potential needs to
be defined as

veff pr⃗q “ vpr⃗q `
ż

ρpr⃗1qdr⃗1

|r⃗ ´ r⃗1| ` BEXC
Bρ (2.8)

with EXC the exchange-correlation functional [5]. Since this functional is unknown, one is forced
to look for approximations. These range from very simple functionals such as in the local density
approximation (LDA), where the functional only depends on the local value of the density, to
very complicated functionals that take into account more properties at the expense of a higher
computational cost [5].

2.1 Downfolding

DFT has been a success in describing most materials, but fails in describing systems with strongly
correlated electrons [36]. Luckily, most electrons in strongly correlated materials are strongly bound
to their nuclei and can be approximated fairly well using DFT, as they show little correlation. It
thus makes sense to recalculate the properties of the other electrons with methods that can take
into account correlation, while keeping the DFT results for the strongly bound electrons. This
separates the full Hilbert space in a low-energy and a high-energy subspace, corresponding to the
strongly and weakly correlated electrons, respectively. The low-energy subspace typically consists
of electrons from partially filled d or f -orbitals. This low-energy subspace can be described by an
effective Hamiltonian which takes interactions between multiple low-energy electrons into account
completely, but only takes interactions between low-energy and high-energy electrons into account
perturbatively. The advantage of this approach is that the low-energy subspace is much smaller,
thus making more accurate and more computationally demanding methods feasible.

A possible effective Hamiltonian is the widely studied Hubbard model [37, 38, 39, 40]. This has been
proposed as the most simple model that can encapsulate the rich physics of the cuprates. It consists
of a Hubbard U term (interaction energy) between electrons on the same site and a hopping t term
(kinetic energy) that describes the hopping of electrons to a neighboring site. It is defined as [37,
38, 39, 40]

H “ ´
ÿ

i,jPΛ

ÿ

σ

tij

´

c:

iσcjσ ` c:

jσciσ

¯

`
ÿ

iPΛ

Uic
:

iÒc
:

iÓciÓciÒ (2.9)

i and j denote sites on a lattice Λ. The sites have an interaction strength Ui and sites i and j
interact with a hopping term tij . c

:

iσ and ciσ are respectively the creation and annihilation opera-
tors for the state with quantum numbers i, the site number, and σ, the spin. The basis states of
this lattice should be chosen such that the overlap between orbitals that are far away is minimal.
This will reduce the number of hopping terms that reach further than nearest neighbors in order to
accurately describe the system. The most widely used orbitals for this are the so-called maximally
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localized Wannier functions [29].

Obtaining such a low-energy model and its parameters from a calculation (e.g. using DFT) using
the full Hilbert space is called downfolding. Even though this effective model is only defined for the
low-energy subspace, the downfolding procedure can not neglect the presence of the weakly corre-
lated electrons, as they can cause important corrections to the parameters of the model. To this
extent, the downfolding of the full Hilbert space to the low-energy subspace is a general approach
to capture the screening effects of the high-energy electrons. These screening effects are in fact
the renormalization effects (similar to the Wilson renormalization group) and can be derived using
different approximations [8].

One of the possible ways to take into account correlation is the LDA + U approach. Here, the
Hubbard U term is considered to be a correction term added to the non-interacting Hamiltonian for
the strongly correlated electrons, while the other electrons are described within the theory of LDA.
This way, the Hamiltonian can be rewritten as [25, 26]

Ĥ “ ĤLDA ` ∆Ĥ

“ ĤLDA ` 1

2
U

ÿ

i,µ‰ν

ni,µni,ν ´ ĤDC
(2.10)

where U is the Hubbard U term, ni,µ is the number operator of orbital µ on site i, ĤLDA is the

non-interacting Hamiltonian within the LDA framework, and ĤDC is a term that contains possible
double counting of the Coulomb interaction.

Within the LDA + U approach, a way of deriving the Hubbard U parameter is using the constrained
LDA approximation (cLDA). cDLA argues that the Hubbard U parameter between two orbitals can
be calculated as the energy cost of moving an electron from one orbital to the other [23, 24, 25, 26].

Uij “ Erni ` 1, nj ´ 1s ´ Erni, njs (2.11)

which, in the limit of continuous and large variables, reduces to

Uij “ B2E

BniBnj |ni`nj“constant (2.12)

A more accurate method is the so-called constrained random phase approximation (cRPA). While
cLDA only screens the Coulomb interaction between high-energy electrons, cRPA screens the in-
teraction between high-energy and low-energy electrons as well. Constrained RPA can be used to
calculate the effective interaction parameters of a Hubbard model and is more advanced than cLDA
[23, 28, 29].

Once the parameters of the Hubbard model are known for a certain material, it can be solved by
TN. The resulting ground state can be used to recalculate some of the properties that DFT already
calculated, where it is expected that the new results will be more accurate. This procedure is shown
in figure 2.1. This thesis will assume that a downfolding procedure has been performed and will
start from a given effective Hamiltonian. The next chapters will give a detailed description of how
the ground state of a Hamiltonian can be found using TN.
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DFT calculation Hubbard model for the

low-energy subspace

DFT based properties
Ground state

downfolding

Recalculate properties

Figure 2.1: The general procedure of downfolding to an effective Hamiltonian and solving it with
TN. The figure was taken from [41].
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3 TN Language

3.1 Introduction

By the discussion of the previous chapter, the problem is reduced to finding the ground and excited
states of the effective Hamiltonian acting on a lattice, in which the electron correlations are more
pronounced. However, we have not found a way yet to accurately describe these correlations. We
will start the discussion by noting that Hamiltonians act on a Hilbert space which has a tensor
product structure. If each local Hilbert space has a dimension d, the total Hilbert space for a system
of size N has a dimension dN , thus scaling exponentially in the system size. This is the curse of
dimensionality that makes these systems so hard to solve.

The key point to move forward is now to realize that most of the Hamiltonians we are interested
in are very special, since they are local. This means that they are the sum of terms that act on at
most k bodies that occupy a finite spatially connected region, with k independent of the size of the
system. If the system starts in a random initial state and such a local Hamiltonian is used in a time
evolution, the many-body states that can be generated in a reasonable timescale 2 occupy only a
tiny subset of measure zero of the total exponentially large Hilbert space [42, 43]. This causes these
Hamiltonians and their ground states to have special properties. Furthermore, most Hamiltonians
are gapped. This means that the energy difference between the ground and first excited states does
not vanish in the thermodynamic limit (N Ñ 8). In 1D, it was proven that the ground states of
local, gapped Hamiltonians obey a so-called area law for the entanglement [10, 11, 12], which means
that they have very little entanglement with respect to what is possible in the total Hilbert space.
Specifically, the entanglement between a certain region and its complement scales with the bound-
ary of that region, not with its volume. It is this area law that will resolve the curse of dimensionality.

This is all the result of the ground states having extremal local properties. They are obtained by
minimizing the energy, an inherent local property, and the global properties only emerge to allow
for this local optimization. Therefore, an efficient characterization is needed for the states that are
allowed by these two-body operators, which for fermions is called the N-representability problem
[44]. In that regard, take a look at the following quote from Richard Feynmann.

””
Now in field theory, what’s going on over here and what’s going on over there and all over space is
more or less the same. What do we have to keep track in our functional of all things going on over
there while we are looking at the things that are going on over here? It’s really quite insane actually:
we are trying to find the energy by taking the expectation of an operator which is located here and
we present ourselves with a functional which is dependent on everything all over the map. That’s
something wrong. Maybe there is some way to surround the object, or the region where we want to
calculate things, by a surface and describe what things are coming in across the surface. It tells us
everything that’s going on outside. I think it should be possible some day to describe field theory in
some other way than with wave functions and amplitudes. It might be something like the density
matrices where you concentrate on quantities in a given locality and in order to start to talk about
it you don’t immediately have to talk about what’s going on everywhere else. ””

2A reasonable timescale in this regard is a time scale that scales at most polynomially in the system size.
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This is precisely what TN try to do. They try to make smart use of this little entanglement as
allowed by the Hamiltonians in a local way, by defining tensors on each local Hilbert space that gen-
erate a state that satisfies an area law. A key insight is that they do not try to see the interactions
as a perturbation on a non-interacting theory, but as relevant degrees of freedom [45, 14].

Furthermore, the locality of the Hamiltonian forces the low-lying excited states to be local pertur-
bations on the ground state. These perturbations can be interpreted as particles [46], provided the
system is gapped and the excitations are isolated. The ground state tensor thus gives information on
the low-lying spectrum [47, 48]. This is in sharp contrast with a typical eigenvalue problem, where
the knowledge of one eigenvector does not give information on another.

The very explicit way of taking entanglement into account will be explained by the definition, but
can already be hinted at by considering the singular value decomposition (SVD) in 1D, a crucial
aspect in both theoretical and computational considerations.

In essence, the ground state acts on the total Hilbert space, which is a tensor product over all local
Hilbert spaces Hi.

H “ â

i

Hi (3.1)

Now we will consider a bipartition, splitting the total Hilbert space in a left and right Hilbert space,
called HL and HR, respectively. Thus, H “ HL b HR. We would like to quantify the amount of
entanglement between the left and right part. The ground state can be written as

|ψy “
ÿ

kl

Ckl |kyL |lyR (3.2)

with t|kyLu and t|lyRu orthonormal bases for HL and HR, respectively. The SVD of the matrix C
with elements Ckl yields the matrices U,Σ, and V , with

|ψy “
ÿ

klm

UkmΣmmV
:

ml |kyL |lyR (3.3)

The elements of the diagonal matrix Σ are always real and positive. They are called the singular
values of ψ, and are denoted as Σmm or

?
λm. The tensors L and R are defined as

|Lym “
ÿ

k

UkmΣmm |kyL

|Rym “
ÿ

l

V :

ml |lyR
(3.4)

This corresponds to a change in orthonormal basis, since the matrices U and V are unitary. With
χ the number of singular values, (3.3) can be rewritten as

|ψy “
χ

ÿ

m“1

|Lym |Rym (3.5)
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which is a tensor contraction between the left and the right part. This is diagrammatically shown
in figure 3.1.

| � ✁ ✂=

Figure 3.1: Diagrammatic representation of (3.5)

Doing this recursively over the physical Hilbert spaces, the full state |ψy can be written as the tensor
contraction of local tensors, called the Matrix Product State (MPS). Both states and operators can
be written in this graphical network of tensor contractions, giving tensor networks (TN) their name.

This construction can be used to quantify the electron entanglement present in the state, by defining
an entanglement entropy [49, 50]. Entropy is always positive, and will be 0 for a product state, as
explained below.

One such measure is the Von Neumann entropy S, based on the pure density operator ρ

ρ “ |ψy xψ| (3.6)

and the reduced density operator ρi of a subsystem i, obtained by tracing out the relevant degrees
of freedom.

ρi “ Tri pρq
“ Tri p|ψy xψ|q (3.7)

It is defined as [51, 52].

Spρq “ ´Tr pρi log2 ρiq (3.8)

Other measures of entanglement exist, such as the Renyi entropy R [53] [54]

Rαpρq “ 1

1 ´ α
log2 pTrpρiqq (3.9)

which reduces to the Von Neumann entropy in the limit α Ñ 1.
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The meaning of the entanglement entropy is best illustrated by two examples. The first one is a
pure or separable state, the other is a mixed state, in this case a Bell state. They are given for a
system comprised of two subsystems, A and B. Each separate subsystem can be in state |0y or |1y.

|ψypure “
ˆ |0yA ` |1yA?

2

˙

|0yB

|ψymixed “ |0yA |0yB ` |1yA |1yB?
2

(3.10)

Calculating the Von Neumann entropy for both states, we see that

Sp|ψypureq “ 0

Sp|ψymixedq “ 1
(3.11)

From these examples, it can be seen why the entanglement entropy is considered to be a measure
of the uncertainty in the system. For a separable state, the state of subsystem B is completely
certain. It is always in the state |0yB , regardless of a measurement on system A 3. There is thus no
entanglement between the subsystems and their entropy is 0. For a mixed state, however, it is not
known in which state system B is, unless a measurement on system A is performed. Now there is
uncertainty, and the entropy is strictly positive. It can be proven that for the Bell state given in the
example, the entropy is maximal.

These measures of entropy can be calculated with the SVD. Namely, if the Hilbert space can be
written as H “ HL b HR, then the SVD yields 4

|ψy “
χ

ÿ

m“1

Σmm |Lym |Rym (3.12)

The reduced density matrix can then be rewritten.

ρR “ TrR pρq

“ TrR

˜

ÿ

m,m1

ΣmmΣm1m1 |Lym |Rym xR|m1 xL|m1

¸

“
ÿ

m

Σ2
mm |Lym xL|m

(3.13)

Now the Von Neumann entropy can be written, with Σ2
mm “ λm, as

S “ ´
ÿ

m

Σ2
mm log2pΣ2

mmq

“ ´
ÿ

m

λm log2pλmq (3.14)

3The same holds for system A
4For the clarity of this calculation, Σmm is here not included in the definition of L, as is the case for (3.4) and

(3.5)
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Normalisation dictates

ÿ

m

λm “ 1 (3.15)

From this, it follows that entropy is always positive and that the maximum is obtained when all λm
have the same value.

It is this entropy that is bounded in an MPS by an area law [10, 9].

S 9 BA (3.16)

where BA is the area of the boundary between the subsystem i and its complement.

It can be seen that the full spectrum, consisting of the values λm, can give much more complete
information on the entanglement than the entanglement entropy, which is just a single number [47].
Each λm will contribute to the entanglement. They are thus the entanglement degrees of freedom
from before. A very important variable will therefore be the number of singular values, χ. This is
equal to the dimension of the virtual Hilbert space over which the contraction occurs. Right now,
no approximation is yet made, since the SVD is exact, and the total Hilbert space of states obeying
an area law can be represented. Since it is expected that the lowest singular values contribute less
to the entanglement, they can be neglected, and only the highest D singular values are retained.
This D is called the bond dimension and quantifies the maximum amount of entanglement between
two regions that can be described. In 1D, the area of the boundary is just a constant. It can be
seen from (3.14) that the maximum entropy in this case is

Smax “ ´
D
ÿ

m“1

1

D
log2p 1

D
q

“ log2pDq
(3.17)

The area law thus becomes

Smax 9 logpDq (3.18)

This is the approximation that gives TN its power, since it incorporates the entanglement as degrees
of freedom (the singular values), and can describe the ground state wave function in local tensors
with only dD2 parameters. In general, choosing D “ 1 means keeping only the highest λm. This
is equivalent to approximating the ground state as a product state, which is a mean-field method
reminiscent of Slater determinants in HF. Choosing D ą 1 will introduce entanglement properties
[45]. In the limit of D Ñ 8, all states can be described [9, 55].

The MPS with bond dimension D then form the variational manifold in which the optimization oc-
curs. Over the years, many powerful algorithms have been developed, such as DMRG and VUMPS.
The reason why these work so well, is because the ground states of gapped Hamiltonians are well
approximated by MPS [55], because of their little entanglement. More precisely, the presence of a
gap and the resulting little entanglement causes the complexity of finding the ground state to drop
from QMA-complete, which is the quantum analog of NP, to P, removing the exponential barrier
[56, 57]. The ground state of gapless Hamiltonians can also be well approximated, by the postulation
of a scaling regime, which will be explained in section 4.3. Furthermore, the relevant properties,
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expressed as expectation values, can be efficiently and exactly retrieved from the MPS description.
MPS can be generalized to higher dimensions, in which case it is called a Projected Entangled
Pair State (PEPS). Here, the calculation of expectation values cannot be done both exactly and
efficiently, but efficient approximations exist [58]. Before going into the details of these algorithms
and approximations, we will first define PEPS and MPS and give some general properties in the
following sections.

3.2 Definitions and general remarks 5

Consider a lattice consisting of a set of vertices V “ 1, 2, ..., N and a set of edges E connecting them.
Thus @e P E : e “ pi, jq, i, j P V . Each vertex v has a local, physical Hilbert space Hv “ Cdv with
dimension dv. Sv will be defined as the set of vertices that are connected to v, i.e.

Sv “ tw P V : pv, wq P Eu (3.19)

with zv “ |Sv|, the coordination number. It is implicitly assumed that @v, w P V : pv, wq “ pw, vq.

The goal will be to define the total Hilbert space H of the lattice as
ÂN

v“1 Hv. To achieve this, on
each vertex, a number of auxiliary states will be defined, one for each edge connected to the vertex.
More explicitly, for each i P V and j P Si, the ancilla will be denoted as ai,j . It has a Hilbert space
CDi,j , where Di,j “ Dj,i P N, the local bond dimension. For the auxiliary states, the notation |˚q
will be used, as opposed to |˚y for physical states. Each auxiliary state will be maximally entangled
with its neighbor. i.e.

|ϕqi,j “
Di,j
ÿ

n“1

|nqai,j b |nqaj,i (3.20)

where |ϕqi,j denotes the maximally entangled pair state living on the edge pi, jq and where the
t|nqai,j u form an orthonormal basis for the ancillae on edge pi, jq. This makes the construction
basis-dependent. The construction is graphically shown in figure 3.2. The space of all ancillae over
the whole lattice is then

|Φq “ â

ePE

|ϕqe (3.21)

The original reason for this definition couples back to the discussion about the area law. Both
the ground states of local, gapped Hamiltonians and entangled pairs of particles distributed among
neighbours on a lattice obey an area law for the entanglement entropy. Since they have an equal
amount of entanglement, there should exist local operations that transform the one into the other
[60]. Therefore, there exists a linear map Ai on each vertex i, mapping the auxiliary spaces into the
physical spaces.

Ai :
â

jPSi

CDi,j ÝÑ Cdi (3.22)

The PEPS, a physical state defined on the whole lattice, is then defined as

|ψpAqy “ â

iPV

Ai|Φq (3.23)

5This discussion is mostly based on references [9] and [19].
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(a) MPS

(b) PEPS

Figure 3.2: Visualizations of (a) an MPS and (b) a PEPS. The connected ancillae are maximally
entangled. Ancillae belonging to one vertex are encircled. [59]

The PEPS is thus obtained by the direct product over all vertices of the linear map of the local
entangled pairs into the physical ones. The name PEPS comes from the fact that the entangled
pairs are projected onto the physical ones. This state will be entangled, since the entanglement of
the ancillae is transferred by the linear map. Even more so, this final state will be able to carry
long-range entanglement, even though the pairs are only entangled to their neighbors.

The map Ai is characterized by its coefficients in a basis.

Asα1,...,αzi
“ xs|Ai|α1, . . . , αziq (3.24)

This is an object that has one physical index and zi virtual indices, and is a tensor. The characteri-
zation in terms of its virtual and physical indices allows for a graphical representation of the tensor,
shown in figure 3.3a for the 1D case.

Another way of defining a PEPS is to define on each vertex a state |ϕiy of the physical and virtual
system.

|ϕiy P Cdi â

jPSi

CDi,j (3.25)

The PEPS can then be defined as

|ψy “ pΦ|
˜

â

iPV

|ϕiy
¸

(3.26)
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This coincides with the first definition if

|ϕiy “
ÿ

s,α1,...,αzi

Asα1,...,αzi
|sy b |α1, . . . , αziq (3.27)

and if the Asα1,...,αzi
are chosen as the elements of the map Ai in the physical t|syu and virtual basis

t|αjqu.

In 1D, the elements of the map Ai can be denoted as Asiα,β and the matrices Asi P CDi´1,iˆDi,i`1

can be defined. If periodic boundary conditions are applied, i.e. when A1 is connected to AN , then
it can be proven that

xs1, . . . , sN |ψy “ Tr rAs11 As22 . . . AsNN s (3.28)

and thus

|ψpAqy “ Tr rA1A2 . . . AN s
“

ÿ

α,β,...,ψ,ω

pA1qωαpA2qαβ . . . pAN qψω (3.29)

which is the trace over the virtual indices of the product of N matrices. The 1D case of a PEPS is
therefore called a Matrix Product State (MPS).

A very important case is the case of translational invariance, in which Ai “ A, which implies
Di,j “ D, the bond dimension. Since in this case, a state is uniquely defined when this single linear
map A is known, A is said to generate the corresponding state, which will be denoted as |ψpAqy.

The generalization to Matrix Product Operator (MPO) and Projected Entangled Pair Operator
(PEPO) is straightforward. Such an operator now has multiple physical indices, some corresponding
to the domain (the bra) and some corresponding to the codomain (the ket). An MPO with p legs
in its domain and p in its codomain will be denoted as a pp, pq MPO. This is an operator for which
it holds that

pp, pq MPO :
p

â

i“1

Cdi ÝÑ
p

â

i“1

Cdi (3.30)

The same notations can be used for general tensors. A pp, qq tensor will denote a tensor with p legs
in its codomain and q legs in its domain.

Both the PEPS and PEPO will be represented in a graphical way, and thus as a tensor network, as
seen in figure 3.3b and 3.3c for the 1D case. This will simplify the notations greatly. Each block
denotes a tensor, with the number of edges equal to the number of indices. An open edge denotes
an open index. An edge connecting 2 tensors denotes a contraction of the tensors over the index
that connects them. This has a rigorous mathematical meaning. For example, the tensor in figure
3.4a is defined as

A “ Awuv|uq1 |vy2 pw|3 (3.31)

where the convention is used that the first, second, and third index are the edges on the left, bottom,
and right respectively. Furthermore, the conjugate of the tensor A from (3.31) can be defined as
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(a) (b)

(c)

Figure 3.3: Graphical visualizations of (a) a tensor, (b) the MPS |ψy according to (3.29), and (c) an
MPO [19]

A “ Awuv|wq3 xv|2 pu|1 (3.32)

The tensor network in figure 3.4b can then be evaluated by calculating the contraction of A with
the tensor B.

