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SAMENVATTING

Een hybride model (HM) combineert een mechanistisch model gebaseerd op fysische

proceskennis met een data-gedreven component die leert uit online sensor data. In deze

thesis wordt een parallel HM van een piloot-afvalwaterzuiveringsinstallatie ontwikkeld

om een model te verkrijgen met een betere voorspellende kracht. Het HM werd opgesteld

door een neuraal netwerk (NN) te trainen op de fout tussen het mechanistische model en

metingen van het effluent van nitraat en zwevende stoffen. Het onderzoek toont aan dat

het parallelle HM significant betere voorspellingen biedt in vergelijking met het gekali-

breerde mechanistische model. Zowel Long-Short Term Memory (LSTM) als Convolutional

Neural Networks (CNN’s) worden getest, waarbij CNN betere resultaten levert. De the-

sis onderzoekt ook de balans tussen de kalibratie-inspanning voor het mechanistische

model en de compensatie door de NN-component. Hiervoor worden verschillende versies

van het parallelle HM gebouwd waarbij gebruik gemaakt wordt van een kalibratiedataset,

validatiedataset of een ongekalibreerd mechanistisch model. De beste prestatie wordt

bekomen voor het parallelle HM op basis van het ongekalibreerde mechanistisch model.

Een parallel HM kan dus de kalibratie-inspanning van mechanistische modellen kan ver-

minderen, vooral voor sterk onzekere of niet-identificeerbare parameters. Een serie HM

integreert een data-gedreven model dat een minder goed-beschreven subproces mod-

elleert in het mechanistische model. In deze thesis wordt een serie HM ontwikkeld voor

het voorspellen van de zuurstof-overdrachtscoëfficiënt (KL) in een beluchtingsbekken.

Dit seriemodel heeft potentieel om in de toekomst real-time KL te voorspellen in belucht-

ingsbekkens. Hoewel het seriemodel redelijke prestaties vertoont, heeft het moeite met

extrapolatie naar nieuwe situaties. Verder onderzoek is nodig om de KL-voorspelling in

serie HM’s te verbeteren.
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SUMMARY

A hybrid model (HM) combines a mechanistic model based on physical process knowl-

edge with a data-driven component that learns from online sensor data. This thesis

develops a parallel HM of a pilot wastewater treatment plant to obtain a model with im-

proved predictive power. The HM was constructed by training a neural network (NN) on

the residual between the mechanistic model and measurements of effluent nitrate and

total suspended solids. The research demonstrates that the parallel HM provides signifi-

cantly better predictions compared to the calibrated mechanistic model. Both Long-Short

Term Memory (LSTM) and Convolutional Neural Networks (CNNs) are tested, with CNNs

yielding better results. The thesis also investigates the balance between the calibration

effort for the mechanistic model and the compensation by the NN component. For this

purpose, different versions of the parallel HM are built using a calibration dataset, vali-

dation dataset, or an uncalibrated mechanistic model. The best performance is achieved

for the parallel HM based on the uncalibrated mechanistic model. A parallel HM can thus

reduce the calibration effort of mechanistic models, particularly for highly uncertain or

non-identifiable parameters. A serial HM integrates a data-driven model that models a

less well-described subprocess within the mechanistic model. In this thesis, a series HM

is developed to predict the oxygen transfer coefficient (KL) in an aeration tank. This

serial model has the potential to predict real-time KL in aeration tanks in the future.

Although the serial HM shows reasonable performance, it struggles with extrapolation

to new situations. Further research is needed to improve KL prediction in series HM

models.
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1. INTRODUCTION

Clean water supply has become increasingly important in recent decades, as water

scarcity worsens due to factors such as rapid population growth, ongoing economic

development and industrialization, heightened water pollution, expanding agricultural

practices, and the impact of climate change. Next to the increased demand, also reg-

ulation on drinking water quality and environmental discharge of wastewater effluents

has become more stringent. The European Union’s Water Framework Directive (WFD) is

an important directive aimed at protecting and enhancing the quality of water resources

within its member states. Under the WFD, member states are obligated to attain and

sustain favorable ecological and chemical conditions in their water bodies. The direc-

tive defines quality benchmarks for drinking water and outlines criteria for evaluating

and managing contaminants in surface waters and groundwater. For the wastewater

industry this means that more stringent quality requirements need to be met, putting

increased pressure on the improvement of their operational performance. Moreover, the

wastewater industry is currently facing dramatic changes, moving from energy-intensive

wastewater treatment methods as end of pipe treatment to adopting low-energy, sus-

tainable and more circular technologies capable of achieving energy-positive operation

and resource recovery (Regmi et al., 2019). There is critical need for innovative ap-

proaches that address these challenges.

In this context, modelling is a powerful tool to support Water Resource Recovery Facil-

ity (WRRF) operators and engineers. Modelling biological, chemical, and physical pro-

cesses is useful to acquire process understanding, simulate and test control strategies,

and predict future behaviour under changing conditions (Gernaey et al., 2004). Mech-

anistic models in wastewater treatment have traditionally been favored by engineers

due to their first-principles approach. However, these models often simplify complex

processes and parameterizing, calibrating, and validating mechanistic models often re-

quire laborious experiments, which can be hindered by economic, time, or measurability

constraints. On the other hand, data-driven methods are gaining interest with advance-

ments in sensor technologies, enabling ubiquitous data collection and real-time moni-

toring. While data-driven approaches excel with large and high-quality datasets, data

quality, extrapolation limitations and the lack of mechanistic interpretability pose chal-
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lenges in the wastewater treatment sector. Hybrid modelling is a solution to bring forth

the advantages of both mechanistic and data-driven models (Schneider et al., 2022).

The application of hybrid modelling in the domain of WRRFs has the potential to foster

automation (Rodriguez-Roda et al., 2002), increase efficiency, and increase the predic-

tive power of models (Von Stosch et al., 2014). Whereas, online data is becoming more

and more available from wastewater treatment plants, the application of hybrid models

in this domain is still very limited. This thesis aims to investigate the potential of hybrid

modelling on a unique, continuously monitored pilot-wastewater treatment plant.
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2. LITERATURE REVIEW

2.1 Wastewater treatment

Wastewater engineering has come a long way from open dumping to collection and treat-

ment prior to reuse in Water Resource Recovery Facilities (WRRFs), formerly called Waste

Water Treatment Plants (WWTPs). Yet there is a need for more efficient WRRFs due to

emerging concerns such as scarcity of freshwater sources due to increasing population,

rising energy costs for the operation of treatment plants, more stringent discharge limits

due to continued degradation of water bodies, etc. (Riffat and Husnain, 2013). The most

important contaminants in wastewater effluent are Total Suspended Solids (TSS), organic

matter (either expressed as Biological Oxygen Demand (BOD) or Chemical Oxygen De-

mand (COD)) and nutrients such as nitrogen and phosphorus. The EU Water Framework

Directive (WFD) has set up a number of policy instruments for protecting inland waters.

The Urban Waste Water Treatment Directive (UWWTD) supports the achievement of the

WFD and aims at controlling emissions of nitrogen and phosphorus from WRRFs (Aloe

et al., 2014). Nitrogen and phosphorus limits are applied to treatment facilities that dis-

charge to sensitive areas. The UWWTD also contains other universal standards for the

effluent quality in WRRFs. The standards are expressed as quantitative limits or removal

rates for the parameters BOD, COD and TSS (Benedetti, 2006).

2.1.1 Wastewater treatment process

The wastewater treatment process usually starts with screening and the physical re-

moval of constituents such as rags, sticks, grit, etc. (Gerba and Pepper, 2019). Then

the primary treatment ensures the separation of particulate pollutants (e.g. debris,

sand, grease, oils) in a primary settling tank due to gravitational separation (Hreiz et al.,

2015). Approximately half the suspended organic solids settle to the bottom as primary

sludge (Gerba and Pepper, 2019). Sometimes an advanced primary treatment is exe-

cuted where solids and organic matter are removed by Chemically Enhanced Primary

Treatment (CEPT). CEPT’s main objective is to remove pollutants such as organic car-

bon and nutrients by adding chemicals and concentrating them in the sludge produced,
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which can be considered valuable resources to increase energy recovery (Shewa and

Dagnew, 2020). Another primary treatment concept currently under extensive develop-

ment and testing is Rotating Belt Filtration (RBF), which is a technology designed for the

removal of suspended solids and effluent organic matter as wastewater flows through

the inclined section of a continuously rotating belt screen filter (Franchi and Santoro,

2015).

In a secondary treatment stage, the wastewater is biologically treated to remove organic

carbon and soluble nitrogen and phosphates (Gerba and Pepper, 2019). As secondary

treatment the activated sludge process is most commonly used given its efficiency, rel-

atively simple operation and low cost (Hreiz et al., 2015). In this stage the wastewater

is mixed with a quantity of microorganisms responsible for the degradation of organic

matter and/or nutrients. An overview of the most important mechanisms in the tanks

is listed in Table 2.1. The coupling of nitrification (converting ammonia to nitrate in the

presence of oxygen: reactions 1 and 2 in Table 2.1) and denitrification, (converting ni-

trate to nitrogen gas in absence of oxygen: reaction 4 in Table 2.1) is the conventional

method for N-removal. Organic matter and ammonium are removed in an aerobic tank

where aeration provides oxygen for metabolising microorganisms that grow and remove

pollutants and also provides mixing, allowing microorganisms to consume organic mat-

ter and nutrients. Aeration requires the pumping of air or pure oxygen into the tank, a

process for which the energy used can be up to 40-65% of the total energy consump-

tion in activated sludge systems including N-removal (Kirim, 2022). To achieve nitrate

removal, an anoxic tank is needed for facilitating denitrification. Biological phosphorus

removal necessitates the presence of both anaerobic and aerobic zones. The anaerobic

zone enables bio-P bacteria (PAOs) to release phosphate as orthophosphate into the wa-

ter. The aerobic zone allows PAOs to uptake the orthophosphate from the water. The

removal of surplus sludge effectively eliminates stored phosphate from the treatment

system (Janssen et al., 2002). In some cases phosphorus is chemically removed.

Table 2.1: Most important chemical reactions in the activated sludge process (Tchobanoglus et al.,
2013).

Reaction Tank type Organisms

NH4
+ + 3

2 O2 −−→ Biomass + NO2
– + H2O + 2H+ Aerobic Autotrophic

NO2
– + 1

2 O2 −−→ Biomass + NO3
– Aerobic Autotrophic

O2 + COD −−→ Biomass + CO2 Aerobic Heterotrophic

NO3
– + 6H+ + COD −−→ Biomass + 1

2 N2 + 3H2O Anoxic Heterotrophic
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2. Literature Review

As a final step of the secondary treatment stage the wastewater goes to the secondary

settling tank (SST), where the denser solid phase (the activated sludge mass) is sepa-

rated from the liquid phase (effluent) by gravitational settling. The SST combines the

function of a thickener (producing a continuous underflow of thickened sludge for return

to the biological reactor), a clarifier (producing a clarified final effluent) and a storage

tank to store sludge during peak flows (Ekama et al., 1997). Water flows off the top of

the tank and sludge is removed with a pump from the bottom (Gerba and Pepper, 2019).

In the SST a part of the sludge is wasted and a part is recirculated to the secondary

treatment (Torfs, 2015).

Some treatment plants also include a tertiary treatment step. In the tertiary treatment

a series of additional steps further reduce organics, turbidity, nutrients, metals, and

pathogens. Often some type of physicochemical treatment is involved such as coag-

ulation, sand filtration, activated carbon adsorption of organics, reverse osmosis, and

additional disinfection steps (Gerba and Pepper, 2019). Disinfection applied on technical

scale include chemical (with the use of chlorine, ozone or peracetic acid) and physical

methods (with the use of UV radiation or ultrafiltration) (Bray et al., 2021). Tertiary treat-

ment becomes increasingly important, as stricter effluent quality regulations apply and

the wastewater effluent is also reused, e.g. for irrigation (Illueca-Muñoz et al., 2008).

Primary, secondary and even tertiary sludges generated during wastewater treatment

are usually subjected to a variety of treatments: screening, thickening, dewatering, con-

ditioning and stabilization. Anaerobic digestion has gained popularity for energy recov-

ery through biogas production (Section 2.1.3) (Gerba and Pepper, 2019). A schematic

overview of the wastewater treatment process is given in Figure 2.1.

2.1.2 Challenges in the water sector

Energy is needed in all stages of wastewater treatment. In general, aeration is the largest

energy consumer, followed by pumping, sludge treatment and mixing processes (Kirim,

2022). As the number of treatment plants worldwide increases and effluent quality re-

quirements become more stringent, the issue of energy efficiency is receiving increasing

attention from an environmental and economic point of view. A 130% increment in total

energy consumption is estimated for the water treatment industry until 2040 (Interna-

tional Energy Agency, 2019). Thus, extensive research is currently being conducted to

make WRRFs more energy-saving or even energy self-sufficient.
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Figure 2.1: Overview of a biological wastewater treatment facility (Nopens, 2005).

Emerging contaminants (ECs) have recently attracted concern as they have been shown

to significantly affect the natural environment but also to pose a major challenge to exist-

ing water treatment systems in terms of the effectiveness of their removal. The promi-

nent classes of ECs include pharmaceuticals and personal care products, surfactants,

plasticizers, pesticides, fire retardants, and nanomaterials (Rout et al., 2021). Conven-

tional wastewater treatment processes are inefficient when it comes to ECs removal,

hence innovative technologies are needed to tackle this problem.

Recent studies have identified WRRFs as potential sources of anthropogenic greenhouse

gas emissions, contributing to climate change and air pollution. During biological wastew-

ater treatment several greenhouses gasses are produced and emitted. CO2 is mainly in-

directly emitted due to the production of the energy required for the plant operation. CH4

is mainly emitted trough the anaerobic digestion process. N2O is intensively emitted dur-

ing the N-removal process. This is problematic, because the global warming potention

of N2O is 298 times greater than that of CO2, which it is why it is the main GHG of con-

cern in WRRFs. Emissions of these gases need to be limited and research on mitigation

strategies is ongoing (Campos et al., 2016).
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2. Literature Review

2.1.3 Innovation in the water industry

The wastewater industry is currently shifting away from energy-intensive wastewater

treatment towards low-energy, sustainable technologies. A recently developed energy-

saving method to remove nitrogen is the anaerobic ammonia oxidation (anammox) pro-

cess. In this process anammox bacteria oxidize the ammonium using nitrite as electron

acceptor under anaerobic conditions without the need for an external carbon source of

the conventional denitrification process (see Table 2.1). Nitrite can be produced through

partial oxidation of ammonia by ammonia oxidizing bacteria known as partial nitrification

or nitrate reduction by denitrifiers known as partial denitrification (Zhang et al., 2019).

By using the anammox process instead of the conventional denitrification/nitrification

process, oxygen demand is reduced by approximately 63%, allowing the WRRF to have a

much lower energy consumption, and the sludge production can likewise be remarkably

reduced by approximately 80%, while the addition of external COD is no longer required

(Gerba and Pepper, 2019). Anammox is difficult to control and therefore the implemen-

tation of anammox technology on full-scale installations is still challenging and subject to

research (Karthikeyan and Joseph, 2007). Next to energy saving technology also energy

production from wastewater is gaining increased attention. Anaerobic digestion (AD) is

a well developed and robust technology commonly used to recover energy from organic

streams. AD is a biological process able to transform organic compounds into biogas,

a mixture of CH4, and CO2. It is often implemented in the sewage sludge treatment to

stabilize the sludge and recover energy in the form of biogas (Silvestre et al., 2015).

