
using WebAssembly
Optimising memory usage of Kubernetes operators

Academic year 2021-2022

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: ing. Merlijn Sebrechts, ing. Sander Borny
Supervisors: Prof. dr. Bruno Volckaert, Prof. dr. ir. Filip De Turck

Student number: 01704656
Tim Ramlot

using WebAssembly
Optimising memory usage of Kubernetes operators

Academic year 2021-2022

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: ing. Merlijn Sebrechts, ing. Sander Borny
Supervisors: Prof. dr. Bruno Volckaert, Prof. dr. ir. Filip De Turck

Student number: 01704656
Tim Ramlot

Permission of use on loan

The author gives permission to make this master dissertation available for consultation and to copy parts of this master

dissertation for personal use. In all cases of other use, the copyright terms have to be respected, in particular with regard to

the obligation to state explicitly the source when quoting results from this master dissertation.

Tim Ramlot, June 2022

II

Acknowledgements

This master’s dissertation concludes a five year computer science engineering programme at Ghent University. This disserta-

tion has helped me deepen my knowledge on Kubernetes and WebAssembly and aims to provide the interested readers with

new insights. During my studies, Kubernetes has becomemy favourite subject, thanks to a couple of interesting projects and

a fantastic internship.

I would like to thank ing. Merlijn Sebrechts and ing. Sander Borny for their guidance, feedback and the time they invested in

me and my study.

Additionally, I thank my supervisors Prof. dr. Bruno Volckaert and Prof. dr. ir. Filip De Turck.

I am grateful to my friends and family who have helped me by providing much-needed relaxation and distraction.

My parents and brother have supported me throughout my studies where necessary, for which I am extremely grateful. They

also reviewed and proofread the dissertation, which helped me a lot.

Tim Ramlot

June 2022

III

Explanatory note

This master’s dissertation is part of an exam. Any comments formulated by the assessment committee during the oral

presentation of the master’s dissertation are not included in this text.

IV

Abstract

”A new Kubernetes operator architecture, based on WebAssembly, can reduce the control plane memory overhead andmakes

the orchestrator a better fit for low-resource environments while offering a cost-reduction for existing systems.”

High-resource clusters are the primary orchestration target of Kubernetes. Running Kubernetes on low-resource clusters

suffers from relatively high control plane operator overhead costs. To capture the interest of low-resource fog, edge and

IoT market segments, it is vital to reduce these overhead costs. Complex Kubernetes deployments greatly benefit from the

extensibility of the Kubernetes orchestrator. However, this extensibility is one of the main cost drivers of the Kubernetes

control plane architecture. In this traditional architecture, each operator runs in a separate pod, leaving many potential

optimizations on the table.

This master’s dissertation presents a WebAssembly-based operator architecture that allows sharing the low-level operator

logic and offers scale-to-zero functionality, based on advancements used by the newest edge serverless platforms. It enables

operators to be unloaded, while watching for Kubernetes API events and reloading the operators when required.

Using our proposed WebAssembly operators instead of comparable container-based operators resulted in a significant 64%

reduction in memory usage for benchmarking 100 synthetic operators. When idle, the WebAssembly operators used 17% less

memory than when active. This idle memory usage was further reduced by 57% by unloading the WebAssembly module.

However, this should be done infrequently, as reloading modules comes with a severe latency and memory usage cost.

Keywords: Kubernetes, edge, operators, WebAssembly, WASI

V

Optimising memory usage of Kubernetes operators
using WebAssembly

Tim Ramlot
Supervisors: Prof. dr. Bruno Volckaert, Prof. dr. ir. Filip De Turck

Counsellors: ing. Merlijn Sebrechts, ing. Sander Borny

Abstract—High-resource clusters are the primary orchestra-
tion target of Kubernetes. Running Kubernetes on low-resource
clusters suffers from relatively high control plane operator
overhead costs. To capture the interest of low-resource fog,
edge and IoT market segments, it is vital to reduce these over-
head costs. This paper presents a WebAssembly-based operator
solution, that achieves more light-weight isolation compared
to container-based operator architectures. Using our proposed
WebAssembly operators instead of comparable container-based
operators resulted in a significant 64% reduction in memory
usage for benchmarking 100 synthetic operators. Some additional
improvements are possible in best-case scenarios.

Index Terms—Kubernetes, edge, operators, WASM, WASI

I. INTRODUCTION

The adoption of new technologies relies heavily on poten-
tial resulting cost savings. Monetary and environmental cost
reductions have been achieved by increasing computational
density in cloud computing. Lower latency costs have stemmed
from advancements in telecommunications, such as 5G, and
the dispersion of cloud to fog, edge and IoT. These two
innovation flows have independently led to widely accepted
solutions. Here lies an opportunity for cross-pollination be-
tween projects. Cloud computing utilizes cloud orchestration
for optimal resource allocation and server cluster management.
Kubernetes [1], which originated from Google Borg [2, 3], is
such an extensible cluster orchestrator. Its extensible archi-
tecture parts a cluster in a control plane and a worker plane.
Edge environments, which are typically large complex clusters
with limited resources, can benefit significantly from having
an orchestrator to manage complexity and size.

However, the primary orchestration targets of Kubernetes
are high-resource clusters. Running Kubernetes on low-
resource clusters suffers from relatively high control plane
operator overhead costs, which hinders adaptation in the
edge market segment. In complex cloud-native application
deployments, operators [4] are used to automate actions on the
Kubernetes cluster state, that would otherwise be performed
by a human operator. These operators are one of the main cost
drivers of the Kubernetes control plane. To react to changes
in the Kubernetes cluster state, the operators have to run as
long-living processes. Even if the operator’s control loop is
idle, the container and process still use cluster resources. For
complex applications that use many operators, these overhead
costs quickly accumulate and account for a significant portion
of the resource utilization. This is especially problematic for
low-resource deployments.

Since global edge application configuration and deployment
is a complex task, it is often abstracted by the service provider
and included in a Function as a Service (FaaS) offering.
FaaS applications are better suited for low-resource edge en-
vironments thanks to their fast on-demand scaling properties.
Specifically, some edge FaaS platforms use WebAssembly
(WASM), a browser technology designed as a portable binary
code format that can be assembled from a range of program-
ming languages and that is well suited to resource-constrained
environments. On edge FaaS platforms, like Cloudflare Work-
ers [5] and Fastly Compute@Edge [6], WebAssembly is used
to securely isolate workloads with reduced overhead and scale-
to-zero capabilities.

Chapter II explains the architecture of our WebAssembly-
based operator solution and Chapter III discusses how this
architecture is implemented. In Section IV, our benchmark
results of the WebAssembly runtime are discussed, as well as
the methodology to achieve these results.

II. SOLUTION ARCHITECTURE: WASM OPERATOR

Because of Kubernetes’ can-always-fail design, an operator
application is not supposed to hold any internal state across
reconciliation iterations except for caches. The operator gener-
ally uses the Kubernetes API to store state. This theoretically
should allow running each iteration of the reconciliation loop
without storing state in between. This property also holds for
FaaS systems, where there is no guarantee for state preserva-
tion in between function calls. FaaS solutions for constrained
edge environments often utilize Software-based Fault Isolation
(SFI) instead of process isolation. WebAssembly lets you
create SFI applications based on code written in existing high-
level languages.

Fig. 1. Design of our WASM operator architecture.

1

The WASM operator architecture presented in this paper
and visualized in Figure 1 attempts to realize all the beneficial
aspects that solutions in prior work have achieved [7, 8, 9]. The
main parts of the architecture are the parent operator and the
child operators. The child operators run as WASM instances
in the WASM runtime embedded in the parent operator. We
use an existing WASM runtime implementation as embedded
runtime. The beneficial aspects are listed below.

• Isolation overhead: All child operators run in the same
process as the parent operator. This process runs inside a
single container in a single Kubernetes pod. Isolation is
provided by the WASM engine, eliminating the overhead
due to container isolation.

• Modularity: The WASM runtime makes it possible to
add or remove child operators without interfering with
the other active child operators.

• Simple child operator: In our architecture, the parent
operator extends the WASM runtime with host functions
that can be used by the child operators to communicate
with the Kubernetes API. Low-level operator logic is
moved to the parent operator. This reduces the complexity
and overhead of the client operators.

• Scale-to-zero: To limit the overhead of inactive operators,
our architecture allows to dynamically unload inactive
operators.

In order to efficiently make Kubernetes API requests, we
want child operators to perform them asynchronously. Existing
WASM runtimes offer no support for asynchronous calls
or offer a solution that is incompatible with idle module
unloading. Therefore, we created a new solution that adds
support for asynchronous operations to the WASM runtime
that is embedded in our parent operator. By extending the
WASM runtime, we allow the child operators to wait for host
functions asynchronously.

A. Parent operator asynchronous runtime

Fig. 2. The design of the parent operator incorporates a WASM runtime
event loop which repeatedly performs actions 1-8; making it possible to
asynchronously call host functions from within a WASM instance.

Figure 2 shows how the parent operator manages the
asynchronous operations of a child operator and unloads an

inactive child operator after a long period of inactivity. The
main components of the parent operator are the WASM engine,
the host functions exposed to the WASM instance and the work
queue. For the WASM engine component and some of the host
functions, existing solutions can be used.

The solution works as follows: Each WASM module has
an entry point that executes the main function in the child
operator, shown in Figure 2 as 1⃝. Environment interactions
happen through the calling of WASM host functions 2⃝. Some
of these actions are asynchronous and do not directly yield a
result. These asynchronous actions are started and added to
the work queue 3⃝, directly returning control to the WASM
module 4⃝. After executing all synchronous logic, the WASM
execution stops and the control is returned to the event loop
5⃝. This loop checks if any of the actions in the work queue

finished 6⃝ and passes the results of that finished action 7⃝
back to the WASM engine 1⃝, reloading the child operator in
case it had been previously unloaded 8⃝. When returning to
WASM, a new set of synchronous actions are performed by the
engine. Long-running operators repeat this process indefinitely.
These operators are always waiting for new asynchronous
inputs, like events in a watch stream.

The runtime might detect that a certain child operator has
not been receiving any asynchronous results over a long period
(marked as �). This is indicative for an operator that reached
a steady state in its reconciliation process. Most likely, it will
only restart its logic after external applications changed the
state of the Kubernetes resources that it manages. This could
mean that the operator remains idle for multiple hours. In such
cases, it can be more resource-efficient to unload and swap the
WASM instance to disk.

