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Abstract 

Background 
The Human Leukocyte Antigen (HLA) genes are a group of highly polymorphic genes that are located 

in the Major Histocompatibility Complex (MHC) region on chromosome 6. The HLA genotype affects 

the presentability of tumour antigens to the immune system. While knowledge of these genotypes is 

of utmost importance to study differences in immune responses between cancer patients, gold 

standard, PCR-derived genotypes are rarely available in large Next Generation Sequencing (NGS) 

datasets. Therefore, a variety of methods for in silico NGS-based HLA genotyping have been 

developed, bypassing the need to determine these genotypes with separate experiments. However, 

there is currently no consensus on the best performing tool.  

Results 
We evaluated 13 MHC class I and/or class II HLA callers that are currently available for free academic 

use and run on either Whole Exome Sequencing (WES) or RNA sequencing data. Computational 

resource requirements were highly variable between these tools. Three orthogonal approaches were 

used to evaluate the accuracy on several large publicly available datasets: a direct benchmark using 

PCR-derived gold standard HLA calls, a correlation analysis with population-based allele frequencies 

and an analysis of the concordance between the different tools. The highest MHC-I calling accuracies 

were found for Optitype (98.0%) and arcasHLA (99.4%) on WES and RNA sequencing data 

respectively, while for MHC-II HLA-HD was the most accurate tool for both data types (96.2% and 

99.4% on WES and RNA data respectively). We demonstrated that the combination of Optitype, 

HLA*LA, Kourami and Polysolver in a consensus majority voting-based metaclassifier improved the 

accuracy for MHC-I on WES data to 99.0% and the combination of HLA*LA, HLA-HD, PHLAT and xHLA 

improved the accuracy to 98.4% for MHC-II. 

Conclusion  
The optimal strategy for HLA genotyping from NGS data depends on the availability of either WES or 

RNA data, the size of the dataset and the available computational resources. If sufficient resources 

are available, we recommend Optitype and HLA-HD for MHC-I and MHC-II genotype calling 

respectively. 
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  Benchmark of NGS-based prediction algorithms for 

MHC class I and II genotyping in cancer research 

Arne Claeys 

Supervisor(s): Jimmy Van den Eynden, Kathleen Marchal 

Abstract – The highly polymorphic Major Histocompatibility 

Complex (MHC) molecules are indispensable actors in the 

immune response to cancer. To study tumour-immune 

interactions and to discover new genomic predictors for 

immunotherapy responses, it is important to have accurate 

methods available that can predict MHC genotypes from large 

genomic NGS datasets. Numerous tools have been developed with 

that objective, but there is currently no consensus on the best 

performing algorithms. In this study, we performed an extensive 

benchmark of 13 different tools using data from the 1000 Genomes 

Project as well as The Cancer Genome Atlas (TCGA) and propose 

a simple method to make consensus HLA allele predictions. 

Keywords – HLA genotyping; benchmark; tumour-immune 

interaction 

I. INTRODUCTION 

The human Major Histocompatibility Complex (MHC) is a 

gene complex located on the p-arm of chromosome 6 that 

contains two large clusters of genes with antigen processing 

and presentation functions: the MHC class I and MHC class II 

regions [1–3]. 

MHC class I molecules are involved in the presentation of 

endogenous antigens to cytotoxic T-cells and consist of a heavy 

chain encoded by one of the MHC class I genes (HLA-A, HLA-

B or HLA-C), and a light β2 microglobulin chain [4–6]. Their 

role in tumour immunity has been established for a long time 

[7]. Indeed, they can present neoantigens, small mutated 

peptides, to CD8+ T cells, resulting in an immune response and 

cancer cell death [8, 9]. 

The most frequently studied MHC class II genes include 

HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA 

and HLA-DRB1. They encode alpha/beta heterodimers that 

form the MHC class II protein complex. The role of these genes 

in anti-tumour immunity is emerging [10–12]. 

The peptide-binding region of HLA molecules is highly 

polymorphic and specific HLA alleles determine neoantigen 

binding and presentation to the immune system. Genotype 

dependent differences in HLA binding affinity could lead to 

differential responses to immunotherapy, as illustrated by the 

association that has been described between MHC-I genotypes 

(e.g., HLA-B62) and survival in immune checkpoint blockade 

(ICB)-treated advanced melanoma patients [13]. It is currently 

unclear whether MHC-II genotypes also determine responses 

to immunotherapy. 

Such association studies require knowledge of the HLA 

genotype. PCR methods are currently the gold standard for this 

genotyping but datasets with PCR-based HLA calls are rarely 

available [14–16]. HLA genotyping can also be performed on 

Next Generation Sequencing (NGS) data. A plethora of tools 

has been developed for this task. Polysolver and Optitype are 

often recommended as the best performing tools for MHC-I 

genotyping [17]. For MHC-II genotyping there is currently no 

consensus about the best method. Several benchmarks have 

been performed previously [15, 17–24], but these were either 

not applied to MHC class II or did not include some recently 

published tools. 

In this study, we compiled a list of 13 tools that predict HLA 

genotypes from NGS data and benchmarked their performance 

on both the 1000 genomes dataset and on an independent cell 

line dataset [25]. Subsequently we assessed their performance 

on 9162 WES and 9761 RNA sequencing files from The 

Cancer Genome Atlas (TCGA) by comparing the predicted 

allele frequencies with reference population allele frequencies. 

Based on these findings, we give recommendations on which 

tool to use for a given data type and how the outputs of multiple 

tools can be combined into a consensus prediction. 

II. SELECTION OF 13 HLA GENOTYPING TOOLS 

We identified 22 available HLA genotyping tools from 

literature. Thirteen tools that were free for academic use, 

applicable on Whole Exome Sequencing (WES), Whole 

Genome Sequencing (WGS) or RNA-Seq data and ran on 

Ubuntu 20.04 were included in this study: arcasHLA, HLA-HD, 

HLA-VBSeq, HLA*LA, HLAforest, HLAminer, HLAscan, 

Kourami, Optitype, PHLAT, Polysolver, seq2HLA and xHLA. 

All 13 tools can make allele predictions for the three MHC class 

I genes (HLA-A, HLA-B and HLA-C) and 9 tools support 

additional calling of the MHC class II genes HLA-DPA1, HLA-

DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1. Two 

methods support only a subset of the MHC class II genes: xHLA 

does not support calling HLA-DPA1 and HLA-DQA1, while 

PHLAT does not support HLA-DPA1 and HLA-DPB1. The 

tools also differ in which data types they support: 6 of them 

require WES data, 3 tools require RNA data and the 4 

remaining tools support both data types. 

III. BENCHMARK OF THE RESOURCE CONSUMPTION 

Firstly, the computing time and memory usage of the thirteen 

selected tools were measured on a random subset of 10 WES 

and 10 RNA sequencing files from the TCGA project (Figure 

4, main text). Among the 10 WES-supporting methods 

Optitype (median 2.48 hours) and HLA*LA (median 1.84 

hours) require the largest computing time. Apart from being 

computationally intensive, HLA*LA is also the most memory 

demanding WES tool (median 36.3 GiB per file). Among the 7 

RNA-supporting methods, HLA-HD has the longest computing 

time per sample (median 15.0 hours). At the other end of the 

spectrum, the sole pseudoalignment-based tool arcasHLA takes 

only 38s per file. The most memory intensive tool is HLA-HD 
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  (median memory peaks of 103.1 GiB), followed by Optitype 

(median 34.1 GiB). 

IV. ACCURACY ON WES DATA 

The 10 selected algorithms that are compatible with WES 

data were benchmarked using data from the 1000 Genomes 

project [48] (Figure 5, main text). For MHC-I genes (HLA-A, 

HLA-B, HLA-C), the best accuracy was obtained with Optitype 

(98.0%), followed by Polysolver and HLA*LA (94.9% and 

94.4% respectively). For MHC-II genes (HLA-DQA1, HLA-

DQB1 and HLA-DRB1), the best allele predictions were made 

using HLA-HD and HLA*LA (96.2% and 95.7% accuracy 

respectively). These were the only two methods to reach an 

accuracy of 90% on all tested MHC-II genes. HLAscan 

(74.2%), HLA-VBSeq (60.2%) and HLAminer (53.8%) 

performed considerably worse than the other tools. 

V. ACCURACY ON RNA DATA 

We then evaluated the 7 selected methods that support HLA 

calling on RNA sequencing data from the 1000 genomes 

project [49]  (Figure 5, main text). 

ArcasHLA and Optitype had the best MHC-I allele 

predictions (99.4% and 99.2% accuracy, respectively), 

followed by HLA-HD (98.0%), seq2HLA (95.9%) and PHLAT 

(95.4%). Similar accuracies were found for MHC-II allele 

predictions, with HLA-HD, PHLAT and arcasHLA performing 

the best (99.4%, 98.9% and 98.1%, respectively). 

VI. VALIDATION ON INDEPENDENT DATASETS 

 Being one of the few large sequencing datasets for which 

gold standard HLA genotypes for both MHC classes are 

available, many algorithms included in our benchmark were 

developed, optimized and validated using files from the 1000 

genomes project, introducing a potential bias. Therefore, we 

performed an indirect and independent evaluation on a large 

NGS dataset obtained from TCGA. 

We first compared the observed allele frequencies for each 

tool with the expected population frequencies. We calculated 

how often each of the alleles was predicted by a certain tool to 

obtain an observed allele frequency, stratifying for Caucasian 

American and African American ethnicities. By comparing 

these frequencies to the expected allele frequencies, as derived 

from Allele Frequency Net [50], strong significant correlations 

were found for the WES-based tools HLA-HD, HLA*LA, 

Optitype, Polysolver and xHLA and for the RNA-based tools 

Optitype, arcasHLA and PHLAT. The correlations were 

considerably worse for HLA‑VBSeq, and HLAforest than for the 

other tools (Figure 6, main text). These findings largely confirm 

the results of the benchmark on the 1000 genomes data. 

We then calculated for each pair of tools how often their 

predictions are concordant (Figures S8-S11). Tools that 

performed poorly in the previous analyses (e.g., HLAminer, 

HLA-VBSeq and HLAforest) consistently have a low 

concordance with all other tools. In contrary, tools that scored 

high in the previous analyses (such as Optitype, HLA*LA, 

arcasHLA and HLA-HD) made predictions that are consistent 

with each other. 

VII. CONSENSUS PREDICTIONS 

We noted that only for a very small fraction of the samples 

the genotypes are wrongly typed by all tools simultaneously 

(median 0.79% for WES and 0.68% for RNA; Figures S12-

S13). This complementarity of the tools’ allele predictions 

opens the possibility to combine predictions of different HLA 

callers into a consensus prediction. We first applied a majority 

voting algorithm to the output of all tools, with the predicted 

allele pair being the one with most votes. On the WES data, this 

approach outperforms the predictions of each individual tool 

for all genes. On RNA data, where the best tools already attain 

accuracies over 99% by themselves, only minor improvements 

were made by combining the results (Figure S14). 

Based on these results, we determined the minimal number 

of tools that must be included in the WES-based metaclassifier 

to produce reliable results (See Methods; Figure 7, main text). 

For the WES data, including 4 tools in the model led to a 

considerable improvement for all genes for both MHC classes. 

The best accuracies were observed when Optitype, HLA*LA, 

Kourami and Polysolver were combined for MHC-I predictions 

(99.0% accuracy) and with HLA*LA, HLA-HD, PHLAT and 

xHLA for MHC-II predictions (98.4% accuracy). 

VIII. CONCLUSION 

We found that Optitype, Polysolver, HLA-HD, HLA*LA and 

xHLA are all solid choices for WES-based MHC genotyping, 

while Optitype, HLA-HD, arcasHLA and PHLAT are the better 

performing tools for RNA data. On the other hand, HLAminer, 

HLA-VBSeq and HLAScan performed rather poorly in our 

benchmark.  

The optimal strategy for HLA genotyping depends on a few 

factors: the availability of WES or RNA data, the size of the 

dataset that needs to be analysed and the available 

computational resources. For WES data, Optitype and HLA-HD 

are the best performing individual tools for MHC class I and 

MHC class II typing, respectively. For RNA data, the same 

tools are recommended when sufficient computational 

resources are available. However, the large resource and time 

consumption of HLA-HD on RNA data makes its usage rather 

impractical on large datasets. As an alternative, arcasHLA is 

recommended, which is both the fastest and more accurate tool 

for RNA that supports all 5 MHC class II genes. 

Finally, we have demonstrated that the accuracy of the WES-

based HLA genotype predictions can be improved further by 

combining the output of Optitype, HLA*LA, Kourami and 

Polysolver for MHC-I typing and combining HLA*LA, HLA-

HD, PHLAT and xHLA for MHC-II typing using a majority 

voting rule. For RNA data a similar metaclassifier approach did 

not lead to a further improvement of the prediction accuracies. 
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1. The Major Histocompatibility Complex 
The Major Histocompatibility Complex (MHC) is a region in the vertebrate genome that contains 

genes with a critical role in the workings of the immune system (Horton et al., 2004). In humans, the 

MHC is also called the Human Leukocyte Antigen (HLA) system (Klein & Sato, 2000). Its discovery can 

be traced back to the middle of the 20th century, when Gorer and Snell made a series of pioneering 

observations in mice that demonstrated the existence of genetic factors that control the rejection of 

tissue transplants (Gorer, 1937; Klein, 2001; Snell, 1948). Later, a homologous system was found in 

humans after the discovery of the first leukocyte antigen (now known as HLA‑A2) by Dausset 

(Richmond, 2009; Thorsby & Thorsby, 2009). 

1.1. The human MHC: genes and protein complexes 

The human MHC is located on the p-arm of chromosome 6 and contains two large clusters of genes 

with antigen processing and presentation functions: the MHC class I and MHC class II regions (Beck et 

al., 1999; Horton et al., 2004; Trowsdale, 1993). A third, less well characterized region is the MHC 

class III region (Figure 1). Unlike the other two MHC classes, its genes are not involved in antigen 

presentation (Sabbatino et al., 2020). 

