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SUMMARY 

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer with one of 

the highest frequencies of altered epigenetic regulations among other tumors, suggesting 

that epigenetic aberrations play a crucial role in T-ALL development. Epigenetic 

modifications, including histone post-translational modifications (hPTMs) and DNA 

methylation, cause alterations in gene expression without changing the DNA sequence 

itself and thereby could influence the cell phenotype. Current treatment protocols often 

result in dose-dependent toxicity, relapse and poor treatment response. Given these 

issues, better treatment stratification is needed, whereby pharmacoepigenetics, which 

studies the epigenetic basis for individual variation in drugs response, could be helpful. 

  
Six different epidrugs, namely three DNA methyltransferase inhibitors (DNMTis) and 

three histone deacetylase inhibitors (HDACis), which can restore epigenetic aberrations, 

were tested to link dose-response of 21 different T-ALL cell lines to their baseline hPTM 

levels. First, the 21 cell lines were treated with a dilution series of the six drugs, namely 

azacytidine (AZA), decitabine (DAC), GSK3685032 (GSK), panobinostat (PAN), vorinostat 

(VOR) and romidepsin (ROM) and cell viability was measured using Cell Titer Glo. Then, 

survival curves were plotted and IC50 and AUC values for each cell line were determined 

using GraphPad Prism. Finally, the IC50 and AUC values were linked to the baseline hPTM 

levels of the cell lines using Spearman correlation and PCA.  

 
Successfully, AZA, VOR, ROM and PAN reduced the viability of most cell lines to 

0%. However, DAC and GSK demonstrated low efficacy, since a minority of cell lines 

reached 0% viability at the highest concentration. Furthermore, positive correlations were 

found between methylation of histones and IC50- and AUC values for AZA and DAC. 

These correlations indicate that a high histone methylation level is linked with resistance 

to these DNMTis. Unfortunately, no significant correlations were found for GSK. As for the 

HDACis, IC50 values of ROM were positive correlated with histone acetylation, which 

indicates that hyperacetylation is linked to resistance of the cell lines to ROM. As for PAN 

and VOR, no significant correlations were found between hPTMs and IC50 or AUC values. 



 

 

SAMENVATTING 

 T-cel acute lymfoblastische leukemie (T-ALL) is een hematologische kanker met 

een van de hoogste frequenties van afwijkende epigenetische regulaties onder andere 

tumoren, wat suggereert dat epigenetische afwijkingen een cruciale rol spelen in de 

ontwikkeling van T-ALL. Epigenetische modificaties, waaronder histon post-translationele 

modificaties (hPTMs) en DNA methylering, veroorzaken veranderingen in genexpressie 

zonder de DNA-sequentie zelf te veranderen en kunnen daarbij mogelijks het fenotype van 

de cel beïnvloeden. De huidige behandelingsprotocollen resulteren vaak in 

dosisafhankelijke toxiciteit, terugval en slechte respons op de behandeling. Gezien deze 

problemen is er een betere stratificatie van de behandeling nodig, waarbij farmaco-

epigenetica, die de epigenetische basis bestudeert voor individuele variatie in de respons 

op geneesmiddelen, van nut kan zijn.  

 
Zes verschillende epidrugs, namelijk drie DNA methyltransferase inhibitoren 

(DNMTis) en drie histone deacetylase inhibitoren (HDACis), die de epigenetische 

afwijkingen kunnen herstellen, worden getest om de dosis-respons van 21 verschillende 

T-ALL cellijnen te koppelen aan hun baseline hPTM niveaus. Eerst werden de 21 cellijnen 

behandeld met verdunningsreeksen van de zes geneesmiddelen, namelijk azacytidine 

(AZA), decitabine (DAC), GSK3685032 (GSK), panoninostat (PAN), vorinostat (VOR) en 

romidepsin (ROM) en de levensvatbaarheid van de cellen werd gemeten met behulp van 

Cell Titer Glo. Vervolgens werden de survival curves uitgezet, waarna de IC50- en AUC-

waarden voor elke cellijn werden bepaald met GraphPad Prism. Tenslotte werden de IC50- 

en AUC-waarden gekoppeld aan de hPTM-niveaus met behulp van Spearman-correlatie 

en PCA.  

 
Met succes verminderden AZA, VOR, ROM en PAN de levensvatbaarheid van de 

meeste cellijnen tot 0%. DAC en GSK toonden echter een geringe werkzaamheid, 

aangezien een minderheid van de cellijnen een levensvatbaarheid van 0% bereikte bij de 

hoogste concentratie. Bovendien werden positieve correlaties gevonden tussen 

methylering van histon-eiwitten en IC50- en AUC-waarden voor AZA en DAC.  



 

 

Deze correlaties wijzen erop dat een hoog histon-methyleringsniveau samenhangt met 

resistentie tegen deze DNMTis. Helaas werden voor GSK geen significante correlaties 

gevonden. Wat de HDACis betreft, waren de IC50-waarden van ROM positief gecorreleerd 

met histonacetylering, wat erop wijst dat hyperacetylering verband houdt met resistentie 

van de cellijnen tegen ROM. Wat betreft voor PAN en VOR, werden er geen significante 

correlaties gevonden tussen hPTM's en IC50- of AUC-waarden. 
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1. INTRODUCTION 

1.1. EPIGENETICS 

1.1.1. General introduction 

Nearly all our cells contain DNA, which is made up of four different nucleotides, i.e. 

adenine, guanine, thymine and cytosine. The order of these nucleotides, also called DNA 

sequence, contains information for specific heritable traits. This sequence is largely the 

same among the human population, although there are important differences. The variation 

in DNA sequence is caused by mutations, insertions, deletions and translocations, which 

leads to inter-individual variability. Furthermore, DNA is packaged as compact 

chromosomes inside the cell nucleus. This packaging is possible due to the presence of 

histones, which are positively charged proteins. DNA is negatively charged, which, in 

effects, means there is a strong histone-DNA interaction (1–3).  

 
Modifying histones or DNA influences the chromosome structure, which can be 

euchromatic as well as heterochromatic. Heterochromatin refers to a highly condensed 

and thus less accessible chromosome, which in turn leads to transcription inactivity. 

Contrarily, euchromatin is loosely packed, more accessible and easily transcribed. In 

addition to DNA and histone modifications, posttranscriptional regulation of RNA can also 

influence gene expression. These modifications, causing alterations in gene expression 

without changing the DNA sequence itself, are studied by epigenetics. According to a Cold 

Spring Harbor meeting in 2008, epigenetics is defined as “stable heritable phenotype 

resulting from changes in a chromosome without alterations in the DNA sequence”. The 

three main epigenetic modifications, namely DNA methylation, histone modifications and 

non-coding RNAs are shown in figure 1.1 and briefly described in the following sections 

(2–6).  
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Figure 1.1: The DNA double helix wrapped around histones forming a nucleosome, 

which further compacts into chromatin and finally a chromosome. The three main 

epigenetic influences are represented; namely DNA methylation, histone 

modifications and small non-coding microRNA (7).  

 

1.1.2. DNA methylation 

DNA methylation is an epigenetic mechanism where a cytosine followed by a 

guanine (CpG site) is methylated at the C5 position, forming 5-methylcytosine (5mC). This 

reaction is catalyzed by DNA methyltransferases (DNMT’s) using the methyl donor S-

adenosylmethionine (SAM). It regulates gene expression by recruiting proteins or by 

blocking the binding of transcription factors to DNA. For instance, methylated DNA along 

with DNMT’s recruit enzymes, such as histone deacetylases, providing modification of the 

histone N-tails by removing acetyl groups. This specific epigenetic crosstalk between DNA 

methylation and histone modification causes gene repression (8,9).  

 

1.1.3. Non-coding RNA’s 

The largest fraction of RNA is non-coding RNA (ncRNA), which is not translated into 

proteins. However, ncRNA such as long non-coding RNAs (lncRNAs) and small micro-

RNAs (miRNAs) carry out important functions in terms of gene expression. In the RNA-

induced-silencing-complex (RISC), miRNAs bind Argonaute proteins, which leads to 

binding and cleaving of the complementary mRNA. As a result, translation of the 

complementary strands are hampered. LncRNAs are by definition ncRNAs consisting of 

more than 200 nucleotides, which also exert complementary mRNA binding and interaction 

with miRNAs. Further, this indicates that LncRNAs regulate gene expression (10,11).  
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1.1.4. Histones 

1.1.4.1. Variants 

As mentioned before, histones are essential to organize DNA into compact 

chromosomes. Approximately 147 base pairs of DNA are wounded around an octameric 

histone core, which consists of H2A, H2B, H3 and H4. This segment of DNA wrapping 

around a histone core forms a nucleosome. In addition, a linker histone, also known as H1, 

provides a higher order chromatin organization (12–14). Several subtypes and their 

function are shortly described in the next paragraph.  

 

H2A has different subtypes, such as H2A.X, H2A.Z, and macroH2A. When DNA 

damage occurs, H2A.X becomes phosphorylated and facilitates repair mechanisms. 

H2A.Z acts as a transcription regulator and is linked to both gene activation and gene 

silencing, depending on the circumstances. MacroH2A is related with transcriptional 

repression, since it stabilizes the nucleosome. Furthermore, it seems to be associated with 

blocking cell reprogramming and chromosome X inactivation. H3, forming a central 

tetramer with H4, is also subdivided, including H3.1, H3.2, H3.3 and centromere protein A 

(CENP-A). The latter plays a crucial role in the formation of the centromere of 

chromosomes. The importance of H3 in terms of gene regulation are more specifically 

described in the next section (12–14).  
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1.1.4.2. PTMs 

Post translational modifications (PTMs) occur when a protein is synthesized. These 

modifications lead to either irreversible proteolytic cleavage of peptide bonds or reversible 

covalent addition of chemical groups to amino acids (15,16). Modifications of histones, also 

known as histone PTMs (hPTMs), are key regulators of epigenetic alterations. These 

globular proteins contain tails, namely N-terminal regions, which are densely populated 

with arginine (R), lysine (K), hydroxyl group-containing serine (S), tyrosine (Y) and 

threonine (T) residues. Adding or removing chemical groups to these tails can potentially 

cause alteration in the histone-DNA interaction, chromatin organization and thus 

transcriptional regulation. Furthermore, some hPTMs serve as a recognition site for 

regulatory proteins, which either modify the chromatin structure or directly influence cellular 

processes. It is important to note that most of these reactions are catalyzed by enzymes, 

which are classified as either writers or erasers. Writers are responsible for adding 

chemical groups, whereas erasers catalyze the removal of these groups. As shown in 

figure 1.2, the most common hPTMs are acetylation and methylation of K, phosphorylation 

of S and T and ubiquitylation of K (17,18). Combinations of these PTMs on a certain peptide 

give rise to so-called peptidoforms. These are peptides with an identical amino acid 

sequence but with a different combination of PTMs (19). 