B. Child operator asynchronous client

All client operators run as single-threaded asynchronous
WASM instances. The child operator is started by the host
which calls the start function that is exposed by the
WASM module. This initial function starts the operator rec-
onciliation loop, which makes asynchronous requests. These
asynchronous futures [10] are awaited by the child operator,
but some of these futures await asynchronous host function
results from the parent runtime. If the child operator cannot
continue without new results from the host environment, it
stops the execution and returns to the host. If none of the
pending asynchronous requests have finished already, the host
waits for one of them to finish, as described in Section II-A.
Once a request finishes, the host returns the result to the child
operator, such that the child operator can finish the linked
asynchronous request. This restarts the whole process.

III. IMPLEMENTATION

The latest version of our implementation and the scripts
used for the end-to-end tests can be found on Github [11].

A. Prior work

Our operator implementation builds upon the proof of
concept (PoC) made by Francesco Guardiani and Markus

2

Thömmes [12]. This PoC provides a WASM operator solution
based on the Wasmer [13] WASM runtime and a hacked
version of the kube-rs [14] library. However, at the time of
writing, it has been 2 years since this project was updated.
Since the API of the Wasmer runtime drastically changed after
its v1 release, and the hacks applied to the kube-rs project
are not well documented, upgrading the PoC was not straight
forward. Furthermore, the Wasmer project lacks the future
potential that other open-source initiatives, like Wasmtime,
can offer. To update kube-rs more easily in the future, a new
project structure was required. Moreover, the original version
of the PoC cannot unload inactive operators as its architecture
is different from the architecture proposed in Section II.
We refactored the PoC and updated it to implement the
aforementioned architecture. Finally, we implemented several
improvements to further optimize the PoC implementation,
such as adding support for caching compiled WASM modules
for later reuse.

B. Parent operator: WASM runtime

The parent operator extends the Wasmtime WASM runtime.
Wasmtime was chosen over other WASM runtimes, because it
is the flagship WASM engine from the Bytecode Alliance, with
support from some of the biggest players in the technology
industry. Our implementation configures Wasmtime to compile
ahead of time (AOT) new WASM modules to machine code
to eliminate the compiler memory overhead at runtime. These
compiled modules are cached on disk and can be reused when
possible. To initiate these compiled modules, Wasmtime only
has to map the file to memory and provide the necessary
tools to communicate with this initiated module. Because
of the use of file-backed memory, for idle operators, these
memory locations can be dropped from memory by the kernel
when needed. If the memory region needs to be accessed
again, a page-fault will be triggered, and the kernel will
load the file back into memory. However, the dynamically
populated memory of the WASM module will not be unloaded
automatically from memory. That is why our implementation
adds a custom unloading and disk swapping implementation
in the parent operator. This makes unloading and swapping
possible, even on systems without swap enabled at operating
system level.

C. Parent operator: host functions

WASM host functions are functions exposed by the Web-
Assembly runtime to the WASM instances. The Web As-
sembly System Interface (WASI) is a standardised set of
these host functions. Our implementation can benefit from the
existing Wasmtime library that readily implements these WASI
host functions, reducing the implementation and maintenance
burden of our solution. A core aspect of Kubernetes operators
is communicating with the Kubernetes API server. However,
at the time of writing, the WASI spec has not yet standardised
sockets as part of the interface [15]. This means that for
our implementation, we had to implement custom HTTP host
functions to create a working WASM operator setup. As shown

Fig. 3. The operator libraries are split between the parent and child operator
and consist out of existing WASI libraries and our own custom libraries based
on kube-rs.

in Figure 3, our implementation uses the low-level part of
kube-rs for the Kubernetes host function implementation. The
high-level kube-rs functionality is implemented in the child
operator. The added host functions are asynchronous functions,
meaning that they return control to the WASM module imme-
diately, while returning an async_id that references a task
in the workqueue as described in Section II-A.

D. Child operator: client libraries

All Kubernetes operator domain knowledge is implemented
in the custom reconciliation loops, that are defined in the child
operators. Our language preference for the child operators
is Rust since the Rust standard libraries best support the
WASI host function calls. Golang, which is normally used in
Kubernetes, has no support for WASI in its default compiler.
Additionally, Golang is a garbage collected language, which
have been shown to use more memory [16]. Another advantage
of choosing Rust as language is that an easier interoper-
ability between the parent and child operator is obtained.
The (de)serialisation logic mentioned in Section III-C, can
be reused for both the parent and child, since they are both
implemented in Rust.

IV. RESOURCE UTILISATION

A. Test setup

Fig. 4. The test setup for the synthetic-operator workload, each operator is
responsible for the propagation of changes from one namespace to another.

The test synthetic-operator, as shown in Figure 4, simulates
a workload with N different operators, which depend on
each other’s actions and are idle for most of the time. Each

3

0 20 40 60 80 100
operators

0.00
0.25
0.50
0.75
1.00
1.25
1.50

m
em

or
y

us
ag

e
(G

iB
) 1.37GiB

0.60GiB

0.22GiB

Golang container
Rust container
Rust WASM

(a) active

0 20 40 60 80 100
operators

0.00
0.25
0.50
0.75
1.00
1.25
1.50

m
em

or
y

us
ag

e
(G

iB
)

1.10GiB

0.57GiB

0.18GiB

Golang container
Rust container
Rust WASM

(b) idle

Fig. 5. The memory 95% upper bounds of the different languages/ isolation
techniques are ordered as follows: Rust WASM < Rust container < Golang
container; all operators use less memory when idle.

operator watches a namespace for TestResources and only
reconciles, once a resource is created or updated. It then
updates/ creates the resource in its destination namespace.
For a full update of all resources, all operators must update
their resource one-by-one. This means the full end-to-end
latency equals the accumulated individual operator latencies.
This synthetic workload simulates a highly dependent and
interactive operator setup.

Measuring the memory footprint of a workload execution,
requires accounting all the memory usage effects that the
process has on the system. This is a non-trivial problem.
The memory utilization measure that we use is determined
by limiting the memory usage, as determined by cgroup v2
[17], until the application is being slowed down as determined
by the Linux PSI metric [18]. For each run, we determine a
upper bound memory limit. Each upper bound is defined as the
memory limit that is not exceeded for 95% of the selected time
range duration. For each configuration, which is defined by an
operator type and number of operators, five independent runs
were performed, each yielding one upper bound for the active
and one for the idle period. Per operator type, we tested the
number of operators from 10 to 100, in increments of 10. For
the active and idle selection separate, based on the resulting
50 upper bounds for each operator type, we trained a linear
regression model. Using this linear model, we determined the
95% prediction interval in which we expect with 95% certainty
the upper bound memory usage of a new run with the given
configuration, as described by Neter et al. [19].

The end-to-end latency is measured by the synthetic-
operator test for the active period of the test. Each set of
reconciliations starts from an update of the TestResource
in namespace 1 until the TestResource in namespace N
is updated. The time from start to end is measured and each
reconciliation set is repeated 500 times per run, resulting in
500N reconciliation iterations. As described in Section IV-A,
for each configuration, which is defined by an operator type
and a number of operators, five independent runs are per-
formed.

B. Golang container, Rust container and Rust WASM com-
pared

Figure 5 shows the obtained memory upper bounds for
container-isolated operators written in Golang and Rust and
a WASM-isolated Rust operator. The coloured areas represent

100.0

0.5

1.0

1.5

2.0

2.5

en
d-

to
-e

nd
 la

te
nc

y
(s

)

20 30 40 50 60 70 80 90 100

Golang container
Rust container
Rust WASM

0.0 0.2 0.4 0.6 0.8 1.0
operators

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. The end-to-end latency of WASM operators is identical to Rust
operators.

the 95% prediction intervals for the regression models as
described in Section IV-A. Figure 5a shows the results for
the active period. The Golang-based operator clearly uses
the most memory. For 100 active operators, switching from
Golang to Rust resulted in a 56.06% upper bound memory
reduction. WASM operators even yielded an 83.81% reduc-
tion compared to Golang operators. Compared to Golang,
the Rust operators use entirely different operator library and
framework implementations. Each implementation has its own
memory trade-offs, which can lead to large differences in
memory usage. Additionally, as discussed in Section IV-A,
garbage collected languages like Golang, typically are less
memory efficient than languages without garbage collector
like Rust. The Rust container-based operator and the WASM-
based operator share much of their source code. However, the
WASM-based operators use less memory than container-based
operators. This is due to the reduced complexity of the WASM
child operator, as much of its low-level operator logic is
moved to the parent operator. Moreover, the different isolation
techniques used result in a net reduced isolation overhead,
which is further explored in Section IV-C.

Figure 5b shows that, as expected, all operator types utilize
less memory in case of idle workloads, we observed a 14.21%
reduction on average. Compared to 100 idle Golang operators,
100 idle Rust operators utilized 48.04% less memory, which
is a smaller reduction than when comparing active operators.
However, 100 idle WASM operators still used 83.65% less
memory compared to idle Golang operators, similar to the
active situation. The smaller reduction in memory usage of
container-based Rust operators versus Golang operators is due
to Golang experiencing a higher relative reduction in memory
consumption when going from active to idle. Based on the
typical usage pattern of an operator, which can be idle for
a long period of time, it is clear that idle memory usage is
important.

End-to-end latency: In Figure 6, the obtained latency dis-
tributions for the different operator types are displayed, which
were obtained as described in Section IV-A. Based on Jangda
et al. [20], WASM performance can be 2.5x slower worst-
case compared to native execution. The WASM version of the
synthetic-operator, however, did not experience any latency
penalties. The latency for the Golang operator increased more
than the other operators with increased number of operators.

4

However, this is most likely due to the memory pressuring
algorithm that adds more latency to Golang because its less
memory efficient. There was no measured useful difference
in latency between the WASM and Rust implementations that
was greater than the measured noise. The main bottleneck in
the operator’s execution is I/O. Therefore, the latencies that
occur in CPU-heavy workloads do not affect the synthetic-
operator workload much.

C. Cost of isolation

Figure 7 shows the obtained memory upper bounds for
Rust operators using no isolation, using containers and using
WASM. The coloured areas represent the 95% prediction in-
tervals for the regression models as described in Section IV-A.
The solution with no isolation is the most resource efficient.
This operator is able to scale to 100 control loops without
significant additional memory overhead. Both the WASM-
based and container-based setups experience significant per-
operator overhead. Additionally, the WASM-based operator
has a higher initial constant memory overhead. However, since
the container-based solution performs worse per-container, this
initial overhead can be compensated. In case of the active
situation, the WASM-based solution is more memory efficient
than the container-based solution with 95% certainty starting
from six operators. For the idle operators, this starts from eight
operators.

The container-based operators are managed by Kubernetes
and each run in a separate Kubernetes pod. Our Kubernetes
setup uses containerd [21] to manage the containers. In
our tests, the biggest overhead contributor was the per-pod
containerd-shim process which equates to about 5MiB per
pod. The WASM runtime can isolate the modules without
introducing such a big overhead. Instead, it introduces a
constant initial overhead that does not depend on the number
of operators. This memory overhead is due to the WASM
runtime, including the low-level operator logic.