The water industry is currently trending towards a circular economy where resources in

the wastewater are recovered. Many valuable resources can be recovered from WRRFs

including nitrogen, phosphorus and heavy metals, but also water itself. Anaerobically

digested sewage sludge is a valuable resource for recovery due to its rich organic mat-

ter and nutrient content, and recent advancements in recovery technology have been

made. The methods can be broadly categorized based on their ability to recover a spe-

cific nutrient or multiple elements simultaneously, with examples including ammonia

stripping, struvite precipitation, ion exchange, membrane filtration, and thermal treat-

ments (Di Costanzo et al., 2021). Nutrient recycling recovers nutrients in the wastewater

as soil amendments or fertilizers for beneficial uses. However, there are also risks asso-

ciated with this technique. The main risks related to agricultural use of sewage sludge

are the potential presence of pathogens and pollutant enrichment in soils, plants and an-
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imal pastures and the subsequent entry into the food (Gianico et al., 2021). Controlled

struvite crystallization is another way of recovering nutrients by precipitating struvite

from sludge digester liquors. Struvite is a phosphate mineral and a slow release fertilizer

rich in magnesium, ammonium and phosphate. It can also be used as a building material

and adsorbent (Li et al., 2019a).

Also water itself can be recoverd from wastewater treatment plants through using waste-

water effluent for different applications. To tackle water scarcity and drought, the Flem-

ish Government created the Blue Deal. It is an ambitious program that addresses water

scarcity and drought through numerous actions. An example of a project being imple-

mented is the investment in five business processes that will use 33.3 million m³ of

treated sewage water as a source of water for process or drinking water in the future

(VMM, 2022). Treated wastewater also has a high potential to be used in agricultural

irrigation. Even though wastewater effluent is an interesting water source for irrigation,

health risks related to pathogen exposure, accumulation of heavy metals, salts, antibi-

otics, growth hormones and other hazardous substances into the soil, etc. need to be

considered and mitigated (Ungureanu et al., 2020). The reuse of effluent in other, less

evident applications like cooling, flushing toilets, ecosystem restoration, etc., is also an

emerging concept (Neczaj and Grosser, 2018).

2.2 Modelling wastewater treatment

Mathematical models are a powerful tool to address current challenges in wastewater

treatment. Models provide a simplified representation of the physical system and can

thus be used to simulate a system’s behaviour under different operational or design

scenarios and for optimization. Models can be used for process understanding, opera-

tion and control, design and diagnosis. Innovations in the water sector also create new

challenges in the operation and control of a WRRF. The purpose of a model will signif-

icantly affect its structure and complexity (Olsson and Newell, 1999). Many different

classifications have been produced for the different model types: mechanistic versus

data-driven models, dynamic versus static models, deterministic versus stochastic mod-

els, etc. (Jeppsson, 1996b).
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2. Literature Review

2.2.1 Difference between mechanistic and data-driven modelling

The most important classification of models for this work is the difference between mech-

anistic and data-driven models. The approach of the two models differs fundamentally.

Mechanistic models, often referred to as white-box models, are based on fundamental

engineering and scientific knowledge about the physical, chemical, and biological mech-

anisms that affect a system, with the relationships themselves defined by modellers and

assumed to be known (Schneider et al., 2022). Data-driven models are often associated

with black-box models, because they are developed using algorithms and other methods

that do not reference fundamental mass, charge and energy balances. However, it is

misleading to consider data-driven models as purely black-box models and mechanis-

tic models as purely white-box models. For example, some mechanistic models used

in wastewater treatment modelling include a variety of Monod-type switching functions

which are mathematically tractable but are not supported with theory, while some data-

driven methods can be transparant, e.g. linear regression or decision trees (Regmi et al.,

2019; Schneider et al., 2022).

In recent decades, engineers have favoured mechanistic approaches for modelling wastew-

ater treatment processes. These models usually simplify the complex processes in the

WRRF, such as aeration, mixing or aggregation of particulates. These type of models

require only limited data-input and have a high interpretability. Mechanistic models have

a pre-defined structure and thus require extensive knowledge about the system (Schnei-

der et al., 2022). They are capable of extrapolating the process performance to a wide

variety of process operating conditions (Hvala and Kocijan, 2020). This type of modelling

requires extensive and time-consuming parameterisation, calibration and validation. Pa-

rameter estimation based on numerical optimization algorithms may lead to non-unique

parameter estimates and many local optima (Hvala and Kocijan, 2020).

A data-driven model is based on empirical relationships between the input and the out-

put (Jeppsson, 1996b). In contrast to mechanistic models, the structure of data-driven

models is directly derived from data and does not require extensive knowledge about

the system. Data-driven models have a low interpretability and have high data require-

ments. They are also limited in extrapolation power (Schneider et al., 2022).

Mechanistic modellers use the term calibration when referring to the parameter identi-

fication process and the term validation to check if the calibrated model is successful

in unseen data. In data-driven modelling, the training phase involves iteratively adjust-
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ing the model’s parameters to minimize the difference between predicted and observed

outputs in the training dataset. The validation dataset is a separate dataset used to eval-

uate the model’s performance during training. In neural networks, validation specifically

focuses on optimizing the model’s hyperparameters for improved performance. Once

the a data-driven model is trained and validated, it can be used in a non-training mode

to process new input of a test dataset, allowing evaluation of its performance on unseen

data.

2.2.2 Mechanistic models

2.2.2.1 Biokinetic process modelling

A generally-accepted mechanistic model for the biokinetic processes in the biological re-

actor of wastewater treatment plants is the family of Activated Sludge Models (ASMs), of

which Activated Sludge Model No.1 (ASM1) is the most commonly used. These models

are suitable to model activated sludge processes, but they can also be integrated with

other models for specific modelling purposes. For instance, they can be coupled with

membrane filtration models to model membrane reactors. (Henze et al., 2000). The

ASM1 was primarily developed to model the removal of organic carbon and nitrogen, but

it also aims to accurately describe sludge production and oxygen consumption (Gernaey

et al., 2004). The model uses a COD based modelling technique where all carbon mate-

rials have been expressed as equivalent amounts of COD, as it provides a link between

electron equivalents in the organic substrate, the biomass and the oxygen used. Organic

carbon compounds and nitrogenous compounds were classified into a limited number of

fractions based on biodegradability and solubility leading to 13 state variables and 8 fun-

damental processes, resulting in 13 mass balance equations with 19 parameters (Henze

et al., 2000). The biokinetic mass balances in the system are described using Ordinary

Differential Equations (ODEs).

In summary, the following processes are considered: the aerobic growth of heterotrophic

biomass uses biodegradable substrate and oxygen as an electron acceptor. In the ab-

sence of oxygen the heterotrophic organisms are capable of using biodegradable sub-

strate with nitrate as the terminal electron acceptor. The process will lead to a produc-

tion of heterotrophic biomass and nitrogen gas (denitrification). Ammonia is oxidized

to nitrate via a single-step process (nitrification) resulting in production of autotrophic

biomass. Ammonia is also used as the nitrogen source for synthesis and incorporated
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into cell mass. Biodegradable soluble organic nitrogen is converted to ammonia (am-

monification) in a first-order process by heterotrophs. Hydrolysis of entrapped organics

and organic nitrogen result in the conversion of particulate organic compounds to readily

available soluble compounds (Jeppsson, 1996a).

Finally, decay of heterotrophic and autotrophic organisms is considered. The ASM1 uses

the death-regeneration hypothesis in an attempt to single out the different reactions

that take place when organisms die. In this hypothesis, decayed cell material is released

again through lysis. One fraction is non-biodegradable and remains as an inert residue

while the remaining fraction is considered to be slowly biodegradable and used for cell

growth (Jeppsson, 1996a). An overview of the ASM1 equations is presented in the Gujer

matrix format.

The ASM1 has been extended by adding new components or processes to the original

model. The Activated Sludge Model No. 2 (ASM2) is an extension of ASM1 and reuses

the same concepts as ASM1. The most remarkable change in ASM2 is that biological

and chemical processes for phosphorus removal are included. The ASM2 contains 19

processes, 19 state variables and 57 parameters. The Activated Sludge Model No. 3

(ASM3) has the same focus as ASM1, but it fixes some shortcomings of the original ASM1

model. For example, endogenous respiration instead of the death-regeneration concept

is used and the storage in cell internal components is included as a process (Henze

et al., 2000). Several extensions to the ASM model family have also been developed to

simulate greenhouse gas emissions of WRRFs, among which the dominant nitrous oxide

(N2O) (Maktabifard et al., 2022; Guo and Vanrolleghem, 2014). The ASM1_AN model is

an extension of ASM1 with anammox and two-step nitrification and denitrification. The

model considers NO2-N as an intermediate model variable and distinguishes the growth

of ammonium oxidizers and nitrite oxidizers (Van Hulle, 2005).

2.2.2.2 Hydraulic modelling

Mixing is a critical process within wastewater treatment plants. The movement of the

biomass caused by aeration and mixing improves the contact of the particles in the mix-

ture. It helps prevent the formation of stagnant, untreated areas within the treatment

system. However, in large reactors of WWTPs, non-ideal mixing frequently occurs leading

to dead zones, shortcuts or mass-transfer limiting conditions. Investigating the mixing

behavior of such tanks is critical in understanding and optimizing the transport of various
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components involved in the process. Hydraulic modelling is used to describe mixing pat-

terns in wastewater treatment tanks. Wastewater treatment processes can be modelled

using simplified hydraulic assumptions such as the Tanks In Series (TIS) approach (Lau-

rent et al., 2014). The TIS model consists of the serial connection of Completely Stirred

Tank Reactors (CSTRs). By increasing the number of tanks, different mixing regimes can

be covered, from perfectly mixed flow (one CSTR) to plug flow (infinite CSTRs) (De Clercq

et al., 1999). Modelling using TIS has been useful to limit the model’s computational

complexity while still describing the mixing behaviour, yet it doesn’t capture complex 3-

dimensional transport-reaction interactions that occur in multi-phase, multi-scale WRRFs

(Laurent et al., 2014).

A more accurate tool for modelling hydraulics is Computational Fluid Dynamics (CFD).

CFD involves solving Partial Differential Equations (PDEs) of continuity, momentum, and

energy related to fluid dynamics in 2 or 3 dimensions using numerical approximations.

The main benefit of using CFD is its ability to predict and visualize the flow pattern, mix-

ing behavior, and other important flow characteristics of various types of fluids in com-

plex geometries with extremely high spatial resolution (e.g. in centimeters). The method

can simulate fluid flow in both 2-dimensional and 3-dimensional domains (Jalilnejad et al.,

2022). CFD is however computationally expensive and therefore is not widely applied for

dynamic modelling of full-scale wastewater treatment processes. Recently, compart-

mental models are also being developed. These are models where several CSTRs are

coupled in a 2-dimensional grid with exchange flows between them. Their structure can

be derived from a CFD model. They have the advantage of being more detailed than TIS

but much less computationally demanding than a full CFD model (Jourdan et al., 2019).

2.2.2.3 Modelling the secondary settling process

The secondary settling process is has a crucial role as it directly influences the effluent

quality and the biomass concentration in the system. The development of a general

settling process model is quite challenging due to the co-occurrence of distinct settling

regimes. A sedimentation model includes both time and space dependence and thus

describes the process using PDEs (Bürger et al., 2011). The SST model is combined with

biokinetic mass balance models composed of ODEs and implemented using numerical

solvers available in common WRRF modelling software. To facilitate this implementation,

the PDE that describes the SST process is discretized into a set of ODEs. To achieve this,

the settling tank is divided into horizontal layers with a uniform concentration within
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each layer. Historically, the most widely adopted model for SST is the model by Takács

et al. (1991). Since then several models have been developed aiming to incorporate

more realistic functions for the different settling regimes or improving the numerical

methods for the PDE (Ramin et al., 2014; Bürger et al., 2011). Among these is the model

developed by Bürger et al. (2011) (BD model). The BD model ensures the solution of

the governing PDE by reliable numerical methods for ODEs. The number of layers can

be set by the user. The model accounts for sludge compression and inlet dispersion

phenomena by adding a compression function (dcomp) and a dispersion function (ddsp)

to the PDE (Equation 2.1). The BD model includes several phenomena in a modular way

instead of trying to lump different phenomena in a single parameter or function.
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∂t
= −

∂

∂z

�

F(X, z, t)
�

+
∂

∂z

�

�

dcomp(X) + ddsp(z,Qƒ (t))
�∂X

∂z

�

+
Qƒ (t)Xƒ (t)

A
∂(z) (2.1)

where X: =X(z,t) is the total solid concentration as function of depth z and time t, F(X,

z, t) is the flux function comprised of both the advective and hindered settling flux. The

feed source term contains the feed flow (Qƒ ), the feed concentration (Cƒ ) and the Dirac

function (∂(z)).

Previous modelling efforts have mainly considered SSTs as nonreactive, but some re-

active settler models have been developed (Bürger et al., 2016; Kirim et al., 2022). A

significant amount of the overall sludge inventory of the WWTP can be stored at the

bottom of the SST. This accumulated sludge mass can turn the bottom of the settling

tank into an additional biological reactor. Within this sludge blanket biological reactions

may occur. Especially denitrification is known to happen when sufficient sludge mass

in present at the bottom of the SST. Reactive settler models combine a SST model with

biological reactions (Kirim et al., 2022).

2.2.3 Data driven models

Data-driven models are particularly successful when dealing with problems involving

large and high-quality data sets. They can be categorised based on their learning algo-

rithms, i.e. supervised, unsupervised, and reinforcement learning. Supervised learning

methods are applied when the data is in the form of input variables and output target

values. The algorithm learns the mapping function from the input to the output. A va-

riety of algorithms, including linear regression, Artificial Neural Network (ANN), Decision

Tree (DT), Support Vector Machine (SVM), naive Bayes, K-Nearest Neighbor (KNN), Ran-
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dom Forest (RF), etc. have been developed. Unsupervised learning is usually used to

handle data without labels. It classifies the training data into different categories ac-

cording to their different characteristics, mainly based on dimensionality reduction and

clustering. Principal Component Analysis (PCA) and K-means are the commonly used

unsupervised machine learning algorithms (Zhu et al., 2022). In reinforcement learning,

an agent learns the optimal mapping of situations to actions (called policy) through a

trial-and-error search guided by a scalar reward signal. During the learning process, the

model receives either rewards or punishments for the actions it performs (Nian et al.,

2020).

2.2.3.1 Artificial neural networks

Research of Bahramian et al. (2022) reports that neural networks are currently the most

popular method for data-driven modelling of wastewater treatment. NNs have many

advantages that make them a tool used in numerous applications. One of the main

advantages of NNs their ability to model nonlinear and unknown dynamics. NNs can

capture functional relationships among the water quality data. Even when the underlying

relationships of obtained data are difficult to describe, ANN models still work. Moreover,

ANNs require fewer prior assumptions and can achieve higher accuracy compared with

traditional approaches (Chen et al., 2020). Other reported advantages of NNs are more

fault tolerance and the ability to work with incomplete data and missing data (Mijwel,

2018). Numerous studies have demonstrated the usefulness of neural networks in the

analysis of time series (Wu et al., 2020; Borovykh et al., 2017).

Several studies have successfully implemented neural networks for modelling wastewa-

ter treatment processes. Research on wastewater treatment using neural networks has

primarily focused on simulation of treatment performance, monitoring and control, and

classification. For instance, in the study by Ráduly et al. (2007), an ANN was trained

on available input-output data from a WWTP to predict the concentrations of effluent

ammonium, total nitrogen, BOD5, COD, and TSS. In the study conducted by Hong et al.

(2007), a neural network approach was developed to estimate nutrient concentrations

in real-time, addressing the issue of delayed measurements. Furthermore, Onkal-Engin

et al. (2005) used a convolutional NN to classify microbeads in urban wastewater.