 

Acetylation of K is catalyzed by histone acetyltransferases (HATs) and erased by 

histone deacetylases (HDACs), which regulates the chromatin structure as shown in figure 

1.2, since acetylation neutralizes the positive charge of the lysine side chain. Likewise, 

acetylation is associated with indirect activation of transcription, by facilitating the 

recruitment of RNA polymerase and coregulators (20).  

 

Methylation of K and R residues is another important hPTM. Arginine can be 

monomethylated or dimetyhlated, whereas lysine can also be trimethylated. This 

modification is catalyzed by histone methyltransferases and histone demethylases and can 

either activate or inhibit transcription. For instance, methylation of histone 3 lysine 9 

(H3K9), H3K27 and H4K20 are mostly related to gene suppression, whereas methylation 

of H3K4, H3K36 and H3K79 are commonly correlated with gene activation (20).  
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Phosphorylation of S and T is controlled by kinases and phosphatases, which add 

and remove negatively charged phosphate groups, respectively. There are three crucial 

functions of phosphorylated histones, namely; DNA damage repair, control of chromatin 

structure and regulation of gene expression. One of the specific histone target sites of 

kinases is H3S10, whereby phosphorylation of this serine leads to a more condensed 

chromatin state. Furthermore, as mentioned before, phosphorylation of S139 of H2A.X 

ensures DNA-repair mechanisms (21,22).  

 

Histone ubiquitination is carried out by ubiquitin ligases and can be removed by 

deubiquitinating enzymes. Monoubiquitylation contributes to protein translocation, DNA 

damage signaling and transcriptional regulation. For instance, monoubiquitinated H2A 

(H2AUb) leads to gene silencing, whereas H2BUb induces both transcription activation 

and inactivation (21,22).  

 

 

Figure 1.2: Nucleosome consisting of histones with modifiable N-tails. Main 

modifications are methylation, acetylation, ubiquitination and phosphorylation.  

Acetylation of K and R catalyzed by HATs leads to open euchromatin structure, 

whereas deacetylation catalyzed by HDACs provides closed heterochromatin 

structure (23). 
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1.2. HISTONE ANALYSIS 

Analytical techniques used in the analysis of hPTMs can be classified as antibody-

based or mass spectrometry (MS)-based approaches (24). 

1.2.1. Antibody-based approaches 

Antibody-based methods, such as Western blotting, flow cytometry and protein 

microarrays, are based on generation and use of protein specific antibodies to investigate 

the proteome. However, these approaches have some important downsides. Despite the 

high sensitivity, these conventional methods are unable to disclose combinatorial PTMs 

patterns. Moreover, as mentioned before, some histone variants are so similar, also known 

as isoforms, so that antibodies cannot distinguish between them. In addition, PTMs within 

the same histone can cause blocking of the antibody recognition site of a co-occurring 

PTM. On top of these specificity problems, limitation of high-throughput is an additional 

disadvantage (17,24–26). 

1.2.2. LC-MS/MS 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is 

widely used for analyses of biopolymers and avoids the above-mentioned issues. LC 

enables separation of the samples based on the interaction with the mobile and the 

stationary phases, whereas MS determines the molecular mass of the eluents using their 

mass-to-charge ratio (m/z). In the LabFBT, reversed phase high performance liquid 

chromatography (RP-HPLC) is used for separation of the different histones whereby the 

stationary phase is non polar and the mobile phase is polar. This separation is facilitated 

by the hydrophilic character and high solubility of histones. Following LC separation, 

analytes are transferred into the mass spectrometer, which is composed of three basic 

components; i.e. an ion source, a mass analyzer and a detector (24,27–29). During this 

master dissertation, use was made of a publicly available hPTM atlas of 21 T-ALL cell lines, 

measured via LC-MS/MS. The MS data was obtained on a TripleTof 6600 instrument 

(Sciex), consisting of electron spray ionization (ESI) as an ion source, a quadrupole time-

of-flight (Q-TOF) as a mass analyzer and an electron multiplier as a detector. Therefore, 

these components will be further discussed in detail in the following paragraphs. 
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1.2.2.1. Construction 

Ion source 

ESI is a soft ionization method used for liquid samples. The LC-eluent leaves the 

RP-column and enters the ion source by infusing the sample into a narrow metal capillary. 

A high voltage of several kilovolts (kV) is applied between the end of the capillary and the 

counter electrode. Consequently as shown in figure 1.3, a solution cone, also known as 

the Taylor cone, is formed at the tip of the capillary. Subsequently, the cone disperses into 

a spray of charged electrospray (ES) droplets. The charged droplets, which are repelled 

from each other by the repulsive forces, migrate towards the counter electrode with an 

opposite charge. At the same time, the size of the droplets diminishes by solvent 

evaporation with the help of heated dry gas. Eventually, gas-phase analyte ions are 

formed, which enter the mass analyzer (30–32). 

 

 

Figure 1.3: ESI, whereby the Taylor cone is formed with the help of high voltage 

between the capillary needle and the counter electrode. Thereafter charged droplets 

arisen from the cone move towards the oppositely charged side whilst decreasing 

in size. Finally, naked ions in gaseous phase enter the mass analyzer (32). 
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Mass analyzers 

Q-TOF is a combination of two different mass analyzers and consists of three 

compartments as illustrated in figure 1.4, namely two quadrupoles Q1 and Q2, followed 

by a time-of-flight (TOF) tube. The first quadrupole Q1 acts as a mass-filter for the selection 

of ions based on their mass-to-charge ratio (m/z). The specific m/z selection is possible 

due to four parallel circular rods, where each opposite rod is connected electrically. Direct 

current (DC) and radiofrequency (RF) potentials are applied to each pair of rods leading to 

a controlled oscillation of the ions. Only the ions with stable trajectories will surpass Q1 

and enter the subsequent Q2. Q2 is a collision cell, which ensures fragmentation of the 

ions by collision induced dissociation (CID). Afterward, the fragmented product ions are 

transferred into the ion pulser of the TOF, where all ions obtain the same kinetic energy 

and accelerate perpendicular to their initial direction. The ions with a lighter mass will have 

a shorter time of flight, while the heavy ions will take longer before reaching the detector 

(33,34).  

 

Figure 1.4: Schematic diagram of a Q-TOF mass spectrometer composed of three 

main components, namely Q1, Q2 and TOF. Q1 acts as a mass filter and Q2 is 

responsible for the further fragmentation of precursor ions into product ions. 

Finally, the mass of the product ions is analyzed based on their time of flight (33). 
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Ion detector 

Detection of ions by current measurement is commonly accomplished by using an 

electron multiplier (EM), which consists of either discrete dynodes or continuous dynode. 

Microchannel plate (MCP), which is a variant of the continuous dynode EM, is a widely 

used detector. As shown in figure 1.5, it is comprised of 104 - 107 parallel oriented micro 

channels in a disk-shaped device where both sides are coupled by electrodes. The 

electrons strike the continuous dynode in the microchannels causing secondary electrons, 

which in turn strike other dynode surfaces resulting in electron amplification. Eventually, 

the electron multiplication leads to an increase in signal with a factor of 104 – 107 (35,36). 

 

Figure 1.5: Schematic representation of MCP, whereby electrons are multiplied into 

secondary electrons with the help of dynodes. The amplified secondary electrons 

beam from the other side of the microchannel resulting in an increased signal (37). 
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1.2.2.2. MS-based approaches 

 

As shown in figure 1.6, MS-based analysis of histones can be divided into three 

main approaches, bottom-up, middle-down and top-down methods. Bottom-up approach 

includes proteolytic cleavage of histones into smaller peptides, which are detected by 

MS/MS detector. However, co-elution of short isobaric peptides is not uncommon and thus 

leads to problems in terms of data analysis. In addition, digesting proteins to peptides can 

cause a lot of information loss. Alternatively, middle-down and top-down methods are 

tackling these issues due to detecting respectively larger peptides and intact proteins. The 

middle-down method is based on cleaving the N-tail of proteins generating larger peptides 

compared to the bottom-up strategy, which results in maintaining the majority of hPTMs. 

As mentioned before, top-down method is based on characterization of intact proteins 

providing faster sample preparation, given that digestion is not required. Moreover, the top-

down approach ensures a more extensive overview of the histone code. Despite the 

advantages, this method requires high resolution tandem mass analyzers and more 

advanced software, since more complex MS or MS/MS spectra are generated (27,38).  

Figure 1.6: The three main MS-based approaches: Bottom-up, middle-down an top-

down. Unlike top-down methods, digestion is required for bottom-up and middle-

down methods, forming respectively small peptides and large peptides (17). 
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1.2.2.3. Data acquisition 

Data acquisition can either be targeted, including parallel monitoring (PRM) and 

selected reaction monitoring (SRM) or non-targeted.  The non-targeted approaches can be 

subdivided in two main groups, namely data dependent acquisition (DDA) and data 

independent acquisition (DIA). The hPTM atlas used in this master dissertation was 

generated using DDA, which is shortly described in the next paragraph (33,39). 

 

Data dependent acquisition (DDA) is a non-targeted data acquisition mode based 

on selection of precursor ions from MS scans according to pre-selected criteria (40). As 

illustrated in figure 1.7, in DDA, the intact ions are detected before fragmentation in the 

collision cell, whereafter the most-intense precursor ions are selected for further 

fragmentation. In essence, a full mass spectrum (MS1) is generated before fragmentation, 

followed by formation of a tandem mass spectrum (MS2) after fragmentation of selected 

ions (33,39). 

 

Figure 1.7: First, an intact precursor ion scan (MS1) is generated, followed by 

isolation and fragmentation of the most abundant precursor ions. This selected 

fragmentation of precursor ions generates tandem mass spectra (MS2) (41). 
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1.2.2.4. Data analysis 

Data analysis of hPTMs consists of both identification and quantification. For protein 

identification, database searching was used, which is an in silico method. There are four 

main approaches for database searching, namely peptide mass fingerprint, peptide 

sequence tag search, spectral library search and MS/MS ion search (42). The latter 

approach is applied for this master dissertation, whereby protein sequences in a database 

are digested in silico followed by fragmentation, generating theoretical MS/MS spectra. 