B “ Bkij |iq4 |jy5 pk|6 (3.33)

AB “ Awuv|uq1 |vy2 pw|3Bkij |iq4 |jy5 pk|6
“ AwuvB

k
ij |uq1 |vy2 pw|3|iq4 |jy5 pk|6

“ AwuvB
k
ij |uq1 |vy2 δwi |jy5 pk|6

“ AwuvB
k
wj |uq1 |vy2 |jy5 pk|6

(3.34)

with δ the Kronecker delta. This yields, as figure 3.4b already indicated, a tensor with 4 indices.

�

(a)

� �

(b)

Figure 3.4: (a) a tensor A and (b) a contraction of tensors A and B

Expectation values can also be represented graphically. E.g., the energy of a state Epψq is given as
the expectation value of the Hamiltonian, which is in this example taken as a (2,2) tensor, visualized
in figure 3.5a. The convention is used that the top of the figure denotes the domain, and the bottom
of the figure denotes the codomain.

E “ xψpAq|H |ψpAqy (3.35)
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Its graphical representation is given in figure 3.5b, where Ā denotes the complex conjugate of A,
and its infinite contraction is xψpAq|.

(a) (b)

Figure 3.5: Graphical visualizations of (a) a (2,2) tensor and (b) the energy according to (3.35) [19]

This is not equal to the actual energy of the system, since the expression in figure 3.5b is the
expectation value of a local Hamiltonian, acting on only 2 sites. The total Hamiltonian will in most
cases be translationally invariant, just as the MPS, which means that in this example

H “
ÿ

iPV

Hi,i`1 (3.36)

and the expression of figure 3.5b is equal to

Ei,i`1 “ xψpAq|Hi,i`1 |ψpAqy (3.37)

which is only one term of the infinite sum of (3.36). To calculate the full energy, this infinite sum
has to be carried out.

E “ xψpAq|H |ψpAqy
“

ÿ

iPV

xψpAq|Hi,i`1 |ψpAqy

“ N xψpAq|Hi,i`1 |ψpAqy
(3.38)

where N is the number of sites. In the thermodynamic limit, this will be |Z|, the cardinal number
of Z, which is infinite. A possible interpretation that this expectation value can have, is in terms of
energy density per site, i.e.

Ei “ E

|Z| “ xψpAq|Hi,i`1 |ψpAqy (3.39)

which is finite. This can also be interpreted as the interaction energy between sites i and i ` 1, or,
because of translational invariance, as the average interaction energy between 2 sites.

3.3 Fermions and graded spaces 6

A problem arises when trying to describe fermions instead of bosons. Bosons obey commutation
relations, whereas fermions obey anticommutation relations. These will yield different rules for the
tensor contractions. Specifically, the following identities will have to be fulfilled.

6This discussion is mostly based on [61].
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#

Bosons: |iy1 |jy2 “ a:

i,1a
:

j,2 |Ωy “ a:

j,2a
:

i,1 |Ωy “ |jy2 |iy1
Fermions: |iy1 |jy2 “ c:

i,1c
:

j,2 |Ωy “ p´1qpc:

j,2c
:

i,1 |Ωy “ p´1q|i||j| |jy2 |iy1
(3.40)

a:

i and c:

i are the creation operators for bosons and fermions, respectively. p is the parity and is
equal to |i||j|. |i| and |j| are the parity of sites i and j respectively. Thus, the state vector for
fermions can get an extra minus sign if two of them switch places.

It turns out that the introduction of Z2-graded Hilbert spaces can satisfy the requirements of (3.40).
These are Hilbert spaces that can be decomposed into two orthogonal sectors.

H “ H0 bK H1 (3.41)

where 0 denotes even and 1 denotes odd parity. If a state |iy has support only in one of the sectors,
it is called homogeneous and has a parity that will be denoted by |i|. The dual of this Hilbert space
is H˚ “ HompH,Cq. The inner product of H can now be used to define an isomorphism I

I : H ÝÝÑ H˚ : |iy ÞÑ xi| s.t. xi| p|jyq “ xi|jyH ,@ |iy , |jy P H (3.42)

We will need to define tensors on the direct product of these graded Hilbert spaces, e.g. H1 b H2,
which is still a Hilbert space by using the inner products defined in H1 and H2 separately.

⟨|iy b |jy , |ky b |ly⟩ “ xi|kyH1
xj|lyH2

,@ |iy , |ky P H1, |jy , |ly P H2 (3.43)

A contraction always occurs over a ket and a bra, or equivalently, a Hilbert space and its dual.
Because of the anticommutation relations, the contraction defined on H b H˚ will be different than
the one defined on H˚ b H. In a contraction, it is thus important to specify which tensor is associ-
ated with the ket, and which tensor with the bra. This can be represented with an arrow, as was
already shown in the previous section. The convention used in this thesis is that an outgoing arrow
corresponds to a vector and an incoming arrow to a dual vector.

To be able to obey the (anti)commutation relations, we introduce the fermionic reordering operator
F , mapping H1 b H2 to H2 b H1.

F : H1 b H2 ÝÑ H2 b H1 : |iy1 |jy2 ÞÑ p´1q|i||j| |jy2 |iy1 (3.44)

With this operator, the definitions of the contractions have to be revisited. This can be done by
looking at the example of a contraction of tensors A and B, as shown in figure 3.4b. The contraction
over an index where the arrow points from B to A (xi| |jy case) will be different than when the arrow
points from A to B (|iy xj| case). Specifically, the contraction operators can then be respectively
defined as

C : H˚ b H ÝÑ C : Cpxi| |jyq “ xi|jy “ δij (3.45)

C̃ : H b H˚ ÝÑ C̃ : Cp|iy xj|q “ p´1q|i||j|δij (3.46)

where both will be denoted by C. Cij will denote that the contraction occurs over the i-th of the
first tensor and the j-th index of the second tensor. CpA, a,B, bq, where a and b are lists of indices
of equal size, denotes the successive application of Cakbk on AbB, with ak and bk the k-th element
of a and b respectively. Changing the order of the applications will not change the end result, but
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will have a big effect on the complexity. This will be explained in section 7.2.1.

These formulas can be illustrated by the inner product of 2 tensors A and B.

A “ Awuv |uy1 |vy2 xw|3
B “ Bkij |iy1 |jy2 xk|3

(3.47)

This leads to

⟨A,B⟩ “ Tr
`

AB
˘

“ CpA, r1, 2, 3s, B, r1, 2, 3sq
“ CpAwuv |wy3 xv|2 xu|1 , r1, 2, 3s, Bkij |iy1 |jy2 xk|3 , r1, 2, 3sq
“ AwuvB

k
ijCpxu|1 |iy1qCpxv|2 |jy2qC̃p|wy3 xk|3q

“ AwuvB
k
ijδuiδvjp´1q|w||k|δwk

“ AkijB
k
ijp´1q|k|

(3.48)

The known formula for an inner product arises, with the inclusion of a parity factor, yielding possi-
bly an extra minus sign. This is called the supertrace. For fermionic Hilbert spaces, both gradings
0 and 1 will be present, and (3.45) and (3.46) will have to be implemented separately. The latter
formula is defined with the inclusion of a ’twist’ or an extra parity operator P with respect to the
former formula. In fermionic calculations requiring a trace instead of a supertrace, an extra parity
operator should be included to cancel out the one in the definition. For bosonic Hilbert spaces, the
grading will always be 0, the contractions will yield the same results regardless of the presence of a
parity operator.

This discussion justifies the use of graphical notations for tensor contractions as already used in the
previous section. Each edge is a tensor index and a connection denotes a contraction over these
indices, where either C̃ or C is used depending on the arrow. Sometimes, the arrows in the graphical
notations are left out for simplicity. A possible extra twist in the calculation of a trace instead of a
supertrace, as explained above, is suppressed in the diagrams unless explicitly mentioned (this will
only be the case in chapter 7).

3.4 The transfer matrix 7

Calculating the energy per site is not possible by evaluating the expression of figure 3.5b, since it is
still infinite. It thus needs to be rewritten in a form that can be evaluated using a finite number of
tensors and contractions. For this reason, we look at the tensor that occurs an infinite amount of
times in this expression, namely the contraction of A and Ā, which is called the transfer matrix T ,
a (2,2) tensor. Its diagrammatic representation is given in figure 3.6 [19].

T “
d

ÿ

s“1

As bA
s

(3.49)

7The discussions from this point to the end of this chapter are mostly based on reference [19]
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Figure 3.6: Diagrammatic representation of the transfer matrix

The transfer matrix has both left and right eigenvectors, corresponding to the same spectrum. Since
it is bounded, its eigenvalues are all finite, and A can always be redefined by A ÝÑ A{?

λ, with λ
the biggest eigenvalue. With this definition, the biggest eigenvalue is 1. This is how the MPS is
normalized.

The transfer matrix of a normalized MPS can be written in its spectral decomposition

T “ |1y x1| `
8
ÿ

n“2

λn |ny xn| (3.50)

and thus

Tm “ |1y x1| `
8
ÿ

n“2

λmn |ny xn| (3.51)

where |λi| ă 1 if i ą 1 and |λi| ď |λj | if i ą j. In the limit of m Ñ 8, Tm reduces to

lim
mÑ8

Tm “ |1y x1| (3.52)

Because the system is infinite, we can start from arbitrary left and right boundaries. The left
boundary can be written as

@

l1
∣∣ “

8
ÿ

n“1

an xn| (3.53)

and similar for the right boundary.

∣∣r1
D “

8
ÿ

n“1

bn |ny (3.54)

The exact expression of this boundary will not matter, since

lim
mÑ8

Tm
∣∣r1

D “ b1 |1y (3.55)

and thus only the leading eigenvector will remain. Denoting the left and right eigenvector with
eigenvalue 1 as |ly and |ry, the expressions of figure 3.7 hold.

The eigenvectors can be normalized to 1, which means that their overlap is equal to 1.
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Figure 3.7: Definition of left and right fixed points [19]

xl|ry “ 1 (3.56)

Furthermore, the eigenvectors |ly and |ry are isomorphic to density operators l and r, for which the
normalisation condition can be rewritten as

Trplrq “ 1 (3.57)

l and r are respectively called the left and right environments. With the definitions of the fixed
points, the expectation value of figure 3.5b reduces to figure 3.8, which is a finite contraction and
thus calculable.

Figure 3.8: Different expression for the expectation value of h, as also given in figure 3.5b [19]

This is the energy functional of h that has to be minimized with respect to A to yield the ground
state MPS. Based on this, every other ground state property can be calculated with an expression
similar to figure 3.8, where h is substituted with the local operator of which the expectation value
is calculated. The algorithms to find the ground state MPS will be explained in section 4.2.

3.4.1 Injectivity

In the discussion above, it has been implicitly assumed that the leading eigenvector is non-degenerate,
and thus that the vectors |ly and |ry are unique. If this were not the case, (3.50) would not hold,
and the environments l and r would not be well defined. The requirement of injectivity will play a
part when defining the symmetry of the system, as will be explained in section 4.4.2.

3.5 Correlation functions

An important concept in the analysis of the ground state MPS is the correlation function. The
connected 2-body correlation function with respect to the operators O and O1 is defined as [19]

Cprq “
〈
OiO

1

i`r

〉
´ ⟨Oi⟩

〈
O1
i`r

〉
(3.58)
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where O is a local operator. The expectation value is taken with respect to the (ground state) wave
function, and the expression thus needs to be contracted with the leading eigenvectors on the left
and the right, as explained above. The exact value of i does not matter because of translational
invariance. The definition can thus be rewritten as

Cprq “ x1|OiO
1

i`r |1y ´ x1|O |1y x1|O1 |1y (3.59)

The transfer matrix occurs now only between the 2 operators in the first term of the expression. For
large values of r, this can be written as [42]

Cprq “ x1|OpT r´1qO1 |1y ´ x1|O |1y x1|O1 |1y

“ x1|O
˜

|1y x1| `
8
ÿ

n“2

λr´1
n |ny xn|

¸

O
1 |1y ´ x1|O |1y x1|O1 |1y

“
8
ÿ

n“2

λr´1
n x1|O |ny xn|O1 |1y

« λr´1
2 x1|O |2y x2|O1 |1y

“ apO,O1qer ln |λ2|

(3.60)

where apO,O1q is a constant. In going from line 2 to 3, the second term in (3.58) drops out. This is
the disconnected part, and subtracting it gives the connected correlation function its name.

So, for large distances, the correlation has an exponential decay, with

Cprq „ e´r{ξ

ξ “ ´ 1

ln |λ2| ą 0
(3.61)

where ξ is called the correlation length, representing a characteristic length scale of the system. In
MPS, this will always be finite, and the correlations have an exponential decay. This means that
critical systems will not be exactly described, as they have an infinite correlation length and a power
law decay for the correlations [62, 48, 63]. States with a finite correlation length were originally
called Finitely Correlated States (FCS). It was proven that all these FCS are the unique ground
state of local, gapped Hamiltonians (called the parent Hamiltonian), and are thus injective MPS
[64, 65, 9].

3.6 Static structure factor

The static structure factor s can be defined as the Fourier transform of the correlation function.
Based on two operators Oα and Oβ , it can be defined as [19]

sαβpqq “ 1

|Z|
ÿ

m,nPZ

eiqpm´nq
@

ΨpĀq∣∣ pOβnq:Oαm |ΨpAqyc (3.62)

where ⟨¨ ¨ ¨ ⟩c denotes that the connected correlation function is used. This expression can immedi-
ately be rewritten as
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sαβpqq “
ÿ

nPZ

e´iqn
@

ΨpĀq∣∣ pOβnq:Oα0 |ΨpAqyc

“
ÿ

nPZ

e´iqnCpnq
(3.63)

which is thus the discrete Fourier transform of the connected correlation function. Cpnq is of the form

Figure 3.9: C(3) used in (3.63) [19]

This is useful since the static structure factor is experimentally accessible, and can thus be used
as experimental validation of the numerical results [19]. Furthermore, it can be used to determine
periodic structures in the MPS.

3.6.1 Leading oscillations

Looking at the third line of (3.60), the connected correlation function can be rewritten as

Cprq “
8
ÿ

n“2

|λn|r´1eipr´1qθn x1|O |ny xn|O1 |1y (3.64)

where the eigenvalues of the transfer matrix were rewritten as λn “ |λn|eiθn . In the limit where
|λ2| " |λm|,@m ą 2, this reduces to

Cprq “ |λ2|r´1eipr´1qθ2 x1|O |2y x2|O1 |1y (3.65)

The exponential will give rise to a modulation of the correlation function with a period equal to 2π
θ2

.

More generally, each eigenvector will give rise to an oscillation with period 2π
θn

.

Substituting (3.64) into (3.63) gives

sαβpqq “
ÿ

nPZ

e´iqnCpnq

“
ÿ

nPZ

e´iqn
8
ÿ

m“2

|λm|n´1eipn´1qθm x1|Oα |my xm|Oβ |1y

“
ÿ

nPZ

8
ÿ

m“2

|λm|n´1e´iθme´inpq´θmq x1|Oα |my xm|Oβ |1y

(3.66)

This causes the structure factor to have peaks at q “ θm “ 2π
period .
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3.7 Gauge freedom

An important thing to note about the definitions given above is that the MPS or PEPS representation
of a state is not unique, two tensors may give rise to the same state. In the case of a translationally
invariant MPS |ψpAqy, if there exists a B that is related to A via [9]

Bi “ XAiX´1,@i (3.67)

then, by the definition (3.28), these gives rise to the same state, i.e. |ψpBqy = |ψpAqy. A and B are
then said to generate the same state. This is a special case of the fundamental theorem of MPS.
Since only the state |ψy is physical, the gauge freedom can be used at will to make the expressions
easier.

3.7.1 Mixed gauge

A particularly interesting and useful gauge is the so-called mixed gauge. For this, the left-orthonormal
form AL is defined, shown in figure 3.10.

Figure 3.10: Definition of AL [19]

This is always possible by a good choice of X in (3.67). When the left fixed point l is decomposed
as l “ L:L, X should be chosen as X “ L. Then it holds that AL “ LAL´1 or A “ L´1ALL. This
is shown in figure 3.11, which uses the definition above and the equation of figure 3.7.

Figure 3.11: Construction of AL [19]

This choice still leaves room for unitary gauge transformations.

AL ÝÑ UALU
: (3.68)

Similarly, a right-orthonormal form AR can be defined, for which r “ R:R, AR “ R´1AR. The
idea of the mixed gauge is to choose a center site, to bring all the tensors to the left in the left-
orthonormal form and all the tensors to the right in the right-orthonormal form. The center site
will be surrounded by a L and a R tensor, which will be redefined as AC , i.e.
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AC “ LAR (3.69)

Yet another tensor, C, can be defined as C “ LR. It holds that

ALC “ CAR “ AC (3.70)

With these definitions, there are different possibilities of writing the MPS generated by A, given in
figure 3.12.

Figure 3.12: Graphical visualizations of different ways of calculating |ψpAqy for the mixed gauge [19]

The usefulness of this construction is that the expectation value of the Hamiltonian, or any other
MPO, as given in figure 3.5b or 3.8, can now be rewritten as in figure 3.13.

Figure 3.13: Expectation value of h in the mixed gauge [19]

The problem of the boundary conditions is thus reduced to finding the leading eigenvectors, decom-
posing them, and calculating the tensors AL, AC , and AR, which will completely specify the state
[19].
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4 Optimization Schemes

For a system based on a certain Hamiltonian, much of the interesting physics can be found from the
ground state, or equivalently, from the state at zero temperature. It is therefore imperative to know
how the energy functional of figure 3.8 can be optimized with respect to A. Finding the ground
state amounts to finding the minimum of this energy functional, i.e.

Ags “ argmin
A

@

ΨpĀq∣∣h |ΨpAqy
@

ΨpĀqˇ

ˇΨpAqD “ argmin
A

fpA, Āq

Egs “ fpAgs, Āgsq
(4.1)

where f is the energy functional. The denominator is 1 if the MPS is properly normalized. In the
thermodynamic limit, this expression will diverge, so instead the energy density will be minimized.
This is a variational formulation, which is often more stable than other numerical techniques. Fur-
thermore, the optimized energy will always be higher than the true ground state energy, thus giving
an upper bound on the energy.

Another way of looking at this problem is in terms of an eigenvalue problem

H |ψy “ λ |ψy (4.2)

The minimization procedure is equivalent to finding the eigenvector with the lowest eigenvalue,
which is then called the ground state energy.

4.1 The use of JordanMPO

Since the MPS is defined as an infinite contraction of local tensors, which are the same on all sites,
it will turn out to be useful to redefine local operators, especially the Hamiltonian, in the same way.
If a local operator O could be rewritten as a infinite contraction of tensors Mi, then the left and
right environments of figure 3.7 can be redefined with the inclusion of this Mi, as shown in figure 4.1.

For this, we first need to redefine each local operator acting on multiple sites as a contraction of
operators acting on only one site. This can be done by applying the SVD. Assume the Hamiltonian
acts on the Hilbert space Hi,j “ Hi b Hj and can be written as

Hij “
ÿ

k,l,m,n

Cmnkl |kyi |lyj xm|j xn|i (4.3)

where t|kyiu and t|lyju are the orthonormal bases for Hi and Hj respectively. The SVD of the
matrix C with elements Cmnkl will then yield the matrices U , Σ and V , with

Hij “
ÿ

k,l,m,n,a

UknaΣaaV
:

alm |kyi xn|i |lyj xm|j (4.4)

If the tensors Li and Rj are defined as
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Figure 4.1: New definition of the left and right environment with the inclusion of Mi

pLiqa “
ÿ

k

UknaΣaa |kyi xn|i

pRjqa “
ÿ

l

V :

alm |lyj xm|j
(4.5)

then

Hij “
r

ÿ

a“1

pLiqapRjqa

“ LiRj

(4.6)

which is indeed a contraction of tensors acting only on one site, over a virtual space of dimension r,
determined by the number of non-zero singular values of Hij . For an operator acting on more than
two sites, this procedure can be applied iteratively. Thus, an operator acting on multiple sites can
always be rewritten as a contraction of operators acting on only one site, as seen in figure 4.2.

� � �=

Figure 4.2: Two-site operator H as a contraction of two one-site operators L and R

With this construction, every operator can now be rewritten as a contraction of an infinite number
of operators, each one acting on one site. This is shown in figure 4.3. The operators acting on the
sites that were not included in the original Hilbert space are just 1, and the tensors are contracted
over the virtual Hilbert space of dimension 1.
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Figure 4.3: Two-site operator as the infinite contraction of local MPOs
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Figure 4.4: Diagrammatic representation of the infinite contraction of JordanMPOs

The operator in figure 4.2 should be placed on all sites, since the system is translationally invariant.
Thus, the objects that will be contracted to get the Hamiltonian should be the same on all sites. Or
more generally, they should be periodic with the same period as the MPS. This object will be the
JordanMPO, a matrix containing multiple one-site operators, acting on the physical space, the dual
of the physical space, and possibly multiple virtual spaces [66, 67]. It is implicitly assumed that in
the matrix multiplication, the tensors are contracted over the virtual space connecting them.

To make this more concrete, consider a Hamiltonian consisting of a one-site and a two-site interaction

H “
ÿ

i

Bi ` LiRi`1 (4.7)

The JordanMPO Mi will be defined as

Mi “
»

–

1 Li Bi
0 0 Ri
0 0 1

fi

fl (4.8)

The infinite contraction of tensors Mi can then be diagrammatically represented as in figure 4.4.