Our tests showed that a major memory usage reduction
can be achieved by using no isolation. However, having no
isolation between operators means that all operators should be
fully trusted even for not having errors. Additionally, it results
in a lack of modularity: it is not possible to dynamically add or
remove controllers. In an operator design based on Kubernetes
pods, operators can be added and removed dynamically. Also,
WASM modules can be loaded dynamically by the parent
operator, without having to restart the parent operator process.
WASM is a good intermediate solution, providing isolation
and modularity while still being more memory efficient than
the container-based solution.

D. Automatically unloading WASM modules

Figure 8 shows the obtained memory upper bounds for the
synthetic-operator running as WASM modules. Two versions
of the WASM operator are compared: one does not unload
the WASM instances and the other unloads each WASM
instance in-between each iteration of the reconciliation loop.
The coloured areas represent the 95% prediction intervals for

0 20 40 60 80 100
operators

0
128
256
384
512
640

m
em

or
y

us
ag

e
(M

iB
)

28MiB

616MiB

227MiB

no isolation
container
WASM

(a) active

0 20 40 60 80 100
operators

0
128
256
384
512
640

m
em

or
y

us
ag

e
(M

iB
)

27MiB

587MiB

185MiB

no isolation
container
WASM

(b) idle

Fig. 7. The memory 95% upper bounds of non-modular, container-modular
and WASM-modular operators show that WASM outperforms container-based
isolation, but additional improvements are possible since having no isolation
is still much more efficient.

0 20 40 60 80 100
operators

0
64

128
192
256
320
384
448

m
em

or
y

us
ag

e
(M

iB
)

227MiB

409MiB
without unloading
with unloading

(a) active

0 20 40 60 80 100
operators

0
64

128
192
256
320
384
448

m
em

or
y

us
ag

e
(M

iB
)

185MiB

86MiB

without unloading
with unloading

(b) idle

Fig. 8. The memory 95% upper bounds of the WASM operator with
automatic unloading enabled/ disabled; very frequent unloading causes more
memory usage, for idle operators it can save memory.

the regression models as described in Section IV-A. Figure 8a
shows that the effect of constantly unloading and reloading
active WASM operator was an 80.49% increase in memory
usage for 100 operators. In Figure 9, the effect of actively
unloading and reloading operators on the measured end-to-end
latencies is displayed, this figure was obtained as described in
IV-A. Figure 8b shows, running 100 operators, we achieved a
52.66% reduction for idle operators compared to not unload-
ing.

Unloading the modules reduces memory usage in case of
idle operators. The parent operator writes the memory of
idle WASM instances to disk and reloads it later when a
Kubernetes watch event is received, as described in Sec-
tion II-A. Since most operators often stay idle for a long
time, this can greatly optimize resource utilization in memory-
constrained environments. However, in case of a worst-case
unload and reload pattern, memory usage is higher than in case
no unloading and reloading takes place. Frequent unloading
also introduces a large end-to-end latency penalty due to the
disk overhead of swapping the WASM instance, as shown in
Figure 9.

To properly benefit from automatic WASM module unload-
ing in a mixed active-idle situation, a predictive scheduler is a
necessity, this is considered as future work in this paper. Such
a scheduler could help unloading only when it is beneficial to
unload a WASM module instead of unloading it in-between
each control loop iteration. The optimization opportunity
also greatly depends on the heap memory allocated by the
operators, necessary for Kubernetes API state caches. This
relationship is further discussed in Section IV-E.

5

100

2

4

6

8

10

12

en
d-

to
-e

nd
 la

te
nc

y
(s

)

20 30 40 50 60 70 80 90 100

without unloading
with unloading

0.0 0.2 0.4 0.6 0.8 1.0
operators

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9. The end-to-end latency for active WASM operator with unloading
enabled/ disabled. Actively unloading and swapping modules introduces
significant latency.

Rust
container

WASM
without

unloading

WASM
with

unloading

0.00
0.25
0.50
0.75
1.00
1.25

m
em

or
y

us
ag

e
in

cr
ea

se
 d

ue
to

 a
dd

in
g

1M
iB

 a
llo

ca
tio

n
(M

iB
)

0.99MiB 0.88MiB

1.30MiB

(a) The per-operator memory 95% up-
per bounds increase due to an extra
1MiB of dynamically allocated mem-
ory for active operators.

Rust
container

WASM
without

unloading

WASM
with

unloading

0.00

0.25

0.50

0.75

1.00

m
em

or
y

us
ag

e
in

cr
ea

se
 d

ue
to

 a
dd

in
g

1M
iB

 a
llo

ca
tio

n
(M

iB
)

1.00MiB 1.03MiB

0.35MiB

(b) The per-operator memory 95%
upper bounds increase due to an extra
1MiB of dynamically allocated mem-
ory for idle operators.

Fig. 10. The effects of allocating 1MiB of heap memory in each operator on
the 95% upper bounds.

E. Dynamically allocated memory

Figure 10 shows the average memory upper bound increase
per operator due to a 1MiB increase in dynamically allocated
memory. The metric is obtained based on the slope of the
linear regression models trained on 20 upper bound memory
usage samples obtained for experiments with allocation sizes
of 0MiB to 3MiB, with 5 runs per experiments. Also indicated
are the 95% confidence intervals for these slopes.

Figure 10a shows that dynamically allocating 1MiB addi-
tional heap memory in each operator resulted in in a memory
upper bound increase of roughly 100MiB for 100 active opera-
tors with unloading disabled, and in an increase of 130MiB for
active WASM operators with unloading enabled. The 30MiB
extra overhead originates from the additional memory required
to reload the WASM module. Figure 10b shows that the
memory consumption for idle operators only increased with
0.35MiB when using our unloading and swapping solution.
This is significantly lower than the memory increases for
operators without unloading and swapping. As discussed in
Section IV-D, adding swapping also adds end-to-end latency.
For our experiments, it took about 26ms to swap 1MiB of
data to disk per operator, which can be fully attributed to
the disk read and write overhead of the hard disk drive in
the test server. No latency increase was experienced when
using the containerised solution or the WASM solution without
unloading.

Operators that watch a large amount of Kubernetes cluster
resources will typically keep many of these resources in a
cache that they update once the Kubernetes API notifies that

a resource change took place. This means that these operators
have large amounts of dynamically allocated memory, which
directly translates to a memory upper bound increase, as
discussed in this section. To reduce this memory usage, it is
possible to use our unloading implementation in combination
with a tuned scheduler. However, such a solution will result in
larger latency overhead due to disk writes. Another solution
is to move all operator caches to the parent operator and to
deduplicate the resources in these caches.

V. CONCLUSION

Complex Kubernetes operator workloads are often too
heavy for constrained environments. In this dissertation, a
novel WebAssembly-based Kubernetes operator solution is
proposed. This solution demonstrates that WebAssembly, a
technology used by edge FaaS solutions, can also be used
to reduce the overhead associated with Kubernetes cluster
management. It therefore extends the Wasmtime runtime,
adding support for asynchronous Kubernetes API interaction
and unloading of idle operators. Our test results show a re-
duction in memory footprint of 100 active synthetic operators
from 1405MiB to 227MiB and of 100 idle operators from
1131MiB to 86MiB by using WASM operators instead of
traditional operators. This reduction is due to reduced child
operator complexity and the lower WebAssembly isolation
overhead. We also found that CPU overhead, identified as a
drawback of WASM in prior work [20], does not affect end-
to-end latency for our synthetic-operator workload. Unloading
WASM operators reduces memory usage for idle operators,
while increasing memory usage and end-to-end latency for idle
operators. Therefore, future work is needed to add a predictive
scheduler that fully optimizes this feature.

Our WASM architecture and implementation demonstrate
that initiatives, such as the metacontroller project [8], can
integrate a WASM runtime as an alternative to their current
webhook solution and benefit from reduced complexity and
resource usage. Resource-constrained edge environments are
able to run more WebAssembly operators than traditional
operators, enabling complex workloads. Cloud deployments
become more resource efficient by replacing existing operators
with WASM-based operators. The shared benefits of our
solution across both edge and cloud segments help accelerate
research and adoption.

The biggest open challenges for developing new WASM
operators are the WASM and WASI specifications that are
still under development. In addition, Golang lacks proper
support for WASI, making it more difficult to write operators
in Golang. However, Rust operators can more easily take
advantage of running as WASM modules. We further propose
to obtain additional reductions in memory usage by moving
caching logic from the child to the parent operators.

REFERENCES

[1] E. A. Brewer, “Kubernetes and the path to cloud native,”
in Proceedings of the ACM 6th Symposium on Cloud
Computing. ACM, Aug. 2015, p. 167.

6

[2] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at Google with Borg,” in Proceedings of the 10th Euro-
pean Conference on Computer Systems. ACM, Apr.
2015.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes: Lessons
learned from three container-management systems over
a decade,” ACM Queue, vol. 14, no. 1, pp. 70–93, Jan.
2016.

[4] Shubham, C. Bühler, T. Bannister, and Q. Teng,
“Kubernetes operator pattern,” Mar. 2022. [Online].
Available: https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/

[5] Cloudflare, “Cloudflare workers®,” Mar. 2022. [Online].
Available: https://workers.cloudflare.com/

[6] Fastly, “Fastly compute@edge,” Mar. 2022. [On-
line]. Available: https://www.fastly.com/products/edge-
compute/serverless

[7] D. Srinivas, J. Liggitt, J. Betz, P. Ohly et al., “kube-
controller-manager,” May 2022. [Online]. Available:
https://github.com/kubernetes/kube-controller-manager

[8] A. Yeh, G. Głąb, Mike, J. X. Tee, S. Bartscher, L. Villard
et al., “Metacontroller,” Apr. 2022. [Online]. Available:
https://github.com/metacontroller/metacontroller

[9] C. Ferris and K. Schlosser, “controller-zero-scaler,”
May 2019. [Online]. Available: https://github.com/ibm/
controller-zero-scaler

[10] T. Cramer, xtutu, stephaneyfx, and I. Dmitrii, “The
future trait - asynchronous programming in rust,”
Apr. 2022. [Online]. Available: https://rust-lang.github.
io/async-book/02_execution/02_future.html

[11] T. Ramlot and F. Guardiani, “Wasm operator
- master thesis project - optimising memory
usage of kubernetes operators using wasm,” May
2022. [Online]. Available: https://github.com/thesis-
2022-wasm-operators/wasm_operator

[12] F. Guardiani and M. Thömmes, “Kubernetes
controllers - a new hope,” Jul. 2020. [On-
line]. Available: https://slinkydeveloper.com/Kubernetes-
controllers-A-New-Hope/

[13] S. Akbary, I. Enderlin, M. McCaskey et al., “Wasmer,”
Apr. 2022. [Online]. Available: https://github.com/
wasmerio/wasmer

[14] E. Albrigtsen, T. K. Röijezon, kazk, M. Bagishov,
R. Levick et al., “kube-rs,” Apr. 2022. [Online].
Available: https://github.com/kube-rs/kube-rs

[15] D. Bakker and L. Clark, “The wasi sockets proposal,”
Mar. 2022. [Online]. Available: https://github.com/
WebAssembly/wasi-sockets

[16] M. Hertz and E. D. Berger, “Quantifying the performance
of garbage collection vs. explicit memory management,”
in Proceedings of the ACM 20th Conference on Ob-
ject Oriented Programming Systems and Applications.
ACM, 2005, pp. 313–326.

