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Abstract

In this work, an overview is given of the aspects involved in weather routing among which tra-
ditionally used and recently developed ship performance models as well as the weather routing
algorithms. This research mainly attempts to quantify the individual predictions of different
types of ship performance models in estimating the power of a vessel. Following research
is centered around the machine learning models of Toqua including a physics-informed ship
performance model. The focus lies on the implementation of these models in weather routing.
To this end, the weather avoidance and the fuel efficiency potential is tested. Furthermore,
emphasis lies on creating a decision framework in applying the models.
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Abstract— This article forms an overview of a master’s dissertation on
how different kind of ship hydrodynamic models predict the power of a
vessel and how they differ from one another depending on the severity of
the weather. Furthermore, the paper explains how the weather routing op-
timization is influenced by the model’ predictions in minimizing the fuel oil
consumption (FOC) of a route. In particular, the robustness of the mod-
els comprising the sensitivity to avoid bad weather and the fuel efficiency
potential is tested. Four types of FOC models are examined among which
the sea trial curve, the sea trial curve with correction factor, the original
machine learning and physics-informed machine learning model of Toqua.
For the maritime voyage optimization, the A-star algorithm is applied for
which the objective function, constraints and geographical representation is
explained. The simulated annealing algorithm and the parameter fineting
is also explained in depth.

Keywords— Weather routing, ship-hydrodynamic models, fuel oil con-
sumption, A-star, simulated annealing, robustness, weather avoidance, fuel
efficiency, physics-informed machine learning model

I. INTRODUCTION

THE international shipping is responsible for 80-90% of the
global trade and remains the most fuel- and cost-efficient

mode of transport [1, 2]. Moreover, shipping has a significant
role in climate change. A 50% reduction in green house gas
(GHG) emissions should be reached by 2050. The pressure to
decarbonize asks for the use of new technology, ship designs, al-
ternative fuels and operational adjustments [2]. In light of new
technology, voyage optimization or weather routing has gained
some recent attention as a way to drive down the fuel consump-
tion and minimize the operating costs in shipping. Weather rout-
ing could achieve a 2-4% reduction in fuel consumption and as-
sociated GHG emissions [3]. To reap the benefits from routing,
three aspects should be taken into account: the routing algo-
rithm, the weather forecast and the ship performance models.
Many research has been devoted to the first two topics, but few
dive deep into the impact of the accuracy of the models pre-
dicting the power of a vessel. Most research rely on commonly
used models such as sea trial curves and sea trial curves with
a correction factor for waves and wind. However, the accuracy
tend to be much lower in prediction the ship hydrodynamic mea-
sures of a vessel. As a result, other approaches such as machine
learning models based on artificial neurtal networks (ANNs) in
predicting the vessel’s power were developed. As did Toqua,
a maritime start-up striving for the decarbonization in shipping.
Two models, a pure ML model and a physics-informed ML were
developed by them. In this way, the difference between varying
types of ship performance can be quantified. Furthermore, the
weather avoidance and the fuel efficiency of each of these mod-

els can be determined under changing weather conditions. As
such in part II, the set-up of the weather routing building blocks
is explained among which the FOC models and the weather rout-
ing model. Section III explains the main results involving the
individual predictions of the performance models, the weather
sensitivity and fuel efficiency potential of the models. Lastly,
part IV summarizes the main key points of this researcg as well
as the limitations and possible topics for future research.

II. SETUP

A. The FOC models

Four ship performance models can be distinguished in pre-
dicting the power and corresponding FOC. Two more traditional
models, among which the sea trial curve and the sea trial curve
with correction factor are of interest. The correction factor is
applied to adjust the estimated power for waves and wind based
physics-driven relations. In seeking for more accuracy in the
power loss due to weather conditions, black-box models based
on artificial neural networks (ANNs) have been developed by
several researchers. To that end, two machine learning (ML)
models have been enrolled by Toqua, a maritime start-up striv-
ing for decarbonization in shipping. The ML models developed
are a pure model and a physics-informed ML model. The latter
improves ANNs by also adding physical constraints to which a
vessel is subject to.
The pure ML model will be referred to as ML model, the sea
trial curve will be referred to as sea trial or ST model, the sea
trial curve with correction factor will be referred to as sea trial
+ corr or ST+corr model and the physics-informed ML model
will be referred to as PI-ML model.

A.1 The input parameters

The sea trial curve is an experimental model for which the
laden and ballast power has been recorded in function of the
speed through water (STW). The speed through water is the
speed over ground adjusted for the currents. No input param-
eters are required to retrieve the corresponding power for a pre-
defined STW. The following formula expresses the relation be-
tween both variables. However, the influence of both the current
direction and speed is neglected throughout this paper. As a
result, the SOG and the STW are assumed to be equal to one
another.



Parameter Range Unit
SOG [5,20] [kn]
Draft Fixed [m]
Trim Fixed [m]
Wave height [0,7.5] [m]
Sea surface salinity [30,40] [PSU]
Wind speed [0,20.7] [m/s]
Sea surface temperature [15,34] [°C]
Wind direction [0,360] [°]
Wave direction [0,360] [°]
Current speed [0,2] [m/s]
Current direction [0,360] [°]
Ship heading [0,360] [°]
Rudder angle [-10,10] [°]
Speed over ground fixed [kn]

TABLE I: The input parameters and their corresponding value
range of Toqua’s ML models

Parameter Value ML model PI-ML model ST ST + corr
Current direction 0° ✓ ✓ ✓
Current speed 0 m/s ✓ ✓ ✓
Sea temperature 23°C ✓ ✓
Trim Fixed ✓ ✓
Draft Fixed ✓ ✓ ✓
Sea surface salinity 33 PSU ✓ ✓
Heading 0° ✓ ✓ ✓
Rudder angle 0° ✓ ✓
SOG 12 kn ✓ ✓ ✓ ✓
Wave direction 0° ✓ ✓ ✓
Wave height 0 m ✓ ✓ ✓
Wind speed 0 m/s ✓ ✓ ✓
Wind direction 0° ✓ ✓ ✓

TABLE II: Default values for the ship hydrodynamic models

The sea trial curve with correction factor adjust the sea trial
curve according to Kreitner’s method which is also explained in
ISO 15016. The added resistance due to waves and wind are
explained in4 and5 respectively.
As for the pure ML model and the physics-informed ML model,
both require the same input parameters including ship specific,
weather and voyage parameters. These input parameters and the
possible ranges are displayed in table I.

An overview of the parameters included in each one of the
models is given in table II as well as the default values that will
be used throughout this research.

A.2 The accuracy

The accuracy of the FOC models has been validated by Toqua
in terms of the mean absolute error (MAPE) and are also men-
tioned in their research [6].
The MAPE is calculated according to the following formula

MAPE =
1

n

n∑

i=1

|yi − ŷi
yi
| (1)

where yi is the actual value of the power and ŷi is the estimated
value of the power.
In using the sea trial curve, the MAPE is 22.2%. Adding a
correction factor lowers the MAPE to 14.3%. The physics-

dij the distance between coordinates i and j
sij the SOG between coordinates i and j
tij the travel time between coordinates i and j
pi the main engine power traversing coordinate i
pavgij the average power between coordinates i and j
FOCij the fuel oil consumption travelling from coordinate i to j
SFOC the specific fuel oil consumption

TABLE III: The parameters of the mathematical routing model

informed model is highly accurate for which the MAPE comes
down to 6.7%. The accuracy of the pure ML is similar to the
physics-informed ML model. However, the data imputed in the
model is quite noisy and taking into account the physics rela-
tions is essential for realistic power predictions [6].

B. The weather routing model

The routing model is an algorithm that aims to find the op-
timal path from start to end point subject to varying weather
conditions. In routing, the goal can be diverse minimizing the
FOC, travel time or the risks. In this case, the total FOC across
the route will be minimized.

B.1 The model formulation

The following parameters are part of the mathematical model
and are displayed in table III. Index i and j refer to the collec-
tion of geographical coordinates on the map that could possibly
be traversed and range from 1 to n, where n is the total number
of coordinates. The specific fuel oil consumption (SFOC) pa-
rameter is set to 170 g/kWh for the ship from which the sensor
data is provided by Toqua for the purpose of this experimental
research.

As the goal of the weather routing model is of to determine
which geographical points should preferably be part of the final
path, the decision variable is expressed in the following way. xij
1 if coordinates i and j are part of the final path, 0 otherwise.
As a result, an objective function to minimize the total FOC
across a route can be set-up, expressed in formula (2). The cal-
culation of FOCij in objective function 2 is based upon equa-
tion (4).

min

n∑

i=1

n∑

j=1

FOCij · xij (2)

s.t. xij ∈ {0, 1} (3)

The FOC between two points is the average power multiplied
by the SFOC of the ship and the travel time between these two
points. The travel time tij is equal to the distance dij divided
by the speed sij . Furthermore, the average power pavgij is the
average between the power to transverse both coordinates. As

such, pavgij is equal to
pi + pj

2
. For the distance, the haversine

distance is used.

FOCij = SFOCij · pavgij · tij (4)



B.2 The A-star algorithm

One of the algorithms that can be applied in weather routing
is the A-star algorithm. The A-star algorithm begins with the
source node s and each time adds a adjacent point of the current
node to the path if the function f = g + heuristic is smaller
than adding another adjacent point. g is the actual cost of mov-
ing from the source node to the current node and heuristic is the
estimated cost of moving from the source node to the current
node. The A-star algorithm always reaches an optimal solution.
An important part of the A-star algorithm is the heuristic func-
tion which distinguishes A-star from Dijkstra’s algorithm. The
function should be admissible in order for the algorithm to
be feasible and diminish the running time. This means that
h(x) ≤ g(y) + h(x, y) for every edge (x,y) of the graph. For
the estimation of the power prediction as heuristic function, the
ballast power for a predefined STW can be used. The ballast
power is the power of the ship that does not carry any cargo and
is therefore lower than the laden power at all time. It is also not
adjusted for any weather conditions. As such added resistance
is not included and the ballast power will be smaller than any
power prediction for each of the four FOC models.

B.3 The simulated annealing heuristic

The simulated annealing algorithm is a meta-heuristic that
optimizes an initial solution. SA begins by generating an ini-
tial random solution x0 of the problem and deriving the associ-
ated cost f(x0). A starting temperature Tstart is defined, which
will be lowered each iteration.Thereafter, the current solution is
compared to one of the neighbourhood solutions in its neigh-
bourhood space. A neighbourhood solution x0+△x is selected
at random and if the associated cost f(x0 +△x) is smaller than
the cost of the current solution f(x0), the current solution is re-
placed by the neighbourhood solution. If however the cost is
larger, then the neighbourhood solution is accepted with a cer-
tain probability, namely e(current cost−neighbour cost)/kT .
This procedure is repeated for a number of times N which is
referred to as the plateau length. The plateau length can remain
fixed for each run or can increase with a factor β. This proce-
dure continues as long as the temperature T has not reached the
end temperature Tend. The temperature is decreased according
to the cooling scheme which is in this case a geomtric series.
Therefore, the temperature should be lowered by a fraction α at
each iteration.
The aforementioned parameters of the SA should be optimized
and this has been done in the following way. A use case has
been set-up for routing over the North Sea. The start point is
the port of Newhaven and the end point is the port of Edin-
burgh. The granularity of the grid layed over the geographical
area is adapted as well. A small, medium and large grid has
been constructed and two time instances corresponding to the
static weather conditions in the grid cells have been retrieved.
As such 6 scenarios are examined to finetune the parameters.
The representation of the grid sizes are shown in figure 1.

The initial solution used in the SA algorithm is the breath-
first search solution. The neighbourhood operators applied are
the replace, insert and delete operator in order for the path to be
variable. In the path either a node can be replaced by a node,

(a) The large grid of
277.5 km by 277.5 km
with centroids

(b) The medium grid of
111 km by 111 km with
centroids

(c) The small grid of
55.5 km by 55.5 km
with centroids

Fig. 1: The representation of different grid sizes

Start temperature End temperature Plateau length α β size factor
Data set I 10,000 0 8 0.9 1.3 1.0
Data set II 10,000 0 8 0.9 1.3 1.0

TABLE IV: The final input parameters for the SA algorithm for
each data set

a new node can be inserted or deleted. All taking into account
the adjacency of the nodes. For the other parameters, the values
in table IV were the most favorable in terms of CPU-time and
convergence to a low total FOC for all instances.

C. Comparison

In going forward both algorithms should be compared to one
another. The fuel consumption and CPU-time for performing
one iteration for both algorithms for each grid size and instance
are displayed in figure 2. For this type of problem, the A-star
algorithm performs better in time and FOC.

III. COMPUTATIONAL RESULTS

All results are applicable for a ship classified as a tanker. The
data and models provided are customized for this type of vessel.

A. Weather definition

Weather at sea is determined by the wind speed and the wave
height.Each combination of wind speed and wave height is as-
sociated with a Beaufort number (BN). In regards to the exper-
iments, three types of weather can be defined: calm, medium
and severe weather. In table V the weather categories adopted
in this research are shown. Weather circumstances correspond-
ing to a BN greater than 8 are not considered as these are not
likely to happen in real-life.[7] The combinations of wind speed
and wave height are drawn form known joint probability distri-
butions based on historic data of the tanker.

B. Power prediction per weather category

The influential parameters that should remain fixed or vari-
able in the upcoming experiments can be determined. Based on
Toqua’s expertise and previous trials, the current direction and

Weather BN Wind speed [m/s] Wave height [m]
Calm [0 - 3] [0 - 5.5] [0 - 1.2]
Medium [4 - 6] [5.5 - 13.8] [1 - 4]
Severe [7 - 8] [13.9 - 20.7] [4 - 7.5]

TABLE V: Weather categories with corresponding Beaufort
scale, wind speed and wave height range
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Fig. 2: The fuel oil consumption and CPU-time for the routes
constructed by A-star and SA

speed should remain 0. Therefore, the SOG and STW are equal
to one another and set to 12 kn. The trim and draft remain fixed
to values specified to the vessel. The sea temperature and sea
surface salinity have less effect on the power estimations and
are therefore set to an average value based on historic data. As
a result, only the wind speed, the wave height and the relative
angle between the heading and the wind and wave directions
should vary. The default values of all parameters are mentioned
in table II.
The goal is to look at the individual predictions of the FOC mod-
els as well as the difference between the predictions of the mod-
els. The wind and wave direction are assumed to be equal to
one another. 5 possible directions are considered 0°, 45°, 90°,
135° and 180° and 3 types of weather are considered and associ-
ated wind speed and wave directions calm, medium and severe
weather. This was explained in section III-A.
In all, 15 alterations of weather and wind/wave direction on the
power prediction of the four models are investigated. Within
such an alteration 10,000 samples are drawn of the wind speed
and wave height. The values of all other parameters are set to
the default values represented in table II.

B.1 Results

The main results are displayed in figure 3 and can also be ex-
pressed in a relative percentage difference between the models.
The percentage difference for one sample is calculated accord-
ing to formula 5. For 10,000 samples, the mean of the 10,000
percentage differences is taken. Besides the mean, the standard
deviation can also be reported. To ensure comparable results,
the difference is divided by the power average over all historic
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Fig. 3: Comparison of the individual power predictions of the
FOC models for each weather category over 10,000 samples

data provided.

% Power increase/decrease =
PowerM − PowerB

Poweravg
(5)

where PowerM is the new power of the model that is compared
to the benchmark model, PowerB is the original power of the
benchmark model and Poweravg is the average power of the
historic data.

In calm weather conditions, the power output on average of
the ST+corr model is higher than the one of the PI-ML model.
The relative difference ranges between 0.95% and 2.04%. Fur-
thermore, the ML model has the highest power predictions on
average. The power difference between the ML model and the
PI-ML model ranges between 4.12% and 6.23%. The power dif-
ference on average increases as the angle between the heading
and the wind/wave direction increases. However, for the power
difference between the ML model and ST+corr model, the dif-
ference increases from 3.17% to 4.34% for a angle of 135° and
thereafter slightly drops to 4.19%.
Similar to calm weather, the power output of the ML model is
the highest for each wind/wave direction. However, the order of
the power output of the PI-ML and ST+corr model is reversed.
The average power difference ranges between 2.66% and 4.0%
for the ML and PI-ML model. Likewise, the difference between
ML and ST+corr model ranges from 5.77% to 8.08%. For both
cases, the difference increases by angle up to 90° and slightly
diminishes thereafter. The power output of the PI-ML model
compared to the ST+corr model decreases along with the in-
crease of direction. The difference ranges between 2.71% and
5.14%.
More severe weather such as 6 to 7 Beaufort (BN) translates
into a changing order of magnitude between the models. Up to
a angle of 90°, the power output of the ML model is higher than
the other models which is also the case for calm and medium
weather. However, for an angle of 135°, the ML predictions are
on average smaller than the predictions of the ST+corr model.
For an angle of 180°, the ML predictions are even lower than
the PI-ML predictions on average. As for the PI-ML model, the
power is higher than the one of the ST+corr model, but from
the direction of 90° on this relation switches. Moreover, from
a direction of 135° on, the prediction of the ML model is lower
than the prediction of the ST+corr model. Now evaluating the
power differences between the models, the relative difference
between the ML model and the PI-ML model ranges between



absolute percentage values of 1.81% and 9.68%. A maximum
difference of 9.68% is reached at 90° and the lowest difference
of 1.81% is reached at 180°. Keeping in mind the order of mag-
nitude of the models, the relative percentage values get a + or
- sign. The power difference on average between the ST+corr
predictions and the ML predictions for 0° and 45° are rather
big namely 19.75% and 15.29%, but drops quickly to 6.32% for
90°. Thereafter, the order of magnitude between the two models
is reversed and the difference between the predictions becomes
even smaller. A similar tendency can be observed between the
ST+corr and the PI-ML model. The difference drops from 17%
to 6.76% from 0° to 45° and as soon as the relation between
the models is reversed at 90°, the power difference between the
models diminishes.
For all weather conditions, the ST model is an underestimation
of the predictions. The predictions of the remaining FOC mod-
els approach the ST predictions as the angle increases. More-
over, the variation in the individual model predictions decreases
along the angle, but increases as the weather becomes more se-
vere.

C. Robustness in route optimization

The data accuracy of the FOC models can influence the route
optimization. That is why robustness of the models in terms of
weather sensitivity and fuel efficiency are of importance. To test
the FOC models in weather routing, explained in II-A, the A-star
algorithm is applied. A grid size of 55.5 km by 55.5 km is used
with the same use-case described in section II-B.3. The weather
conditions are static. This means that the weather parameters
per grid cell do not change in time, but only in geographical
sense.
Again, three weather types are considered: calm, medium and
severe. Multiple homogeneous grids are set-up in order to test
the models’ routes. In one grid, each grid point can be seen as an
individual sample or point prediction. As such, from grid point
to grid point, the wind speed and wave height will differ. The
grid consists of homogeneous weather conditions. Meaning that
only samples are drawn within one weather category. So, if the
grid consists of calm weather, each grid point entails a combi-
nation of wind speed and wave height corresponding to the joint
probability distribution of calm weather. Other variables remain
fixed to the default values prescribed in table II for each grid
point.
The grid can be replicated with random values in each grid
point several times for each weather category. In order to drawn
general conclusions, a new grid will be formed 200 times per
weather type. As a result, 200 different routes will be formed
per model per weather type.

C.1 Weather sensitivity

For the test of weather sensitivity, the wind/wave direction re-
mains set to 0° while the heading is changing. In this way, the
relative angle between the wave/wind direction and the heading
can be quantified according to formula “heading - wind/wave di-
rection”. The models’ routes can be compared in terms of travel
time. In figure 4, only small differences in travel time are appar-
ent. In most cases, the length of the routes are similar, especially
in medium and severe weather.
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Fig. 4: Travel time comparison between weather categories and
FOC models in routing

As a result, one can also quantify the overlap between the routes
of two models. This is displayed in figure 5. The y-axis shows
which models are compared in terms of overlap. For instance,
‘ML & PI-ML’ means that the pure ML model and the physics-
informed ML model are compared to one another and therefore
the distance between them is calculated. The x-axis entails the
total distance between the subjected routes.
Remarkable is that the routes of the ML model and the physics-
informed model are very similar and largely overlap in most
cases for any type of weather. As such, the ML model and
physics-informed model have the same results compared to the
routes of the sea trial curve with or without correction. The ML
and PI-ML model do not differ as much on average from the sea
trial curves with correction factor in calm and medium weather,
but the average distance slightly increases in severe weather as
does the variation between the models’ routes. As for the com-
parison of the sea trial curve to the other models, the boxplots
indicate that the routes do not overlap on average for any type
of weather, but especially for medium and severe weather. The
sea trial curve follows a path corresponding the shortest distance
from starting to end point without taking the weather conditions
into account. Therefore, the sea trial model is not sensitive in
avoiding bad weather. In this way, it is assumed that models that
differ from the sea trial route are more prone to avoiding bad
weather.
Furthermore, the extent to which certain FOC models avoid bad
weather can also be quantified. Figure 6 shows the density plots
for the wind speeds and wave heights that are crossed by each
of the models’ routes.
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Fig. 6: Density plots of wind speed and wave height crossings
of FOC models’ routes per weather category (200 samples)

It is clear that the routes constructed by the sea trial curve
pass through higher waves and wind speeds. Only in severe
weather conditions, the routes of the sea trial curve with correc-
tion passes through higher wind speeds than the routes without
correction.
In terms of wind speed and wave height, the ML and physics-
informed ML model perform similarly. In calm weather how-
ever, the routes of physics-informed ML model have the ten-
dency to avoid higher wind speeds and waves more.