Thereafter, the experimentally obtained MS/MS spectra are compared to these generated 

theoretical MS/MS spectra for peptide and PTM identification. The certainty of the 

identification is indicated by a score, such as the Mascot delta score (24,42).  

 

Quantification of peptides is either label-based or label-free. Label based 

quantification is based on isotope tags incorporating within peptides, including TMT and 

ITRAQ labeling, which is commonly used for absolute quantification (43). In contrast to 

label-based, label-free quantification is mostly used for relative quantification and is based 

on either spectral counting of peptides or visualizing the intensity of the peaks. Spectral 

counting involves the relative quantification of proteins between samples, whereby the 

number of spectra is proportional to the amount of proteins presented in the samples. The 

second approach for label-free quantitation, which was used in the hPTM atlas, involves 

visualizing the intensity of peaks as a function of the retention time in an extracted ion 

chromatogram (XIC). Consequently, the area under the curve (AUC) can be determined, 

which is correlated with the protein abundance (24,42,44,45). 

1.3. EPIGENETICS IN CANCER 

1.3.1. General principles 

Differentiation of cells into unique cell types depends on silencing and activation of 

specific genes, which results in a unique pattern of gene expression. The control of gene 

expression and the fate of cells is to a large extent regulated by epigenetic mechanisms.  

Aberration in these mechanisms, mainly DNA methylation, hPTMs and ncRNA leads to 

uncontrolled development of cells, eventually causing cancer. Some epigenetic 

modifications correlated with cancer are described in the following paragraphs (46–48).  
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As shown in figure 1.8, during carcinogenesis, initially active genes can become 

silenced by DNA hypermethylation with cooperation of H3K9 methylation. For example, 

when tumor suppressor gene (TSG) promotors with CpG sites become methylated and 

thus inactive, which in turn promote cancer. Another way of silencing active genes, is via 

overexpression of Polycomb Repressive Complex (PRC). PRC is a protein complex, which 

catalyzes the formation of H3K27 methylation and H2Aub (49). Both H3K27 methylation 

and H2Aub play an essential role in terms of gene repression. As mentioned before, H2A.X 

plays a crucial role in DNA-repair mechanisms, which is also used to kill cancer cells. When 

a DNA double strand break occurs, H2A.X accumulates at the break site and becomes 

phosphorylated. As a result, proteins involved in DNA repair accumulate (50). Finally, it is 

important to note that in contrast to silencing, activation of originally silenced genes can 

also occur, which also alters the gene expression pattern. For instance, hypomethylation 

of oncogenes and global DNA hypomethylation contribute to the overexpression of genes, 

which can lead to tumorigenesis (51–53).   

 

Figure 1.8: A) Epigenome of a normal cell, where non-coding regions are suppressed 

by H3K9me3 and DNA methylation. The hypomethylated active genes are marked by 

H3K4me3 along with histone acetylation. B) Epigenome of a cancer cell, with a 

global loss of DNA methylation interspersed with abnormal hypermethylated 

regions and H3K9me3 (53). 
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Dysregulation in the expression of miRNAs has been reported in several cancers, 

including leukemia, lung cancer, prostate and bladder cancer. These small ncRNA’s can 

function as either tumor suppressors or oncogenes depending on their target 

complementary strands. Most tumor suppressor miRNAs targeting growth-promoting 

genes are inactive in cancer, whereas oncogenic miRNAs targeting growth-inhibitory 

genes are commonly upregulated. Epigenetic alteration, in particular DNA methylation, is 

one of the reasons for silencing the tumor suppressor miRNAs (52). 
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1.3.2. T-ALL 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer, 

whereby oncogenes and tumor suppressor genes are dysregulated. T-ALL appears more 

often in males than females and comprises of around 15% of pediatric and 25% of adult 

ALL cases. For current treatments, cure rates in childhood T-ALL are around 85%. Unlike 

childhood T-ALL, the clinical outcome for adult T-ALL is remarkably different with a survival 

of less than 50%. Moreover, current treatment protocols consist of high-dose combination 

therapy, which commonly result in short-term and long-term side effects. In addition, a 

significant number of patients relapse and show poor treatment response. For example, an 

increased nucleotidase activity was observed in T-ALL causing resistance to 

chemotherapeutics such as 6-mercaptopurine. Considering these issues, newer therapies 

and more advanced treatment stratification are required (54,55).  

 

In the recent past, studies have shown the involvement of more than 100 mutated 

genes in T-ALL. Only two of these genes, namely NOTCH1 and CDKN2A/2B, are mutated 

in more than 50% of T-ALL. Furthermore, T-ALL is subdivided into subgroups based on 

immunophenotyping, which uses antibodies identifying protein markers on the surface of 

the cells (56). In a landmark study, Huether et al. sequenced 633 epigenetic regulatory 

genes in more than 1000 pediatric tumors and demonstrated that T-ALL has the most 

mutated epigenetic regulatory genes among all tumors. This suggests that epigenetic 

alterations are highly common in T-ALL, including DNA methylation and histone post-

translational modifications (54,55).  

 

Changes in the expression of different miRNAs are common in T-ALL. Oncogenic 

miRNAs downregulate tumor suppressor genes, whereas other miRNAs cause 

overexpression of oncogenes. Moreover, some T-ALL types are characterized by altered 

lncRNA expression, which suggests its importance in the differentiation of T-cells (54). In 

the next paragraph some examples of epigenetic regulation in T-ALL is described. 
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As shown in figure 1.9, PRC2, including EZH2, SUZ12 and EED, methylates H3K27 

forming the repressive mark H3K27me3. This enzyme complex has a tumor suppressor 

role and its downregulation has been reported in T-ALL. The loss of PRC2 and thus 

H3K27me3 may be explained by the activation of the oncogenic NOTCH1 gene. NOTCH1 

leads to disruption of PRC2 and recruitment of lysine demethylases 6B (KDM6B, also 

named JMJD3), which in turn cause downregulation of H3K27me3. The overexpression of 

JMJD3 may be correlated with the maintenance of oncogenic NOTCH1 activation. 

Furthermore, lysine demethylases 6A (KDM6A, also called UTX) also cause 

downregulation of H3K27me3 and activation of genes. Likewise, UTX is a member of the 

MLL2 complex, which methylates H3K4 and activates gene transcription. Although UTX 

and PRC2 have opposite functions on gene transcription, both acts as tumor suppressors. 

This is possible given that both affect different genomic loci during T-cell differentiation.  A 

more recent study showed the importance of two enzymes, namely NSD2 and SETD2 in 

T-ALL. Both enzymes catalyze the methylation of H3K36, which is associated with gene 

activation. Moreover, NSD2 is mutated in multiple T-ALL cell lines, such as HPB-ALL, 

RPMI-8420 and MOLT-13, which further confirms the functional importance of H3K36 

methylation (55,57). 

Figure 1.9: Activating NOTCH1 transcription results in transformation from normal 

T-cell to lymphoblastic T-cell. Originally low levels of NOTCH1 signaling occurs in 

normal cells due to the presence of repressive PRC2 and H3K27me3. Epigenetic 

alterations, such as H3K4 methylation, H3K27 demethylation cause NOTCH1 

activation. As a result, downregulation of PRC2 complex and loss of H3K27me3 with 

the recruitment of JMJD3 occurs (55). 
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1.4. EPIDRUGS 

1.4.1. General/Classes 

The increasing knowledge on epigenetic variations in different cancers led to the 

development of new targeted therapies for cancer treatment. Epidrugs, which are 

modifying the DNA and chromatin structure, can restore these reversible epigenetic 

alterations in cancer, which makes these alterations an interesting target. The mode of 

action mainly comprises controlling enzymes, reactivating silenced tumor suppressor 

genes and facilitating DNA repair mechanisms. Furthermore, epidrugs can either be used 

i) in monotherapy as a cytotoxic agent or ii) in combination therapy as a sensitizer, thereby 

lowering drug resistance (51,58). As shown in figure 1.10, epidrugs can currently be 

classified into five groups, namely DNA methyltransferase inhibitors (DNMTi), histone 

deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), histone 

demethylase inhibitors (HDMi) and  Bromo and extra terminal domain inhibitors (BETi) (58). 

In this master dissertation, the response of 21 T-ALL cell lines to HDACi and DNMTi was 

investigated, which are described in the following section. 

Figure 1.10: Illustration of a nucleosome with epigenetic modifications, including 

DNA methylation and histone modifications. Epidrugs tested in preclinical or clinical 

settings are shown in grey (59). 
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1.4.2. DNMTi 

Altered patterns of DNA methylation in cancer can be reversed by DNMTis, which 

can be subdivided in nucleosides, including azacytidine (AZA) and decitabine (DAC), and 

non-nucleosides, such as GSK3685032. Nucleoside analogs incorporate into DNA at 

cytosine residues where they covalently bond with DNMTs, resulting in depletion of cellular 

DNMT. Moreover, contrary to GSK3685032, nucleoside DNMTis commonly have off-target 

effects, causing dose-limiting toxicity. Unlike the nucleoside analogs, the structures of non-

nucleosides are more heterogeneous and their mode of action is independent of DNA 

incorporation. Some non-nucleoside DNMTis act by binding directly the active site of 

enzymes, although many act by unknown mechanisms (60–63). Both nucleoside and non-

nucleoside analogs inhibit CpG methylation and thereby restore silenced genes. In this 

master dissertation three DNMTi compounds were investigated, namely DAC, AZA and 

GSK3685032. DAC and AZA are currently used as a first-line therapy for the treatment of 

myelodysplastic syndrome (MDS) when stem cell therapy is contra-indicated. Likewise, it 

is used for myelomonocytic leukemia and acute myeloid leukemia (AML). GSK3685032 

was recently discovered by Pappalardi et al. and showed improved tolerability and efficacy 

in AML. It can be classified as a  highly potent non-nucleoside DNMTi, which is more 

selective for DNMT1 and less toxic compared to AZA and DAC. Therefore, it seemed 

promising to test it in T-ALL (51,58,64,65). 
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1.4.3. HDACi 

Altered acetylation and increased HDAC levels have been identified in 

hematological cancers. HDACis, which potentially reverse the malignant phenotype, can 

be classified as zinc (Zn2+) and nicotinamide adenine dinucleotide (NAD+) dependent 

deacetylase inhibitors, whereby the latter is also known as sirtuin inhibitors (SIRTis). Both 

classes of epidrugs prevent deacetylation by blocking the catalytic site of HDAC, which 

causes hyperacetylation and thus gene activation (51,58,64,66,67). In this master 

dissertation three HDACi compounds were investigated, namely panobinostat, romidepsin 

and vorinostat. Panobinostat in combination with bortezomib and dexamethasone is used 

for the treatment of multiple myeloma. Romidepsin and vorinostat are indicated for the 

treatment of Cutaneous T-cell lymphoma.  The six different drugs used for this master 

dissertation with the corresponding indication, mode of action and clinical status are shown 

in table 1.1 (51,58,64,65).  