[17] T. Heo, “cgroupv2 memory,” Oct. 2015. [Online].

Available: https://www.kernel.org/doc/html/latest/admin-
guide/cgroup-v2.html#memory

[18] J. Weiner, “Psi - pressure stall information,” Apr.
2018. [Online]. Available: https://www.kernel.org/doc/
html/latest/accounting/psi.html

[19] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasser-
man, Applied Linear Regression Models, ser. Irwin series
in statistics. Irwin, 2005, ch. Chapter 2.6.

[20] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not
so fast: Analyzing the performance of WebAssembly
vs. native code,” in Proceedings of the USENIX 2019
Annual Technical Conference. USENIX Association,
Jul. 2019, pp. 107–120. [Online]. Available: https:
//www.usenix.org/conference/atc19/presentation/jangda

[21] M. Crosby, L. Liu, P. Estes, D. McGowan, S. Day,
A. Suda et al., “containerd,” May 2022. [Online].
Available: https://github.com/containerd/containerd

7

Contents

List of Figures XVII

List of Tables XVIII

List of Listings XIX

List of Abbreviations XX

1 Introduction 1

2 Comparing Kubernetes isolation techniques 3

2.1 Function isolation: software-based fault isolation . 4

2.2 Process isolation: containers . 6

2.3 Kernel isolation: virtual machines . 7

3 Stateless operator control loop and FaaS 8

3.1 Operator control loop . 8

3.1.1 Controller example: Deamonset controller . 9

3.1.2 Operator example: cert-manager operator . 9

3.2 Stateless design and FaaS . 9

3.3 FaaS platforms . 10

4 WebAssembly 12

5 Existing controller architectures 14

5.1 Containerised operator architecture . 15

5.2 Kube-controller-manager architecture . 15

5.3 Metacontroller architecture . 15

5.4 Controller-zero-scaler architecture . 16

6 Solution architecture: WASM operator 17

6.1 Parent operator asynchronous runtime . 18

6.2 Child operator asynchronous client . 19

7 Implementation 20

7.1 Prior work . 20

7.2 Parent operator: WASM runtime . 20

7.3 Parent operator: host functions . 21

7.4 Child operator: client libraries . 22

8 Resource utilisation 24

8.1 Synthetic-operator workload . 24

8.2 System details . 25

XV

8.3 Memory usage measurement method and analysis . 25

8.4 End-to-end latency measurement method and analysis . 28

8.5 Golang container, Rust container and Rust WASM compared . 28

8.5.1 End-to-end latency . 29

8.6 Cost of isolation . 30

8.7 Automatically unloading WASM modules . 31

8.8 Dynamically allocated memory . 32

9 Open challenges and research directions 34

9.1 Implementation improvements . 34

9.2 WebAssembly standards and proposals . 34

9.2.1 WASI sockets proposal . 35

9.2.2 WASM component model proposal . 35

9.3 WASM compilers . 35

9.4 SFI-based FaaS . 36

Conclusion 37

Bibliography 38

XVI

List of Figures

Figure 2.1 Hierarchical overview of kernel-, process- and function isolation. 3

Figure 2.2 The full workflow for running an eBPF program in the kernel. 5

Figure 2.3 Security and resource isolation visualised for Linux containers. 6

Figure 2.4 Comparison of full virtualisation versus paravirtualisation. 7

Figure 3.1 The event flow of the Kubernetes operator pattern. 8

Figure 3.2 The Deamonset control loop actions. 9

Figure 4.1 Overview of the WASM runtime components. 12

Figure 5.1 Designs of existing Kubernetes operator and controller architectures. 14

Figure 6.1 Design of our WASM operator architecture. 17

Figure 6.2 The design of the parent operator incorporates aWASM runtime event loopwhich repeatedly performs

actions 1-8; making it possible to asynchronously call host functions from within a WASM instance. . . 18

Figure 6.3 The design of the child operator allows to perform asynchronous actions in collaboration with the

parent operator. 19

Figure 7.1 The operator libraries are split between the parent and child operator and consist out of existing WASI

libraries and our own custom libraries based on kube-rs. 22

Figure 8.1 The test setup for the synthetic-operator workload, each operator is responsible for the propagation

of changes from one namespace to another. 24

Figure 8.2 The memory usage of a single run for an operator, the operator idles after being active for 7 minutes;

samples are selected such that transient behaviour is not captured. 26

Figure 8.3 The distribution of the idle memory WASM operator on the right (b) is a mixture of Gaussians because

of temporary memory increases such as shown in the figure on the left (a). 27

Figure 8.4 The memory 95% upper bounds for active and idle periods and the selected memory samples they

are based on. 27

Figure 8.5 The memory 95% upper bounds of the different languages/ isolation techniques are ordered as fol-

lows: Rust WASM < Rust container < Golang container; all operators use less memory when idle. . . . 28

Figure 8.6 The end-to-end latency of WASM operators is identical to Rust operators. 29

Figure 8.7 The memory 95% upper bounds of non-modular, container-modular and WASM-modular operators

show that WASM outperforms container-based isolation, but additional improvements are possible

since having no isolation is still much more efficient. 30

Figure 8.8 The memory 95% upper bounds of the WASM operator with automatic unloading enabled/ disabled;

very frequent unloading causes more memory usage, for idle operators it can save memory. 31

Figure 8.9 The end-to-end latency for active WASM operator with unloading enabled/ disabled. Actively unload-

ing and swapping modules introduces significant latency. 32

Figure 8.10 The effects of allocating 1MiB of heap memory in each operator on the 95% upper bounds. 33

XVII

List of Tables

Table 2.1 The properties of the different Kubernetes isolation techniques. 4

Table 3.1 The most used serverless platforms amongst backend developers in 2021 Q1 annotated with their

underlying technology and isolation techniques. 10

Table 8.1 The details of our end-to-end test and benchmarking system. 25

XVIII

List of Listings

Listing 7.1 Our custom extensions to the WASM parent-child interface. 21

XIX

List of Abbreviations

Abbreviation Explanation

AOT Ahead Of Time

API Application Programming Interface

ASI Address Space Isolation

AWS Amazon Web Services

cgroup Control groups

CNCF Cloud Native Computing Foundation

CPU Central processing unit

eBPF extended Berkeley Packet Filter

FaaS Functon as a Service

I/O Input output

JIT Just In Time

kube Kubernetes

KVM Kernel-based Virtual Machine

NaCl Native Client

OCI Open Container Initiative

PoC Proof of Concept

PSI Pressure Stall Information

RBAC Role Based Access Control

rBPF Rust eBPF VM

SFI Software-based Fault Isolation

TCP Transmission Control Protocol

VM Virtual Machine

WASI WebAssembly System Interface

WASM WebAssembly

XX

1
Introduction

The adoption of new technologies relies heavily on potential resulting cost savings. Monetary and environmental cost reduc-

tions have been achieved by increasing computational density in cloud computing. Lower latency costs have stemmed from

advancements in telecommunications, such as 5G, and the dispersion of cloud to fog, edge and IoT. These two innovation

flows have independently led to widely accepted solutions. Here lies an opportunity for cross-pollination between projects.

Cloud computing utilizes cloud orchestration for optimal resource allocation and server cluster management. Kubernetes [1],

which originated from Google Borg [2, 3], is such an extensible cluster orchestrator. Its extensible architecture parts a cluster

in a control plane and a worker plane. Edge environments, which are typically large complex clusters with limited resources,

can benefit significantly from having an orchestrator to manage complexity and size.

However, the primary orchestration targets of Kubernetes are high-resource clusters. Running Kubernetes on low-resource

clusters suffers from relatively high control plane operator overhead costs, which hinders adaptation in the edge market

segment. In complex cloud-native application deployments, operators [4] are used to automate actions on the Kubernetes

cluster state, that would otherwise be performed by a human operator. These operators are one of the main cost drivers

of the Kubernetes control plane. To react to changes in the Kubernetes cluster state, the operators have to run as long-

living processes. Even if the operator’s control loop is idle, the container and process still use cluster resources. For complex

applications that use many operators, these overhead costs quickly accumulate and account for a significant portion of the

resource utilization. This is especially problematic for low resource deployments.

Since global edge application configuration and deployment is a complex task, it is often abstracted by the service provider

and included in a Function as a Service (FaaS) offering. FaaS applications are better suited for low-resource edge envi-

ronments thanks to their fast on-demand scaling properties. Specifically, some edge FaaS platforms use WebAssembly, a

browser technology designed as a portable binary code format that can be assembled from a range of programming lan-

guages and that is well suited to resource-constrained environments. On edge FaaS platforms, like Cloudflare Workers [5]

and Fastly Compute@Edge [6], WebAssembly is used to securely isolate workloads with reduced overhead and scale-to-zero

capabilities.

The goal of this dissertation is to investigate if WebAssembly FaaS approaches can be used tomake Kubernetesmore suitable

for the edge. Specifically, it answers the following research questions:

RQ.1 How does WebAssembly isolation compare to traditional Kubernetes isolation techniques?

RQ.2 How do operator workloads compare to FaaS workloads?

1

1 Introduction

RQ.3 What is the current position of WebAssembly in the FaaS market?

RQ.4 How can Kubernetes use WebAssembly to run operator logic?

RQ.5 How does WebAssembly operator overhead compare to regular operator overhead?

RQ.6 What situations affect the overhead difference between WebAssembly and regular operators?

RQ.7 How does unloading modules and swapping modules affect the memory footprint of WebAssembly operators?

In Chapter 2, Software Fault Isolation and more particular WebAssembly is compared to the other isolation techniques that

can be used with Kubernetes. Chapter 3 investigates the resemblance between Kubernetes Operator workloads and typical

Function as a Service workloads and identifies the position of WebAssembly in the FaaS market. Chapter 4 explains the main

components involved in running a WebAssembly application starting from source code. Chapter 5 provides an overview of

multiple existing design patterns for running controllers and operators on Kubernetes. Chapter 6 explains the architecture of

our WebAssembly-based operator solution and Chapter 7 discusses how this architecture is implemented. In Chapter 8, our

benchmark results of the WebAssembly runtime are discussed, as well as the methodology to achieve these results. Lastly,

the remaining open challenges and research directions are discussed in Chapter 9.