Fuel savings (FS) and
time extensions (TE)

compared to
the shortest route

(Sea trial)

FOC model

Sea trial Sea trial + corr ML model PI-ML model
FS TE FS TE FS TE FS TE

Weather category Calm 0.00% 0.00% 1.19% 0.83% 2.07% 0.94% 2.09% 1.09%
Medium 0.00% 0.00% 4.28% 1.60% 5.48% 1.56% 5.52% 1.63%
Severe 0.00% 0.00% 5.31% 1.46% 8.75% 1.60% 9.07% 1.46%

TABLE VI: The average fuel savings (FS) and travel time ex-
tensions (TE) of an FOC model’s route compared to the shortest
route (in %) - FOC recalculated by PI-ML model as ground
truth

C.2 Fuel efficiency

Besides avoiding bad weather for safety purposes, route op-
timization is also concerned with fuel savings over one’s route.
The same experimental set-up can be used as in the sensitiv-
ity experiments. However, in this case also the wind and wave
directions is randomized in each grid cell of the homogeneous
grid. For each iteration, the fuel consumption of each of the
models’ routes can be quantified as well as the travel time. One
of the FOC model should be used to recalculate the total fuel
consumption over each model’s route to have a comparable ba-
sis. This is considered the main challenge in calculating the
return on investment (ROI) in routing, especially when the base
model used is inaccurate. That is why the most accurate model,
the PI-ML model is considered the ground truth. The fuel sav-
ings compared to the shortest route according to the sea trial
curve are then calculated in the following way.

% FOC savings =
FOCST − FOCM

FOCST
(6)

where FOCM is the total FOC of the route constructed by the
model that is compared to the shortest route and FOCST is the
total FOC of the shortest route according to the sea trial curve.
Fuel savings however are accompanied by time extensions by
not following the shortest path. The travel time extensions of
the FOC model’s routes compared to the routes of the shortest
path are calculated in the following way.

% Travel time extensions =
TimeM − TimeST

TimeST
(7)

where TimeM is the total travel time of the route constructed
by the model that is compared to the shortest route and TimeST

is the total travel time of the shortest route according to the sea
trial curve. Again, 200 simulations are done and the results can
be averaged. The results are summarized in table VI.

In calm weather conditions, the average fuel savings of the
sea trial curve with correction factor is 1.19%. This percentage
doubles if routes are constructed by either the ML and PI-ML
model. In essence, the savings gained from implementing one
of the ML models are very similar to one another. However, a
voyage’s travel time does increase on average to a maximum of
1.09%. The travel time of the route’s according to the shortest
path is 35.67 hours. As such, an 1.09% extension translates to
about 20 minutes which is a reasonable extension for the amount
of fuel that can be saved.
The fuel savings increase to about 5.50% on average when



traversing medium weather opposed to calm weather for both
the ML models. This is 30% gain over what can be achieved by
the sea trial curve with correction factor. However, the shortest
path is not followed here and that is why the travel time elon-
gates to a maximum of 1.63%. About 35 minutes are lost in
this case. Notice that the travel time is quite similar for the ML
models as well as the sea trial curve with correction factor.
In severe weather conditions, the fuel savings are even more ap-
parent, especially if the routes are constructed by the ML mod-
els. Maximum savings of about 9.07% can be reached. This
translates into a 70% increase in savings over the sea trial curve
with correction factor. The travel time remains equivalent to the
case of medium weather and remains constant over the models’
routes.

IV. CONCLUSION

In exploring the the SA algorithm opposed to the A-star al-
gorithm, the A-star algorithm turned out to be more beneficial.
Further research should be devoted to the exploration of other
operators in the neighbourhood solution of the SA algorithm and
the influence of the initial solution on the SA solution.
Besides the routing algorithm, the FOC models’ predictions
were also examined opposed to one another. For all weather
types, the predictions tend to approach the sea trial curve’s esti-
mate as the relative angle between the wind/wave directions and
the heading increases. The variation for each of the models also
diminishes along with the increase of the angle. Furthermore,
the more severe the weather becomes, the more variation consti-
tutes among the predictions as well. One can also conclude that,
for both calm and medium weather, the power predictions of the
ML model are the highest on average. For severe weather, this
is only true up to an angle of 90°. Moreover, in calm weather
conditions the power difference between ST+corr and the PI-
ML model is minimal. In medium weather conditions, this is
the case for the ML and PI-ML model. For severe weather,
the differences between the models’ predictions are enlarging.
Consequently, one should rely on the most accurate model, the
PI-ML model, when dealing with routing. In the future, it could
also be valuable to look at the difference in predictions of the
FOC models in terms of the angle.
Mentioned earlier, route optimization can be beneficial for the
safety and the fuel efficiency. Both aspects were evaluated in
the second experimental. In terms of weather avoidance, the
physics-informed ML model and pure ML model are very sim-
ilar. They tend to better avoid bad weather opposed to the other
state-to-art models under any weather circumstance. Compar-
ing both ML models, the physics-informed ML model is slightly
more weather avoidant, especially in calm weather. Some addi-
tional trials can be of use in generalizing the results in which
the angle between the wind/wave direction and the heading is
also randomized. Furthermore, in future research, different start
and end points, different grid sizes, varying granularity and their
influence of the routing algorithm as well as the FOC models
could be explored.
In term of fuel efficiency, one can also conclude that the ML
models account for more fuel savings opposed to the short-
est route. A maximum of 9% fuel savings on average can be
reached. The savings enlarge as the weather becomes more se-

vere. The travel time does extend when deviating from the short-
est path to a maximum of 1.63% in medium weather conditions
which corresponds to an elongation of about 35 minutes of a 35
hour voyage. The extension is apparent compared to the route
of the sea trial curve. However, between the remaining models’
routes, the travel time only slightly differs. Opposed to the sea
trial curve with correction factor, the savings of the ML mod-
els contribute to a 70% gain in calm and severe weather and a
30% increase in medium weather. Currently, the speed is kept
constant. Changing the speed to account for equal travel times
for each of the models under changing weather scenarios could
further enhance the fuel efficiency experiments.
In all, the ML models of Toqua are said to be bad-weather-
avoidant and account for more fuel savings than frequently used
performance models in the shipping industry.
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Chapter 1

General introduction

1.1 Research context

International shipping is responsible for 80-90% of the global trade and remains the most fuel-

and cost-efficient mode of transport (Sirimanne et al., 2019; Zis et al., 2020). The maritime

trade is expected to grow further by 2.4% annually over the upcoming 4 years according to

United Nations Conference on Trade and Development (UNCTAD). 25% of vessel’s operating

costs are devoted to the fuel oil consumption (FOC) which correlates to the adversity of the

weather along its route (Gkerekos and Lazakis, 2020). In addition, oil and chemical tankers

account for 85% of the net green house gas (GHG) emissions within the shipping sector. The

importance of shipping is apparent and should be evaluated in terms of sustainability, risks

and costs.

Furthermore, the shipping industry has especially a significant role in climate change. On that

note, the International Maritime Organization (IMO) introduced new mandatory regulations

to reduce the GHG emissions from shipping. The goal is to reach in 2025 a reduction of the

CO2 emission up to 30% and in 2050 an additional reduction of 20% which is roughly equiv-

alent to the same reduction in fuel consumption (Prpić-Oršić et al., 2016). The pressure to

decarbonize asks for the use of new technology, ship designs, alternative fuels and operational

adjustments (Sirimanne et al., 2019).

In light of new technology, voyage optimization or weather routing has gained some recent

attention as a way to drive down the fuel consumption and minimize the operating costs in

shipping. Weather routing could achieve a 2-4% reduction in fuel consumption and associated

GHG emissions (Prpić-Oršić et al., 2016). Other economic drivers such as risk avoidance and

the reduction of travel time could also positively be influenced by the optimization of a voyage

(Zis et al., 2020).

The link between weather routing and environmental impact is clear, but the precise im-
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plementation is of crucial importance in quantifying the benefits. The accuracy relies on

the prediction of the ship’s hydrodynamic behaviour under different weather conditions, the

accuracy of the weather forecasts and the routing algorithm used (Shao et al., 2012).

Even though weather routing is an active research topic, most studies rely on first-principle

approaches that are not able to precisely predict the ship performance measures such as the

speed and the power of a vessel (Gkerekos and Lazakis, 2020). The need for accuracy in

this area has been addressed by more recent approaches involving machine learning (ML)

models, especially artificial neural networks (ANNs), to bridge this gap. Beşikçi et al. (2016);

Gkerekos and Lazakis (2020); Gkerekos et al. (2019); Morobé and Van den Poel (2020); Wang

et al. (2016) have already proved the usefulness of ANNs in predicting ship hydrodynamic

measures.

However, how these specific ML models estimate the power and corresponding fuel consump-

tion opposed to other state-of-the-art prediction models under varying degree of weather

severity remains absent. Moreover, the benefits of using an ML model in weather routing has

not yet been examined in terms of fuel savings.

To this end, Toqua, a maritime start-up striving for the decarbonization of the shipping in-

dustry, developed two ML models, a pure ML model and a physics-informed ML model. They

distinguish themselves by guaranteeing a high prediction accuracy of the ship hydrodynamics.

The physics-informed ML model has a mean absolute percentage error (MAPE) of only 6.7%

opposed to a traditional approach, the sea trial curves (Colle and Morobé, 2022). In that

way, operational optimizations such as route or speed optimization can benefit from this.

Besides the ship performance models, a broad overview of the route optimization algorithms

has been developed over the years, among which the A-star and the simulated annealing

algorithm. The A-star algorithm is proved to be optimal and the implementation is addressed

by Bentin et al. (2016); Park and Kim (1998); Shin et al. (2020). However, one elaborates

less on the implementation of SA in weather routing and the corresponding parameter tuning

such as the neighbourhood operators.

Even though saving fuel is a main driver in the industry, safety and risk avoidance are of

importance as well. Avoiding high waves can reduce the risk of instability of a vessel and

phenomenons such as parameter rolling, surf riding and broaching can be overcome (Begovic

et al., 2018). Some ship hydrodynamic models could be more sensitive to severe weather

than others. Therefore, this research also attempts to investigate if ML models are more

bad-weather-avoidant than the traditional approaches in route optimization.

In all, the robustness of ship performance models in route optimization is addressed in

this master’s dissertation comprising both the fuel efficiency and the weather sensitivity.
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Robustness is mainly seen as an answer to inaccuracy in predictions. As the ML models of

Toqua embody high accuracy they could contribute to the robustness in route optimization.

1.2 Research scope

Besides commonly used power prediction models such as physics-driven and empirical models

explained in literature, the newly developed machine learning (ML) models of Toqua among

which a pure ML model and physics-informed ML model are presented. The added value

and their accuracy have already been proved by Toqua with emphasis on the use of sensor

data. Current research adds to this by quantifying the over- and underestimation of the FOC

predictions of more traditional models such as the sea trial curves with and without correction

factor, opposed to both ML models.

Their behaviour under varying degree of weather severity is examined as well. In that way,

the influence of weather conditions such as the wave height, wind speed and the angle between

the heading and wind and wave direction are tested for each of the models. A distinction can

be made between the individual power predictions of the models and the relative difference

between predictions.

More importantly, the integration of the ML predictions in a weather routing application is

applied. Both the A-star algorithm and the simulated annealing (SA) algorithm is outlined

and a comparison is made between the two algorithms in terms of CPU-time and fuel con-

sumption. For the SA algorithm, the parameter tuning is optimized and the encountered

challenges are explained.

Moreover, for the purpose of finding an optimal route, a specific methodology is applied based

on collective information gathering in literature. The methodology involves the structural

and mathematical development of both routing algorithms as well as their link to the ship

performance models.

Besides examining the predictive behaviour of different types of ship performance models, this

master dissertation is the first in testing the robustness of the models. Two main research

questions will be answered:

1. What type of ship performance models are more sensitive to bad weather and are there-

fore considered more bad weather avoidant under varying degree of weather severity?

(a) How do traditional approaches such as sea trial curves and sea trial curves with a

correction factor behave in terms of weather sensitivity opposed to ML models?

(b) How does the pure ML model differ from a newly developed physics-informed ML

model in terms of bad weather avoidance?
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2. Does higher accuracy of the ML models translate into more fuel savings across a route

and how does this effect the travel time?

Lastly, this dissertation is an excellent foundation for future research in robustness testing of

weather routing due to the absence in literature and serves as a guide in the optimization of

weather routing algorithms.

1.3 Outline

Current research consists of 9 chapters. The first part of this master’s dissertation consists of

chapters 1 and 2 and focuses mainly on providing introductory and comprehensive information

about the topic. Chapter 1 includes the general introduction and explains how this master

dissertation closes the gap in literature. Chapter 2 gives an overview of the existent literature

concerning the link between hydrodynamic models and weather routing models as well as

the possible ways to model them. Furthermore, the methodology related to the weather

routing structure such as the objective function, constraints and geographical representation

are presented.

The second part of this thesis is concerned with the experimental set up of the case study

at hand. In chapter 3, the fuel oil consumption (FOC) models that are applied in order to

model the hydrodynamic performance of a vessel will be explained. Chapter 4 complements

chapter 3 by formulating the weather routing model and explaining how the resulting power

prediction can be used as input for the FOC objective function of either the A-star algorithm

or the simulated annealing (SA) algorithm. As the SA algorithm requires some parameter

finetuning, chapter 5 is devoted to the experiments in determining the optimal values for the

parameters.

In the third part, the focus lies on the computational experiments. Chapter 6 talks about

the individual predictions of the FOC models independent from weather routing and the

difference between them. In chapter 7, the FOC models are applied in weather routing and

their robustness is tested.

In the remainder of this master dissertation the main conclusions, limitations and recommen-

dations for future research are specified in chapter 8.
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Chapter 2

Literature review

2.1 Introduction

As there are significant economic and environmental drivers such as regulatory pressure to

achieve greener maritime transportation, increasing fuel prices and time restrictions, weather

routing has gained great interest in literature over the years. According to Zis et al. (2020)

weather routing can be defined as selecting an optimal route in a given voyage with known

origin and destination port while taking into account the expected weather and sea conditions.

Moreover, weather routing can be considered as a path problem for a single ship at the

operational level (Zis et al., 2020).

There are several aspects related to weather routing, among which the weather routing inputs

and the weather routing model. The inputs concern the type of weather forecast, the ship

hydrodynamics and the models associated with it and the geographical representation. The

weather routing models on the other hand are associated with the model specifications such

as the objective function, constraints and the algorithm that will be applied to reach the

predefined goals.

The figure below gives a short overview of the methodology commonly used in literature.

Input

Weather forecast

Geographical representation

Ship hydrodynamics

FOC model Weather routing model

Figure 2.1: Methodology
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2.2 Ship hydrodynamics

The main goal of this section is to relate the weather conditions to the performance of a

ship. Weather, as well as the ship conditions, result in a certain resistance that affects the

speed through water (STW) and power of a ship. Figure 2.2 gives an overview of the main

metrics that are important in a ship performance model. For reference, speed over ground

(SOG) is the GPS speed and if corrected for the influence of the ocean currents results in

a speed through water (STW)(Yang et al., 2020). Both STW en power are the main focus

in determining the objectives for a weather routing model such as the fuel oil consumption

(FOC) and the estimated time of arrival (ETA), explained in section 2.3.1. The link between

STW, Rounds per minute (RPM) and power is often avoided in literature and therefore often

a direct relation is drawn between STW and power.

SOG

ETA

STW

RPM

POWER FOC

Figure 2.2: The relation between ship performance metrics (SOG = speed over ground, STW =

speed through water, RPM = rounds per minute, FOC = fuel oil consumption, ETA =

estimated time of arrival)

The conversion between STW and power can be estimated in multiple ways, among which

empirical models, physics models and machine learning (ML) models.

2.2.1 Empirical models

Empirical models such as sea trial curves are used to draw a simple relation between the

STW and power under prescribed conditions. In the majority of the cases, environmental

conditions such as weather are not taken into account for the purpose of these trials.(Waters

et al., 2007) In essence, the speed and corresponding power is observed and manually kept

track off in order to estimate the relation between power and speed. The resulting sea trial

curves for a specific ship can however be combined with a correction factor for waves and

wind as to gain a more realistic prediction. A correction factor can be introduced based on

Kwon’s method or Kreitner’s formula which will be explained in the next section.
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2.2.2 Physics-driven models

The majority of literature relies on physical formulas such as the model of Holtrop and

Mennen (1982). Building further upon this model, the research of Morobé and Van den Poel

(2020) describes the main influencing factors in a condense way. As explained there, the speed

through water (STW) of the ship is related to the power of the engine as follows:

Pd =
RT × V
θQ

(2.1)

where

Pd = the delivered power

RT = the total in-service resistance

V = the speed through water

θQ = the quasi-propulsive efficiency

The performance measures are influenced by both the the quasi-propulsive efficiency and the

total resistance which is shown in figure 2.3.

Figure 2.3: The hydrodynamic factors influencing the performance of a ship (Pedersen, 2014)

The first factor is influenced by the efficiency of the propeller of the ship and this efficiency

can be subdivided into three components: the open-water efficiency, the hull efficiency and

the relative rotation efficiency. The second factor, the total resistance, consists of a still-water

resistance and an added resistance due to environmental factors such as wind, waves and the

hull conditions (Holtrop and Mennen, 1982; Kwon, 2008; Morobé and Van den Poel, 2020).

The formulas for the resistance and efficiency adopted from Morobé and Van den Poel (2020)

are summarized below.

RT = RSW +RAA +RAW +RAH (2.2)

where

RT = total resistance
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RSW = still-water resistance

RAA = added resistance due to wind

RAW = added resistance due to waves

RAH = added resistance due to changes in hull condition

θQ = θ0 + θH + θQR (2.3)

where

θQ = the quasi-propulsive efficiency

θ0 = the open-water efficiency

θH = the hull efficiency

θQR = the relative rotation efficiency

The ship resistance can also be determined while taking into account the water depth. There-

fore, some research rather applies a different formula for the resistance (Morobé and Van den

Poel, 2020; Wang et al., 2018). The formula for the ship resistance can then be written as:

Rship = RSW +Rwave +Rwind +Rshallow (2.4)

where

RSW = hydrostatic or still-water resistance

Rwave = added resistance due to waves

Rwind = added resistance due to wind

Rshallow = shallow water resistance

The specific formulas concerning the calculation of the different resistance and efficiency

components are out of scope for current research purposes. The main focus of the research

domain in voyage optimization is the estimation of the added resistance as this is subject to

environmental factors.

Kwon’s method

The added resistance due to waves and wind and the corresponding speed loss can be estimated

by Kwon’s method. The speed loss is also called involuntary speed reduction. One assumes

that the ship is able to provide constant power output under different weather conditions

(Kwon, 2008; Shao et al., 2012). The percentage loss in speed can then be expressed in the

following way:

△V
V1

100% = CβCuCform (2.5)

△V = V1 − V2 (2.6)
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V1 = Fn

√
Lppg (2.7)

where

△V = the loss of ship speed

V1 = the ship speed in calm water

V2 = the ship speed under selected weather conditions

Cβ = the speed direction reduction coefficient

Cu = the speed reduction coefficient

Cform = the hull form coefficient

Fn = the Froude number

Lpp = the ship length between perpendiculars

g = the acceleration due to gravity

This is a simple way of calculating the speed loss without using complex hydrodynamic

calculations. However, it remains a simplification and is therefore less accurate (Kwon, 2008;

Shao et al., 2012).

Kreitner’s formula and ISO 15016

Besides Kwon’s method, Kreitners’s formulas are applied in research to determine the added

power instead of speed loss due to the wave and wind resistance. The formulas of the

model correspond to the methodology of the ISO 15016 with the primary purpose to define

procedures for the evaluation and correction of sea trials. The total power correction can

then be determined by multiplying the the total wave and wind resistance by the SOG.

First off, the wave resistance formula is given below. The formula is applicable for waves up

to a height of 1.5 to 2m (Conference, 2005).

△Rwave = 0.64 · ϵ2w ·B2 ·CB · ρ ·
1

L
(2.8)

where

△Rwave = the added wave resistance

ϵw = the wave height

B = the beam

CB = the hydrodynamic drag coefficient

L = the length of the ship

ρ = the specific weight of water
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Additionally, the added resistance due to wind can be calculated using formula 2.9 (for

Standardization, 2016).