MHC class I region 

The MHC class I genes are commonly further subdivided into classical and non-classical genes 

(Bjorkman & Parham, 1990; Horton et al., 2004; Shiina et al., 2009). There are three classical class I 

genes (HLA‑A, HLA‑B, and HLA‑C) and several non-classical class I genes (among which HLA‑E, HLA‑F, 

and HLA‑G are the most prominent members). 

Classical MHC-I genes: Classical MHC-I genes are expressed in (nearly) all cells of the human body. 

Their gene products are incorporated in MHC class I molecules, which are protein complexes 

consisting of a heavy chain encoded by one of the HLA genes and a light β2 microglobulin chain (Allen 

& Hogan, 2013; Halenius et al., 2014; Hewitt, 2003). These MHC-I molecules present endogenous 

antigens (i.e., antigens originating from within the organism) to CD8+ (cytotoxic) T cells. The latter 

cell type is tasked with destroying cells that are considered harmful to the host including cancer cells 

and cells infected by a pathogen (Andersen et al., 2006; Horton et al., 2004; Klein & Sato, 2000). 

Non-classical MHC-I genes: Proteins derived from non-classical MHC-I genes also form dimers with β2 

microglobulin, but are involved in different immune related pathways, such as Natural-Killer (NK) 

mediated immune response (HLA‑E) (Braud et al., 1998) and maternal-fetal immune tolerance 

(HLA‑G) (Zhuang et al., 2021). 

MHC class II region 

Classical MHC-II genes: The most frequently studied (classical) MHC-II genes include HLA‑DPA1, 

HLA‑DPB1, HLA‑DQA1, HLA‑DQB1, HLA-DRA and HLA‑DRB1. Contrary to MHC-I genes, the MHC-II 

genes are expressed only in specific cell types, including B cells, macrophages, dendritic cells, and 

thymic epithelial cells (Klein & Sato, 2000). The HLA genes in this region encode alpha/beta 

heterodimers that form MHC-II molecules that present exogenous antigens (i.e., antigens originating 

from outside the organism) to CD4+ T (helper) cells (Neefjes et al., 2011). When the T cell receptor 

(TCR) of CD4+ T cells recognizes the presented antigen, the T cell is activated and an immune 
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response is initiated (Johnson et al., 2021). Activation of CD4+ T cells will result in differentiation of 

the T cell into Th1, Th2, Th17, or Treg cells. 

Non-classical MHC-II genes: Apart from these classical MHC-II genes, there are also non-classical 

MHC-II genes (HLA‑DMA, HLA‑DMB, HLA‑DOA and HLA‑DOB), that form alpha/beta heterodimers 

that regulate binding of peptides to MHC-II molecules (Mellins & Stern, 2014). HLA‑DM is present on 

the surface of immature dendritic cells and B cells. It regulates the activity of MHC-II molecules by 

catalysing the dissociation of CLIP, a surrogate ligand needed to maintain structural integrity of 

MHC-II molecules during protein folding, in exchange for antigenic peptides (Arndt et al., 2000; 

Denzin et al., 1997; Zhong et al., 1996). HLA‑DO is expressed in the thymic medulla, B cells and on the 

surface of some dendritic cells (Welsh & Sadegh-Nasseri, 2020). HLA‑DO then modulates the activity 

of HLA‑DM (Arndt et al., 2000; Denzin et al., 1997). 

Genes involved in antigen processing: The MHC class II subregion also includes important genes 

involved in antigen processing, among which the TAP1 and TAP2 genes. These genes encode proteins 

of the Transporter associated with antigen processing (TAP) complex which transports peptides from 

the cytosol into the endoplasmic reticulum, where they are subsequently loaded onto MHC-I 

molecules (Jhunjhunwala et al., 2021). 

MHC class III region 

The MHC class III region, located between the MHC class I and class II regions, also contains genes 

with immune related functions. This region is particularly dense in genes: about 72% of the region is 

transcribed, with on average one gene every 10 kb (Milner, 2001; T. Xie et al., 2003). Among the 

genes found in this region are some genes encoding complement proteins (involved in the innate 

immune system), heat shock proteins, and certain cytokines (TNF, LTA and LTB) (Horton et al., 2004). 

 

Figure 1. Gene map of the MHC region. The human MHC region are located on the p-arm of chromosome 6 and 
consists of 3 gene clusters: MHC-I (purple), MHC-II (blue) and MHC-III (orange). All depicted HLA genes encode 
components of (classical and non-classical) MHC molecules. Classical MHC genes are underlined. Created with 
BioRender.com 
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1.2. Polymorphism of the HLA genes 

The MHC region constitutes one of the most polymorphic loci of the human genome, with more than 

36,000 alleles recorded in the IPD-IMGT/HLA database (Robinson et al., 2015). The degree of 

polymorphism varies for different HLA genes. With more than 9,000 known alleles, the HLA‑B gene is 

the most polymorphic HLA gene (Raghavan & Geng, 2015; Robinson et al., 2015). In contrast, HLA-

DRA is characterized by an almost complete absence of polymorphism (Matern et al., 2020). For each 

gene, the largest variability is encountered in the exons that encode the peptide-binding groove of 

the MHC molecules (exon 2 and 3 for MHC class I, and exon 2 for MHC class II). 

This large variety of HLA alleles, which are formed by point mutations, indels and recombination 

events, is hypothesized to have evolved as a defence of vertebrates against rapidly evolving 

pathogens (Fabreti-Oliveira et al., 2018; Markov & Pybus, 2015). Two evolutionary pressures are 

thought to be involved: heterozygote advantage and frequency-dependent selection (Sommer, 

2005). First, heterozygote advantage refers to the presumed fitness advantage of individuals with 

two different HLA alleles at a given locus. As differences in the amino acid sequence of HLA variants 

lead to a distinctive repertoire of peptides that can bind efficiently, heterozygotes can target a 

broader range of epitopes and have a fitness advantage over individuals with two identical alleles 

(Markov & Pybus, 2015). Secondly, frequency-dependent selection occurs because parasite 

constantly adapt to become resistant to the most common HLA alleles as this allows them to spread 

faster through a population. In this context, carrying a rare allele is advantageous. Both selection 

pressures will eventually lead to a high HLA polymorphism in the population (Sommer, 2005). 

1.3. HLA gene nomenclature 

Different HLA alleles are named according to the Nomenclature for Factors of the HLA System  

(Marsh, 2022; Marsh et al., 2010). In this system allele names are composed of 1 to 4 fields, 

delimited by colons. The first field indicates the allele family, a classification based on serological 

assays (see below). The second field expresses differences in the amino acid sequence. The third and 

fourth fields, respectively represent synonymous variants in the coding region and variation outside 

the coding region (Hurley, 2021; Marsh et al., 2010). 

In addition to this naming system, HLA proteins are also clustered into G and P groups, for which only 

polymorphism in the antigen-binding groove is considered. HLA alleles in the same G group share the 

same nucleotide sequence across the exons that code for the peptide binding domains, whereas 

alleles in the same P group share the same amino acid sequence in the peptide binding domain 

(Marsh et al., 2010). 

1.4. Clinical role of MHC 

The exact amino acid sequence in the HLA antigen-binding domain determines which peptides can 

bind to the MHC and therefore influences which antigens trigger an immune response (Nielsen et al., 

2007). As a result, the specific combination of HLA alleles that an individual carries impacts their 

susceptibility to various infectious and autoimmune diseases. For example, HLA‑B27, HLA‑B57 and 

HLA‑B51 have been associated with a longer time interval between HIV-1 infection and the onset of 

AIDS (Kaslow et al., 1996). There is also a strong association between certain HLA alleles and the 

occurrence of autoimmune diseases, such as type I diabetes, rheumatoid arthritis, psoriasis, and 

asthma (Hosomichi et al., 2015; Simmonds & Gough, 2009). 



Background 

 

P a g e  5 | 80 

The clinical relevance of HLA polymorphism extends beyond establishing allele disease associations. 

In fact, the HLA genes were originally studied in the context of transplant rejection (Klein, 2001). 

Indeed, to prevent rejection of a transplanted organ, it is essential that the HLA alleles of the donor 

and recipient match as closely as possible, which necessitates the availability of accurate methods to 

determine which set of HLA alleles are carried by both subjects. 

Furthermore, MHC molecules play an important role in the immune system's recognition of cancer 

cells by presenting small peptides, known as neoantigens, to T cells. These neoantigens are produced 

through the following process. Cancer is caused by mutations in the DNA of somatic cells, what 

results in the production of aberrant proteins. Those proteins are eventually cleaved into smaller 

fragments by the proteasome, and the resulting small, mutated peptides can then bind to MHC 

molecules that are presented to the immune system at the cell's surface. As the neoantigens are 

derived from mutated DNA, they are unknown to the immune system and will trigger an immune 

response. 

The role of MHC class I molecules in this process has been established for a long time (Philipps et al., 

1985): they present neoantigens to cytotoxic CD8+ T cells, resulting in cancer cell death (Rooney et 

al., 2015; Schumacher & Schreiber, 2015) (Figure 2). 

Additionally, there is emerging evidence that MHC class II molecules are also implicated in tumour-

immune interactions. This can occur through either a direct or an indirect mechanism. First, some 

tumours express MHC-II themselves and can directly interact with CD4+ T cells. Secondly, cancer cells 

can also secrete neoantigens that are taken up and presented on the MHC-II of infiltrating antigen 

presenting cells. 

 

Figure 2. Presentation of neoantigens to CD8+ T cells. Neoantigens are short peptides derived from mutated 
DNA in tumours. When they are presented to CD8+ T cells via MHC-I molecules at the cell surface, an immune 
response will follow that leads to cancer cell death. Created with BioRender.com 
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2. Next Generation Sequencing (NGS) 
Next generation sequencing (NGS) is an umbrella term for high-throughput DNA sequencing 

techniques that are based on the parallel processing of millions of short DNA fragments at once 

(Mardis, 2008). These sequencing technologies, which were preceded by older methods based on 

Sanger sequencing, stand out for their significantly improved speed and cost-efficiency (Metzker, 

2009). The development of NGS has been indispensable for modern genomics research and opened 

new avenues for understanding the genetic basis of different diseases, studying the cancer genome, 

and personalising medical treatments (Jurgens et al., 2022; Pruis et al., 2022; Vogelstein et al., 2013). 

2.1. Workflow for Next Generation Sequencing  

NGS techniques exist for both DNA and RNA molecules and can be applied to either the entire 

genome or to a specific region of interest. A typical whole-genome sequencing (WGS) workflow 

consists of the following steps. First, DNA is extracted from the collected samples. Then the DNA 

molecules are fragmentized, amplified, and ligated to adapters, resulting in a library of short DNA 

chunks that can be sequenced using one of several NGS platforms (McCombie et al., 2019). 

An important property of the resulting sequencing data is the sequencing depth or coverage. These 

terms refer to the average number of times each nucleotide is measured (Jiang et al., 2019; Sims et 

al., 2014). The sequencing depth influences the accuracy of various downstream analysis steps. 

For many practical applications, especially those that require a high sequencing depth, it is neither 

economically feasible nor necessary to sequence the entire genome. To accommodate this, it is 

possible to use DNA capture methods prior to sequencing and focus on a subset of the genome. For 

example, in whole-exome sequencing (WES) protocols the exons are targeted using array-based or 

liquid-based hybridisation methods (Parla et al., 2011; Teer & Mullikin, 2010). Even though the exons 

make up only 1% of the genome, they contain the protein coding sequences, which makes these 

techniques appropriate to answer many research questions (S. B. Ng et al., 2009). 

Additionally, there are also RNA-sequencing (RNA-seq) methods, which involve an additional step in 

the library preparation process where complementary DNA (cDNA) is synthesized from the mRNA. 

RNA-seq is a powerful tool that can be used to quantify gene expression in different biological 

processes (Stark et al., 2019). 

2.2. Sequence assembly and alignment 

NGS technologies produce a collection of short nucleotide sequences (reads) rather than the full 

genomic or transcriptomic sequences. Therefore, these steps are followed by a bioinformatics 

pipeline that usually starts with either sequence assembly, or mapping of the reads to a reference 

genome. 

Sequence assembly 

Sequence assembly methods aim to construct longer contiguous genomic or transcriptomic 

sequences (contigs) based on the sequenced reads (Bleidorn, 2017b). 

We can distinguish two types of sequence assembly methods: de novo and reference-based assembly 

methods. In de novo assembly sequence reads are concatenated into contiguous sequences without 

the use of a reference genome. This form of assembly is required when a closely related genome 
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sequence does not yet exist. Examples of commonly used de novo alignment algorithms are Velvet 

(Zerbino & Birney, 2008), SOAPdenovo (Luo et al., 2012) and ABYSS (Jackman et al., 2017). 

Reference-based assembly, on the other hand, involves mapping each read to a longer template 

sequence and constructing a new consensus sequence that is similar but not necessarily identical to 

the used template (P. C. Ng & Kirkness, 2010; Tiwary, 2022). This strategy is used by the tool SeqMap, 

MAQ and RMAP. 

Read mapping / alignment 

Read mapping (also referred to as read alignment) is the task of determining the correct position of 

each read relative to a reference sequence (Alser et al., 2021; Bleidorn, 2017a). There are several 

algorithms available for aligning NGS data, including BWA (H. Li & Durbin, 2009), Bowtie (Langmead 

& Salzberg, 2012), and STAR (Dobin et al., 2013). 