2

2
Comparing Kubernetes isolation techniques

Combined execution of multiple workloads generally requires isolation between components into protection domains [7].

Figure 2.1 shows the kernel isolation, process isolation and function isolation techniques and how they can be combined hi-

erarchically. In this chapter, the function isolation technique, more particular WebAssembly (WASM), is compared to the other

isolation techniques that can be used with Kubernetes, answering Research Question 1. Kubernetes by default uses process

isolation, in the form of containerised workloads [8]. Additionally, extensions like KubeVirt [9] and Kata Containers [10]

enable Kubernetes to manage Kernel-based Virtual Machines (KVM) [11]. Recent additions to the Kubernetes ecosystem, like

Krustlet [12, 13] and CRUNW [14], add support for WebAssembly [15]. However, theseWASM solutions still lack a lot of features,

because they only support the current, unfinished [16] version of the WebAssembly System Interface (WASI) [17]. Additionally,

many Kubernetes service meshes use the Envoy proxy [18], which uses WebAssembly plugins to add programmability where

configuration options alone are not sufficient.

Figure 2.1: Hierarchical overview of kernel-, process- and function isolation.

To compare the different isolation techniques, multiple metrics and properties need to be considered. The first metrics to

compare are the overhead costs per isolation unit. Overhead can drastically reduce deployment density if it is extensive

for the most limited resource. Secondly, the initialisation time of an isolation unit is compared. This initialisation time

is related to the speed of elasticity of an isolation technique, which is inversely correlated to the over-commitment rate

necessary for a certain level of service. Each of the isolation techniques guarantees in its own way the three sub-forms of

isolation: fault isolation, resource isolation and security isolation. Soltesz et al. [19] explains the three forms of isolation

as respectively the ability to limit buggy logic’s effects, the ability to enforce fair resource consumption and the ability to

limit access/ information leakage. Lastly, as indicativemeasure for the attack surface, the complexity of the environment API,

3

2 Comparing Kubernetes isolation techniques

which is expressed as the number of different endpoints, is compared. The environment API is the API used by the sandboxed

application to interact with the environment.

isolation unit function process kernel

implementation WASM JavaScript eBPF container VM

API call WASI Deno op

helper

functions syscall VM exit hypercall

API # endpoints 461 [20] 347 [21] 179 [22] 390 [23] 56 [24]

API latency2 (# cycles) 6 [25] 72 [26] 1650 [27] 765 [26]

Fault isolation [19] software hardware hardware

Resource isolation [19] Linux cgroups [28] hardware virtualisation

Security isolation [19] Linux namespaces [29] full

initialisation time [30] 1ms 100ms 100ms - 10ms (Unikernel)

memory footprint [30] KB MB MB - KB (Unikernel)

Table 2.1: The properties of the different Kubernetes isolation techniques.

1 WASI API is still unfinished [16]

2 CPU cycle measurements are for the older Intel Sandy Bridge architecture; function-isolation latency does not include

instrumentation overhead

2.1 Function isolation: software-based fault isolation

To achieve fault isolation between functions, functions are sandboxed through instrumentation of instructions that can

unintentionally or mal-intentionally alter the execution of another function. This technique is called Software-based Fault

Isolation (SFI) [31]. These additional checks are inserted when the machine code is generated to run on the processor.

The compilation can happen ahead of time (AOT) or just in time (JIT), depending on the implementation. JavaScript and

WebAssembly, both examples of SFI solutions, are web standards supported by the most popular browsers. The Linux kernel

supports in-kernel programming through extended Berkeley Packet Filters (eBPF) [32], which is also an SFI solution. Due to

the advanced standardisation combinedwith existing experience and built communities, inmost cases reusing these existing

SFI solutions makes more sense than creating a new solution. Hence, lots of effort has been invested in running JavaScript

and WebAssembly outside of the browser and running eBPF outside of the kernel. NodeJS is the most popular server-side

JavaScript/ WASM runtime. However, it does not provide any resource or security isolation. On the other hand, Deno is a new

upcoming JavaScript/ WASM runtime that does provide resource and security isolation [21] similarly to how a browser does.

Both solutions reuse the V8 engine developed for use in the Chrome browser. Deno implements the standardised JavaScript

interface using a set of underlying environment API functions called Deno ops. This ops interface is where Deno enforces

its resource isolation. Additionally, server-side engines like Wasmtime have been build specifically for WebAssembly. For

Wasmtime, the details on resource and security isolation depend on the runtime implementation. Lastly, rBPF is an eBPF

runtime that runs outside of the Kernel, yielding a lightweight SFI runtime that can target IoT devices [33].

4

2 Comparing Kubernetes isolation techniques

WASM [15] and its NaCl [34] predecessor are supported as the compilation target of multiple high-level programming lan-

guages. Existing codebases can be recompiled to these targets for execution in the browser or for server-side SFI with some

effort. WASM is also used to protect components within an executable file by preventing error propagation. It prevents third

party libraries from possibly compromising whole applications, like Firefox [35] and Gobi [36]. Through SFI it is possible to

isolate logical components that are smaller than processes. Recent improvements to WASM runtimes prove that this can be

done with minimal overhead [37, 38], which makes it well suited for edge FaaS solutions. For example, as an optimisation,

guard zones are used to reduce the number of checks required for secure memory operations [39]. All components run in the

same process, meaning no context switching is required. Calling WASM host functions, is equally expensive as executing a

call instruction, see Table 2.1. Note that in addition the overhead of the call instruction, checks that make sure the call is per-

mitted, have to be executed. The WASM System Interface is a standardised set of WASM host functions, the implementation

of these host functions is left to the WASM runtime implementer, which is also responsible for implementing resource and

security isolation for those functions. WASI is further explained in Chapter 4. The main security pain point of SFI are specu-

lative execution attacks like Spectre [40] and Meltdown [41]. These attacks can be used to circumvent the instrumentation

added by a compiler. A couple of solutions to mitigate these attacks, have been proposed by Narayan et al. [42]. Chromium

moved to the Site Isolation browser architecture, a hybrid isolation solution that uses process isolation between sites and

function isolation within sites [43, 44]. Cloudflare its FaaS solutionmoved to Dynamic Process Isolation [45], which is further

explained in Chapter 3.

Figure 2.2: The full workflow for running an eBPF program in the kernel.

Extended Berkeley Packet Filter is, similar to WASM, a compilation target of the LLVM compiler [46, 47]. Which means that

eBPF programs can be compiled from high-level languages like C and Rust [48]. These eBPF programs can be loaded in the

kernel using the bpf syscall. The kernel verifies the eBPF program before successfully completing the load procedure. The

verifiermakes sure the eBPF program is limited in complexity and does not block the kernel. Depending on the configuration,

the eBPF program is executed when a pre-defined hook or a kprobe/ uprobe event occurs [32]. To execute an eBPF program,

the eBPF program is compiled to machine code by a JIT compiler in the kernel. This full workflow is visualised by Rudenko

et al. [32] in Figure 2.2. An eBPF program cannot call arbitrary kernel functions, instead it has to use the helper functions

API [22], as displayed in Table 2.1. The main goal of eBPF is to add programmability to the kernel. This programmability is

5

2 Comparing Kubernetes isolation techniques

often necessary for covering all possible use cases while maintaining a sane amount of configuration options. Compared to

WebAssembly, eBPF can be slightly more performant. However, running eBPF programs in userspace requires a lot of extra

effort and imposes additional restrictions. Running WebAssembly in userspace is generally a more sensible choice [49].

2.2 Process isolation: containers

Isolation between processes is often referred to as Operating System Virtualisation [19]. Through paging, the operating

system makes sure that processes are Address Space Isolated such that one process cannot alter the memory of another

process, yielding fault isolation. The environment API used by a process is called the syscall API. The Linux syscall API is much

more mature compared to the WASI API used by WebAssembly. Process isolation achieves security isolation by limiting the

resources that are accessible via the syscall API. In Linux, there are 8 namespace types [29] that can each form a protection

domain for a type of resource, providing more fine-grained security isolation than virtual machines. Furthermore, resource

isolation is provided by Control Groups (cgroup) [28], which are used to define resource utilisation constraints. A set of Linux

processes with their own namespaces and cgroup limits, has all three isolationmechanisms enabled and is called a container

(see figure 2.3; based on Bikram [50]).

Figure 2.3: Security and resource isolation visualised for Linux containers.

Adding namespaces and cgroups to processes, introduces very limited overhead [51]. Containers are the default isolation

technique used by Kubernetes. In Kubernetes however, additional overhead is introduced. The smallest unit of Kubernetes

deployment is called a Pod. Pods contain one or more containers that share network and IPC namespaces. A containerd-shim

instrumentation process is added to each container, and per pod a pause container is added, both adding extra overhead. In

WebAssembly, this overhead can be circumvented by modifying the WASM runtime to optimally implement the required fea-

tures. Generally, the extensibility of the WebAssembly runtime API and implementation can be very advantageous compared

to the fixed Linux syscall API and kernel.

Table 2.1 shows that context switches between processes are about 10 times more lightweight than between VMs. Also,

resource allocation for containers is more elastic than for VMs, thanks to dynamic fine grained resource isolation. Lastly, all

kernel logic can be shared between processes, further reducing overhead. In general, containers are more resource efficient

than VMs. The performance benefits are countered by additional complexity and thus possible security issues. The full syscall

API, for example, is much more complex than the API exposed to VMs. For each of these syscalls, the kernel has to enforce

namespace- and cgroup constraints. That makes it hard to guarantee the same level of security offered by VMs. All processes

6

2 Comparing Kubernetes isolation techniques

are exposed to the full syscall API. The gVisor [52] project can be used alongside containers to reduce this syscall attack

surface. Internally, gVisor follows the privilege separation pattern [53, 54], combined with seccomp filters. Privileged and

non privileged parts of gVisor communicate through inter-process communication [55]. All these in-directions add overhead

in return for better security.

2.3 Kernel isolation: virtual machines

For isolation between kernels, Fault isolation is implemented in hardware using nested paging [56], yielding Address Space

Isolation (ASI) between VMs. Resource isolation is done through allocation of dedicated physical resources to a VM or through

allocation of virtualised hardware devices that share an underlying physical device. Assuming no unintended crosstalk, access

to resources that are not allocated to the VM is fully shielded, yielding full security isolation [19]. The API endpoint counts

in Table 2.1 show that the attack surface of a virtual machine (VM) is smaller than for container isolation [57]. However, the

table also shows that context switching based on a VM exit, are quite costly in terms of CPU cycles. The use of special client

paravirtualisation drivers such as virtio [58] can reduce overhead. Figure 2.4 based on Jones [59] shows the differences

between full virtualisation and paravirtualisation. These paravirtualisation drivers use hypercalls instead of VM exits to

perform context switches, which increases the attack surface by also adding hypercalls as possible entry-points [60, 61]. On

Intel processors, a hypercall is performed by executing the vmcall assembly instruction, which switches context to the VM

monitor.