△Rwind = 0.5 · ρa ·A · (v2wr ·Crw(ψwr,ref )− v2g ·Cow(0)) · ρ · 1/L (2.9)

where

△Rwind = the added wind resistance

ρa = the air density

A = the transverse projected area in current loading condition

vwr = the relative wind speed at reference height

Crw(ψwr,ref ) = the wind resistance coefficient, dependent on wind direction of relative wind

equal to ψwr,ref

vg = the ship speed over ground

Cow(0) = the wind resistance coefficient for head wind (0◦ wind direction)

2.2.3 Machine learning models

To increase the prediction accuracy of the speed, power or the resulting fuel oil consumption

(FOC), recent research relies on machine learning and artificial intelligence models.

Machine learning is a branch of artificial intelligence that focuses on using data and algorithms

in imitating real-life situations and relations with the purpose of improving the accuracy.

Machine learning models use statistics to find patterns in large amounts of data (national

laboratory, 2022).

Gkerekos et al. (2019) performed a comparative study concerning the machine learning mod-

els for predicting the fuel oil consumption. They concluded that extra tree regressors (ETRs),

random forest regressors (RFRs), suport vector regressors (SVRs) and artificial neural net-

works (ANNs) yield the best performance results. However, similar results can be obtained

by applying a simple linear regression (LR) model.

Artificial neural networks (ANNs)

Due to the high accuracy, ANNs are widely adopted. Neural networks consist of an input

layer, hidden layer and output layer. Wang et al. (2016) applied a wavelet neural network

(WNN) to predict environmental parameters and corresponding engine speed. The predicted

working condition related to the navigation environment can on their turn serve as input for

a ship energy efficiency model to predict the fuel consumption. The model is based upon

the theoretical formulas explained in section 2.2.2, more specifically formula 2.4. This model

is embedded in a real-time dynamic optimization process in which the fuel consumption is

calculated under the predicted navigation environment for different values of the main engine



Chapter 2. Literature review 12

speed. As a result, the engine speed corresponding to the optimal energy efficiency is set

under the specified navigation environment.

Opposed to Wang et al. (2016), Beşikçi et al. (2016) do not rely on theoretical relations for

the calculation of the fuel consumption, but predict the fuel consumption through an ANN

model at first hand. For the prediction, several input factors are required. The input factors

are the ship speed, rounds per minute (RPM), mean draft, trim, cargo quantity on board,

wind and sea effects.

Building on the aforementioned research, Gkerekos et al. (2019) mention that data acqui-

sition for model training includes noon reports and data from the automated data logging

& monitoring (ADLM) system. Besides the data acquisition, the study elaborates on filling

the gaps in the data by use of engine transients rejection, recording anomalies rejection and

weather forecast imputation. Furthermore, the focal point remains the ANN model in which

they include dropout to avoid overfitting of the models. As for the input layer of the ANN

model, the input factors include draft, speed, trim, current, wave height, wave direction and

swell wave direction. The reasoning behind the selection of the parameters is not mentioned.

The FOC prediction is used as input in the weather routing model. The search algorithm em-

bedded in the weather routing model is Dijkstra’s algorithm. To evaluate the performance of

the routes, different KPI’s such as vessel sailing performance, vessel efficiency and condition,

and main engine performance and condition were quantified.

Gkerekos and Lazakis (2020) gathered knowledge concerning this field and introduced an

elaborate framework including data pre-processing and data-driven modelling that takes into

account the vessel’s characteristics and current performance. The proposed methodology is

presented in figure 2.4.

Figure 2.4: Framework for predicting the FOC by Gkerekos and Lazakis (2020)
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Apart from ANN model, the research of Morobé and Van den Poel (2020) also applies other

machine learning techniques to predict the speed through water (STW) of a vessel. The

focus lies on explanatory data analysis, pre-processing, cross-validation, train-test split, the

feature selection and the model building. The study affirms that ANN, but also kernel-based

techniques have the best performance. The research also differentiates itself by investigating

the effect of fouling on the STW. After a period of dry-docking, it is said that the vessel

experiences less speed loss en thus saves fuel.

Regression models

The ship speed can also be predicted with a given revolutions per minute (RPM) through

statistical analysis, developed by Mao et al. (2016). The sea parameters influencing the

resistance of the ship considered here are significant wave height, average period, average

wind velocity component and current velocity. A simple linear regression model, a first order

autoregressive model and a mixed-effect model have been applied by Mao et al. (2016).

In the study of Shin et al. (2020), the eXtreme Gradient Boosting (XGB) regression model

has been used to predict the SOG. The hyperparameters of the XGB regressor were optimized

using Bayesian optimization methods with 10-fold cross validation.

2.2.4 Physics-informed machine learning models

A subcategory of machine learning are physics-informed ML models. In feeding the data to

the ML models, the logical relations between parameters should be sustained. For instance,

a neural network serves as a black box that links input parameters to a certain output. In

order for the network to learn the input parameters training based on known data is applied.

However to avoid the hassle of large data gathering and trying to improve the accuracy of the

predictions even more, physics-informed machine learning comes is of use (national laboratory,

2022).

Physical relations provide an extra layer of information in order for the prediction to be

better. The data is constrained to satisfy these relations (national laboratory, 2022).

2.3 Weather routing model structure

In order to construct the optimal route, the desired goal and realistic conditions should be

modelled. As such, this section maps the most important objective functions and constraints

applied in research. Moreover, a spectrum of solution techniques to adequately find the best

possible route accounting for varying weather conditions is given.
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2.3.1 Objective function

In general, ship voyage optimization focuses on different aspects when optimizing a route.

The goals that reoccur in research are mitigating the risks at sea, environmental impact by

minimizing the FOC and time optimization. Table 2.1 gives an overview of the research

papers that focus on each of the different objectives.

Paper Min FOC Min risks Min ETA Min cost

(Delitala et al., 2010) ✓ ✓ ✓ ✗

(Calvert et al., 1991) ✓ ✗ ✗ ✗

(Chen, 1978) ✗ ✗ ✗ ✓

(Shao et al., 2012) ✓ ✗ ✗ ✗

(Bijlsma, 1975) ✓ ✗ ✓ ✗

(Haltiner et al., 1962) ✗ ✗ ✓ ✗

(Avgouleas, 2008) ✓ ✗ ✗ ✗

(Sen and Padhy, 2015) ✗ ✗ ✓ ✗

(Zhu et al., 2016) ✗ ✗ ✓ ✗

(Takashima et al., 2009) ✓ ✗ ✗ ✗

(Park and Kim, 2015) ✓ ✗ ✗ ✗

(Bentin et al., 2016) ✓ ✗ ✗ ✗

(Shin et al., 2020) ✗ ✗ ✓ ✗

(Kosmas and Vlachos, 2012) ✗ ✗ ✗ ✓

(Li and Qiao, 2019) ✓ ✗ ✓ ✗

(Maki et al., 2011) ✓ ✓ ✗ ✗

(Marie et al., 2009) ✓ ✗ ✓ ✗

(Wang et al., 2018) ✗ ✗ ✓ ✗

(Hinnenthal and Clauss, 2010) ✓ ✗ ✓ ✗

(Yang et al., 2020) ✓ ✗ ✗ ✗

(Gkerekos and Lazakis, 2020) ✓ ✗ ✗ ✗

(Lin et al., 2013) ✓ ✓ ✗ ✗

(Perakis and Papadakis, 1989) ✗ ✗ ✓ ✗

(Papadakis and Perakis, 1990) ✗ ✗ ✓ ✗

(Klompstra et al., 1992) ✓ ✗ ✗ ✗

Table 2.1: Overview of the objective functions concerning weather routing used in literature

General costs and risks

The cost minimization expressed in the research of Chen (1978) encompasses the terminal

and operating cost. The costs are based on the control vector, specifying the ship’s heading

and the power output, a generalized ship motion seakeeping constraint vector and the ship
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coordinates for different times of arrival. Maki et al. (2011) is one of the few that includes

risks more specifically parametric rolling1 in the objective function.

Estimated time of arrival (ETA)

In most cases the fuel consumed over a route or the travel time are of interest. A common

measure is the influence of the weather on the ETA. The ETA can be written as:

ETA =
d

SOG
(2.10)

where

ETA = the estimated time of arrival

d = the total distance of the route sailed

SOG = the speed over ground

Due to waves and wind resistance, the STW reduces. This speed loss can be estimated

by for instance Kwon’s method or another technique (see section 2.2) and converted to the

corresponding SOG. Consequently, if the total distance of the route is calculated, the ETA

can be derived by formula 2.10. However, the STW or resulting SOG reduction can also be

estimated by an ML technique similar to the approach by Shin et al. (2020) conform with the

aforementioned formula.

Fuel oil consumption (FOC)

Apart from the ETA measure, several others rely on FOC as minimization objective. Again,

a general measure can be set up used in most of the papers.

FOC = SFOC ·MCR% ·Pmax · tA (2.11a)

SFOC =
Fuel

PE
(2.11b)

MCR% =
PE

MCR
(2.11c)

where

SFOC = the specific fuel oil consumption

MCR = the maximum capacity rate

1Parametric rolling is a type of resonance between the wave frequency and the ship rolling motion (Park and

Kim, 2015). The phenomenon occurs in a ship with a hull form that produces a large change in the restoring

arm in waves due to their exaggerated bow flares and transom sterns. Once parametric rolling occurs, the

maximum roll angle can reach 40◦ or more (Maki et al., 2011).
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Pmax the power output at 100% MCR

PE = the delivered power

tA = the travel time

In order to calculate the FOC, the specific fuel oil consumption (SFOC) of a vessel should

be known. The SFOC is a measure of fuel efficiency of an engine in contrast to the power

output (Zis et al., 2020). The fuel is also dependent upon the maximum capacity rate (MCR)

which is said to be the maximum capacity or power a vessel’s engine can handle. If the

delivered power is expressed in relation to the MCR, this results in a dimensionless measure,

MCR%. If the power output associated with a 100% MCR is known. In most cases, SFOC is

expressed in kg/kWh and power is expressed in kW. As such, the resulting fuel consumption

is determined per time unit and should be multiplied by the travel time to obtain the FOC

of the total route sailed. The calculation of the travel time corresponds to the ETA formula

2.10 mentioned earlier. In all, formula 2.11a can be simplified as written here:

FOC = SFOC ·PE · tA (2.12)

Noticeable is that there are two possible ways in literature to calculate the FOC and indicate

the influence of the weather conditions depending on whether the delivered power or SOG is

kept constant.

In the first case, the FOC estimation depends on the sailing time function. Research of

Bentin et al. (2016); Park and Kim (2015); Shao et al. (2012); Yang et al. (2020) for instance

determine the power delivered in calm water as a relevant measure for the constant power

output. Thereafter, the involuntary speed is derived by use of Kwon’s method in the same

way as described in section 2.3.1 for the ETA calculation. As the speed reduction is directly

related to the travel time, only the tA component expressed in formula 2.12 is affected. As a

result, the FOC calculation merely comes down to an ETA minimization. The same reasoning

applies when the RPM is kept at a constant rate as it directly relates to the power, seen in

figure 2.3. A constant power also corresponds to a constant RPM which the research of

Maki et al. (2011); Shin et al. (2020); Takashima et al. (2009) make use of to estimate the

corresponding power according to the following formula (Shin et al., 2020).

Engine power = Engine Torque ·Engine RPM (2.13)

Another way is to keep the SOG fixed and estimate the varying power output under different

weather conditions. The power can be predicted by a machine learning technique, explained

in section 2.2.3 or a physics model, explained in section 2.2.2. In the later case, the total ship

resistance and the efficiency is determined based on Holtrop and Mennen (1982) methods. As

such the corresponding power can be derived, according to formula 2.1. Some research that

applied this approach are the one of Hinnenthal and Clauss (2010) and of Marie et al. (2009).
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Multi-objectives

The weather routing models either incorporate single- or multi-objective optimization. Hin-

nenthal and Clauss (2010) combines both the influence of ETA as well as FOC on the routing

algorithm. The goal is then to find a feasible design that is restricted by the Pareto frontier.

The frontier corresponds to a set of solutions for which a single objective function cannot

be further improved without deteriorating any other objective (Hinnenthal and Clauss, 2010;

Marie et al., 2009).

2.3.2 Constraints

The voyage optimization models should imitate a realistic behaviour on the route to be

sailed. Therefore, several constraints concerning the time of arrival, admissibility and safety

are featured in literature. In that regard, table 2.2 show an overview of the constraints

used and by whom. Papers mentioned before and used in this research that do not use any

constraints are not included in the table below.

Paper Time Admissibility Safety

(Chen, 1978) ✗ ✓ ✗

(Shao et al., 2012) ✓ ✗ ✓

(Avgouleas, 2008) ✗ ✗ ✓

(Park and Kim, 2015) ✗ ✗ ✓

(Marie et al., 2009) ✓ ✗ ✗

(Maki et al., 2011) ✗ ✗ ✓

Yang et al. (2020) ✓ ✗ ✓

Hinnenthal and Clauss (2010) ✓ ✓ ✓

Lin et al. (2013) ✓ ✓ ✓

Table 2.2: Overview of the constraints concerning weather routing in literature

Inadmissibility and time constraints

Chen (1978) for instance have incorporated in their multi-stage dynamic programming model

constraints on inadmissible areas such as land mass, shallow water, navigation hazards etc.

A large portion of research also include time constraints. Time constraints are mostly ex-

pressed as an upper limit to the estimated time of arrival (ETA). The actual travel time

(ATA) can for instance not deviate more than 30 minutes from the estimated arrival time

(Marie et al., 2009) .
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Safety constraints

As for the safety constraints, possible endangering phenomenons related to the ship motion

are at point of interest in most papers. Shao et al. (2012) took into account safety constraints

including surf-riding2 and broaching-to3, instability due to high wave groups, synchronous

rolling motion and parametric rolling motion. The limiting values are based on the IMO

guidelines, shown in figure 2.5. Similarly, Park and Kim (2015) take into account the danger

of surf-riding and parametric rolling. Again, the IMO safety guidelines were adopted.

Figure 2.5: The safety constraints specified by the IMO guidelines (Shao et al., 2012)

Furthermore, the iterative dynamic programming model of Avgouleas (2008) incorporates

deck wetness and slamming as safety constraints. Both phenomenons relate to the relative

motion of any point on the ship. If the relative motion exceeds the freeboard4, deck wetness

occurs. If the motion on the other hand exceeds the the draft and when the relative velocity

exceeds a critical point, we are dealing with slamming. Apart from the last phenomenon,

Hinnenthal and Clauss (2010) also considers constraints on the vertical and lateral acceler-

ations, motion sickness and main engine operability. Moreover, research such as Yang et al.

(2020) or Maki et al. (2011) include a maximum threshold on the STW or RPM respectively.

2The phenomenon that large following waves acting on the ship can force her to move with the same

speed(Begovic et al., 2018).
3It is a phenomenon in which a ship cannot maintain a constant course despite the maximum steering effort

being applied (Begovic et al., 2018).
4The height of a ship’s side between the waterline and the deck (Avgouleas, 2008).
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2.3.3 Geographical representation

An essential part of weather routing is the representation of the geographical area by coor-

dinates to construct a feasible route. The route can either pass through waypoints along the

great-circle, explained in section 2.3.3 or follow several grid points, explained in section 2.3.3.

Table 2.3 indicate which papers have applied either a grid-based or waypoint solution.

Paper Waypoints Grid-based Solution technique

(Delitala et al., 2010) ✓ ✗ /

(Calvert et al., 1991) ✓ ✗ 2DDP

(Chen, 1978) ✓ ✗ 3DDP

(Shao et al., 2012) ✓ ✗ 3DDP

(Bijlsma, 1975) ✓ ✗ Calculus of variations

(Haltiner et al., 1962) ✓ ✗ Calculus of variations

(Avgouleas, 2008) ✓ ✗ IDP

(Sen and Padhy, 2015) ✗ ✓ Dijkstra

(Zhu et al., 2016) ✗ ✓ Dijkstra

(Takashima et al., 2009) ✗ ✓ Dijkstra

(Gkerekos and Lazakis, 2020) ✗ ✓ Dijkstra

(Park and Kim, 2015) ✓ ✗ A*

(Bentin et al., 2016) ✓ ✗ A*

(Shin et al., 2020) ✗ ✓ A*

(Kosmas and Vlachos, 2012) ✓ ✗ SA

(Li and Qiao, 2019) ✓ ✗ SA

(Maki et al., 2011) ✓ ✗ RCGA

(Marie et al., 2009) ✗ ✓ RCGA

(Wang et al., 2018) ✓ ✗ MOGA

(Hinnenthal and Clauss, 2010) ✓ ✗ MOGA

(Yang et al., 2020) ✓ ✗ GA

(Lin et al., 2013) ✓ ✗ 3DMI

(Hagiwara, 1989) ✓ ✗ Isochrone method

(Klompstra et al., 1992) ✓ ✗ Isopone method

Table 2.3: Geographical representation of the construction of a route and corresponding solution

technique: overview of research papers

Waypoint representation

In the first case, the shortest distance between the departure and destination point on the

surface of the earth is drawn. This is called the great-circle route. This route is commonly

considered as the reference course. However, when taking into account the weather conditions,
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one can slightly differ from this course to avoid bad weather, but still maintain the shortest

path. As a result, the great circle course can be divided up by several waypoints, also known

as the ship’s heading (Wang et al., 2020) .

The waypoint method is mainly used in dynamic programming and isochrone approaches in

which each waypoint corresponds to a stage. The number of stages depends on the total

distance of the route and the available computing capacity (Shao et al., 2012).

Figure 2.6 shows the correct representation of the waypoint method. The states of a stage

which are applicable in the aforementioned approaches are time and geographical location.

Time is not fixed for instance in 3D dynamic programming and progresses as well as the

location. As such, the weather forecast will be different depending on the time travelled. Let

the goal be to minimize the fuel, this is then the stage control variable. Based on the total

distance from start to end point, the number of stages in which new decisions are made will

be determined. In figure 2.6 11 stages with the grid locations being the states along the great

circle. Per stage the state that minimizes the fuel consumption will be chosen.

Figure 2.6: The waypoint representation according to Lin et al. (2013)

Grid-based representation

Apart from the waypoint representation, a grid-based representation is another commonly

used approach to partition the geographical area. Sen and Padhy (2015) has discretized the

geographical space into grids. The square grids are equal in terms of horizontal and vertical

distance. The intersection of a latitude and longitude line are considered as a node. Any

possible path the ship could traverse is composed of lines joining a node with its neighbouring

nodes. The weights between path lines joining adjacent nodes are dependent on the objective

function. An example of the grid-based representation is given in figure 2.7 (Sen and Padhy,
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2015).

The aforementioned representation is known as equirectangular projection with constant

latitude and longitude intervals. This is considered to be the base map. Whenever a place on

the sphere is projected into a plane, distortion of the area, the angle, the direction, and the

distance occurs forming dissimilar grids. Shin et al. (2020) transformed the base map into a

conformal map by increasing the distance in y-direction by a scale factor based on the latitude.

However, this results in numerous grids that should not be explored in the routing process.

The authors therefore developed the concept of an adaptive grids for which efficient grouping

is applied. Grids are grouped as the latitude and consequently the distortion increases (Shin

et al., 2020).

Figure 2.7: The grid-based representation according to Sen and Padhy (2015)

2.4 Weather forecasts

An accurate weather forecast is one of the inputs crucial to the prediction performed by the

hydrodynamic models in route optimization.One of the main aspects is the weather forecast.

However, the accuracy of the weather forecast and the influence on weather routing is out

of the scope of this dissertation. Rather the distinction between static and dynamic weather

grids is more important. Michalek and Balakrishnan (2009) makes a clear distinction between

the two types. In case of static weather forecasts, no uncertainty intervals nor a measure of

forecast accuracy is incorporated in the forecasts. Therefore, the weather forecasts do not

change in time. To account for uncertainty, they developed a dynamic weather grid in which
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a different time horizon for different aircraft positions are used (Michalek and Balakrishnan,

2009).

2.5 Solution techniques

A wide range of solution methods are present in finding the local or global best routes for ships.

The weather routing models can be modeled as nonlinear continuous optimization problems

or discrete optimization problems (Walther et al., 2016). In this section, the different solution

techniques and their applications are explained.

2.5.1 Dynamic programming

Bellman (1952) introduced the theory of dynamic programming (DP) to the purpose of

subdividing a given complex problem into sub-problems. Bellman’s principle of optimality

states that if a given decision at an initial stage is optimal, the following decisions will also

be optimal.

Dynamic programming either uses a backward or forward recursive algorithm. The backward

(forward) algorithm ensures the path to be optimal if and only if, for any intermediate stage,

the choice for the following (previous) path is optimum for this stage (Shao et al., 2012).

Each stage is associated with a control vector in dynamic programming and represents a

sub-problem. Information from a preceding stage serves as input for the determination of

the control parameters of the next stage. The stage variables on the other hand should

monotonically increase during a ship voyage for instance, fuel consumption, time or voyage

progress. Within a stage, many states of the ship can be defined such as time and geographic

location. In most cases, the states are represented by grid points.

Two-dimensional dynamic programming (2DDP)

The traditional two-dimensional dynamic programming models (2DDP) optimize the ship’s

heading while ship power or propeller speed rotation are kept constant. As such only the

route is optimized. Calvert et al. (1991) tries to minimize for instance the fuel consumption

through 2DDP. The stage variable is the voyage progress in this case, the control variable is

the ship heading and the state is the position of the ship at each grid point.