Table 1.1: Epidrugs used with corresponding treatment indication and status 

(51,68–71). 

Class Epidrug Treatment indication Status 

DNMTi Azacytidine Monotherapy: Myelodysplastic syndrome 

Combination therapy (+ decitabine or low dose 

cytarabine): Acute myeloid leukemia 

Approved 

DNMTi Decitabine Monotherapy: Acute myeloid leukemia Approved 

DNMTi GSK3685032 - Not approved 

HDACi Panobinostat Combination therapy (+ Bortezomib + Dexamethasone): 

Multiple myeloma 

Approved 

HDACi Romidepsin Cutaneous T-cell lymphoma Approved 

HDACi Vorinostat Cutaneous T-cell lymphoma Approved 
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1.5. PERSONALIZED MEDICINE 

1.5.1. General principle 

Current health care practices are commonly based on standard treatments applied 

to every individual. However, these individuals respond differently to the same drug, which 

can result in either subtherapeutic or undesired effects. The uniqueness in drug response 

among the population is caused by genetic differences, which is studied by 

pharmacogenetics, as well as epigenetic variations, which is studied by 

pharmacoepigenetics. The latter can be impacted by living conditions, health and lifestyle 

leading to aberrations in gene expression. Eventually, genes encoding for metabolism, 

transporters and receptors can be altered or epigenetically modified providing unfavorable 

effects. For example, epigenetically acquired drug resistance leading to chemotherapeutic 

failure is a common problem in cancer treatment. This resistance can be explained by 

increased drug efflux, drug target mutations, decreased bioactivation or decreased drug 

uptake (4,71,72).  

 

The above mentioned issues can be avoided if the variations in gene expression 

responsible for the aberrant drugs responses, are identified. Once identified, genetic and 

epigenetic alterations can be used as predictive biomarkers. The usage of these 

biomarkers contributes to personalized medicine, which is clarified in the section 1.5.2. 

Pharmacoepigenetics. 

1.5.2. Pharmacoepigenetics 

Pharmacoepigenetics studies the epigenetic basis for individual variation in drug 

response and has the potential to become an important element of personalized medicine. 

A key player determining the response to a particular drug are the drug metabolizing 

enzymes and transporters (DMETs). Alterations in DMET gene expression are mainly 

caused by changes in DNA methylation, histone modifications and miRNA (73).  
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For example in T-ALL, mutations in SETD2, which catalyzes H3K36 methylation, 

cause resistance to DNA damaging chemotherapeutics. Treatment with HDMi, restores the 

methylated H3K36 levels and thus the sensitivity to the drugs. A second example, in colon 

cancer, is the pregnane X receptor (PXR), which is activated by different lipophilic 

xenobiotics, including chemotherapeutics. PXR binds to DNA and regulates genes 

responsible for detoxification and excretion of substances. Furthermore, PXR regulates 

drugs metabolizing enzymes such as CYP3A and influences the intestinal first-pass 

metabolism. DNA methylation in the promotor of the PXR genes cause inactivation and 

downregulation of the CYP3A enzymes, whereas hypomethylation provides upregulation 

of CYP3A4. This variation in DNA methylation in the promotor of PXR genes partly explains 

the inter-individual difference of drugs response in colon cancer (74,75).  

 

Given that these epigenetic alterations play a crucial role in drug response, 

epigenetic biomarkers can be used for diagnostic and prognostic purposes. An example of 

an epigenetic biomarker in childhood ALL is miRNA, which can be used for diagnosis, 

classification and prediction of prognosis. Some oncogenic miRNAs are upregulated, 

whereas some tumor suppressor miRNAs are downregulated (see appendix table 1). 

Another ncRNA, namely lncRNA, seems to have an important role in cancer development 

as well, and can be used for classification of cancer subtypes and stratification of patients 

(76). DNA methylation patterns can also be used as biomarkers, given that alterations in 

these patterns occur during the progression of leukemia and affect clinical outcome. In 

contrast to the older studies on methylation patterns in T-ALL published by Roman-Gomez 

et al. (77,78), more recent studies have shown better clinical outcome when DNA is 

hypermethylated. Moreover, poor prognosis was observed in hypomethylated T-ALL. 

However, the clinical meaning of DNA methylation patterns in T-ALL remains unclear 

(73,76,78–80).  
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Current drug treatment of T-ALL is based on antimetabolites, alkylating agents, 

microtubule-destabilizing agents, anthracyclines, nucleoside analogues and hydrolyzing 

enzymes. Furthermore, stratification of the patients as standard-, medium-, or high-risk 

groups is based on the minimal residual disease (MRD) and response to steroids given in 

pre-treatment. As mentioned before in section 1.3.2. T-ALL, these current treatment 

protocols deal with relapses, therapy resistance and side effects. Therefore, more targeted 

therapies are required, including other molecular biomarkers in addition to the current MRD 

detection. In this master dissertation, correlation between hPTM profiles and drugs 

responses in 21 different T-ALL cell lines are investigated, whereby the hPTMs can be 

potentially used as predictive biomarkers and the epidrugs as co-medication when 

therapeutic resistance occurs (81).  
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2. OBJECTIVES 

The crucial role of epigenetics in T-ALL, including drug resistance, is increasingly 

confirmed by scientific studies (55,76,78,79). In some T-ALL subtypes, even after 

consolidation of the current treatments, resistance and relapse occur. Moreover, raising 

the dose to compensate for drug resistance is not always applicable, given that these 

treatment protocols lead to dose-dependent toxicities. Considering these issues, better T-

ALL patient  stratification and new targeted therapies are required. Epigenetic 

modifications, which cause changes in the chromosome without altering the DNA 

sequence, are interesting targets, since they plays a crucial role in gene expression and 

thus cell phenotype. In addition, unlike genetic mutations, epigenetically acquired 

resistance driven by hPTMs and DNA methylation, can be reversed by so called epidrugs. 

The objective of this master dissertation is to link the dose-response of 21 T-ALL cell lines 

to six different epidrugs to their baseline hPTM levels.  

 

First, the 21 cell lines will be treated with a dilution series of the six drugs and cell 

viability will be measured using Cell Titer Glo. Then, I will plot the viability data in survival 

curves and determine the IC50 and AUC for each drug. Finally, I will link the IC50 and AUC 

values of each cell line with their respective hPTM levels using Spearman correlation and 

Principal Component Analysis (PCA). To do this, I will use a hPTM atlas of each cell line  

obtained by Provez et al., which is publicly available to the community as a Progenesis 

QIP project. Eventually, if there is a correlation between hPTMs and drug response, hPTMs 

can be used as predictive biomarkers, which further contributes to personalized treatment.  

 

However, when a significant correlation between one or a combination of hPTMs 

and drug response is found, further validation is needed in the future. hPTMs of interest 

can be removed by either knock out or pharmacological inhibition of the writer of the PTM, 

whereafter the results either confirm or contradict the initial observations. Accordingly, co-

treatment with other epidrugs increasing the sensitivity of the cell lines to a particular drug 

can be examined. 
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3. MATERIALS AND METHODS 

Table 3.1: Materials used during this master dissertation 

Product LOT Model Serie-Nr. Manufacturer 

Azacytidine S178207 - - Selleckchem 

Decitabine S120010 - - Selleckchem 

Panobinostat S103012 - - Selleckchem 

Romidepsin S302003 - - Selleckchem 

Vorinostat S104712 - - Selleckchem 

GSK3685032 E104601 - - Selleckchem 

Centrifuge -  Megafuge ST4R Plus 42779322 Thermo Fisher 

Incubator -  INCU-Line IL 56 Prime IL56S 160056 VWR 

CO2 incubator -  MCO-230AICUV-PE 180960087 PHCbi 

Plate reader -  GloMax Explorer 

Promega 

9720000038 Promega 

Cell counter -  Countess™ II FL 
Automated Cell Counter 

AMQAF1000 Thermo Fisher 

Microscope -  EVOS Floid Imaging 

System 

4471136 

 

Thermo Fisher 

DMSO -  -  67-68-5 Gibco 

Trypan blue -  -  T10282 Life technologies 

RPMI medium 2339167 -  52400041 Gibco 

L-glutamine -  -  25030024 Gibco 

Penicillin Streptomycin -  -  15140122 Gibco 

Beta-mercaptoethanol -  -  31350010 Gibco 

Non-essential amino acids -  -  11140050 Gibco 

Sodium pyruvate -  -  11360070 Gibco 

CellTiter-Glo 0000510589 -  G7572/G7573 Promega 

PBS 2156430 -  20012027 Gibco 

 

https://www.thermofisher.com/order/catalog/product/4471136
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3.1. CELL CULTURE 

As shown in table 3.2, The 21 T-ALL cell lines were purchased from different labs, 

and grown in RPMI 1640 medium (Gibco, Thermo Fischer, UK) supplemented with 

penicillin, streptomycin, L-glutamine and 10% or 20% fetal calf serum (FCS) depending on 

cell line (see table 3.2). For PER-117, other medium was used, namely RPMI 1640 

containing 10% FCS, non-essential amino-acids, sodium pyruvate and 50 nM of beta-

mercaptoethanol. Subsequently, cell cultures were incubated at 37°C with 5% CO2 and 

95% humidity (PHC corporation, Etten Leur, The Netherlands). Cultures were verified to 

be free of mycoplasma contamination using the TaKaRa PCR Mycoplasma Detection kit. 

 

3.1.1. Splitting 

The cell cultures were split twice a week to maintain a cell density of 0,6.106 cells/mL 

or 0,8.106 cells/mL depending on the cell line, except PER-117, which has a desired cell 

density of 0,25.106 cells/mL (see table 3.2). First, culture flasks were visually checked for 

cell density and contamination using a light microscope (ThermoFisher, EVOS floid 

imaging system). Subsequently, 10 µL of the cell suspension was mixed with 10 µL trypan 

blue and cells were counted in an automated cell counter. Finally, the volume of  fresh 

medium needed to attain the required cell density was added. 
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Table 3.2: Overview of the 21 T-ALL cell lines used with their required % FCS and 

optimal cell density (82). 