Specifically for mapping RNA-seq reads to a reference genome, it is important to use a splice aware 

alignment tool (e.g., STAR) (Baruzzo et al., 2016; Williams et al., 2014). This is due to the fact that 

RNA-seq reads are derived from mature RNA which does no longer contain introns, while the 

reference genome includes both exons and introns. Splice-aware aligners are able to identify splice 

junctions and align reads to exons while ignoring introns. Conversely, the tools that do not consider 

splice junctions would need to tolerate large gaps when mapping reads that span multiple exons, 

which would lead to improper alignment (Baruzzo et al., 2016). 

Pseudo-alignment 

Base-by-base sequence alignment is a computationally intensive process that can be avoided for 

certain applications (Alser et al., 2021) by using pseudo-alignment methods such as Salmon (Patro et 

al., 2017), Sailfish (Patro et al., 2014) and Kallisto (Bray et al., 2016). These types of methods have 

been successfully applied to gene quantification and HLA genotyping (Corchete et al., 2020; 

Orenbuch, Filip, Comito, et al., 2020). 

2.3. Reference genome 

The human reference genome serves as a standardised version of the human genome where new 

sequencing data can be aligned to. The existence of a “reference genome” has several advantages. 

First, aligning NGS data to a reference is less computationally demanding than performing de novo 

assembly. Without a reference the latter step would be required for every new dataset. Secondly, it 

makes genome annotation, assigning genes and other features to genomic regions a one-time effort: 

genome annotation files are constructed for the reference genome and by aligning to this genome 

genes can be easily localized in new sequencing data (Frankish et al., 2021). 

Different versions of the reference genome exist. The first sequence of the human genome was 

constructed as part of the Human Genome Project in 2001. The first "complete" genome was 

published in 2003, but it still contained multiple gaps (unlocalized sequences) in the assembly 

(Ballouz et al., 2019). At present, the quality of the human reference genome has improved 

considerably. Despite these improvements, the latest version (GRCh38) still contains "unlocalized 

sequences" (contigs that might be associated with a specific chromosome but cannot be ordered or 

oriented on that chromosome) (Assembly Terminology - Genome Reference Consortium). 
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Apart from the primary assembly, which consists of a single contig per chromosome, so-called 

alternate loci for a few polymorphic regions have been added to reference genome (Assembly 

Terminology - Genome Reference Consortium; Seal et al., 2013). These alternate loci, also called 

alternative (ALT) contigs, better capture the genomic diversity of a few polymorphic regions. Finally, 

variants of the reference genome exist, that additionally include sequences for common HLA alleles 

(Zheng-Bradley et al., 2017). 
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3. How to genotype HLA? 

3.1. Serological assays 

Complement-dependent cytotoxicity (CDC) assays were the standard method for HLA genotyping, 

until they were superseded by PCR-based typing techniques in the 1990s (Blasczyk, 2003; Gautreaux, 

2017). In CDC assays, target cells are incubated with antibodies that bind to specific variants of HLA 

molecules. When complement proteins are added to the mixture, they initiate a series of reactions 

(the complement cascade), which ultimately results in lysis (breakdown) of the target cells if the HLA 

molecules on their surface matches the variant targeted by the antibody. By quantifying the amount 

of cell lysis using staining and microscopic inspection, it is possible to determine the individual's HLA 

type (Blasczyk, 2003; Gautreaux, 2017; Howell et al., 2010). 

3.2. PCR-based technologies 

Later, DNA-based HLA typing methods were developed. Compared to the now obsolete serological 

assays, these methods allowed for faster and more cost-effective HLA typing (Gautreaux, 2017). 

The most common DNA-based genotyping methods rely on the Polymerase Chain Reaction (PCR), a 

laboratory technique that is commonly used to amplify specific DNA sequences. To perform PCR, the 

template DNA is mixed with primers (short single stranded DNA sequences that are complementary 

to a part of the target sequence), nucleotides, and a thermostable DNA polymerase (e.g., Taq 

polymerase). Subsequently, the DNA is amplified in a process that involves multiple cycles of heating 

and cooling. First, the DNA is heated to separate the two strands of the double helix (denaturation). 

Secondly, the mixture is cooled down to allow binding of the primers to the template (annealing). 

Finally, the temperature is raised again to allow the DNA polymerase to synthesize new DNA strands, 

starting from the primer sequences and extending in the 5' to 3' direction (extension). This three-step 

procedure is repeated several times to generate multiple copies of the target DNA sequence 

(Garibyan & Avashia, 2013; Su et al., 1996) (Figure 3). 

One method to employ PCR for HLA genotyping is called PCR with sequence-specific primers (PCR-

SSP) (Bunce & Passey, 2013; Shyamala & Ames, 1989). In this technique PCR is performed with 

multiple allele specific primers that are complementary to sequences around polymorphic sites. If 

the target DNA matches exactly with the primers, the primers anneal efficiently, and PCR 

amplification can proceed. Otherwise, when there is a mismatch between the primer and the 

template DNA, the primer cannot be extended by the Taq DNA polymerase. Finally gel 

electrophoresis is used to evaluate whether amplification has occurred and hence the corresponding 

allele is present (Bontadini, 2012; Sibinga et al., 2000). 

Another method for molecular HLA typing is PCR with sequence-specific oligonucleotide probes (PCR-

SSOP). Unlike PCR-SSP, which uses allele specific primers to initiate DNA amplification, PCR-SSOP 

starts by amplifying the entire gene using gene specific primers. Subsequently, labelled allele specific 

oligonucleotide probes are allowed to hybridize with the target DNA. The presence or absence of 

these probes can then be used to determine the HLA allele (Gautreaux, 2017; Sibinga et al., 2000). 

Finally, a third technique (PCR-SBT) is based on Sanger sequencing. As is the case for PCR-SSOP, the 

DNA in the region of interest is first amplified using PCR with gene-specific primers. Then the 
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amplified DNA is sequenced using Sanger sequencing, and the resulting sequence is compared to an 

HLA allele sequence database to determine which HLA allele the subject (Gautreaux, 2017). 

Each of the discussed PCR-based techniques has its own set of advantages and limitations. Both PCR-

SSP and PCR-SSOP are incapable of identifying new alleles. In contrast, PCR-SBT involves directly 

sequencing the amplified DNA and can, in principle, derive the entire nucleotide sequence of the HLA 

genes. As a consequence, it is the only PCR-based method that allows to discover novel alleles. 

However, chromosomal phase (cis/trans) ambiguities are an important shortcoming of both PCR-SBT 

and PCR-SSOP (S. D. Adams et al., 2004; Segawa et al., 2017). This refers to the inability of both 

methods to determine whether two polymorphic sequence motifs are located on the same (cis) or on 

different (trans) chromosomes, where both situations can correspond to different existing HLA 

alleles. PCR-SSP, on the other hand is capable of distinguishing these two situations (Erlich & Henry 

Erlich, 2012). 

A common workaround to deal with phase ambiguities in PCR-SBT is to perform first a low-resolution 

typing using either PCR-SSP or PCR-SSO and to subsequently use suitable primers to perform 

amplification and Sanger sequencing for one chromosome at a time (Erlich & Henry Erlich, 2012). 

 

Figure 3. Principle of the Polymerase Chain Reaction. PCR is a multi-cycle process that consists of three steps: 
denaturation, annealing and elongation that are each performed at a different temperature. Created with 
BioRender.com 

3.3. NGS based HLA typing on targeted sequencing data 

Later, NGS based HLA typing methods were developed, which have a higher throughput and suffer 

less from chromosome phasing issues than the traditional PCR based typing methods (Anderson & 

Schrijver, 2010; Lind et al., 2010; Shiina et al., 2018). This first generation of NGS based methods 

involved targeted capturing of the HLA region through PCR or probe-based DNA capturing methods 
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prior to sequencing (Bentley et al., 2009; Gabriel et al., 2009; Hosomichi et al., 2015; Wittig et al., 

2018). 

In the meantime, these methods have been widely adopted by clinical laboratories to provide HLA 

typing for hematopoietic cell transplantation donors and patients (Edgerly & Weimer, 2018). 

3.4. Need for HLA genotyping workflows on general purpose NGS data 

A limitation of the first generation NGS-based genotyping methods is that they required costly library 

preparation protocols  (Lange et al., 2014; Warren et al., 2012). These methods do not allow deriving 

HLA genotypes directly from typical WES, WGS, or RNA-Seq workflows that do not involve isolation 

and enrichment of the MHC region. 

Subsequent developments in HLA genotyping introduced algorithms that bypassed the need for 

these steps. This evolution has an incredible potential for numerous research disciplines as it permits 

predicting the HLA genotypes directly from the many publicly available datasets that were 

constructed using these technologies. 

3.5. How to predict the HLA genotypes from WES, WGS, or RNA-Seq data? 

In general, these algorithms consist of the following steps. First reads (or assembled contigs) are 

aligned to a panel of reference HLA allele sequences (originating from the IPD-IMGT/HLA database). 

For this task the algorithms rely on various existing alignment tools (column Alignment Method, 

Table S1). 

Then, for each HLA gene, an allele pair is selected by optimizing a certain score function. Algorithms 

differ in how this optimization problem is modelled exactly (e.g., Bayesian interference, Integer 

Linear Programming, or as a graph problem) and which variables are considered in the score function 

(column Score function, Table S1). Commonly used variables of the score function are: the 

consistency of the alignment of the input reads to the reference panel, base quality scores (column 

PHRED score used) and whether they use prior population frequencies (column prior population 

frequencies, Table S1). 

This score function can either be defined in function of allele pairs for multiple genes at once (e.g., 

Optitype), in function of an allele pair per gene (e.g., HLA*LA) or in function of individual alleles 

separately per chromosome (e.g., Polysolver) (column Jointly optimized for allele pair, Table S1). In 

the first two cases, heterozygosity / homozygosity are implicitly modelled in the optimization 

problem. In the latter case, a separate step is typically needed to determine whether the call is 

homozygous or not based on numeric thresholds (e.g., for HLA-VBSeq). 

3.6. Algorithmic description of 13 tools 

The HLA typing algorithms for (general purpose) NGS data mainly differ in how they map sequencing 

reads to a panel of reference HLA allele sequences and the strategy they use to subsequently score 

candidate alleles (Bai et al., 2018; Klasberg et al., 2019) (Table S1). Below follows a description of the 

13 algorithms that were selected for the benchmark (results section 1). 

HLA*LA starts with a “linear alignment” step where the input reads are aligned using BWA‑MEM to a 

modified reference genome (composed of GRCh38, the MHC haplotypes and IMGT/HLA genomic 
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sequences). These alignments are then projected onto a population reference graph (PRG) and 

further optimized. Finally, the HLA genotype is inferred by maximizing a likelihood function (Dilthey 

et al., 2019). 

Kourami is a graph-guided assembly tool. As a first step, reads are extracted from the BAM file and 

realigned to a reference panel (using BWA‑MEM). Similar as in HLA*LA these “linear alignments” are 

then projected onto a partial-order graph (POG)  representing the known HLA alleles. During this 

projection step, the graph is modified to incorporate substitutions and indels that were identified 

during the alignment. This allows Kourami (as the only tool included in our benchmark) to discover 

new HLA alleles. Edges of the graph are weighted according to the read counts. Finally, the goal is to 

identify the best pair of alleles (paths in the graph) that maximizes the coverage and phasing support 

(H. Lee & Kingsford, 2018a, 2018b). 

arcasHLA: First, pseudoalignment with Kallisto is performed to determine for each read which HLA 

transcripts it is compatible with. Based on this output, a built-in transcript quantification step is 

performed that aims to identify an attribution of reads to alleles which maximizes a likelihood 

function. This is performed using an iterative read re-allocation procedure (an expectation-

maximization algorithm): at every step, reads are distributed to alleles with the highest abundance, 

while the alleles with the lowest abundances are removed from the list of candidates. When after 

convergence more than two alleles remain, the allele pair that explains the greatest proportion of 

reads is selected. Finally, either a homozygous or heterozygous call is produced based on the non-

shared read counts between the top two alleles (Orenbuch, Filip, & Rabadan, 2020; Orenbuch, Filip, 

Comito, et al., 2020). 

HLA-HD: First, reads are aligned to a database of reference HLA exon and intron sequences using 

Bowtie2. Reads are then assigned to candidate exons or introns based on certain filter criteria. A 

score is calculated per allele pair based on the number of reads that map to the corresponding 

sequences, considering the length of the overlap between input reads and exon sequences. The 

algorithm first calculates the score only based on exons in the peptide binding region and later 

extends to other exons. The allele pair that yields the maximum score is finally selected (Kawaguchi 

et al., 2017). 

PHLAT starts by aligning the input reads to the human reference genome extended with various HLA 

allele reference sequences using Bowtie2. Following the alignment, candidate alleles are pre-selected 

using multiple filtering steps based on mapped read counts. Pairs of candidate alleles are then scored 

using a Bayesian likelihood model which considers the sequence consistency at Single Nucleotide 

Polymorphism (SNP) sites and phase consistency across adjacent SNP sites. The allele pair that best 

explains the observed data is selected (Bai et al., 2014, 2018). 

Polysolver: Reads are first mapped to the reference allele sequences using Novoalign. Polysolver 

relies on a Bayesian classifier to select the alleles that most likely explain the observed reads. Its 

model incorporates the base qualities of aligned reads, the observed insert sizes and (optionally) 

ethnicity dependent prior probabilities. For each gene, the calls for both alleles are determined in 

separate steps. Once the first allele is identified, the probabilities are updated based on that 

information and the second allele for that locus is identified (Shukla et al., 2015). 
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HLA-VBSeq: Reads are aligned to the reference panel using BWA‑MEM. These alignments are then 

further optimized using a Bayesian framework. HLA types are subsequently called based on the 

expected number of reads that are mapped to each allele. A threshold on the depth of coverage is 

used to filter out candidate alleles. Either a heterozygous or homozygous call is outputted based on 

the depth of coverage of the top two ranked alleles (Nariai et al., 2015). 

seq2HLA uses a two-stage approach to accomplish HLA genotyping at 4-digit resolution: genotypes 

are first called at 2-digit resolution before further refining them in a separate round. The algorithm 

starts by aligning RNA-seq reads to the reference HLA panel with Bowtie (v1). Then, for each HLA 

gene the allele group with the greatest number of reads is determined and considered to be the 

winner of the first round. The second allele group for that gene is then determined by removing all 

reads associated with the winner of the first round and repeating the previous step. Either a 

heterozygous or homozygous call is outputted depending on the ratio between the number of reads 

mapping to the winner of the second round and the median number of reads mapped to alleles in 

the first round (Boegel et al., 2012). Finally, the allele calls at 2-digit resolution are further refined to 

the 4-digit resolution by considering the amount of reads aligned to alleles within the winning group 

at 2-digit resolution (Boegel et al., 2014). 