Three-dimensional dynamic programming (3DDP)

The three-dimensional dynamic programming method is an extension of the 2DDP method,

but besides the ship heading, the speed is also able to change in time and geographic position.

In that regard, Chen (1978) developed a stochastic, dynamic minimum cost routing model

performed on a Trans-Atlantic voyage using simulated data. The model is a multi-stage
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decision problem in which the stage variable can either be the voyage time or a measure of

voyage progress. The later takes on the form of incremental distances in the general direction

of travel for instance the longitude. The focus lies on the voyage progress as state variable

due to less computational effort. As a result, the state variables are the coordinates of a grid

point on a predefined grid system and the time. The control variables on the other hand are

the power output and the ship heading, mentioned in section 2.3.1 and are constant between

two consecutive stages.

Similar to the model of Chen (1978), Shao et al. (2012) also express the power and the ship

heading as control variables. The model however aims to minimize the fuel oil consumption

and uses a forward algorithm instead of a backward approach. The grid points and conse-

quently the headings are predefined. As a result, the power becomes the only control variable

(Shao et al., 2012).

Calculus of variations

The approach, calculus of variations, in weather routing was first introduced by Haltiner et al.

(1962) with the goal of minimizing the integral that represents the travel time between two

ports. The resulting Euler differential equation can then be solved by a general relaxation

technique consisting of an iterative approximation procedure. The procedure ends when the

conversion indicates a minimum-time track that is sufficiently approximated. The model only

takes into account the influence of the wave height and direction.

The extension of previous research is performed by Bijlsma (1975). Besides minimizing the

time travelled, the fuel consumption is also kept to a minimum. The optimization problem is

solved using wave charts and current data.

As Perakis and Papadakis (1989) explains calculus of variation is focused on deriving local

optimality properties which are combined with global boundary conditions. The authors

apply the methodology to a minimal time routing problem with time-dependency. Again, the

dynamics of a vessel that travels in a 2-dimensional space are defined in minimizing the total

transition time for a known visiting sequence. The control variables are therefore the power

and the ship’s heading. Intermediate locations represent the states and for each state the

optimal departure time, depending on the speed, is determined with corresponding optimal

power and heading. They proved that the power setting along the optimal trajectory always

takes its upper permissible value (Perakis and Papadakis, 1989). A similar approach has

been applied by Papadakis and Perakis (1990) for the minimal time routing problem within

stationary and time-dependent seas. The weather factors that are taken into account are the

wave direction and height.



Chapter 2. Literature review 24

Iterative dynamic programming (IDP)

The previous dynamic programming solutions require a fine grid to ensure convergence to a

global optimum. The aforementioned problem is stated as the “the curse of dimensionality”

as memory storage and computational time are considerably large. More precisely, for each

stage, a complete grid of admissible states is necessary (Avgouleas, 2008).

This can be avoided by iterative dynamic programming (IDP) in which only a single grid point

is used. The concept of IDP was introduced by Mekarapiruk and Luus (2000) to the purpose

of increasing the odds of a global optimal solution. IDP can be used to solve optimization

problems for which the state and control variables take on values from a set of real numbers.

In that regard, Avgouleas (2008) developed an IDP algorithm that first makes an initial guess

for the optimal control and within each iteration the control policy is improved based upon the

previous one. Each iteration is similar to the general DP process and refines the granularity

of the quantified allowable controls. The control variables are the speed and the ship heading

and the state is the ship location on the sea surface in this case.

Isopone method

Adding another dimension of fuel to the two-dimensional plane of position and time of

dynamic programming creates a three-dimensional plane of energyfronts or isopones. The

isopones represent energyfronts of equal fuel consumption. The courses are again discretized

along the great circle route. This method has been applied byKlompstra et al. (1992).

The route is constructed in an iterative way by calculating the next isopone based on the

previous one. The details of the mathematical implementation can be found in the research

of Klompstra et al. (1992), but is less applied in practice opposed to the other methods

explained.

2.5.2 Isochrone method

Another possible method is the isochrone method. In this method, lines associated with the

same travel time and possible trajectories of the ship are derived. A set of connected points,

starting from a given departure point, that a ship can traverse within a given time and going

in all possible directions is said to be an isochrone. As such, the same transition time can be

achieved, but the direction can be changed depending on the weather or the presence of an

obstacle (Szlapczynska and Smierzchalski, 2007; Zis et al., 2020).

The isochrone method was first introduced by James (1957) and was further modified by

Hagiwara (1989) among others in order to avoid the isochrone loops. A loop is caused by

the non convexity of the speed characteristic for given weather data. More specifically, the

area that can be crossed is partitioned when a new isochrone is generated when applying
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the modified method of Hagiwara (1989). This approach can also handle narrow strait

crossings. Others even include high traffic intensity areas as to avoid collision with other

vessels (Szlapczynska and Smierzchalski, 2007).

Lin et al. (2013) propose a three-dimensional modified isochrone (3DMI) method. They

have included a floating grid system of 3DMI’s. The goal is to reach the destination while

guarantying minimum fuel consumption and minimum passage time within an predefined

ETA and taking constraints of safety and land avoidance into account. The main advantage

is that the speed and wave heading angle varies with the geographic locations. In the same

way as 3DDP method, the 3DMI method also includes stages and corresponding states. Here,

the stage is the segment of a voyage route between two isochrones based on the calm-water

speed assumption. A stage is comprised of potential geographical locations depending on

weather and sea conditions, called the states. The control variables of each stage are the

voyage progress and the fuel consumption or voyage time. In the research at hand, the fuel

consumption is taken as control variable and the passage time the state of the stage.

2.5.3 Search tree algorithms

Dijkstra’s algorithm

Dijkstra’s algorithm is an approach that originally finds the shortest path of a problem when

defined as a directed weighted graph. The graph consists of vertices, edges and weights/costs

associated with the edges. The algorithm then detects the directed path with the smallest

total weight. The weight is usually the distance, but in case of Sen and Padhy (2015) it

represents the travel time. The travel time between two grid points is the distance divided

by the reduced speed. The reduction in speed is influenced by the weather conditions or

avoidance of dangerous obstacles (Walther et al., 2016).

In a similar way, Zhu et al. (2016) proposed an improved Dijkstra’s algorithm. The focus lies

on the storage and time reduction of the application of the algorithm.

In the research of Takashima et al. (2009), on the other hand, the fuel consumption is

minimized by finding the minimum propeller revolution number for a specified voyage time.

The resulting route is however a sub-optimal route.

A-star algorithm

An extension of Dijkstra’s algorithm is the A-star algorithm. The goal of the algorithm is

to faster calculate the optimal path by not considering existing, expensive paths. The time

and space complexity can be considerably improved. The algorithm incorporates a heuristic

function, h(n). If the heuristic function is equal to zero, it decays into Dijkstra’s algorithm.

A-star selects a path that minimizes the evaluation function, f(n) = g(n) + h(n). The heuristic
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function, h(n), estimates the cost from n to the goal and g(n) represents the real cost so far

to reach n. As such, the evaluation function, f(n), then estimates the cost of the path that

moves along n to reach the goal (Park and Kim, 2015; Shin et al., 2020).

To obtain an optimal global path, it is necessary for the heuristic function to be admissible.

An admissible heuristic function is less than or equal to the real cost from a node to the

destination. The algorithm also employs two sets of nodes: a closed set and an open set. The

closed set encompasses all the nodes that already have been searched and the open set are

nodes that still need to be searched. The algorithm is terminated if the open set is empty

(Park and Kim, 2015; Shin et al., 2020).

Park and Kim (2015) apply the A-star algorithm in the first phase of the two-phase approach

to find the optimal ship route while minimizing the fuel consumption. The evaluation function

accounts for the speed reduction caused by the ocean environment through additional fuel

consumption. Based on the resulting optimal route, the speed schedule is determined in the

next phase by use of geometric programming.

Besides a two-phase approach, A-star can be applied on its own to minimize the ship propul-

sion energy along a path, done by Bentin et al. (2016). The path is constructed via waypoints.

The energy of a route is the required energy from departure to waypoint x in addition to the

estimated energy from x to the destination. Each time a follow-up waypoint is selected, the

one is chosen with the lowest route energy and a set of neighbourhood waypoints is gener-

ated. The set of neighbourhood solutions is determined based on the predefined speed, travel

time and the ship heading. When the selected waypoint equals the destination, the A-star

algorithm ends. The procedure is shown in figure 2.8. As seen, the method opens up a sort

of search tree that expands with new waypoints.

Figure 2.8: A-star procedure by use of way-points (Bentin et al., 2016)

Recently, Shin et al. (2020) have developed an improved A-star algorithm. The newly im-

proved algorithm makes use of an adaptive grid and a low-cost heuristic to further decrease
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the computational effort. The grid allows a 16-way search instead of an 8-way which renders

a smoother route. This means that other adjacent grid points are also considered in addition

to the grid cells in the direction of 45◦ as well as 26.6◦ presented in figure 2.9.

In addition to this method, an adaptive grid system was applied. In most cases, a equirect-

angular projection is used. It is a projection for a base map that forms a grid as meridional

intervals of constant spacing and constant intervals of parallels. This projection is however

distorted along the latitude as such the grids become disparate. This merely means that close

to the polar region as the distance between meridians is narrower, resolution should be finer.

As such, a larger number of grids is required and thus also a larger computational effort. An

adaptive grid overcomes this problem by grouping grids together closer to the polar region to

avoid exploring all grids.

Figure 2.9: 8-way versus 16-way search in a grid (Shin et al., 2020)

Besides the adaptive grid, Shin et al. (2020) developed a low-cost heuristic method. The

model tries to minimize the estimated time of arrival (ETA). In general the ETA is the

distance divided by the speed over ground (SOG). For the real cost between two grid points,

SOG values are predicted with machine learning models. The distance used is the haversine

distance which is also used for the heuristic function. As for speed used in the heuristic

function, the 99 percentile values for the SOG are used ensuring the function to be admissible.

It turns out that the 16-way, adaptive grid renders more-economical paths in terms of ETA,

distance and searched nodes.

2.5.4 Evolutionary algorithms

Simulated annealing (SA)

As the weather routing problem is a large scale optimization problem, this can preferably

be handled by a (meta) heuristic such as simulated annealing. The heuristic is based on the

method of cooling heated metal down. The metal structure is frozen when a minimal energy

level is reached. In this case, the energy function is the objective function of the optimization

problem.
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Li and Qiao (2019) have applied the SA algorithm to optimize the route for wind-assisted

ships. Both the fuel consumption as well as the voyage time are minimized. The route is

constructed based on the principle of waypoints. The route between the departure and the

destination point is broken up into a sequence of waypoints and these points are taken as

variables in the optimization. A new route is generated by adjusting the waypoints and

evaluating the new route based on the ocean wind and optimization criteria. The initial

temperature has been set to 200, the end temperature to 10, The plateau length to 5000

and the reduction factor equal to 0.5. They concluded that in terms of voyage time and

fuel reduction the SA algorithm performs well compared to the great circle route. The fuel

consumption as optimization criteria is separately evaluated from the limited voyage time

criteria. As such these are two single-objective optimizations.

Kosmas and Vlachos (2012),on the other hand, executed a multi-objective SA optimization

in which a weighted combination of the voyage time and safety of the voyage are minimized.

Similar to Li and Qiao (2019), the initial route is subdivided in parts based on the weather

forecasts and waypoints are generated. The newly generated algorithm however sets up an

initial solution that takes into account bypassing obstacles. The initial route is the line

connecting the start and end point. However, in case of an obstacle, two initial routes are

generated which both avoid the obstacle from a different side. As such, for n obstacles, 2n

routes are constructed and are all considered by the algorithm. Subsequently, the number of

waypoints is chosen. The space interval Ld according to Kosmas and Vlachos (2012) should be

close to Ld = u∗Td with u the speed of the ship and Td the drift of the environmental data in

time interval. An advantageous implementation was obtained by considering different initial

routes that are parallel or anti-parallel to the direction of the wave field. The application of

the SA has been compared to a GA application concluding that the difference among them

is not significant.

Genetic algorithm (GA)

A commonly used meta-heuristic to solve the weather routing problem is a genetic algorithm.

The algorithm is based on natural selection in which only the fittest individuals are selected

to reproduce offspring for the new generation. An individual is represented by a chromosome

that consists of genes which are either 0 or 1. There are 5 phases in the algorithm: initial

population, fitness function, selection, crossover and mutation (Mallawaarachchi, 2017).

Opposed to simulated annealing, GA generates multiple feasible initial solutions forming the

initial population. Each individual in the population receives a fitness score based upon the

fitness function. The fitness score determines the probability of the individual to be selected

for reproduction. This is considered the selection phase. As such, two pairs of individuals,

parents, with a high fitness score are matched. Thereafter, crossover is applied to the chosen
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parents. A crossover point is selected at random for both parents and offspring is generated

by switching the tails with a certain probability. The last step is mutation. Each gene is

then altered with a certain probability to ensure diversity in the population. The algorithm

terminates when the solution converges (Mallawaarachchi, 2017).

Different forms of GA as well as different operators are present in literature. For instance,

Maki et al. (2011) applied a real-coded genetic algorithm (RCGA) in which the fitness function

is a combination of the fuel consumption and the safety for ship routing. The main safety

goal is to avoid parametric rolling. At certain angels, the ship is pushed to the other side

and may cause damage to the cargo and a risky environment for the crew. Maki et al. (2011)

proposed three different objective functions with different weights between safety and fuel.

A real-coded genetic algorithm does not generate a bit-string to represent a solution, instead

real-valued vectors are generated. For the selection phase, the algorithm relies on the just

generation gap (JGG) selection model which is combined with a multi-parental crossover,

REXstar.

An application of the RCGA was also performed by Wang et al. (2018) with a focus on

developing a fast and efficient algorithm. The initial routes that are generated both entail

the latitude and the longitude information. The paper applies three selection methods:

roulette wheel selection, stochastic universal selection and tournament selection. As for the

crossover method, an arithmetic operation is used to deal with the real-valued chromosomes.

Moreover, a hybrid mutation method combining uniform and Gaussian mutations. Besides the

essential operations, Wang et al. (2018) also incorporates a reinsert operation and migration

operation. As a result, a percentage of the offspring population is inserted in the parent

population according to their fitness. As for the migration operation, individuals between

each subpopulation of every generation are exchanged. In that way, individuals with a high

fitness can be passed over to another subpopulation to ensure spread of good individuals

among populations.

Besides Maki et al. (2011), Marie et al. (2009) also optimized a multi-objective ship voyage

problem for which the fuel consumption as well as the travel time are minimized using a multi-

objective genetic algorithm (MOGA). They developed a new automatic meshing method.

It is a way of gridding taking into account the sea-beds geography, the time dependant

meteorological data and the characteristics of the vessel.

The optimization method explained by Hinnenthal and Clauss (2010) is able to find the pareto

optimum routes unless the weather worsens. In that case, a minimum cost route that reaches

the destination on schedule is not easily found. In these cases, the optimum becomes a trade-

off between additional fuel consumption due to a longer course or fuel saving by reducing the

additional resistance due to waves by avoiding strong wave fields (Hinnenthal and Clauss,

2010).
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2.6 Robustness

Robustness is a concept vaguely described in literature. It is briefly mentioned in the research

of Michalek and Balakrishnan (2009) which focuses on air traffic. Robust routes are here

defined as routes that are not impacted by the inaccuracies of the weather forecasts. They

developed an approach that classifies weather features that are highly correlated with route

blockage.

Thus, robustness is more or less an answer to any kind of accuracy involving routing. If for

instance the ship performance models are more accurate, a more reliable route optimization

could be achieved. However, this definition remains wide in order to have some room to

deviate from it.
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Part II

Experimental Setup
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Chapter 3

The fuel oil consumption models

3.1 Introduction

In finding the most efficient route, the goal in this research is to reduce the total fuel oil

consumption (FOC) across that route. In doing so, the power should be accurately estimated

taking into account the ship hydrodynamics and the weather at a certain location and time

for a constant GPS speed or also called, speed over ground (SOG). As a result, the FOC can

be derived according to formula 2.12. As such, the focus in this chapter lies on the variable

power prediction due to environmental factors.

Four models are described that have either been used for decades or are newly developed

by Toqua to ensure high accuracy in prediction power. The models are the sea trial curves

with and without correction factor, the original machine learning (ML) model of Toqua and

Toqua’s physics-informed ML model. Even though the main service of Toqua is to promote

and commercialise the latter model, the other three models were also implemented by the

data science engineers for the purpose of experimental research.

3.2 The state-of-art models

The state-of-art models are the sea trial curves with and without correction factor which were

already explained in sections 2.2.1 and 2.2.2 and have been widely used in the industry up to

this point.

3.2.1 The sea trial curves

For the sea trial curves, the ballast and laden power are tracked for a predefined speed

through water (STW) ranging from 0 to 19 knots (kn). As the SOG is always kept constant,

the associated STW can be determined taking into account the current speed and direction.

The dependence between SOG and STW is expressed in formula 3.1, specified by the experts
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at Toqua. Other weather or ship specific parameters are not taken into account by the sea

trial curves. In this way, a simple speed-power curve can be derived. The formula is based

on the expertise of Toqua.

STW = SOG+ vcurrent · cos(ϕheading − ϕcurrent) (3.1)

where

STW = the speed through water [kn]

SOG = the speed over ground [kn]

vcurrent = the current speed [kn]

ϕcurrent = the current direction [◦]

ϕheading = the direction in which the heading of the vessel is pointed at [◦]

3.2.2 The sea trial curves with correction factor

The implementation of the sea trial curves with a correction factor adjusts the obtained power

output, resulting from the previous section, for the influence of wind and waves by either

Kwon’s or Kreitner’s method.(see section 2.2.1) Only the latter method has been applied in

this research and the values specified for the formulas stem from the ISO 15016 guidelines.(see

section 2.2.2). The input parameters that the model takes into account are the current

direction and speed, the draft, the heading, the SOG, the wave direction, the wave height,

the wind speed and wind direction. This is a fraction of what the Toqua models use as input

parameters (see table 3.1).

3.3 The machine learning models of Toqua

As the environmental pressure and awareness increases, the aforementioned models are not

sufficient to accurately predict the main engine power. The impact of certain measures and

solutions such as maintenance, retrofits, speed optimization and optimal routing should be

quantified in a correct way. This is where the ML models of Toqua come into play.

3.3.1 The original ML model

The original machine learning model of Toqua is a neural network that accurately predicts ship

hydrodynamic relations as seen in figure 2.2. The model can be categorized under predictive

modelling by ANNs as explained in section 2.2.3 in order to estimate either the engine power

or STW. The model however also successfully attempts to predict other relations such as

predicting the RPM starting from a constant speed or the RPM to power relation. In this

research, the focus lies on predicting the engine power for a constant SOG.



Chapter 3. The fuel oil consumption models 34

The power-speed relation of a ship is essential for the analysis of the current problem. In

essence, the engine of a ship consumes fuel which results in a certain power output. The

power in turn drives the propeller of the ship causing it to spin at a certain rounds per

minute (RPM). As such, the ship can move forward at a speed trough water (STW).(Morobé

and Van den Poel, 2020)

In most cases, the relationship between speed and power is approximated by the speed-power

curve and the RPM step is neglected. However, the interplay between speed, power and

RPM is crucial. As such, this interplay is handled by the predictions of Toqua. It is the

first approach that can predict the speed through water (STW) or the power of a ship in an

unfouled condition with a very high accuracy. As a consequence, the power a ship should exert

can be predicted at a specific point in time at any geographical nautical location.(Morobé

and Van den Poel, 2020)

3.3.2 The physics-informed ML model

The physics-informed ML model of Toqua is similar to the original ML model and requires

the same input parameters. The model however is also embedded with physics inherent to the

voyage of a ship. For instance, the power required is lower if the wind comes from behind the

ship and the ship is heading forward as the wind already pushes the ship partially forward.

3.3.3 The input parameters

The input parameters necessary to run both ML models of Toqua are ship specific parameters,

weather parameters and voyage parameters.

The draft and the trim of a ship are ship specific. Depending on the ship that the model is

trained for, the trim and draft will vary between 8 and 22 m and -8 and 3 m respectively.

The weather parameters can be extracted for each spatial data point though the StormGlass

API or can be manually set to fixed or random values, depending on the experiments to be

performed. The weather parameters are the wave height, the sea surface temperature, the

wind speed, the wave and wind direction, the current speed and current direction. The sea

salt salinity is also of importance but cannot be retrieved from the API and should therefore

be set to an average value between 30 and 40 practical salinity units (PSU) for the waters to

be traversed.

The voyage parameters to be considered are the ship heading and the rudder angle, both

expressed in degrees. The rudder angle can vary between -10◦and 10◦and the ship heading

changes according to the course travelled which can vary between 0◦and 360◦.

The ML model calculates for each spatial coordinate the level of power at which it should

operate to navigate at a constant speed. The SOG speed can take on values between 5 and 20
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knots [kn]. One knot is equal to 1.852 km/h. The input parameters and their corresponding

value range are summarised in table 3.1.