Cell line 
Required 

% FCS 

Required cell 
density (106 

cells/mL) 
Origin Year 

Purchased 
from 

HSB-2 10% 0,8 
The peripheral blood of an 11-year-old boy 

with ALL 1966 
 

DSMZ 

PEER 20% 0,8 
The peripheral blood of a 4-year-old girl 

with T-ALL 1977 
 

DSMZ 

JURKAT 10% 0,6 
The peripheral blood of a 14-year-old boy 

with ALL 1976 
 

DSMZ 

MOLT-16 20% 0,8 
The peripheral blood of a 5-year-old girl 

with T-ALL 1984 
 

DSMZ 

LOUCY 10% 0,6 
The peripheral blood of a 38-year-old 

woman with T-ALL Unknown 
 

DSMZ 

RPMI-
8402 10% 0,8 

The peripheral blood of a 16-year-old 
woman with ALL 1972 

 
DSMZ 

HPB-ALL 20% 0,8 
The peripheral blood of a 14-year-old boy 

with ALL 1973 
 

ATCC 

TALL-1 20% 0,8 
The peripheral blood of a 28-year-old man 

with lymphosarcoma 1976 
 

DSMZ 

SUP-T11 10% 0,8 
The bone marrow of a 74-year-old man 

with T-ALL Unknown 
 

DSMZ 

PF-382 10% 0,8 
The pleural effusion of a 6-year-old girl 

with ALL Unknown 
 

DSMZ 

PER-117 10% 0,25 Unknown Unknown 

Richi 
Kotecha’s 

Lab 

P12-
ICHIKAWA 20% 0,8 

The peripheral blood of a 7-year-old boy 
with ALL Unknown 

 
DSMZ 

MOLT-4 20% 0,6 The peripheral blood of a 19-year-old man 1971 
 

DSMZ 

KOPT K-1 10% 0,8 Unknown Unknown 

Wendel, 
Hans-Guido 

lab 

KE-37 20% 0,8 
The peripheral blood of a 27-year-old man 

with ALL 1979 
 

DSMZ 

KARPAS-
45 20% 0,8 

The bone marrow of a 2-year-old boy with 
ALL 1972 

 
ECACC 

DND-41 10% 0,8 
The peripheral blood of a 13-year-old boy 

with T-ALL 1977 
 

DSMZ 

CUTTL-1 20% 0,8 Unknown Unknown 

Wendel, 
Hans-Guido 

lab 

CCRF-
CEM 20% 0,8 

The peripheral blood of a 3-year-old girl 
with ALL 1964 

 
DSMZ 

ALL-SIL 20% 0,8 
The peripheral blood of a 17-year-old man 

with T-ALL Unknown 
 

DSMZ 

KARPAS-
45 JC 20% 0,8 Unknown Unknown 

Lab Jan 
Cools 

(KULeuven) 
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3.2. IC50 DETERMINATION 

3.2.1. Cell treatment  

To determine the IC50 of azacytidine (S1782, Selleckchem, AZA), decitabine 

(S1200, Selleckchem, DAC), panobinostat (S1030, Selleckchem, PAN), vorinostat (S1047, 

Selleckchem, VOR), romidepsin (S3020, Selleckchem, ROM) and GSK3685032 (E1046, 

Selleckchem, GSK), the 21 T-ALL cell lines were treated with a dilution series of each 

compound in medium. Before treatment, 2 – 3 million cells from each cell line were 

centrifuged at 4°C, 1500 RPM for 5 minutes. Then, the supernatants were discarded and 

the pellets were resuspended in fresh RPMI medium with 10% or 20% FCS depending on 

the cell line (see table 3.2) to attain around 25000 cells per well. Afterwards, 96-well white 

plates were prepared by adding 95 µL cell suspension to each corresponding well.  

Importantly, the empty wells were filled with phosphate-buffered saline (PBS)(Thermo 

Fisher, UK) to protect against evaporation. For AZA and DAC, each concentration was 

added daily during four days to assure a constant drug exposure, since the half-life of AZA 

and DAC is approximately 8-12 hours in vitro (83). For each compound, the dilution series 

were optimized in order to center the concentration range around the average IC50. The 

final percentage of vehicle was equal in each concentration point (0.1% DMSO for PAN, 

VOR, ROM, AZA and DAC; 0.2% ethanol for GSK). The treated cells were incubated for a 

certain duration depending on the epidrug (see table 3.3) at 37°C with 5% CO2 (PHC 

corporation, Etten Leur, The Netherlands). Each cell line was treated twice in the same 

well plate (two technical replicates) and each treatment was performed thrice on different 

days (three biological replicates).  
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Table 3.3: Overview of dilution series and incubation time per drug.  

Epidrugs Dilution series ( in 2% DMSO – with exception of GSK in 4% 
ethanol) 

Incubation time 
(days) 

AZA 50 – 10 – 1 – 0,1 – 0,01 – 0 (µM) 4 

DAC 50 – 10 – 1 – 0,1 – 0,01 – 0 (µM) 4 

GSK 10 – 5 – 1 – 0,5 – 0,1 - 0,01 – 0 (µM) 6 

PAN 25 – 10 – 5 – 2,5 – 1 – 0 (nM) 3 

VOR 5 – 1 – 0,75 – 0,5 – 0,25 – 0,1 – 0 (µM) 3 

ROM 5 – 2,5 – 1 – 0,5 – 0,1 – 0 (nM) 3 

 

3.2.2. Cell viability assay 

CellTiter-Glo Luminescent Cell Viability assay was used in this master dissertation, 

which is a homogeneous method to determine the amount of viable cells based on ATP 

quantification. By adding the CellTiter-Glo reagent (Promega Corporation, 2800 Woods 

Hollow Road Madison, USA)  to cells, luminescent signals are produced proportional to the 

amount of ATP and thus the number of living cells. After the preferred incubation time (see 

table 3.3), 50 µL of CellTiter-Glo reagent was added to each well. Then, the 96 well white 

plates were shaken for two minutes and incubated in the dark at room temperature for 10 

minutes, followed by recording the luminescence at 1500 msec with the plate reader 

(Promega Corporation, 2800 Woods Hollow Road Madison, USA). The cell viability at each 

concentration was calculated by taking the average luminescence of the two technical 

replicates relative to the two technical replicates only containing the vehicle.  
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3.3. DATA ANALYSIS 

3.3.1. Cell viability data 

For each cell line, the average luminescence and standard deviation of the three 

biological replicates were calculated at each concentration in Microsoft Excel. Afterwards, 

GraphPad prism was used to plot survival curves and to determine the IC50 and AUC 

values. Plotting the survival curves was performed by using a non-linear regression with 

the equation; Asymmetric (five parameter), X is log(concentration) and IC50s were 

determined by using non-linear regression with the equation; absolute IC50, X is 

concentration. AUC was determined by using XY analysis with the parameter area under 

curve (AUC).  

3.3.2. hPTM correlation 

Baseline hPTM profiles of the 21 T-ALL cell lines were determined via bottom-up 

LC-MS/MS by Provez et al. (84). Briefly, T-ALL cells of each cell line were collected 24 

hours after medium was refreshed (six biological replicates). Then, histones were extracted 

using direct acid extraction and further propionylated and digested using trypsin to enable 

better separation on the mass spectrometer.  Finally, samples were measured using LC-

MS/MS; raw MS/MS data is shared on ProteomeXchange. The experimental spectra were 

identified using Mascot (Matrix Science) and further processed in Progenesis QIP 

(Nonlinear Dynamics, Waters). Due to the combinatorial explosion of hPTMs, a maximum 

set of 9 variable PTMs were identified in Mascot, namely acetylation (Ac), butyrylation (Bu), 

formylation (Fo), trimethylation (Me3) and ubiquitination (Ub) on K; dimethylation (Me2) 

and methylation (Me) on K and R; deamidation (Deam) on N,Q, R and phosphorylation 

(Ph) on S and T. Propionylation on K and N-termini were defined as fixed modifications. 

Since formylations (Fo) are chemically induced during sample preparation by adding formic 

acid, we can consider this PTM as unmodified. The hPTM atlas is publicly shared as a 

Progenesis QIP project on ProteomeXchange (ID: PXD031500), which is editable and 

reusable. Importantly, a quality control (QC) sample was made by mixing equal amounts 

of each sample, which was used to align all LC-MS/MS runs in Progenesis and normalize 

the overall histone load in each sample. Normalization against all histones is crucial, since 

we aim to identify changes in hPTMs and not the expression of histones themselves.  
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The above mentioned hPTM atlas was used to search for correlations between 

hPTMs and drug responses. Briefly, normalized abundances of all peptides from histone 

H3 and histone H4 were exported from  Progenesis for all runs (after outlier removal). Next, 

the average fold change relative to the QC sample was calculated for each peptidoform in 

each cell line. These fold changes were used to correlate with IC50 and AUC values for 

each drug. This correlation was calculated in GraphPad Prism by using Spearman 

correlation, which shows the relation between two continuous variables; the IC50 or AUC 

values and hPTM fold changes. As a second, complementary correlation method, principle 

component analysis (PCA) was performed using Progenesis QIP by plotting the normalized 

abundances of all peptides from H3 and H4. PCA is a statistical procedure to observe 

trends, clusters and outliers (85,86). Within this approach, only the three most resistant 

and three most sensitive T-ALL cell lines were included for each compound.   
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4. RESULTS 

4.1. CELL VIABILITY DATA 

To determine the IC50, 21 T-ALL cell lines were treated with an increasing dose of 

three HDACis, namely PAN, ROM and VOR and three DNMTis, namely AZA, DAC and 

GSK. 

 

4.1.1. DNMTis 

As shown in figure 4.1, with the exception of HPB-ALL, PEER and TALL-1, AZA 

demonstrated a significant antiproliferative effect with a maximal reduction of cell viability 

to 0% at 50µM after 96h incubation time. Unlike AZA, DAC showed a low efficacy, since it 

did not reduce the viability to 0% for 16 of the 21 T-ALL cell lines at the highest drug 

concentration. However, as shown in table 4.1, for the majority of the cell lines, DAC 

showed a higher potency, given that the IC50 values are lower. Unexpectedly, the viability 

of the 21 T-ALL cell lines treated with GSK and incubated for six days, did not reduce to 

0% at any concentration. Moreover, at the highest concentration viability mainly fluctuated 

between 20-60%, which represents a relative low efficacy. Furthermore, five cell lines, 

namely LOUCY, ALL-SIL, TAL-1, KARPAS-45JC and JURKAT did not reach the IC50 

value with the concentration range used. Therefore, estimated IC50 values were used and 

the five cell lines were classified as resistant.  