Figure 2.4: Comparison of full virtualisation versus paravirtualisation.

Compared to containers, virtualisation introduces more overhead, especially when dealing with latency-sensitive or I/O in-

tensive applications [51]. Great amounts of effort have been invested in reducing the overhead related to virtualisation. The

Firecracker [62] microVM solution reports overheads of 150ms start-up time and a per-VM memory overhead of 3MB. The

start-up time can be improved to 50ms through the use of Unikernels [63]. Both examples match the order of magnitude

described in Table 2.1 which originates from Shillaker et al. [30].

7

3
Stateless operator control loop and FaaS

The workload pattern of an operator can be divided into common controller logic and operator-specific logic. The common

logic is the same for most operators, while the operator-specific logic is unique per operator and contains the know-how

encoded in that operator. In this chapter, the common loop pattern of an operator is discussed and compared to the FaaS

function invocation pattern. Section 3.1 discusses the operator control loop. In Section 3.2, it is compared to FaaS, answering

Research Question 2. Section 3.3 identifies the position of WebAssembly in the FaaS market, answering Research Question 3,

by discussing the most used FaaS solutions.

3.1 Operator control loop

Kubernetes operators adhere to the controller control loop pattern: ”In Kubernetes, controllers are control loops that watch

the state of your cluster, then make or request changes where needed. Each controller tries to move the current cluster state

closer to the desired state.” [64]. For operators, the watched state of the cluster typically consists of the custom resources

associated with the operator. Changes to these custom resources trigger a reconcile loop iteration that results in a state

update in case the cluster has not yet converged to the desired state, as shown in Figure 3.1 by Perzyna [65]. The reconciliation

loop body contains all the operator-specific logic.

Figure 3.1: The event flow of the Kubernetes operator pattern.

8

3 Stateless operator control loop and FaaS

3.1.1 Controller example: Deamonset controller

A simple example of a controller workload is the Kubernetes Deamonset controller, which is displayed in figure 3.2 by Rawat

[66]. The controller looks for Deamonset resources and creates the desired amount of Pod resources. Operators, like the cert-

manager operator 3.1.2, generally house more complex logic, as they have an equivalent function to what human operators

would otherwise do manually. However, it is not always possible to distinguish between controllers and operators.

Figure 3.2: The Deamonset control loop actions.

3.1.2 Operator example: cert-manager operator

The cert-manager operator [67] is an example of an advanced operator that manages certificate renewal for the certificates

in a Kubernetes cluster. This operator manages multiple CRDs and executes multiple reconciliation loops. The operator

waits for new or changed Custom Resources (CRs) and issues new certificates if needed. Additionally, it makes sure that

certificates that are about to expire are reissued. The complexity of the operator stems from the variety of configuration

options combined with the variety of issuer integrations.

3.2 Stateless design and FaaS

Because of Kubernetes’ can-always-fail design, an operator application is not supposed to hold any internal state across

reconciliation iterations except for caches. The operator generally uses the Kubernetes API to store state. This theoretically

should allow running each iteration of the reconciliation loop without storing state in between. This property also holds

9

3 Stateless operator control loop and FaaS

for FaaS systems, where there is no guarantee for state preservation in between function calls. This implies that advance-

ments to the state-of-the-art FaaS solutions are prime candidates to improve Kubernetes operators. In Section 3.3, the most

used offerings in the FaaS market with their underlying technologies are listed. The section also discusses the position of

WebAssembly within that FaaS market.

3.3 FaaS platforms

FaaS platform used by [68] Underlying technology Tenant isolation Function isolation

AWS Lambda 54% Firecracker [62] VM

Google Cloud Functions 41% gVisor [69] container

Azure Functions 35% Hyper-V [70, 71] VM container

Google Cloud Run 30% gVisor [69] container

self-hosted platforms 22%

Cloudflare Workers 16% V8 [5] SFI

Table 3.1: The most used serverless platforms amongst backend developers in 2021 Q1 annotated with their underlying

technology and isolation techniques.

Table 3.1 lists the most used FaaS platforms among backend developers. The platforms in the table are annotated with their

underlying technology and isolation technique, as explained in Chapter 2. All three isolation techniques are used by at least

one platform. Each platform has its perks and drawbacks, often related to the underlying isolation technology. Analogously,

for Kubernetes operator isolation, different isolation techniques yield different (dis)advantages.

AWS lambda is the most used platform. The underlying microVM technology of the platform was open-sourced under the

name Firecracker [62]. Lambda supports execution of a wide range of programming languages and can be extended with

custom OCI-images defining a new runtime and/ or libraries [72]. The latest version uses VM isolation between each function,

both within and between tenants. A preceding version instead used container isolation within a tenant [71]. Cold-start

latencies are omitted by swapping the contents of a VM instead of rebooting. This content-swapping technique, however,

requires a pool of already running VMs. It therefore is a great solution for creating a FaaS platform on large scale but lacks

the small-scale potential that is required for low-memory Kubernetes clusters. AWS also offers an OCI-image compatible

FaaS solution, called AWS Fargate. The main selling point of this solution is that it can directly run all existing applications

packaged as an OCI-image. OCI-images are an open format that can be run on multiple platforms, limiting vendor lock-in.

AWS Fargate uses, identically to AWS lambda, microVMs for isolation by utilizing Firecracker [73]. Lambda also has an edge

variant called Lambda@Edge, which uses the microVM technology to globally execute JavaScript or Python FaaS functions

from 13 edge locations. Lastly, AWS offers an edge FaaS solution called Cloudfront Functions which uses process-based

isolation model to execute serverless JavaScript functions at 218+ edge locations [74]. Interestingly, AWS chose process-

based isolation over software-based fault isolation by reason of better security like higher resilience against speculative

10

3 Stateless operator control loop and FaaS

execution attacks [75]. This is an important challenge to overcome when using WASM isolation.

In second and fourth place there are Google FaaS solutions, which are running on Borg, which is Google’s internal container

orchestrator and predecessor of Kubernetes [3]. Additionally, gVisor [52] is used as an extra isolation layer, improving security

isolation [69]. These FaaS solutions are also compatiblewith applications packaged as anOCI-image. The cold-start overhead

of starting containers and runtime overhead of gVisor, as discussed in Chapter 7, cause this solution to be less efficient.

Microsoft’s Azure Functions are in third place with their solution that uses VM isolation cross-tenant and container isolation

for functions of a same tenant. Before May 2018 the platform shared VMs across tenants [70, 71], which was likely changed

due to security concerns.

The last entry included in Table 3.1 is Cloudflare’s serverless edge solution. The CloudflareWorkers platform is a JavaScript and

WebAssembly SFI solution. It builds on the V8 engine that is also used by the Chrome browser [5]. Other commercial offerings

that use SFI are Fastly Compute@Edge [6] and Deno Deploy [76]. Deno Deploy builds on the open-source Deno runtime [21],

which runs on top of v8 as discussed in Chapter 2. To mitigate speculative execution vulnerabilities in V8 [40, 41, 77], the

Cloudflare Workers platform uses Dynamic Process Isolation [45]. Dynamic Process Isolation detects malicious programs and

runs these in a separate process, preventing speculative execution that could circumvent SFI. This hybrid approach allows

benefiting from the low SFI overhead, without the security trade-off. Fastly Compute@Edge provides a FaaS platform for

running WASM modules, it therefore uses the open-source Lucet WASM engine [78]. As discussed in Chapter 2, deduplicating

and sharing logic between sandboxes is easier for SFI solutions compared to container or VM solutions. The host function call

overhead is minimal and they are simple to define through extension of the SFI runtime. SFI FaaS runtimes, for example, can

deduplicate the networking and routing logic, and drastically reduce the complexity of the applications that run sandboxed.

This is promising for Kubernetes WASM operators, which can also benefit from moving complexity from the operator to the

shared operator runtime.

Fifth place is for self-hosted solutions. Many of these self-hosted FaaS platforms like Fission [79], OpenFaaS [80], and Kna-

tive [81] build on top of the Kubernetes ecosystem. By default, they use containers to run FaaS functions distributed as OCI-

images, vm-based isolation is supported through the use of a Kubernetes vm-based OCI runtime like kata containers. Since

Krustlet [12] and CRUNW [14] require compilation to WASM and still have limited support for sockets, using SFI as underlying

isolation technique is not yet supported for these Kubernetes-based FaaS platforms. Other solutions like OpenWhisk [82]

and Nuclio [83] support deployment on Kubernetes, but do not depend on Kubernetes for isolating FaaS workloads, making

it harder to switch the underlying isolation technique away from containers. Self-hosted WASM-based FaaS solutions like

Faasm [30], Sledge [84] and Spin [85] aim to provide an open-source alternative to the Cloudflare Workers [5] and Fastly

Compute@Edge [6] commercial offers.

11

4
WebAssembly

A full WebAssembly solution consists out of a lot of different components. This chapter aims to demystify the high-level

workings of WebAssembly solutions and the technical terms used for internal components. Figure 4.1 shows the full flow,

from START to DONE, for running a Rust program using a WebAssembly runtime.

Figure 4.1: Overview of the WASM runtime components.

The components and their interactions as shown in Figure 4.1 are explained in detail below.

WASM module: AWASMmodule is a portable binary-code file that can be compiled from a range of programming languages

and executed by a WASM runtime.

to-WASM compiler: Programming languages like Rust, C, C++, Golang, ... can be compiled to WASM by configuring the com-

pilation target architecture of their default compilers. Most of these compilers first compile the high-level language

to the LLVM-IR and use LLVM to compile to the target architecture. The LLVM compiler supports WASM [47], which

makes it easier to add support.

WASM-to-bytecode compiler: To run a WASM module, the binary WASM-code has to be translated to instructions that can

be executed by the target machine, like x86-64. Herefore, a compiler has to perform this translation. This can be

done ahead-of-time or just-in-time. The compiler also has to generate instructions that prevent insecure operators.

This way Software-based Fault Isolation is implemented.

12

4 WebAssembly

WASM instance: An instantiated version of a WASM module. One module can have multiple instances, but each instance

originates from one module.

WASM engine: The WASM engine is responsible for running the WASM module. It uses the WASM-to-bytecode compiler to

generate the instructions. It initiates the memory layout of the WASM instance and initiates the objects and functions

the instance needs. It also provides an API to interact with the WASM instance.