Parameter Range Unit

SOG [5,20] [kn]

Draft Fixed [m]

Trim Fixed [m]

Wave height [0,7.5] [m]

Sea surface salinity [30,40] [PSU]

Wind speed [0,20.7] [m/s]

Sea surface temperature [15,34] [◦CC]

Wind direction [0,360] [◦]

Wave direction [0,360] [◦]

Current speed [0,2] [m/s]

Current direction [0,360] [◦]

Ship heading [0,360] [◦]

Rudder angle [-10,10] [◦]

Speed over ground fixed [kn]

Table 3.1: The input parameters and their corresponding value range of Toqua’s ML models

3.4 Accuracy of the models

Toqua performed experimental research concerning the accuracy of the four models. Toqua

has developed a new approach based on physics-informed machine learning, called ‘ship

kernels’ and shows that it outperforms the other approaches in terms of accuracy while keeping

it highly practical.

In calculating the accuracy, they used the mean absolute percentage error (MAPE) and used

the ship’s sensor data as the true value opposed to the estimated value of the models at hand.

In essence, the smaller the MAPE, the more accurate the model. The formula of the MAPE

is given by equation (3.2).

MAPE =
1

n

n∑

i=1

|yi − ŷi
yi
| (3.2)

where yi is the actual value of the power and ŷi is the estimated value of the power.

They did the test for the sea trial curve with and without correction factor, the physics-

informed ML model based on sensor data and the ML model based on noon report data. In

using the sea trial curve, the MAPE is 22.2%. Adding a correction factor lowers the MAPE



Chapter 3. The fuel oil consumption models 36

to 14.3%. The physics-informed model is highly accurate for which the MAPE comes down

to 6.7%. The pure ML model has a similar accurcay as the PI-ML model. However, the data

imputed in the model is quite noisy and taking into account the physics relations is essential

for realistic power predictions. Unrealistic dependencies between parameters are in this way

neglected. That is why the physics-informed model is more favourable in terms of accurate

power predictions (Colle and Morobé, 2022).
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Chapter 4

The weather routing model

4.1 The introduction

In this section, the weather routing model is presented. As mentioned in the literature study,

the focus of the weather routing model can be diverse. The model can focus on minimizing

the travel time, the fuel oil consumption (FOC) or the risks. As Toqua mainly strives for

environmental purposes, the minimization of the FOC will be the main goal of the routing

model.

The methods in order to obtain an optimal path subject to weather conditions such as A-star

and simulated annealing (SA) will also be described in this chapter.

4.2 The model formulation

Parameters

The following parameters are part of the mathematical model. Index i and j refer to the

collection of geographical coordinates on the map that could possibly be traversed and range

from 1 to n, where n is the total number of coordinates. The specific fuel oil consumption

(SFOC) parameter is set to 170 g/kWh for the ship from which the sensor data is provided

by Toqua for the purpose of this experimental research.

dij the distance between coordinates i and j

sij the SOG between coordinates i and j

tij the travel time between coordinates i and j

pi the main engine power traversing coordinate i

pavgij the average power between coordinates i and j

FOCij the fuel oil consumption travelling from coordinate i to j

SFOC the specific fuel oil consumption
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Decision variables

The goal of a weather routing model is to determine which geographical points should prefer-

ably be part of the final path. The decision variable is expressed in the following way.

xij 1 if coordinates i and j are part of the final path, 0 otherwise

Mathematical formulation

The objective of the weather routing model focuses on minimizing the fuel oil consumption

which is based on formula 2.12 described in section 2.3.1.

min
n∑

i=1

n∑

j=1

FOCij ·xij (4.1)

s.t. xij ∈ {0, 1} (4.2)

The calculation FOCij in objective function 4.1 is based upon the previously mentioned

formula. As such, the FOC between two points is the average power multiplied by the SFOC

of the ship and the travel time between these two points. The travel time tij is equal to the

distance dij divided by the speed sij . Furthermore, the average power pavgij is the average

between the power to transverse both coordinates. As such, pavgij is equal to
pi + pj

2
. To

recap, the calculation of the FOC is expressed in the below formula.

FOCij = SFOCij · pavgij · tij (4.3)

Assumptions

Important to mention is that for the calculation of the distance dij , the Haversine distance

is used. It is an accurate way to compute the distance between two points on the surface

of a sphere using the longitude, latitude and the radius of the earth R (= 6371 km). The

haversine distance is calculated according to equations 4.4 (Kettle, 2022).

d = R · c (4.4a)

c = 2 · arctan(
√
a√

1− a) (4.4b)

a = sin2((ϕB − ϕA)/2) + cos(ϕA) · cos(ϕB) · sin2((λB − λA)/2) (4.4c)
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where

d = the haversine distance

ϕA = the latitude of point A

ϕB = the latitude of point B

λA = the longitude of point A

λB = the longitude of point B

R = the radius of the earth

For the research at hand, the weather conditions do not change in time for the coordinates.

This means that the weather conditions are static and weather differs for one coordinate upon

another coordinate in geographical sense but not in time.

4.3 The weather routing algorithms

In order to construct the optimal path, the cost objective should be evaluated in a correct and

fast way. This can be attained by a suitable weather routing algorithm which can be either

a search method, A-star or a meta-heuristic, simulated annealing (SA). The main difference

between A-star and SA is that the latter is suitable for large-scale problems in terms of CPU

time, but does not guarantee the optimal solution. A-star always ensures an optimal route in

case of static weather data and is solved within a reasonable time frame if the geographical

area is not too large.

4.3.1 The A-star algorithm

Algorithm 1 that stems from Shin et al. (2020), clearly shows how the A-star algorithm works.

A graph G has V nodes and E edges and for each of the nodes the real cost for a path from

the source node to the current node is initialized with g(node) = ∞. For the source node s,

set g(s) equal to 0 and f(s) = g(s) + heuristic(s) and put s into the queue with corresponding

value f(s). Thereafter, node u with the minimum value in the queue is extracted and the

edge-relaxation for u based on g, putting newly visited nodes into the queue is executed. The

last two steps should be repeated until the target node is reached.(Shin et al., 2020)
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Algorithm 1 A-star algorithm

1: function A*(G(V, E), W, s, t)

2: for all u ∈ V {s} do
3: g[v] :=∞, pred[v] := nil

4: g[s] := HEURISTIC(s, t) ▷ Heuristic function

5: Queue← {s}, S ← ∅
6: while Queue ̸= ∅ do
7: u := ExtractMind(Queue)

8: S
Update←−−−− S ∪ {u}

9: if u=t then

10: return g,MAKEPATH(t, pred) ▷ Tracking backward

11: for all e ∈ eu,v ∈ E | u ∈ V, v ∈ adjacent[u] do ▷ Edge relaxation

12: if g[v] > g[u] +W (e) then ▷ W(e) is the weight of edge e

13: g[v]
Update←−−−− g[u] +W (e) +HEURISTIC(v, t)

14: pred[v]
Update←−−−− u

15: Queue
Update←−−−− Queue ∪ {u}

16: return ∅

The heuristic function

An important part of the A-star algorithm is the heuristic function which distinguishes A-star

from Dijkstra’s algorithm. The function should be admissible in order for the algorithm to

be feasible and diminish the running time. Referring back to algorithm 1, this means that

h(x) ≤ g(y) + h(x, y) for every edge (x,y) of the graph.

A main driver of the FOC calculation is the power prediction between two points. The ballast

power according to the sea trial curves will always be smaller than any other kind of power

prediction and is constant for a predefined STW. Opposed to the laden power, the ballast

power is the power whenever the ship does not carry any cargo. As a result, the corresponding

FOC for a ballast voyage will also be smaller than a laden voyage.

For the models used in the experiments, the power is smaller as the sea trial curves’ estimations

make use of the laden power rather than the ballast power. The physics models as well as

the ML models intent for a certain correction due to environmental factors which in a sense

adds a power difference to the ballast power.

4.3.2 The SA algorithm

The simulated annealing (SA) algorithm is displayed as algorithm 2 and the stems from the

research of Rere et al. (2015). The pseudocode has been adjusted according to the current
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research and can be explained as follows.

SA begins by generating an initial random solution x0 of the problem and deriving the

associated cost f(x0). A starting temperature Tstart is defined, which will be lowered each

iteration. Moreover, the Boltzmann constant k is defined, the plateau length N , the cooling

function F and the plateau increment β.

Thereafter, the current solution is compared to one of the neighbourhood solutions in its neigh-

bourhood space. A neighbourhood solution x0+△x is selected at random and if the associated

cost f(x0+△x) is smaller than the cost of the current solution f(x0), the current solution is re-

placed by the neighbourhood solution. If however the cost is larger, then the neighbourhood

solution is accepted with a certain probability, namely e(current cost−neighbour cost)/kT . This

procedure is repeated for a number of times N which is referred to as the plateau length. The

plateau length can remain fixed for each run or can increase with a factor β.

Moreover, the cost minimization should be embedded in the algorithm as well and can be

achieved by continuing the procedure of replacing the current solution by a solution with a

lower cost as long as the temperature T has not reached the end temperature Tend. The

temperature is decreased according to the cooling scheme.

The elements necessary to run the simulated annealing algorithm should set to an optimal

value and should therefore be determined experimentally. This will be explained in section

4.3.2.
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Algorithm 2 The simulated annealing algorithm

1: function SA(x0, T0, k,N, β, F )

2: Generate an initial solution x0, set the initial temperature Tstart,

3: Boltzmann’s constant k, plateau length N , cooling function F and

4: plateau increment β

5: while T > Tend and stopping criteria is not met do

6: for N do select a new solution: x0 +△x
7: if f(x0 +△x) > f(x0) then

8: fnew = f(x0 +△x);x0 = x0 +△x
9: else

10: △f = f(x0 +△x)− f(x0)
11: random r(0, 1)

12: if r > exp(−△f/kT ) then
13: fnew = f(x0 +△x), x0 = x0 +△x
14: else

15: fnew = f(x0)

16: f = fnew

17: T = F (T ) ▷ Cooling function

18: N = β ·N
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Chapter 5

The simulated annealing heuristic

5.1 Introduction

The simulated annealing algorithm has been briefly touched upon in chapter 4, more specif-

ically in section 4.3.2. The description concerning the model formulation 4.2 is applicable

here. Therefore, a route is constructed based on minimal fuel consumed. This entails that

the power should be predicted by one of the FOC models, explained in chapter 3.

Unlike A-star, the algorithm requires some parameter tuning in order for the algorithm to

work optimally and converge. In this chapter, experiments are performed in order to find the

most suitable conditions and evaluate if the resulting SA is a better fit than A-star for the

follow-up research surrounding weather routing. The parameters that should be tuned are

the initial solution, the neighbourhood solution, the stop condition, the starting temperature,

the temperature decrement and the plateau increment.

5.2 Scope of the problem

5.2.1 The models

Not all FOC models are considered in this chapter, only the original ML model is used for

the prediction of the power and fine tuning of the SA algorithm. As the ML model and

physics-informed ML model make use of even more parameters than the sea trial curve with

or without correction, these are considered the most challenging models in prediction. The

ML and physics-informed ML model are quite similar in use to one another and only differ

in parameter tuning and constraints. However, as this is a black box for the user, neither

for the implementation nor the prediction it will make a difference and will not influence the

parameter tuning of the SA algorithm.

It is therefore fair to assume that testing the SA algorithm with only the ML model as FOC

model will suffice.
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5.2.2 The use case

The specific use case of weather routing applied in this dissertation concerns a route that

should be constructed via the North Sea. The start point is the port of Edinburgh in England

and the end point is the port of Bergen, located in Norway. The goal is to go from the start

to end point consuming a minimal amount of fuel while keeping the speed at a constant pace

and taking into account the weather conditions. The fuel consumption from point to point is

calculated based on the power output per coordinate of the ML model.

Geographical area

The grid representation is used to divide the geographical area into smaller grid points. For

the spatial coordinates, the North Sea is partitioned into equal rectangles of the same height

and width. Three types of grids have been constructed, a large, medium and small grid with

sizes 277.5 km by 277.5 km , 111 km by 111 km and 55.5 km by 55.5 km respectively. For

each rectangle in the grid, the centroid is used as the coordinate for the weather routing data

and could therefore possibly be included in the optimal path. The centroids will be referred

as grid points or grid cells in the upcoming experiments.

The grids are represented in figure 5.1. Note that only the grids that overlap with the North

sea and do not include land are extracted. In further experiments, the large grid size is often

referred as ‘L’, the medium grid size as ‘M’ and the small grid size as ‘S’.

Weather conditions

For each of these coordinates in the grids, weather data is retrieved for 2 points in time. The

first instance is said to be from 01/07/2021 00:00:00 and the second instance is 01/11/2021

00:00:00. As such, the solution can be compared for different weather conditions. The data

set with the first instances is called data set 1 and the data set with the second time instances

is called data set 2. Notice, that the conditions are retrieved for one time instance and not

for example over a period of several days. The conditions do not change from time to time

and are thus assumed to be static.

5.2.3 The constraints

Already a lot has been taken into account in the objective function of the design. The fuel

consumption calculations are based on an accurate power, weather circumstance, distance

etc. Therefore, spatial grid points with disadvantageous conditions such as storms will be

avoided as they increase the power usage and therefore also the fuel consumption.

Opposed to the obstacles, the condition of a connected path by neighbouring grid points are

not encompassed in the objective function. Therefore, it can be added as a soft constraint.
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(a) The large grid and extracted gird of 277.5 km by 277.5 km

with centroids

(b) The medium grid and extracted grid of 111 km by 111 km

with centroids

(c) The small grid and extracted grid of 55.5 km by 55.5 km with

centroids

Figure 5.1: The representation of different grid sizes
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This can be done by adding a penalty to the objective function each time this condition is

exceeded. For instance, if a path is of size 5 and the first 2 grid points are not adjacent

and the last two grid points are not adjacent, a value of 2 · penalty is added to the total fuel

consumption of the path.

The total travel time should be in accordance to the imposed arrival time. However, for

simplicity reasons, this constraint is not added.

5.3 Parameters

5.3.1 Initial solution

Several initial solutions can be generated. One can opt for a random solution or rather a more

specified solution. Both forms will have an impact on the running time and performance of

the heuristic.

Method 1

The first method is to initialize the solution with only the start and end point included.

Method 2

Another possible initial solution could be that we start with an already near optimal solution.

For instance, the result of the breath-first search algorithm for the shortest path problem.

The initial solution in this case only takes the distance into account instead of the fuel

consumption. In this way, a shorter initial solution can be generated.

5.3.2 Neighbourhood spaces

The hybrid neighbourhood solution used here looks at the adjacent nodes and takes four

operators into account, insertion, delete, swap and replace.

One of the operators is chosen with equal probability when generating a neighbourhood

solution. If two nodes are to be swapped, one must check if both nodes are adjacent nodes of

one another in the grid in order to construct a connected route. The current solution should

be augmented little by little that is why nodes that are next to one another in the current

string can only be swapped.

If a node is deleted at a certain index, the node that originally followed up on the deleted

node should be an adjacent node of the node that came before the deleted node. If this is

not the case, the node is replaced by a node neighbouring the previous node.
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In case of insertion, a node is added at a certain path index keeping into account that it is

an adjacent node of the node prior to the added node.

The last operation is the replacement of a node. Again, it should be neighbour of the node

before the node that will be replaced.

The neighbourhood algorithm also checks when adding or replacing a node that the node is

not already in the current solution.

5.4 Analysis and optimization of parameters

Different values of the parameters of the SA algorithm will influence the performance of the

meta heuristic. That is why the parameters that need to be determined are varied while

others remain fixed. To retrieve an accurate result this is done by a Monte Carlo simulation

consisting if 10 runs each. The parameters that should be tested are the following: the

start temperature, the end temperature, the sizefactor, the temperature decrement α and the

plateau increment β.

5.4.1 Exploring the SA algorithm

To get a grasp of how the SA algorithm works and if a near optimal solution can be returned,

the algorithm is applied to the different data sets for each grid size. The arbitrary, initial

input parameters are given in table 5.1. The initial solution used here is the first method that

only considers the start and end node.

The figure 5.2 shows the value of the cost in terms of the number of runs. The number of

runs do not include the trials performed at a specific temperature namely the plateau length

N.

The results show that the solution stagnates in most cases at about 50 runs for both data

sets. However, when the grid becomes more granular, more runs are needed to obtain an

optimal solution. These observations are crucial to determine the stop condition in section

5.4.2. To be sure, the stop condition is set at 100 runs.

Start temperature End temperature Plateau length α β size factor

Data set I 10,000 0 10 0.80 1.0 1.0

Data set II 10,000 0 10 0.80 1.0 1.0

Table 5.1: The input initial parameters for a first solution of the SA algorithm for each data set
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Figure 5.2: An initial SA simulation per instance and grid size
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5.4.2 Stop condition

The stop condition depends on the end temperature as well as the number of runs. The end

temperature is arbitrarily chosen to be 10−10, but it could be that while the temperature is

decreasing already an optimal solution has been found as seen in the previous section.

The SA algorithm should not stop before the temperature is decreased at least 100 times. If

this threshold is reached, the SA algorithms keeps decreasing the temperature and only stops

if the end temperature is reached or the same minimal fuel cost has been returned 10 times

in a row. This basically means that the solution could not be improved by a neighbourhood

solution anymore for the last 10 loops.

5.4.3 The neighborhood solution

Besides the stop condition, it is also valuable to look at the operators and acceptance rate in

the hybrid neighbourhood solution. Based on the results of the initial runs in section 5.4.1,

the acceptance rates of the operators can be retrieved and are displayed in the figure below.

One can clearly see that the swap operator is of no use and should be eliminated. As such, in

the follow-up experiments the swap operator is not included in the neighbourhood solution

anymore.

5.4.4 The initial solution

Two methods were proposed for the initial solution. To decide which one to use in further

experiments, a Monte Carlo simulation with 10 simulations is performed for each grid size

and instance. The figure below shows that for each grid size, the breath-first search (BFS)

solution converges to a path with lower FOC opposed to the initial solution consisting of only

the start and end point. The CPU-time is slightly differs among the grid sizes and the type of

solution. In all, the BSF solution will be used as initial solution for the follow-up experiments

due to better conversion.

5.4.5 The starting temperature

According to Park and Kim (1998) the value of T, is set large enough to make the initial

probability of accepting transitions be close to 1. A temperature that is set too high may

cause a bad performance due to random selection or a long computation time. The procedure

of choosing the initial temperature can be done in two ways. The initial temperature can

be determined by looking at the uphill transitions or at the maximum change in objective

function.

The first method consists of performing a number of trial runs of the annealing process. For

each run, the objective function is calculated and the average increase in objective function



Chapter 5. The simulated annealing heuristic 50

Swap0%

Insert

36%

Delete 32%

Replace

32%

Swap0%

Insert

36%

Delete 28%

Replace

36%

Swap0%

Insert

36%

Delete 30%

Replace

35%

Swap0%

Insert

39%

Delete 27%

Replace

34%

Swap0%

Insert

34%

Delete 31%

Replace

34%

Swap0%

Insert

36%

Delete 32%

Replace

32%

Percentage of neighbourhood operators accepted for different grid sizes and instances

Figure 5.3: The acceptance rate of the operators in the neighbourhood solution for different grid

sizes and instances



Chapter 5. The simulated annealing heuristic 51

BFS Start-end solution
Solution

0

5000

10000

15000

20000

25000

Fu
el

 o
il 

co
ns

um
pt

io
n 

(to
n)

Instance 1

Grid size
L
M
S

BFS Start-end solution
Solution

Fu
el

 o
il 

co
ns

um
pt

io
n 

(to
n)

Instance 2

Grid size
L
M
S

The expected fuel cost in terms of the initial probability to set the start temperature - Monte Carlo simulation (n=10)

(a) The expected FOC in function of the initial solution for different grid sizes and instances

BFS Start-end solution
Solution

0

5

10

15

20

25

C
P

U
-ti

m
e 

(s
)

Instance 1

Grid size
L
M
S

BFS Start-end solution
Solution

C
P

U
-ti

m
e 

(s
)

Instance 2

Grid size
L
M
S

The expected CPU-time in terms of the initial probability to set the start temperature - Monte Carlo simulation (n=10)

(b) The expected CPU-time in function of the initial solution for different grid sizes and instances

Figure 5.4: The expected FOC and CPU-time in function of the initial solution



Chapter 5. The simulated annealing heuristic 52

is determined with uphill transitions only. This average number is then divided by the

logarithmic value of an initial acceptance probability P according to the following formula.

Tstart = −△̄/ln(P ) (5.1)

However, it could also be that only the maximum transition between follow-up runs is kept

track of instead of the average. This value is then again divided by a logarithmic acceptance

probability. In formula (5.2), the average value is replaced by the maximum value.

Tstart = −max/ln(P ) (5.2)

This second method has been applied in current research. Looking at figure 5.5, one can

generalise the results for the two data sets. Neither the CPU-time, nor the FOC changes as

the probability increases. The reason is that the stop condition is already defined and the

end temperature is 0. As such, the solution converges in the same time to the same solution

independent of the starting temperature. The initial temperature at probability of 0.5 is used

in the experiments.