 

 As shown in table 4.1, the IC50 values are more similar between AZA and DAC, 

compared to GSK. For instance, LOUCY treated with AZA and DAC demonstrated a low 

IC50 value of 0,2499 µM and 0,01 µM, respectively. In contrast, treatment of LOUCY with 

GSK showed a high IC50, namely 10 µM. This is also observed in TALL-1 with IC50 values 

of 0,3839 µM for AZA and 0,01 µM for DAC, whereas the IC50 value for GSK is 10 µM. 

This also applies to PEER, P-12 ICHIKAWA, JURKAT, ALL-SIL and DND-41. On the other 

hand, KARPAS-45 showed a remarkable high IC50 value for AZA and DAC, namely 10,73 

µM and 50 µM, respectively, while a low IC50 value of 0,5 µM is observed for GSK. 
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 As shown in figure 4.1, for some drugs, not all T-ALL cell lines reached 0% cell 

viability, which in turn leads to biased IC50 values. Therefore, AUC values were calculated 

since they more accurately represent the dose-response. It is important to note that the 

AUC values are not directly proportional to the IC50 values. As shown in table 4.1, LOUCY, 

DND-41, KOPTK-1 and JURKAT cell lines treated with AZA showed a low AUC value 

fluctuating between 1,5 and 3,5, whereas HSB-2, HPB-ALL, PEER and KARPAS-45 

treated with AZA demonstrated a high AUC value ranging from 7 to 17.  For cell lines 

treated with DAC, KOPTK-1, MOLT-16, PER-117, P12-ICHIKAWA and PEER displayed a 

low AUC value with lowest value of 0,8901 and highest value of 6,082. In contrast, SUPT-

11, MOLT-4, CCRF-CEM, KARPAS-45 (JC), HPB-ALL, CUTTL1 and KARPAS-45 showed 

a high AUC value reaching 37,7. AUC values of GSK were less fluctuating, ranging from 

approximately 1,8 to 8,8, with the lowest values for KE-37, KOPT-K1, MOLT-16, KARPAS-

45 and CUTTL1 as shown in table 4.1. Contrarily, LOUCY, TALL-1, SUP-T11 AND PER-

117 demonstrated relatively higher AUC values, namely around 8.  

 
As shown in table 4.1, AZA and DAC showed similarities, namely low AUC levels 

in LOUCY, MOLT-16, KOPT-K1, P12 ICHIKAWA, ALL-SIL and high AUC levels in MOLT-

4, SUP-T11, HPB-ALL and KARPAS-45. However, high AUC levels were observed in 

PEER and TALL-1 treated with AZA, while the same cell lines demonstrated low AUC 

values when treated with DAC. After GSK treatment, similar to AZA and DAC, KE-37, 

KOPT-K1 and MOLT-16 demonstrated low AUC levels and SUP-T11 a high AUC level. 

Similar to what was observed for the IC50, KARPAS-45 showed a high AUC level for AZA 

and DAC, while a low AUC value for GSK.  
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Table 4.1: IC50 (µM) and AUC values for 21 T-ALL cell lines following treatment with 

azacytidine (AZA), decitabine (DAC) and GSK3685032 (GSK). IC50 values marked in 

grey were not reliable, since the cell viability does not reach 0%. Therefore, 

estimated IC50 values were used. 

 
IC50 AUC 

Cell line AZA DAC GSK AZA DAC GSK 

ALL-SIL 1,202 0,35 10 4,163 8,216 6,257 

CCRF-CEM 2,532 16 5 6,581 24,37 5,149 

CUTTL1 1,349 50 0,5 5,997 33,72 3,031 

DND-41 1,275 0,5 5 3,176 12,87 5,64 

HPB-ALL 2 50 5 12,57 29,58 4,773 

HSB-2 2,94 0,25 0,5 12,38 13,28 3,432 

JURKAT 0,8094 0,5442 10 3,532 14,92 6,424 

KARPAS-45 10,73 50 0,5 17,2 37,7 3,014 

KARPAS-45 

(JC) 
1,715 8 10 5,603 24,59 6,935 

KE-37 0,777 0,08383 0,3445 4,229 12,09 1,81 

KOPT-K1 0,3271 0,01 0,2007 3,209 0,8901 2,245 

LOUCY 0,2499 0,01 10 1,521 8,074 8,252 

MOLT-16 1,807 0,01502 0,937 4,321 1,159 2,979 

MOLT-4 4 0,6698 5 8,227 18,85 5,493 

P12-ICHIKAWA 0,7699 0,06336 5,436 4,024 4,727 6,039 

PEER 0,5931 0,0365 4,68 15,6 6,082 5,73 

PER-117 2 0,1 9,182 5,937 4,171 8,834 

PF-382 2,694 0,25 5 6,341 13,62 5,485 

RPMI-8402 5,475 0,2892 0,9254 6,78 15,96 4,172 

SUP-T11 2,838 1,254 9,58 8,539 18,22 8,426 

TALL-1 0,3839 0,01 10 7,374 9,037 8,269 
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Figure 4.1: Survival curves showing cell viability of  21 T-ALL cell lines in response 

to a dilution series of A) azacytidine, B) decitabine, C) GSK3685032. Data points 

show the average of three independent experiments. 
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4.1.2. HDACis 

As shown in figure 4.2, except for HPB-ALL and HSB-2, treating cell lines with ROM 

and VOR and incubating them for three days, reduced viability to 0% at the highest 

concentration 5 nM and 5 µM, respectively. For PAN, cell viability reduced to 0% for 18 of 

the 21 cell lines at the highest concentration (25 nM). As can be seen in table 4.2, the IC50 

values of PAN and ROM were significantly lower in nanomolar range compared to VOR. 

Notably, for HPB-ALL, treatment with the six different epidrugs, never reduced cell viability 

to 0%, which emphasizes the resistance of HPB-ALL.  

 

The IC50 values for ROM and VOR are less fluctuating, ranging from approximately 

0,4 to 1,4, nanomolar for ROM and micromolar for VOR, while for PAN, they range from 5 

nM up to 19 nM. JURKAT, KE-37, CCRF-CEM, MOLT-4, SUPT-11 and HPB-ALL overall 

have relatively high IC50 values for the three HDACis, while CUTTL-1, KARPAS-45, HSB-

2, ALL-SIL and LOUCY demonstrated lower IC50 values. This indicates that there is less 

variation in sensitivity of the different cell lines to the three HDACis compared to the 

DNMTis. 

 

Following VOR treatment, CUTTL1, RPMI-8402, LOUCY, PER-117 AND KOPT-K1 

demonstrated low AUC values ranging from 0,5 to 0,8, whereas AUC values for JURKAT, 

SUP-T11 and KE-37 were about 2. As shown in table 4.2, cell lines treated with ROM gave 

a similar range of low AUCs, namely from approximately 0,6 to 0,8. Except for LOUCY, 

different cell lines are included in the lower AUC range of ROM compared to VOR, namely 

DND-41, MOLT-16, TALL-1 and PF-382. Higher AUC levels were found for ROM around 

1,7 - 1,8, namely in SUP-T11, PER-117, RPMI-8402, JURKAT, KE-37, HSB-2 and HPB-

ALL. In general, PAN showed higher AUC values, ranging from around 5 to 20, with KOPT-

K1, KARPAS-45, CUTTL1 in the lower range and MOLT-4, KE-37, CCRF-CEM and 

JURKAT in the higher range. Noteworthy, the three HDACis all showed a high AUC level 

in JURKAT, HPB-ALL, KE-37, SUPT-11 cell lines, whereas low AUC levels were observed 

in LOUCY and CUTTL1. 
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Table 4.2: IC50 and AUC values for 21 T-ALL cell lines following treatment with 

azacytidine (AZA), decitabine (DAC) and GSK3685032. IC50 values marked in grey 

are not reliable, since the cell viability does not reach 0%. 

 IC50 AUC 

Cell line ROM (nM) VOR (µM) PAN (nM) ROM VOR PAN 

ALL-SIL 0,8554 0,6843 6,548 1,036 1,1 8,008 

CCRF-CEM 1,202 0,9907 15,73 1,453 1,711 15,68 

CUTTL1 0,7328 0,4418 5,629 0,8715 0,5003 6,61 

DND-41 0,3704 0,7025 8,684 0,64 1,325 10,79 

HPB-ALL 0,9949 0,8331 8,207 1,852 1,866 11,64 

HSB-2 0,1021 0,5682 5,867 1,824 1,313 7,932 

JURKAT 1,426 1,122 19,05 1,79 2,179 20,84 

KARPAS-45 0,7937 0,6581 5,245 0,971 0,875 6,383 

KARPAS-45 (JC) 1,188 0,6486 6,701 1,517 0,9078 8,517 

KE-37 1,374 1,011 12,18 1,798 2,249 14,84 

KOPT-K1 0,8788 0,5355 5,006 1,437 0,8013 5,348 

LOUCY 0,6899 0,515 6,339 0,777 0,7748 7,766 

MOLT-16 0,5735 0,73 8,161 0,652 1,299 11,42 

MOLT-4 1,246 0,9358 9,836 1,564 1,656 12,21 

P12-ICHIKAWA 1,226 0,7198 6,885 1,329 1,059 8,846 

PEER 0,9 0,6367 7,48 1,129 0,9765 9,801 

PER-117 1,422 0,5842 7,202 1,723 0,7938 9,045 

PF-382 0,5823 0,6745 8,458 0,7639 1,17 11,67 

RPMI-8402 1,179 0,5335 7,864 1,762 0,6133 9,878 

SUP-T11 1,194 1,146 8,474 1,705 2,197 11,01 

TALL-1 0,6695 0,6691 6,471 0,711 1,001 7,775 
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Figure 4.2: Survival curves showing cell viability of  21 T-ALL cell lines in response 

to a dilution series of A) panobinostat, B) vorinostat, and C) romidepsin. Data points 

show the average of three independent experiments. 

 

  

 

0 0 

0 

 
(nM) 

 
(nM) 



 

 38 

4.2. hPTM CORRELATION 

 Baseline hPTM profiles of 21 T-ALL cell lines obtained by Provez et al. were used 

to search for correlations between hPTMs and drug response using two distinct methods. 

First, Spearman correlations were calculated including all cell lines and their corresponding 

AUC and IC50 values. Positive correlations (CF > 0) indicate a rise in the hPTM is 

correlated with a rise in IC50 and thus drug resistance. Likewise, negative correlations (CF 

< 0) indicate the hPTM is linked with sensitivity. Correlation factors lower than -0.5 or higher 

than 0.5 were considered significant. Secondly, PCA plots with the corresponding 

expression profiles showing the hPTM levels of the three most resistant and three most 

sensitive cell line were plotted for each drug.  