The boundary conditions for a JordanMPO are r1, 0, 0, ...s for the left boundary and r0, ..., 0, 1sT
for the right boundary. This means that in the matrix product from left to right, the first index of
the first matrix (on site ´8) would be 1. The possible ’choices’ for the first matrix would then be
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1, Li, and Bi. For a number of times, 1 will be chosen, and the first index of the next matrix would
remain 1. On a certain site i, for the first time a different operator will be chosen. There are now
two possibilities

1. Bi is chosen, this means the first index of the next matrix will be 3, and for all the matrices
to the right, the operator 1 has to be chosen.

2. Li is chosen, this means the first index of the next matrix will be 2, whereby the next matrix
has to choose Ri, and for all matrices to the right of Ri, 1 has to be chosen.

The first possibility corresponds to the operator Bi, the second to the operator LiRi`1 “ Hi,i`1.
By defining the Hamiltonian H as the matrix product of local JordanMPOs, all possible choices will
be included, and the operators will automatically be placed on all sites, making the total operator
translationally invariant. The set of possible choices at each step can be visualized in a finite-state
machine, as shown in figure 4.5. Here, the red circles correspond to the possible ’levels’ the system
can be in, which are equivalent to the rows and columns of the JordanMPO. The blue arrows denote
which transitions are possible, and the black tensors corresponding to them are the operators that
are applied in the transition.

Figure 4.5: Finite-state machine corresponding to the JordanMPO of figure 4.4

This construction can be generalized to a system where the Hamiltonian can be written as the sum
of local operators. i.e. if there exists a range r, such that, with S “ ti, i` 1, ..., i` ru

H “
ÿ

i

ÿ

siP2Si

Hpsiq

“
ÿ

i

r
ÿ

k“0

Hi,i`k

(4.9)

where 2Si is the power set of the set Si and the sum runs over all subsets of S. Hs denotes an
operator acting only on the subset s. Hi,j denotes an operator acting between sites i and j. Again,
each local operator of a certain range can be used to define a JordanMPO Mr

i . The JordanMPO
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of the whole operator Mi can then be constructed by placing each Mr
i in a separate matrix block,

where the first row and last column of Mr
i have to be placed in the first row and last column of Mi.

This construction is visualized in figure 4.6. In almost all cases, however, the construction of the
total JordanMPO can be done more efficiently.

Figure 4.6: Visualization of the construction of a JordanMPO based on smaller JordanMPOs. Grey
blocks denote 0. Black blocks denote 1. The light colors denote the relevant matrix blocks from the
JordanMPO of interactions like those in (4.9). The darker colors denote their on-site interactions
and are summed into the purple block in the final JordanMPO.

The general form of a JordanMPO is given in (4.10). A JordanMPO has to be block upper triangular,
since elements below the diagonal would correspond to operators ’going back to the left’ [66, 67].

Mi “
»

–

1 Li Bi
0 Di Ri
0 0 1

fi

fl (4.10)

It is interesting to look at the operators contained in the JordanMPO and their meanings. Assume
the JordanMPO has dimensions Lˆ L.

Elements (1,1) and (L,L): These have to be 1, otherwise the resulting operator would not be cor-
rectly normalised.
Operators of the form Hi,i`N : The general scheme to implement these in the JordanMPO is by

applying the SVD of (4.6) and defining
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´

M
pNq

i

¯

pp,qq
“

$

’

’

’

&

’

’

’

%

1, pp, qq P tp1, 1q, pL,Lq, pi, i` 1q, i P rk, k `N ´ 2su
Ri, pp, qq “ p1, kq
Li, pp, qq “ pk `N ´ 1, Lq
0, else

(4.11)

Elements on the diagonal: These correspond to long-range interactions of possibly infinite length.

The definitions of the JordanMPOs for different systems can be found in appendix A.

4.2 Optimization algorithms

4.2.1 DMRG and iDMRG

The first algorithm based on (4.1) was developed by White in 1992 and is called Density Ma-
trix Renormalization Group (DMRG) [14, 15]. It was originally introduced in a different context,
whereas only later it was realized that this is an optimization scheme over the manifold of MPS.
The infinite-size variant of DMRG is also called iDMRG and can be used when working directly in
the thermodynamic limit, like in this thesis.

The energy functional f of (4.1) is shown in figure 4.7.
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Figure 4.7: Energy functional f in the mixed gauge

This functional has to be optimized with respect to AC , AR, and AL. Let us only focus on the
center site AC . In the spirit of (4.2), this optimization boils down to finding the leading eigenvalues
of an operator called HAC

, which is shown in figure 4.8

This can be solved with an eigensolver that yields the leading eigenvector of HAC
. The solution,

A1
C , can be both left and right orthonormalized, yielding new values of AL, AR, and C. In the most

general case, the period of the MPS is greater than one, and effective Hamiltonians HACpiq, i P r1, ws,
can be defined, with w the period of the MPS. Each ACpiq has to be updated with HACpiq, yielding
A1
Cpiq. Since these new values will also redefine the effective Hamiltonians HACpjq, the order in

which this is done is important.
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Figure 4.8: Visualization of the effective Hamiltonian HAC

The algorithm consists of sweeping through the unit cell from left to right. In each step, ACpiq is
updated with HACpiq, yielding A1

Cpiq. This tensor will be used to redefine the environments and
define the new effective Hamiltonian in the next step. After all sites in the unit cell are updated, a
similar sweep occurs. Now, the algorithm sweeps from right to left [57].

The infinite-size variant of this algorithm starts from an MPS with only two sites. In the next step,
the MPS is appended with two sites in the center, and its parameters are optimized such that the
four-site MPS has minimal energy. The MPS is iteratively grown, until the tensors that are added
in successive iterations are sufficiently similar. These converged tensors are then used to construct
a translationally invariant, infinite-size MPS [68].

The fact that (i)DMRG always yields wave functions with exponentially decaying correlations, i.e.
finite correlation lengths, was the reason they were called FCS, before the link with MPS was made.
(i)DMRG is therefore much harder for critical systems [69].

Increasing the bond dimension increases the size of the variational manifold in which the optimization
occurs, thus yielding possibly more accurate results with lower energy. In theory, the bond dimension
should be infinite, since only then the manifold encompasses all finitely correlated states. This is
computationally impossible, so instead the calculation will be done at various bond dimension, and
the end result will be extrapolated to D Ñ 8. This will be explained in section 4.3.

4.2.2 VUMPS 8

The set of injective MPS forms a complex manifold 9. Making smart use of the tangent space to
this manifold, an algorithm resembling gradient descent can be devised. The combination of DMRG
with the ideas of tangent spaces for MPS led to the development of another variational optimization
algorithm, called Variational Uniform Matrix Product State (VUMPS) [18, 19].

Finding the ground state again amounts to finding the minimum of the energy functional, i.e.

8This discussion is mostly based on reference [19].
9More specifically, it forms a Kähler manifold [70].
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Figure 4.9: MPS manifold and its tangent space [19]

Egs “ min
A

@

ΨpĀq∣∣h |ΨpAqy
@

ΨpĀqˇ

ˇΨpAqD “ min
A
fpA, Āq (4.12)

In optimizing the energy, the current MPS will be nudged in a certain direction, i.e.

A ÝÑ A` ϵB (4.13)

which yields a certain nudge in the energy functional

f
`

A, Ā
˘ ÝÑ f

`

A, Ā
˘ ` ϵg:B `Opϵ2q (4.14)

with g the gradient. It is now useful to interpret the set of uniform MPS with the same bond
dimension as a manifold within the total Hilbert space of the system in which the energy will be
minimized. The sum of two MPS will not necessarily remain in this manifold. Therefore, the tangent
space to every MPS will be defined, together with a tangent-space projector. This is shown in figure
4.9.

Projecting the gradient g to the tangent-space gradient G yields

G “ A1
C ´ALC

1 (4.15)

with

A1
C “ HAC

pACq
C 1 “ HCpCq (4.16)

where HAC
is visualized in figure 4.8 and HC is a similar effective Hamiltonian. Together with the

condition that the gradient should be zero in the minimum, these yield the VUMPS set of equations.
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HAC
pACq 9 AC

HCpCq 9 C

AC “ ALC “ CAR

(4.17)

The VUMPS algorithm consists of first solving the two eigenvalue equations, which yield new values
of AC and C. The updates for AL and AR are calculated by minimizing the error in the third
equation. More details on this optimization procedure and tangent spaces can be found in appendix
B.

4.2.3 iDMRG2 and VUMPS2

Both iDMRG and VUMPS try to optimize the MPS with a fixed bond dimension D. A simple ex-
tension to these algorithms can be obtained by first grouping the tensors in pairs of two, which can
be done by contracting the tensors over their shared index. The algorithm then updates this newly
joined tensor, instead of the individual ones. After the optimization step, the original tensors are
obtained by performing an SVD on the updated joined tensor. This process is illustrated in figure
4.10. These algorithms are called iDMRG2 and VUMPS2. The huge advantage of this technique is
that, while performing the SVD, the bond dimension can be chosen, by only keeping the D highest
Schmidt-values. This allows for the dynamic growing or shrinking of the bond dimension during the
optimization. This procedure is most natural for MPS with a period of at least 2, but can also be
done for MPS with a single-site unit cell, by artificially doubling the period and allowing the left
and right tensors in the unit cell to have different values and bond dimensions.

One way of choosing the bond dimension is to put a maximum on the bond dimension in each sector,
or all sectors in total. Another way is by defining a truncation, below which value the singular values
are neglected. The first can be used to put a maximum on the computational effort, whereas the
latter corresponds to defining the accuracy of the calculation. This accuracy can be quantified by
the truncated singular values [57].

Other factorizations than the SVD can also be used. The SVD is preferred, however, since truncating
the SVD is the ideal approximation in going from a higher to a lower rank. More explicitly, if

X “ UΣV : (4.18)

is the exact tensor, then its low-rank approximation is

XpDq “ UΣpDqV : (4.19)

where ΣpDq contains the D highest singular values of Σ. The Eckart-Young theorem then states that
[71]

}X ´XpDq}F ď }X ´ Y }F (4.20)

For all Y of matrix-rank D. This theorem was later generalized by Mirsky to norms other than the
Frobenius norm [72, 57].
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Figure 4.10: Illustration of a two-site update using e.g. VUMPS2 or iDMRG2. An arbitrary gauge
is used.

4.2.4 Expand steps

VUMPS2 is not always stable, since the charges and bond dimensions of the tensors are updated
locally in each iteration. This can result in large differences in the dimension of the left and right
virtual Hilbert space of certain tensors in the unit cell. A more stable algorithm can be found by
updating the charges and bonds for the whole unit cell at the same time. This is called an Expand
step. The two-site version of this algorithm proceeds in the same way as VUMPS2, in which two
adjacent tensors are blocked and updated, after which an SVD is performed. Now, the result of this
SVD is not immediately used to update the MPS. Rather, the charges and bond dimensions are
saved, and the algorithm proceeds to the next two adjacent tensors. After going through the whole
unit cell, the charges and bond dimensions of the whole unit cell are updated. If a bond dimension
is smaller than its previous value, the extra charges are just thrown away. If a bond dimension is
bigger than its previous value, the charges are added, and some random noise is added to these
sectors to ensure numerical stability.

4.3 Entanglement scaling

An intrinsic problem in the optimization of MPS is that the bond dimension has to be finite, whereas
the exact solution would only be obtained in the limit of D Ñ 8. The error resulting from choosing
a finite bond dimension vanishes exponentially with the bond dimension for local, gapped Hamil-
tonians [55]. A possible strategy to amend this, is to plot the observables in function of an error
measure, postulate a scaling hypothesis, and extrapolate the results towards error measure zero.
Especially for observables like the correlation length this is necessary, since these suffer more from
finite bond dimension effects than e.g. the ground state energy.
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A first possible error measure is the inverse bond dimension, 1
D , but it turns out that a much more

effective and physical error measure is obtained by looking at the eigenvalues of the transfer matrix,
defined in (3.49) and (3.50).

T “ |1y x1| `
8
ÿ

n“1

λn |ny xn| (4.21)

These eigenvalues can be rewritten as

λn “ e´pϵn`iθnq (4.22)

where ϵn, θn P R and ϵm ě ϵn, if m ą n. Normalisation fixes ϵ1 “ 0 and θ1 “ 0. ϵ2 is related to the
effective correlation length as ϵ2 “ 1{ξeff, and θ2 captures the leading oscillations of the correlation
function. In the limit of infinite bond dimension, ξeff “ ξ, the correct correlation length of the
system. These definitions are visualized in figure 4.11.

In theory, this spectrum should have a gap to ϵ2, after that possibly some separate bands, and
eventually a continuum. Due to the finite bond dimension used in the calculations, this continuum
will be discrete. Deviations from the continuum, and by extension deviations from infinite bond
dimension, can thus be characterized in the variable δ

δ “ ϵ3 ´ ϵ2 (4.23)

The bigger the bond dimension, the closer the spectrum will be to a continuum, and the smaller δ
will be.

Figure 4.11: Visualization of the extrapolation measure

The observables can then be extrapolated to D “ 8 by considering them as a function of the error
measure 1{D or δ and extrapolating those functions to zero [73, 74]. This can be done by postulating
a scaling hypothesis, where it is assumed that for large enough values of D, an observable g obeys
the following function

gpδq “ ge ` aδb (4.24)

where ge is the extrapolated value. The fitted value b is usually close to 1, allowing for a simple
linear fit in many cases [74]. An example of this extrapolation will be given in figure 8.3, where it
is also seen that extrapolation with δ yields more accurate results for the correlation length than
extrapolation in 1{D. This is more generally true [74]. This approach can even be extended beyond
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the scaling regime, if it is possible to postulate a scaling ansatz for gpδq [73].

There are some cases where an alternative to (4.23) should be used. An example is when one is
only interested in the correlation functions of a certain sector. Only the eigenvectors corresponding
to that sector are then computed, with corresponding eigenvalues ϵsn. The error measure of that
specific sector can then be calculated in an analogous way

δs “ ϵs2 ´ ϵs1 (4.25)

Also, when the eigenvalues are degenerate or become close to degenerate for increasing bond dimen-
sion, the error measure should be changed to

δ “ ϵn ´ ϵ1 (4.26)

if the eigenvalues tϵ2, . . . , ϵn´1u are (near) degenerate [74].

Other error measures can be defined, such as the truncation error of the SVD [75, 76]

ϵtrunc “
8
ÿ

m“D`1

λm “ 1 (4.27)

which is the sum of the squares of all singular values that are thrown away, and the (approximated
or exact) energy variance [77, 78, 79, 80, 81].

ϵvar “ xψ|
´

Ĥ ´ E
¯2

|ψy (4.28)

Yet another error measure can be used for critical systems. Here, it is known that the correlation
length should be infinite, and the inverse effective correlation length 1{ξ of the calculation at finite
bond dimension can be used as an error measure. [82, 83, 84, 85, 86, 87]. These approaches do not
work outside the critical regimes, however, since there they would require knowledge of a nontrivial
scaling function [74].

For finite systems, one can look at the observables in the thermodynamic limit by extrapolating in
1{L, with L the size of the system [88, 89, 90]. This is called finite-length scaling. Since the MPS
used in this thesis are defined directly in the thermodynamic limit, there is no need to do this in
this approach.

4.4 Symmetries

4.4.1 Symmetric Tensors

An important way to reduce the computational cost of the algorithms is to take into account the
symmetry of the system. When there is a symmetry, not all of the parameters of the MPS will be
free and independent. Rather, the MPS can then be fully characterized by a reduced number of
free parameters and its symmetry. The symmetry of the MPS will be denoted as one or multiple
charges of the corresponding symmetry group, living on each leg of each tensor. This charge will
be a conserved quantity, and the way it moves between tensor legs will be denoted with so-called
fusion trees [91]. Examples of fusion trees are given in figure 4.12. Each leg of the fusion trees
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carries a charge, and the total charge should be conserved in each vertex point. The fusion tree of
a symmetric two-site operator will look like figure 4.12c.

(a) (b) (c)

Figure 4.12: Graphical representation of fusion trees [91]

The mathematics are as follows. For a general fusion tree with k external charges (=legs), there are
l “ k ´ 3 internal charges. This gives k ` l charges in total.

je “ pj1, ¨ ¨ ¨ , jkq
ji “ pj1, ¨ ¨ ¨ , jlq
j “ pje, jiq

(4.29)

Fixing a certain value of the internal and external charges j gives a block of components of the
tensor, or equivalently, a matrix block of its matrix representation. The Wigner-Eckart theorem
states that this block can be decomposed in a degeneracy tensor Pj and a structural tensor Qj . The
latter is completely fixed by the symmetry, whereas the former contains only the free (or variational)
parameters of the tensor Tj [92, 93, 94, 95]. A three-index structural tensor is also called a Clebsch-
Gordan tensor.

Tj “ Pj bQj (4.30)

The total tensor T can then be written as

T “ à

j

pPjqtj b pQjqmj
(4.31)

where tj and mj are the dimensions of the tensors Pj and Qj , respectively. The structural tensor of
an incompatible set of charges is zero, so the direct sum runs only over compatible sets of charges.

Considering a tensor with only one set of external charges, or equivalently, considering a block of a
tensor by fixing the external charges, this reduces to

T “ à

ji

pPjiqtji b pQjiqmji
(4.32)

Consider a case where the Hamiltonian is a four-leg tensor with fixed spins and degeneracies of one,
which implies only one internal leg, as also shown in figure 4.12c. Pji is now a tensor with only one
element, or just a scalar. This means that the expression reduces to
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T “
ÿ

ji

PjipQjiqmji
(4.33)

This gives a very practical way to implement the Hamiltonian into a numerical simulation. First,
the external charges are given, then the fusion trees will be calculated. Finally, the coefficients of
each fusion tree are given and the results are summed into the full tensor. Only the coefficients
corresponding to fusion trees of an allowed set of external and internal charges, i.e. charges that can
conserve the symmetry of the tensor, will be non-zero [91].

4.4.2 The need for a bigger unit cell

Each tensor in a symmetric system will be defined in terms of its symmetry, which means that the
Hilbert space on which every space (or leg) of the tensor acts, can be separated into different charge
sectors. These charge sectors will be represented by a combination of charges of the total symmetry
group of the system.

Figure 4.13: Example of a tensor A with its Hilbert spaces

In the case of the tensor of figure 4.13, the Hilbert space is

H “ Hv b Hp b H˚
v (4.34)

with Hv and Hp are respectively the virtual and physical Hilbert spaces. The ˚ denotes the Hermi-
tian conjugate and is represented as an incoming arrow instead of an outgoing one.

A case of non-injectivity is when the Hilbert spaces have a grading and when the physical Hilbert
space has odd grading.

$

’

&

’

%

Hv “ Hv` ‘ Hv´

Hv` b Hp´ – Hv´

Hv´ b Hp´ – Hv`

ñ MPO non-injective (4.35)

The matrix representing the tensor will decompose into separate blocks. The leading eigenvalue will
then not be unique anymore, causing problems in the optimization scheme, as mentioned in section
3.4.1.
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An example of this will be the Heisenberg XXZ model (see section 5.1), with symmetry Up1q. The
physical Hilbert space is 2-dimensional and has charges ˘1. The virtual Hilbert space (in theory
consisting of all integers) will decompose in the Hilbert space of odd charges and the Hilbert space
of even charges. This can be easily seen by realizing that Up1q is abelian and thus that fusing Up1q-
charges corresponds to simple addition and subtraction. The solution to this is defining a bigger
unit cell, consisting of two tensors. Hv1 and Hv2 will respectively be the left and right virtual spaces
of the first site of the unit cell, and the other way around for the second site. This is shown in figure
4.14. In this way, there will be unique left and right environments for each of the tensors in the unit
cell, and all problems regarding non-injectivity are solved.

Figure 4.14: Redefinition of the unit cell of a non-injective MPS

4.5 Cylinders

4.5.1 Modelling 2D systems

MPS are inherently 1D objects, but can nevertheless be used to model 2D systems. This can be
done by considering the 2D lattice wrapped around a cylinder, as shown in figure 4.15a. Although
this new system is quasi-1D, it can still yield accurate results for the 2D system in various cases [96,
97, 98]. Note that the 2D system in this example is defined on the square lattice, which will be used
throughout this thesis. This method holds more generally for other lattices, but their mapping to a
1D chain may be more difficult.

The 2D system is made 1D by considering a chain of lattice points looping around the cylinder, thus
perfect for the MPS language. Each site in the bulk i is connected to the sites i ` 1,i ´ 1, i ` N ,
and i ´ N , where N is called the circumference of the cylinder. The system is still infinite in the
x-direction, but finite in the y-direction. There are essentially two ways of implementing boundary
conditions in the y-direction.

The first option is implementing periodic boundary conditions, as in figure 4.15b. In a certain rung
of the cylinder, the first and last site of the rung are connected. The second option is implementing
spiral boundary conditions, where the last site of a certain rung is connected to the first site of the
next rung, as shown in figure 4.15c. The former quasi-1D system is called a cylinder, the latter a helix.

The Hamiltonian of the 2D system is
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(a) 2D system wrapped around a cylinder [98]

(b) Cylinder (c) Helix

Figure 4.15: (a) Modelling a 2D system as a quasi-1D system by placing it on a cylinder. Either
(b) periodic boundary conditions, corresponding to the cylinder, or (c) spiral boundary conditions,
corresponding to the helix, can be imposed. The example shows the N “ 6 case.

H “
ÿ

pi,jqPV

Bpi,jq `Hpi,jq,pi`1,jq `Hpi,jq,pi,j`1q (4.36)

and is approximated in quasi-1D as

H “
ÿ

iPV

Bi `Hi,i`1 `Hi,i`N (4.37)

where the boundary effects are neglected. Hi,j is the interaction Hamiltonian between two sites and
Bi the self-interaction. For the limit of N going to infinity, the 2D lattice is successively better
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approximated.