Optitype: First, reads are mapped to a panel of reference HLA allele sequences, limited to the exons 

encoding the peptide binding region of MHC-I (exon 2 and 3) and the flanking introns. Partial HLA 

sequencing information in the reference panel was reconstructed using phylogenetic information. 

Optitype then models the scoring of HLA alleles as an Integer Linear Programming (ILP) problem that 

aims to find the set of MHC-I allele pairs (for all major and minor MHC-I genes) that simultaneously 

explain the input data the best (Szolek et al., 2014). 

xHLA maps the sequencing reads to the HLA reference sequences using the Diamond aligner and 

subsequently identifies candidate alleles by applying Optitype’s ILP strategy using only the exons 

encoding the peptide binding region (for both MHC-I and MHC-II genes). This set of candidate alleles 

is subsequently extended to sets of alleles that explain the alignments nearly as well and then further 

refined using an iterative procedure. This strategy allows HLA genotyping at a finer resolution than 

Optitype. When finally two alleles remain, an additional check is performed to determine whether a 

homozygous or heterozygous call should be outputted by comparing the amount of reads supporting 

both alleles (C. Xie et al., 2017). 

HLAscan: After aligning reads to the reference sequences (BWA‑MEM), HLAscan selects candidate 

alleles based on a score function that represents the distribution of aligned reads in the region of 

interest. Alleles are discarded based on the number of consecutive positions in the mapped HLA 

sequence with no read aligned to it. Out of the remaining alleles, the resulting allele pairs for each 

gene are determined based on which alleles have the highest read count and a check for 

heterozygosity (Ka et al., 2017).  

HLAforest: Reads are mapped to the HLA reference allele sequences using Bowtie (v1). For each read 

a tree is constructed that represents all possible mappings for that read. The first level of the tree 

represents the different HLA genes, each subsequent level represents a different field of the HLA 

nomenclature. Sum of mismatch qualities (SMMQs, based on the PHRED qualities at mismatches 
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between the read and reference sequence) are assigned to the leaf nodes of the tree. This score is 

than propagated upwards the tree where the probability value assigned to a parent node is the 

maximum probability of its children. These probability values are then converted into weights, which 

are distributed downwards through the tree. The final allele pair is then selected via an iterative tree 

pruning algorithm (Kim & Pourmand, 2013). 

HLAminer supports both a de novo assembly-based (HPTASR) and an alignment-based (HPRA) 

pipeline. In the de novo assembly-based pipeline (not evaluated in this benchmark) reads are first 

assembled into larger contigs and are subsequently aligned to the panel of reference HLA sequences 

(using BLAST). In the alignment-based pipeline the reads are directly aligned to the reference allele 

sequences using BWA. Alleles are scored based on the contig length, depth of coverage and similarity 

to reference sequences of all contigs that align to it (Warren et al., 2012). HLAminer does not 

incorporate a method to impute heterozygosity / homozygosity. 
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4. Applications of HLA genotyping in cancer research 
Being responsible for presenting neoantigens to immune cells, MHC molecules are crucial in the 

immune system's ability to recognize cancer cells (section 1.4). Additionally, they are highly 

polymorphic and which HLA alleles an individual has determines the repertoire of peptides that can 

be efficiently presented to the immune system (Nielsen et al., 2007). As such, someone’s HLA 

genotype might influence cancer susceptibility and response to treatment (Chowell et al., 2018). In 

the previous chapter, we have discussed which HLA genotyping methods are available. Here, we will 

discuss how these tools are currently being applied in cancer research and give potential future 

directions for research in this field. 

4.1. The immune system: a double-edged sword in cancer 

The immune system has a complex and multifaceted role in cancer. On the one hand, our immune 

system has a remarkably effective ability to recognize and eradicate tumours. On the other hand, an 

inflammatory environment can also stimulate tumour growth. Both characteristics are considered to 

be hallmarks of cancer (Hanahan, 2022; Hanahan & Weinberg, 2011). 

4.2. Immune evasion 

Several mechanisms that allow tumours to escape immunogenic destruction involve genetic 

alterations in components of the antigen processing and presentation machinery (APPM). These 

alterations can result in either a defective antigen presentation, or disruptions of the pathways that 

produce peptides that efficiently bind to MHC-I (Jhunjhunwala et al., 2021). Additionally, cancer cells 

may evade destruction by Natural Killer (NK) cells through (MHC-I independent) upregulation of 

HLA‑E or HLA‑G (Borst et al., 2020; de Kruijf et al., 2010). 

Three Es of immunotherapy: elimination, equilibrium and escape 

Cancerous cells gradually acquire these traits in a process called immunoediting, which can be 

separated into three phases: elimination, equilibrium and escape. 

In the first (elimination) phase immunogenic tumour cells are killed by the immune system. If the 

immune system is able to eliminate the tumour, the immunoediting process ceases and we do not 

advance to the next phase. Some tumour cells might survive and progress to the equilibrium phase. 

During the equilibrium phase tumours are genetically unstable and under a constant pressure of the 

immune system that is enough to contain, but not fully eradicate the tumour. Eventually, due to 

natural selection, this phase results in a new population of tumour clones that is less immunogenic 

than its parent population. 

In the final (escape) phase the tumour variants that were selected in the equilibrium phase have 

acquired the (epi)genetic alterations that allow them to evade immunogenic destruction. Now, 

tumour growth can occur in an immunologically intact environment. This allows the tumours to 

expand and become apparent (Dunn et al., 2004; Pasinetti et al., 2016). 

Neoantigen depletion 

It has been demonstrated on a mouse model that Darwinian selection in favour of tumour cells that 

do not express tumour-specific antigens is a possible immune evasion mechanism (Dupage et al., 
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2012). According to this model, clones expressing neoantigens are expected to be eliminated over 

time. 

For quite some time, it was believed that this process was also detected in human genomic data. 

Studies that seemed to confirm this quantified immunoselection using a metric that compares the 

observed to the expected neoantigen load (Rooney et al., 2015). However, to model the expected 

neoantigen load the authors did not take into account the fact that transitions between particular 

triplets of nucleotides are more likely to occur than others (mutational signatures) and that the 

presence of these triplets intrinsically influences the HLA binding affinity. After correcting for this 

spurious correlation, there is currently no evidence for neoantigen depletion (van den Eynden et al., 

2019). 

There are two possible explanations for the lack of evidence for neoantigen depletion. First, the 

neoantigen load in these models was calculated based on computational models that predict the 

binding affinity of peptides to MHC-I given the HLA genotype. It is known that only a very small 

fraction of the peptides that are predicted to bind to MHC-I are actually immunogenic (Wells et al., 

2020). Therefore, it is possible that neoantigen depletion actually occurs, but the accuracy of these 

predictions is insufficient to detect it. Secondly, it is also possible that tumours develop other, more 

effective immune evasion mechanisms early in their development, making it no longer 

disadvantageous for them to produce proteins that can strongly bind to MHC. 

Below, we discuss other immune evasion mechanisms involving the HLA genes. 

Defective antigen processing and presentation machinery 

One important category of immune evasion mechanisms involves disruption of antigen processing 

and presentation. This can occur either through changes in the repertoire of peptides that bind to 

MHC or by hampering antigen presentation itself (Jhunjhunwala et al., 2021). 

The deletion of the Endoplasmic reticulum aminopeptidase (ERAP) genes and TAP gene silencing are 

examples of defects that alter the HLA-binding peptide repertoire. ERAP is responsible for trimming 

peptides to the optimal length for presentation by MHC-I molecules. Even though germline variation 

in ERAP is linked to cancer predisposition, it is rarely mutated in cancer (Compagnone et al., 2019; 

Jhunjhunwala et al., 2021; Stratikos et al., 2014). The role of TAP alterations as an immune evasion 

mechanism is controversial as well. TAP assists in transporting peptides from the cytosol into the 

endoplasmic reticulum, where they can be loaded onto MHC-I molecules. While a loss of TAP might 

lead to a reduction in MHC-I surface expression, other studies pointed out that it results in the 

presentation of cryptic antigens that increase the immunogenicity of the tumour (Garrido et al., 

2019). Finally, the repertoire of peptides presented by MHC-I can also change due to somatic 

mutations in the peptide binding region of the HLA genes, which can impact the peptide-MHC 

binding affinity (Shukla et al., 2015). 

Immune evasion mechanisms that relate to antigen presentation are the loss of MHC-I and B2M. 

Complete copy number loss of B2M results in the absence of MHC-I molecules at the cell surface. The 

loss of one of the HLA genes, on the other hand, results in a reduction in the diversity of peptides 

that can be presented to the immune system. 
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Differential expression of non-classical MHC-I genes 

Non-classical HLA genes can also be involved in immune evasion mechanisms. Normally, the loss of 

MHC-I expression should result in Natural Killer (NK) cell-mediated killing of tumour cells, but cancer 

cells may evade this by upregulation of HLA‑E or expression of HLA‑G (Borst et al., 2020; de Kruijf et 

al., 2010). Next to its role in inhibiting NK cells, HLA‑G inhibits the proper functioning of several other 

immune cell types including B cells, T cells and dendritic cells (Krijgsman et al., 2020; Zhuang et al., 

2021). 

Other immune evasion mechanisms: the PD-1 and CTLA-4 checkpoints 

The discussion above was focussed on immune evasion mechanisms that relate to pathways where 

the HLA genes are directly involved. However, several other immune evasion mechanisms have been 

described in literature. Two important pathways that are currently therapeutically targeted are the 

CTLA-4 and PD-1 immune checkpoints. PD-1 is primarily expressed on the surface of activated T cells. 

Upon binding to its ligands PD-L1 and PD-L2, usually expressed by antigen presenting cells, it can 

exert inhibitory functions on T cells (Seidel et al., 2018). CTLA-4 is constitutively expressed by Treg 

cells but can also be expressed by other immune cells. It can inhibit the activation of T cells by 

binding to CD80 (also called B7-1) and CD86 (also called B7-2) on the surface of antigen presenting 

cells through competitive inhibition of CD28 on CD4+ or CD8+ T cells (Seidel et al., 2018). 

In normal situations both pathways regulate the immune response and prevent the immune system 

attacking normal tissue. However, tumours can also exploit these pathways to evade immune 

response by expressing PD-L1 or CTLA-4 themselves (Contardi et al., 2005; Gangaev et al., 2021; Kern 

& Panis, 2021). 

4.3. HLA genotype dependent cancer susceptibilities 

Given that HLA alleles are a major determinant of peptide-MHC affinities and that MHC molecules 

play a key role in anti-cancer immune response, it is tempting to hypothesize that HLA genotypes 

may influence cancer susceptibility. 

HLA genotype correlates to risk to develop pathogen induced cancer 

Associations between HLA genotypes and cancer risk have been established for pathogen induced 

cancers. For example, certain HLA alleles have been linked to an increased risk of developing cervical 

cancer (caused by the Human Papillomavirus (HPV) infection), and homozygosity for the HLA‑DQB1 

gene has been linked to an increased risk of hepatitis B induced hepatocellular carcinoma (Z. Liu et 

al., 2021; Safaeian et al., 2014).  

For other cancer types, there is currently limited evidence that the HLA genotype is associated with 

cancer risk and further research is required. To study this further, the INDICATE initiative was 

founded which focusses on the presumed role of HLA genotypes in modulating cancer risk in Lynch 

syndrome carriers (Ahadova et al., 2022). 

Genotype dependent restriction of the mutational landscape 

Related to HLA genotype dependent cancer susceptibilities, two Cell papers suggested that cancer 

hotspot mutations are under selection depending on the underlying MHC genotype and that the 

mutations that are observed in a cancer patient are the mutations that are poorly presented to the 

immune system (Marty et al., 2017, 2018). The reasoning behind this is the following. In a patient 
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where a particular mutation leads to neoantigens that strongly bind to MHC, cells that have this 

mutation are eradicated quickly by the immune system and do not get the chance to proliferate. As a 

result, this mutation does not lead to cancer in that patient. Conversely, the same mutated peptides 

can be poorly recognized by the immune system of another patient with a different HLA genotype. In 

that patient, cells that with that mutation can divide nearly undisturbed and become dominant over 

time. 

These findings seemed to contradict the conclusion of our own study where we concluded that there 

is currently no evidence for neoantigen depletion (van den Eynden et al., 2019). However, using a 

simulation we demonstrated in our lab that the observed signal was again caused by spurious 

correlations (due to intrinsic biochemical properties of driver mutations) rather than genotype 

specific immune selection (Claeys et al., 2021). 

4.4. An emerging role for MHC-II in cancer immunity 

As the importance of MHC-II in tumour recognition is increasingly appreciated (Alspach et al., 2019), 

(also see section 1.4), there are still unresolved questions about its role in cancer. While there is 

currently no evidence for MHC-I restricted neoantigen depletion, it remains uncertain whether this 

also holds true for MHC-II. 

A necessary step to further investigate the role of MHC-II restricted neoantigens in cancer, is to 

determine which peptides can be presented to the immune system via the MHC-II complex. This 

requires an estimation of the binding affinity of the peptide to MHC-II, which in turn depends on the 

MHC-II genotype of the patient. The latter being the main topic of this thesis. 