WASM runtime: The WASM runtime is responsible for letting the WASM instances interact with the environment/ outside

world. It therefore provides a set of host functions that can be called by the WASM instance. Similarly, the WASM

instance can expose a set of functions that can be used by the runtime to let the WASM instance perform a certain

action. The WASM runtime can also directly read and write to the linear memory used by the WASM instance via the

WASM engine. This way it can copy complex values into the memory of the WASM instance.

WASM host (imported) function: Host functions are functions implemented by the WASM runtime and provided via the

WASM engine to a WASM instance. These host functions can be referred to, directly in the WASM binary, and it is the

WASM engine’s task to make sure that they are run when that part of the WASM binary is executed. The instance can

use these functions to perform actions that alter the environment, for example printing text to the screen.

WASM module (exported) function: Functions exported by a WASMmodule are defined in the WASM file and can be invoked

by the runtime via the engine. These functions, when called on the WASM instance, will execute the logic as defined

in the WASM module. They are required by the runtime, such that it can initiate an action or to transfer control. For

example, WASM modules export an entry point function that should be called to start executing the module.

WASI: Web Assembly System Interface is a standardised set of host functions, used by non-browser runtimes. Most of the

popular programming languages have a standard library that supports WASI as compilation target, meaning that the

appropriate WASI host functions are used to perform environment interactions when the standard library functions

are called by the WASM instance. For example, a controller running in a WASM sandbox can use the WASI interface to

read environment variables set by the runtime and uses this WASI interface to log messages to stdout or a log file.

At the time of writing, WASI is still unfinished. Most limiting is that it does not yet include host functions for working

with sockets [16].

The current WASM standard only supports passing very simple arguments (integers and floats) for imported and exported

functions as arguments or as return value. This means that more complex values have to be passed as references to memory

locations inside the WASM sandbox, such that the runtime can fetch the complex values there. If the runtime wants to pass

a complex value to the WASM module, it first has to ask the module to allocate a region of memory inside the sandbox. The

complex values that are stored at those memory locations, have to be encoded before sending, and decoded when received.

The libraries for serialising host function arguments and deserialising the results of a host function call, thus have to be

functionally identical in both the WASM host and the WASM client libraries. The WebAssembly community has spent a lot of

effort on creating a canonical ABI to (de)serialize complex values in all languages the same way. Once this is fully supported

and standardised by WebAssembly it will further simplify creating new WASM runtimes with custom host functions. The

canonical ABI is part of the WASM component model proposal which is further discussed in Section 9.2.2.

13

5
Existing controller architectures

In Kubernetes, the cluster-state is stored in a distributed database and is query-able via the Kubernetes API server. Au-

tomated operations performed on that state are typically done by controllers. Some of these controllers are part of the

Kubernetes core and are installed as part of all Kubernetes deployments. Most Kubernetes deployments also extensively

utilize 3rd party controllers that extend the Kubernetes control plane, some of which are operators. This extensibility is one

of Kubernetes’ most valuable properties. In Section 5.1 the design of 3rd party operators is explained, Section 5.2 explains

the core Kubernetes controllers’ design. Section 5.3 shows the architecture of controllers that are part of the metacontroller

project [86] and Section 5.4 shows the architecture of the controller-zero-scaler project [87].

(a) containerised operator (b) kube-controller-manager

(c) metacontroller (d) controller-zero-scaler

Figure 5.1: Designs of existing Kubernetes operator and controller architectures.

14

5 Existing controller architectures

5.1 Containerised operator architecture

Kubernetes operators automate actions that a human operator would otherwise perform on a Kubernetes cluster. The

operators often comewith their respective Kubernetes custom resources. Figure 5.1a, shows the default Kubernetes operator

architecture. Each operator runs in its own container and its own Kubernetes pod. This architecture allows to easily add or

remove operators by adding or removing pods to Kubernetes. Each operator is isolated, and its capabilities can be limited.

However, this architecture introduces quite some overhead. Each operator runs in its own pod and has its own Kubernetes

state cache and low-level operator logic, resulting many operators that have a lot of duplicated logic in common. Most

operator implementations limit the number of concurrently running instances of an operator to a single instance, with no

option to scale horizontally. If a second instance were added, it would idle because of leader-election. This is done to prevent

two operator instances from simultaneously updating the same Kubernetes resources, resulting in update conflicts that slow

down the reconciliation progress. However, to make progress it is necessary that one instance is running at all times. The

operators thus have to run continuously, wasting valuable resources.

5.2 Kube-controller-manager architecture

The core control loops, shipped with Kubernetes are combined in a single kube-controller-manager binary [88], see Fig-

ure 5.1b. This reduces size and operational overhead and simplifies management and deployment. Thanks to all controllers

being in a single binary and being run as as single process, code can be deduplicated, and caches and Kubernetes informers

can be shared. However, this design comes with some limitations. All controllers have to be known at compile time. It is not

possible to dynamically add a control loop to the set of running controllers, without creating a new version of the binary and

restarting all running controllers. If one of the controllers fails, this will cause the full kube-controller-manager process to

fail and will affect all other running controllers. Lastly, untrusted controllers can overtake the full kube-controller-manager

process because of lack of isolation between controllers.

5.3 Metacontroller architecture

Metacontroller [86] is a project that aims to simplify the development and creation of new Kubernetes controllers. It consists

of a main controller, the metacontroller, and a set of simple Lambda controllers. These Lambda controllers implement the

business logic. They are simple applications that act as a webhook. A Lambda controller is typically run in a separate pod

and is language agnostic. Similarly to the architecture in Section 5.1, the Kubernetes pods that serve the webhooks have to

continuously run, introducing overhead. Alternatively, the webhooks can be hosted by a (self-hosted) serverless platform,

as described in Section 3.3, to achieve a lower overhead solution. The simple Lambda controllers do not each watch their set

of Kubernetes resources, as is the case for the operator architecture described in Section 5.1. Instead, this low-level operator

logic is implemented in the metacontroller, which calls the webhooks containing the business logic when needed. Using the

configuration in the form of themetacontroller Kubernetes API resources, themetacontroller determines which webhooks to

15

5 Existing controller architectures

use and when to use them. Thesemetacontroller Kubernetes API resources can be used to dynamically add or remove control

loops. The metacontroller houses multiple control loops, like the kube-controller-manager architecture from Section 5.2.

5.4 Controller-zero-scaler architecture

The controller-zero-scaler project [87] is a concept project developed by IBM. It tries to solve the operator overhead problem

by dynamically downscaling the traditional operator deployments. The architecture starts from the operator architecture

described in Section 5.1. Additionally, the controller-zero-scaler controller is running in the cluster and watches the Kuber-

netes API for changes. If it detects that the resources managed by an operator have not been altered for a long period of

time, it downscales that operator deployment to zero instances. This results in Kubernetes stopping that operator, freeing

resources. If the controller-zero-scaler notices new changes, it upscales the deployment, such that the necessary operator

logic is executed. Note that this project is not actively developed andmore of a concept than a project used in production. The

main advantage of the setup is that the resource utilization of idle operators is fully eliminated. However, the downscaling

has to happen infrequently, because of the overhead that results from stopping and restarting the operators. All cached

cluster state is also lost when restarting, resulting in additional load on the Kubernetes API server.

16

6
Solution architecture: WASM operator

Figure 6.1: Design of our WASM operator architecture.

TheWASMoperator architecture presented in this dissertation and visualized in Figure 6.1 attempts to realize all the beneficial

aspects of the four architectures described in Chapter 5. This chapter explains how our architecture uses WebAssembly to

achieve this, answering Research Question 4. The main parts of the architecture are the parent operator and the child

operators. The child operators run as WASM instances in the WASM runtime embedded in the parent operator. We use an

existing WASM runtime implementation as embedded runtime. The beneficial aspects are listed below.

Isolation overhead: All child operators run in the same process as the parent operator. This process runs inside a single

container in a single Kubernetes pod. Isolation is provided by the WASM engine, eliminating the overhead due to

container isolation, similar to the kube-controller-manager architecture.

Modularity: The WASM runtimemakes it possible to add or remove child operators without interfering with the other active

child operators. This modularity is missing from the kube-controller-manager architecture, but is provided by the

other architectures mentioned in Chapter 5.

Simple child operator: In our architecture, the parent operator extends the WASM runtime with host functions that can

be used by the child operators to communicate with the Kubernetes API. Low-level operator logic is moved to the

parent operator. This reduces the complexity and overhead of the client operators similarly to the metacontroller

architecture.

Scale-to-zero: To limit the overhead of inactive operators, our architecture allows to dynamically unload inactive operators,

similar to the controller-zero-scaler architecture.

17

6 Solution architecture: WASM operator

In order to efficiently make Kubernetes API requests, we want child operators to perform them asynchronously. Existing

WASM runtimes offer no support for asynchronous calls or offer a solution that is incompatible with idle module unload-

ing. Therefore, we created a new solution that adds support for asynchronous operations to the WASM runtime that is

embedded in our parent operator. By extending the WASM runtime, we allow the child operators to wait for host functions

asynchronously. Section 6.1 describes how we extended the WASM runtime, such that it meets these requirements and ad-

ditionally supports unloading idle operators. Section 6.2 explains how the client libraries within the child operator interact

with the parent asynchronous runtime.

6.1 Parent operator asynchronous runtime

Figure 6.2: The design of the parent operator incorporates a WASM runtime event loop which repeatedly performs actions

1-8; making it possible to asynchronously call host functions from within a WASM instance.

The parent operator architecture extends aWASM runtime, as described in Chapter 4, by adding support for asynchronous host

functions and support for unloading of idle modules. Figure 6.2 shows how the parent operator manages the asynchronous

operations of a child operator and unloads an inactive child operator after a long period of inactivity. The main components

of the parent operator are the WASM engine, the host functions exposed to the WASM instance and the work queue. For the

WASM engine component and some of the host functions, existing solutions can be used.

The solution works as follows: Each WASM module has an entry point that executes the main function in the child operator,

shown in Figure 6.2 as 1©. Environment interactions happen through the calling of WASM host functions 2©. Some of these

actions are asynchronous and do not directly yield a result. These asynchronous actions are started and added to the work

18

6 Solution architecture: WASM operator

queue 3©, directly returning control to the WASM module 4©. After executing all synchronous logic, the WASM execution

stops and the control is returned to the event loop 5©. This loop checks if any of the actions in the work queue finished

6© and passes the results of that finished action 7© back to the WASM engine 1©, reloading the child operator in case it

had been previously unloaded 8©. When returning to WASM, a new set of synchronous actions are performed by the engine.

Long-running operators repeat this process indefinitely. These operators are always waiting for new asynchronous inputs,

like events in a watch stream.