The JordanMPOs for the 1D Hamiltonian of the cylinder and the helix are given in appendix A.
The advantage of the cylinder is that it is the most natural boundary condition for describing 2D
systems that preserve a clear distinction between the x and y-direction. The big advantage of the
helix however, is the fact that it is translationally invariant in the period of the unit cell, since the
Hamiltonian in (4.37) is exact in this case, and the boundary conditions do not need to be taken
into account explicitly. For the cylinder, there is only translational invariance over N sites, which
means the unit cell has to be an integer multiple of N , which can result in a higher complexity. For a
given unit cell, however, the parameter that determines the complexity is the total bond dimension.
Since adjacent sites in the x-direction are not adjacent in the 1D system, the information on the
entanglement between those two sites now has to pass through N ´ 1 other sites. For a given
accuracy, this causes an exponential increase in the needed bond dimension. This problem is the
same for helices and cylinders.

4.5.2 Staggered magnetization and geometric frustration

To further evaluate whether cylinders and helices can be accurate descriptions of the 2D systems,
the staggered magnetization will be investigated. A staggered magnetic field can be applied on the
2D system, i.e.

Bpi,jq “ p´1qi`jhstagσzpi,jq (4.38)

where Bpi,jq is the magnetic field on site pi, jq. hstag is the staggered magnetic field strength and
σz

pi,jq
is the Pauli sigma z matrix acting on site pi, jq. This can result in a staggered magnetization

per site, calculated as the expectation value of

mstag
pi,jq

“ p´1qi`jσzpi,jq (4.39)

where thus ´1 ă mstag ă 1. The results will be vastly different depending on whether a cylinder or
a helix is used.

Figures 4.16a and 4.16b show a cylinder with a staggered magnetic field. For even cylinders, there
is no frustration and an external staggered magnetic field can be applied, resulting in a non-zero
staggered magnetization. For odd cylinders, there is frustration on the boundary conditions, and the
staggered magnetic field will have to be strong enough to overcome the antiferromagnetic two-site
interactions. These figures also show that a unit cell of 2N is needed in this case, resulting in a
higher complexity.

Figures 4.16c and 4.16d show a helix with a staggered magnetic field. For odd helices, there is no
frustration, leading to a non-zero staggered magnetization. However, for even helices, applying a
staggered magnetic field in two directions (which correspond to the 2D case) is not possible if a
unit cell of two is chosen (corresponding to the period of the MPS). A unit cell of 2N would have
to be chosen, losing the advantage of complexity. Furthermore, there would be frustration on the
boundary conditions. Again, the applied staggered magnetic field will have to be strong enough to
overcome the antiferromagnetic interactions.
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(a) (c)

(b) (d)

Figure 4.16: Modelling a 2D system with a staggered magnetic field on a cylinder for (a) N “ odd
and (b) N “ even, and on a helix for (c) N “ odd and (d) N “ even. Blue and orange denote a
positive and negative magnetic field respectively.

A nonzero staggered magnetization breaks the translational invariance of the system. This occurs in
the 2D system even without an external field and is called spontaneous symmetry breaking 10. This
can not occur in the 1D system due to Coleman’s theorem, which states that continuous symmetries
corresponding to an order parameter that does not commute with the Hamiltonian cannot be broken
at zero temperature in one-dimensional quantum systems 11 [101]. However, the MPS representation
of quasi-1D systems can show spontaneous symmetry breaking because the bond dimension has to
be finite. It is thus expected that even though the quasi-1D systems can give accurate results on the
2D system for large N , things like spontaneous symmetry breaking will still not be well described.
Results on staggered magnetization will be given in section 8.2.2.

10Spontaneous symmetry breaking occurs when the ground state of a model does not obey the same symmetry as
the underlying system

11This is the quantum analog of the Mermin-Wagner theorem [99, 100]
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5 Models for Hamiltonians

In this chapter, two important models for Hamiltonians will be described, each with a few of its
properties.

5.1 1D Heisenberg Model

The 1D Heisenberg model describes a chain of spin 1{2 particles, with in the most general case the
Hamiltonian

Hij “ Jxσ
x
i σ

x
j ` Jyσ

y
i σ

y
j ` Jzσ

z
i σ

z
j (5.1)

acting between nearest neighbors, where σai is the Pauli sigma matrix a (x, y or z) on site i. Jx, Jy
and Jz are external parameters [82, 102].

5.1.1 1D Heisenberg XXZ Model: U(1) symmetry

If Jx “ Jy ‰ Jz, the model is called the XXZ-model and has U(1) symmetry due to rotational
invariance around the z-axis. It corresponds to the conservation of spin projection along the z-axis.
In this case, the Hamiltonian is redefined as

Hij “ σxi σ
x
j ` σyi σ

y
j ` ∆σzi σ

z
j (5.2)

with ∆ a parameter. As a representation of the symmetry, U(1) charges `1 and ´1 are chosen,
which correspond to spin up |Òy and spin down |Óy. σi b σi corresponds to a 4 ˆ 4 matrix. In the
basis t|Òyi |Òyj , |Òyi |Óyj , |Óyi |Òyj , |Óyi |Óyju, they can be written down as

σx b σx “

»

—

—

–

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

fi

ffi

ffi

fl

(5.3)

σy b σy “

»

—

—

–

0 0 0 ´1
0 0 1 0
0 1 0 0

´1 0 0 0

fi

ffi

ffi

fl

(5.4)

σz b σz “

»

—

—

–

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 1

fi

ffi

ffi

fl

(5.5)

σx b σx and σy b σy break the U(1) symmetry explicitly, but the combination σx b σx ` σy b σy
does not, as this corresponds to
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σx b σx ` σy b σy “

»

—

—

–

0 0 0 0
0 0 2 0
0 2 0 0
0 0 0 0

fi

ffi

ffi

fl

(5.6)

This corresponds to flipping the spin of site i and site j. Together with σz bσz, the full Hamiltonian
is given by

H
pXXZHeisenbergq

ij “

»

—

—

–

∆ 0 0 0
0 ´∆ 2 0
0 2 ´∆ 0
0 0 0 ∆

fi

ffi

ffi

fl

(5.7)

This Hamiltonian can be exactly diagonalized. The eigenfunctions and their corresponding energy
are given by

$

’

’

’

’

&

’

’

’

’

%

|Òyi |Òyj ∼ ∆

|Óyi |Óyj ∼ ∆
1?
2

´

|Òyi |Óyj ` |Óyi |Òyj
¯

∼ ´∆ ` 2

1?
2

´

|Òyi |Óyj ´ |Óyi |Òyj
¯

∼ ´∆ ´ 2

(5.8)

Depending on the parameter ∆, different regimes will exist. ∆ ą 1 is called the antiferromagnetic
region. From (5.8), it can be seen that the antisymmetric combination has the lowest energy, yield-
ing an antiferromagnetic ground state (also called Néel order [103, 104]). ∆ ă ´1 is called the
ferromagnetic region due to similar arguments. ´1 ă ∆ ă 1 is called the XY region. ∆ “ 1 is a
critical point of the system and is called the Heisenberg XXX model. This will be further discussed
below.

There are 6 allowed fusion channels. The fusion trees and their values (see (4.33)), are given in table
5.1.

Table 5.1: Fusion trees and their values of the 1D Heisenberg XXZ-model

number incoming internal outgoing value
charges charge charges

(1) -1 & -1 -2 -1 & -1 ∆
(2) +1 & -1 0 -1 & +1 2
(3) -1 & +1 0 -1 & +1 -∆
(4) +1 & -1 0 +1 & -1 -∆
(5) -1 & +1 0 +1 & -1 2
(6) +1 & +1 +2 +1 & +1 ∆

5.1.2 1D Heisenberg XXX Model: SU(2) symmetry

If Jx “ Jy “ Jz, or ∆ “ 1 in the XXZ-model, the model is called the XXX-model and has SU(2)
symmetry due to full rotational invariance [82, 102].
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Hij can be rewritten as

Hij “σxi σxj ` σyi σ
y
j ` σzi σ

z
j

9 S⃗i ¨ S⃗j
“1

2

´

pS⃗i ` S⃗jq2 ´ S2
i ´ S2

j

¯

“
#

1
4 , Stot “ 1

´ 3
4 , Stot “ 0

(5.9)

with S the spin operator. The lowest corresponds to total spin 0, which means antiferromagnetic
order.

Choosing the two-dimensional representation of SU(2) (with internal charges 0 and 1) leads to the
fusion trees and their values given in table 5.2. The difference in sign with respect to (5.9) is due to
different conventions in the definition of the Clebsch-Gordan coefficients.

Table 5.2: Fusion trees and their values of the 1D Heisenberg XXZ-model

number incoming internal outgoing value
charges charges charges

(1) 1/2 & 1/2 0 1/2 & 1/2 -3/4
(2) 1/2 & 1/2 1 1/2 & 1/2 -1/4

5.2 Hubbard Model

The Hubbard model was proposed in 1963 as a simple model describing interacting fermions on a
lattice by Hubbard, Kanamori, and Gutzwiller [38, 105, 106, 107]. It is defined as [37, 38, 39, 40]

H “ ´
ÿ

i,jPΛ

ÿ

σ

tij

´

c:

iσcjσ ` c:

jσciσ

¯

`
ÿ

iPΛ

Uic
:

iÒc
:

iÓciÓciÒ

“ ´
ÿ

i,jPΛ

ÿ

σ

tij

´

c:

iσcjσ ` c:

jσciσ

¯

`
ÿ

iPΛ

UiniÒniÓ

(5.10)

i and j denote sites on a lattice Λ. The sites have an interaction strength Ui and sites i and j interact
with a hopping term tij . c

:

iσ and ciσ are respectively the creation and annihilation operators for the
state with quantum numbers i, the site number, and σ, the spin. niσ is the number operator and
counts the number of fermions with spin σ on site i.

For the translationally invariant case, Ui “ U and tij “ t when i and j are neighboring sites. It can
be rewritten as

Hij “ ´
ÿ

σ

t
´

c:

iσcjσ ` c:

jσciσ

¯

(5.11)

Bi “ Uc:

iÒc
:

iÓciÓciÒ (5.12)
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H “
ÿ

⟨ij⟩PΛ

Hij `
ÿ

iPΛ

Bi (5.13)

with Hij the two-site interaction or hopping term and Bi the self-interaction. ⟨¨ ¨ ¨ ⟩ denotes nearest
neighbors. The Hilbert space at one site is

H “ t|0y , |Òy , |Óy , |Öyu (5.14)

Hij is thus a (2,2) tensor operator with dimension 42`2 “ 256.

In the 1D case, with only neighbor hopping, this reduces to

H “ ´
ÿ

iPΛ

ÿ

σ

ti,i`1

´

c:

iσci`1,σ ` c:

i`1,σciσ

¯

` U
ÿ

iPΛ

c:

iÒc
:

iÓciÓciÒ (5.15)

The Hubbard model has the symmetry Up2q – Up1q b SUp2q. The U(1) symmetry denotes global

charge conservation and makes the number operator n̂ “ ř

i,σ c
:

iσciσ a good quantum number. The
SU(2) symmetry denotes spin isotropy and makes the total spin and the spin projection on the

z-axis,
ˆ⃗
S2 and Ŝz, good quantum numbers [37].

Due to spin isotropy, there will be no distinction between spin up and spin down states. Their Hilbert
space is thus 4-dimensional and corresponds to representations of Up1q b SUp2q b fZ2, where fZ2

is the Z2 symmetry of fermions, denoting that they have anticommutation relations. The quantum
numbers for this case are given in table 5.3.

Table 5.3: Quantum number for U(1) b SUp2q b fZ2

state U(1) SU(2) fZ2

|0y 0 0 1
|Òy or |Óy 1 1/2 -1

|Öy 2 0 1

If a distinction between spin up and spin down is made, the Hilbert space will correspond to repre-
sentations of Up1q b Up1q b fZ2, leading to the quantum numbers of table 5.4

Table 5.4: Quantum number for U(1) b Up1q b fZ2

state U(1) U(1) fZ2

|0y 0 0 1
|Òy 1 1 -1
|Óy 1 -1 -1
|Öy 2 0 1

5.2.1 Filling

The electron filling f is defined as

f “ Ne
N

(5.16)
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where Ne is the number of electrons in the system and N is the number of sites. Consequently,
0 ď f ď 2. The corresponding hole density δ can be defined as

δ “ Nh
N

“ 1 ´ f (5.17)

with Nh the number of holes in the system, and thus Ne ` Nh “ N . Half-filling is obtained for
Ne “ N or δ “ 0. For half-filling, it can be interesting to redefine the Hubbard Hamiltonian as

Hph “ ´
ÿ

i,jPΛ

ÿ

σ

tij

´

c:

iσcjσ ` c:

jσciσ

¯

`
ÿ

iPΛ

UipniÒ ´ 1qpniÓ ´ 1q (5.18)

The difference with the Hamiltonian defined in (5.10), is

Hph “ H `
ÿ

iPΛ

Uip1 ´ niÒ ´ niÓq

“ H `
ÿ

iPΛ

Uip1 ´ niq
(5.19)

If Ui ” U , this just corresponds to an energy shift of Up1 ´ fq per site. This will not influence the
ground state for a given filling. What is interesting about this, is that the Hamiltonian of (5.18) is
particle-hole symmetric around half-filling. This means that the same result is obtained for fillings
f “ 1`g as for f “ 1´g. This particle-hole symmetry is an extra SUp2q symmetry, giving the whole
system the symmetry SOp4q [37]. The Hubbard model as defined in (5.10) will be used throughout
this thesis unless mentioned otherwise.

If the Up1q symmetry is not imposed for the charge sector, the filling can be optimized as well.
Using Hamiltonian H, the system will be optimized towards zero filling. Using Hamiltonian Hph,
the system will be optimized towards half-filling. If a certain filling f is desired, it has to be specified
somehow, for which there are two main possibilities. One uses the chemical potential, where a higher
chemical potential means fewer electrons in the system. In this case, it is not a priori known in all
cases which value for the chemical potential is needed for a given filling. Another possibility is to
impose the filling exactly, using the charges of the symmetries in the physical Hilbert space. Here,
it is a priori known which charges are needed for a given filling. Both will be explained below.

Exact implementation Supplying the quantum numbers of table 5.3 or 5.4 to the VUMPS
algorithm will give zero filling everywhere, since the optimized MPS will transform trivially under
each symmetry group, and will thus have charge zero in each sector. The way to amend this is to
impose a certain filling f . In the case of a rational filling f “ P {Q 12, this leads to table 5.5 for the
case of Up1q b SUp2q b fZ2.
This reduces to the case above if P “ 0 and Q “ 1. Half-filling is obtained by P “ Q “ 1. The
virtual spaces can be found in appendix C. This approach has the downside that the minimal size
of the unit cell has to be

12The code required integer values of the Up1q charges, whereby only rational fillings can be implemented. This is
theoretically sufficient, however, since Q is dense in R. Practically, however, the value of Q influences the complexity.
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Table 5.5: Quantum number for Up1q b SUp2q b fZ2 in case of filling P {Q
state U(1) SU(2) fZ2

|0y ´P 0 1
|Òy Q´ P 1/2 -1
|Óy Q´ P 1/2 -1
|Öy 2Q´ P 0 1

#

Q, if P is even

2Q, if P is odd
(5.20)

The size of the unit cell always has to be an integer multiple of this minimal size.

Implementation using the chemical potential An alternative to the exact implementation of
the previous section is the implementation of a chemical potential µ. Here, the Hubbard Hamiltonian
is changed to [108]

H ÝÑ H 1 “ H ´ µ
ÿ

iPΛ

ni (5.21)

The introduction of a positive (negative) chemical potential makes it more favorable for the system
to have a higher (lower) electron filling. In order for this extra term to have an effect on the ground
state electron filling, the Up1q symmetry can not be imposed for the charge sector. Furthermore, it
is not a priori known what value of the chemical potential needs to be imposed in order to have a
given filling (unless the analytical result is known, which only exists in 1D). Both methods will be
looked at, as they both have advantages and disadvantages.

5.2.2 Implementation

The implementation of the above model can most easily be done by defining the creation and anni-
hilation operators separately. Specifically, only the creation operators c:

Ò and c:

Ó have to be defined,
since the annihilation operators follow by hermitian conjugation.

These operators do not satisfy the symmetries, since they create or annihilate an electron and its
corresponding Up1q-charge. They can nevertheless still be defined by adding an auxiliary leg that
carries this additional charge. The tensor can then be defined as acting on the physical space and
the auxiliary space. Explicitly, if an operator creates a charge c, a corresponding Hilbert space Hc

can be defined, and the operator Ô can be defined as

Ô : Hp b Hc ÝÝÑ Hp (5.22)

The conjugate of this operator has the conjugate charge going into the tensor, or equivalently, the
same charge coming out of the tensor. The operator ÔÔ˚ can then be written down as a tensor
contraction of the 2 individual operators and will satisfy all symmetries. This is shown in figure 5.1.
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Figure 5.1: Diagrammatic representation of the operator ÔÔ˚

In the case of imposing Up1q b Up1q b fZ2, Hc has dimension 1, and the operators are 4 ˆ 1 ˆ 4
operators. They are given in (5.23)-(5.26) in the basis defined by t|0y , |Óy , |Òy , |Öyu.

c:

Ò “

»

—

—

–

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

fi

ffi

ffi

fl

(5.23)

cÒ “

»

—

—

–

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

(5.24)

c:

Ó “

»

—

—

–

0 0 0 0
1 0 0 0
0 0 0 0
0 0 ´1 0

fi

ffi

ffi

fl

(5.25)

cÓ “

»

—

—

–

0 1 0 0
0 0 0 0
0 0 0 ´1
0 0 0 0

fi

ffi

ffi

fl

(5.26)

where matrix element Okl “ xψk| Ô |ψly and where the convention |Öy “ c:

Òc
:

Ó |0y is used.

In the case of imposing Up1q b SUp2q b fZ2, operators like ciÒ can not be defined and the operator

c:

iÒcjÒ ` c:

jÓciÓ has to be redefined as c:

icj , where c and c: are operators of the form of (5.22). Here,
Hc has dimension 2, one for |Òy and one for |Óy, and the operators are 4 ˆ 2 ˆ 4 operators. They are
given in (5.27)-(5.30) 13.

c:
1 “

»

—

—

–

0 0 0 0
1 0 0 0
0 0 0 0
0 0 ´1 0

fi

ffi

ffi

fl

(5.27)

c1 “

»

—

—

–

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

fi

ffi

ffi

fl

(5.28)

c:
2 “

»

—

—

–

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

fi

ffi

ffi

fl

(5.29)

c2 “

»

—

—

–

0 0 1 0
0 0 0 ´1
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

(5.30)

The same operators when the Up1q symmetry is dropped, are

13The subindex denotes the second index of the operators
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c:
1 “

»

—

—

–

0 0 0 0
0 0 0 ´1
1 0 0 0
0 0 0 0

fi

ffi

ffi

fl

(5.31)

c1 “

»

—

—

–

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

fi

ffi

ffi

fl

(5.32)

c:
2 “

»

—

—

–

0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0

fi

ffi

ffi

fl

(5.33)

c2 “

»

—

—

–

0 0 0 1
0 0 0 0
0 ´1 0 0
0 0 0 0

fi

ffi

ffi

fl

(5.34)

The basis used is tt|0y , |Öyu , |Óy , |Òyu.

5.2.3 The extended Hubbard model

The Hubbard model defined in (5.10) is called the simple or pure Hubbard model, with only nearest-
neighbor interactions. In the extended Hubbard model, there are further-reaching hopping terms
and off-site repulsive interactions. The latter correspond to extra terms in the Hamiltonian

HV “
ÿ

i,jPΛ

Vijninj (5.35)

Example Hamiltonians of extended Hubbard models are the one-band and three-band models de-
fined in the next chapter.

58



6 The cuprates

”It doesn’t matter whether you can or
cannot achieve high-temperature
superconductivity or fuel cells, they will
always be on the list because if you could
achieve them they would be extremely
valuable.”

Martin Fleischmann

6.1 Introduction

Superconductors have vanishing electrical resistance under a certain temperature, called the critical
temperature Tc. They were first discovered by the Dutch physicist Heike Kamerlingh Onnes in
1911, when he found that mercury exhibits superconductivity with Tc “ 4.2K [109]. Thus began
the search for materials exhibiting superconductivity at room temperature. A big step in this search
was the discovery of high-temperature superconductivity in 1986 [110]. Here, they found a critical
temperature of 30K, the highest at the time, for a system consisting of barium, lanthanum, copper,
and oxide, specifically BaxLa5´xCu5O5p3´yq with x “ 1 and 0.75 and y ą 0. The original theory to
describe superconductivity proposed by Bardeen, Cooper, and Schrieffer, called BCS theory, failed
to describe this high-temperature superconductivity [111, 112]. A complete theory of this effect
is still missing, more than 40 years after its discovery. A historical overview of different types of
superconductors is shown in figure 6.1.

The La-Ba-Cu-O system where high-Tc superconductivity was first found is part of a more general
class of materials called the cuprates. They consist of sheets of CuO2-planes, which are shown in
figure 6.2. Here, the d-orbitals of the copper atoms are shown in red and form a square lattice.
The px and py-orbitals of oxygen are shown in blue and are situated between two copper atoms.
These CuO2-planes are stacked on top of each other and are separated by insulating charge reser-
voirs, consisting of oxygen and heavier elements. The conduction occurs within these CuO2-planes,
which makes it a 2-dimensional problem [114]. The copper d-orbitals and the oxygen p-orbitals are
responsible for the (super)conductivity. The atomic structures of two important cuprates are shown
in figure 6.3.