4.5. Tumour promoting immune effects 

Cancer cells are not isolated entities but are embedded in a tumour microenvironment (TME) 

consisting of blood vessels, fibroblasts, the extracellular matrix, and immune cells. The cells of the 

TME and cancer cells interact with each other in a dynamic manner (Greten & Grivennikov, 2019). As 

such, tumours might evolve to secrete cytokines and other inflammatory mediators that create a 

microenvironment that is favourable for cancer cell proliferation and survival (Gómez-Valenzuela et 

al., 2021). Here two types of inflammatory environments are often distinguished. Whereas an acute 

inflammatory environment leads to anti-tumour immune responses, a chronic inflammatory 

environment facilitates tumour progression (Zhao et al., 2021). 

This double role of the immune system depending on the composition of the tumour 

microenvironment might also give a different, tumour promoting role to MHC-II restricted 

neoantigens. As initiators of CD4+ T cell responses, MHC-II molecules also interact with Treg, Th2 and 

Th17 cells (Corthay, 2009; Sun et al., 2017). Therefore, MHC-II presentable neoantigens in a chronic 

inflammatory environment do not necessarily lead to an effective immune response against cancer 

cells but might under some circumstances even have a tumour promoting effect (Sun et al., 2017). 

Further research is needed to fully understand the intriguing role of MHC-II in cancer. 
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4.6. Identifying biomarkers for immune checkpoint blockade therapies 

The last decade has seen the rise of immune checkpoint blockade therapies, a type of 

immunotherapy that stimulates the immune system to attack the tumour by inhibiting immune 

checkpoints (section 4.2). Multiple studies have demonstrated the success of these therapies in 

cancer types with a poor prognosis, such as advanced melanoma, non-small cell lung cancer, and 

metastatic renal cell carcinoma (Larkin et al., 2019; Motzer et al., 2019; Paz-Ares et al., 2021; Reck et 

al., 2016). However, responses to immunotherapy remain difficult to predict, with tumour mutational 

burden as one of the few available biomarkers (Cristescu et al., 2018; Havel et al., 2019). 

Genotype dependent differences in HLA binding affinity could also lead to differential responses to 

immunotherapy, as illustrated by the association that has been described between MHC-I genotypes 

(e.g., HLA‑B62) and survival in immune checkpoint blockade (ICB)-treated advanced melanoma 

patients (Chowell et al., 2018). It is currently unclear whether MHC-II genotypes also determine 

responses to immunotherapy, which is the topic of ongoing research in our lab. 
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The research questions discussed in the previous chapter all require knowledge about the HLA 

genotypes. PCR based methods are currently the gold standard for this genotyping but datasets with 

this type of HLA calls are rarely available (Bauer et al., 2018; Orenbuch, Filip, Comito, et al., 2020; 

Szolek et al., 2014). As mentioned earlier, HLA genotyping can also be performed on Next Generation 

Sequencing (NGS) data, bypassing the need for separate wet lab experiments (section 3.5). A 

plethora of tools has been developed for this task. Polysolver and Optitype are often recommended 

as the best performing tools for MHC-I genotyping (Matey-Hernandez et al., 2018). For MHC-II 

genotyping there is currently no consensus about the best method. Several benchmarks have been 

performed previously (Bauer et al., 2018; Chen et al., 2021; Kiyotani et al., 2016; M. Lee et al., 2021; 

X. Li et al., 2021; P. Liu et al., 2021; Matey-Hernandez et al., 2018; Yi et al., 2021; Yu et al., 2021), but 

these were either not applied to MHC class II or did not include some recently published tools. 

In this study, we compiled a list of 13 tools that predict HLA genotypes from NGS data and 

benchmarked their performance on both the 1000 genomes dataset and on an independent cell line 

dataset (Abaan et al., 2013). Subsequently we assessed their performance on 9162 WES and 9761 

RNA sequencing files from The Cancer Genome Atlas (TCGA) by comparing the predicted allele 

frequencies with reference population allele frequencies. Based on these findings, we give 

recommendations on which tool to use for a given data type and how the outputs of multiple tools 

can be combined into a consensus prediction. 
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1. Selection of 13 HLA genotyping tools with variable computational resource 
requirements 
We identified 22 available HLA genotyping tools from literature (Table 1). Thirteen tools that were 

free for academic use, applicable on Whole Exome Sequencing (WES), Whole Genome Sequencing 

(WGS) or RNA-Seq data and ran on Ubuntu 20.04 were included in this study: arcasHLA, HLA-HD, 

HLA-VBSeq, HLA*LA, HLAforest, HLAminer, HLAscan, Kourami, Optitype, PHLAT, Polysolver, seq2HLA 

and xHLA (Table S2). All 13 tools can make allele predictions for the three MHC class I genes (HLA‑A, 

HLA‑B and HLA‑C) and 9 tools support additional calling of the MHC class II genes HLA‑DPA1, 

HLA‑DPB1, HLA‑DQA1, HLA‑DQB1 and HLA‑DRB1. Two methods support only a subset of the MHC 

class II genes: xHLA does not support calling HLA‑DPA1 and HLA‑DQA1, while PHLAT does not support 

HLA‑DPA1 and HLA‑DPB1. The tools also differ in which data types they support: 6 of them require 

WES data, 3 tools require RNA data and the 4 remaining tools support both data types (Table 1). 

Firstly, the computing time and memory usage of the thirteen selected tools were measured on a 

random subset of 10 WES and 10 RNA sequencing files from the TCGA project (Figure 4).  

Among the 10 WES-supporting methods Optitype (median 2.48 hours) and HLA*LA (median 1.84 

hours) require the largest computing time. The remaining WES tools take less than 1 hour per file, 

with HLAminer, Kourami and PHLAT being the fastest (97s, 225s and 253s respectively). Apart from 

being computationally intensive, HLA*LA is also the most memory demanding WES tool (median 36.3 

GiB per file). Other WES tools with a median memory consumption higher than 5 GiB are xHLA 

(median 22.9 GiB), Kourami (median 9.3 GiB) and HLA-HD (median 6.7 GiB). The relatively low 

memory usage of Polysolver makes it feasible to compensate for its long running time by processing 

multiple samples in parallel. 

Among the 7 RNA-supporting methods, HLA-HD has the longest computing time per sample (median 

15.0 hours). At the other end of the spectrum, the sole pseudoalignment-based tool arcasHLA takes 

only 38s per file. The most memory intensive tool is HLA-HD (median memory peaks of 103.1 GiB), 

followed by Optitype (median 34.1 GiB). The other RNA tools have a memory usage lower than 10 

GiB. Remarkably, HLAminer, PHLAT and HLA-HD, which are compatible with both WES and RNA data 

take a longer time on RNA data (median computing time per sample is 29.4, 8.9, 6.8 times longer for 

HLA-HD, PHLAT and HLAminer respectively). 
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arcasHLA (Orenbuch, et al., 2020) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.2.0 

HLA-HD (Kawaguchi et al., 2017) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.3.0 

HLA-VBSeq (Wang et al., 2019) ✓* ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 

HLA*LA (Dilthey et al., 2019) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.0.1 

HLAforest (Kim & Pourmand, 2013) ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1 

HLAminer (Warren et al., 2012) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.4 

HLAscan (Ka et al., 2017) ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2.1.4 

Kourami (H. Lee & Kingsford, 2018b) ✓* ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9.6 

Optitype (Szolek et al., 2014) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 1.3.5 

PHLAT (Bai et al., 2014) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ 1.1 

Polysolver (Rooney et al., 2015) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 4 

seq2HLA (Boegel et al., 2012) ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2.3 

xHLA (C. Xie et al., 2017) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 0.0.0 

N
o

t 
in

cl
u

d
ed

 

ALPHLARD-NT (Hayashi et al., 2019) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

ATHLATES (C. Liu et al., 2013) ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓  

HLAProfiler (Buchkovich et al., 2017) ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

HLAreporter (Huang et al., 2015) ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

HLAssign (Wittig et al., 2015) ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

OncoHLA (Sverchkova et al., 2019) ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

PolyPheMe (Abi-Rached et al., 2018) ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓  

SNP2HLA (Jia et al., 2013) ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

SOAP-HLA (Cao et al., 2013) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

Table 1. Overview of evaluated tools for HLA genotyping. Checkmarks and crosses indicate which NGS methods 
(WES and/or RNA-Seq) and input file types (FASTQ and/or BAM) are supported and for which genes predictions 
can be made. The tools in the upper part of the table are benchmarked in this study. Tools in the lower part of 
the table did not fulfil our inclusion criteria and were not further considered. * Works preferentially with WGS 
instead of WES data.  
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Figure 4. Computational resource consumption of the 13 selected tools. (A-B) Boxplots compare the resources 
needed by the different tools to analyse one sequencing file on a system with a single CPU core. Each tool was 
applied on WES and/or RNA sequencing files (n=10), as indicated at the top of the figure. Different tools are 
represented with a different colour of the boxplot, as indicated in the legend on the right. The y-axes are 
displayed on a logarithmic scale. (A) Time consumption per sample. (B) Maximal memory consumption per 
sample. 



Results 

 

P a g e  26 | 80 

2. HLA*LA and HLA-HD are the best performing MHC class II genotyping tools 
on WES data 
The 10 selected algorithms that are compatible with WES data were benchmarked using data from 

the 1000 Genomes project (Zheng-Bradley et al., 2017) (average HLA gene read depth = 40x +-/ 16.7). 

Predictions were made for HLA‑A (n = 1012), HLA‑B (n = 1011), HLA‑C (n = 1010), HLA‑DQB1 (n = 

1008), HLA‑DRB1 (n = 1000) and HLA‑DQA1 (n = 68) (Figure 5). HLA‑DPA1 and HLA‑DPB1 were not 

benchmarked due to the lack of available gold standard calls. For MHC-I genes (HLA‑A, HLA‑B, 

HLA‑C), the best accuracy was obtained with Optitype (98.0%), followed by Polysolver and HLA*LA 

(94.9% and 94.4% respectively). For MHC-II genes (HLA‑DQA1, HLA‑DQB1 and HLA‑DRB1), the best 

allele predictions were made using HLA-HD and HLA*LA (96.2% and 95.7% accuracy respectively). 

These were the only two methods to reach an accuracy of 90% on all tested MHC-II genes. HLAscan 

(74.2%), HLA-VBSeq (60.2%) and HLAminer (53.8%) performed considerably worse than the other 

tools. 

We observed large variabilities in calling accuracies between MHC class II genes (Figure 5). Overall, 

HLA‑DQB1 was the hardest MHC-II gene to call. Except for PHLAT, all tools obtained their worst MHC-

II call accuracy on this gene. HLA‑DQA1, on the other hand, was the gene with the highest calling 

accuracy for all tools that support it, except for HLAminer and Kourami. 

Incorrect calls are either caused by wrong allele calls or a failure to make an allele call. HLA-VBSeq 

and HLAminer had both a high rate of incorrect and failed calls (Figures S1-S2). When HLAscan or 

Kourami were able to make a call, their predictions were mostly reliable (Figure S1), but these tools 

regularly produced no output at all (Figure S2). Miscalled samples had a significantly lower average 

read depth in the HLA genes than correctly called samples for most tools (Figure S3). Notably, large 

differences in coverage sensitivity were observed between the different tools, with Kourami and 

HLA-VBSeq being the most sensitive and Optitype being the least affected (Figure S4). An in silico 

analysis that simulated the effect of lowering coverage (to 50%, 10%, 5% and 1%) for the best 

performing tools suggested that the minimal average read depth to get 90% accuracy is 12.2x and 

17.4x for MHC-I with Optitype and MHC-II with HLA-HD respectively (Figure S5).    

Subsequently, we performed an independent benchmark using the smaller NCI-60 cell line dataset 

(n=58, average HLA gene read depth = 37x +/- 25.8), which largely confirmed our results (Figure S6). 

Additionally, this analysis indicated that the best performing MHC class II supporting tools also 

performed well on HLA‑DPB1. 

3. HLA-HD, PHLAT and arcasHLA are the best performing MHC class II 
genotyping tools on RNA data 
We then evaluated the 7 selected methods that support HLA calling on RNA sequencing data from 

the 1000 genomes project (Lappalainen et al., 2013) (median average HLA gene read depth = 3129x 

+-/ 1227) . Predictions were made for HLA‑A (n = 373), HLA‑B (n = 372), HLA‑C (n = 372), HLA‑DQB1 (n 

= 371), HLA‑DRB1 (n = 362) and HLA‑DQA1 (n = 53) (Figure 5). 

ArcasHLA and Optitype had the best MHC-I allele predictions (99.4% and 99.2% accuracy, 

respectively), followed by HLA-HD (98.0%), seq2HLA (95.9%) and PHLAT (95.4%). Similar accuracies 

were found for MHC-II allele predictions, with HLA-HD, PHLAT and arcasHLA performing the best 
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(99.4%, 98.9% and 98.1%, respectively). Contrary to its good prediction of MHC class I alleles, 

seq2HLA has a lower accuracy for MHC class II (87.8%). RNA-based tools were generally less affected 

by coverage differences than DNA-based tools, which is likely related to the higher absolute coverage 

of RNA-Seq as compared to WES data (Figures S3-S5).The high MHC-I accuracies of arcasHLA and 

Optitype were confirmed on the independent NCI-60 dataset (91.8% and 90.0%, respectively; n=58, 

average HLA gene read depth = 578x +/- 837). The accuracy of HLA-HD, PHLAT and seq2HLA was 

worse on the cell lines than in the benchmark on the 1000 genomes data (86.6%, 83.3% and 82.3%, 

respectively). As MHC-II is generally not expressed in cell lines, this benchmark was not performed 

for those genes. 