5.4.6 The temperature decrement

The start temperature gradually decreases towards the end temperature. In this project, the

temperature decrement is a geometric series. Therefore, at each iteration the temperature

should be lowered by a fraction α in the following way: Tnew = αTcurrent.

Theory states that α should range between 0.8 and 0.99. However, Johnson et al. (1989)

applies even lower values of α. That is why SA is performed for the values of α equal to 0.45,

0.60, 0.80, 0.85, 0.90, 0.95, 0.97, and 0.99. The plateau increment, beta, is kept at a value of

1.

Figure 5.6 portrays the results of the SA algorithm for different values of α for data set 1 and

2. The expected fuel consumption as well as the CPU-time are reported.

Based on the results, the alpha’s equal to 0.60 to 0.97 are worth investigating further in

combination with varying values of beta. The current results do not give preference to one

single value of alpha.

As the results are always the same for the large grid size, the tuning of the SA algorithm has

little influence on the solution. The grid points are not granular enough and therefore the

large grid size will not be considered in the following experiments.
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5.4.7 The plateau increment

The plateau length at which new neighbourhood solutions are explored at the same tempera-

ture level can either remain constant or can gradually increase for each temperature decrease.

The plateau length can be increased in the following way: Nnew = βNcurrent. Beta has been

set to either 1, 1.01 or 1.03. Larger values of β are not considered due to the high computation

times. The values of alpha considered here are 0.60, 0.80, 0.85, 0.90, 0.95 and 0.97.

Based on figure 5.7, one can see that the CPU-time increases as the beta and the alpha

increases. The best results are achieved for an alpha equal to 0.9 and 0.95 combined with

a beta equal to 1.03 for both grid types and instances. That is why these values are only

considered in determining the sizefactor.

5.4.8 The plateau length and size factor

The plateau length should be set to an optimal value as well. High enough to search for all

possible neighbourhood solutions, but not too high in order to minimize the CPU-time. The

size factor is the factor that is multiplied by the fixed number of neighbourhoods spaces. The

neighbourhoods space is set to 8 as the possibility exists that 8 adjacent grid points can be

approached based on a current solution. The size factor is then set to 1, 4 and 8. Both the

expected cost and the CPU-time are considered in terms of varying α, set to 0.9 or 0.95. Note

that β is fixed to a value of 1.03.

As the size factor increases, the CPU-time increases as well, especially for a size factor equal

to 8. A size factor of 8 does not necessarily give better results in terms of FOC. Therefore, a

size factor of 8 is of the charts. For both values of alpha, size factor 1 and 4 are reasonable

in terms of CPU-time and FOC.

5.5 Comparison A-star and SA

Let’s compare the A-star solution with the SA solution for the following parameters for the

SA algorithm. The size factor chosen here is 1 and the alpha is set to 0.9.

Start temperature End temperature Plateau length α β size factor

Data set I 10,000 0 8 0.9 1.3 1.0

Data set II 10,000 0 8 0.9 1.3 1.0

Table 5.2: The final input parameters for the SA algorithm for each data set

The fuel consumption and CPU-time for performing one iteration for both algorithms for

each grid size and instance are displayed in figure 5.9. It is clear that for this type of problem

the A-star algorithm performs better in terms of both dimensions, especially when the grid
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is more granular. However, it is possible that if the geographical area would be larger and

the grid more granular, the SA algorithm would have been a better option. Either way, the

A-star algorithm assures an optimal solution and has a lower computation time. Keeping

these reasons in mind, the A-star algorithm will be applied in chapter 7 for the purpose of

weather routing. The routes that were constructed and for which the metrics are derived can

be found in appendix A.

Notice also that the initial solution in the SA algorithm could have a significant influence

on the end result unless the algorithm runs a long time. In literature, the operators that

result in a variable length of the solution are absent. In most cases, SA is applied in path

planning related to the travelling salesman problem. The problem does not involve variable

path length and can include neighbourhood operators such as swap, insertion, etc. It would

therefore be valuable to explore the possibility of variable operators in SA for the shortest

path problem.
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Chapter 6

Power prediction per weather

category

6.1 Introduction

The goal of this chapter is to identify the main variables that have an influence on the power

prediction for each of the four models, explained in section 3. Apart from the influential

factors, the main differences between the models are also quantified. As such, an over- or

underestimation of the models can be identified opposed to the most accurate model according

to Toqua.

6.2 Data collection and models

The four models that are provided by Toqua were explained in chapter 3 and are based on

historic information of tanker.

Apart from the four models, Toqua also provided detailed information about the historic

routes sailed by the tanker dating from 2015 until 2022. Based on this information, realistic

values for the weather severity can be defined and derived. This will be further explained in

section 6.3.3. Moreover, the impact of some variables can be neglected and can be set to a

fixed value due to minimal variability observed in the historic data as well as the minimal

influence on the power prediction.

For the experiments in this section, the weather and ship conditions are set to predefined

values in order to perform the experiments in a controlled way. The parameters will be set

to predefined fixed values or a varying range of values.

Apart from the ship-hydrodynamic models, the weather routing model is of great importance.

The algorithm applied in further experiments is the A-star algorithm (see section 4.3.1) with
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the objective function, constraints and parameters explained in chapter 4.

6.3 General set-up

6.3.1 Default values for the parameters

The vessel from which information is provided, is a tanker. For each model, different input

parameters are included which is indicated in table 6.1. Default values can be set for these

values which remain fixed or will vary depending on the experiment.

Generally, the current direction and speed as well as the rudder angle will remain 0 with the

goal of better comparison of the models recommended by the Toqua experts. As a result, the

SOG will be equal to the STW at all times and for each experiment. The SOG remains 12

kn.

The other default values are in most cases set to 0 apart from the sea temperature and the

sea surface salinity. These are average values derived from the historical data shown in table

6.1. The draft and the trim also remains fixed as this is ship specific.

Parameter Value ML model PI-ML model Sea trial Sea trial + correction

Current direction 0◦ ✓ ✓ ✓

Current speed 0 m/s ✓ ✓ ✓

Sea temperature 23 ◦C ✓ ✓

Trim Fixed ✓ ✓

Draft Fixed ✓ ✓ ✓

Sea surface salinity 33 PSU ✓ ✓

Heading 0◦ ✓ ✓ ✓

Rudder angle 0 ◦ ✓ ✓

SOG 12 kn ✓ ✓ ✓ ✓

Wave direction 0◦ ✓ ✓ ✓

Wave height 0 m ✓ ✓ ✓

Wind speed 0 m/s ✓ ✓ ✓

Wind direction 0◦ ✓ ✓ ✓

Table 6.1: Default values for the ship hydrodynamic models

6.3.2 Model assumptions

Notice that an abbreviation for the four models is used which will reoccur throughout this

research. The original ML model of Toqua is denoted as ML model, the physics-informed ML

model as PI-ML model, the sea trial curves as sea trial or ST and the sea trial curves with
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correction factor as sea trial + corr or ST + corr. The models are assigned a color in the

upcoming figures respectively, blue, orange, red and green. As such, better visualization and

comparison of different figures is possible.

6.3.3 Weather definition

The influence of the severity of the weather on the power prediction and in turn on the

routing is the main focus in this research. The severity of weather at sea is determined by

the wind speed and the wave height. The wind speed and wave height combinations however

are endless and therefore a clear definition should be set up to what each weather category

entails.

Each combination of wind speed and wave height is associated with a Beaufort number (BN).

In regards to the experiments, three types of weather can be defined: calm, medium and severe

weather. In table 6.2 the weather categories adopted in this research are shown. Weather

circumstances corresponding to a BN greater than 8 are not considered as these are not likely

to happen in real-life.(Mallawaarachchi, 2022)

Weather BN Wind speed [m/s] Wave height [m]

Calm [0 - 3] [0 - 5.5] [0 - 1.2]

Medium [4 - 6] [5.5 - 13.8] [1 - 4]

Severe [7 - 8] [13.9 - 20.7] [4 - 7.5]

Table 6.2: Weather categories with corresponding Beaufort scale, wind speed and wave height range

In order for the wind speed and wave height combinations to be realistic, a joint probability

distribution can be formed based on the historic routes. In the historic data set, the wind

speed and wave height are tracked with their corresponding Beaufort number. The following

figures show for each weather category the distribution of wave height and wind speed that is

associated with it. By setting up a joint probability distribution, samples of wind speed and

wave height combined can be drawn.
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Figure 6.1: The joint probability distributions of the wind speed and wave height for each weather

category
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6.4 Parameter influence on the power prediction

6.4.1 Data description

For different weather severity and parameter values, the power prediction according to each

model may differ. The power prediction is said to be the dependent variable and the input

parameters defined in table 6.1 are the independent variables. To quantify the impact of the

independent variables, one should identify which variables should remain fixed and which ones

should simultaneously vary. First, the correlation between the independent variables can be

quantified which can be determined based on the historic data set. If a correlation is present

between two or more values, the values of the variables should vary alongside each other and

the relationship between the variables should be determined.

The draft and trim are positively correlated as these are ship specific parameters and do not

change over the course of a voyage. Therefore, the draft and trim will remain fixed to a value

that is ship specific.

Besides the draft and trim, the wave height and wind speed are correlated as well (see figure

6.2). As said before, these parameters determine the weather severity and should therefore

be variable throughout the experiments.

Figure 6.2: The relation between wind speed and wave height

The same can be said for the wind and wave direction. Generally, the wave and wind direction

are equal to one another except for the wave direction equal to a value ranging between 150◦

to 250◦. This relation is displayed in figure 6.3. Notice that for the wave and wind direction,

the angle indicates from where the wave or wind comes. For instance, if the wind direction is
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0◦, the wind comes from in front of the ship. 180◦ indicates that the wind comes from behind

the vessel.

Figure 6.3: The relation between wind and wave direction

As for the sea salt salinity and the sea temperature, these parameters are also correlated, but

the historic data shows that the sea salt salinity remains between 30 PSU and 40 PSU except

for some outliers. The sea temperature fluctuates between 0◦C and 34◦C. As such, the sea

salt salinity can be set to an average value of 33 PSU. The influence of the sea temperature

on the power prediction is minimal and should be neglected according to Toqua for simplicity

reasons. As such, the temperature is also set to an average of 23◦C. For routing purposes, it

is evident that the heading is variable. Aforementioned, the current speed and direction and

the rudder angle should be set to 0.

6.5 The impact of weather severity and wind/wave direction

In the previous sections, the parameter settings were investigated and it was determined

which variables should remain fixed or vary to fully quantify the influencing factors on the

power predictions. One can therefore conclude that the parameters wind speed, wave height,

wind and wave direction could have an influence on the power prediction while other values

remain fixed.

Consequently, the main focus of this chapter is testing the impact of the weather severity,

either calm, medium or severe weather on the power prediction in combination with a varying

wind and wave direction. Not only the predictions of the individual models are of interest,
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but also the differences in power between the models at hand.

6.5.1 Assumptions

The wave and wind direction are always assumed to be equal based on figure 6.3. The band

between 150◦ and 250◦ for the wave direction will be neglected and should be investigated in

future research. The wind speed and the wave height can be drawn from the joint probability

distributions corresponding to each weather category.(see figure 6.1) For each alteration of

the experiment, 10,000 samples will be taken.

Furthermore, the heading remains 0◦ as the course of a ship is not determined here. Merely

the impact of the angle between the heading and the wind and wave direction is quantified on

the power predictions. The directions refer to the angle whenever the ship is heading forward

and the wind and waves exert resistance on the vessel.

6.5.2 Experimental set-up

The power can then be predicted for several cases of wind and wave direction by each of the

four models. The cases that will be considered are a direction of 0◦, 45◦, 90◦, 135◦ and 180◦.

Directions of the wind and waves from 180◦ to 360◦ will have the same effect on the power

prediction as the previous cases due to symmetry reasons.

Figure 6.4: The wind and wave directions opposed to a ship heading of 0◦
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The wind/wave direction given, indicates from which direction the waves/wind come. The

directions are pointed towards the vessel, not away from the vessel. As for the weather, the

three weather categories, calm, medium and severe will be considered.

In all, 15 alterations of weather and wind/wave direction on the power prediction of the four

models are investigated. Within such an alteration 10,000 samples are drawn of the wind

speed and wave height. The values of all other parameters are set to the default values

represented in table 6.1.

Important to mention is the interpretation of the angle between the heading and the wind/wave

direction. The predictions do not only depend on the heading nor the wind/wave direction

solely but rather the relative angle between them which can be computed as “heading -

wind/wave direction”. So, as the heading is 0◦ and the wind/wave direction is for instance

45◦, the relative angle will be -45◦ or 315◦. In this case, 315◦ has the same effect on the power

prediction as 45◦ because of symmetry reasons.(see figure 6.4)

Individual power predictions

Each model takes different aspects of weather into account. Therefore, the power output

varies in average quantity but also in variation. Based on the samples taken per weather

category, the mean power and the standard deviation of the power per model can be derived

for a constant wind and wave direction. For instance, for calm weather, 10,000 samples are

drawn from the joint distribution of wind speed and wave height corresponding to a BN of 0

to 3. For each of the samples, only the wind and wave direction changes from 0◦ to 180◦ while

other values remain fixed. The power output is then calculated by the four models resulting

in 10,000 values per model per wind/wave degree. This gives a representative overview of the

models’ behaviour.

All average values and standard deviations are given in the tables in appendix B.1.1 and B.1.2

per wind/wave degree, model and weather category. The results will also be represented by

comparable boxplots explained in section 6.5.3.

Power difference between models

For each weather category, the average difference between models can be calculated as well

and the percentage increase or decrease can be derived.

These results can also be represented by boxplots for each weather category and direction

supplemented by a table of relative changes. The boxplots merely confirm the values reported

in the tables and can be consulted in appendix B.1.3 and B.1.4.

An example of the structure of such a table is shown below. The values in the table comprise



Chapter 6. Power prediction per weather category 69

average differences between the models divided by the average or standard deviation of the

power of the historic routes. The differences result from 10,000 samples drawn from the joint

distribution of the weather severity. As for the denominator, the average power output is only

based on the samples in the historic data in an unfouled condition which comprise 10,2257

data points. An unfouled condition means that the vessels are cleaned and no unwanted

bio-organisms are attached to the vessel. It is important for this experiment to only consider

these data points as the models are only applicable for the power prediction of ships in an

unfouled condition.

Benchmark model - original power

ML model ML-PI model Sea trial Sea trial + corr

New power

ML model 0.0

ML-PI model 0.0

Sea trial 0.0

Sea trial + corr 0.0

Table 6.3: Example of the table with relative changes (in %) for comparison of the models in function

of the weather severity and the wind and wave direction

The percentage difference for one sample is calculated according to formula 6.1. For 10,000

samples, the mean of the 10,000 percentage differences is taken. Besides the mean, the

standard deviation can also be reported.

% Power increase or decrease =
PowerM − PowerB

Poweravg
(6.1)

where

PowerM = the new power of the model that is compared to the benchmark model

PowerB = the original power of the benchmark model

Poweravg = the average power of the 10,2257 data points in the historic data.

The tables with the results can be found in appendix B.1. Again, for each weather type and

wind and wave direction, the results are reported.

6.5.3 Results

In the results section both the individual predictions and the prediction differences between

the models will be reported. Each time the boxplots for the individual results will be given.

Other information, such as the relative difference between the models and corresponding

boxplots for these results can be found in the appendix as well as the tables with all the

specific values.

Calm weather

First off, the power output for a scenario of calm weather comprising 0 to 3 BN is examined.
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The boxplots show that the average power of the ML model is for any wind and wave direction

the highest, followed by the average power of the sea trial curve with correction factor, the

physics-informed ML model and the sea trial curve. The mean and standard deviation of the

individual model predictions can be found in appendix B.1.1 and B.1.2 respectively.
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Figure 6.5: The comparison of boxplots of the power predictions per model per wind and wave

direction for calm weather (10,000 samples)

The power output resulting from the sea trial curve with correction factor is higher than

the one of the physics-informed model, but the difference is minimal. The difference ranges

between 0.95% and 2.04%. The difference becomes slightly bigger as the wind/wave direction

increases. However, research of Toqua shows that the power accuracy of the PI-ML model is

bigger than the sea trial curve with correction factor and should therefore be chosen over the

latter.

The power difference between the ML model and the physics-informed ML model ranges

between 4.12% and 6.23% and increases while the angle increases. The same trend is partially

noticeable for the difference between the power prediction of the ML model and the sea trial

curve with correction factor. The power difference increases from 3.17% to 4.34% for a angle

of 135◦and thereafter slightly drops to 4.19%. The mean relative power differences and the
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standard deviation with corresponding boxplots can be found in appendix B.1.3 and B.1.4.

As the angle increases, it applies that the power of a model opposed to the power output of the

sea trial curve diminishes. Moreover, the variability in power predictions for each one of the

models decreases as well as the variability in the power difference between the models.(see

figure 6.5 and figure B.1) As this tendency is similar for all types of weather, this will be

further explained in section 6.5.3.

Medium weather

Similar to calm weather, the power output of the ML model is the highest for each wind/wave

direction. However, the order of the power output of the physics-informed model and sea trial

curve with correction factor is reversed. The mean and standard deviation of the individual

model predictions can be found in appendix B.1.1 and B.1.2 respectively.

0 45 90 135 180
Wind and wave direction (°)

9000

10000

11000

12000

13000

14000

15000

16000

17000

Po
we

r (
kW

)

Model
ML model
Physics-informed ML model
Sea trial curve + correction
Sea trial curve

Power predictions per model per wind/wave direction - medium weather (10,000 samples)

Figure 6.6: The comparison of boxplots of the power predictions per model per wind and wave

direction for medium weather (10,000 samples)

The power prediction according to the physics-informed model is lower than the one of the ML

model. The relative difference ranges between 2.66% and 4.0%. As the direction increases, the

difference increases until a direction of 90◦ is reached. From that moment on, the difference
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diminishes again.

Likewise, the power difference between the ML model and the sea trial curve with correction

factor follows the same pattern. The difference varies between 5.77% and 8.08%.

The power output of the physics-informed ML model compared to the sea trial curve with

correction factor decreases along with the increase of direction. The difference ranges between

2.71% and 5.14%. The relative difference could be said to be small again, but in terms

of accuracy it is best to apply the physics-informed ML model. The mean relative power

differences and the standard deviation with corresponding boxplots can be found in appendix

B.1.3 and B.1.4.

Notice that the predictions of the original ML model are closer to the ones of the physics-

informed ML model rather than the sea trial curve with correction factor. This is the opposite

trend compared to calm weather.

As for the power prediction of sea trial curves, the predictions of the other models tend

to approach the sea trial prediction whenever the direction becomes greater. Again, the

variability in predictions of the models and between the models decrease along with the

increase of the direction.(see figure 6.6 and figure B.2)

Severe weather

The severe weather category consists of weather corresponding to a BN of 7 and 8. In this

category, the order of the predictions in terms of magnitude changes as the angle differs. Up

to a angle of 90◦, the power output of the ML model is higher than the other models which is

also the case for calm and medium weather. However, for an angle of 135◦, the ML predictions

are on average smaller than the predictions of the sea trial curve with correction. For an angle

of 180◦, the ML predictions are even lower than the PI-ML predictions on average.

As for the physics-informed model, the power is higher than the one of the sea trial curves

with correction factor, but from the direction of 90◦ on this relation switches. Moreover, from

a direction of 135◦ on, the prediction of the ML model is lower than the prediction of the sea

trial curve with correction factor. The mean and standard deviation of the individual model

predictions can be found in appendix B.1.1 and B.1.2 respectively.

Now evaluating the power differences between the models, the relative difference between the

ML model and the physics-informed ML model ranges between absolute percentage values of

1.81% and 9.68%. A maximum difference of 9.68% is reached at 90◦ and the lowest difference

of 1.81% is reached at 180◦. Keeping in mind the order of magnitude of the models, the

relative percentage values get a + or - sign.
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The power difference on average between the sea trial correction predictions and the ML

predictions for 0◦ and 45◦ are rather big namely 19.75% and 15.29%, but drops quickly to

6.32% for 90◦. Thereafter, the order of magnitude between the two models is reversed and

the difference between the predictions becomes even smaller.

0 45 90 135 180
Wind and wave direction (°)

10000

12000

14000

16000

18000

20000

22000

24000

26000

Po
we

r (
kW

)

Model
ML model
Physics-informed ML model
Sea trial curve + correction
Sea trial curve

Power predictions per model per wind/wave direction - severe weather (10,000 samples)

Figure 6.7: The comparison of boxplots of the power predictions per model per wind and wave

direction for severe weather (10,000 samples)

A similar tendency can be observed between the sea trial curve with correction and the

physics-informed ML model. The difference drops from 17% to 6.76% from 0◦ to 45◦ and as

soon as the relation between the models is reversed at 90◦, the power difference between the

models diminishes.