The central idea of NNs is to extract linear combinations of the inputs as derived fea-

tures, and then model the target as a nonlinear function of these features (Hastie et al.,
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2009). A neural network is a structure of interconnected units or layers of large num-

ber of neurons. Each neuron within the network is capable of receiving input signals,

processing them, and generating an output signal. The output signal is composed of

weighted synapses that determine the strength of connections, an adder that combines

the weighted input data, and an activation function that regulates the output ampli-

tude of the neuron (Zhang et al., 2018). To account for nonlinearities within systems,

it becomes necessary to use nonlinear activation functions. Various types of nonlinear

activation functions exist, some frequently used functions are the sigmoidal (or logistic)

activation function, the hyperbolic tangent function and the nonsigmoidal rectified lin-

ear unit (ReLU) (Pomerat et al., 2019). The first layer of an NN is the input layer and

the last one forms the output layer. In between one or more neuron layers, also called

hidden layers, can be located that act like feature detectors. The number of neurons in

each layer is determined by the desired accuracy in the predictions. The accuracy and

convergence of the different types of NN highly depend on hyperparameters (e.g. the

numbers of hidden layers and neurons in each layer), which are often arbitrarily chosen

Nikbakht et al. (2021).

Neural networks can either be supervised or unsupervised (Park and Lek, 2016). Consid-

ering different characteristics of input data, there exist many different types and struc-

tures of neural networks. Bahramian et al. (2022) reports that feedforward neural net-

works, radial basis function neural networks, recurrent neural networks, convolutional

neural networks, long short-term memory neural networks and Kohonen self-organizing

neural networks are the most popular ones used as stand-alone models in the wastewa-

ter treatment context. Feedforward NNs (FFNNs) were the first type of NN invented. The

name originates from the fact that the information only travels forward in the network,

there are no loops. In Figure 2.2 a simple example of an FFNN is given in which each

circle is a neuron and each arrow is an interconnection between two neurons in which

information is transferred. This type of neural network has a popular structure that has

been used for many applications, and it gives a good performance in many cases. The

Radial Basis Function (RBF) network uses radial basis functions as activation function.

The output of the network is a linear combination of radial basis functions of the inputs

and neuron parameters. RBF networks have the advantages of simple design, good

generalization, and strong tolerance towards input noise. They can be used for various

applications, including time series forecasting (Sharkawy, 2020).
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Figure 2.2: Schematic representation of a feedforward neural network with two neurons in the
input layer, three hidden cells and two neurons in the output layer (Singh and Chauhan, 2009).

Recurrent Neural Networks and Long Short-Term Memory networks

Recurrent neural networks (RNNs) are models that have at least one feedback loop which

allows them to take some context into account in their decision function. Hence RNNs

are able to remember information through time, which make them a useful tool for time

series forecasting (Sharkawy, 2020). They are limited to look back in time for approxi-

mately ten timesteps. This is because the feedback signal vanishes or explodes. Figure

2.3 shows a schematic representation of a simple RNN.

Figure 2.3: Schematic representation of a recurrent neural network (RNN) with two neurons in the
input layer, three recurrent cells and two neurons in the output layer (Shukla and Iriondo, 2020).

Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) address the issues

concerning RNN as they are capable of learning long-term dependencies. LSTM networks

have the ability to remember more than 1 000 time steps, depending on the complexity

of the network’s architecture (Staudemeyer and Morris, 2019). An LSTM network is the

same as a standard RNN, except that the summation units in the hidden layer are re-

placed by memory blocks. Each block contains one or more self-connected memory cells

and three multiplicative units, the input, output and forget gates (Graves, 2012). The in-

put gate controls the input activation flow, the output gate controls the flow of the output
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activation and the forget gate scales the internal state of the cell before it goes through

the self-connection, thereby adapting the cell’s memory. Some modern LSTM blocks also

have peephole connections from the gates to the internal cell state (Sak et al., 2014).

Figure 2.4 provides an illustration of an LSTM memory block with a single cell.

Figure 2.4: LSTM memory block with one cell, with ’f’ the gate activation function ‘f’ and ‘g’ and
‘h’ the cell input and output activation functions. The weighted ‘peephole’ connections from the
cell to the gates are shown with dashed lines (Graves, 2012).

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are often used for processing multidimensional

inputs. CNNs have shown impressive performance in classification tasks such as im-

age recognition, speech recognition and natural language processing (Koprinska et al.,

2018). However, in more recent times, CNNs have gained attention as a valuable tool

for time series forecasting (Wang et al., 2017; Durairaj and Mohan, 2022). A typical ar-

chitecture consists of repetitions of a stack of several convolution layers and a pooling

layer, followed by one or more fully connected layers. A convolution layer performs fea-

ture extraction, which typically consists of a combination of a convolution operation and

activation function. The convolution operation involves applying a small array of num-

bers, called a kernel, across the input. An element-wise product between each element

of the kernel and the input tensor is calculated at each location of the input tensor and

summed to obtain the output value in the corresponding position of the output tensor,

called a feature map. Multiple kernels can be applied to form different feature maps. The

size and number of kernels are important hyperparameters of the convolution operation.

Feature maps are then passed through a nonlinear activation function. A pooling layer
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provides a typical downsampling operation which reduces the in-plane dimensionality

of the feature maps. The output feature maps of the final convolution or pooling layer

is typically flattened, i.e., transformed into a one-dimensional array, and connected to

one or more fully connected layers, also known as dense layers. The activation function

applied to the last fully connected layer is usually different from the others and needs to

be selected according to the goal of the CNN (Yamashita et al., 2018). CNNs have high

potential to predict time series because they have the capability to autonomously learn

and extract features from raw data without the need for prior knowledge or manual fea-

ture engineering. CNNs also learn filters that represent recurrent patterns in the series

and use them to predict future values (Koprinska et al., 2018). They can also be effective

for handling noisy time series by removing noise at each layer and extracting only the

meaningful patterns (Borovykh et al., 2017).

Figure 2.5: An overview of a convolutional neural network architecture and the training process
(Koprinska et al., 2018).

2.2.4 Hybrid models

The application of mechanistic models can be limited due to knowledge gaps or the

(over)simplification of complex processes. There are still some relevant processes which

are not understood clearly enough to be put in a model for use in simulations, such as the

formation of nitrous oxide and the conversions within the biological phosphorus removal

process (due to the variability of phosphate accumulating organism metabolics) (Regmi

et al., 2019). This results in only a partial description of the process or system, which can

be valuable, but often is not robust or resistant to significant changes (Schneider et al.,

2022). On the other hand, the lack of sufficient high-quality data is a limitation for data-
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driven models. Typical wastewater process sensor data and laboratory data are noisy,

contain inconsistent values or biases and are often not available for periods of time or at

the required sampling frequency (Regmi et al., 2019). The advancements in water treat-

ment technology and the shift towards a more circular economy have resulted in a trans-

formation in the water treatment modelling objectives. Water reuse may require more

case-specific quality targets that need more detailed modelling and the digitalisation of

the water sector offers more input data for modelling. This creates an environment an

environment where the use of hybrid models (HMs) becomes increasingly advantageous.

Hybrid models combine mechanistic and data-driven modelling techniques and benefit

in this way from the advantages of the two approaches. Mechanistic models have the

capability to conserve critical process knowledge and maintain extrapolation capabili-

ties, while data-driven approaches are capable of discovering hidden relationships and

patterns that may not be detected by mechanistic models. Regmi et al. (2019) reports

that in the future hybrid models will emerge as dominant methods to model wastewater

treatment processes, which necessitates the collaboration of mathematicians, computer

scientists, systems engineers, and software developers as well as chemical, environmen-

tal and civil engineers, biochemists and biologists.

2.2.4.1 Different architectures

Various architectures have been explored for merging mechanistic and data-driven com-

ponents in hybrid models. Three different architectures can be distinguished: serial,

parallel and surrogate models. In a serial hybrid model, the output of one model is

used as input for the other model (Schneider et al., 2022). Generally, the output of

the data-driven model is used as the input for the mechanistic model since the data-

driven component is capable of predicting dynamics that are not accurately modelled by

the mechanistic component, such as poorly defined reaction kinetics (Lee et al., 2002).

The parallel architecture is a suitable option when assigning the missing knowledge to

a specific (sub)process becomes challenging or when delineating this subprocess is dif-

ficult. In cases where the structure of the mechanistic model is inaccurate, the parallel

arrangement can have a better performance than the serial arrangement, as the parallel

data-driven model can partially compensate for any structural mismatch in the mech-

anistic model (Von Stosch et al., 2014). One way to make parallel hybrid models is to

train the data-driven component to learn the residuals between the mechanistic model

and historical data, after which the results are fused (Anderson et al., 2000). In another
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type of parallel hybrid models, both mechanistic and data-driven models are trained

to make predictions, after which the results are weighted and combined (Peres et al.,

2001). Lastly, surrogate models are data-driven models that are trained on the output

of a mechanistic model to create a computationally more efficient model, allowing rapid

and/or large-scale simulations.

Once the model architecture has been defined, the parameter values for each compo-

nent can be identified, either independently or in conjunction (Schneider et al., 2022).

2.2.4.2 Current use of hybrid modelling in wastewater treatment

Around 10-20 years ago, there was an increase in the number of papers on hybrid mod-

elling, which coincided with the growing popularity of data-driven methods. Hybrid mod-

els have proven useful in a number of applications within the field of wastewater treat-

ment. For example, dynamic influent data is a major bottleneck for applying ASMs to

evaluate the design and operational scenarios for WRRFs. Hybrid models have emerged

as effective solutions to address this problem, by developing influent generators focusing

on the wastewater dynamics at the entrance of WRRFs, which can be coupled with ASMs.

Different influent generator models using different data-driven methods have been de-

veloped to predict the incoming flow rate and pollutant loads to WRRFs (Zhu et al., 2015;

Flores-Alsina et al., 2014). Hybrid models also demonstrate their usefulness in the de-

velopment of soft-sensing models. Soft-sensing models, often data-driven, can predict

variables that serve as input information to controllers, which are used in conjunction

with ASM models (Wang et al., 2022). As a result, soft-sensing models are valuable in

the effective operation of advanced control systems. The implementation and advance-

ment of hybrid models also have the capacity to encourage and enhance the effective

deployment of digital twin technology in WRRFs (Torfs et al., 2022). The study conducted

by Lee et al. (2002) provided a proof of concept for the effectiveness of parallel hybrid

modelling in improving the prediction of process variables. However, there is a scarcity

of subsequent research that delves deeper into the application of parallel hybrid mod-

elling, particularly in the context of full-scale wastewater treatment plants. Serial hybrid

modelling, in which where a data-driven model is developed of a subprocess that is less

well-described and subsequently integrated in the overall mechanistic model, has been

relatively underexplored in the literature. Despite its potential advantages, there is a

scarcity of studies investigating this approach in depth.
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2.2.4.3 Challenges for hybrid models

The hybrid modelling of wastewater treatment processes encounters various critical

challenges that need corresponding development efforts. The availability of Good Mod-

elling Practice guidelines for the development of mechanistic models is well-established

(Rieger et al., 2012). The integration of hybrid modelling paradigms into existing frame-

works for WRRF modelling raises important considerations regarding the extension of

existing protocols. A comprehensive protocol for developing hybrid models should ad-

dress critical questions. For instance, it should outline how to effectively couple a data-

driven model with a mechanistic model. Another crucial aspect is determining which data

should be used to construct each model: should the same data be used to determine the

parameters of both the mechanistic and data-driven methods?

A second challenge for hybrid models is the fact that uncertainty arises from both the

mechanistic and data-driven components. However, previous studies often lack the

quantification of uncertainty, limiting the assessment of trust in hybrid models. Dynamic

quantification of uncertainty is essential to fully establish the potential of hybrid models.

A third challenge for using hybrid models is the task of balancing complexity between

the mechanistic and data-driven components. One aspect to address regarding this

challenge is the effort required for calibration of the mechanistic model compared to the

data-driven model. Another important aspect is determining the acceptable level of error

that can be compensated by the data-driven model.

A fourth challenge encountered when developing hybrid models is the possibility of ob-

taining inaccurate output from the data-driven component, necessitating the need to

address data quality issues to ensure reliable results.

Selecting the suitable architecture for constructing hybrid models presents a fifth chal-

lenge in the development of hybrid model. It is important to ascertain the specific

purposes for employing parallel models and sequential models. Identifying the most

effective data-driven models for distinct purposes is also crucial in achieving desired

outcomes.

Finally, for using hybrid models to their full potential as a standard practice there is a

need for compatible platforms or Application Programming Interfaces (APIs) to be able

to connect the mechanistic and data-driven parts of the model.

In this thesis, the first, third and fifth challenges are addressed (Section 3).
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3. RESEARCH OBJECTIVES

This thesis aims to investigate the potential of different hybrid modelling architectures

to improve the predictive power of wastewater treatment plant models. The study is

performed based on the pilot-scale wastewater treatment plant. In previous research,

a mechanistic model was developed for a pilot-scale wastewater treatment plant. How-

ever, accurate effluent quality prediction remains a challenge in this model. The objec-

tives of this thesis are:

1. To explore the feasibility to develop a parallel hybrid model for enhancing effluent

quality prediction in the wastewater treatment plant.

2. To explore the optimal model structure of the data driven component by comparing

the performance of a parallel hybrid model with a Long Short-Term Memory Re-

current Neural Network (LSTM-RNN) as data-driven component and parallel hybrid

model with a Convolutional Neural Network (CNN) as data-driven component.

3. To explore best practice in setting up parallel hybrid models with respect to calibra-

tion and training efforts between the mechanistic and the data-driven component.

4. To investigate the suitability of using a serial hybrid model to forecast the oxygen

transfer coefficient (KL), as well as the corresponding Dissolved Oxygen (DO) out-

put to improve the predictions of oxygen needs in the system.
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4. MATERIALS AND METHODS

4.1 PilEAUte WRRF

In this study, a hybrid model is developed for a pilot-scale WRRF at Université Laval,

called pilEAUte. A scheme of the plant setup is shown in Figure 4.1. The pilEAUte receives

domestic wastewater from the student residence and kindergarten, and rainwater from

a parking lot. The water is transferred from the campus sewer system to the plant’s

inlet via a pumping station, which also shreds the large particles present in the raw

wastewater. The water is pumped to a storage tank with a volume of 5 m3 where the

influent is homogenized. After equalization, the wastewater is directed to a primary

settler with a flow rate of 1.1 m3/h. The primary settler is designed to allow gravity

settling of particles in the wastewater and has a volume of 2.8 m3. A Y-strainer with a

7/8-inch mesh size is installed on the pipe between the store tank and the primary settler.

Its purpose is to screen large solid particles from the influent wastewater, protecting the

pump. All pumps in the pilEAUte plant are equipped with Variable Frequency Drives

(VFDs) to adjust flow or pressure according to demand. The primary effluent is conveyed

to two biological reactors called pilot and co-pilot which are operating in parallel with a

flow rate of 0.5 m3/h. If there is an excessive amount of primary effluent that cannot be

processed by the biological reactors, it is discharged into the sewer system along with

the waste primary sludge.

Figure 4.1: Scheme of the pilEAUte WRRF at Université Laval.
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Each biological reactor has an identical design and is equipped with a pre-denitrification

configuration, enabling them to effectively remove carbon and nitrogen. Within each

biological reactor, there are two anoxic basins equipped with mechanical stirrers, three

aerobic basins, and a secondary clarifier. The aerobic basins are aerated with com-

pressed air via diffusers at the bottoms of the tanks. It is possible to control the aeration

flowrate for each basin through mass flow controllers based on the DO-concentration in

basin 4. The DO setpoint in basin 4 is set to 3 mg/L. Each basin is equipped with individ-

ual air flow lines, which can be adjusted using ratio controllers. The biological reactors

both have an internal recycle system that circulates water from the last basin back to

the first basin to sustain pre-denitrification, with an internal recycle flow rate of 1.5 m3/h.