 

Figure 5. HLA allele prediction accuracies. Radar plots of HLA allele prediction accuracies on samples from the 
1000 Genomes Project. Coloured lines represent different genes, as indicated in the legend below the plots. 
Corners of the radar plots correspond to the tools that were evaluated for that data type. The Meta tool 
corresponds to the 4-tool consensus metaclassifier. 

4. Correlation and concordance analyses on large independent datasets 
confirm the benchmarking results 
Being one of the few large sequencing datasets for which gold standard HLA genotypes for both MHC 

classes are available, many algorithms included in our benchmark were developed, optimized and 

validated using files from the 1000 genomes project, introducing a potential bias. Additionally, no 

evaluation was possible for HLA‑DPA1 and HLA‑DPB1, due to the lack of gold standard HLA calls. 

Therefore, we performed an indirect and independent evaluation on a large NGS dataset obtained 
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from TCGA (n=9162 with an average HLA read depth = 66x +/- 28.6 and n=9761 with an average HLA 

read depth = 3076x +/- 2775 for WES and RNA respectively).  

We first compared the observed allele frequencies for each tool with the expected population 

frequencies. We calculated how often each of the alleles was predicted by a certain tool to obtain an 

observed allele frequency, stratifying for Caucasian American (n= 7935) and African American 

(n=938) ethnicities. By comparing these frequencies to the expected allele frequencies, as derived 

from Allele Frequency Net (Gonzalez-Galarza et al., 2020), strong significant correlations were found 

for the WES-based tools HLA-HD (minimal Pearson’s r = 0.970; P = 1.5*10-5), HLA*LA (min. r = 0.968; P 

= 7.6*10-5), Optitype (min. r = 0.978; P = 5.5*10-108), Polysolver (min. r = 0.976; P = 4.7*10-58) and 

xHLA (min. r = 0.978; P = 4.4*10-115) and for the RNA-based tools Optitype (min. r = 0.972; P = 6.2*10-

47), arcasHLA (min. r = 0.939; P = 1.2*10-19)  and PHLAT (min. r = 0.937; P = 2.1*10-5). The correlations 

were considerably worse for HLA‑VBSeq (worst r = 0.867; P = 4.1*10-23), HLAminer (min. r = 0.557; P = 

1.2*10-8 and r = 0.593; P = 6*10-7, for WES and RNA respectively) and HLAforest (minimal r = 0.423; P 

= 1.8*10-3) than for the other tools (Figure 6). These findings largely confirm the results of the 

benchmark on the 1000 genomes data. Notably, among the well performing tools, arcasHLA had a 

worse correlation for HLA-DRB1 in African Americans (r = 0.939; P = 1.2*10-19), which is mainly due to 

the discrepancy between the observed and predicted frequency of HLA-DRB1*14:02 in this 

population (Figure S7). 
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Figure 6. Correlations between observed and expected allele frequencies. Heatmap of correlations between 
observed allele frequencies and frequencies expected in an African American and in a Caucasian American 
population. Vertical axis indicates the tools, with different colours representing the data type (WES or RNA) on 
which the tool was applied. Rows were sorted according to the mean correlation of the tool. Size of the circles 
indicates the P value of the correlation test as indicated in legend. Absent circles indicate that the tool could 
not be evaluated on that gene. 

We then calculated for each pair of tools how often their predictions are concordant (Figures S8-

S11). Tools that performed poorly in the previous analyses (e.g., HLAminer, HLA-VBSeq and 

HLAforest) consistently have a low concordance with all other tools. In contrary, tools that scored 

high in the previous analyses (such as Optitype, HLA*LA, arcasHLA and HLA-HD) made predictions 

that are consistent with each other. Noteworthy, this is also the case for HLA‑DPA1 and HLA‑DPB1, 

two genes for which no gold standard data was available, suggesting that predictions for these genes 

are reliable as well. 

5. A consensus metaclassifier improves HLA predictions for WES data 
We noted that only for a very small fraction of the samples the genotypes are wrongly typed by all 

tools simultaneously (median 0.79% for WES and 0.68% for RNA; Figures S12-S13). This 

complementarity of the tools’ allele predictions opens the possibility to combine predictions of 

different HLA callers into a consensus prediction. We first applied a majority voting algorithm to the 

output of all tools, with the predicted allele pair being the one with most votes. On the WES data, 

this approach outperforms the predictions of each individual tool for all genes. This is best illustrated 

by the HLA‑DQB1 gene, where the accuracies increased from 93.2% with the best performing tool 

(HLA*LA) to 96.3% when the voting metaclassifier was used. On RNA data, where the best tools 
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already attain accuracies over 99% by themselves, only minor improvements were made by 

combining the results (Figure S14). 

Based on these results, we determined the minimal number of tools that must be included in the 

WES-based metaclassifier to produce reliable results (See Methods; Figure 7). For the WES data, 

including 4 tools in the model led to a considerable improvement for all genes for both MHC classes. 

The best accuracies were observed when Optitype, HLA*LA, Kourami and Polysolver were combined 

for MHC-I predictions (99.0% accuracy) and with HLA*LA, HLA-HD, PHLAT and xHLA for MHC-II 

predictions (98.4% accuracy). Raising the number of tools further only resulted in marginal gains. 

Strikingly, the accuracy of the HLA‑DQB1 allele predictions even decreases when more tools were 

included in the model. Therefore, we suggest combining the output of 4 tools for both MHC classes. 

To evaluate whether the good performance of this approach is generalizable to other datasets, we 

assessed the correlation between the expected allele frequencies and the allele frequencies 

observed using the 4-tool WES consensus predictions on the TCGA dataset and compared the results 

with our previous findings. The allele frequencies predicted by the metaclassifier correlated better 

with the expected allele frequencies than was the case for the individual tools that supported all 

genes of interest (Figure 6). 
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Figure 7. Accuracies of meta-prediction models with an increasing number of included tools. Tools were added 
one by one to the consensus metaclassifier model. At each step, the prediction accuracies of the best 
performing metaclassifier model for a given number of tools were plotted at the top of the figure. Unfilled 
markers are placed at the smallest number of tools where the maximal accuracy was obtained for that gene. 
Black lines indicate the average accuracy of the consensus predictions for the two MHC classes (averaged over 
all genes of that class). The table below the plot indicates which tools were selected in each model for a given 
number of tools. 
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Rapid technological advancements in NGS have resulted in the generation of numerous publicly 

available DNA and RNA sequencing datasets. These data have been critical for understanding the 

genomic basis of human carcinogenesis (Vogelstein et al., 2013). In the field of immuno-oncology, 

genomic data have also been used to study immune selection (Claeys et al., 2021; van den Eynden et 

al., 2019) and, additionally, the availability of corresponding clinical data opens possibilities for 

studying HLA-dependent cancer susceptibility or even differences in clinical ICB responses between 

cancer patients (Chowell et al., 2018; D. Liu et al., 2019; Naranbhai et al., 2022; Riaz et al., 2017). 

However, this requires that the HLA genotype for each subject can be accurately determined. An 

ever-increasing number of NGS-based HLA typing software applications have been developed. In this 

study, we benchmarked the performance of 13 publicly available tools. To our knowledge, this is the 

most extensive benchmark of MHC genotyping tools that has been performed so far (Table S3). 

First, we evaluated the tools by comparing their output to genotypes derived from a PCR-based 

approach. While PCR methods are the gold standard for HLA typing, they have limitations that could 

lead to ambiguous typing results (S. D. Adams et al., 2004). Furthermore, inconsistencies have been 

reported across PCR-based HLA typing datasets that are available for the 1000 genomes samples 

(Bauer-Mehren et al., 2011) which could have affected our benchmarking results. Therefore, we also 

used 2 other, indirect approaches to assess the performance of the different tools.  

Both a concordance analysis between the tools’ predictions and a correlation analysis between 

predicted and expected allele frequencies confirmed our benchmarking results. To avoid biasing the 

results of this correlation analysis, we disabled ethnicity-specific allele frequencies for the algorithms 

that support this (i.e., arcasHLA and Polysolver). However, in the case of arcasHLA, when no specific 

ethnicity is specified, it uses prior frequencies that depend on the prevalence of the alleles in the 

entire human population, possibly hindering its ability to call alleles that are uncommon in the 

specified population. This is illustrated by the worse correlation between observed and expected 

allele frequencies of arcasHLA for HLA‑DRB1 in the African American population, due to an 

overestimation of the frequency of the rare HLA‑DRB1*14:02 allele. 

The benchmarking of DNA-based tools was limited to WES data in our study. This likely explains the 

worse performance and strong coverage sensitivity of both Kourami and HLA-VBSeq, which are 

algorithms that were primarily developed to be applied on (high-coverage) Whole Genome 

Sequencing data (H. Lee & Kingsford, 2018b; Nariai et al., 2015).  

We found that Optitype, Polysolver, HLA-HD, HLA*LA and xHLA are all solid choices for WES-based 

MHC genotyping, while Optitype, HLA-HD, arcasHLA and PHLAT are the better performing tools for 

RNA data. On the other hand, HLAminer, HLA-VBSeq and HLAScan performed rather poorly in our 

benchmark. Similar trends were observed in previous independent benchmarking studies (Bauer et 

al., 2018; Chen et al., 2021; Kiyotani et al., 2016; M. Lee et al., 2021; P. Liu et al., 2021; Yi et al., 2021; 

Yu et al., 2021) that focused on a subset of tools and/or genes (Table S3), with the exception of xHLA 

where we obtained considerably higher accuracies on WES data than reported in a study by Chen et 

al. (Chen et al., 2021).   

The optimal strategy for HLA genotyping depends on a few factors: the availability of WES or RNA 

data, the size of the dataset that needs to be analysed and the available computational resources. 
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Additionally, MHC class II typing based on RNA data is only feasible on sequencing data derived from 

MHC-II expressing cells. For WES data, Optitype and HLA-HD are the best performing individual tools 

for MHC class I and MHC class II typing, respectively. For RNA data, the same tools are recommended 

when sufficient computational resources are available. However, the large resource and time 

consumption of HLA-HD on RNA data makes its usage rather impractical on large datasets. As an 

alternative, arcasHLA is recommended, which is both the fastest and more accurate tool for RNA that 

supports all 5 MHC class II genes. Finally, we have demonstrated that the accuracy of the WES-based 

HLA genotype predictions can be improved further by combining the output of Optitype, HLA*LA, 

Kourami and Polysolver for MHC-I typing and combining HLA*LA, HLA-HD, PHLAT and xHLA for MHC-

II typing using a majority voting rule. The drawback of this metaclassifier approach is that it vastly 

increases the computational requirements, implying it is only a realistic option if sufficient resources 

are available or the sample size is relatively small. For RNA data a similar metaclassifier approach did 

not lead to a further improvement of the prediction accuracies. 

Conclusion 
Our extensive benchmark demonstrated that the optimal strategy for HLA genotyping from NGS data 

depends on the availability of either DNA or RNA sequencing data, the size of the dataset and the 

available computational resources. If sufficient resources are available, we recommend Optitype and 

HLA-HD for MHC-I and MHC-II genotype calling respectively.  
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1. Selection of tools 
A list of existing HLA genotyping tools for NGS data was compiled from literature between October 

and December 2020. The tools that fulfilled the following criteria were selected for further analysis: 

the tool should be free for academic use, support WES and/or RNA sequencing data, should not 

require enrichment of the HLA region before sequencing and should be a Linux command line tool 

that we could successfully run on our system. When the authors provided instructions on how to 

update the IPD-IMGT/HLA database used by their tool, this database was updated to version 3.43. 

This was the case for three tools: HLA-HD, HLAminer and Kourami. 

2. Next-generation sequencing datasets for benchmark 
Slices of the 1012 CRAM files of WES data from the 1000 Genomes on GRCh38 dataset (Zheng-

Bradley et al., 2017) that were used for the benchmark on WES data were obtained from the 

International Genome Sample Resource using the samtools view command (version 1.12). The 

following contigs were included in the download: the MHC region on the primary assembly 

(chr6:28509970-33480727), all 525 contigs starting with HLA- and all unmapped reads. The sliced 

BAM files for the RNA benchmark were obtained from the Geuvadis (Lappalainen et al., 2013) RNA-

Seq dataset (part of the 1000 genomes project) via ArrayExpress (accession number E-GEUV-1). All 

reads mapped to the MHC region and the unmapped reads were included in the download. 

Sequencing data from NCI-60 cell lines were obtained from the Sequence Read Archive with 

accession numbers SRP150855 (WES) (Abaan et al., 2013) and SRP133178 (RNA) (Reinhold et al., 

2019). The NCI-60 sequencing data was realigned according to the same alignment pipeline used by 

the 1000 Genomes on GRCh38 dataset (Zheng-Bradley et al., 2017): reads were aligned to the 

complete GRCh38 reference genome, including ALT contigs and HLA sequences, using an alternative 

scaffold-aware version of BWA-MEM. As done in the same 1000 genomes alignment pipeline, PCR-

introduced duplicates were marked using the markduplicates function in BioBamBam (version 

2.0.182). Aligned sequences of Whole Exome Sequencing (WES) and RNA sequencing experiments 

from The Cancer Genome Atlas (TCGA) were downloaded in BAM format from the Genomic Data 

Commons (GDC) portal. All 9162 available BAM files of Blood Derived normal WES samples were 

selected. For RNA-Seq, all 9762 RNA-Seq samples that were derived from primary tumours and were 

aligned using the “STAR 2-Pass” workflow, were selected. Reads mapped to the MHC region of 

chromosome 6 (chr6:28509970-33480727) and unmapped reads were extracted from the BAM files 

and downloaded following the instructions that are described in the GDC API. For the RNA-Seq 

samples one file failed to download after multiple attempts. The resulting dataset consists of 9162 

blood-derived normal WES samples and 9761 primary tumour RNA-Seq samples from 33 available 

cancer types. The most resource intensive RNA tools were applied on a subset of the TCGA dataset. 