 

4.2.1. DNMTis 

 As shown in figure 4.3, several positive correlations were found between IC50s and 

methylated peptides for the DNMTis. For example, between the peptidoform H4(4-17): 

K5[Fo] K8[Me2] and IC50 of cell lines treated with AZA, a Spearman correlation factor of 

0,56 was found. Since we can consider lysins carrying formylations as unmodified, we can 

assume that an increase in H4 K8[Me2] increases the IC50 and thus resistance to AZA. 

This was also found for H4(4-17): K12[Me] K16[Ac], H4(20-35): K20[Me2], H3.1T(27-40): 

K37[Me2] R40[Me2] and H3.1T(27-40): K27[Me2] K37[Me2], with correlation factors of 

respectively 0,54, 0,5, 0,54 and 0,65.  

 

 Two of the peptidoforms mentioned above for AZA, positive correlations were 

demonstrated for DAC as well. This applies for H4(20-35): K20[Me2] and H3.1T(27-40): 

K37[Me2] R40[Me2], with a corresponding Spearman correlation factor of 0,50 and 0,51, 

respectively. Furthermore, significant Spearman correlation factors between other hPTMs 

and IC50 values of DAC in cell lines were observed, namely, H3.1T(9-17): K9[Me2], 

H3.1T(9-17): K9[Bu] and H3.3(18-26): K18[Bu], with correlation factors of respectively 

0,62, 0,55 and 0,51. As regards GSK, no significant correlations were found between IC50 

values and hPTMs. However, a Spearman correlation factor of 0,46 was found between 

H4(4-17): R17[Me] and IC50 values in cell lines treated with GSK. 
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For DAC, as illustrated in figure 4.4, Spearman correlation based on AUC levels 

showed equivalent results compared to correlations based on IC50 values for certain 

peptidoforms.  For instance, H4(20-35): K20[Me2], H3.1T(9-17): K9[Me2], H3.3(18-26): 

K18[Bu] and H3.1T(27-40): K37[Me2] R40[Me2] showed a Spearman correlation of 

approximately 0,55 to 0,65, which further confirms that a rise in these hPTMs, suggests a 

rise in resistance to DAC.  AZA showed a significant Spearman correlation factor of 0,55 

between hPTM, namely H3.1T(9-17): K9[Me2] and AUC values of the cell lines treated with 

AZA. As was observed for Spearman correlation based on IC50 values, no significant 

correlation was found between hPTMs and AUC levels of cell lines treated with GSK, 

although H4(4-17): R17[Me] demonstrated a correlation factor of 0,46.  

 

 The hPTM profiles of the three most sensitive and three most resistant cell lines 

were investigated via PCA for each compound, which is shown in Figure 4.5. The 

expression profile of the most significant differential peptidoform between the two groups 

is displayed on the bottom of the corresponding PCA plot for each compound. For AZA, 

the most significant differential peptidoform between the sensitive and resistant group was 

H3(27-40): K27[Me2] K37[Me2], whereby a higher level is observed in the three most 

resistant cell lines, namely MOLT-4, RPMI-8402 and KARPAS-45. Contrarily, the three 

most sensitive cell lines, namely LOUCY, KOPT-K1 and TALL-1, showed relatively low 

levels of H3(27-40): K27[Me2] K37[Me2]. Furthermore, following the second most 

significant unmodified histone, H3(9-17): K9[Fo], the third most significant differential 

hPTM was H3(9-17): K9[Bu].   Interestingly, the three cell lines that were most sensitive to 

DAC, namely, LOUCY, KOPT-K1 and TALL-1, demonstrated significantly higher levels of 

H4(4-17): K8[Ac] K12[Ac] K16[Ac] compared to the three most resistant cell lines CUTTL1, 

HPB-ALL and KARPAS-45. Moreover, H4(4-17): K5[Ac] K12[Ac] K16[Ac] and H4(4-17): 

K12[Ac] K16[Ac] were the second and third most significant differential peptidoforms, 

respectively.  Regarding  GSK, the three most resistant cell lines, namely KARPAS-45JC, 

LOUCY and TALL-1, demonstrated significantly higher levels of H3(18-26): K18[Ac] 

K23[Ac] compared to the three most sensitive cell lines KOPT-K1, KE-37 and CUTTL1. 

The second and third most significant differential hPTMs were H3(27-40): K27[Bu] and 

H3(9-17): K9[Me3]. 



 

 40 

Figure 4.3: Heatmap of Spearman correlation factors between IC50 values and 

hPTMs for the six different drugs; azacytidine (AZA), decitabine (DAC), GSK3685032 

(GSK), panobinostat (PAN), vorinostat (VOR) and romidepsin (ROM). 
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Figure 4.4: Heatmap of Spearman correlation factors between AUC values and 

hPTMs for the six different drugs; azacytidine (AZA), decitabine (DAC), GSK3685032 

(GSK), panobinostat (PAN), vorinostat (VOR) and romidepsin (ROM). 
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Figure 4.5: PCA plot of the normalized abundances of all peptides of H3 and H4 for 

the three most sensitive and three most resistant cell lines per drug. Sensitive cell 

lines are shown in blue, resistant cell lines in purple. Each dot represents one 

biological replicate. Furthermore, the expression profile of the most significant 

differential hPTM between the resistant and the sensitive group is shown per 

compound. A) AZA, B) DAC, C) GSK, D) PAN, E) VOR, F) ROM.  
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4.2.2. HDACis 

 As shown in figure 4.3, IC50 values of ROM demonstrated significant Spearman 

correlations of approximately 0,5 to 0,6 with the peptidoforms H4(4-17): K5[Fo] K8[Ac] 

K16[Ac], H4(4-17): K5[Fo] K8[Ac] K12[Ac] K16[Ac], H4(4-19): K12[Ac] K16[Ac] and 

H3.1T(9-17): K9[Fo] K14[Ac]. Therefore, an increase in these hPTMs is correlated with an 

increase in IC50, and thus resistance of the cell lines to ROM. However, for PAN and VOR, 

no significant Spearman correlation was found based on IC50, although some correlations 

are close to 0,5. For example a Spearman correlation factor of 0,41 between H4(4-17): 

K5[Fo] K8[Ac] K16[Ac] and IC50 values of PAN was found and a Spearman correlation of 

factor 0,44 was observed between H4(1-17): K5[Ac] and IC50 values in cell lines treated 

with VOR. Unfortunately, based on the AUC levels of the HDACis, no significant Spearman 

correlation was found.  

 

 As shown in figure 4.5, the three most sensitive cell lines for ROM, i.e. MOLT-16, 

HSB-2, DND-41 and two of the three most resistant cell lines, i.e. KE-37 and JURKAT, 

demonstrated similar low expression of H3(18-26): K18[Ac] K23[Ac]. However, PER-117, 

which is one of the three most resistant cell lines, showed distinctive higher levels of H3(18-

26): K18[Ac] K23[Ac]. Furthermore, the second and third most significant differential 

hPTMs were H3(18-26): K18[Bu] and H3.3(27-40): K37[Bu].  For VOR, contrary to the 

sensitive cell line CUTTL1, peak levels of H3(18-26): K18[Ac] K23[Ac] were demonstrated 

in the other two of the three most sensitive cell lines, namely LOUCY and RPMI. Similar to 

the resistant JURKAT, low levels of H3(18-26): K18[Ac] K23[Ac] were seen in two of the 

three most sensitive cell lines, namely KE-37 and JURKAT. However, SUPT-11, which is 

one of the three most resistant cell line against VOR, showed a remarkable drop in H3(18-

26): K18[Ac] K23[Ac] expression. As for PAN, the resistant CCRF-CEM showed 

remarkable higher levels of H3.3(27-40): K[Bu] compared to the three most sensitive cell 

lines, i.e. KOPT-K1, KARPAS-45, and CUTTL1. Likewise, the abundance of H3.3(27-40): 

K[Bu] was slightly higher for the other two resistant cell lines, namely KE-37 and JURKAT, 

compared to the three most sensitive cell lines treated with PAN (see figure 4.5, D). 
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5. DISCUSSION 

5.1. CELL VIABILITY DATA 

5.1.1. DNMTis 

Cell viability of 21 human T-ALL cell lines treated with three different DNMTIs, 

namely AZA, DAC and GSK, was measured. As found in another study for AML (83),  

differences in potency and efficacy were observed between AZA and DAC, with AZA 

having a greater efficacy compared to DAC, since it reduced cell viability to 0% at the 

highest concentration for nearly all T-ALL cell lines. However, in general, DAC showed 

lower IC50 values indicating higher potency compared to AZA. This difference in potency 

and efficacy suggests that both drugs have different mode of action despite the fact that 

both drugs are classified as nucleoside based DNMTis. Both DNMTis incorporate into 

DNA, resulting in DNMT depletion and DNA hypomethylation. However, DAC only 

incorporates into DNA during the S-phase, whereas AZA also incorporates into RNA, which 

is possible in all cell phases and not restricted to the S-phase. According to Hollenbach et 

al, the plateau effect of DAC is caused by DNA incorporation restricted to the S-phase of 

cells, thereby affecting less cells. Therefore, prolonged treatment could further reduce cell 

viability (83,87).  

Furthermore, as shown in table 4.1, AZA and DAC are more similar compared to 

GSK. For instance, the three most sensitive cell lines treated with AZA were equal to the 

three most sensitive DAC treated cell lines. Moreover, KARPAS-45 was the most resistant 

cell line for both AZA and DAC. As for GSK, contrasting results were observed. For 

instance, TALL-1 and LOUCY were the most resistant cell lines for GSK, while being most 

sensitive to AZA and DAC. This difference could be explained by the different mechanism 

of action of GSK as a non-nucleoside DNMTi. GSK did not reduce cell viability to 0% in 

any T-ALL cell line at the highest concentration. In addition, some cell lines treated with 

GSK, namely LOUCY, ALL-SIL, TAL-1, KARPAS-45JC and JURKAT, did not reach the 

IC50 value. Considering these observations, higher doses of GSK need to be tested. 