In the basis compound, e.g. in La2CuO4, the insulating layers consist only of lanthanum and oxygen.
The corresponding electron filling in the CuO2-planes is f “ 5{3, where the p-orbitals of oxygen are
completely filled and one electron resides on the d-orbitals of copper [118]. By changing a fraction x
of the lanthanum atoms to e.g. barium or strontium, thus creating the compound La2´xBaxCuO4

or La2´xSrxCuO4, the CuO2-planes are doped with holes, decreasing the filling to f “ p5 ´ xq{3.
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Figure 6.1: Historical evolution of confirmed superconductors [113]

Figure 6.2: A CuO2-plane [115].

6.2 Three-band versus one-band

6.2.1 Definitions and Hamiltonians

To describe these systems with TN, a 2D lattice has to be defined. One possibility is to define a
tensor for each copper d-orbital and oxygen p-orbital atom separately. This is the three-band model
and is shown in figure 6.4. The minimal unit cell then consists of a square containing a copper
d-orbital, an oxygen px-orbital, and an oxygen py-orbital. Since the MPS are wrapped around
cylinders, which are 1D, this unit cell will have to be flattened out. In this thesis, the order copper
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(a) La2CuO4. Figure adapted from [116] (b) Ba2HgCuO4. Figure adapted from [117]

Figure 6.3: Atomic structure for cuprates (a) La2CuO4 and (b) Ba2HgCuO4 showing high-Tc super-
conductivity. Oxygen is red, copper is blue. For (a), lanthanum is green. For (b), barium is green
and mercury is grey. The blue planes are the CuO2-plane showing superconductivity. The other
planes are insulating and act as charge reservoirs.

d, oxygen px, oxygen py from top to bottom was chosen 14. The filling of the undoped compound
in the three-band model is 5{3, by the discussion of section 6.1. The Hamiltonian that corresponds
to this model is written down in (6.1) in the electron picture.

H “ ´
ÿ

⟨ij⟩σ
p´1qPij tpd

´

d:

iσpjσ ` p:

jσdiσ

¯

´
ÿ

⟨jj1⟩σ
p´1qPij tpp

´

p:

jσpjσ ` p:

j1σpjσ

¯

´ ∆dp

ÿ

iσ

niσ

` Ud
ÿ

i

niÒniÓ ` Up
ÿ

i

njÒnjÓ ` Vpd
ÿ

⟨ij⟩σσ1

niσnjσ1 ` Vdd
ÿ

⟨ii1⟩σσ1

niσni1σ1 ` Vpp
ÿ

⟨jj1⟩σσ1

njσnj1σ1

(6.1)

d:

iσ (diσ) and p:

jσ (pjσ) are the creation (annihilation) operators for an electron on a copper atom
on site i and an oxygen atom on site j, respectively. tpd ą 0 is the hopping between neighbouring
copper and oxygen atoms. tpp ą 0 is the hopping between neighbouring oxygen atoms. ∆dp is the
energy difference between the occupation of an electron between the copper d and oxygen p-orbital
and is equal to ϵp ´ ϵd ą 0. Ud and Up are the on-site screened Coulomb repulsion terms (also called
self-interaction) for the copper and oxygen atoms respectively 15. Vpd is the off-site Coulomb repul-
sion between neighbouring copper and oxygen atoms. ⟨¨ ¨ ¨ ⟩ denotes neighbouring sites. σ denotes
the opposite spin of σ. niσ denotes the number operator on site i of spin σ.

It can still be chosen how the orbitals are oriented, i.e. what their phase is. The relative phases
between orbitals will determine the sign of the interaction. The definition of the phases is chosen
such that hopping between copper and oxygen within a unit cell has a positive sign. The resulting
sign conventions are shown in figure 6.4. This determines whether Pij is even or odd for a given
interaction. The interactions Vpd are placed on the same sites as the terms tpd, but always have a
positive sign [120].

14The order of the orbitals must be chosen such that strongly entangled sites are as close to each other as possible
along the 1D chain [119].

15When using cRPA as downfolding procedure, these are the partially screened Coulomb repulsion terms [28].
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Figure 6.4: Definition of the hopping terms of the three-band Hubbard model with the appropriate
conventions. The px and py-orbitals correspond to oxygen atoms, the d-orbitals correspond to copper
atoms. The Vpd and Vpp terms act on the same locations as tpd and tpp, respectively, but are always
positive. The Vdd terms act between nearest-neighbor copper atoms and are not shown for clarity.

Anderson [121, 122] showed that the rich physics of the cuprates might even be captured in full
by considering only the copper d-orbitals. An effective Hamiltonian for this can be obtained by
downfolding the three-band effective Hamiltonian further to this one-band model. (6.2) shows this
Hamiltonian. Figure 6.5 shows the one-band model with the definitions for this equation. In the
one-band model, the p-orbitals of oxygen are assumed to be completely filled and are not taken into
account explicitly. This one-band model is thus half-filled in the case of no doping. This reasoning
will be refined in the next section.
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H “ ´t
ÿ

⟨ii1⟩σ

´

d:

iσdi1σ ` d:

i1σdiσ

¯

´ t1
ÿ

⟨⟨ii1⟩⟩σ

´

d:

iσdi1σ ` d:

i1σdiσ

¯

` U
ÿ

i

niσniσ ` V
ÿ

⟨ii1⟩σσ1

niσni1σ1

(6.2)
Here, ⟨⟨¨ ¨ ¨ ⟩⟩ denotes next-to-neighbour interactions, i.e. interactions along a diagonal. From the
sign conventions in figure 6.5 it is immediately clear that t ą 0 and t1 ă 0.

Figure 6.5: Definition of the hopping terms of the one-band Hubbard model with the appropriate
conventions

Hirayama et al. derived the relevant Hubbard parameters for the description of cuprates HgBa2CuO4

and La2CuO4 [123] [124]. The values of the former, as used in this thesis, are given in appendix D.

6.2.2 Downfolding from three-band to one-band model

When doping the three-band model, most holes reside on oxygen atoms. The idea behind the down-
folding from the three-band to the one-band model is that the hybridization of the orbitals strongly
binds a hole on each square consisting of a copper atom and its four surrounding oxygen atoms. To-
gether with the hole present at half-filling, this creates a singlet, called a Zhang-Rice Singlet (ZRS).
This singlet can then act as a hole in an effective model describing only the hybridized copper atoms
[118, 125, 126, 127, 128]. The Coulomb interactions of the one-band model thus do not describe the
interaction between holes located on the different copper atoms, but rather the interactions between
these ZRS [129] located on hybridized orbitals. The existence and importance of the ZRS have been
verified, and it has been noticed that its weight in the ground state varies surprisingly little across
different compounds despite the variation in the three-band parameters. The same holds for the
U{t ratio [129]. Although these references state that such a one-band model might be sufficient
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to describe the cuprates, there are important differences between the one-band and the three-band
model. The three-band model is also far less investigated, and a consensus on its properties is still
missing [128, 130].

6.3 Ground state

The Hubbard model has turned out to describe the physics of high-temperature superconductivity,
sparking extra interest in the numerical simulation of the model. Despite being proposed over 60
years ago and despite its simplicity, basic questions about the ground state in different parameter
regimes of the Hubbard model remain unanswered. Only in 1D, where the Hubbard model can be
exactly solved by the Bethe ansatz [131], have those questions been settled. For higher dimensions,
the only option is to resort to numerical methods. It became clear very early on that the standard
methods in condensed matter theory were insufficiently accurate to simulate the Hubbard model,
and new methods have been developed in the subsequent years to obtain the desired accuracy. These
methods include quantum Monte Carlo (QMC) [132, 133, 134], density matrix embedding theory
(DMET) [135, 136], density matrix renormalization group (DMRG) [14, 15], dynamical cluster ap-
proximation (DCA) [137], unrestricted coupled cluster theory [138, 139, 140], and TN [9, 42, 48,
141] [142]. These methods allowed us to explore the rich physics inherent to the Hubbard model,
and in recent years have reached a consensus in many of the parameter regimes [38].

Figure 6.6a shows the phase diagram of the cuprates in function of the temperature and hole doping.
Various phases exist, such as the antiferromagnetic phase, d-wave superconductivity, stripe order,
the pseudogap phase, the strange metal phase, and the Fermi liquid [143, 144, 145, 146]. The critical
temperature exhibits a dome-like shape, with optimal doping around δ « 0.16 [147, 148, 149]. The
region of superconducting order below and above this value are called the underdoped and over-
doped regimes, respectively. This thesis will try to numerically investigate this phase diagram at
zero temperature.

On the other hand, figure 6.6b shows the current phase diagram of the 2D Hubbard model at zero
temperature in function of doping [38], at intermediate interaction strength. This shows great simi-
larity with the phase diagram of the cuprates, which is the reason why the Hubbard model has been
identified as a good model to describe these materials. At half-filling, the Hubbard model is a Mott
insulator with antiferromagnetic order [150]. The value U{t « 8 has been identified as being realistic
for the cuprates. Extensive studies have looked at the ground state in this parameter regime, and
concluded that stripe states, where the charge density is spatially modulated, exist in a wide range
of doping levels. The stripe states are also called charge density waves (CDW).
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(a)

(b)

Figure 6.6: (a) Phases of the cuprates in function of hole doping and temperature [143] and (b) the
phase diagram of the Hubbard model at zero Kelvin for intermediate interaction strengths [38]
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7 Computational Details

In this chapter, some of the concepts defined above are explained in more detail, focussing on their
efficient implementation. The code that was used for these calculations is Tensortrack 16, developed
at the Quantum Group at the University of Ghent, together with code written by myself in Matlab.
The diagrams shown in this chapter have explicit extra twists in the calculation of traces to be
consistent with their implementation in Tensortrack.

7.1 Generation of the data

The basic structure of the code used to generate data is given in the algorithm below. The parameters
that need to be specified are

• the system (e.g. cylinder one-band model)

• necessary parameters (such as N, t, U, number of rungs, filling or chemical potential)

• truncation or Schmidt-cut, this makes sure that all the singular values of C (see (3.70)) are
above this value

• number of iterations as used in algorithm 7.1

• the name of the data file where the initial MPS is stored if the calculation is based on a previous
MPS

Algorithm 7.1 Generation of data - Basic structure

operators Ð create all necessary operators based on the parameters t, U , V , ...
MPO Ð put these operators in an MPO
JMpo Ð create a JMpo from this MPO
if the calculation is based on a previous MPS then

MPS Ð load the previous MPS
else

create the necessary spaces
MPS Ð create an initial MPS based on the spaces and the system

end if
iterations Ð r20, 20, 20, 20, 20, 20, 500s Ź This is an example
for i P r1, length(iterations)s do

MPS Ð Do 1 Expand step on MPS using JMpo
MPS Ð Do iterationsris VUMPS steps on MPS using JMpo

end for

To obtain results of high accuracy, it is best to incrementally decrease the Schmidt-cut. This means
that first, a calculation with a Schmidt-cut of e.g. 10´4 is performed, after which this result is used
as a starting point for a calculation with a Schmidt-cut of e.g. 10´4.2. Decreasing the Schmidt-cut
between successive calculations too quickly can result in non-convergence.

16https://github.com/quantumghent/TensorTrack
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7.2 A note on complexity

7.2.1 Bubbling - The importance of the order of contraction

In a tensor contraction, the order in which the contractions are carried out, called bubbling, has
no influence on the end result [57]. However, it will have an influence on the needed memory and
computation time. In this regard, consider a tensor T with indices ti1, . . . inu, which is defined as

T :
â

i

Cdi ÝÑ C (7.1)

Since these tensors must be stored as matrices, this is a d1 ˆ d2 ˆ ¨ ¨ ¨ ˆ dn matrix. The number of
parameters thus scales exponentially in the number of indices, or equivalently, open edges. In tensor
contractions, these matrices need to be multiplied which each other, resulting in a complexity that
again scales with the number of open edges [57]. The order in which contractions are carried out
thus needs to be planned carefully. Let us illustrate this by considering the connected correlation
function as defined in (3.58). A very inefficient way to carry out this calculation would be to first
contract all the MPS tensors in the ket vector up to a certain distance r, then contract all the MPS
tensors in the bra vector up to the same distance, then contract the operators on the correct indices,
and finally contract all the relevant indices from the ket and the bra. The first and second calcula-
tions would result in tensors with r ` 1 physical and 2 virtual indices, effectively needing to store
intermediary tensors with D2dr`1 parameters. This is not a feasible approach for long distances. A
much better approach is to first contract one MPS tensor of the ket and bra with the left operator,
yielding a tensor with two virtual indices. One can go to high distances by contracting this tensor
with the transfer matrix, and finally closing it all by contracting this with the right operator. This
approach will be visualized in section 7.4. The biggest tensor that needs to be stored only has
dD2 parameters. This does not scale with the distance r and the resulting computation time scales
linearly with r. Another advantage is that the contractions with the transfer matrix only have to
be carried out once for all distances 17. If the contractions with the transfer matrix up to a certain
distance are calculated and yield a tensor T , this tensor can be contracted on the right with the
operator, yielding the scalar value Cprq, and can be used to contract another transfer matrix for
bigger values of r.

This approach also works when the correlation function is calculated with respect to a two-site
operator. The two extra indices that are not contracted on the left are just carried along as two
extra open indices, yielding a marginally longer computation time. In this regard, it can be useful
to perform an SVD on this two-site operator, since then there is only one extra index that needs to
be carried along, again decreasing the complexity.

7.2.2 The choice of a bigger unit cell

Some materials have multiple relevant orbitals located on the same atom after the downfolding pro-
cedure. When defining a lattice for those systems, there are essentially two options. Take ν to be
the number of orbitals on each atom and d the dimension of the local Hilbert space of one orbital
(d “ 4 in the Hubbard model).

17However, the calculation of this four-leg tensor is in many cases very time-consuming, losing the advantage of
only having to calculate it once.
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The first option is to define a tensor for each atom with a physical Hilbert space of dimension dν ,
thus combining the ν orbitals on each site. The second option is to define a tensor for each orbital,
thus defining a unit cell that is ν times larger, while keeping the dimension of the local physical
Hilbert spaces equal to d. Since both the used memory and the complexity of the contractions scale
in the number of open indices and their dimension (see section 7.2.1), the first option would yield an
exponential dependence on ν. In the second option, the memory use and complexity of contractions
remain the same. However, since the size of the unit cell and thus the number of iterations is
multiplied with ν, the dependence on ν is linear. Because of this reduction in complexity, the second
option was chosen in this thesis.

7.3 Expectation values
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Figure 7.1: Diagrammatic notation and contraction order of (a) a one-site and (b) a two-site operator

The contractions that need to be carried out to calculate the expectation value of a one-site or
two-site operator H are shown in figures 7.1a and 7.1b respectively. The numbers on the contraction
lines denote the order in which the contractions need to be carried out in one of the most efficient
implementations for high bond dimensions.

When the period of the MPS is w ą 1, figure 7.1 needs to be refined. AC and AR are then an
arrays consisting of w elements, and the tensors AC and AR in e.g. figure 7.1b must be replaced

with AC p̃bq and ACpb̃` 1q, respectively, with b̃ “ b mod w and 1 ď b ď w. For a translationally
invariant MPS, the result is independent of b. The only thing that needs to be taken into account is
the fact that tensors in a contraction should be placed such that their virtual Hilbert spaces match.
Since the right virtual Hilbert space of tensor Ap̃bq is equal to the left virtual Hilbert space of tensor

Apb̃` 1q (using the conventions of section 3.2), this means that in contractions like in figure 7.1b,

a tensor placed on the right of a tensor with index b̃ should have index b̃` 1. The choice of index
of one tensor thus fixes the indices of all others, and this freedom results in w possible results. The
final result can be obtained by taking the average of these w results.

For fermions, taking the trace like in figure 7.1b is implemented to be a supertrace. To take a trace,
an extra twist should be present on the right leg of the most right tensor of the bra. If the contracted
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Figure 7.2: Initiation step to calculate the correlation function

��

��

��+1 = ��

1

2

Figure 7.3: Propagation step to calculate the correlation function

tensors are bosonic, this twist does nothing.

7.4 The correlation function

This section will explain how the correlation function of section 3.5 of a two-site operator H can be
most efficiently implemented. H can be rewritten as a contraction of one-site operators L and R, as
shown in figure 4.2. The first step in the calculation is to contract L with AC and its conjugate, as
shown in figure 7.2. The next step is to take this result and iteratively contract the transfer matrix
to go to higher distances, as shown in figure 7.3. Lastly, the contraction of this result with the
operator R and tensors AR and its conjugate (with the appropriate twist) gives the correlation func-
tion for a certain distance Cprq, as shown in figure 7.4. The algorithm is summarized in algorithm 7.2.

7.5 Structure factor

The structure factor is the discrete Fourier transform of the connected correlation function, as
explained and defined in section 3.6. Formula (3.63) only holds in the 1D chain, however, or when
the 2D system is only interpreted as its 1D chain. To correctly calculate the structure factor of a
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Figure 7.4: Termination step to calculate the correlation function

Algorithm 7.2 Obtaining the correlation function

w Ð period(MPS)
rL,Rs Ð SVD(H) Ź Obtain the operators L and R from H with the SVD.
C Ð zeros(max distance) Ź initialize correlation function as a list of size ’max distance’
x Ð cell(w) Ź Initialize cell
for b P r1, ws do

xtbu Ð D1pbq Ź Initialization using figure 7.2
end for
for r P r1,max dists do

xfinal Ð cell(w) Ź Initialize cell
for b P r1, ws do

xfinaltbu Ð C(r,b) Ź Final contractions using figure 7.4
end for
C(r) Ð meanpxfinal)
if r ‰ max distance then

x Ð Dr`1pxq Ź Increase the distance using figure 7.3
end if

end for

2D cylinder or helix with circumference N , the following formulas should be used.

spqx, iq ” spqx, qypiqq “
ÿ

n

eqxnx`qynyCpnq (7.2)

With qx and qy the momentum in the x-direction and y-direction, respectively. nx and ny are the
distances in the x-direction and y-direction, respectively, and can be found based on the distance n
in the MPS chain by

nx “
Y n

N

]

ny “ n mod N
(7.3)

The momentum in the y-direction, i.e. the direction along the circumference of the cylinder or helix,
is discrete, and can only obtain values equal to
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#

Cylinder : qypiq “ 2π
N i

Helix : qypiq “ 2π
N pi` qx

2π q (7.4)

with i P r0, N ´ 1s. This is visualized in figure 7.5.

(a) (b)

Figure 7.5: Sampling of the Brillouin zone for (a) a cylinder and (b) a helix of N “ 6, based on (7.4)

7.6 Superconductivity

To assess whether a certain model shows superconductivity, the pair-field correlator or pair correla-
tion function Φαβpxq is defined. It is given by

Φαβpxq “ 1

N

N
ÿ

y“1

〈
∆:
αpx0, yq∆βpx0 ` x, yq〉 (7.5)

x is the distance along the x-direction. ∆:
αpx, yq is the spin-singlet pair-field creation operator,

defined as [151, 152]

∆:
αpx, yq “ 1?

2

´

c:

px,yq,Òc
:

px,yq`α,Ó ´ c:

px,yq,Óc
:

px,yq`α,Ò

¯

(7.6)

Some references define the superconducting pair-pair correlation function Pαβpxq as [125]

Pαβpxq “ 1

2

´

Φαβpxq ` Φ:

αβpxq
¯

(7.7)

This order parameter was implemented for both Up1q b SUp2q ˆ fZ2 and SUp2q b fZ2. The way

this was implemented is by defining the operator ∆:

dpr⃗q∆dpr⃗ ` r⃗iq, which is a (4,4) operator, and
then summing it with its conjugate. Since the individual operators are wanted for computational
efficiency, the SVD of this sum is taken to yield four one-site operators. It is important to note that
this is not equivalent to taking the sum of the operators and their respective conjugates. It is thus
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needed to construct the full operator, having dimension 48 “ 65 536. It is best to save these four
one-site operators separately to make sure they do not have to be recalculated every time.

7.6.1 Luttinger exponents

The density correlation function is defined as

Nprq “ ⟨n̂in̂i`r⟩ ´ ⟨n̂i⟩ ⟨n̂i`r⟩ (7.8)

r is the distance along the chain of the cylinder, and thus corresponds to Nx ` y. For a system
in the Luther-Emery phase, both Nprq and Φyypxq decay with a power law. It is also possible to
average Nprq over the rung of the cylinder, thus obtaining Npxq. This will have no influence on the
fitted power law exponent.

Nprq 9 r´Kρ

Φyypxq 9 x´KSC
(7.9)

Kρ and KSC are called the Luttinger exponents of the charge and superconducting sector, re-
spectively. The superconducting correlations are dominant when KSC ă Kρ, whereas the CDW
correlations are dominant when KSC ą Kρ [153, 151]. The reason why Φyyprq is considered instead
of Φxyprq or Φxxprq is because it has been identified as the strongest of the three possibilities, which
is consistent with plaquette d-wave superconductivity 18 on cylinders [155, 156, 157]. For a wide
parameter regime, the Hubbard ladders are found to fall into the Luther-Emery universality class,
in which the system has a gapped spin mode and a gapless charge mode [158, 159, 153]. For these
states, it holds that KρKSC “ 1. This phase is possibly a precursor phase to two phases in the 2D
limit, namely superconductivity and stripe order.

7.7 Finding the value of the chemical potential for a certain filling

In the case of imposing the SUp2q b fZ2 symmetry, the chemical potential µ has to be found that
gives a certain filling, as already explained in section 5.2.1. This can be done simply by gradient
descent, as shown in algorithm 7.3. For fillings close to half-filling, the optimization algorithm can
get stuck in a half-filled MPS, This can be solved by either using a much higher bond dimension, or
using the previous MPS (with lower filling) as starting point for the new calculation with the new
µ.