The difference between the sea trial predictions and the other models are very large opposed

to calm and medium weather. The difference again diminishes as the angle between the

heading and the wind/wave direction increase. The variability in predictions of the models

and between the models decrease along with the increase of the direction.(see figure 6.7 and

figure B.3)
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Comparison and variability

For each of the boxplots, the sea trial curve will be a constant line as it does not take any

weather conditions into account. This is the case for all weather categories. In this case, the

power output corresponding to 12 kn is 9396 kW for the sea trial curve.

Aforementioned, the model predictions of the ML model, the PI-ML model and the sea trial

curve with correction tend towards the sea trial curve predictions as the relative angle between

the heading and wind/wave direction increases.

However, the order of magnitude for each type of weather differs and even changes along

the angle for the severe weather category. The more severe the weather becomes, the power

output for each of the models will increase as well. The relative difference between the sea trial

predictions and the predictions of all other models enlarges on average also for more severe

weather. The same tendency cannot be observed for the mean relative difference between

other types of models.

Two types of variation in the predictions can be observed, the change of variation along the

weather severity and along the angle. Noticeable is that, the higher the angle between the

heading and the wind/wave direction is regardless of the severity of the weather, less variation

constitutes in the individual predictions of the models (see figures 6.5, 6.6 and 6.7) as well as

the relative difference between the models (see figures B.1, B.2 and B.3).

The variation also enlarges as the weather worsens for both the individual predictions (see

figure 6.8) and the difference between them (see figure 6.9). Only the relative differences for

a wind/wave direction equal to 0◦ are given in figure 6.9. The figures for the other angles

are given in appendix B.1.3 in figures B.4 and B.5. The same conclusions apply for the other

angles.

Also notice that the difference of the models compared the sea trial curves is the largest in

variation.
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Figure 6.8: Comparison of the FOC models’ power prediction per wind/wave direction (10,000 samples)
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Chapter 7

Robustness in route optimization

7.1 Introduction

In the upcoming chapter, the sensitivity to weather severity of the FOC models will be tested

in forming an optimal route, taking into account the varying weather conditions. Instead

of looking at the individual power predictions of each model and the quantitative difference

between them, different routes are considered in a homogeneous weather grid. Furthermore,

the optimization potential of the FOCmodels in saving fuel in a changing weather environment

will be quantified according to the most accurate model that serves as the ground truth.

7.2 Methodology

As the goal is to investigate weather routing in a controlled way, the methodology thoroughly

explained in the introduction and literature study will be applied here. The methodology is

displayed in figure 2.1 in chapter 2.

7.2.1 Geographic representation

The geographical area that is considered here is the same as explained in section 5 for the

experiments concerning the simulated annealing heuristic. Only one grid type, the small grid,

is considered with a size of 55.5 km by 55.5 km. A visualization of the geography is given

below.
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Figure 7.1: The grid-based representation of the North Sea with start and end point

The grid as a whole will be referred to as the grid and each individual small grid cell within

the grid will be referred to as a grid point.

7.2.2 Weather forecast

The weather assigned to each grid point will be static and will therefore not change in time.

Meaning that at time 0 the weather will be no different than at time 1, 2, 3, etc. for one

particular grid point. This is important to mention because in a dynamic setting, the weather

conditions are based on the time the vessel travels to reach a certain destination. However,

the weather conditions do differ between grid points in a geographical sense. In grid point

1 the weather for instance will be different than in grid point 2. The goal is to mitigate the

inaccuracy of weather forecasts in this way.

Again default values will be set to each grid point and some variables will vary from grid point

to grid point in a randomized way. As the goal is to look at routing under different weather

severity, only the wind speed and wave height will change. This will be further explained in

section 7.4.
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7.2.3 Ship hydrodynamics and models

The four ship hydrodynamic models as seen before are applied in this chapter and are further

investigated in terms of weather routing. As such, the same input parameters as in table 6.1

are of interest here and were already examined in the previous chapter.

As for the weather routing model, the A-star algorithm is used for finding the optimal

path rather than the SA algorithm. The computational run time is smaller for this type

of experiments and the solution is most certainly the optimal one. In the end, the fuel oil

consumption should be minimized along the trajectory.

7.3 Weather sensitivity and fuel efficiency

The goal is to prove that some type of hydrodynamic models are more sensitive in terms

avoiding bad weather while forming an optimal route that minimizes the fuel oil consumption.

High sensitivity in this case means that high wind speeds and large wave heights can be

avoided and a safe voyage is guaranteed. This can be done by replicating a realistic weather

situation over a geographical area with homogeneous weather conditions for which paths are

reconstructed per model. The weather categories of interest are calm, medium and severe

weather. In doing this, some metrics are set-up to evaluate the sensitivity such as the heading

changes, the minimal distance between the routes etc.

Besides the sensitivity, the fuel savings can be quantified that are only devoted to the FOC

models and not the routing algorithm. In both cases, it is important that some predefined

conditions are met:

• A reasonable amount of randomized weather grids should be generated in order to

reduce the bias of the routing algorithm, for instance 200 samples.

• The conditions should be the same for each of the ship performance models that are

tested. Meaning that the routes are constructed by the base models over the same

weather grid.

A slightly different set-up will be applied for the fuel efficiency quantification.

7.4 Experimental set-up

7.4.1 Homogeneous weather conditions

Similar to the previous experiments, some variables remain fixed and others should vary. As

previously determined, it is only valuable to vary the wind speed, the wave height and the

relative angle between the heading and wind/wave direction.
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In one grid, each grid point can be seen as an individual sample or point prediction. As such,

from grid point to grid point, the wind speed and wave height will differ. The grid consists of

homogeneous weather conditions. Meaning that only samples are drawn within one weather

category. So, if the grid consists of calm weather, each grid point entails a combination of wind

speed and wave height corresponding to the joint probability distribution of calm weather (see

figure 6.1a). This is illustrated in figure 7.2. It shows that each grid point is assigned a wind

speed between 0 and 3 m/s combined with a wave height between 0 and 5 m. For medium or

severe weather this can be done in the same way, but typically for higher values of wind speed

and wave height according to joint distribution 6.1b and 6.1c respectively. Other variables

remain fixed to the default values prescribed in table 6.1 for each grid point.

(a) The heatmap of the wind speeds in calm

weather

(b) The heatmap of the wave heights in

calm weather

Figure 7.2: The heatmaps for wind speed and wave height corresponding to calm weather

Sensitivity

While dealing with routing, the heading does change in order to reach the destination and is

therefore not set to 0◦ anymore. However, the wind/wave direction is kept constant to 0◦ for

the sensitivity experiments. As such, the angle between them varies in a controlled manner.

Important to mention is that again the SOG remains 12 kn at all times.

Fuel efficiency

As for the fuel efficiency experiments, the wind/wave direction also varies between 0◦ and

360◦. Similar to the wind speed and wave height, the values for the directions are also drawn
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from a know probability distributions based on the historic data provided.

For both experiments, the grid can be replicated with random values in each grid point several

times for each weather category. In order to drawn general conclusions, a new grid will be

formed 200 times per weather type. As a result, 200 different routes will be formed per model

per weather type.

7.4.2 Assumptions

As the heading is now changing, the wind/wave direction should remain constant over the grid

points in order to quantify the relative angle between the heading and wind/wave direction.

In the sensitivity experiment, the directions remains 0◦ while the heading varies. The same

formula as before is applied to quantify the angle namely “heading - wind/wave direction”.

7.4.3 Metrics

In this section both metrics for the sensitivity and the fuel efficiency are defined. These

metrics are evaluated per randomized weather grid for each of the ship performance models.

In order to draw general conclusions, the average and the standard deviation is derived over

the number of samples, for instance 200 samples. This is called a Monte Carlo simulation

which is based on the theory of large numbers.

Sensitivity metrics

Different metrics can be set-up to give an informative framework on how the models operate

and can be distinguished from one another in terms of routing.

First off, it is of importance to investigate if the routes formed are similar or dissimilar to one

another in a single homogeneous grid. This can be done by looking at the total travel time

over the trajectory.

Supplementary, if the routes are quite similar and have the same number of grid cells that

are traversed, the pairwise haversine distance between each of the routes can be calculated in

order to quantify the overlap between the routes.

Besides similarity, it is valuable to look at the heavy weather avoidance as a sign of sensitivity

of the FOC models. Some models might be better in avoiding areas of higher wind speeds

and wave heights. One possible way could be to set up a density plot or histogram in which

the number of traversals by a certain model through a particular values of wind speed/wave

height is tracked. If a model only traverses low wind speeds and wave height, the model is

good at avoiding worse weather.
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The average heading changes over one route can also be a possible indication of the model

trying to avoid severe weather. More heading changes means bypassing grid cells that are not

favourable for the fuel minimization over a route.

Fuel efficiency metrics

In order to quantify and compare the fuel savings over a specific route constructed by the

performance models, one should identify a ground truth. As said, there are four FOC models

to be tested, the sea trial curve, the sea trial curve with correction factor, the pure ML model

and the physics-informed ML model. One of these models should be used to recalculate the

total fuel consumption over each model’s route to have a comparable basis. This is considered

the main challenge in calculating the return on investment (ROI) in routing, especially when

the base model used is inaccurate.

The best way forward is to choose the most accurate model to recalculate the fuel consump-

tion. Explained in section 3.4, the accuracy of the pure ML model and the physics-informed

model are close to one another and is considerably higher than the traditional methods.

Therefore, both ML models will be used as ground truth and the results will be averaged

over 200 scenarios. The results of the ML as ground truth are displayed in appendix C.2.1.

The fuel savings compared to the shortest route according to the sea trial curve are then

calculated in the following way.

% FOC savings =
FOCST − FOCM

FOCST
(7.1)

where

FOCM = the total FOC of the route constructed by the model that is compared to the

shortest route

FOCST = the total FOC of the shortest route according to the sea trial curve

Another challenge in striving for comparability and quantifying the savings to its full extent

is that favourably all scenarios should have the same departure and arrival times. To account

for the same travel time, the SOG should be varied. This is not the case in this master’s

dissertation and should be further explored in future research. The fuel consumption is

therefore still compared to the travel time over one’s route. The fuel savings should take into

account the time savings or extensions. The travel time extensions of the FOC model’s routes

compared to the routes of the shortest path are calculated in the following way.

% Travel time extensions =
TimeM − TimeST

TimeST
(7.2)

where

TimeM = the total travel time of the route constructed by the model that is compared to
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the shortest route

TimeST = the total travel time of the shortest route according to the sea trial curve

7.5 Weather avoidance results

7.5.1 Similarities in terms of travel time

For each type of weather, 200 different homogeneous grids have been replicated. The similarity

between the routes formed per model and weather type are given in figure 7.3. In terms of

total travel time, the routes do not differ significantly neither between the models nor between

the different weather categories. This means that the routes have more or less the same length

and only slightly differ if certain types of weather are avoided.
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Figure 7.3: Travel time comparison between weather categories and FOC models in routing

7.5.2 Overlap between the models’ routes

As the routes constructed by each model do not differ as much in length per weather category,

it is valuable to look at the pairwise distance between these routes. Meaning that the total

distance traversed over one trajectory per model is not evaluated, but rather the distance

between the routes of the models is quantified. In this way, if the measure is close to zero, the

routes for a certain simulation overlap. The distance measure used is the haversine distance

and 200 simulations are evaluated per weather category.
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Figure 7.4: Pairwise haversine distance between routes of the FOC models (200 samples)

In figure 7.4 the total distance obtained between the routes of two models over 200 samples

per weather category is shown. In figure 7.4 the total distance obtained between the routes

of two models over 200 samples per weather category is shown. The y-axis shows which

models are compared in terms of overlap. For instance, ‘ML & PI-ML’ means that the pure

ML model and the physics-informed ML model are compared to one another and therefore

the distance between them is calculated. The x-axis entails the total distance between the

subjected routes.

Remarkable is that the routes of the ML model and the physics-informed model are very

similar and largely overlap in most cases for any type of weather. As such, the ML model and

physics-informed model have the same results compared to the routes of the sea trial curve

with or without correction.

The ML and PI-ML model do not differ as much on average from the sea trial curves with

correction factor in calm and medium weather, but the average distance slightly increases in

severe weather as does the variation between the models’ routes.
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As for the comparison of the sea trial curve to the other models, the boxplots indicate that

the routes do not overlap on average for any type of weather, but especially for medium and

severe weather. The sea trial curve follows a path corresponding the shortest distance from

starting to end point without taking the weather conditions into account. Therefore, the sea

trial model is not sensitive in avoiding bad weather. In this way, it is assumed that models

that differ from the sea trial route are more prone to avoiding bad weather.

7.5.3 Weather avoidance

After defining which models’ routes are similar in terms of overlap and total time travelled,

one can also look at the extent of weather avoidance of the models. That is why a density

plot is made for the wind speed and the wave heights that are crossed by each models’ route

over 200 simulations. This is again done for each weather category.
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(a) Density plot of wind speed crossings per weather category and FOC model
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Figure 7.5: Density plots of wind speed and wave height crossings of FOC models’ routes per weather

category (200 samples)

It is clear that the routes constructed by the sea trial curve pass through higher waves and wind

speeds. Only in severe weather conditions, the routes of the sea trial curve with correction

passes through higher wind speeds than the routes without correction.

In terms of wind speed and wave height, the ML and physics-informed ML model perform

similarly. In calm weather however, the routes of physics-informed ML model have the

tendency to avoid higher wind speeds and waves more.

Difference between ML and PI-ML model

One can also take a closer look at the difference between the routes of only two models. For

instance, the routes of ML and physics-informed ML model. In most cases, the routes overlap,
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but if only the weather conditions are considered whenever they differ a new, more detailed

density plot can be made.
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Figure 7.6: Density plot of wind speed and wave height crossings of non-overlapping grid points

between routes of the ML and PI-ML models (200 samples)

Figure 7.6 only considers the wind speeds and wave heights of the grid points that are crossed

by the PI-ML and ML model whenever they do not overlap. The results show that the physics-

informed model is more bad weather avoidant in calm weather. In medium and severe weather

conditions, the models perform quite similar. In all, they appear to have a similar functional

dependency on the weather conditions.

Comparison of the models to the sea trial curve

The aforementioned conclusions are confirmed by figure C.2c. The ML and PI-ML model

avoid worse weather more rather than the sea trial curve.

In case of the sea trial curve with correction factor, only the sea trial is preferred in severe

weather conditions.
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(a) Density plot of wind speed and wave height crossings of non-overlapping grid points between routes of the

ML model and sea trial curve with correction
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(b) Density plot of wind speed and wave height crossings of non-overlapping grid points between routes of the

PI-ML model and sea trial curve with correction

Figure 7.7: Density plots of wind speed and wave height crossings of non-overlapping grid points

between routes of the sea trial curve with correction and the ML models (200 samples)
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Difference between ML, PI-ML model and the sea trial curve with correction

factor

In comparison to the sea trial curve with correction factor, the PI-ML and ML model perform

in a similar way. Under each type of weather, the ML model and PI-ML model are more robust

against bad weather. In severe weather conditions, the ML models cross slightly higher waves,

but this is compensated by crossing lower wind speeds.

7.5.4 Bias and generalisation of the results

There is a certain bias when comparing the FOC models in terms of avoiding more or less bad

weather. The results largely depend on the A-star algorithm as well. In the case that two FOC

models are compared to one another, they might deviate or overlap as the power prediction

and resulting fuel calculation differs. Individual power predictions and the difference between

the models were already examined in chapter 6. In the current chapter however the difference

between the models are more or less obsolete and rather the difference between individual

predictions of the same model are of importance. Meaning that one should look at how the

power in one grid point relates to the power in another grid point predicted by one and the

same model.

This is essential for the functioning of the A-star algorithm. If the power prediction in one

point is much larger than the prediction in an adjacent grid point, this location will not be

crossed by the model’s route.

The bias in comparing two models in routing establishes itself when a certain model deviates

from the route of another model. Whenever they do not overlap, the A-star algorithm

considers other neighbouring grid points for which the other model has likely no access to

if the deviation is large. If then the neighbouring grid points have more favourable weather

conditions, it would seem that the model is more weather avoidant.

The bias can be mitigated by constructing a grid with random weather conditions and creating

a large amount of similar situations, for instance 200 homogeneous grids. This has been

applied in the experiments above. In order for the results to be generalized, the experiments

were done for 100 homogeneous grids and 200 homogeneous grids. If the results are the same,

the bias of the A-star algorithm can be neglected and a reasonable amount of samples have

been taken. The results for 100 homogeneous grids can be found in appendix C. Indeed, the

results for twice the size of samples are the same.
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(a) Density plot of wind speed and wave height crossings of non-overlapping grid

points between routes of the ML model and sea trial curve
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(b) Density plot of wind speed and wave height crossings of non-overlapping grid

points between routes of the PI-ML model and sea trial curve
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(c) Density plot of wind speed and wave height crossings of non-overlapping grid

points between routes of the sea trial curve with and without correction

Figure 7.8: Density plots of wind speed and wave height crossings of non-overlapping grid points

between routes of the sea trial curve and other FOC models (200 samples)



Chapter 7. Robustness in route optimization 91

7.6 Fuel optimization results

The main goal, besides safety, of optimizing a voyage is minimizing the fuel consumption.

According to the methodology stated above, the fuel savings over a route can be quantified.

Figure C.2 visually displays the fuel consumption of the routes constructed by each of the

FOC models in function of the travel time. The recalculation of the FOC is done here by the

physics-informed ML model as ground truth. The results with the ML model as ground truth

can be found in appendix C.2.1. Combined with table C.1, the average fuel savings and travel

time extensions compared to the shortest route, one can draw the following conclusions.

In calm weather conditions, the average fuel savings of the sea trial curve with correction

factor is 1.19%. This percentage doubles if routes are constructed by either the ML and

PI-ML model. In essence, the savings gained from implementing one of the ML models are

very similar to one another. However, a voyage’s travel time does increase on average to a

maximum of 1.09%. The travel time of the route’s according to the shortest path is 35.67

hours. As such, an 1.09% extension translates to about 20 minutes which is a reasonable

extension for the amount of fuel that can be saved.

The fuel savings increase to about 5.50% on average when traversing medium weather opposed

to calm weather for both the ML models. This is 30% gain over what can be achieved by the

sea trial curve with correction factor. However, the shortest path is not followed here and

that is why the travel time elongates to a maximum of 1.63%. About 35 minutes are lost in

this case. Notice that the travel time is quite similar for the ML models as well as the sea

trial curve with correction factor.

In severe weather conditions, the fuel savings are even more apparent, especially if the routes

are constructed by the ML models. Maximum savings of about 9.07% can be reached. This

translates into a 70% increase in savings over the sea trial curve with correction factor. The

travel time remains equivalent to the case of medium weather and remains constant over the

models’ routes.

Mentioned above are the average values. The standard deviations of the fuel savings and the

time extensions are mentioned in appendix C.2.3 and C.2.2. The results with the pure ML

model as ground truth are quite similar and are explained in appendix C.2.1.
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Figure 7.9: Fuel consumption calculated by the PI-ML model in function of travel time for different

weather categories (200 samples)
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Fuel savings (FS) and time extensions (TE)

compared to

the shortest route (Sea trial)

FOC model

Sea trial Sea trial + corr ML model PI-ML model

FS TE FS TE FS TE FS TE

Weather category

Calm 0.00% 0.00% 1.19% 0.83% 2.07% 0.94% 2.09% 1.09%

Medium 0.00% 0.00% 4.28% 1.60% 5.48% 1.56% 5.52% 1.63%

Severe 0.00% 0.00% 5.31% 1.46% 8.75% 1.60% 9.07% 1.46%

Table 7.1: The average fuel savings (FS) and travel time extensions (TE) of an FOC model’s route compared to the shortest route (in %) - FOC

recalculated by PI-ML model as ground truth
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Chapter 8

General conclusion, limitations and

future research

In this chapter, the main conclusions and limitations of this master’s dissertation are summa-

rized and future research is proposed. This dissertation was concerned with three parts, the

routing algorithm and corresponding methodology, the individual power predictions of the

FOC models and lastly the robustness in weather routing of these models. The FOC models

considered were the sea trial curve, the sea trial curve with correction factor, the pure ML

model and the physics-informed ML model. Both ML models were provided by Toqua and

are proved to be the most accurate in predicting the power of a vessel under various weather

conditions.

Due to the environmental impact of the shipping industry, the objective of routing was to

minimize the FOC over one’s route. In comparing the A-star algorithm and the optimized

simulated annealing (SA) algorithm, the A-star algorithm was preferred in terms of CPU-time

and convergence to the optimal solution with corresponding lower FOC. The main challenge

in fine tuning the SA parameters turned out to be defining the correct neighbourhood solution

and corresponding operators. As SA is often applied in the travelling salesman problem, few

operators that account for a variable path length are known. More research should be devoted

to the neighbourhood operators that can be included. In addition, the initial solution turned

out to have an influence on the neighbourhood operators as well, but this influence has not

been quantified. Therefore, analysing more types of initial solutions and their influence on

the final optimization can also be a subject of future research. Some research did encounter

these types of issues by relying on the genetic algorithm (SA) heuristic. That is why, besides

further optimizing the SA solution, this dissertation can also be complemented by analyzing

and optimizing an GA for this case study and comparing this solution to the SA solution.