Optitype was applied on 2226 RNA files, HLAforest on 2900 files and HLA-HD was not applied on the 

TCGA data. 

3. Calculating the coverage of sequencing data and assessing its influence on 
accuracy 
For all downloaded whole-exome and RNA sequencing files, the average read depth in each of the 

exons of the HLA genes (HLA‑A, HLA‑B, HLA‑C, HLA‑DPA1, HLA‑DPB1, HLA‑DQA1, HLA‑DQB1 and 

HLA‑DRB1) was determined using Mosdepth (version 0.2.9) (Pedersen & Quinlan, 2018). To assess 

the influence of coverage on the HLA typing accuracy, we first calculated the average HLA read depth 
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by averaging the read depth in the most polymorphic region of the HLA genes (i.e., the exons 

encoding the peptide binding region: exons 2 and 3 for MHC-I and exon 2 for MHC-II). The average 

HLA read depths for genes and samples that were correctly predicted (both alleles correct) were then 

compared with the average HLA read depths that correspond to incorrect predictions using a 

Wilcoxon rank sum test. Subsequently a logistic regression model was fitted that relates the average 

HLA read depths for a gene and sample with the correctness of the corresponding allele pair 

prediction. Then, we performed an in silico analysis to simulate the effect of lowering coverage. 100 

WES and 100 RNA sequencing files were randomly selected. From each of these files subsampled 

BAM files were derived that contain respectively 100%, 50%, 10%, 5%, 1% of the reads of the original 

file (using the samtools view command, version 1.12). To obtain an absolute read depth for these 

samples, we multiplied the average HLA read depth by the fraction of the reads that was retained. 

The minimum read depth required to obtain an accuracy of 90% was then calculated by linearly 

interpolating the results of this analysis. 

4. Gold standard HLA typing data 
Gold standard PCR-based HLA calls for the samples from the 1000 genomes on GRCh38 dataset were 

provided by three earlier studies (Gourraud et al., 2014). The HLA genotypes from these datasets 

were merged. Where the calls did not agree, the calls by Gourraud et al. (Gourraud et al., 2014) were 

preferred. For the NCI-60 cell lines, PCR-based HLA genotypes were provided in a study by Adams et 

al (S. Adams et al., 2005). For both reference datasets alleles were mapped to the corresponding G-

groups, as defined by IPD-IMGT (http://hla.alleles.org/alleles/g_groups.html), and trimmed to the 

second-field resolution. 

5. HLA allele predictions 
All 13 selected tools were run on the sliced BAM files following the guidelines of the authors. For 

tools requiring FASTQ input files, a FASTQ file was extracted from the sliced BAM files using samtools 

fastq. For HLAScan, which supports input files in either file format, the input was provided in BAM 

format. For tools that allowed to specify a list of loci that should be called: HLA‑A, HLA‑B, HLA‑C, 

HLA‑DPA1, HLA‑DPB1, HLA‑DQA1, HLA‑DQB1 and HLA‑DRB1 were chosen. Kourami was run with the 

-a (additional loci) parameter to call the HLA‑DPA1 and HLA‑DPB1 genes. In rare cases, this led to a 

crash of the tool and Kourami was run again without the -a parameter. For HLAminer only the HPRA 

mode was evaluated. xHLA, Polysolver and HLA-VBSeq were not compatible with BAM files that are 

aligned to a reference genome build that includes alternative contigs. For these tools, an additional 

realignment step was performed before the tool was executed. Input data for xHLA and Polysolver 

were realigned to a GRCh38 build that excludes alternative contigs. The input data for HLA-VBSeq 

was realigned to GRCh37. All allele predictions were mapped to the corresponding G-groups and 

trimmed at second-field resolution. 

6. Measuring the resource consumption 
The running time and memory consumption required by the tools were measured for a random 

subset of 10 WES and 10 RNA sequencing files from the TCGA project. Each tool was executed in a 

separate Docker container (version 19.03.3) that was allocated a single CPU core. When the package 

provided a parameter to specify the number of threads, this was set to 1. Per file, the memory usage 

of the Docker container was monitored using the docker stats command. The running time was 

http://hla.alleles.org/alleles/g_groups.html
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calculated as the time interval between the start and the end of the tool, excluding the time to start 

the Docker container. Pre-processing steps related to realignment to a different genome build (as 

required for xHLA, Polysolver and HLA-VBSeq) were not included in the resource consumption 

assessment. For HLA-HD the analysis of a single sample did not complete successfully as the required 

amount of memory exceeded what we have available on our system. 

7. Performance metric 
For each sample, two allele predictions were made. An allele prediction was labelled “correct” when 

it was listed as one of the two alleles in the gold standard for that patient. When a tool made a 

homozygous prediction, while the gold standard was heterozygous, at most one of the two 

predictions was labelled “correct” for that sample. The accuracy of the predictions is then defined as 

the proportion of all correctly predicted alleles divided by twice the number of samples. Samples 

where the gold standard was missing for a particular gene were ignored for that gene. 

8. Population frequency data 
Lists of expected HLA allele frequencies for an African American and for a Caucasian American 

population were constructed based on 18 different studies in the Allele Frequency Net (Gonzalez-

Galarza et al., 2020) database (Table S4). The studies were selected based on the following criteria. 

First, we required that the study was conducted on a Black or Caucasoid population from the United 

States. This was not possible for HLA‑DPA1 where no HLA allele frequencies were available for these 

ethnicities. As a substitute, the allele frequencies of three European populations (French, Swedish 

and Basques) were used to approximate the allele frequencies for this gene in Caucasian Americans. 

As a second requirement, the HLA calls should be determined by a PCR-based method. Thirdly, the 

Allele Frequency Net database should have assigned a gold label (i.e., allele frequency sums to 1, 

sample size of study > 50, and at least 2-field resolution) to the study for the gene of interest. Lastly, 

it was required that the subjects included in the selected studies were healthy subjects (i.e., selected 

for an anthropological study, blood donors, bone marrow registry or controls for a disease study). 

Allele frequencies from different studies were combined by taking the average frequency, weighted 

according to the study’s sample size. All alleles were mapped to the corresponding G-groups and 

trimmed at second-field resolution. 

9. Correlation between expected and observed allele frequencies 
For all tools and for each supported data type, the number of times that each allele was called was 

counted. This count was divided by the total number of samples to obtain the “observed allele 

frequency”. The Pearson correlation was calculated between observed allele frequencies and the 

allele frequencies that were expected based on the Allele Frequency Net database. 

10. Concordance of predictions among different tools 
Per gene, the concordance of the predictions between each pair of tools was assessed by counting 

the number of allele pair predictions made by the first tool that were also made by the second tool 

(for the same sample and gene). Samples where one of both tools did not make a prediction were 

not considered. This analysis was performed on the 1000 genomes and TCGA dataset. 
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11. Consensus HLA predictions 
A majority voting rule was used to determine the most likely HLA genotype for each sample. For each 

gene of interest, we selected the pair of alleles that has been predicted the most frequently for that 

sample (i.e., outputted by the highest number of tools). When ties occurred (i.e., multiple allele pairs 

had equal numbers of predictions), priority was given to the allele pair that was predicted by the tool 

with the best individual performance for that gene. 

12. Selecting a minimum number of tools to make consensus HLA predictions 
The minimal set of tools that must be included in the majority voting scheme to make reliable 

consensus predictions was determined using an iterative procedure. Initially, two tools were selected 

for the model: the tool that performed the best in the benchmark on the 1000 genomes data and the 

one that best complements that tool. The latter tool was defined as the tool that most often made a 

correct prediction (for both alleles) on the samples that were wrongly predicted by the best 

performing tool. Additional tools were added to this initial model with k = 2 tools in a stepwise 

manner. At each step, a model with 𝑘 + 1 tools was obtained by adding one additional tool to the 

model with 𝑘 tools. To determine which additional tool would be the most suitable choice, we 

evaluated all unselected tools and added the tool to the model that led to the largest increase (or the 

smallest decrease) in accuracy.  This procedure was repeated until we obtained a model where all 

tools were selected. 

13. Hardware and software environment 
Analyses were performed on Ubuntu 20.04 on a Dell EMC PowerEdge R940xa server with 4 Intel 

Xeon Gold 6240 CPUs (2.60 GHz), each with 18 physical CPU cores, and 376 GiB RAM installed. 

14. Data processing and statistical analysis 
Data processing and statistical analyses were performed using R (version 4.0). 

15. Code availability 
The code that underlies this thesis is available on GitHub at 

https://github.com/CCGGlab/mhc_genotyping/ 

 

https://github.com/CCGGlab/mhc_genotyping/
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Annex A - Ethical considerations  

Ethical aspects directly related to the work done in the thesis 

All analyses that were performed for this study are entirely based on publicly available cancer data 

from the 1000 Genomes Project (https://www.internationalgenome.org/1000-genomes-

summary#g1k_data_reuse) and The Cancer Genome Atlas (TCGA) (https://www.cancer.gov/about-

nci/organization/ccg/research/structural-genomics/tcga/history/policies). During these projects the 

participants have given their informed consent for sample collection and to store de-identified data 

derived from these samples in genomic databases. 

Our research was performed entirely in agreement with the TCGA and 1000 genomes data usage 

policies and the relevant data protection legislation. All data has been stored on a protected server 

and is only accessible by the members of our lab group involved in this research. We have respected 

the right to anonymity of the participants and made no attempt to identify patients. 

Further, we have designed our benchmark to be as inclusive as technically possible. We considered 

that the frequency of HLA alleles differs between populations and that existing tools might be biased 

towards accurate calling of alleles that are common in one particular ethnicity. To accommodate this, 

we assessed the performance of the tools in our TCGA based correlation analysis on both Caucasian 

and African Americans. Due to statistical necessities, we did not perform this analysis on other 

populations. 

Reflection about the potential (future) impact of study results 

This thesis is a part of a larger effort in our lab to understand how the immune system shapes the 

cancer genome. To do this, we require approaches that allow to derive the HLA genotype from 

existing cancer genomics datasets. 

Hence, our work might lead to important new insights into the interactions between the immune 

system and tumours that could help to optimize the response to immunotherapy. Furthermore, the 

ability to predict in advance whether immunotherapy will be effective could help to lower the 

economic burden on the healthcare system. 

As discussed in the introduction (section 1.4), HLA genotyping tools have a broader applicability 

outside cancer research. HLA genotyping workflows based on amplicon sequencing are currently 

applied in clinical laboratories to identify matching donors and recipients of hematopoietic stem cell 

transplantation. Given the enormous potential of WGS and WES technologies in healthcare programs 

(c.f. the UK 100,000 Genomes Project), the tools discussed in this thesis might eventually be 

integrated in such programs and allow to identify potential organ or stem cell donors with limited 

additional costs. 

Scientific integrity 

Great care has been taken to ensure the scientific integrity of this work. Sources that were consulted 

during the literature study have been collected using the Mendeley reference manager and cited 

where appropriate. 

In our lab we put strong emphasis on transparent and reproducible research. The code that underlies 

this thesis is available on GitHub at https://github.com/CCGGlab/mhc_genotyping/ and includes 

https://www.internationalgenome.org/1000-genomes-summary#g1k_data_reuse
https://www.internationalgenome.org/1000-genomes-summary#g1k_data_reuse
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/policies
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/policies
https://github.com/CCGGlab/mhc_genotyping/
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scripts that allow the reader to recreate the exact Conda containers that the tools and downstream 

analysis scripts were run in. To ensure the validity and reproducibility of our results, we additionally 

reran all of our scripts on a subset of 100 samples from each dataset before submission. 

A master’s dissertation is always a collaborative effort, with important contributions from my 

supervisors who provided feedback throughout the project. The results of this thesis are currently 

under review in BMC Bioinformatics and we have also incorporated the highly valuable suggestions 

of the reviewers into the text. 



 

Annex B - Supplementary materials 
 Alignment method Score function Tool-specific steps 

  Jointly 
optimized 
for allele 

pair 

PHRED 
score 
used 

Prior 
population 
frequencies 

 

HLA*LA BWA-MEM yes yes no Graph-based optimization of alignment 

Kourami BWA-MEM yes yes no Graph-guided assembly (post-alignment) 

arcasHLA Kallisto  
(pseudo-alignment) 

hybrid no yes Pseudo-alignment with Kallisto, followed by an iterative (EM) algorithm for transcript quantification 

HLA-HD Bowtie2 yes no yes* Optimizes a score per allele pair which considers the overlap length between reads and exon sequences. 

PHLAT Bowtie2 yes yes yes* Bayesian framework with likelihood calculated based on sequence consistency at SNP sites and phase 
consistency across adjacent SNP sites 

Polysolver Novoalign no yes optional Bayesian framework. 
First determines the first allele, then identifies the second allele in a separate round with updated 
probabilities. 

HLA-VBSeq BWA-MEM no no no First optimizes read alignments using a Bayesian framework. Then HLA types are inferred based on depth 
of coverage per allele. Alleles that do not pass coverage threshold are filtered out.  

seq2HLA Bowtie no no no Reads associated with first found allele removed before determining second allele. 
First genotyping at 2-digit level, before extended to 4-digit level. 

Optitype RazerS3 yes no no Uses ILP to find the set of MHC-I allele pairs that simultaneously explain the input data the best. 
Does not consider rare alleles (not present in Allele Frequency Net) 

xHLA DIAMOND hybrid no no Identifies candidate alleles by applying Optitype’s ILP strategy on the PBR exons with subsequent 
iterative refinement steps. 

HLAscan BWA-MEM no no no Alleles discarded based on number of consecutive positions with no read aligned to it 

HLAforest Bowtie no yes no SMMQ scores are propagated throughout trees that represent all possible alignments per read. 

HLAminer BWA-backtrack no no no Supports assembling reads into longer contigs before comparing them to known allele sequences†. 