Interestingly, observing these differences, treatment stratification can be applied based on 

cell line. For instance, KARPAS-45 is sensitive to GSK, while resistant to DAC and AZA. 
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5.1.2. HDACis 

 HDACis are anticancer agents potentially restoring tumor suppressor genes, which 

showed promising results in lymphomas (88). Therefore, we measured the cell viability of 

21 T-ALL cell lines treated with three HDACis, namely PAN, VOR and ROM. As shown in 

figure 4.2, the HDACis showed a high efficacy, whereby viability of at least 17 of the 21 

cell lines was reduced to 0% at the highest concentration. Moreover, the ranking order of 

the sensitivity of the cell lines treated with the HDACis are more similar compared to cell 

lines treated with the DNMTis, which is observable in table 4.2. Given the similar degrees 

of sensitivity of the cell lines to the three HDACis, stratification of treatment only based on 

cell line is not applicable.  

 

As shown in figure 4.2. In contrast to VOR, PAN and ROM, both showed effects 

and IC50 values at nanomolar range, which is also found in several other hematological 

and solid tumors (89–91). Noteworthy, PAN has a broader range of targets, inhibiting class 

I (HDACs 1, 2, 3, 8), II (HDACs 4, 5, 6, 7, 9, 10) and IV (HDAC 11) HDACs, while VOR 

only inhibit class I (HDAC 1, 2 and 3) and class II (HDAC 6). Similar to VOR, ROM only 

inhibits class I and II HDACs, in particular HDAC 1, 2, 4 and 6 (92–94). These remarkable 

differences in targets between the HDACis can potentially explain the different 

concentration ranges in effects and potency. 

  

5.2. hPTM CORRELATION 

Better stratification of T-ALL patients is needed, given that several problems occur 

during standard T-ALL treatment, including relapses, resistance and side effects. Since 

hPTMs have an important role in controlling gene expression, correlations between hPTMs 

and drug responses were investigated. Furthermore, hPTMs causing a significantly 

different drug response can potentially be used as biomarkers, which may contribute to 

personalized medicine. 
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5.2.1. DNMTis 

 As can be seen in figure 4.3 and figure 4.4, several methylated peptides of H3 and 

H4 showed a significant positive correlation with the IC50 and AUC of the DNMTis AZA 

and DAC, and thus are linked with resistance. Since DNMTis cause hypomethylation of 

DNA, there could be a cross-talk between DNA methylation and histone methylation. 

Recently, this phenomenon was described by Li et al.  They demonstrated that the protein 

UHRF1 recognizes hemi-methylated DNA and provides binding of DNMT1 to maintain 

DNA methylation. In addition, UHRF1 binds H3K9me3, which suggests an interplay 

between H3K9me3 and DNA methylation. Moreover, ubiquitin ligase activity of UHRF1 

provides monoubiquitination of H3K18 and H3K23, whereby the ubiquitinated histones 

bind DNMT1 and further simulates DNMT1 methyltransferases activity. Furthermore, 

H3K36me3 interacts with DNMT3 causing H3K36me3-mediated DNA methylation (95–97). 

Given this cross play between DNA methylation and histone methylation, co-treatment with 

HMTis could be interesting.  

 

 For AZA, the expression profile of methylated histone peptides were higher in the 

three most resistant compared to the three most sensitive cell lines. This was further 

confirmed by the positive correlation between H3- and H4 methylation and IC50 of cell 

lines treated with AZA. As regards DAC, higher expression of acetylation was detected in 

the three most sensitive cell lines compared to the three most resistant cell lines, whereas 

for GSK, higher levels of histone acetylation were demonstrated in the three most resistant 

cell lines compared to the three most sensitive cell lines.  

  

 Given the high correlations between response to AZA and DAC and H3 and H4 

methylation, these hPTMs could potentially be used as a predictive biomarkers for T-ALL 

treatment with AZA and DAC, whereby high H4 methylation is correlated with resistance 

and potentially therapy failure. To confirm these correlations, genes encoding the writers 

of these hPTMs can be knocked out or the writers themselves can be pharmacologically 

inhibited, i.e. by HMTis.  
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5.2.2. HDACis 

 ROM demonstrated several positive correlations between acetylated peptides of 

H3- and H4 and the IC50, which can be seen in figure 4.3. This suggests that Histone 

acetylation is correlated with resistance of the T-ALL cell lines against ROM. Noteworthy, 

in a study (98), high levels of H4 acetylation were demonstrated to be correlated with an 

increased overall survival. However, the authors reported that the study has to be 

confirmed, since limitations such as sample size and number of patients were present 

(98,99). Although H4 acetylation is correlated with resistance to ROM, it is important to 

note that H4 acetylation may be correlated with better prognosis, since it can restore 

repressed tumor suppressor genes. However, hyperacetylation in these cell lines can be 

explained by mutations in histone acetyltransferase (HAT), high expression of HAT and 

aberrant recruitment of HAT to wrong loci causing activation of oncogenes (100). Treating 

these cell lines with HDACi will not restore this alteration caused by aberrations in the HAT 

system. 

 

 Observing the expression profiles, relatively high abundance of histone acetylation 

was found in PER-117, which is one of the three most resistant cell lines against ROM. 

However, the other two resistant cell lines showed similar, but slightly higher acetylation 

degrees compared to the three most sensitive cell lines treated with ROM. These findings 

confirm the positive correlation between acetylation and IC50 values of ROM.  

 

 We demonstrated that ROM is positively correlated with H4 acetylation. However, 

further validation is needed by knocking out the genes encoding the writers of these hPTMs 

or by inhibiting the enzymes themselves.  
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6. CONCLUSION 

 AZA was found to be effective in reducing the cell viability of the T-ALL cell lines. 

However, the other two DNMTis, namely DAC and GSK demonstrated low efficacy. 

Although the higher efficacy of AZA compared to DAC, in general, lower IC50 values were 

demonstrated for DAC indicating higher potency of this epidrug. Further, IC50 values of 

AZA and DAC were more similar compared to GSK, whereby some cell lines were resistant 

against AZA and DAC, while sensitive to GSK. Conversely, other cell lines were sensitive 

against AZA and DAC, while resistant to GSK, which could be interesting for treatment 

stratification based on cell line. With regard to the HDACis, PAN, ROM and VOR, high 

efficacy was found, reducing the cell viability to approximately 0% in nearly all T-ALL cell 

lines. As for the IC50 values of the HDACis, PAN and ROM showed IC50 values at 

nanomolar range, while IC50 values of VOR were found to be in micromolar range.  

 

 Significant positive correlations were found between H3- and H4 methylation and 

IC50- and AUC values of the DNMTis, namely AZA and DAC. These correlations indicate 

that a high methylation level is linked with a high IC50 value, and thus resistance of the cell 

lines. Unfortunately, no significant correlations were found for GSK. As for the HDACis, 

IC50 values of ROM were positively correlated with H3- and H4 acetylation. This suggests 

that hyperacetylation is linked to resistance of the cell lines to ROM. No significant 

correlations were found between hPTMs and IC50 or AUC values of VOR and PAN.  

 

Given the significant correlation between response to the epidrugs AZA, DAC and 

ROM, and the hPTM levels of the cell lines, it can be concluded that hPTMs could 

potentially be used as predictive biomarkers in T-ALL treatment. However, further 

validation is needed by knocking out the genes encoding the writers of these hPTMs or by 

pharmacologically inhibiting the writers themselves. If successful, this would enable 

stratification of T-ALL patients based on their hPTM signature to choose the best 

performing treatment.   
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 8. APPENDIX 

Table 1: Epigenetic biomarkers, miRNAs, F = favorable, U = unfavorable (76)

miRNA Type of biomarker 

 

Lineage prognosis 

miRNAs       

miR-100, miR-99a Downregulation U T 

miR-335 Downregulation U B, T 

miR-326 Downregulation U B, T 

miR-335-3p Downregulation U B, T 

miR-7, miR-216, miR100 Upregulation U B, T 

miR-486, miR-191, miR-150, miR-487, miR-342 Downregulation U B, T 

miR-128b Upregulation F B, T 

miR-223 Downregulation U B, T 

miR-24 Downregulation U B, T 

miR-16 Downregulation F B, T 

miR-33, miR-215, miR-369-5p, miR496, miR-518, miR-599 Upregulation U B, T 

miR-10a, miR-134, miR-214, miR-484, miR-572, miR-580, miR-624, miR-627 Upregulation F B, T 

miR-210 Downregulation U B, T 

miR143, miR-182 Downregulation U B, T 

miR-155a Upregulation U B, T 



 

 

Table 2: T-ALL cell lines used and their characteristics, WT: wildtype, MUT: 
mutated (101). 

CELL LINE ONCOGENE GROUP CDKN2A CREBBP FBXW7 HRAS JAK1 KRAS MYB NOTCH1 NRAS PTEN TP53 

ALL-SIL TLX1 MUT 

  

WT 

  

MUT 

  

MUT MUT  

  

WT 

  

CCRF-CEM TAL1 MUT 

  

MUT 

    

MUT MUT WT/MUT 

  

MUT MUT 

CUTTL-1                         

TALL-1    MUT     WT MUT WT MUT 

DND-41 TLX3 WT/MUT MUT WT 

  

MUT MUT   MUT  MUT WT/MUT MUT 

HPB-ALL TLX3 MUT MUT 
WT/M

UT 
MUT MUT 

    

MUT  

  

WT/MUT MUT 

HSB-2 TAL1 MUT 

  

MUT 

  

MUT 

    

WT/MUT  MUT WT WT 

JURKAT TAL1 MUT MUT MUT 

  

MUT WT WT WT/MUT  

  

MUT MUT 

KARPAS-45   WT/MUT MUT MUT       MUT MUT    MUT MUT 

CUTTL1                          

KOPT-K1 TAL1 MUT MUT WT       

WT/MU

T MUT   WT MUT 

LOUCY ETP MUT WT WT   MUT   

WT/MU

T WT    MUT MUT 

MOLT-4 TAL1 MUT MUT WT MUT MUT   MUT MUT  MUT MUT WT/MUT 

MOLT-16 TAL1 MUT 

  

WT 

  

MUT 

  

WT/MU

T 
WT  

  

WT/MUT WT/MUT 

P12-ICHIKAWA LMO2 MUT WT MUT   MUT WT MUT MUT/WT  MUT MUT 
  

  

PEER 
  

MUT WT 
WT/M

UT 

  
MUT 

    
WT/MUT  

  
WT MUT 

          

PF-382 TAL1   MUT WT MUT MUT   WT MUT  MUT MUT MUT 

RPMI-8402 
TAL1 

MUT MUT MUT MUT MUT   MUT MUT /WT 
  

MUT WT/MUT 
LMO1 

 KE-37 

  

MUT 

          

MUT WT/MUT 

  

MUT 

  

SUP-T1 

    

MUT WT 

  

MUT 

    

WT 

  

WT/MUT MUT 
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