18A plaquette, consisting of a square of four sites, is the smallest system that can exhibit d-wave superconductivity
[154].
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Algorithm 7.3 Using gradient descent to obtain the chemical potential

fgoal Ð specify the desired filling
ϵ Ð specify how close the final filling has to be to fgoal
µ1 Ð starting value 1 of the chemical potential
µ2 Ð starting value 2 of the chemical potential
MPS1 Ð create and optimize MPS based on µ1

MPS2 Ð create and optimize MPS based on µ2

f1 Ð calculate the filling of MPS1

f2 Ð calculate the filling of MPS2

µ-values Ð rµ1, µ2s Ź make a list of µ-values
f -values Ð rf1, f2s Ź make a list of f -values
f Ð f2 Ź Initialize f for while loop
while |f ´ fgoal| ą ϵ do

pa, bq Ð fit a function f “ aµ` b using the 2 most recent values of µ and f
µ Ð pfgoal ´ bq {a Ź new value of the chemical potential
MPS Ð create and optimize MPS based on µ
f Ð calculate the filling of MPS
add µ and f to their respective lists

end while
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III
Numerical results
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8 Benchmarking results

”Unless you have confidence in the ruler’s
reliability, if you use a ruler to measure a
table you may also be using the table to
measure the ruler.”

Nassim Nicholas Taleb

Both the one-dimensional Heisenberg and Hubbard models are investigated in this chapter, since an
exact solution has been obtained using the Bethe ansatz [131, 160]. The two-dimensional Heisenberg
XXX model is investigated as well, owing to the existing consensus on its ground state energy [161,
162, 73]. 19

8.1 1D Heisenberg model

The ground state energies and spin correlations
〈
SizS

i`1
z

〉
of the XXZ Heisenberg model of section

5.1 were calculated using VUMPS. Figure 8.1 shows the results. They are in very good agreement
with those found in [102].

(a) (b)

Figure 8.1: (a) Ground state energy and (b) spin correlation
〈
SizS

i`1
z

〉
of the 1D Heisenberg XXZ

model in function of ∆. The results are compared with results from [102].

Figure 8.2 shows the correlation length for the XXZ Heisenberg model for different values of ∆. It
is seen that it diverges for ∆ Ñ 1, as expected since this is a critical point. Doing these calculations

19The results in this chapter, apart from figures 8.3 and 8.6b, were not extrapolated in bond dimension.
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Figure 8.2: Correlation length of the 1D XXZ Heisenberg model

for higher bond dimensions confirms this. Extrapolating the inverse correlation length to D Ñ 8
using the error measure δ, a 95% confidence interval of r´4.195 ¨ 10´4, 8.122 ¨ 10´5s was obtained.
The exact inverse correlation length of 0 is thus within these bounds. The extrapolation is shown
in figure 8.3. Using 1{D as error measure, a 95% confidence interval of r´8.297 ¨ 10´5, 1.231 ¨ 10´3s
was obtained, showing the superiority of the error measure δ in this case.

Figure 8.3: Extrapolation of the inverse correlation length of the XXX Heisenberg model
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For non-critical systems, the correlation functions are exponentially decreasing, whereas for critical
systems they obey power laws [163]. This is shown in figure 8.4, where the correlation function on a
log-log plot indeed approaches a linear curve for ∆ Ñ 1. Even at the critical point, the correlation
function would be exponential functions, since MPS are used to represent them, which always have
finite correlation lengths.

Figure 8.4: Correlation function for the operator ni,Ònj,Ó of the 1D XXZ Heisenberg model

8.2 2D XXX Heisenberg model 20

8.2.1 The energy

As explained in section 4.5.1, the 2D square lattice will be modeled by wrapping the lattice around
a cylinder and making it effectively 1D. The first question one should ask is whether this is allowed.
There is a priori not a certainty that the correct full 2D values are obtained in the limit of N Ñ 8.
The first check can be done by looking at the energies of the Heisenberg XXX model on both a
helix and a cylinder and comparing them with the correct 2D value. Systems without geometric
frustration are chosen, since the 2D square lattice is also not frustrated. The cylinders thus have
even circumferences and the helices have odd circumferences, as explained in section 4.5.2. The
results are shown in figure 8.5 and show that indeed the correct 2D limit is obtained for N Ñ 8.

8.2.2 The staggered magnetization

The staggered magnetization can be spontaneously broken in 2D [104, 164]. It can thus be expected
that in this case, the quasi-1D system will not be a good representation of the 2D system, since
spontaneous symmetries cannot be broken in 1D, due to the Mermin-Wagner theorem. Figure 8.6a
shows the result for when a staggered magnetic field is applied to a cylinder. Indeed, for no ex-
ternal staggered magnetic field, the resulting staggered magnetization is zero, conforming with the

20The results from this section were obtained using iDMRG2
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Figure 8.5: Ground state energy per site of the 2D XXX Heisenberg model for helices and cylinders.
The 2D value is taken from [87].

Mermin-Wagner theorem.

(a) (b)

Figure 8.6: Results for the Heisenberg XXX model on (a) the staggered magnetization mstag in
function of a staggered magnetic field hstag for cylinders with even circumference and (b) the spon-
taneous staggered magnetization mstagpmstag “ 0q on a helix with N “ 3 as finite bond dimension
effect. The four most accurate calculations are used for extrapolation.

For helices, a non-zero spontaneous staggered magnetization is found. The reason for this difference
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with cylinders can be sought by considering Haldane’s conjecture [165]. This states that the excita-
tion spectrum is gapped for integer spin chains and gapless for half-integer spin chains [166] [167].
The cylinder can be seen as a 1D integer spin chain by blocking the sites of one rung together, since
they have an even circumference. Helices have odd circumferences and thus have a gapless excitation
spectrum according to Haldane’s conjecture. Representing the states with MPS introduces a gap in
the spectrum, however, and the resulting states can spontaneously break the symmetry. This gap
vanishes in the limit D Ñ 8, and thus the spontaneous staggered magnetization should vanish in
this limit. This is indeed seen in figure 8.6b. Using the inverse bond dimension as an error measure,
the extrapolated value of the spontaneous staggered magnetization |mstag| is 8.49305 ˆ 10´3. The
95% confidence interval is given by r´0.06924, 0.05226s, where it is indeed seen that 0 is included in
this interval. Using higher bond dimensions will increase the accuracy of this extrapolation and will
push this value closer to zero.

8.3 1D Hubbard model

8.3.1 The energy

The energy of the 1D Hubbard model was calculated for a range of values for U . The results are
shown in figure 8.7, together with the comparison with reference [168]. This again shows good
agreement with the literature.

Figure 8.7: Ground state energy per site of the 1D Hubbard model at half-filling for t “ 1. The
energy is compared with results from [168].

8.3.2 Correlation functions and correlation length of different sectors

In the 1D Hubbard model in the region where U ą 0, the charge sector is gapped and the spin sector
is gapless [38, 39]. This can be seen in the correlation functions of the different sectors. In figure 8.8,
the correlation functions of the charge and spin sector are shown, corresponding to the operators
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c:

σ,icσ,j and Oσ,iO´σ,j respectively. Oσ flips the spin of the electron when it has spin σ, and yields
0 when there is no electron with spin σ. The charge correlation function is approximately linear
on the log plot, showing that it is an exponentially decreasing function, and thus corresponds to a
gapped sector. The spin correlation function, on the other hand, is linear on the log-log plot, thus
obeying a power law corresponding to a gapless sector. This is in accordance with the literature
cited above.

(a) Charge sector - log plot (b) Charge sector - log-log plot

(c) Spin sector - log plot (d) Spin sector - log-log plot

Figure 8.8: The correlation function of the charge sector on a (a) log plot and (b) log-log plot. The
correlation function of the spin sector on a (c) log plot and (d) log-log plot. The calculations were
done for the 1D Hubbard model with t “ 1, U “ 6.
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8.3.3 Doping

Changing the doping of the Hubbard model will influence its ground state energy. The total energy
in function of the doping for U{t “ 8 is shown in figure 8.9.

(a) (b)

Figure 8.9: Ground state energy per site in function of the doping for the Hubbard model t “ 1,
U “ 8 for (a) the 1D Hubbard model based on (5.10) and (b) the 1D particle-hole symmetric
Hubbard model based on (5.18)

The trend seen in the figure can be explained better by decomposing it in its kinetic energy, resulting
from the hopping term in the Hamiltonian, and the self-interaction energy. The result is shown in
figure 8.10. From figure 8.10a, it is clear that the self-interaction energy increases for increasing
electron filling. This is logical from its definition. Figure 8.10b is more interesting, however, as
it shows that the kinetic energy is particle-hole symmetry around half-filling. The self-interaction
energy is also particle-hole symmetric around half-filling if the particle-hole symmetric Hubbard
model of (5.18) is used instead.

8.3.4 Results about the static structure factors

The charge and spin structure factors for the 1D Hubbard model with t “ 1, U “ 8 are shown in
figure 8.11. The sharp peak at qx “ π of the spin structure factor signifies a spin order with period
λ “ 2. This is a signature of a Mott insulator with antiferromagnetic order, which indeed should be
present at half-filling [150, 39].
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(a) (b)

Figure 8.10: (a) Self-interaction energy per site and (b) kinetic energy per site of the 1D Hubbard
model for U{t “ 8

(a) (b)

Figure 8.11: (a) Charge and (b) spin structure factors for the 1D Hubbard model with t “ 1, U “ 8.
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9 2D Hubbard model

In this chapter, the results on the simple Hubbard model in 2D are discussed and compared with
the existing literature.

9.1 Convergence of the energy - Cylinder vs Helix

It is interesting to see how quickly the ground state energy of a cylinder or a helix converges to the
2D value. The result is shown in figure 9.1, which shows the energy convergence for the Hubbard
model with t “ 1, U “ 8, both at half-filling and δ “ 1

8 . One sees that the N “ 2 result does not
yield an accurate value 21. At N “ 4, the energy is already much closer to the correct value. This
result indicates that we need to be careful when using the result of the ladder to make conclusions
about the 2D system. On the other hand, it is not a priori known that an inaccurate estimate of the
ground state energy is accompanied by an inaccurate evaluation of the phase of the system, even
though the stripe order and the superconducting state are close in energy [169, 170]. It could be
the case that the boundary effect induces only an energy shift, while the phase is robust, or that
the boundary effect can determine the phase. Later results will show that the N “ 2 gives accurate
results in some, but not all, regards.

(a) half-filling (b) δ “ 1{8

Figure 9.1: Convergence of the ground state energy of helices and cylinders in function of the
circumference for the 2D Hubbard model with t “ 1, U “ 8. 2D values are taken from [170]. The
N “ 6 for δ “ 1{8 and the N “ 8 results were not extrapolated in bond dimension. The result for
N “ 8 was performed at a relatively low bond dimension. This results in the fact that for δ “ 1{8,
the ground state energy of the N “ 6 and N “ 8 cylinders can be further away from the exact 2D
result than the N “ 4 result, and that for half-filling, the N “ 8 result deviates from the exact
result more than e.g. the N “ 7 and N “ 9 results.

21A cylinder with N “ 2 is also called a ladder.
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9.2 N “ 2 - Up1q b SUp2q b fZ2

In this section, the Hubbard model with t “ 1, U “ 8 is investigated on a ladder, with symmetries
Up1q b SUp2q b fZ2. This means that the number of rungs had to be an integer multiple of 8 to
match the period of the unit cell.

9.2.1 Charge distribution

To know whether the system exhibits stripe order, we look at the expectation value of the hole
density ⟨1 ´ n̂e⟩ for each site of the unit cell.

For half-filling, all sites have an expectation value of 0 for the hole doping, with deviations smaller
than 10´7. The hole occupancies for δ “ 1{8 hole doping are shown in figure 9.2. A CDW with
period λ “ 8 “ 1

δ is seen. There is uniformity along the y-direction (along which the cylinder is
closed), with differences smaller than 10´5. To further verify that the λ “ 8 CDW is lowest in
energy, the same calculation was done with 16 rungs instead of 8, albeit at a lower bond dimension.
Both calculations confirm a λ “ 8 CDW, in accordance with the literature [171, 170].

(a) (b)

Figure 9.2: Hole occupancies for the simple Hubbard model with t “ 1, U “ 8, and δ “ 1{8 on a
cylinder with N “ 2 and (a) 8 rungs, D “ 600 and (b) 16 rungs, D “ 40

In this regard, the filling fraction (FF) can be defined 22 [170].

FF “ δλCDW (9.1)

This quantifies how many holes are present in one period of the CDW. FF “ 1 and FF “ 1{2
correspond to filled and half-filled stripes, respectively.

The stripes here are thus filled, in accordance with results from the literature [170].

22Reference [172] defined the filling fraction as FF “
δλSDW

2
, where λSDW stands for the period of the spin density

wave (SDW). These are consistent, as it has been stated that the characteristic length of the charge correlation is half
that of the spin correlation [173, 171]. We will work exclusively with the definition presented in (9.1), as imposing
SUp2q symmetry for the spin sector does not allow us to calculate the magnetic moment of a given site.
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If the amplitudes of the CDW are calculated, it is noticed that the amplitude decreases for increasing
bond dimension. Extrapolation of the amplitude in terms of the error measure δ results in figure 9.3.
If the four most accurate calculations are used for the extrapolation, the 95% confidence interval on
the extrapolated amplitude is r´7.898 ¨ 10´3, 3.932 ¨ 10´3s. The extrapolated value is thus within
bounds of zero. The CDW breaks the translational invariance and it is possible that this prohibits
the existence of CDWs in the D Ñ 8 limit in quasi-1D systems within the Luther-Emery liquid
theory [153, 174, 175, 176].

Figure 9.3: Amplitudes of the hole occupancies for the simple Hubbard model with t “ 1, U “ 8,
and δ “ 1{8 on a cylinder with N “ 2 and 8 rungs for different bond dimensions. The two highest
bond dimensions are used for the shown extrapolation, which yields an extrapolated amplitude of
2.700 ¨ 10´4.

9.2.2 Correlation functions and structure factors

The correlation function and the corresponding static structure factors of both the charge and the
spin sectors were calculated and are shown in the appendix in figure E.1. These confirm the conclu-
sions of the previous section, indicating that a period 8 CDW exists. The correlation functions in
figure E.1 are given in function of the distance along the chain of the cylinder, i.e. as in figure 4.15.
The period of the oscillation of the correlation function thus has to be divided by N to obtain the
period of the CDW along the x-direction. The corresponding structure factors have a small peak
for qx “ 2π

λ “ 2π
8 .

9.3 N “ 4 - Up1q b SUp2q b fZ2

9.3.1 Charge and spin distributions

The hole occupancies for δ “ 1{8 hole doping are shown in figure 9.4. Again, there is uniformity
along the y-direction (along which the cylinder is closed), with differences smaller than 10´3. A
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CDW with period λ “ 4 “ 1
2δ is now seen, or half-filled stripes. This is also consistent with previous

results [172, 151].

Figure 9.4: Hole occupancies for the simple Hubbard model with t “ 1, U “ 8, and δ “ 1{8 on a
cylinder with N “ 4 and 8 rungs. D “ 767.

9.3.2 Correlation functions and structure factors

The correlation function and the corresponding static structure factors of both the charge and the
spin sectors are given in the appendix in figure E.2. These confirm the conclusions of the previous
paragraph, indicating that a period 4 CDW exists. The corresponding structure factors have a peak
for qx “ 2π

λ “ 2π
4 .

9.4 N “ 2 - SUp2q b fZ2

The drawback of imposing Up1q b SUp2q b fZ2 is the need for a minimal number of rungs, as ex-
plained in section 5.2.1. This implicitly favors stripe order with a period λ “ rungs

k , k P N. CDWs
with other periods get a positive energy shift due to the boundary effects, and this might influence
the ground state. For example, a λ “ 5 CDW might be the lowest in energy in the 2D system, but
because the simulation has 8 rungs, it might not be the ground state anymore. This example is
sketched in figure 9.5.

A calculation for the 2D Hubbard model with t “ 1, U “ 8, and δ « 1{8 was done without imposing
the Up1q symmetry for the charge sector and for only one rung 23. This allows us to again verify the
earlier statements regarding the periods of the CDWs. This can be done by looking at the spectrum
of eigenvalues of the transfer matrix based on the ground state MPS. The spectrum is shown in

23This calculation corresponds to a chemical potential of µ “ ´1.6428, which corresponds to δ “ 1{8 with deviations
smaller than 5 ˆ 10´5.
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Figure 9.5: Example of how introducing a cylinder with a certain number of rungs can influence the
ground state. No numerical results correspond to this example.

figure 9.6. The smallest angles of the eigenvalues that occur are at θ “ 0 and θ “ ˘π
4 “ ˘ 2π

λ . The
latter again signifies a CDW with λ “ 8, since this period still has to be multiplied by the period
of the unit cell, which in this case is 2. This yields a period along the chain of 16, or a period of 8
along the x-direction after dividing by N .

9.4.1 Superconductivity

Using the SUp2q b fZ2 symmetry, and thus only needing to simulate one rung of the cylinder,
decreases the needed computational complexity, whereby much higher bond dimensions can be sim-
ulated. These higher bond dimensions are needed to resolve the energy differences between the
highly competitive stripe order and superconductivity. To determine whether a model exhibits su-
perconductivity or stripe order, the Luttinger exponents from (7.9) were fitted to the connected pair
and density correlation functions in order to calculate KSC and Kρ respectively. The fitting is done
by subdividing the logarithm of the distances r in bins with a certain bin width, and calculating
the maximal value of the correlation function within that bin. These maximal values together with
their respective r-values are then used in a linear log-log fit to obtain the Luttinger exponent. The
bin widths correspond to the biggest difference between successive local maxima of the correlation
function. This procedure is similar to the method used in references [177, 152]. Only the range
beyond the short-range effects and before the onset of exponential decay is considered. Figure 9.7
shows the results.

A possible alternative would be to fit the full correlation function, i.e.

Cprq “ A cos pθ2rq r´K (9.2)

Due to the fact that the overlap between the range where the correlation functions exhibit a power
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Figure 9.6: Spectrum of the transfer matrix for the simple Hubbard model with t “ 1, U “ 8, and
δ « 1{8 on a cylinder with N “ 2 and 1 rung, using the SUp2q b fZ2 symmetry and D “ 2336. The
dashed lines correspond to multiples of θ “ π

4 “ 2πδ.

law decay and the range where all but one oscillation has died out is sometimes rather small, the
first strategy was chosen.

(a) (b)

Figure 9.7: Fit of the (a) density and (b) pair correlation function for the simple Hubbard model
with t “ 1, U “ 8, and δ « 1{8 on a cylinder with N “ 2 and D “ 2336

The Luttinger exponents in function of the bond dimension can now be used to determine whether
the ground state exhibits stripe order or superconductivity. Figure 9.8 shows the results. For the
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Figure 9.8: Luttinger exponents of the simple Hubbard model with t “ 1, U “ 8, and δ « 1{8
together with their extrapolation and error bars

extrapolation of Kρ, b was set to 1. Unfortunately, the 95% confidence intervals of the Luttinger
exponents overlap, so it can not be determined which correlations are dominant. The heaviest cal-
culations already used D “ 2336 and took several days to compute. To determine the dominant
order, the calculations should be carried out for even higher bond dimensions, which was not pos-
sible within the timeframe of this thesis. The conclusion Kρ ă KSC was drawn in reference [151]
for N “ 4, although KSC ă Kρ has been reported in reference [152] for N “ 2. It is believed that
the 2D Hubbard model is nonsuperconducting in the moderate to strong coupling regime around
optimal doping [178], but a consensus is still missing. These results also seem to violate the relation
KρKSC “ 1 of the Luther-Emery liquid phase. Both the observation and the violation of this rela-
tion have been found in literature [152, 179, 153].

It was noticed that it was difficult to obtain the Luttinger exponents, with Kρ being especially
hard. Reference [153] found the same difficulties for finite-size calculations and stated that high
bond dimensions and system sizes are needed to reliably obtain the Luttinger exponents. They had
more difficulty in fitting KSC , however, since a finite-size calculation can use Friedel oscillations to
obtain Kρ, which is possibly more reliable than fitting the spatial decay of the correlation functions
[153].

9.5 Extended Hubbard model - influence of t1

The presence of stripe order in the simple Hubbard model yields the question of how stable this
order is, and when the ground state is superconducting instead. We can heuristically investigate this
by considering next-to-nearest interactions. The hole occupancies for t “ 1, U “ 8, and t1 “ ´0.25
are shown in figure 9.9. Again, a stripe order exists with λ “ 8. The presence of a stripe order is
consistent with the literature, which finds stripe order and suppression of superconductivity [180,
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181]. Superconductivity might thus not be present in the Hubbard model with only nearest-neighbor
and next-to-nearest neighbor interactions 24. However, reference [157] found superconductivity in the
2D Hubbard model with next-to-nearest neighbor interactions on cylinders with N “ 6 for smaller
doping levels. It will be seen in chapter 10 that introducing more terms, such as V -interactions, can
result in superconducting ground states.

Figure 9.9: Hole occupancies for the extended Hubbard model with t “ 1, U “ 8, and t1 “ ´0.25
for δ “ 1{8 on a cylinder with N “ 2 and 8 rungs. D “ 200.

24It is important to note that the presence of stripe order does not automatically prohibit superconductivity, as
will be seen in section 10.4.2
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10 Case study: HgBa2CuO4

As a case study, we will look at the cuprate HgBa2CuO4. Parameters for both the one-band and the
three-band model of this cuprate were taken from [123] and are listed in appendix D. More details on
how these parameters were calculated and parameters for other cuprates can be found in references
[124, 182]. We will try to investigate the stripe orders and superconductivity for half-filling at the
hole-doped side (δ ě 0), since the hole-doped side is said to have stronger superconductivity than
the electron-doped side and has been more widely investigated [145].