Apart from the routing algorithm, the FOC models were examined in depth as well. To the

purpose of evaluating the FOC models in differing weather conditions, three weather buckets
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were set-up: calm, medium and severe weather. How more traditional models such as the sea

trial curve and sea trial curve with correction factor operate under varying conditions opposed

to the ML models were evaluated. Additionally, the most influential factors on the predictions

were determined. The factors that could have a possible impact on the estimations turned

out to be the wind speed, the wave height and the relative angle between the heading and the

wind/wave direction. As such, 15 scenarios were set-up combining varying wind/wave angles

ranging from 0◦ to 180◦ and the three weather types to examine the individual predictions of

the FOC models.

For all weather types, the predictions tend to approach the sea trial curve’s estimate as the

relative angle between the wind/wave directions and the heading increases. The variation for

each of the models also diminishes along with the increase of the angle. Furthermore, the

more severe the weather becomes, the more variation constitutes among the predictions as

well. One can also conclude that, for both calm and medium weather, the power predictions of

the ML model are the highest on average. For severe weather, this is only true up to an angle

of 90◦. Moreover, in calm weather conditions the power difference between sea trial curve

with correction factor and the physics-informed ML (PI-ML) model is minimal. In medium

weather conditions, this is the case for the ML and PI-ML model. For severe weather, the

differences between the models’ predictions are larger. Consequently, one should rely on the

most accurate model, the PI-ML model, when dealing with routing.

In the future, it could also be valuable to look at the difference in predictions of the FOC

models in terms of the angle. For instance, how large is the drop in power on average between

an angle of 0◦ and 45◦ for each of the models? This is valuable as weather routing algorithms

such as A-star are concerned with the minimal difference in predictions of the models itself.

If going in a 45◦ direction is the same for one FOC model opposed to another, they are more

likely to follow the same route. However, it will still depend largely on the similarity in

weather sensitivity as well.

Mentioned earlier, route optimization can be beneficial for the safety and the fuel efficiency.

Both aspects were evaluated in the second experimental part of this thesis. In terms of

weather avoidance, the physics-informed ML model and pure ML model are very similar.

They tend to better at bad weather avoidance compared to the other state-to-art models

under any weather circumstance. Comparing both ML models, the physics-informed ML

model is slightly more weather avoidant, especially in calm weather. Some additional trials

can be of use in generalizing the results in which the angle between the wind/wave direction

and the heading is also randomized. In the current experimental set-up, the angle remains

either 0◦, 45◦, 90◦or 180◦. Adding to this, the effect of the granularity of the grid and the size

of the geographical area should be accounted for. In future research, different start and end

points, different grid sizes, varying granularity and their influence of the routing algorithm as



Chapter 8. General conclusion, limitations and future research 97

well as the FOC models could be explored.

In term of fuel efficiency, one can also conclude that the ML models account for more fuel

savings compared to the shortest route. A maximum of 9% fuel savings on average can be

reached. The savings enlarge as the weather becomes more severe. The travel time does extend

when deviating from the shortest path to a maximum of 1.63% in medium weather conditions

which corresponds to an elongation of about 35 minutes on a 35 hour voyage. The extension

is significant compared to travel time of the sea trial curve’s route. However, between the

remaining models’ routes, the travel time only slightly differs. Opposed to the sea trial curve

with correction factor, the savings of the ML models contribute to a 70% gain in calm and

severe weather and a 30% increase in medium weather. In the future, the experiments can also

be performed for a Beaufort number ranging from 0 to 7 without distinction between weather

types. In this case, one should pay attention to the randomization to resemble the reality

which should be accompanied by a great number of samples. Currently, the speed is kept

constant. Changing the speed to account for equal travel times for each of the models under

changing weather scenarios could further enhance the fuel efficiency experiments. Even more

realistic savings can be quantified in this way. In this master’s dissertation, dynamic weather

forecasts were not considered. In exploring, dynamic rather than static weather conditions,

the D-star algorithm can be applied and examined in order to quantify an optimal solution.

In all, the ML models of Toqua are said to be bad-weather-avoidant and account for more

fuel savings than frequently used performance models in the shipping industry. ML models

based on ANNs were already proven to be highly accurate in predicting ship performance

measures, but they turned out to be also the most robust in weather routing. This master’s

dissertation served as a comprehensive framework in comparing different performance models

and emphasis lies on making an informed decision in using these models in routing.
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Appendix A

The simulated annealing heuristic

(a) Route constructed by A-star and SA for

a large grid size - instance 1

(b) Route constructed by A-star and SA for

a large grid size - instance 2

Figure A.1: Routes constructed by A-star and SA for a large grid size
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(a) Route constructed by A-star and SA for

a medium grid size - instance 1

(b) Route constructed by A-star and SA for

a medium grid size - instance 2

Figure A.2: Routes constructed by A-star and SA for a medium grid size

(a) Route constructed by A-star and SA for

a small grid size - instance 1

(b) Route constructed by A-star and SA for

a small grid size - instance 2

Figure A.3: Routes constructed by A-star and SA for a small grid size
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Appendix B

Power prediction per weather

category

B.1 Impact of the weather severity

B.1.1 The mean of the power predictions

Calm weather

Wind/wave direction

0◦ 45◦ 90◦ 135◦ 180◦

Model

ML model 11176.41 11016.65 10638.2 10269.89 10120.27

PI-ML model 10787.55 10596.92 10158.99 9734.67 9534.65

Sea trial 9396 9396 9396 9396 9396

Sea trial + corr 10878.42 10686.76 10255.72 9872.17 9727.0

Table B.1: The mean power prediction per model and wind/wave direction expressed in kW for calm

weather (10,000 samples)

Medium weather

Wind/wave direction

0◦ 45◦ 90◦ 135◦ 180◦

Model

ML model 13587.39 13068.03 11875.29 10766.26 10330.6

PI-ML model 113335.36 12741.12 11499.37 10464.57 10043.13

Sea trial 9396 9396 9396 9396 9396

Sea trial + corr 12853.76 12309.49 11117.05 10127.84 9788.71

Table B.2: The mean power prediction per model and wind/wave direction expressed in kW for

medium weather (10,000 samples)
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Severe weather

Wind/wave direction

0◦ 45◦ 90◦ 135◦ 180◦

Model

ML model 20532.42 18818.37 15098.14 11930.7 10769.45

PI-ML model 20282.69 18023.3 14187.65 11726.69 10933.31

Sea trial 9396 9396 9396 9396 9396

Sea trial + corr 18679.21 17381.04 14496.54 12063.17 11272.96

Table B.3: The mean power prediction per model and wind/wave direction expressed in kW for

severe weather (10,000 samples)

B.1.2 The standard deviation of the power predictions

Calm weather

Wind/wave direction

0◦ 45◦ 90◦ 135◦ 180◦

Model

ML model 363.44 302.51 178.29 144.47 170.84

PI-ML model 432.09 359.32 226.95 200.5 242.44

Sea trial 0 0 0 0 0

Sea trial + corr 320.68 236.19 67.85 119.87 170.2

Table B.4: The standard deviation of the power prediction per model and wind/wave direction

expressed in kW for calm weather (10,000 samples)

Medium weather

Wind/wave direction

0◦ 45◦ 90◦ 135◦ 180◦

Model

ML model 1429.2 1200.91 709.34 342.73 278.01

PI-ML model 1417.61 1145.62 674.82 441.81 424.49

Sea trial 0 0 0 0 0

Sea trial + corr 1242.39 1037.56 628.23 371.71 313.02

Table B.5: The standard deviation of the power prediction per model and wind/wave direction

expressed in kW for medium weather (10,000 samples)
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Severe weather

Wind/wave direction

0◦ 45◦ 90◦ 135◦ 180◦

Model

ML model 3375.86 2688.03 1319.17 377.45 264.36

PI-ML model 3910.45 2598.06 842.18 526.54 577.06

Sea trial 0 0 0 0 0

Sea trial + corr 2571.6 2193.0 1445.08 918.24 718.07

Table B.6: The standard deviation of the power prediction per model and wind/wave direction

expressed in kW for severe weather (10,000 samples)

B.1.3 The mean of the power difference

Calm weather

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 4.12 19.01 3.17

PI-ML model -4.12 0.0 14.89 -0.95

Sea trial -19.01 -14.89 0.0 -15.84

Sea trial + corr -3.17 0.95 15.84 0.0

Table B.7: The mean, relative power difference between models for a wind and wave direction of 0◦

expressed in % for calm weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 4.45 17.3 3.51

PI-ML model -4.45 0.0 12.84 -0.94

Sea trial -17.3 -12.84 0.0 -13.78

Sea trial + corr -3.51 0.94 13.78 0.0

Table B.8: The mean, relative power difference between models for a wind and wave direction of 45◦

expressed in % for calm weather (10,000 samples)
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Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 5.09 13.23 4.08

PI-ML model -5.09 0.0 8.14 -1.01

Sea trial -13.23 -8.14 0.0 -9.16

Sea trial + corr -4.08 1.01 9.16 0.0

Table B.9: The mean, relative power difference between models for a wind and wave direction of 90◦

expressed in % for calm weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 5.69 9.28 4.24

PI-ML model -5.69 0.0 3.59 -1.45

Sea trial -9.28 -3.59 0.0 -5.04

Sea trial + corr -4.24 1.45 5.04 0.0

Table B.10: The mean, relative power difference between models for a wind and wave direction of

135◦ expressed in % for calm weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 6.23 7.68 4.19

PI-ML model -6.23 0.0 1.44 -2.04

Sea trial -7.68 -1.44 0.0 -3.48

Sea trial + corr -4.19 2.04 3.48 0.0

Table B.11: The mean, relative power difference between models for a wind and wave direction of

180◦ expressed in % for calm weather (10,000 samples)
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Medium weather

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 2.66 44.7 7.8

PI-ML model -2.66 0.0 42.03 5.14

Sea trial -44.7 -42.03 0.0 -36.89

Sea trial + corr -7.8 -5.14 36.89 0.0

Table B.12: The mean, relative power difference between models for a wind and wave direction of

0◦ expressed in % for medium weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 3.47 39.15 8.08

PI-ML model -3.47 0.0 35.68 4.61

Sea trial -39.15 -35.68 0.0 -31.07

Sea trial + corr -8.08 -4.61 31.07 0.0

Table B.13: The mean, relative power difference between models for a wind and wave direction of

45◦ expressed in % for medium weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 4.0 26.41 8.09

PI-ML model -4.0 0.0 22.4 4.08

Sea trial -26.41 -22.4 0.0 -18.32

Sea trial + corr -8.09 -4.08 18.32 0.0

Table B.14: The mean, relative power difference between models for a wind and wave direction of

90◦ expressed in % for medium weather (10,000 samples)
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Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 3.21 14.56 6.81

PI-ML model -3.21 0.0 11.35 3.59

Sea trial -14.56 -11.35 0.0 -7.75

Sea trial + corr -6.81 -3.59 7.75 0.0

Table B.15: The mean, relative power difference between models for a wind and wave direction of

135◦ expressed in % for medium weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 3.06 9.91 5.77

PI-ML model -3.06 0.0 6.85 2.71

Sea trial -9.91 -6.85 0.0 -4.13

Sea trial + corr -5.77 -2.71 4.13 0.0

Table B.16: The mean, relative power difference between models for a wind and wave direction of

180◦ expressed in % for medium weather (10,000 samples)

Severe weather

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 2.77 118.62 19.76

PI-ML model -2.77 0.0 115.85 17.0

Sea trial -118.62 -115.85 0.0 -98.85

Sea trial + corr -19.76 -17.0 98.85 0.0

Table B.17: The mean, relative power difference between models for a wind and wave direction of

0◦ expressed in % for severe weather (10,000 samples)
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Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 8.54 100.37 15.29

PI-ML model -8.54 0.0 91.83 6.76

Sea trial -100.37 -91.83 0.0 -85.08

Sea trial + corr -15.29 -6.76 85.08 0.0

Table B.18: The mean, relative power difference between models for a wind and wave direction of

45◦ expressed in % for severe weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 9.68 60.77 6.32

PI-ML model -9.68 0.0 51.09 -3.36

Sea trial -60.77 -51.09 0.0 -54.45

Sea trial + corr -6.32 3.36 54.45 0.0

Table B.19: The mean, relative power difference between models for a wind and wave direction of

90◦ expressed in % for severe weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 2.11 27.05 -1.51

PI-ML model -2.11 0.0 24.94 -3.62

Sea trial -27.05 -24.94 0.0 -28.55

Sea trial + corr 1.51 3.62 28.55 0.0

Table B.20: The mean, relative power difference between models for a wind and wave direction of

135◦ expressed in % for severe weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 -1.81 14.69 -5.43

PI-ML model 1.81 0.0 16.5 -3.61

Sea trial -14.69 -16.5 0.0 -20.11

Sea trial + corr 5.43 3.61 20.11 0.0

Table B.21: The mean, relative power difference between models for a wind and wave direction of

180◦ expressed in % for severe weather (10,000 samples)
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B.1.4 The standard deviation of the power difference

Calm weather

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 0.88 3.33 1.08

PI-ML model 0.88 0.0 4.19 1.66

Sea trial 3.33 4.19 0.0 3.22

Sea trial + corr 1.08 1.66 3.22 0.0

Table B.22: The standard deviation of the relative power difference between models for a wind and

wave direction of 0◦ expressed in % for calm weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 0.74 2.75 1.06

PI-ML model 0.74 0.0 3.46 1.68

Sea trial 2.75 3.46 0.0 2.33

Sea trial + corr 1.06 1.68 2.33 0.0

Table B.23: The standard deviation of the relative power difference between models for a wind and

wave direction of 45◦ expressed in % for calm weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 0.61 1.62 1.11

PI-ML model 0.61 0.0 2.21 1.71

Sea trial 1.62 2.21 0.0 0.55

Sea trial + corr 1.11 1.71 0.55 0.0

Table B.24: The standard deviation of the relative power difference between models for a wind and

wave direction of 90◦ expressed in % for calm weather (10,000 samples)
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Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 0.63 1.56 1.12

PI-ML model 0.63 0.0 2.15 1.68

Sea trial 1.56 2.15 0.0 1.28

Sea trial + corr 1.12 1.68 1.28 0.0

Table B.25: The standard deviation of the relative power difference between models for a wind and

wave direction of 135◦ expressed in % for calm weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 0.76 1.9 1.09

PI-ML model 0.76 0.0 2.64 1.63

Sea trial 1.9 2.64 0.0 1.81

Sea trial + corr 1.09 1.63 1.81 0.0

Table B.26: The standard deviation of the relative power difference between models for a wind and

wave direction of 180◦ expressed in % for calm weather (10,000 samples)
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Figure B.1: The pairwise, relative power difference for different wind/wave directions - calm weather
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Medium weather

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 1.76 8.29 1.35

PI-ML model 1.76 0.0 9.89 1.48

Sea trial 8.29 9.89 0.0 9.0

Sea trial + corr 1.35 1.48 9.0 0.0

Table B.27: The standard deviation of the relative power difference between models for a wind and

wave direction of 0◦ expressed in % for medium weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 1.09 7.16 1.03

PI-ML model 1.09 0.0 8.09 1.37

Sea trial 7.16 8.09 0.0 7.35

Sea trial + corr 1.03 1.37 7.35 0.0

Table B.28: The standard deviation of the relative power difference between models for a wind and

wave direction of 45◦ expressed in % for medium weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 0.85 4.91 1.08

PI-ML model 0.85 0.0 5.35 1.32

Sea trial 4.91 5.35 0.0 4.68

Sea trial + corr 1.08 1.32 4.68 0.0

Table B.29: The standard deviation of the relative power difference between models for a wind and

wave direction of 90◦ expressed in % for medium weather (10,000 samples)
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Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 1.09 3.88 0.98

PI-ML model 1.09 0.0 4.85 1.37

Sea trial 3.88 4.85 0.0 4.14

Sea trial + corr 0.98 1.37 4.14 0.0

Table B.30: The standard deviation of the relative power difference between models for a wind and

wave direction of 135◦ expressed in % for medium weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 1.42 3.96 1.2

PI-ML model 1.42 0.0 5.25 1.62

Sea trial 3.96 5.25 0.0 4.29

Sea trial + corr 1.2 1.62 4.29 0.0

Table B.31: The standard deviation of the relative power difference between models for a wind and

wave direction of 180◦ expressed in % for medium weather (10,000 samples)
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Figure B.2: The pairwise, relative power difference for different wind/wave directions - medium

weather
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Severe weather

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 3.9 14.42 5.06

PI-ML model 3.9 0.0 16.43 6.79

Sea trial 14.42 16.43 0.0 17.65

Sea trial + corr 5.06 6.79 17.65 0.0

Table B.32: The standard deviation of the relative power difference between models for a wind and

wave direction of 0◦ expressed in % for severe weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 2.34 11.99 5.05

PI-ML model 2.34 0.0 11.33 6.56

Sea trial 11.99 11.33 0.0 14.67

Sea trial + corr 5.05 6.56 14.67 0.0

Table B.33: The standard deviation of the relative power difference between models for a wind and

wave direction of 45◦ expressed in % for severe weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 3.9 7.0 5.67

PI-ML model 3.9 0.0 4.01 6.71

Sea trial 7.0 4.01 0.0 10.6

Sea trial + corr 5.67 6.71 10.6 0.0

Table B.34: The standard deviation of the relative power difference between models for a wind and

wave direction of 90◦ expressed in % for severe weather (10,000 samples)
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Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 4.14 4.63 5.75

PI-ML model 4.14 0.0 5.84 7.0

Sea trial 4.63 5.84 0.0 10.24

Sea trial + corr 5.75 7.0 10.24 0.0

Table B.35: The standard deviation of the relative power difference between models for a wind and

wave direction of 135◦ expressed in % for severe weather (10,000 samples)

Benchmark model - original power

ML model PI-ML model Sea trial Sea trial + corr

New power

ML model 0.0 3.61 5.01 5.98

PI-ML model 3.61 0.0 7.1 7.73

Sea trial 5.01 7.1 0.0 10.24

Sea trial + corr 5.98 7.73 10.24 0.0

Table B.36: The standard deviation of the relative power difference between models for a wind and

wave direction of 180◦ expressed in % for severe weather (10,000 samples)
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Figure B.3: The pairwise, relative power difference for different wind/wave directions - severe

weather
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Visualization variation between power difference per wind/wave direction
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Figure B.4: The pairwise, relative power difference for different weather categories and different

wind/wave direction - part 1
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Figure B.5: The pairwise, relative power difference for different weather categories and different

wind/wave direction - part 2
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Appendix C

Robustness in route optimization

C.1 Sensitivity results: 100 samples
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Figure C.1: Density plots of wind speed and wave height crossings of FOC models’ routes per weather

category (100 samples)
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C.2 Fuel efficiency results

C.2.1 The fuel savings with the pure ML model as ground truth
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Figure C.2: Fuel consumption calculated by the ML model in function of travel time for different

weather categories (200 samples)
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Fuel savings (FS) and time extensions (TE)

compared to

the shortest route (Sea trial)

FOC model

Sea trial Sea trial + corr ML model PI-ML model

FS TE FS TE FS TE FS TE

Weather category

Calm 0.00% 0.00% 0.78% 0.21% 1.43% 0.67% 1.41% 0.85%

Medium 0.00% 0.00% 3.82% % 5.00% 1.34% 4.94% 1.37%

Severe 0.00% 0.00% 5.57% 1.54% 9.15% 1.56% 8.84% 1.52%

Table C.1: The average fuel savings (FS) and travel time extensions (TE) of an FOC model’s route compared to the shortest route (in %) - FOC

recalculated by ML model as ground truth



Appendix C. Robustness in route optimization 123

C.2.2 The standard deviations of the time extensions

Travel time extension compared to

the shortest route (Sea trial)
FOC model

Sea trial Sea trial + corr ML model PI-ML model

Weather category

Calm 0.00% 0.54% 0.58% 0.62%

Medium 0.82% 0.81% 0.83% 0.73%

Severe 0.00% 0.64% 0.71% 0.72%

Table C.2: The standard deviation of the travel time extension of an FOC model’s route compared

to the shortest route (in %)

C.2.3 The standard deviations of the fuel savings

Fuel savings compared to

the shortest route (Sea trial)
FOC model

Sea trial Sea trial + corr ML model PI-ML model

Weather category

Calm 0.00% 1.24% 1.23% 1.22%

Medium 0.00% 2.67% 2.40% 2.38%

Severe 0.00% 4.82% 4.43% 4.43%

Table C.3: The standard deviation of the fuel savings of an FOC model’s route compared to the

shortest route (in %) - FOC recalculated by PI-ML model as ground truth

Fuel savings compared to

the shortest route (Sea trial)
FOC model

Sea trial Sea trial + corr ML model PI-ML model

Weather category

Calm 0.00% 0.97% 0.92% 0.92%

Medium 0.00% 2.49% 2.22% 2.24%

Severe 0.00% 4.93% 4.58% 4.59%

Table C.4: The standard deviation of the fuel savings of an FOC model’s route compared to the

shortest route (in %) - FOC recalculated by ML model as ground truth
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