Additionally, a sludge recycle loop transfers thickened sludge from the secondary clar-

ifiers to the first basins to maintain an optimal mixed liquor concentration, with a flow

rate of 0.5 m3/h.

A waste flow rate from the bottom of the secondary clarifiers is controlled to ensure a

sufficient sludge age for the growth of nitrifiers. The effluent and sludge wastage of the

secondary clarifier are discharged back to the sewer system. Under standard operational

conditions, the inflow from the biological reactors to the secondary clarifiers is 1.0 m3/h.

Each of the secondary clarifiers has a volume of 2.8 m3. The clarifiers have a height of

2.5 m, with the feeding point situated 1.1 m above the bottom where the conical shape

begins. To facilitate sludge transportation to the bottom, the conical part is equipped

with a rotating chain that operates on an hourly basis.

The pilEAUte gathers monitoring data through two data acquisition systems: SCADA and

monEAU. All data, including their metadata, from these sources is automatically archived

in a comprehensive SQL database known as datEAUbase. The pilEAUte is monitored with

sensors at the outlet of the primary clarifier, the biological reactors, the recycle streams

and the outlet of the secondary clarifiers. All sensors have a sampling frequency of 1

minute, except for the RODTOX sensor, which can make a measurement every 5 seconds.

An overview of the pilEAUte online monitoring system is given in Table 4.1.
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Table 4.1: Online monitoring equipment of pilEAUte (Kirim, 2022).

4.2 Mechanistic model

A pre-existing mechanistic model created by Kirim (2022) is used in this study to create

a hybrid model (Figure 4.2). The model was developed in the software platform WEST

2017 (DHI, 2017). The pilEAUte operational data for the time period February 1st - March

31st 2018 was chosen to set-up the model since this period reflects the normal oper-

ational conditions in terms of flow patterns. The raw monitoring data was subjected
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to the univariate data validation method developed by Alferes and Vanrolleghem (2016),

and further processed using outlier detection and data smoothing filters before modelling

(Alferes and Vanrolleghem, 2016; Philippe, 2018). The time periods used for the different

mechanistic modelling purposes are presented in Figure 4.3. An input file is generated

to be used as influent data in the mechanistic model that includes the influent flow rate,

total COD (CODt), soluble COD (CODs), and ammonium (NH4-N). Prior to incorporating

these inputs, a full influent fractionation was performed. For the fractionation of COD,

a backward calculation was done between the effluent and influent of the primary clari-

fier to be able to apply the influent COD fractionation study for the pilEAUte by Li et al.

(2019b), resulting in the fractionation of COD into inert particulate COD (X), biodegrad-

able COD (Xs), inert soluble COD (S), and readily biodegradable COD (Ss). Since NH4-N

is the only parameter that is measured at the primary effluent, an influent total nitro-

gen fractionation was performed to determine the ammonium nitrogen (SNH), soluble

organic nitrogen (SND) and the particulate organic nitrogen (XND). Since continuous alka-

linity data is not available for the influent, the influent alkalinity is calculated based on

the measurements from the influent ammonium sensor. In order to perform simulations,

the mechanistic model also requires input data including the measured temperature in

basin 4 and the sludge waste flowrate in the secondary settling tank.

Figure 4.2: The mechanistic model layout of the pilEAUte WRRF developed in WEST by Kirim
(2022).

Figure 4.3: Timeline with the time periods used for the different mechanistic modelling purposes.

The initial phase of model calibration involved performing a hydraulic characterization

of the plant and calibrating the hydraulic model. This step was particularly crucial due
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4. Materials and methods

to significant backflows observed between the different basins of the biological reactors.

The wastewater normally flows from basin 1 to basin 5 in the plant. However, the baffles

between basins 4 & 5, basins 2 & 3 and also basins 1 & 2 were insufficient in effectively

separating the reactors when aeration is on in the tanks, resulting in significant and

undesirable backflows. Due to significant backflows occurring between basins 4 & 5,

it was necessary to treat these basins as a single fully mixed reactor. Two tracer test

were conducted for standard operational conditions (serving as a reference) and step-

feed operational conditions (involving the feeding of influent and internal sludge recycle

to basin 3). The results of the hydraulic model for both tracer tests can be found in

Appendix A. The final hydraulic model incorporates a Tanks In Series (TIS) configuration

with five Continuously Stirred Tank Reactors (CSTRs). The flow rates of the backflows

between the basins were determined using data from tracer tests and integrated into

the final model set-up.

The pilEAUte model implemented in WEST describes each basin as an ideally mixed, acti-

vated sludge tank with constant volume. The oxygen transfer coefficient is the key factor

for characterizing aeration and the transfer of mass between gas and liquid phases. The

air flowrate is the only measured variable in the pilEAUte’s biological reactors that allows

for quantifying aeration in the actual system. So, the air flow rate is used for calibrating

the aeration model. This calibration involves adopting a correlation between the oxygen

transfer coefficient (KL) and the air flow rate (Qair) to predict aeration in the pilEAUte

model:

KL =
ρ∗Qr ∗OTE

(β∗ SO,st − SO)∗ V
⇒

KL
ρ∗OTE

(β∗SO,st−SO)∗V

= KL ∗ G = Qr (4.1)

where ρ is the density of air, β denotes a correction factor for the oxygen saturation,

SO,st and SO are the standard oxygen saturation and the dissolved oxygen concentra-

tion in the aerated tank and V is the volume of the tank. The "G" conversion factor is

dermined to be 1.9 by comparing the calculated air flowrate with the measured values.

In the pilEAUte’s actual system, dissolved oxygen is controlled with a setpoint of 3 mg/L

in Basin 4 by adjusting the air flowrate, and the same air flowrate is applied to all basins.

To incorporate this into the model, a proportional-integral controller is used to regulate

the KLa in Basin 4, with a DO setpoint of 3 mg/L. The model uses the inverse relation-

ship between reactor volume and KL, and ratio controllers are employed to adjust the

aeration in Basins 3 and 5 based on the KL in Basin 4. For the secondary clarifier, a

one-dimensional reactive settler model was used based on the Bürger-Diehl framework

including hindered settling and compression processes (Kirim et al., 2022).
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The ASM1_AN biokinetic model, an extension of ASM1, was used as the biokinetic model

because in the research goal of Kirim (2022) was to investigate process optimization sce-

narios and applicability of short-cut N removal processes. For calibration of the biokinetic

parameters, stepwise Monte Carlo-based calibration methodology inspired by Mannina

et al. (2011) was followed and 1-month of online data with a 1min interval was used.

The calibration of the biokinetic model used operational data from the biological reac-

tors, including air flowrate, dissolved oxygen, and TSS concentrations. Additionally, TSS

concentration in the sludge recycle stream was taken into account, after the data was

adjusted by considering the TSS mass balance around the secondary clarifier. Also efflu-

ent NH4-N and NO3-N were used in the model calibration process. The ASM1_AN model

has 51 model parameters and 27 model parameters including, all the kinetics, were se-

lected after a pre-selection procedure based on engineering expertise and the available

data. A local sensitivity analysis was applied to determine the influential model parame-

ters, after which 17 model parameters were selected for calibration. Prior to calibration,

three different parameter subsets were selected, each focusing on a different group of

output variables in the calibration procedure. The next step involved the group calibra-

tion of the model parameters, where each subset of parameters was calibrated based on

the model outputs and objective function by carrying out Monte Carlo simulations. Pa-

rameter sampling was performed using Latin Hypercube Sampling. The final calibrated

parameter values can be found in Table 4.2.

The calibrated model results for nitrate and ammonium nitrogen for the calibration and

validation period can be found in Appendix B. The validation period indicated that the

model lacks predictive power for effluent nitrate. The order of magnitude is the same for

most of the validation time period for effluent nitrate, but significant differences were

observed for a few days. A more detailed description of the mechanistic model can be

found in the PhD thesis by Kirim (2022).

4.3 Data-driven models

4.3.1 Data preprocessing

The data preprocessing and the data-driven model set-up was performed using Python

(version 3.9.13, Van Rossum and Drake (2009)), Jupyter Notebook (version 6.4.12, Kluyver

et al. (2016)) and the packages pandas (version 1.4.4, McKinney et al. (2010)) and
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4. Materials and methods

Table 4.2: Calibrated biokinetic model parameter values (Kirim, 2022).
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NumPy (version 1.21.5, Oliphant et al. (2006)). The input variables used for the data-

driven models are outlined in Section 5.1.1. The preprocessing of the input variables

was already carried out in Kirim (2022) prior to developing the mechanistic model. Prior

to conducting the training process, the input dataset undergoes standard scaling using

the "StandardScaler" from the sklearn preprocessing module (Equation 4.2). To reduce

the computational burden, the input data set is downsized by subsampling data points

at 10-minute intervals from the original 1-minute interval. This downsampling process is

achieved with the "interp" function from the NumPy package in Python, which performs

a one-dimensional linear interpolation. The measurements used for comparison with the

results are also downsampled using this method. The data splitting method is explained

in Section 5.

z =
 − μ

σ
(4.2)

in which z represents the scaled value of the variable , μ represents the mean of  and

σ represents the standard deviation of .

4.3.2 Neural network set-up

In this research, hybrid models are created by combining neural networks with the mech-

anistic model. For the development of the neural networks, the Keras library (version

2.11.0, Chollet et al. (2015)) from the package TensorFlow (version 2.11.0, Abadi et al.

(2016)) was used. In order to connect the neural network models developed in python to

the mechanistic model, the WEST Tornado kernel is called through the command line in-

terface. This allows the python scripts to interact with an already compiled WEST model

in an autonomous way for various tasks including simulation execution, model parame-

ter adjustment and running scenario analysis. To do this, a windows batch file is created

that includes the necessary commands to set the appropriate path to the Tornado kernel

library and execute the XML file associated to the WEST model.

In this research, LSTM-RNN and CNN are used as data-driven components of the hybrid

models due to their effectiveness in handling time series data. The input data is reshaped

into a 3D matrix to align with the required format for LSTM-RNNs and one-dimensional

CNNs. The first dimension of this matrix is the number of time series data points that

are used for training, validating or testing the model, also called samples. The second

dimension is the number of previous steps that should be taken into account, this number
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4. Materials and methods

of time steps is considered as a model parameter that needs to be optimized. The

third dimension is the number of input variables. The neural networks are trained on

a training dataset, the hyperparameters are determined using a validation dataset, and

the performance is evaluated using a test dataset. The following hyperparameters of the

LSTM-RNN and CNN are optimized:

• Time steps: The number of time steps taken into account is also considered as an

hyperparameter that needs tuning, as mentioned before.

• Number of layers: Optimized between 1 to 5 layers.

• LSTM hidden units: Optimized for each LSTM layer.

• CNN kernel size and filters: Optimized to determine the dimensions of the convolu-

tional filter and the number of filters applied to the input data.

• Activation function: Chosen per layer (ReLU or tanh) to introduce non-linear trans-

formations.

• Epochs: Optimized for each neural network to determine the number of times the

entire dataset is passed through during training.

• Learning rate: Optimized to control the step size at which the optimizer adjusts

the model’s parameters during training, with the Adam optimizer used in this case

(Kingma and Ba, 2015).

• Loss function: Chosen between Mean Absolute Error (MAE) and Mean Square Er-

ror (MSE) to measure the discrepancy between predicted and actual values during

training.

• Batch size: Selected for each constructed neural network, this defines the number

of samples processed per iteration during training

To overcome the potential of overfitting a drop-out rate of 0.1 was chosen between each

layer of the neural networks. This drop-out rate indicates what fraction of the neurons

should be dropped (ignored) during the training of the model. In the initial trial, the hy-

perparameters of the neural networks were optimized using a random search tuner with

the KerasTuner framework (O’Malley et al., 2019). This approach involves automatically

exploring different combinations of hyperparameter values within predefined ranges to

find the configuration that minimizes the validation loss. However, neural networks are
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inherently stochastic in nature due to factors such as the random initialization of weights

in neurons, which still led to large variations in model performance across different train-

ing runs, and no optimal parametersets were found using this procedure. It was decided

to use a manual hyperparameter optimization approach. Manual optimization allows for

a more thorough exploration of hyperparameter space by trying out a variety of random

values for each hyperparameter and observing their impact on the validation loss. By

systematically testing different values for each hyperparameter, the hyperparameterset

that yields the lowest validation loss was determined for every developed neural net-

work. For every neural network, the MAE was selected as optimal loss function and a

batch size of 64 was selected. The final values of the other hyperparameters for every

developed neural network are reported in Section 5. The Root Mean Square Error (RMSE)

is used to evaluate the performance of the computed models, with

RMSE =

√

√

√

√

1

n

n
∑

=1

(y − ŷ)2 (4.3)

where ŷ represents the model prediction value, y represents the measurement value,

and n represents the number of data points.
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5. RESULTS AND DISCUSSION

5.1 Parallel hybrid modelling

The work of Kirim (2022) revealed that despite an extensive and thorough calibration pro-

cedure, the mechanistic model of the pilEAUte plant still exhibits limited predictive power

for effluent nitrate. This limitation was the driving force behind investigation undertaken

in this work, aiming to explore the potential and identify an optimal methodology for de-

veloping a parallel hybrid model. The purpose of this hybrid model is to compensate for

the missing information in the mechanistic model by incorporating additional information

and ultimately enhancing the overall predictive power of the model.

5.1.1 Model set-up

In the first part of this study, parallel hybrid models are developed to address inaccura-

cies in predictions made by the mechanistic model. To create the parallel hybrid models,

both LSTM-RNNs and CNNs are trained to predict the residuals between the mechanistic

model outputs and the measurement data for effluent nitrate and TSS. The predicted

residuals are then added to the mechanistic model outputs. This approach is motivated

by the potential presence of valuable dynamic information within the residuals, and the

neural networks are expected to uncover this information by learning patterns in the

residuals. The input data used to train the NNs consists of the mechanistic model out-

put of effluent nitrate or TSS, the measured air flow rate in basin 4, and the measured,

non-fractionated variables that are also fed to the mechanistic model: temperature in

basin 4 and influent CODt, CODs, TSS and NH4-N. Additionally, the input data for the

neural network includes measurements of pH in the influent. The influent flow rate and

sludge waste flow were not included as inputs for the neural network. This is because

the influent flow rate is kept constant at 12 m3/d and thus does not provide useful infor-

mation for the data-driven model. The sludge flow rate only varies in the long term, so

its effect is expected to be primarily seen over a very long period, which is why it was

also not included. On the other hand, the Mixed Liquor Suspended Solids (MLSS) in basin

2 was measured in the pilEAUte and shows significant fluctuation over the used time
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period. This variable would be interesting to include in future studies as it could provide

valuable information for the NNs. The graphs in Appendix C present the input data for

the neural networks throughout the entire modelling period. A diagram of the parallel

hybrid network for effluent nitrate can be found in Figure 5.1.

Figure 5.1: Overview of a parallel hybrid model developed to predict effluent nitrate.

5.1.2 Parallel hybrid modelling for improved effluent nitrate

predictions

5.1.2.1 Parallel hybrid model using LSTM-RNN and CNN - a comparative

analysis

Parallel hybrid models have been established using various approaches to address spe-

cific research objectives. The first objective is to assess the difference between using

an LSTM-RNN and a CNN as a data-driven component of the parallel hybrid model. Both

types of neural networks are known to perform well for time series prediction. However,

it would be valuable to determine how effectively they work in combination with a mech-

anistic model and which type excels in terms of information extraction in this specific ap-

plication. To examine this, both an LSTM-RNN and a CNN architecture were established

to model the residuals between the effluent nitrate output generated by the mechanistic

model and the measured effluent nitrate. Subsequently, the predicted residuals were

added to the mechanistic effluent nitrate outputs. The NNs are trained and validated

using the calibration dataset of the mechanistic model. The neural network training is
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5. Results and discussion

Table 5.1: Final hyperparameter sets for a LSTM-RNN hybrid model and a CNN hybrid model
trained on the calibration dataset of the mech. model for effluent nitrate.