10.1 three-band model - Up1q b SUp2q b fZ2

The half-filled three-band model corresponds to a filling f “ 5
3 , or doubly occupied oxygen atoms

and half-filled copper atoms [118]. The electron occupancies of the half-filled three-band model are
shown in figure 10.1a. It is indeed seen that the electrons mostly reside on the oxygen atoms. This
is quantified in table 10.1, which shows the mean occupancy and relative difference in the occupancy
for both atom types, for four different filling levels. The relative difference is here defined as

∆O “ maxpOq ´minpOq
meanpOq (10.1)

(a) (b)

Figure 10.1: Hole occupancies for the three-band model of HgBa2CuO4 for N “ 6, (a) f “ 5{3
(half-filling), D “ 124 and (b) f “ 5{4, D “ 549. Oxygen atoms are blue, electron-doped copper
atoms are red, hole-doped copper atoms are green. The area of each circle is proportional to the
doping away from half filling, i.e. |1 ´ n̂| and 2 ´ n̂ for copper and oxygen respectively

Due to the fact that the oxygen atoms are not completely double-filled for f “ 5{3, the copper
atoms are doped with electrons. When the compound is hole-doped, the filling of the oxygen
atoms decreases and the copper atoms become doped with holes. It is seen that upon doping, the
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Table 10.1: Mean occupancies of the oxygen and copper sites, together with their relative dif-
ference for the thee-band model of HgBa2CuO4. Bond dimensions from top to bottom are
D “ 124, 261, 274, 549.

f fCu fOx
fOy

∆pfCuq ∆pfOx
q ∆pfOy

q
5/3 1.2716 1.8886 1.8397 7.3786 ¨10´5 5.8327 ¨10´5 3.2448 ¨10´5

19/12 1.1822 1.7927 1.7751 9.6813 ¨10´3 9.7228 ¨10´3 5.1118 ¨10´3

3/2 1.0807 1.7115 1.7079 1.8773 ¨10´4 1.3547 ¨10´2 5.3079 ¨10´5

5/4 0.9115 1.4529 1.3856 1.4846 ¨10´1 7.4165 ¨10´4 3.3934 ¨10´1

added holes mainly reside on the oxygen atoms, as expected from the discussion of section 6.2.2.
Interestingly, from table 10.1, it is seen that the hole density stays uniform upon doping until the
copper atoms are hole-doped. The charge modulation for f “ 5{4 is visualised in figure 10.1b. While
the hole density of the oxygen px-orbitals is uniform, CDWs with λ “ 2 exist on the copper and
oxygen py-orbitals. These CDWs are in antiphase with respect to each other. If the hole densities
on the ’squares’ of the one-band model are calculated, i.e.

fsquare,pi,jq “ fCu,pi,jq ` fOx,pi´1,jq ` fOx,pi`1,jq ` fOy,pi,j´1q ` fOy,pi,j`1q

2
(10.2)

then again CDWs with λ “ 2 are seen, as shown in figure 10.2.

Figure 10.2: Hole occupancies of the ZRS of the three-band model of HgBa2CuO4 for N “ 6,
f “ 5{4, D “ 549
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10.2 one-band model - Up1q b SUp2q b fZ2

10.2.1 Charge occupancies

The charge distributions for the one-band model with N “ 2 and N “ 4 is shown in figure 10.3.
There is still some debate as to whether the cuprates exhibit stripe order or a checkerboard pattern
[183]. This result seems to point to neither of those, but rather to the existence of pair-forming. The
result for N “ 2 shows a CDW with λ “ 4. For N “ 4, the same general trend as the N “ 2 case can
be seen along the x-direction. However, there is now clear pair-forming along the y-direction. This
might be a consequence of the stronger pair-pair correlations and the presence of superconducting
order for this model, as will also be shown in section 10.4 for N “ 2.

(a) (b)

Figure 10.3: Hole occupancies for the one-band model at δ “ 1{8 on a cylinder with (a) N “ 2,
D “ 650 and (b) N “ 4, D “ 300

10.3 Comparison of the three-band and one-band model

A very interesting question is how the one-band and three-band model relate to each other. It was
seen that upon slight doping of the three-band model, the charge density remained uniform. This
is in sharp contrast with the one-band model. CDWs with λ “ 2 emerged upon heavier doping,
whereas λ “ 4 was seen in the one-band model. When comparing these results, it is important
to note that they should be compared at the same doping level. However, it is not clear whether
the doping level of the copper atoms (fCu) or the compound as a whole (f) should be used for the
three-band model. The sharp contrast between hole-doped and electron-doped copper atoms seems
to point to the use of fCu. The three-band model should be investigated more to form a conclusion
on this matter.
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10.4 one-band superconductivity - SUp2q b fZ2

10.4.1 Luttinger exponents

The Luttinger exponents of the one-band model of HgBa2CuO4 are shown in figures 10.4 and 10.5,
together with their extrapolation and 95% confidence error bars. The extrapolation function that
was used, is

Kpδq “ K0 ` aδb (10.3)

For the evaluation of KSC for δ “ 37.46% and the evaluation of Kρ for δ “ 12.68% and δ “ 4.45%,
b was set to 1 for a better extrapolation. Data for which the error bars of the extrapolation were
unphysically large are not shown. It is concluded that for δ “ 37.46%, 30.36%, and 4.45% the phase
is a CDW, whereas for δ “ 24.25%, 17.80%, and 12.68% it is SC. For δ “ 19.90%, no conclusion
could be drawn, and the calculations should be carried out for even higher bond dimensions in order
to determine the phase. The error bars for δ “ 37.46% are quite large, because only the three most
accurate results are used in the extrapolation. For δ “ 12.68%, there is an overlap between the
bounds on Kρ and KSC . It is nevertheless concluded that the phase is superconducting in this case.
This is because the expected value of the extrapolation is lower for KSC and because the extrapola-
tion for Kρ was done using a linear function, which does not take into account the flattening of the
curve towards δ Ñ 0 and is thus probably an underestimation. For δ “ 30.36%, 24.25%, and 17.80%,
the error bars were too large. With slight hesitation, the phase can nevertheless be concluded to be
SC, due to the general trend of the Luttinger exponents in function of the error measure δ42. Most
extrapolations also seem to violate the relation KρKSC “ 1 of the Luther-Emery class.

These results can be summarized in a sketch of the phase diagram, shown in figure 10.6. The ex-
perimental phase diagram of figure 6.6a shows that the superconducting order exists in the regime
δ P rδmin, δmaxs, where δmin « 0.05 and δmax « 0.24 [143], whereas the phase diagram based on
our results claims 0.0445 ≲ δmin ≲ 0.1247 and 0.2425 ≲ δmax ≲ 0.3036. Different experiments and
numerical calculations differ in these numbers, however [184, 145, 157].

10.4.2 coexistence of stripe order and superconductivity - Pair density waves

As seen in figure 6.6a, there is a range of hole dopings where stripe order and d-wave supercon-
ductivity coexist. This coexistence has been experimentally verified in various cuprates [172, 185,
186]. The eigenvalues of the transfer matrix will again be used to determine whether a CDW wave
exists. In the range of dopings considered, i.e. δ P r4.45%, 37.46%s, all systems exhibit fully-filled
stripes. Some also exhibit CDWs with a filling fraction FF ą 1. More details and the correspond-
ing figures can be found in appendix F. These results seem to indicate that stripe order exists in
the one-band ladder for a wide range of dopings, and together with the results from the previ-
ous section, will coexist with d-wave superconductivity for δ P rδmin, δmaxs. This coexistence was
also found in literature [187, 157, 188]. Reference [188] found a uniform superconducting phase for
0.17 ≲ δ ≲ 0.22 and the coexistence of stripe order and d-wave superconductivity for 0.07 ≲ δ ≲ 0.17.

The coexistence of stripe order and superconductivity can also point towards a new quantum phase
of matter, the pair density wave (PDW), which has recently generated interest due to its experi-
mental observations in cuprates. This phase has been proposed as a candidate for the ground state
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(a) µ “ ´6.5, δ « 0.3746 (b) µ “ ´7.5, δ « 0.3036

(c) µ “ ´8.5, δ « 0.2425 (d) µ “ ´9.2, δ « 0.1990

Figure 10.4: Luttinger exponents of the one-band model of HgBa2CuO4, together with their extrap-
olation and error bars. Data for which the error bars of the extrapolation were too large are not
shown. It is concluded that for µ “ ´6.5 and ´7.5, the phase is a CDW, whereas for µ “ ´8.5 it is
SC. For µ “ ´9.2, no conclusion could be drawn.

of cuprates as an intertwined form of CDWs, SDWs, and superconducting order, rather than severe
competition between these phases [189, 190, 185, 191]. It has also been found as the ground state in
the three-band model [192]. The definition of a PDW is a phase in which the superconducting order
parameter varies spatially with an average of zero, but where the amplitude of the oscillations can
be strong [193]. Since the superconducting order parameter is zero in these quasi-1D systems due
to the Mermin-Wagner theorem, there is as of yet no way to verify their existence in these systems.
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(a) µ “ ´9.5, δ « 0.1780 (b) µ “ ´10.1, δ « 0.1268

(c) µ “ ´10.607, δ « 0.0445

Figure 10.5: Luttinger exponents of the one-band model of HgBa2CuO4, together with their extrap-
olation and error bars. Data for which the error bars of the extrapolation were too large are not
shown. It is concluded that for µ “ ´9.5 and ´10.1, the phase is SC, whereas for µ “ ´10.607 it is
a CDW.
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Figure 10.6: Sketch of the phase diagram of the one-band model of HgBa2CuO4 based on the results
from figures 10.4 and 10.5. The phase transitions are simply said to occur in the middle between
two successive data points. More data points should be calculated to narrow the range in which the
phase transitions occur.
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11 Conclusion

In this thesis, we have investigated the simple Hubbard model in 1D and 2D, together with the
one-band and three-band models of the cuprates.

This thesis started with an explanation of the framework of trying to reconcile DFT and TN. Af-
ter a brief explanation of DFT and the construction of effective Hamiltonians using a downfolding
procedure, the theory of solving these effective Hamiltonians was explained more thoroughly. This
started with the main ideas behind TN. Afterward, some useful concepts and definitions were intro-
duced, like the mixed gauge and correlation functions, which would prove to be useful in evaluating
the properties of the ground state MPS. In part II, more technical details were given. This started
with an explanation of the different variational techniques of obtaining the ground state MPS. Both
the Heisenberg model and the Hubbard model were introduced, as those are the Hamiltonians used
throughout the thesis. Afterward, the properties of the cuprates and the models describing them
were expanded upon, prior to explaining the algorithms to evaluate the expressions introduced in
chapters before, together with some additional computational details.

Part III listed and interpreted the numerical results. First, the different Hamiltonians and used
methods were benchmarked. Both the Heisenberg model and the 1D Hubbard model were bench-
marked in terms of energy and correlation functions. For the Heisenberg model, there was additional
benchmarking of the used extrapolation in bond dimension, the staggered magnetization, and the
influence of using cylinders and helices of various circumferences. This showed that the used Hamil-
tonians and methods used in this thesis are correct.

Next, The 2D Hubbard model was investigated. It was found that the energy of the cylinders and
helices converged to the exact 2D value for N Ñ 8, although there was a significant deviation from
the 2D values for cylinders with N “ 2. Afterward, the local hole densities were investigated for
cylinders with N “ 2 and N “ 4 using the Up1q bSUp2q b fZ2 symmetry. At half-filling, a uniform
phase was found, whereas for δ “ 1{8, a CDW with λ “ 8 was found for N “ 2 and a CDW with
λ “ 4 for N “ 4. These results signify filled and half-filled stripes, respectively, and are consistent
with the available literature. After that, the same systems were investigated using the SUp2q b fZ2

symmetry, decreasing the computational complexity and losing the disadvantage of having to look
at cylinders with a given number of rungs. Evaluation of the transfer matrix spectrum gave results
consistent with the sections before. Finally, power laws with Luttinger exponents were fitted to
the density and pair correlation functions. These were given in function of an error measure and
extrapolated. Due to the extreme competition between charge order and superconductivity, the 95%
confidence intervals of Kρ and KSC overlapped, even when using very high bond dimensions. As a
result, no conclusion could be drawn on the ground state phase of the Hubbard ladder with t “ 1,
U “ 8, and δ “ 1{8.

Lastly, the one-band and three-band models of cuprate HgBa2CuO4 were investigated as a case
study. The three-band model was investigated and confirmed the hypothesis that the holes at half-
filling reside mainly on the oxygen atoms. For small doping levels, the relative differences in the hole
occupancies were small, indicating a uniform phase. When the hole doping was strong enough and
the copper atoms became hole-doped, a CDW with λ “ 2 was seen. Afterward, the one-band model
was investigated. First, the Up1q bSUp2q b fZ2 symmetry was used and the hole occupancies were
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calculated. These seemed to point to a CDW with λ “ 4 and the existence of pair forming. Then,
the SUp2q b fZ2 symmetry was imposed to try to determine the phase diagram. The Luttinger
exponents were calculated and were extrapolated for the cases where high enough bond dimensions
were used. Based on the extrapolated values of these cases, and the general trend in function of the
bond dimension for the other cases, the ground state phase could be determined in all but one case.
This allowed us to construct the ground state phase diagram of the one-band model of HgBa2CuO4

on a cylinder with N “ 2. This phase diagram was similar to the experimental phase diagram of
the cuprates. Additionally, the transfer matrix eigenvalues were calculated for all doping levels.
Fully-filled stripes were found in all cases, with sometimes the coexistence with CDWs with larger
periods. These results can also point toward the existence of PDWs.
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12 Discussion

The investigation of the Hubbard model and the cuprates is a very broad research field, and many
roads could have been taken in this thesis. This chapter will explain why some aspects were in-
vestigated while others were not, together with a discussion on some of the used approximations.
Further work on this topic could include examining some aspects more thoroughly, taking some of
the roads that were not taken, or analyzing to what extent the approximations hold.

In the discussion on the 2D Hubbard model and the case study on HgBa2CuO4, mainly cylinders
with N “ 2 and N “ 4 were investigated. To make accurate and reliable conclusions for the 2D
system, a finite-size scaling in 1{N should be performed. This is not feasible using current classical
computers, however, since the calculations are restricted to low values of N . Going to higher values
of N increases the complexity of the calculation in two ways. First, the bigger circumference results
in the fact that the entanglement between neighboring sites in the x-direction has to pass through
more sites than e.g. in the N “ 2 case, thus needing a bigger bond dimension to describe it. Second,
the unit cell has to be an integer multiple of N . This causes the complexity of the algorithms to
have a linear dependence on N for a given bond dimension. This is also the reason why the phase
diagram of the one-band model of HgBa2CuO4 was not investigated for N “ 4. The N “ 2 case
already needed very high bond dimensions, sometimes prohibiting the precise extrapolation of the
Luttinger exponents. In the cases where the error bounds on Kρ and KSC overlapped or where no
extrapolation could be performed, the conclusion of the phase is much less reliable than in the other
cases. These conclusions could be improved by going to even higher bond dimensions. Obtaining
the same results for the N “ 4 case would not have been feasible with the amount of computer
power and time given for this thesis. With more time and computer power, it would also have
been interesting to plot the Luttinger exponents in function of doping for N “ 2. Tc has a dome
shape in function of doping, as seen in figure 6.6a. This could be related to the robustness of the
superconducting order, and we might be able to see a similar dome shape for KSC .

Helices are not discussed thoroughly for the 2D Hubbard model. The reason for this, apart from
the limited time available in a year, is that cylinders seem a more natural system to describe the
2D Hubbard model than helices. The presence of stripe order makes a clear distinction between the
y-direction, along which there is uniformity, and the x-direction, along which there is charge modu-
lation. A helix is effectively a one-dimensional chain along a direction that is a linear combination
of x and y, and one can not really speak about the rungs of a helix. The resulting calculations of
the 2D simple Hubbard model on a helix gave non-uniformity along the ’y’-direction, and thus no
stripe order exists. Due to both the experimental and numerical verification of the presence of stripe
order, the helix was abandoned as a realistic model to describe the cuprates. Helices are also far less
investigated for the 2D Hubbard model than cylinders [194]. Moreover, the plaquette symmetry is
likely to be violated on helices, begging the question of whether plaquette d-wave superconductivity
can even exist on a helix. This last argument, together with the discussion on spontaneous symme-
try breaking of the Heisenberg model of section 8.2.2, does make the helix interesting to investigate
from a theoretical point of view.

A possible alternative to both cylinders and helices is to work directly in 2D using iPEPS. Here,
spontaneous symmetry breaking can occur, and the determination of the ground state phase might
be easier than for the cylinder systems. Although it has been found that for cylindrical systems with
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small to intermediate circumferences, like the ones investigated in this thesis, the MPS description
gives more accurate results than the iPEPS description [195], this is likely not the case for the full
2D systems.

In this thesis, both Up1q b SUp2q b fZ2 and SUp2q b fZ2 have been imposed and investigated.
There are two main reasons why dropping the Up1q symmetry is advantageous for looking for su-
perconductivity. First, the fact that the total number of rungs must be a multiple of a certain value
for a given circumference and filling, intrinsically favors stripe order with a wavelength that fits
on the cylinder, i.e. for which the number of rungs is an integer multiple of the wavelength. The
superconducting order could be lower in energy than this CDW, but higher in energy than a CDW
with another wavelength. Second, the need for a cylinder with multiple rungs increases the complex-
ity of the calculation, making only smaller bond dimensions possible. This yields results that are
possibly not accurate enough to resolve the highly competitive orders. This is the reason why the
Luttinger exponents were calculated while imposing SUp2qbfZ2. However, the Up1qbSUp2qbfZ2

symmetry allows for the easy and straightforward calculation and visualization of the local charge
densities, whereas without Up1q these have to be found in the transfer matrix eigenvalues. An-
other downside of dropping the Up1q symmetry is the fact that the filling is not exact and that the
chemical potential must be found numerically for a given desired filling. Both symmetries thus have
advantages and disadvantages, and it might be interesting to look at both. Using SUp2q instead of
Up1q for the spin sector is almost always preferred to its decrease in complexity and its exactness.
The only reason to use Up1q for the spin sector is when the local magnetic moments would be needed.

One of the most important questions in the numerical investigation of cuprates is what the most
simple model is that captures all their physical properties. In this thesis, hopping terms acting
further than nearest neighbors, together with repulsive on-site and off-site interactions have been
considered. These already yielded a phase diagram that matches the one of the cuprates to some
extent, but might still not be the full story. It is not because the interactions here give rise to d-wave
superconductivity, that this is the full mechanism behind the emergence of d-wave superconductivity
in the cuprates. Other sets of interactions, with possibly different signs and strengths, might give rise
to it as well. For example, Hamiltonians taking into account phonon-electron coupling or attractive
on-site or off-site interactions have been found to give rise to superconducting states too [196, 197,
198]. It would be very interesting, though computationally very expensive and time-consuming, to
consider all these extra interactions in all parameter regimes, and to systematically switch some of
the parameters to zero. This would tell us which interactions are necessary for superconductivity,
and which only increase or decrease its stability. Together with a downfolding procedure that can
accurately determine the parameters of the various interactions, this could settle the question of
what the responsible mechanism behind high-temperature superconductivity is once and for all, and
what the correct Hamiltonian is to describe it. This Hamiltonian should be made as simple as
possible, but not simpler.
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A Hamiltonian and JordanMPO for different cases

A.1 Linear Chain

The Hamiltonian of a chain can be written as

Hchain “
ÿ

i

Hi,i`1 `Bi

“
ÿ

i

LiRi`1 `Bi
(A.1)

where Hi,j is the two-site Hamiltonian acting between nearest-neighbors and Bi is the on-site Hamil-
tonian. For this Hamiltonian, a 3 ˆ 3 matrix is needed. The elements are then

pMiqpp,qq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, pp, qq P tp1, 1q, p3, 3qu
Li, pp, qq “ p1, 2q
Ri, pp, qq “ p2, 3q
Bi, pp, qq “ p1, 3q
0, else

(A.2)

or equivalently,

Mi “
»

–

1 Li Bi
0 0 Ri
0 0 1

fi

fl (A.3)

A.2 Cylinder

The Hamiltonian of a normal cylinder can be written as

Hcyl “
ÿ

r

˜

r0`N´1
ÿ

i“r0

Hi,i`N `
r0`N´2

ÿ

i“r0

Hi,i`1 `Hr0`N´1,r0 `
r0`N´1

ÿ

i“r0

Bi

¸

“
ÿ

r

˜

r0`N´1
ÿ

i“r0

LiRi`N `
r0`N´2

ÿ

i“r0

LiRi`1 ` Lr0`N´1Rr0 `
r0`N´1

ÿ

i“r0

Bi

¸ (A.4)

with the same definitions for Hi,j and Bi as before. Here, the sum over r denotes the sum over the
different rungs of the cylinder, and r0 denotes the first site of that rung in the 1D representation. It
can easily be seen that r0 “ Nr if r P Z. The JordanMPO will not be the same on all sites. Rather,

there will be a distinction between the first (M
pF q

i ), the middle (M
pMq

i ), and the last (M
pLq

i ) sites
of one rung.