Table S1. Main algorithmic characteristics of the 13 selected HLA genotyping algorithms.  
Algorithms differ in how reads are aligned to the HLA allele reference sequences (column Alignment method) and how they subsequently score candidate alleles (column Score function). 
Commonly used variables of the score function are: base quality scores (column PHRED score used) and whether they use prior population frequencies (column Prior population frequencies). 
The score function can either be jointly optimized for allele pairs (column Jointly optimized for allele pair) or be defined on a single allele at once. The tools that have the value “hybrid” in this 
column combine both types of scoring functions. The column tool-specific steps describes additional particularities of the tools.  
* only used for breaking-ties in case of ambiguities, † Only in Targeted Assembly of Shotgun Reads (HPTASR) mode, which was not evaluated in this paper 
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 (Freely) 
available for 

academic use 

FASTQ or BAM 
input files 

from WGS, WES 
and/or RNA-Seq 

Running on 
Ubuntu 
20.04 

ALPHLARD(-NT) ✗   

ATHLATES   ✗ 

HLAProfiler   ✗ 

HLAreporter   ✗ 

HLAssign  ✗† ✗* 

OncoHLA ✗   

PolyPheMe ✗   

SNP2HLA  ✗  

SOAP-HLA   ✗ 

Table S2. Overview of tools that were not benchmarked in our study and the reason for their exclusion.  
Excluded tools were either not freely available for academic use, do not use FASTQ or BAM input files from WGS, WES and/or RNA-
Seq experiments (e.g., enrichment of the HLA region prior to sequencing is needed) or we were not able to get them running on 
Ubuntu 20.04.  
* Latest version of HLAssign is a Windows GUI tool; † HLAssign is developed for targeted sequencing. Whole genome or exome data 
is supported but requires manual interpretation. 
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  Lee Kiyotani Bauer Yu Liu* Yi* 

  A B C A B C class I class I+II class I class II 
class 
I+II class I 

HLA*LA DNA 81,6 83,8 48,3          

HLA-HD DNA 81,7 75,0 73,3        100,0  
HLAminer DNA       26,0 26,0 31,8 56,8 68,0  
HLAscan DNA 54,7 41,5 10,3        78,0  
HLA-VBSeq DNA       86,0 68,0 60,3 54,1 35,0  
Kourami DNA 57,2 53,9 58,0          

Optitype DNA 91,9 85,4 89,7 97,3 96,6 97,7 98,0  88,8   99,0 

PHLAT DNA 60,7 67,9 73,0 79,1 85,1 92,8 88,0 73,0    94,0 

Polysolver DNA    93,4 92,5 96,1      96,0 

xHLA DNA             

arcasHLA RNA         96,5 92,7   

HLA-HD RNA             

HLAforest RNA         81,8 88,7   

HLAminer RNA       20,0 20,0 37,7 50,6   

Optitype RNA       99,0  54,9   96,4 

PHLAT RNA       96,0 81,0    84,5 

seq2HLA RNA       95,0 79,0 96,5 88,7  91,1 

Table S3. Comparison of our results with 7 other independent benchmark studies. 
The allele prediction accuracies obtained in our benchmark on the 1000 genomes data are compared with 7 other independent benchmark papers. Each score was assigned a colour code: red 
under 50%, yellow between 50% and 80% and green above 80%. A grey box indicates that a tool was not evaluated for the corresponding gene in that study. The second row of the table 
indicates the gene or MHC class, where class I + II corresponds to the overall (combined) accuracy for MHC class I and class II. For the Lee, Kiyotani, Bauer and Yu studies the tools were 
evaluated on data from the 1000 genomes project. The studies by Liu, Yi and Chen used a different in house dataset. DNA data always refers to WES data. 
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  Chen* Our study 

  A  B  C class I DQA1  DQB1  DRB1  class II A B C class I DQA1 DQB1 DRB1 class II 

HLA*LA DNA 98,2 100,0 99,1 99,1 100,0 99,1 100,0 99,7 89,9 97,2 96,2 94,4 97,1 93,2 97,0 95,7 

HLA-HD DNA 100,0 99,1 99,1 99,4 94,6 100,0 100,0 98,6 84,3 93,4 90,1 89,3 99,3 91,1 98,2 96,2 

HLAminer DNA         31,3 22,2 25,8 26,4 56,2 48,9 56,4 53,8 

HLAscan DNA         59,1 60,7 59,5 59,8 92,9 61,3 68,4 74,2 

HLA-VBSeq DNA         68,2 58,7 62,2 63,0 79,4 50,0 51,3 60,2 

Kourami DNA         83,4 76,1 79,6 79,7 94,1 71,6 95,0 86,9 

Optitype DNA         98,0 97,6 98,4 98,0     

PHLAT DNA         82,4 90,1 96,7 89,7 99,3 93,0 81,3 91,2 

Polysolver DNA 100,0 95,5 97,3 97,6     94,9 91,8 98,0 94,9     

xHLA DNA 54,5 41,8 45,5 47,2  48,2 58,2 56,7 94,6 93,0 86,5 91,4  89,9 94,2 92,0 

arcasHLA RNA         99,6 99,1 99,6 99,4 100,0 96,1 98,2 98,1 

HLA-HD RNA         98,4 98,0 97,7 98,0 100,0 99,1 99,2 99,4 

HLAforest RNA         90,8 71,2 76,9 79,6 92,5 88,5 89,8 90,3 

HLAminer RNA         45,6 48,8 39,2 44,5 59,4 77,6 47,9 61,7 

Optitype RNA         99,3 98,7 99,6 99,2     

PHLAT RNA         98,5 94,6 93,0 95,4 100,0 98,4 98,2 98,9 

seq2HLA RNA         98,0 95,0 94,6 95,9 89,6 81,5 92,1 87,8 

Table S3 (continued)
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Ethnic 
origin 

Gene AFN population ID AFN population name 

Black HLA‑A 1480 USA African American 

Black HLA‑A 1620 USA African American Bethesda 

Black HLA‑A 2223 USA African American pop 3 

Black HLA‑A 2419 USA African American pop 4 

Black HLA‑B 1480 USA African American 

Black HLA‑B 2223 USA African American pop 3 

Black HLA‑B 2419 USA African American pop 4 

Black HLA‑C 1480 USA African American 

Black HLA‑C 2223 USA African American pop 3 

Black HLA‑C 2419 USA African American pop 4 

Black HLA‑DPB1 2779 USA African American pop 7 

Black HLA‑DQA1 1620 USA African American Bethesda 

Black HLA‑DQB1 2419 USA African American pop 4 

Black HLA‑DQB1 2779 USA African American pop 7 

Black HLA‑DRB1 1511 USA Colorado Univ Cord Blood Bank African American 

Black HLA‑DRB1 1620 USA African American Bethesda 

Black HLA‑DRB1 2223 USA African American pop 3 

Black HLA‑DRB1 2419 USA African American pop 4 

Black HLA‑DRB1 2779 USA African American pop 7 

Caucasoid HLA‑A 1359 USA San Antonio Caucasian 

Caucasoid HLA‑A 1479 USA Caucasian pop 2 

Caucasoid HLA‑A 1619 USA Caucasian Bethesda 

Caucasoid HLA‑A 2570 USA Eastern European 

Caucasoid HLA‑B 1359 USA San Antonio Caucasian 

Caucasoid HLA‑B 1479 USA Caucasian pop 2 

Caucasoid HLA‑B 1895 USA Philadelphia Caucasian 

Caucasoid HLA‑B 2570 USA Eastern European 

Caucasoid HLA‑C 1359 USA San Antonio Caucasian 

Caucasoid HLA‑C 1479 USA Caucasian pop 2 

Caucasoid HLA‑C 1619 USA Caucasian Bethesda 

Caucasoid HLA‑C 1895 USA Philadelphia Caucasian 

Caucasoid HLA‑DPA1 1279 France Ceph 

Caucasoid HLA‑DPA1 1401 Spain Navarre Basques 

Caucasoid HLA‑DPA1 2531 Sweden pop 2 

Caucasoid HLA‑DPB1 2780 USA Caucasian pop 5 

Caucasoid HLA‑DQA1 1619 USA Caucasian Bethesda 

Caucasoid HLA‑DQB1 1359 USA San Antonio Caucasian 

Caucasoid HLA‑DQB1 1895 USA Philadelphia Caucasian 

Caucasoid HLA‑DQB1 2780 USA Caucasian pop 5 

Caucasoid HLA‑DRB1 1359 USA San Antonio Caucasian 

Caucasoid HLA‑DRB1 1513 USA Colorado Univ Cord Blood Bank Caucasian 
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Caucasoid HLA‑DRB1 1586 USA Caucasian Houston 

Caucasoid HLA‑DRB1 1588 USA Caucasian Pittsburgh 

Caucasoid HLA‑DRB1 1619 USA Caucasian Bethesda 

Caucasoid HLA‑DRB1 1895 USA Philadelphia Caucasian 

Caucasoid HLA‑DRB1 2570 USA Eastern European 

Caucasoid HLA‑DRB1 2780 USA Caucasian pop 5 

Table S4. Overview of studies from the Allele Frequency Net (AFN) database which were used to compile the 
list of expected HLA allele frequencies.  
For the listed ethnicities (column Ethnic origin) and genes (column Gene), we indicate which AFN “populations” 
(datasets) were used to calculate the corresponding expected allele frequencies. For each dataset, the names 
(column AFN population name) and internal IDs (column AFN population ID) are given. 
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Figure S1: Fraction of correct allele predictions (1000 genomes)
Radar plots depicting the fraction of correct allele predictions relative to the total number of alleles for which
the algorithm was able to make a prediction on the 1000 genomes dataset. Coloured lines represent different
genes, as indicated in the legend below the plots. Corners of the radar plots correspond to the tools that were
evaluated for that data type. The Meta tools correspond to the 4-tools metaclassifiers.
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Figure S2: Fraction of successful allele predictions (1000 genomes)
Radar plots depicting the fraction of alleles for which the tool was able to make a prediction on the 1000 genomes
dataset. Coloured lines represent different genes, as indicated in the legend below the plots. Corners of the
radar plots correspond to the tools that were evaluated for that data type. The Meta tools correspond to the
4-tools metaclassifiers.
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Figure S3: Comparison between the average HLA read depth for correct and incorrect predictions
Boxplot comparing the average HLA read depth in samples and genes that were either correctly (cyan) or
incorrectly (red) predicted. The y-axis indicates the coverage in these exons. The x-axis indicates the different
tools.
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Figure S4: Logistic regression between average HLA read depth and the accuracy of the allele
predictions
Logistic regression model that relates the average HLA read depth with the correctness of the allele pair
prediction. The x-axis indicates the coverage. The y-axis indicates the probability that a prediction is correct
for a sample with the corresponding coverage.
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Figure S5: Accuracy of HLA allele predictions in subsampled sequencing files for the recom-
mended tools
Scatter plot that displays for 100 randomly selected WES and 100 randomly selected RNA sequencing files
which accuracy was be obtained when a given proportion of the reads was retained. The line type indicates the
average accuracy of the allele predictions for a certain MHC class. The colour of the lines indicates the data
type (red for WES and cyan for RNA-Seq).
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Figure S6: HLA allele prediction accuracies on NCI-60 cell lines
Radar plots of HLA allele prediction accuracies on data from NCI-60 cell lines. Coloured lines represent different
genes, as indicated in the legend below the plots. Corners of the radar plots correspond to the tools that were
evaluated for that data type.
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Figure S7: Expected frequency of HLA-DRB1 alleles in an African American population vs
frequencies predicted by arcasHLA
Scatter plot that compares the allele frequency as predicted by arcasHLA (x-axis) with the expected allele
frequencies based on data from Allele Frequency Net (y-axis).
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Figure S8: Concordance of HLA calls between each pair of tools on DNA data (1000 genomes)
Heatmaps representing the concordance of the HLA calls between each pair of tools, applied on the 1000 genomes
DNA data. Hierarchical clustering was applied on the tools. The Meta tool corresponds to the 4-tool consensus
metaclassifier.
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Figure S9: Concordance of HLA calls between each pair of tools on RNA data (1000 genomes)
Heatmaps representing the concordance of the HLA calls between each pair of tools, applied on the 1000 genomes
RNA data. Hierarchical clustering was applied on the tools.
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Figure S10: Concordance of HLA calls between each pair of tools on DNA data (TCGA)
Heatmaps representing the concordance of the HLA calls between each pair of tools, applied on the TCGA
DNA data. Hierarchical clustering was applied on the tools. The Meta tool corresponds to the 4-tool consensus
metaclassifier.
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Figure S11: Concordance of HLA calls between each pair of tools on RNA data (TCGA)
Heatmaps representing the concordance of the HLA calls between each pair of tools, applied on the TCGA
RNA data. Hierarchical clustering was applied on the tools.
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Figure S12: Correctness of predictions on DNA data
Heatmap indicating correctness of predictions on DNA data for each sample (rows) and tool (columns). Hier-
archical clustering was applied on tools and samples. Dendrogram for the tools is shown on top of the plots.
Dendrogram for the samples is shown right of the plots.
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Figure S13: Correctness of predictions on RNA data
Heatmap indicating correctness of predictions on RNA data for each sample (rows) and tool (columns). Hier-
archical clustering was applied on tools and samples. Dendrogram for the tools is shown on top of the plots.
Dendrogram for the samples is shown right of the plots.
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Figure S14: Comparison of accuracies of all-tool metaclassifier with best performing individual
tool per gene
Barplots comparing the accuracy of the best tool for each gene and data type to the accuracy of a classifier
that chooses an HLA genotype from the output of all tools that support that data type and gene based on a
majority voting rule. Bars in a red correspond to the accuracies of the voting classifier. Bars in blue correspond
to the accuracies of the best individual tool for that gene.
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