Prediction Network
Time
steps Structure details

Learning
rate
Adam
optimizer

Epochs

NO3 LSTM-RNN 30
Number of layers: 1

0.0005 75Units: 10
Activation: ReLu

NO3 CNN 30

Number of layers: 1

0.00005 200
Filter: 12
Kernel size: 9
Activation: ReLu

conducted using the largest portion of the calibration dataset (78%). A smaller portion

of this dataset (22%) is reserved for validating the neural network to determine the op-

timal neural network structure and parameter values. The NNs also generate outputs

for a test period, for which the validation dataset of the mechanistic model is used. The

data splitting approach can be found in Figure 5.2. Appendix C contains boxplots of the

neural networks’ input data for each variable during each period. The Table 5.1 con-

tains the final set of hyperparameters determined for each neural network used in this

experiment.

Figure 5.2: Timeline with the time periods used to develop a parallel LSTM-RNN hybrid model and
a parallel CNN hybrid model for effluent nitrate.

Figure 5.3 shows the outputs of the hybrid model using LSTM-RNN and the hybrid model

using CNN compared to the mechanistic model outputs and the measured values for

effluent nitrate during the training, validation and test periods. The computed RMSE val-

ues for the training, validation and testing period for this experiment can be found on the

timelines in Figure 5.4. The optimal parameter value for the number of past time steps to

consider is determined to be 30 for both CNN and LSTM-RNN, with each step represent-

ing a duration of 10 minutes. This implies that the neural networks effectively analyze

the preceding 5-hour period to predict a residual value. It is interesting to compare this

time interval with the Hydraulic Retention Time (HRT), which represents the average res-

idence time of wastewater within a biological reactor, thereby determining the contact
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duration between pollutants and microorganisms (Von Sperling, 2007). The average HRT

in the pilEAUte WRRF typically falls within the range of 10 to 15 hours. Additionally, it is

worth considering the Solids Retention Time (SRT), which denotes the average duration

that activated-sludge solids remain in the system. The SRT is longer than the HRT and

can range from days to weeks, depending on various factors within a WRRF.

Figure 5.3: LSTM-RNN hybrid model output and CNN hybrid model output compared to mechanis-
tic model output and measurements for effluent nitrate for the train, validation and test period.
The NNs are trained on the calibration dataset of the mech. model.

Figure 5.4: Timeline with the RMSE per time period (Tr=train, V=validation, Te=test) used to
develop a parallel LSTM-RNN hybrid model and a parallel CNN hybrid model for effluent nitrate,
compared to the RMSE of the mechanistic model in these periods.
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5. Results and discussion

Based on visual assessment, the effluent nitrate outputs of the hybrid model incorporat-

ing LSTM as the data-driven component reveal the following findings. The output of the

LSTM hybrid model during the training period demonstrates satisfactory performance,

capturing the appropriate dynamics for the majority of the period. However, on day

25 and day 34 the HM output still shows peaks that didn’t occur in the measurements.

During the validation period, the hybrid model’s output is less accurate, occasionally

aligning closer to the measured values but it overall fails to reproduce the correct dy-

namics. The LSTM hybrid model’s performance deteriorates during the test period. The

model incorrectly predicts peaks that are not present in the measured data, for exam-

ple from day 47 to 51, and fails to capture the underlying dynamics entirely during this

period. These findings are supported by the results for the RMSE, with the RMSE of the

LSTM hybrid model during the test period being higher than the RMSE of the mechanistic

model. During the development of the LSTM HM, it was observed that the predictions

generated by the LSTM exhibited substantial variability. Even when training the LSTM

multiple times with identical hyperparameters, there was considerable variation in the

results during each subsequent testing phase. There are several potential factors that

can account for the observed phenomena. One possible explanation is that the LSTM’s

ability to extract meaningful dynamics from the residuals during the training phase may

be insufficient. According to the findings of Lowe et al. (2022), training of LSTM requires

large and diverse datasets making the training process difficult. This limitation could

hinder its performance during subsequent validation and testing phases. Insufficient

performance of the model could also be attributed to the fact that the model might not

have been properly set-up, by which the LSTM fails to gather the necessary informa-

tion required for making accurate predictions. Other possible factors of the insufficient

performance of this hybrid model are discussed below.

The hybrid model using CNN as a data-driven component clearly outperforms the mech-

anistic model during the NN training period and successfully captures the underlying

dynamics during the first half of the training period, except for the peak on day 25. How-

ever, the dynamics of the second half of the training period are captured to a somewhat

lesser extent. The CNN outputs for the training period exhibit slightly lower performance

compared to those of the LSTM, as reflected in the corresponding RMSE values. Through-

out the validation period, the output of the hybrid model with CNN shows reduced accu-

racy. The CNN HM does not achieve the level of accuracy necessary to fully capture the

precise dynamics. The CNN HM output is closer to the measurements compared to the
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mechanistic model during this period, but the LSTM HM performs slightly better than the

CNN HM, which is again reflected in the RMSE values. During the test period, the pre-

dictions of the hybrid model with CNN outperforms the hybrid model with LSTM-RNN and

the mechanistic model, also reflected in the observed RMSE values. The hybrid model

with CNN shows a capability to capture specific dynamics to some extent. An example

of this is observed in the HM outputs during the period around day 51-53, where despite

not accurately reproducing the correct order of magnitude, it manages to capture the

underlying dynamic in the effluent nitrate. This suggests that the CNN HM has learned a

structural pattern related to this specific behavior. However, it is crucial to acknowledge

that the CNN HM still faces challenges in accurately representing the dynamics present

in the test dataset, as indicated by the observed RMSE. These findings emphasize that

while the CNN hybrid model shows improvement, it has not yet reached the desired level

of accuracy required to fully capture the nuances of the system’s dynamics.

The observed outcomes of the two model could be ascribed to several potential factors.

A possible explanation to consider is that the training data may not be entirely represen-

tative of the test dataset. For example, in the input data for the neural network, there is

an influent stop around day 48-50 during the test period, which also affects other mea-

sured variables such as Qair, CODt and CODs (Appendix C). The boxplots of the input

data for every time period show that the values for CODs, CODt and NH4-N for the test

period are overall slightly lower than those in the training and validation periods. Also

the Qair is slightly lower and has wider range of variation. However, considering the

overall lack of significant differences in the boxplots across the three periods, it can still

be concluded that the training period is representative for predicting the test period. An-

other potential explanation for the observed phenomena could be a lack of a structural

relationship between the neural network’s inputs and the residuals. The absence of a

clear and consistent relationship could inhibit the neural networks of generating reliable

predictions during periods on which they are not trained. The lack in prediction power

during the test period could also potentially be attributed to overfitting of the NN to the

training period, despite the inclusion of regularization parameters in the neural network

structure. The HM outputs exhibit some noise, particularly during the training phase.

However, considering that the latter half of the calibration period also presents subopti-

mal performance, the likelihood of overfitting is relatively low in this scenario. It is less

likely that the prediction method alone is the primary cause of the issue. In the subse-
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5. Results and discussion

quent discussion, supporting evidence and explanations will be provided to elaborate on

the reasons behind the aforementioned statement.

To verify the validity of the employed methodology to develop parallel hybrid models,

two additional experiments were conducted. The discussed methodology of this thesis

was applied to a confidential dataset, for which the results cannot be presented due to

confidentiality constraints. This confidential dataset was already used in an independent

study conducted by an external researcher that successfully developed a parallel hybrid

model to predict residuals. The external research showed an increased accuracy of the

parallel hybrid model outputs for effluent nitrate relative to the outputs of the mecha-

nistic model. Thus, the methodology employed to create a parallel hybrid model in this

thesis (outlined in section 4.3) is tested on the confidential dataset to evaluate its effec-

tiveness in achieving more accurate outputs for effluent nitrate. The results for the train-

ing and validation periods exhibit significant improvements compared to the mechanistic

model outputs. However, the most significant observation is that in this experiment, the

test period is accurately predicted, demonstrating the ability of the method to capture

the underlying dynamics effectively.

In the aforementioned external research, the MATLAB toolbox ’Regression Learner App’

was employed to construct the data-driven component of the parallel HM (version 2021b,

(MathWorks, 2022)). The Regression Learner App trains regression models to predict

data. The application can be used to perform automated training to search for the best

regression model type, including linear regression models, regression trees, Gaussian

process regression models, support vector machines, kernel approximation models, en-

sembles of regression trees, and neural network regression models. As a second exper-

iment to verify the validity of the employed methodology, the Regression Learner App

was used to develop a parallel hybrid model aimed at predicting the residual of effluent

nitrate, using the pilEAUte plant data from the current study. This predicted residual

was then added to the outputs of the mechanistic model. The results of this experiment

indicate that even with this approach, the prediction of effluent nitrate in the test period

remained poor. This strongly suggests that the cause of the inadequate prediction in the

test period lies not in the methodology of this study itself.

LSTM-RNNs are typically used to predict time series due to their ability to capture long-

term dependencies in sequential data. However, in this study, the model fails to ef-

fectively learn meaningful patterns from the input data during the training phase. The

LSTM-RNN struggles to capture and represent the underlying patterns and dependencies
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present in the time series data. As a result, when faced with the test data, the model

lacks the necessary knowledge and context to accurately recognize and predict patterns

in the residuals. This observation is noteworthy because the existing literature suggests

that LSTM-RNNs perform well as data-driven components in hybrid models, as for ex-

ample demonstrated in study of Dong et al. (2023). It is possible that the dataset is

not large and diverse enough for the LSTM-RNN to learn something useful in this study.

On the contrary, the hybrid model with CNN as data-driven component is able to detect

some dynamics in the residuals during the test period, however the predictive perfor-

mance of the model still falls short of achieving high levels of accuracy. The CNN has the

ability to concentrate on important time serie features and can extract these features

through its own learning process. The convolution filter in CNN can be useful for identify-

ing patterns at different time scales or detecting specific events in the time series. This

was also confirmed by Wang et al. (2019). The training process of the LSTM-RNN model

is also observed to be slower compared to that of the CNN. As CNN outperformed LSTM-

RNN as data driven component of the hybrid model, the decision was made to employ

the CNN architecture for the next part of the study.

The results of this experiment could indicate that training a data-driven component of a

hybrid model on the calibration period of the mechanistic model may not be a good idea,

since both LSTM and CNN became tuned to the specific characteristics of the error of the

calibration period, resulting in reduced ability to make accurate predictions for other pe-

riods. To set-up the mechanistic model, an extensive and thorough calibration procedure

was executed. Hence, it raises the question of whether there is still enough relevant

structural information left in the residual of this calibration period for the data-driven

models to capture. Additionally, the question arises to what extent the missing dynam-

ics and knowledge in the output of the mechanistic model are already compensated for

by the calibration itself. If indeed the residuals of the calibration period in the mechanis-

tic model output contain minimal or no relevant structural information, and the missing

dynamics and knowledge during this period are already compensated for by the calibra-

tion process, the data-driven component faces a challenging task to perform effectively.

It must successfully tackle two objectives in order to accurately predict in unseen time

periods: 1) recognize and compensate for the overfitting of the mechanistic model, and

2) incorporate the missing dynamics. These requirements are demanding, and there is

a realistic possibility of failure of the data-driven component to predict accurately in this

case.
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5.1.2.2 Balancing calibration efforts

To investigates the balance between calibration effort for the mechanistic model and ac-

ceptable compensation by the neural network component, two additional experiments

are executed. In a first experiment, the goal is to examine the difference between train-

ing the neural network component of the parallel hybrid model on the calibration dataset

of the mechanistic model and on an independent validation dataset. The focus is to un-

derstand the difference in information contained within the residuals of both datasets

and to determine what the best approach is to create parallel hybrid models. So, a CNN

is trained and validated on the residual of the calibration dataset of the mechanistic

model and tested on the validation dataset of the mechanistic model, using the same

data splitting approach as the previous experiment. Another CNN is trained on the resid-

ual of an independent validation dataset. It should be noted that the training period in

the second approach is relatively shorter than in the first approach (11 days compared to

18 days) due to the limited length of the validation dataset of the mechanistic model. The

validation for the CNN in the second approach is performed on the calibration dataset of

the mechanistic model, and the testing period corresponds to the initialization period of

the mechanistic model. The details regarding the dataset splitting in this experiment can

be found in Figure 5.5. Table 5.2 contains the final set of hyperparameters determined

for each neural network used in this experiment.

Figure 5.5: Timeline with the time periods used to develop a CNN HM trained on the calibration
dataset and a CNN HM trained on a validation dataset.

Figure 5.7 shows the output of the mechanistic model, the measured values, and the

output of the CNN hybrid models trained on the calibration dataset and trained on an

independent validation dataset of the mechanistic model during the training, validation

and test periods. The corresponding RMSE during each of the time period for both ap-

proaches are shown in Figure 5.6. The results for the CNN hybrid model output using

the first data splitting approach are extensively discussed in section 5.1.2.1. The CNN

hybrid model output demonstrated improved accuracy in nitrate levels compared to the

mechanistic model output during the training period, as well as improved modelling of
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Table 5.2: Final hyperparameter sets for a CNN hybrid model trained on the calibration dataset of
the mech. model and a CNN hybrid model trained on the validation dataset of the mech. model
for effluent nitrate.

Prediction Network
Time
steps Structure details

Learning
rate
Adam
optimizer

Epochs

NO3
CNN trained

on calib. data
30

Number of layers: 1

0.00005 200
Filters: 12
Kernel size: 9
Activation: ReLu

NO3
CNN trained

on valid. data
50

Number of layers: 5

0.0001 30
Filter: 25, 12, 9, 6, 3
Kernel size: 9, 5, 3, 3, 3
Activation: ReLu, ReLu, ReLu,
ReLu, tanh

Figure 5.6: Timeline with RMSE per time period (Tr=train, V=validation, Te=test) used to develop
a CNN hybrid model trained on the calibration dataset and a CNN hybrid model trained on a
validation dataset for effluent nitrate, compared to the RMSE of the mechanistic model in these
periods.

the dynamics, mainly in the first half of the training period. However, this performance

could not be sufficiently extrapolated to the test period.

In the second approach the CNN hybrid model is trained on the remaining error of the

mechanistic model with respect to an independent validation dataset. The hyperparam-

eter tuning process proved to be challenging in this approach as no hyperparameter

set was found that resulted in improved predictions during the validation period. De-

spite attempting various parameter configurations, the validation loss did not show any

decrease. Consequently, a parameter set was selected that minimally increased the

validation loss while managing to achieve a reasonable reduction in training loss. The

CNN hybrid model output shows some improvement in its performance during the train-

ing period compared to the mechanistic model output. The CNN hybrid model’s output

demonstrates a closer alignment in terms of the order of magnitude with the actual

measurements, and this improvement is also reflected in the reduction of the RMSE

compared to the mechanistic model. During the validation period, the CNN hybrid model
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5. Results and discussion

Figure 5.7: CNN hybrid model output trained on a calibration dataset of a mech. model for the
train, validation and test period (top) and CNN hybrid model output trained on a validation dataset
of a mech. model for the train, validation and test period (bottom) compared to mechanistic
model output and measurements for effluent nitrate.
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significantly fails to accurately capture any dynamics. Its outputs are notably worse

compared to those of the mechanistic model. This failure is evident in an increase in the

RMSE in comparison to the RMSE of the mechanistic model. The validation of the CNN is

conducted using the calibration period of the mechanistic model. The poor predictions

observed in this phase could be attributed to the issue mentioned in the previous section.