For this Hamiltonian, a pN ` 4q ˆ pN ` 4q matrix is needed. The elements are then
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´

M
pF q

i

¯

pp,qq
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, pp, qq P tp1, 1q, pN ` 4, N ` 4q, pi, i` 1q, i P r4, N ` 2su
Li, pp, qq P tp1, 2q, p1, 4qu
R˚
i , pp, qq “ p1, 3q

Ri, pp, qq “ pN ` 3, N ` 4q
Bi, pp, qq “ p1, N ` 4q
0, else

´

M
pMq

i

¯

pp,qq
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, pp, qq P tp1, 1q, pN ` 4, N ` 4q, p3, 3q, pi, i` 1q, i P r4, N ` 2su
Li, pp, qq P tp1, 2q, p1, 4qu
Ri, pp, qq P tpN ` 3, N ` 4q, p2, N ` 4qu
Bi, pp, qq “ p1, N ` 4q
0, else

´

M
pLq

i

¯

pp,qq
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, pp, qq P tp1, 1q, pN ` 4, N ` 4q, pi, i` 1q, i P r4, N ` 2su
Li, pp, qq “ p1, 4q
L˚
i pp, qq “ p3, N ` 4q

Ri, pp, qq P tp2, Lq, pN ` 3, N ` 4qu
Bi, pp, qq “ p1, N ` 4q
0, else

(A.5)

where L˚ and R˚ are the conjugates of L and R respectively. They are obtained by conjugation of
the tensor and permutation of the indices. Specifically, using Tensortrack,

L˚ “ tpermute pconjpLq, r3, 4, 1, 2sq
R˚ “ tpermute pconjpRq, r3, 4, 1, 2sq (A.6)

Remark: In some implementations, elements on the diagonal (apart from in the upper left and lower
right corner) should be avoided to avoid divergences. A less efficient implementation puts 1 on sites
pi, i` 1q for the interaction between the first and last site.

A.3 Helix

The Hamiltonian of a helix can be written as

Hhelix “
ÿ

i

Bi `Hi,i`1 `Hi,i`N

“
ÿ

i

Bi ` LiRi`1 ` LiRi`N
(A.7)

with the same definitions for Hi,j and Bi as before. For this Hamiltonian, a pN`3qˆpN`3q matrix
is needed. The elements are then
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´

M
pNq

i

¯

pp,qq
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, pp, qq P tp1, 1q, pN ` 3, N ` 3q, pi, i` 1q, i P r2, N su
Li, pp, qq P tp1, 2q, p1, N ` 2qu
Ri, pp, qq P tpN ` 1, N ` 3q, pN ` 2, N ` 3qu
Bi, pp, qq “ p1, N ` 3q
0, else

(A.8)

A.4 Cylinder of the one-band model

The Hamiltonian of the cylinder describing the one-band model was given in (6.2), and is given here
as a reminder

H “ ´t
ÿ

⟨ii1⟩σ

´

d:

iσdi1σ ` d:

i1σdiσ

¯

´ t1
ÿ

⟨⟨ii1⟩⟩σ

´

d:

iσdi1σ ` d:

i1σdiσ

¯

` U
ÿ

i

niσniσ ` V
ÿ

⟨ii1⟩σσ1

niσni1σ1

(A.9)
This equation is rewritten in (A.11), where Hp0q denotes the on-site Hamiltonian, Hp1q denotes the
Hamiltonian acting between nearest neighbors, and Hp2q denotes the Hamiltonian acting between
next-to-nearest neighbors. Specifically,

Hp0q “ U
ÿ

i

niσniσ

Hp1q “ ´t
ÿ

⟨ii1⟩σ

´

d:

iσdi1σ ` d:

i1σdiσ

¯

` V
ÿ

⟨ii1⟩σσ1

niσni1σ1

Hp2q “ ´t1
ÿ

⟨⟨ii1⟩⟩σ

´

d:

iσdi1σ ` d:

i1σdiσ

¯

(A.10)

Hcyl “
ÿ

r

˜

r0`N´1
ÿ

i“r0

H
p0q

i `
r0`N´1

ÿ

i“r0

H
p1q

i,i`N `
r0`N´2

ÿ

i“r0

H
p1q

i,i`1 `H
p1q

r0`N´1,r0
`

r0`N´2
ÿ

i“r0

H
p2q

i,i`N`1 `
r0`N´1

ÿ

i“r0`1

H
p2q

i,i`N´1 `H
p2q

r0,r0`2N´1 `H
p2q

r0`N´1,r0`N

¸

Hcyl “
ÿ

r

˜

r0`N´1
ÿ

i“r0

H
p0q

i `
r0`N´1

ÿ

i“r0

L
p1q

i R
p1q

i`N `
r0`N´2

ÿ

i“r0

L
p1q

i R
p1q

i`1 ` L
p1q

r0`N´1R
p1q
r0 `

r0`N´2
ÿ

i“r0

L
p2q

i R
p2q

i`N`1 `
r0`N´1

ÿ

i“r0`1

L
p2q

i R
p2q

i`N´1L
p2q
r0 R

p2q

r0`2N´1 ` L
p2q

r0`N´1R
p2q

r0`N

¸

(A.11)

The construction of the JordanMPOs from (A.11) is similar as in the previous examples and will,
for brevity reasons, not be repeated.

A.5 Cylinder of the three-band model

The Hamiltonian of the cylinder describing the three-band model was given in (6.1) and is given
here as a reminder.
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H “ ´
ÿ

⟨ij⟩σ
p´1qPij tpd

´

d:

iσpjσ ` p:

jσdiσ

¯

´
ÿ

⟨jj1⟩σ
p´1qPij tpp

´

p:

jσpjσ ` p:

j1σpjσ

¯

` ∆dp

ÿ

iσ

niσ

` Ud
ÿ

i

niÒniÓ ` Up
ÿ

i

njÒnjÓ ` Vpd
ÿ

⟨ij⟩σσ1

niσnjσ1 ` Vdd
ÿ

⟨ii1⟩σσ1

niσni1σ1 ` Vpp
ÿ

⟨jj1⟩σσ1

njσnj1σ1

(A.12)

This equation is rewritten in (A.11). H0
Cu and H0

O denote the on-site Hamiltonians on the copper
and oxygen atoms, respectively. Hp1`q and Hp1´q denote Hamiltonians acting between nearest-
neighbor copper and oxygen atoms. Hp2`q and Hp2´q denote Hamiltonians acting between nearest-
neighbor oxygen atoms. Hp3q denotes the Hamiltonian acting between nearest-neighbor copper
atoms. Specifically,

Hp1`q “ ´
ÿ

⟨ij⟩σ
tpd

´

d:

iσpjσ ` p:

jσdiσ

¯

` Vpd
ÿ

⟨ij⟩σσ1

niσnjσ1

Hp1´q “
ÿ

⟨ij⟩σ
tpd

´

d:

iσpjσ ` p:

jσdiσ

¯

` Vpd
ÿ

⟨ij⟩σσ1

niσnjσ1

Hp2`q “ ´
ÿ

⟨jj1⟩σ
tpp

´

p:

jσpjσ ` p:

j1σpjσ

¯

` Vpp
ÿ

⟨jj1⟩σσ1

njσnj1σ1

Hp2´q “
ÿ

⟨jj1⟩σ
tpp

´

p:

jσpjσ ` p:

j1σpjσ

¯

` Vpp
ÿ

⟨jj1⟩σσ1

njσnj1σ1

Hp3q “ Vdd
ÿ

⟨ii1⟩σσ1

niσni1σ1

H
p0q

Cu “ Ud
ÿ

i

niÒniÓ ` ∆dp

ÿ

iσ

niσ

H
p0q

O “ Up
ÿ

i

njÒnjÓ

(A.13)

H3´band “
ÿ

r

˜

N´1
ÿ

i“0

H
p1`q

r0`3i,r0`3i`1 `
N´1
ÿ

i“0

H
p1`q

r0`3i,r0`3i`2 `
N´2
ÿ

i“0

H
p1´q

r0`3i`2,r0`3i`3 `H
p1´q

r0`3N´1,r0

`
N´1
ÿ

i“0

H
p1´q

r0`3i`1,r0`3i`3N `
N´2
ÿ

i“0

H
p2`q

r0`3i`2,r0`3i`4 `H
p2`q

r0`3N´1,r0`1

`
N´1
ÿ

i“0

H
p2`q

r0`3i`1,r0`3i`3N`2 `
N´1
ÿ

i“0

H
p2´q

r0`3i`1,r0`3i`2 `
N´1
ÿ

i“1

H
p2´q

r0`3i`1,r0`3i´1

`Hp2´q

r0`6N´1,r0`1 `
N´1
ÿ

i“0

H
p3q

r0`3i,r0`3i`3N `
N´2
ÿ

i“0

H
p3q

r0`3i,r0`3i`3 `H
p3q

r0`3N´3,r0

`
N´1
ÿ

i“0

”

H
p0q

Cu,r0`3i `H
p0q

O,r0`3i`1 `H
p0q

O,r0`3i`2

ı

¸

(A.14)
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H3´band “
ÿ

r

˜

N´1
ÿ

i“0

L
p1`q

r0`3iR
p1`q

r0`3i`1 `
N´1
ÿ

i“0

L
p1`q

r0`3iR
p1`q

r0`3i`2 `
N´2
ÿ

i“0

L
p1´q

r0`3i`2R
p1´q

r0`3i`3 ` L
p1´q

r0`3N´1R
p1´q
r0

`
N´1
ÿ

i“0

L
p1´q

r0`3i`1R
p1´q

r0`3i`3N `
N´2
ÿ

i“0

L
p2`q

r0`3i`2R
p2`q

r0`3i`4 ` L
p2`q

r0`3N´1R
p2`q

r0`1

`
N´1
ÿ

i“0

L
p2`q

r0`3i`1R
p2`q

r0`3i`3N`2 `
N´1
ÿ

i“0

L
p2´q

r0`3i`1R
p2´q

r0`3i`2 `
N´1
ÿ

i“1

L
p2´q

r0`3i`1R
p2´q

r0`3i´1

`Lp2´q

r0`6N´1R
p2´q

r0`1 `
N´1
ÿ

i“0

L
p3q

r0`3iR
p3q

r0`3i`3N `
N´2
ÿ

i“0

L
p3q

r0`3iR
p3q

r0`3i`3 ` L
p3q

r0`3N´3R
p3q
r0

`
N´1
ÿ

i“0

”

H
p0q

Cu,r0`3i `H
p0q

O,r0`3i`1 `H
p0q

O,r0`3i`2

ı

¸

(A.15)
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B Details of VUMPS 25

The set of injective MPS form a complex manifold 26. Making smart use of the tangent space to
this manifold, an algorithm resembling gradient descent can be devised. The combination of DMRG
with the ideas of tangent spaces for MPS led to the development of another variational optimization
algorithm, called Variational Uniform Matrix Product State (VUMPS) [18, 19].

Finding the ground state again amounts to finding the minimum of the energy functional, i.e.

Egs “ min
A

@

ΨpĀq∣∣h |ΨpAqy
@

ΨpĀqˇ

ˇΨpAqD “ min
A
fpA, Āq (B.1)

A vital ingredient in this minimization procedure will be the gradient, where the right-hand side of
(B.1) is differentiated with respect to Ā. Differentiation will just mean that a tensor is left out and
its physical space is interpreted as an outgoing line, as given in figure B.1.

(a) (b)

Figure B.1: (a) Egs and (b) pB{BĀiqEgs for a normalised MPS [19]

The gradient g can be written as

g “ 2
B

BĀf
`

A, Ā
˘

g “ 2
B

BĀ
@

ΨpĀq∣∣h |ΨpAqy
@

ΨpĀqˇ

ˇΨpAqD

“ 2
@

ΨpĀqˇ

ˇΨpAqD

B
BĀ

@

ΨpĀq∣∣h |ΨpAqy ´ 2

@

ΨpĀq∣∣h |ΨpAqy
@

ΨpĀqˇ

ˇΨpAqD2

B
BĀ

@

ΨpĀqˇ

ˇΨpĀqD

“ 2
B

BĀ

@

ΨpĀq∣∣h |ΨpAqy ´ E B

BĀ

@

ΨpĀqˇ

ˇΨpĀqD

@

ΨpĀqˇ

ˇΨpAqD

(B.2)

where E is the current energy density.

E “
@

ΨpĀq∣∣h |ΨpAqy
@

ΨpĀqˇ

ˇΨpAqD (B.3)

25This discussion is mostly based on reference [19].
26More specifically, it forms a Kähler manifold [70]
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By normalizing the MPS and by subtracting the expectation value from the Hamiltonian

h1 “ h´ @

ΨpĀq∣∣h |ΨpAqy (B.4)

the expression for the gradient reduces to

g “ 2
B

BĀ
@

ΨpĀq∣∣h |ΨpAqy (B.5)

This gradient can be calculated by taking the derivative with respect to Ā of the expression in figure
B.1a. This is an infinite sum, where in each term one of the Ā is left out.

In optimizing the energy, the current MPS will be nudged in a certain direction, i.e.

A ÝÑ A` ϵB (B.6)

which yields a certain nudge in the energy functional

f
`

A, Ā
˘ ÝÑ f

`

A, Ā
˘ ` 2ϵ

B
BĀf

`

A, Ā
˘

B `Opϵ2q
ÝÑ f

`

A, Ā
˘ ` ϵg:B `Opϵ2q

(B.7)

It is now useful to interpret the set of uniform MPS with the same bond dimension as a manifold
within the total Hilbert space of the system in which the energy will be minimized. This manifold
is defined by the map from the tensors of a certain dimension A to the states in the physical Hilbert
space |ΨpAqy. The sum of two MPS will not necessarily remain in this manifold. Therefore, the
tangent space to every MPS will be defined, for which a basis is given by B

BA |ΨpAqy. A tangent
tensor is then defined as

|ΦpB;Aqy “ Bi
B

BAi |ΨpAqy (B.8)

where the Einstein-summation convention is used. Graphically, this means replacing every Ai with
Bi.

g in (B.7) is a tensor, not a state in the Hilbert space. Since the nudge A ÝÑ A` ϵB has the effect of

|ΨpA` ϵBqy ÝÑ |ΨpAqy ` ϵ |ΦpB;Aqy (B.9)

the resulting nudge in the energy functional (given by (B.7)) could be written as the overlap of this
tangent vector |ΦpB;Aqy and a certain gradient vector |ΦpG;Aqy.

f
`

A, Ā
˘ ÝÑ f

`

A, Ā
˘ ` ϵ xΦpG;Aq|ΦpB;Aqy `Opϵ2q (B.10)

This tangent-space gradient can be obtained from g by means of the tangent-space projector, defined
in [19]. In the language of the MPS manifold, this corresponds to the direction in which the energy is
minimized, which can then be used in an optimization algorithm. In the mixed gauge, the vectorized
version of this gradient can be written as

G⃗ “ |ΦpG;AL, ARqy (B.11)

The gradient should be zero if the algorithm has converged. An error measure is thus given by
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Figure B.2: MPS manifold and its tangent space [19]

ϵ “ pG⃗:G⃗q1{2 “ pxΦpG;AL, ARq|ΦpG;AL, ARqyq1{2 (B.12)

Using the tangent-space projector, this yields

G “ A1
C ´ALC

1 (B.13)

where A1
C and C 1 are defined as

(a) HAC
pACq (b) HCpCq

Figure B.3: Effective Hamiltonians of AC and C used in the VUMPS update equations [19]

The equations from figure B.3 define effective Hamiltonians for AC and C

A1
C “ HAC

pACq
C 1 “ HCpCq (B.14)

Together with the condition that the gradient should be zero in the minimum, these yield the
VUMPS set of equations.
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HAC
pACq 9 AC

HCpCq 9 C

AC “ ALC “ CAR

(B.15)

The VUMPS algorithm consists of first solving the two eigenvalue equations, which yield new values
of AC and C. The updates for AL and AR are calculated by minimizing the error in the third
equation, i.e.

ϵL “ min}AC ´ALC}
ϵR “ min}AC ´ CAR} (B.16)

These new values of AL and AR redefine the effective Hamiltonians HAC
and HC which are used in

the next iteration step. If both epsilons are smaller than a certain predefined tolerance, the iteration
procedure is said to have converged.
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C Virtual spaces of the doped Hubbard model to create
injective MPS

C.1 Using Up1q b Up1q b fZ2

The physical Hilbert space for the doped Hubbard model with filling f “ P {Q, is, as mentioned in
section 5.2

$

’

’

’

&

’

’

’

%

|0y ∼ p´P, 0,`1q
|Òy ∼ pQ´ P, 1,´1q
|Óy ∼ pQ´ P,´1,´1q
|Öy ∼ p2Q´ P, 0,`1q

P Up1q b Up1q b fZ2 (C.1)

The virtual Hilbert space, in total, can be represented by

v “ pZ1, Z2, t˘1uq, Z1, Z2 P Z (C.2)

This will be decomposed in sectors vk.

vk “
#

p2QZ1 ´ kP, 2Z2,`q, Z1, Z2 P Z
p2QZ1 `Q´ kP, 2Z2 ` 1,´q, Z1, Z2 P Z (C.3)

C.2 Using Up1q b SUp2q b fZ2

In this case, the physical Hilbert space for the doped Hubbard model with filling f “ P {Q is

$

’

&

’

%

|0y ∼ p´P, 1{2,`1q
|Òy ∼ pQ´ P, 1{2,´1q
|Öy ∼ p2Q´ P, 1{2,`1q

P Up1q b SUp2q b fZ2 (C.4)

The virtual Hilbert space, in total, is

v “ pZ,N{2, t˘1u, Z P Z, N P N (C.5)

This will be decomposed in sectors vk.

vk “
#

p2QZ ´ kP,N,`q, Z P Z, N P N
p2QZ `Q´ kP,N ` 1

2 ,´q, Z P Z, N P N (C.6)

C.3 Not using Up1q for the charge sector

The needed charges in the case where the Up1q symmetry of the charge sector is dropped, can be
obtained from sections C.1 and C.2 by just dropping the U(1) charges.

135



C.4 General remarks

For odd P , a 2Q-site unit cell is needed, with virtual spaces vk, k P r0, 2Qs. For even P , a Q-site
unit cell is needed, with virtual spaces vk, k P r0, Qs. This follows from the fact that v0 “ vQ only
when P is even.

To implement this in the code, a finite set within each sector needs to be chosen when defining the
spaces of an MPS. It is important that this choice allows for an MPS of full-rank, which translates
in the conditions that the following two monomorphisms must exist

HvL b Hp ãÑ HvR

HvL Ðâ H˚
p b HvR

(C.7)

where Hp and H˚
p are the physical Hilbert space and its dual. HvL and HvR are the left and right

virtual Hilbert space of one particular tensor in the unit cell. The conditions need to be fulfilled for
each site in the unit cell. The existence of a monomorphism X ãÑ Y means that each element in Y
must be uniquely contained within X.
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D Parameters for models of HgBa2CuO4

The used parameters for the one-band and three-band model of HgBa2CuO4 are given in tables D.1
and D.2 respectively. They were taken from reference [123].

Table D.1: Parameters of the one-band model for HgBa2CuO4 in accordance with (6.2). Parameters
were implemented as given in this table. The original value of t, as given in the paper, is 0.461.
This fixes the energy scale. In the code, all parameters were rescaled with t. Parameters taken from
reference [123].

HgBa2CuO4 oneband

t (scale) 1
t1 -0.26
U 9.48
V 2.364

Table D.2: Parameters of the three-band model of HgBa2CuO4 in accordance with (6.1). The
parameters that were implemented are the ones given in this table divided by tdp. Parameters taken
from reference [123].

HgBa2CuO4 threeband

tdp (scale) 1.257
tpp 0.751
∆dp 2.416
Udd 8.84
Upp 5.31
Vdd 0.8
Vpp 1.21
Vdp 1.99
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E Figures - correlation functions

This appendix shows the correlation functions corresponding to the results on the 2D Hubbard
model, both for N “ 2 and N “ 4.

(a) Charge correlation function (b) Spin correlation function

(c) Charge structure factor (d) Spin structure factor

Figure E.1: Charge and spin correlation functions and structure factors for the 2D Hubbard model
with t “ 1, U “ 8, and δ “ 1{8 on a cylinder with N “ 2 and 8 rungs for qy “ 0. The dotted
line corresponds to qx “ 2π

8 . D “ 600. The fact that the period of the SDW is not double of the
period of the CDW is due to the SUp2q symmetry. Calculations using Up1q bUp1q b fZ2 confirmed
λSDW “ 2λCDW

139



(a) Charge correlation function (b) Spin correlation function

(c) Charge structure factor (d) Spin structure factor

Figure E.2: Charge and spin correlation functions and structure factors for the 2D Hubbard model
with t “ 1, U “ 8, and δ “ 1{8 on a cylinder with N “ 4 and 8 rungs for qy “ 0. The dotted line
corresponds to qx “ 2π

4 . D “ 767.
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F Transfermatrix eigenvalues of the one-band model

Figures F.1 and F.2 show the eigenvalues of the transfer matrix of the one-band model of HgBa2CuO4.
All cases exhibit filled stripes. The deviations from this behavior are listed in table F.1.

(a) µ “ ´6.5, δ “ 0.3746, D “ 1523 (b) µ “ ´7.5, f “ 0.3036, D “ 1760

(c) µ “ ´8.5, f “ 0.2425, D “ 1721 (d) µ “ ´9.2, f “ 0.1990, D “ 1460

Figure F.1: Eigenvalues of the transfer matrix for different values of µ for the one-band model of
HgBa2CuO4. The results that are expected for filled stripes are denoted by black dashed lines. (part
1)
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(a) µ “ ´9.5, f “ 0.1780, D “ 1267 (b) µ “ ´10.1, f “ 0.1268, D “ 1501

(c) µ “ ´10.607, f “ 0.0445, D “ 646

Figure F.2: Eigenvalues of the transfer matrix for different values of µ for the one-band model of
HgBa2CuO4. The results that are expected for filled stripes are denoted by black dashed lines. (part
2)

Table F.1: Angles not expected from filled stripes for the one-band model of HgBa2CuO4

µ δ θ period of CDW λ “ 2π
θ FF

-6.5 0.3746 0.3898 16.12 6.04
-7.5 0.3036 0.28 22.44 6.81
-8.5 0.2425 0.667 9.42 2.28
-8.5 0.2425 0.857 7.33 1.78
-9.5 0.1780 0.3453 18.20 3.24
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