It is possible that the mechanistic model parameters are overfit, resulting in limited use-

ful information to predict in the residuals during this period. Additionally, some dynamics

may already be compensated for through the calibration process. The CNN hybrid model

was able to predict effluent nitrate during the test period with a more accurate order

of magnitude compared to the mechanistic model output. While the HM shows an im-

provement in capturing the dynamics compared to the mechanistic model, the predicted

dynamics still slightly deviate from those of the measurements during some days, for

example day 20-24 of the test period. However, the CNN HM trained on the validation

dataset performs significantly better during the test period than the CNN HM trained on

the calibration dataset of the mechanistic model.

It is noteworthy that despite the suboptimal optimization of the CNN hyperparameters

in the second approach, the test period is still predicted well. Also, despite using a

shorter period for training the CNN (11 days in the second approach compared to 18

days in the first approach), the test period is predicted more accurately compared to the

previous approach. This improved performance is further supported by comparing the

RMSE values obtained in the two approaches during the test periods. By examining the

boxplots in Appendix C, it can also be observed that the training dataset is representative

of the test dataset in the second approach. Despite occasional lower values and wider

ranges of variables in the training data, there is no significant difference between the two

datasets. However, it is possible that results may have been influenced by the nature

of the data in the second approach. The test data in this approach, i.e. the initialisation

period of the mechanistic model, exhibits a daily pattern. The presence of such patterns

may lead to relatively better predictability and potentially favorable results during the

testing phase.

The findings of this experiment suggest that training a neural network in a parallel hy-

brid model configuration using a calibration dataset may not yield effective results, as

the remaining error during this period contains limited information. Additionally, some

dynamics in the calibration dataset may already be compensated for through the calibra-

tion process. So, training the data-driven component of a HM solely on the calibration
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5. Results and discussion

dataset may not be effective in enabling the network to acquire the essential knowl-

edge required for accurate predictions on unseen datasets. It may be more beneficial

to explore alternative approaches or datasets to improve the performance of the neural

network in predicting the desired outputs.

To further investigate the balance between calibration effort for the mechanistic model

and acceptable compensation by the neural network component a second experiment

is executed. In this experiment, the goal is to examine the difference between training

the neural network component of the parallel hybrid model on residual of the calibrated

mechanistic model and on the residual of the uncalibrated mechanistic model. To ac-

complish this, the mechanistic model is set to default biokinetic parameters and the

backflows included in the hydraulic model are removed. A CNN is then trained and val-

idated on the error between the uncalibrated model and the calibration dataset. Thus

in this experiment, the neural network is trained to predict the residual between the

output of the mechanistic model with default parameters for effluent nitrate, and the

corresponding measurements. The predicted residuals are then added to the output of

the uncalibrated mechanistic model. The results are then compared with the output of

a hybrid model using a CNN trained on the residual of a calibrated mechanistic model

and the calibration dataset. The data partitioning in this experiment is visualised in Fig-

ure 5.8. Table 5.3 contains the final set of hyperparameters determined for each neural

network used in this experiment.

Figure 5.8: Timeline with the time periods used to develop a CNN hybrid model trained on the
calibrated mechanistic model residual and a CNN hybrid model trained on the uncalibrated mech-
anistic model residual.

As mentioned in the previous sections, it is likely that the mechanistic model is exhibiting

signs of overfitting to the data. Potential calibration issues can be observed in two differ-

ent submodels for the work of Kirim (2022): the hydraulic and the biokinetic model. The

hydraulic model was established using the data obtained from two tracer tests, which

led to the determination of various backflows between the basins that were incorporated

into the final model configuration (Section 4.2). The results of the hydraulic model can

be found in Appendix A. The results demonstrate that the hydraulic model prediction is
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Table 5.3: Final hyperparameter sets for CNN hybrid model trained on the calibrated mechanistic
model residual and a CNN hybrid model trained on the uncalibrated mechanistic model residual
for effluent nitrate.

Prediction Network
Time
steps Structure details

Learning
rate
Adam
optimizer

Epochs

NO3
CNN trained on

calib. model
30

Number of layers: 1

0.00005 200
Filters: 12
Kernel size: 9
Activation: ReLu

NO3
CNN trained on
uncalib.model

30

Number of layers: 4

0.0002 70
Filter: 10, 5, 5, 2
Kernel size: 5, 3, 3, 3
Activation: ReLu, tanh, ReLu, ReLu

still suboptimal. In the first experiment, the model consistently overestimates the ob-

served peak in each tank. In the second experiment, the shape of the peak deviates

from the actual peak in each tank. A suboptimal hydraulic will influence the subsequent

calibration of biokinetic model parameters as they may be used to compensate for miss-

ing dynamics in the hydraulic model. The calibrated parameters of the biokinetic model

can be found in Table 4.2. It can be observed that the calibrated values for the model pa-

rameters K_HNO2_NO and K_NH3_NH related to the biokinetics of the 2-step nitrification

process are significantly lower than their default values (factor 10-100 difference). The

same situation holds for the oxygen halfsaturation concentrations (K_O_NH and K_O_NO)

(factor 3-5 difference). This could be an indication that the biokinetic model parameters

are calibrated to compensate for other missing phenomena. However, lumping differ-

ent phenomena into biokinetic parameters will negatively impact the model’s predictive

power.

To reduce the influence of the potential overfit parameters, all the parameter values

are reset to the default values in Table 4.2. Also the backflows are removed from the

hydraulic model structure. The model is re-executed, generating new mechanistic model

predictions for effluent nitrate (Figure 5.9). The removal of the backflows had no impact

on the model predictions, however, resetting the parameters to their default values did

result in a significant difference in the output of the mechanistic model. The uncalibrated

model clearly performs worse than the calibrated one as expected.
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5. Results and discussion

Figure 5.9: Uncalibrated mechanistic model output for effluent nitrate compared to effluent ni-
trate measurements for the entire modelling period.

The results for this experiment are shown in Figure 5.11 and the corresponding RMSE

values can be found in Figure 5.10. The results for the CNN hybrid model output trained

on the residual of the calibrated mechanistic model output are extensively discussed in

section 5.1.2.1. The results obtained for the CNN hybrid model trained on the residual of

the uncalibrated mechanistic model and the calibration dataset, demonstrate improved

accuracy and prediction of dynamics during the training period compared to the mecha-

nistic model. While occasionally slightly deviating from the desired dynamics, the overall

performance remains satisfactory. During the validation period, the outputs of the HM

exhibit closer agreement with the measurements compared to those of the mechanis-

tic model and the HM in the first approach. However, the true dynamics are not fully

captured by the HM in this period. The output of the CNN hybrid model during the test

period demonstrates superior performance compared to the mechanistic model. The

HM’s predictions are also significantly better than those of the HM trained on the output

of the calibrated mechanistic model. Particularly during three notable peaks in the pre-

dictions of the mechanistic model on days 48, 51-53, and 55-57, the HM trained on the

uncalibrated mechanistic model successfully improves the accuracy of the predictions,

whereas the HM trained on the calibrated model fails to compensate for the mistakes of

the mechanistic model. These observations are further supported by the RMSE values,

which are the lowest for the three period for the CNN hybrid model trained on the un-

calibrated mechanistic model output. However, the difference in RMSE values becomes

particularly pronounced during the test period, where the HM trained on the uncalibrated

mechanistic model output demonstrates a significantly lower RMSE value compared to

mechanistic model and the HM trained on the calibrated mechanistic model output.

To investigate if the information that the hybrid model gains out of the uncalibrated

mechanistic model is still significant, a standalone data-driven model is set-up to pre-
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Figure 5.10: Timeline with RMSE per time period (Tr=train, V=validation, Te=test) used to develop
a CNN hybrid model trained on the calibrated mechanistic model residual and a CNN hybrid
model trained on the uncalibrated mechanistic model residual for effluent nitrate, compared to
the RMSE of the mechanistic model in these periods.

Figure 5.11: CNN hybrid model output trained on the residual of a calibrated mechanistic model
and CNN hybrid model output trained on the residual of an uncalibrated mechanistic model for
the train, validation and test period compared to mechanistic model output and measurements
for effluent nitrate.
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5. Results and discussion

dict the effluent nitrate in the pilEAUte. Therefore, a CNN is trained using the effluent

nitrate measurements as the target variable and produces predictions of effluent nitrate

as its output. The CNN has the same input data as the data-driven component in the

HM, except for the mechanistic model output for nitrate. The data splitting, the final hy-

perparameter set and the results of the data-driven model can be found in appendix D.

The results of the data-driven model show improvements compared to the mechanistic

model in the training, validation, and testing periods. However, the dynamics are rarely

accurately predicted in the three periods. The hybrid model trained on the uncalibrated

mechanistic model performs better than the data-driven model, particularly in the train-

ing period. However, the difference in performance between this HM and the data-driven

model is not substantial, as expected. These observations are further supported by the

lower RMSE values of the hybrid model in all three periods, with notably superior perfor-

mance during the training period. So in this study, a data-driven model can make more

accurate predictions than a calibrated mechanistic model. However, the combination of

a data-driven model with an uncalibrated mechanistic model, which itself provides poor

nitrate predictions, yields even better results. This suggests that the mechanistic model

still offers valuable information to the hybrid model, although to a lesser extent than

the data-driven model. The advantage obtained by the parallel hybrid model is thus

mainly derived from the data-driven component, but the contribution of the uncalibrated

mechanistic model should not be disregarded.

In this section the balance between calibration effort for the mechanistic model and ac-

ceptable compensation by the neural network component is investigated by conducting

two experiments. The first experiment involved training a neural network component of

a hybrid model using both a calibration dataset and an independent validation dataset

from the mechanistic model. A comparison of the results revealed that the HM performed

better when trained on the independent validation dataset. This could be attributed to

the fact that the residual information in the calibration dataset is limited due to the cali-

bration process, and that certain dynamics or knowledge may already be accounted for

during the calibration process itself. When a neural network is trained solely on the cali-

bration data, it may not learn the necessary patterns and relationships to make accurate

predictions outside the calibration period. In the second experiment, a neural network

is trained on the residual of both a calibrated and an uncalibrated mechanistic model.

The results of this experiment demonstrate that training the NN on the residual of the

uncalibrated mechanistic model yields better performance, particularly during the test

49



period. This suggests that the residual of the uncalibrated mechanistic model contains

valuable information and patterns that are not present in the residual of the calibrated

model. By incorporating this residual information into the training process, the NN is able

to improve its predictive capabilities, resulting in superior performance during the test

period. The results of these experiment thus support the hypothesis that the mechanis-

tic model may have been slightly overfitted. This is always a risk when some missing

dynamics are present in a mechanistic model. Detailed calibration of the mechanistic

model with several unidentifiable parameters may lead to overfitting which makes it

more difficult for a parallel neural network component to learn the missing model dy-

namics. The present work shows that a parallel hybrid model approach can compensate

for non calibrated phenomena. This could potentially save time in the calibration effort

of mechanistic models as well.

To reaffirm the findings of Section 5.1.2.1, where the performance of a CNN hybrid model

is compared with an LSTM-RNN hybrid model, an additional hybrid model is developed

with an LSTM-RNN as the data-driven component. In this experiment, the LSTM-RNN is

trained on the residual of the uncalibrated mechanistic model. This experiment aims to

confirm that the inferior performance of the LSTM HM, as compared to the CNN HM, can

be attributed to the nature of the data-driven model component in the hybrid model,

rather than the specific characteristics of the calibrated mechanistic model. The data

splitting, the final hyperparameter set and the results of this experiment can be found

in Appendix E. During the training period, the output of the LSTM hybrid model is signifi-

cantly more accurate than the output of the mechanistic model. The LSTM hybrid model

consistently captures the correct dynamics during this period. However, it is noteworthy

that the correct dynamics are absent in the outputs of the LSTM hybrid model during

the validation and test periods. The LSTM hybrid model predicts several peaks that do

not occur in the measurement data during these periods, for example on day 46-47 in

the validation period and day 53 and 59 in the test period. This reaffirms the findings

from Section 5.1.2.1, where the LSTM hybrid model also exhibited poorer performance

compared to the CNN hybrid model.

5.1.3 Parallel hybrid modelling for improved effluent TSS predictions

Parallel hybrid models are also developed for effluent TSS prediction, using the same

model set up as described in Section 5.1.1. Given that the effluent TSS was not utilized

in the previous work conducted by Kirim (2022), the preprocessing procedure outlined
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5. Results and discussion

Table 5.4: Final hyperparameter set for a CNN hybrid model for effluent TSS trained on the
calibration dataset of the mech. model.

Prediction Network
Time
steps Structure details

Learning
rate
Adam
optimizer

Epochs

TSS CNN 30

Number of layers: 4

0.0001 30
Filter: 30, 9, 6, 3
Kernel size: 9, 3, 3, 3
Activation: ReLu, ReLu, ReLu, tanh

in Section 4.2 was implemented on the effluent TSS data in the present study. Both an

LSTM-RNN and a CNN architecture were established to predict the residuals between the

effluent TSS output generated by the mechanistic model and the measured effluent TSS.

Subsequently, the predicted residuals were added to the mechanistic effluent TSS out-

puts. Both the hybrid models are trained and validated on the calibration dataset of the

mechanistic model and tested on the validation dataset of the mechanistic model. The

data splitting technique is visualised in Figure 5.12. Since both hybrid models produced

very similar outputs, the results corresponding to the hybrid model with LSTM RNN can

be found in Appendix F. Table 5.4 contains the final set of hyperparameters determined

for the CNN.

Figure 5.12: Timeline with the time periods used to develop a CNN hybrid model for effluent TSS.

In Figure 5.13 result of the CNN hybrid model for effluent TSS are shown for the training,

validation and testing period. As TSS measurements are not directly available in the

effluent, they are derived through a correlation with the turbidity data in the effluent.

The TSS output of the mechanistic model significantly deviates from the measurements

in all three periods. Only the global trend is predicted reasonably well; however, there

is a significant discrepancy in the magnitude of the predictions. A possible explanation

for this deviation is that the mechanistic model was not specifically calibrated on the

effluent TSS data (Kirim, 2022). The CNN hybrid model demonstrates consistent perfor-

mance across the training, validation, and test datasets. The HM improves the prediction

compared to the mechanistic model by capturing an order of magnitude closer to the

measurements; however, the dynamics are still not correctly captured. Due to the closer

alignment between the magnitude of the HM outputs for effluent TSS and the measure-
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ments, the RMSE has significantly improved in both the training, validation, and testing

periods (Figure 5.14). The same results are observed for the LSTM hybrid model outputs

(Appendix F). The primary factor contributing to the absence of accurate dynamics in the

CNN and LSTM hybrid model output is most likely attributed to the TSS measurements.

It is known that the effluent TSS measurements of the pilEAUte may not be highly ac-

curate. For instance, the drop to zero during days 30-32 in the training period does not

reflect behaviour that could be expected in reality. There are also sometimes a rapid

decline or increase in the data, such as on day 36 of the train period, which would not

occur in reality. The presence of unreliable data in the train period poses a significant

challenge in effectively training a neural network to accurately learn and generalize from

the training data. This leads to difficulties in accurately predicting in the test period.

Figure 5.13: CNN hybrid model output for the train, validation and test period compared to mech-
anistic model output and measurements for effluent TSS. The CNN is trained on the calibration
dataset of the mech. model.
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Table 5.5: Final hyperparameter set for a CNN hybrid model for effluent TSS trained on the
validation dataset of the mech. model.

Prediction Network
Time
steps Structure details

Learning
rate
Adam
optimizer

Epochs

TSS
CNN trained

on valid. data
30

Number of layers: 4

0.0002 70
Filter: 12, 9, 6, 3
Kernel size: 6, 5, 3, 3
Activation: ReLu, ReLu, ReLu, ReLu

Figure 5.14: Timeline with RMSE per time period (Tr=train, V=validation, Te=test) used to develop
a CNN hybrid model for effluent TSS, compared to the RMSE of the mechanistic model in these
periods.

To investigate whether a parallel hybrid model can predict effluent TSS dynamics ef-

fectively when there are no significant errors in the measurements during the training

period, a CNN hybrid model is developed in which the CNN component is trained on

the residual of the validation dataset of the mechanistic model. The CNN component

is validated using the calibration dataset and tested on the initialisation dataset of the

mechanistic model. The time periods used in this experiment are visualized in Figure

5.15. The final set of hyperparameters for the CNN is outlined in Table 5.5.

Figure 5.15: Timeline with the time periods used to develop a CNN hybrid model for effluent TSS.

In this experiment, during the training period, the CNN hybrid model demonstrates im-

proved accuracy in capturing the correct magnitude compared to the mechanistic model.

Moreover, the output of the hybrid model exhibits increased dynamics compared to the

previous experiment where the CNN was trained on a dataset with sensor errors. In spe-

cific segments of the training period, such as during day 50-51 and 57-59, the dynamics

are even captured with remarkable precision. In the validation period, the hybrid model

also shows more dynamic behavior in the data compared to the previous experiment.

However, the dynamics of the data are not accurately predicted. This is expected as this
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period contains too many sensor errors to make reliable predictions. During the test-

ing period, the predictions of the hybrid model align better with the order of magnitude

of the measurements, compared to the mechanistic model. Again, the hybrid model’s

output displays more dynamics, although they are not captured accurately.

Overall, it can be concluded that neither the mechanistic model nor the hybrid models

can accurately predict effluent TSS, even when trained on a dataset with limited sensor

errors. The hybrid models can estimate the approximate magnitude better, but fail to

capture the correct dynamics. This could be attributed to several factors. A possible

reason could be that the neural network fails to detect patterns in the input variables

that could help increase the accuracy of the TSS predictions. It is possible that the

hybrid model predictions could be improved by providing additional input variables to

the neural network component. These could include supplementary measurements at

the end of the aeration zone, for instance. It is also possible that the duration of the

training period is insufficient for the model to acquire an adequate level of knowledge to

make accurate predictions. A longer training period could potentially provide the neural

network with the opportunity to learn sufficient patterns in the input data and make more

accurate predictions. However, due to the relatively stable nature of the data over time,

extending the training period may not lead to any significant improvements.
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5. Results and discussion

Figure 5.16: CNN hybrid model output for the train, validation and test period compared to mech-
anistic model output and measurements for effluent TSS. The CNN is trained on the validation
dataset of the mech. model.

Figure 5.17: Timeline with RMSE per time period (Tr=train, V=validation, Te=test) used to develop
a CNN hybrid model for effluent TSS, compared to the RMSE of the mechanistic model in these
periods.

An additional experiment was conducted where a CNN was trained on the residual of

an uncalibrated model and the calibration period. The data splitting technique, the final

hyperparameter set, the output of this hybrid model, and the calculated RMSE values, as

well as the output of the uncalibrated model for effluent TSS, can be found in Appendix

F. The output of this hybrid model exhibits similar behavior to the experiment where a

CNN hybrid model was trained on the calibrated model and the calibration period. This

provides further evidence that the poor hybrid model performance is caused by sensor

errors in the training period.
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It is important to acknowledge that parallel hybrid models may not be applicable for pre-

dicting all variables in wastewater treatment processes. The potential improvement that

a parallel hybrid model can offer depends on several factors. Firstly, it relies on the vari-

ability present in the data. The effectiveness of a parallel hybrid model heavily depends

on the availability of diverse and informative data patterns. When the data lacks signifi-

cant variability or exhibits homogeneity, the data-driven component of the hybrid model

may face challenges in capturing relevant information from the residuals. Consequently,

extracting meaningful insights and improving predictions beyond what the mechanistic

model already provides can become difficult. The improvement brought by a parallel

hybrid model are also influenced by the mechanistic model structure and its ability to

accurately represent the physical phenomena. If the mechanistic model wrongly cap-

tures the underlying processes, the potential advantages of a parallel hybrid model may

be constrained. The quality of the data used for modelling is also a crucial factor in as-

sessing the potential improvement that a parallel hybrid model can offer. The reliability,

accuracy, and representativeness of the data directly impact the model’s performance

and its ability to capture meaningful patterns and relationships. These considerations

highlight the importance of carefully assessing the suitability and potential advantages

of parallel hybrid models for specific variables within wastewater treatment processes.

5.2 Serial hybrid modelling

In this second part of the research, the potential of serial hybrid modelling for wastewater

treatment systems is explored. In a serial hybrid model a data-driven model is developed

of a subprocess that is less well-described and subsequently integrated in the overall

mechanistic model. Aeration is one of the highest costs in operating a treatment plant

and aeration models are known to have high uncertainty. Therefore, in this section a

serial model for aeration in wastewater treatment is developed.

In this respect, the determination of the oxygen transfer coefficient (KL) is important in

wastewater treatment because it quantifies the efficiency of oxygen transfer from the

gas phase to the liquid phase. It is a critical parameter in aeration systems. The KL is

not a constant but varies over time, and its value depends on several variables. These

variables include operational parameters such as airflow rate, mixed liquor suspended

solids (MLSS), sludge age, and viscosity and design parameters such as the type of aer-

ation system and the configuration of tanks (Rosso et al., 2005). The KL can be used
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to calculate how much air flow rate is needed to obtain a certain DO level in the system

or inversely what the DO concentration will be for a certain fixed air flow rate. Accurate

knowledge of KL allows optimisation of aeration system design, operational conditions,

and process control strategies to achieve desired treatment goals. Traditionally, the off-

gas method has been employed to determine oxygen transfer coefficient, as described

by Redmon et al. (1983). Although entirely accurate, this method is expensive to adapt

during operation as it requires additional sensors to measure the volumetric fraction of

the outlet gas fraction. Besides, the KL calculated with this method may not be repre-

sentative for all regions in the aeration tanks (Pan and Dagnew, 2022). In this context,

the prediction of KL using a data-driven model emerges as a promising approach, offer-

ing valuable insights for informed decision-making and comprehensive analysis across

various applications.

5.2.1 Model set-up

In this part of the research, a CNN is developed to predict the oxygen transfer coefficient.

However, in order to train, validate, and evaluate the performance of the prediction

model, it is essential to have prior knowledge of the KL values. These known KL values

serve as the reference or ground truth against which the predictions made by the CNN

model are compared. This allows for the assessment of the accuracy and reliability of

the model’s predictions in estimating KL values. Direct measurements of KLA could

be obtained through off-gas analysis as explained above. However, in the mechanistic

model of the pilEAUte, no such off-gas measurements were available. In the pilEAUte

plant, the DO concentration is controlled at a fixed setpoint of 3 mg/L. Therefore, the

real KLA can be estimated in the model by using a controller that regulates the KL in

Basin 4, to obtain a DO setpoint of 3 mg/L. Subsequently, ratio controllers are used to

adjust the aeration in Basins 3 and 5 based on the KL in Basin 4 (Section 4.2). The KL

can also be calculated from the oxygen mass balance in the tank:

dSO

dt
= QnSO,n − QotSO + KL(S*O − SO) − OUR (5.1)

where SO is the DO concentration in the tank, S*O is the saturation DO concentration,

SO,n is the DO concentration entering the tank, Qn is the flow rate of the liquid entering

the tank, Qot is the flow rate of the liquid leaving the tank and OUR is the oxygen uptake
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rate in the tank. Equation 5.1 can be transformed to calculate KL in a tank (Equation

5.2).

KL =
dSO
dt + OUR − QnSO,n + QotSO

S*O − SO
(5.2)

The oxygen transfer coefficients in basin 4 of the pilEAUte, obtained using the two de-

scribed methods, can be found in Figure 5.18. The components of the mass balance were

extracted from the output of the mechanistic model. The derivative of the DO concen-

tration is calculated by applying Equation 5.3. The extracted components for the mass

balance underwent a resampling process using a one-dimensional linear interpolation

function, implemented through the utilization of the "interp" function from the NumPy

package in Python. The resampling transformed the data from a 1-minute interval to a

10-minute interval. Additionally, the KL output directly derived from the mechanistic

model was downsampled using the same interpolation technique.

dSO

dt
≈
SO(t) − SO(t − 1)

t − (t − 1)
(5.3)

Figure 5.18: Oxygen transfer coefficient calculated from the DO mass balance (Equation 5.2) and
oxygen transfer coefficient predicted by mechanistic model based on DO control during the data
time period used to set-up the mechanistic model.

Given the high degree of agreement between the KL calculated from the DO mass bal-

ance and the KL output obtained from the mechanistic model, the choice between them

as the "ground truth" for training, validation, and evaluation of the CNN becomes insignif-

icant. So, in this context, the ground truth is represented by the KL output estimated

through the controller in the mechanistic model. It should be noted that both approaches

to calculate the true KL are imperfect since both are based on the DO values of the
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mechanistic model that assumes an (almost) perfectly controlled DO at a setpoint of 3

mg/L. In reality, the DO concentration is not always perfectly controlled as can be seen

in Figure 5.19.

Figure 5.19: DO measurements in the pilEAUte plant during the whole modelling period.

The training data for the CNN includes the measured air flow rate in basin 4, as well

as the measured, non-fractionated variables that are also fed to the mechanistic model:

temperature in basin 4, influent CODt, CODs, and NH4-N. The input data also incorpo-

rates measurements of TSS and pH in the influent. The Oxygen Uptake Rate (OUR) in

basin 4, as calculated by the mechanistic model in the WEST, is incorporated as an ad-

ditional input variable to train the neural network. Note that influent flow rate was not

used as an input in the CNN since it is constant over the data period. The CNN is thus

used to predict the KL based on the provided input data. The DO controller for basin 4 in

the mechanistic model is then replaced with an input file containing the newly predicted

KL values. The predicted KL values are also used as inputs for the ratio controllers that

govern the KL in basins 3 and 5. A diagram of the serial hybrid model can be found in

Figure 5.20.
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Figure 5.20: Overview of the serial hybrid model.

In this part of the study, again two different data splitting techniques are used, and

their prediction performances are compared. In the first approach, the CNN is trained

and validated using input data during the calibration period of the mechanistic model.

Subsequently, the CNN is tested on the validation dataset of the mechanistic model.

The data splitting periods for this approach are visualized in Figure 5.21. In the sec-

ond approach, the CNN is trained using input data from a time period used to validate

the mechanistic model. The CNN is then validated (i.e., hyperparameter-tuned) using

the calibration dataset and tested on the initialisation period of the mechanistic model.

The data splitting periods for this experiment are visualized in Figure 5.22. The final

hyperparameter sets used in the two approached can be found in Table 5.6.

Figure 5.21: Timeline with the time periods used to develop a serial hybrid model in the first
approach.

Figure 5.22: Timeline with the time periods used to develop a serial hybrid model in the second
approach.
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5. Results and discussion

Table 5.6: Final hyperparameter sets determined for the CNN component of the serial hybrid
models.

Prediction Network
Time
steps Structure details

Learning
Rate
Adam
optimizer

Epochs

KLa
CNN trained on
calib. dataset

30

Number of layers: 2

0.0005 300
Filters: 10, 5
Kernel size: 5, 3
Activation: ReLu, tanh

KLa
CNN trained on
valid. dataset

15

Number of layers: 1

0.0005 550
Filter: 10
Kernel size: 5
Activation: ReLu

5.2.2 KLa predictions

In this approach the CNN is trained on the calibration dataset of the mechanistic model.

The KL predictions and corresponding DO output of the mechanistic model for the train-

ing can be found in Figure 5.23. The CNN performed remarkably well in computing the

KL during the training phase. The predicted values closely aligned with the KL output

of the mechanistic model, indicating that the CNN has successfully learned the patterns

and relationships within the training data. However, the CNN underestimates the KL

peak around days 32-33, which clearly leads to a corresponding peak in the DO. When

the oxygen transfer coefficient is high, it can result in an elevated DO level. This is

because a higher KL facilitates a more efficient transfer of oxygen from the gas phase

to the liquid phase, leading to a greater influx of oxygen into the system. As a result,

the DO concentration increases. The accuracy of DO predictions is throughout the en-

tire period strongly influenced by variations in the KL, highlighting its direct impact on

the efficiency of oxygen transfer in the aerated basin. As the oxygen transfer process

is crucial for maintaining appropriate DO levels, even small deviations or inaccuracies

in estimated KL values can have a substantial effect on the DO predictions generated

by the mechanistic model. This emphasizes the need for precise and reliable estimation

methods for determining KL, as any uncertainties or errors in its assessment directly

influence the overall accuracy of the DO modelling process.
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Figure 5.23: Serial hybrid model results during the training period for the first approach where
the CNN component is trained on the calibration dataset of the mech. model. The KL output
of the CNN compared to the KL output of the mech. model (top) and DO output of the mech.
model with the predicted KL compared to the DO output of the original mech. model and DO
measurements (bottom).

The hyperparameters of the CNN are fine-tuned by considering the validation period.

The results of the KL prediction and the corresponding DO output from the mechanistic

model during the validation period can be observed in Figure 5.24. The KL predictions

again closely align with the KL output from the mechanistic model, but during the peak

on day 46, the model again fails to accurately predict it. Considering the limitations

in accurately predicting the peak during the training period, it is reasonable to expect

comparable difficulties in forecasting it during following periods. While the DO output

demonstrates a moderate level of correspondence with the measurements, it does ex-

hibit noticeable deviations, particularly on day 46, where the CNN underestimates the

KL peak.
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5. Results and discussion

Figure 5.24: Serial hybrid model results during the validation period for the first approach where
the CNN component is trained on the calibration dataset of the mech. model. The KL output
of the CNN compared to the KL output of the mech. model (top) and DO output of the mech.
model with the predicted KL compared to the DO output of the original mech. model and DO
measurements (bottom).

The KL prediction made by the CNN and the corresponding DO output from the mech-

anistic model during the test period are shown in Figure 5.25. The KL prediction during

the test period exhibits a significant decline in accuracy. A potential factor contributing to

this deviation is the reduction in KL observed from days 48-50. During this two-day pe-

riod, there was no influent flow in the pilEAUte, resulting in a decreased demand for DO,

leading to a decrease in the KL. These dynamics were not present during the training

and validation period, which explains why the model encounters challenges in accurately

predicting these patterns in the testing phase. The following KL predictions may also be

affected by this, as throughout the entire test period, the model encounters difficulties

in predicting the correct order of magnitude. The CNN model used in this study did not

include the influent flow rate as an input variable. This may have an adverse effect on

the model’s performance when attempting to predict situations characterized by varia-

tions in the influent flow rate. This is a shortcoming of the serial hybrid model employed

in this study. However, some of the underlying dynamics are still captured by the CNN.

A similar result is observed in the DO prediction, the magnitude is inaccurate, but when

a DO peak occurs in the measurements, a disproportionately large peak is also present

in the predictions by the CNN. It is important to note that the DO predictions generated

by the original mechanistic model also exhibit inaccuracies in this time period.
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Figure 5.25: Serial hybrid model results during the test period for the first approach where the
CNN component is trained on the calibration dataset of the mech. model. The KL output of
the CNN compared to the KL output of the mech. model (top) and DO output of the mech.
model with the predicted KL compared to the DO output of the original mech. model and DO
measurements (bottom).

So, the KL can be accurately predicted by the CNN during the training and validation

periods, but not during the test period. This inconsistency could potentially be attributed

to the absence of influent stop in the training and validation periods. The DO predic-

tions are highly sensitive to changes in KL, which is justifiable considering the inherent

relationship between the two variables.

Since the validation dataset of the mechanistic model clearly shows some specific fea-

tures and additional dynamics that were not present in the calibration dataset of the

mechanistic model (Figure 5.25), we also explore the serial model’s predictive power

when training on the mechanistic model’s validation dataset. Using the period with in-

fluent stop as part of the training data could potentially be valuable in capturing and

predicting this specific phenomenon. Note that the fact that the model was trained on

the calibration dataset of the mechanistic model is less relevant here since the mech-

anistic model was not calibrated specifically for DO. The Qair measurements were only

used to establish the relationship between KL and Qair.

The KL predictions made by the CNN and the corresponding DO output from the mech-

anistic model during the training period are shown in Figure 5.26. The KL is accurately

predicted here, even during the KL decrease caused by the influent stop during day 48-
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5. Results and discussion

50. The small deviations in the predictions have a significant impact on DO prediction by

the mechanistic model. A potential issue with the training on the validation dataset of

the mechanistic model lies in the fact that the mechanistic model does not perform well

to predict DO in this period either. The KL in the mechanistic model is determined based

on a controller aiming to maintain DO at 3 mg/L. However, in the validation dataset,

several disturbances occur, making it challenging for the controller in the mechanistic

model to keep DO consistently at 3 mg/L.

Figure 5.26: Serial hybrid model results during the training period for the second approach where
the CNN component is trained on the validation dataset of the mech. model. The KL output
of the CNN compared to the KL output of the mech. model (top) and DO output of the mech.
model with the predicted KL compared to the DO output of the original mech. model and DO
measurements (bottom).

The results of the KL prediction and the corresponding DO output from the mechanistic

model during the validation period can be found in Figure 5.27. The KL is no longer

accurately predicted during this period, with only partial retrieval of some of the dynam-

ics. Overall, the prediction is not satisfactory. This is also reflected in the DO prediction,

which shows almost constant values close to 0 with occasional peaks above 3. The

inaccurate prediction can be attributed to the consistently underestimated KL values

throughout the time period.
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Figure 5.27: Serial hybrid model results during the validation period for the second approach
where the CNN component is trained on the validation dataset of the mech. model. The KL
output of the CNN compared to the KL output of the mech. model (top) and DO output of the
mech. model with the predicted KL compared to the DO output of the original mech. model and
DO measurements (bottom).

The results of the KL prediction and the corresponding DO output from the mechanistic

model during the test period can be found in Figure 5.28. During the test period, similar

findings are observed compared to the validation period. The KL is underpredicted,

however, the CNN manages to capture certain aspects of the correct dynamics. For

instance, the peak on day 11 and the peak on day 21 are predicted by the CNN, but

with incorrect magnitudes. This can again be observed in the corresponding DO output

associated with these KL predictions.
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5. Results and discussion

Figure 5.28: Serial hybrid model results during the test period for the second approach where
the CNN component is trained on the validation dataset of the mech. model. The KL output
of the CNN compared to the KL output of the mech. model (top) and DO output of the mech.
model with the predicted KL compared to the DO output of the original mech. model and DO
measurements (bottom).

The challenge with training on the validation dataset is that the KL output from the

mechanistic model likely does not perform well in this case during the validation period.

As mentioned, this KL cannot accurately maintain the DO at 3 mg/L. By training a CNN

on a KL that may not represent the ground truth, the model struggles to predict KL in

other periods.

5.2.3 Serial hybrid model for enhanced KLa prediction: advantages

and opportunities for improvement

The ability to predict the oxygen transfer coefficient using data-driven models can offer

valuable insights for informed decision-making and comprehensive analysis across var-

ious applications. The prediction of KL by the mechanistic model of the pilEAUte relies

on the DO controller in basin 4. While the CNN demonstrates reasonable performance

in predicting KL, it still struggles to extrapolate to new situations. Moreover, the uncer-

tainty of using the KL output of the mechanistic model as the ground truth adds to the

doubt regarding the effectiveness of this approach.

In Figure C.1, it can be observed that Qair and NH4-N exhibit higher values during the

calibration dataset of the mechanistic model (24/02-17/03) compared to the validation
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dataset of the mechanistic model (17/03-31/03). Additionally, Qair shows a wider range

during the validation period. Furthermore, it is worth noting that the MLSS concentration

in tank 2 exhibits significantly lower values during the validation period in comparison

to the calibration period. This observation is important because variations in the MLSS

concentration influences the KL. The two periods thus exhibit distinct characteristics. It

is highly likely that the two CNN models struggle to extrapolate well to different scenarios

as they were not trained on data with diverse characteristics. This implies that when

constructing this serial model, extra caution is required to ensure sufficient variability

in the training data. Consequently, a longer dataset may be necessary to capture and

learn all significant behaviors effectively.

In this research, the influent flow rate and MLSS were not incorporated as inputs for the

CNN component of the serial hybrid model. However, these variables exhibit significant

variations during the validation dataset of the mechanistic model, which could potentially

contribute to predicting patterns in the KL. The inclusion of the influent flow rate and

MLSS as input variables for the CNN component could potentially lead to significant

improvements in the prediction accuracy. Unfortunately, due to time constraints, it was

not possible to include them and recreate the serial models to assess their impact on the

prediction performance within the scope of this thesis.

To address these challenges, the integration of reinforcement learning techniques could

prove beneficial to predict KL in wastewater treatment processes. Reinforcement learn-

ing might be used to adjust neural network parameters based on the deviation between

predicted and actual DO measurements thus removing the dependency of intermediate

KL estimates. The reward system would thus be based on the accuracy of DO predic-

tions. The neural network learns iteratively by receiving rewards for accurate DO predic-

tions and adjusting its parameters (weights and biases) to maximize rewards and predict

a more accurate KL. The main benefit for developing an accurate serial hybrid model

for KL is that it can be used to predict in real-time the KL value. As such it can be used

for control of air flow rate to ensure that the air flow is adapted in a feedforward setting

to the conditions in the biological reactor. It can also serve as an early warning system

to alert operators of process conditions where oxygen transfer may become limiting.
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6. CONCLUSION AND
PERSPECTIVES

6.1 Conclusion

Hybrid models can combine the advantages of mechanistic models and data-driven mod-

els. However, there is currently no widely accepted or established methodology for de-

veloping hybrid models for wastewater treatment plants. In previous research, a mecha-

nistic model was developed for a pilot-scale wastewater treatment plant, but it exhibited

limitations in accurately predicting effluent quality. In the first part of this thesis, parallel

hybrid models are developed, in which a data-driven component of the HM is trained to

forecast the residual between the mechanistic model output and the measurements for

effluent nitrate. The performances of a LSTM-RNN hybrid model and a CNN hybrid model

were compared. The LSTM hybrid model struggled to learn meaningful patterns from the

input data to predict correct dynamics, whereas the hybrid model with CNN was able to

detect dynamics in the residuals and make more accurate predictions for effluent nitrate

than the mechanistic model and the LSTM HM. This suggests that CNN is a more suitable

data-driven component for parallel hybrid models of wastewater treatment system time

series than LSTM-RNN. The final HM was also compared to a stand-alone CNN with the

HM clearly outperforming the pure data-driven model.

Next, the balance between calibration effort for the mechanistic model and acceptable

compensation by the neural network component is investigated. A first experiment in-

volved training the CNN component of a parallel hybrid model using both a calibration

dataset and an independent validation dataset from the mechanistic model. A compar-

ison of these models revealed that the HM performed better when trained on the inde-

pendent validation dataset. In a subsequent experiment, training the CNN component of

a parallel hybrid model on the residual of an uncalibrated mechanistic model produced

superior performance compared to training on the residual of a calibrated mechanistic

model. The results of these experiment indicate that hybrid modes are more difficult

to construct when the mechanistic component is overly calibrated and overfit for un-

certain or unidentifiable parameters. Overfitting is always a risk in mechanistic models
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of wastewater treatment plants as some missing dynamics are often present in typi-

cal mechanistic models for biological wastewater treatment. Detailed calibration of the

mechanistic model with several unidentifiable parameters makes it more difficult for

a parallel neural network component to learn the missing true model dynamics. The

present work shows that a parallel hybrid model approach can compensate for miss-

ing dynamics and non calibrated phenomena. This could potentially save time in the

calibration effort of mechanistic models.

Developing a parallel hybrid model to improve the effluent TSS prediction of the mech-

anistic model showed that parallel hybrid models may not be applicable for predicting

all variables in wastewater treatment processes. The effectiveness of a parallel hybrid

models highly depends on factors such as data variability, structure and accuracy of the

mechanistic model, and quality of the data used for modelling. These considerations

underscore the need for careful assessment of the suitability and potential advantages

of parallel hybrid models for specific variables in wastewater treatment processes.

In a second part of this thesis also serial hybrid model was developed using a CNN

to forecast the oxygen transfer coefficient (KL) in an aerated basin of a pilot plant.

Although the CNN showed reasonable performance in predicting KL, it faced challenges

in extrapolating to new situations. To accurately predict KL, a long dataset with sufficient

variability is required to capture all possible behaviors. Further research is needed to

improve the prediction of KL by serial hybrid models, however, the serial hybrid model

shows promise and could potentially be used in the future for real-time prediction of KL

in WRRFs.

6.2 Perspectives

Further research is required to reach the full potential of hybrid modelling. Currently,

there is limited research available on determining the effective data-driven components

in parallel hybrid model structures. This study revealed the potential of CNN as data-

driven component, but further exploration of alternative options may lead to even better

methods. In recent years, CNN-LSTM models have emerged as a valuable data-driven

approach for time series prediction. This model combines the strengths of CNN by lever-

aging the feature extraction capabilities and LSTM by capturing long-term dependencies

in input time series data (Xie et al., 2020; Jin et al., 2020).
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6. Conclusion and perspectives

This research demonstrated the potential of serial hybrid models for predicting oxygen

transfer coefficients in wastewater treatment processes, but also highlights the need

for significant improvements in this approach. For instance, using different input data

and exploring alternative data-driven methods could greatly enhance the accuracy of

the predictions. Also the applicability of serial hybrid models to other subprocesses in

wastewater treatment models can be explored. A specific challenge with respect to serial

HMs is that true measurements of the variable to be predicted (for example KL) are often

lacking. Other methods to train a serial model on a secondary output (for example DO)

should be explored.

This study aims to answer a few questions related to identifying the most effective meth-

ods for constructing hybrid models. However, a general framework for integrating mech-

anistic and data-driven models still needs to be developed. It should address key con-

siderations such as data compatibility, model selection, parameter estimation, model

validation, and interpretation of the hybrid model results. By developing this frame-

work, researchers and practitioners can ensure a systematic and reliable integration of

data-driven and mechanistic models, leading to improved accuracy and understanding

of complex systems.
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APPENDIX A

HYDRAULIC MODEL RESULTS

Figure A.1: Final hydraulic model results for reference case tracer experiment (Kirim, 2022).

Figure A.2: Final hydraulic model results for step-feed case (Kirim, 2022).
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APPENDIX B

MECHANISTIC MODEL RESULTS

Figure B.1: Calibrated mechanistic model results and measurements for nitrate and ammonium
nitrogen during the calibration period (Kirim, 2022).

Figure B.2: Calibrated mechanistic model results and measurements for nitrate and ammonium
nitrogen during the validation period (Kirim, 2022).
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APPENDIX C

NEURAL NETWORK INPUT DATA
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C. Neural network input data

Figure C.1: Boxplots of the neural network input data for every variable for every period used
to establish the neural networks. MLSS in tank 2 is not an input for the NNs, but is added for
completeness.
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Figure C.2: Neural network input data during the whole time period. MLSS in tank 2 is not an
input for the NNs, but is added for completeness.

86



APPENDIX D

DATA-DRIVEN MODEL RESULTS

Figure D.1: Timeline with the time periods used to develop a data-driven model for effluent
nitrate.

Table D.1: Final set of hyperparameters determined for data-driven model (CNN) for effluent
nitrate.

Prediction Network
Time

steps
Structure details

Learning

rate

Adam

optimizer

Epochs

NO3 CNN 30

Number of layers: 2

0.0001 25
Filter: 10, 5

Kernel size: 3, 3

Activation: ReLu, tanh
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Figure D.2: Data-driven model output, mechanistic model output and measurements for effluent
nitrate for the train, validation and test period.

Figure D.3: Timeline with the RMSE per time period (Tr=train, V=validation, Te=test) used to
develop a data-driven model for effluent nitrate, compared to the RMSE of the mechanistic model
in these periods.
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APPENDIX E

LSTM-RNN HYBRID MODEL TRAINED

ON UNCALIBRATED MECH. MODEL

RESULTS

Figure E.1: Timeline with the time periods used to develop a LSTM hybrid model trained on the
uncalibrated mechanistic model residual for effluent nitrate.

Table E.1: Final set of hyperparameters determined for LSTM hybrid model trained on the uncali-
brated mechanistic model residual for effluent nitrate.

Prediction Network
Time
steps Structure details

Learning
Rate
Adam
optimizer

Epochs

NO3 LSTM-RNN 30
Number of layers: 1

0.0005 15Units: 10
Activation: ReLu
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Figure E.2: Hybrid model output with LSTM trained on the uncalibrated mechanistic model resid-
ual, mechanistic model output and measurements for effluent nitrate for the train, validation and
test period.

Figure E.3: Timeline with the RMSE per time period (Tr=train, V=validation, Te=test) used to
develop a LSTM hybrid model trained on the uncalibrated mechanistic model residual for effluent
nitrate, compared to the RMSE of the mechanistic model in these periods.
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APPENDIX F

ADDITIONAL HYBRID MODEL

OUTPUTS FOR EFFLUENT TSS

Figure F.1: Timeline with the time periods used to develop an LSTM hybrid model for effluent TSS.

Table F.1: Final set of hyperparameters determined for an LSTM hybrid model for effluent TSS
trained on the calibration dataset of the mechanistic model.

Prediction Network
Time
steps Structure details

Learning
rate
Adam
optimizer

Epochs

TSS LSTM-RNN 30
Number of layers: 3

0.0005 15Units: 36, 18, 10
Activation: ReLu, ReLu, ReLu
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Figure F.2: Hybrid model output with LSTM trained on the calibration dataset of the mechanistic
model, mechanistic model output and measurements for effluent TSS for the train, validation and
test period.

Figure F.3: Timeline with the RMSE per time period (Tr=train, V=validation, Te=test) used to
develop a LSTM hybrid model for effluent TSS, compared to the RMSE of the mechanistic model
in these periods.
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F. Additional HM outputs for effluent TSS

Figure F.4: Timeline with the time periods used to develop a CNN hybrid model trained on the
uncalibrated mechanistic model residual for effluent TSS.

Table F.2: Final set of hyperparameters determined for CNN hybrid model trained on the uncali-
brated mechanistic model residual for effluent TSS.

Prediction Network
Time

steps
Structure details

Learning

rate

Adam

optimizer

Epochs

TSS
CNN trained on

uncalib. model
30

Number of layers: 4

0.0001 30
Filter: 30, 9, 6, 3

Kernel size: 9, 3, 3, 3

Activation: ReLu, ReLu, ReLu, tanh

Figure F.5: Uncalibrated mechanistic model output for effluent TSS compared to effluent TSS
measurements for the entire modelling period
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Figure F.6: Hybrid model output with CNN trained on the uncalibrated mechanistic model residual,
mechanistic model output and measurements for effluent TSS for the train, validation and test
period

Figure F.7: Timeline with the RMSE per time period (Tr=train, V=validation, Te=test) used to
develop a CNN hybrid model trained on the uncalibrated mechanistic model residual for effluent
TSS, compared to the RMSE of the mechanistic model in these periods.
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