The runtime might detect that a certain child operator has not been receiving any asynchronous results over a long period

(marked as�). This is indicative for an operator that reached a steady state in its reconciliation process. Most likely, it will

only restart its logic after external applications changed the state of the Kubernetes resources that it manages. This could

mean that the operator remains idle for multiple hours. In such cases, it can be more resource-efficient to unload and swap

the WASM instance to disk.

6.2 Child operator asynchronous client

Figure 6.3: The design of the child operator allows to perform asynchronous actions in collaborationwith the parent operator.

Figure 6.3 shows the design of the asynchronous request passing and response processing, inside the child operator. All

client operators run as single-threaded asynchronous WASM instances. The child operator is started by the host which calls

the start function that is exposed by the WASM module. This initial function starts the operator reconciliation loop, which

makes asynchronous requests that populate the async queue. These asynchronous futures [89] are awaited by the child

operator, but some of these futuresawait asynchronous host function results from the parent runtime. If the child operator

cannot continue without new results from the host environment, it stops the execution and returns to the host. If none of

the pending asynchronous requests have finished already, the host waits for one of them to finish, as described in Section 6.1.

Once a request finishes, the host returns the result to the child operator, such that the child operator can finish the linked

asynchronous request. This restarts the whole process.

19

7
Implementation

The latest version of our implementation and the scripts used for the end-to-end tests can be found on Github [90]. As

explained in Chapter 6, our architecture foresees a parent operator and a set of child operators. Section 7.2 discusses the

parent operator async WASM runtime implementation. Section 7.3 explains how all in- and outbound communication from

the WASM modules happens for our implementation. In Section 7.4 the WASM client library implementations are discussed.

7.1 Prior work

Our operator implementation builds upon the proof of concept (PoC) made by Francesco Guardiani and Markus Thömmes

[91]. This PoC provides a WASM operator solution based on the Wasmer [92] WASM runtime and a hacked version of the

kube-rs [93] library. However, at the time of writing, it has been 2 years since this project was updated. Since the API

of the Wasmer runtime drastically changed after its v1 release, and the hacks applied to the kube-rs project are not well

documented, upgrading the PoC was not straight forward. Furthermore, the Wasmer project lacks the future potential that

other open-source initiatives, like Wasmtime, can offer. To update kube-rs more easily in the future, a new project structure

was required. Moreover, the original version of the PoC cannot unload inactive operators as its architecture is different from

the architecture proposed in Chapter 6. We refactored the PoC and updated it to implement the aforementioned architecture.

Finally, we implemented several improvements to further optimize the PoC implementation, such as adding support for

caching compiled WASM modules for later reuse.

7.2 Parent operator: WASM runtime

The parent operator extends the Wasmtime WASM runtime. Wasmtime was chosen over other WASM runtimes, because it

is the flagship WASM engine from the Bytecode Alliance, with support from some of the biggest players in the technology

industry. As a consequence, it will quickly support newly standardised features. The Lucet [78] engine even joined forces

with Wasmtime, such that the Wasmtime engine can evolve more quickly. Our implementation configures Wasmtime to

compile ahead of time new WASM modules to machine code to eliminate the compiler memory overhead at runtime. These

compiled modules are cached on disk and can be reused when possible. To initiate these compiled modules, Wasmtime only

has to map the file to memory and provide the necessary tools to communicate with this initiated module. Because of the

20

7 Implementation

use of file-backed memory, for idle operators, these memory locations can be dropped from memory by the kernel when

needed. If the memory region needs to be accessed again, a page-fault will be triggered, and the kernel will load the file

back into memory. However, the dynamically populated memory of the WASM module will not be unloaded automatically

from memory. That is why our implementation adds a custom unloading and disk swapping implementation in the parent

operator. This makes unloading and swapping possible, even on systems without swap enabled at operating system level.

The parent operator is developed in Rust, becauseWasmtime is also written in that language. Adding additional functionality

to the Wasmtime runtime, like host functions, is thus best supported for a parent operator that is also written in Rust.

As described in our design, a parent operator runs an event loop for each of its child operators. The main task of an event

loop is to let child operators perform I/O heavy operations asynchronously. Our implementation implements event loops as

Rust futures [89], which are polled when the loop is initialised and later on, when it is awoken because of the occurrence of

a desired I/O event. Our implementation is similar to the implementation used by Deno [21], including their FaaS solution as

described in Chapter 3. Our parent operator passes the event loop futures to Tokio [94], which is an existing asynchronous

Rust runtime library that assures that the future execution advances and the futures are awakened when new awaited I/O

events occur. Tokio therefore schedules these futures on green threads, called tasks. These tasks can be executed onmultiple

cores simultaneously, implementing the many-to-many thread model [95].

7.3 Parent operator: host functions

// exported WASM module functions
fn wakeup(async_id: u64, finished: u32, ptr: *const u8, len: u32) { ... }
fn allocate(size: u32) -> *mut u8 { ... }

// provided WASM host functions
fn delay(millis: u64) -> u64 { ... }
fn request(ptr: *const u8, len: u32, stream: u32) -> u64 { ... }

Listing 7.1: Our custom extensions to the WASM parent-child interface.

As described in Chapter 4, WASM host functions are functions exposed by the WebAssembly runtime to the WASM instances.

WASI is a standardised set of these host functions. Our implementation can benefit from the existing Wasmtime library that

readily implements these WASI host functions, reducing the implementation and maintenance burden of our solution. A

core aspect of Kubernetes operators is communicating with the Kubernetes API server. However, at the time of writing, the

WASI spec has not yet standardised sockets as part of the interface [16], this is further discussed in Section 9.2.1. This means

that for our implementation, we had to implement custom HTTP host functions to create a working WASM operator setup.

In Listing 7.1, the request and delay host function signatures are listed. The request function makes it possible to perform

Kubernetes HTTP requests and receive answers with a WASM module. As shown in Figure 7.1, our implementation uses the

low-level part of kube-rs for the Kubernetes request host function implementation, kube-rs manages setting up the

connection with the Kubernetes API and performs the authentication. The high-level kube-rs functionality is implemented

21

7 Implementation

Figure 7.1: The operator libraries are split between the parent and child operator and consist out of existing WASI libraries

and our own custom libraries based on kube-rs.

in the child operator. The delay function allows the module to wait for a specified period of time, which was another missing

feature required by the client operators. The functions delay and request are both asynchronous functions, meaning

that they return control to the WASMmodule immediately, while returning an async_id that references a task in the work

queue as described in Section 6.1.

7.4 Child operator: client libraries

All Kubernetes operator domain knowledge is implemented in the custom reconciliation loops, that are defined in the child

operators. Our language preference for the child operators is Rust since the Rust standard libraries best support the WASI

host function calls. Golang, which is normally used in Kubernetes, has no support for WASI in its default compiler. However,

the TinyGo [96] compiler supports the WASM-WASI target but cannot perform serialisation due to its limited support for

Golang reflection. Additionally, Golang is a garbage collected language, which have been shown to use more memory [97].

Another advantage of choosing Rust as language is that an easier interoperability between the parent and child operator

is obtained. The (de)serialisation logic mentioned in Section 7.3, can be reused for both the parent and child, since they are

both implemented in Rust.

To use the HTTP host functions, we implemented a custom client library that can be used by the WASM child operator. This

library provides an API to interact with the HTTP host functions fromwithin the child operator. It also exposes two additional

functions to the parent operator, as visible in Listing 7.1. The exported wakeup function is used by the parent operator to

pass the results of asynchronous requests. As mentioned before, these results often are complex values. The parent operator

uses the exported allocate function to allocate a region in the WASM instance’s memory to write the complex value

22

7 Implementation

to. As mentioned in Section 7.3 and listed in Listing 7.1, the operator exposes the request host function to make HTTP

requests against the Kubernetes API. It then receives the response to that request asynchronously via the wakeup exported

function, as explained in Section 6.2. The implementation also supports streaming responses. Therefore, the WASM module;

passes stream = 1 as argument in the request function, since boolean values are not directly supported as function

arguments. The wakeup function indicates, using the finished argument, whether the result is the last result in the

response stream or not. On top of the library for passing HTTP requests and responses to the parent operator, the child

operator uses the high-level part of the kube-rs library to fabricate requests that the Kubernetes API can understand and

to decode the responses that are returned. The kube-rs library enables implementation of an operator control loop, which

watches the desired state as described by Kubernetes Custom Resources and performs the actions to achieve this state.

New client operators can be implemented by creating a Rust project that uses our custom client library and compiling that

project to the WASM-WASI target. The obtained WASMmodule file can be loaded by the parent operator, which also starts the

execution of the module’s reconciliation loop. Our implementation foresees a simple configuration file that specifies what

WASM files should be loaded by the parent operator, and we assume that the files are available on the local file system.

However, to achieve a better user experience, ideally, the WASM files are distributed via OCI images and the configuration

is stored in Kubernetes resources. This improvement is left as a possible future improvement and should not impose new

challenges.

23

8
Resource utilisation

The operator control loop, as described in Section 3.1, is typically bound by I/O waiting. While the operator waits for new

I/O events, it remains idle. If an operator achieves its desired state for the resources it manages, the operator can remain

idle for multiple hours. To achieve optimal operator density, the memory usage of the operator and its runtime are usually

most limiting. As described in Chapter 6 and 7, the proposed WASM operator is designed to deduplicate low-level operator

logic and unload WASM modules after long periods of idle time. Section 8.5 and 8.6 investigate the WebAssembly operator

overhead compared to regular operator overhead with regards to memory usage, answering Research Question 5. To get a

full image of the factors that affect overhead differences between the different solutions, answering Research Question 6,

all tests are performed for both active and idle operators and in Section 8.8 multiple sizes of dynamically allocated memory

are compared. Since unloading and reloading child operators to and from disk takes time, it is also important to compare

the end-to-end latency of the operators. Long end-to-end latencies can result in configuration change unresponsiveness,

harming the experience of administrators and developers. In Section8.7, Research Question 7 is answered by comparing the

memory usage and end-to-end latencies of the WASM operator with unloading and swapping enabled versus disabled.

8.1 Synthetic-operator workload

Figure 8.1: The test setup for the synthetic-operator workload, each operator is responsible for the propagation of changes

from one namespace to another.

24

8 Resource utilisation

The test synthetic-operator, as shown in Figure 8.1, simulates a workload withN different operators, which depend on each

other’s actions and are idle for most of the time. Each operator watches a namespace for TestResources and only

reconciles, once a resource is created or updated. It then updates/ creates the resource in its destination namespace. The

input watch and output create/ update namespaces for each operator can be configured dynamically at runtime. All used

operators contain a unique nonce to prevent trivial optimizations, such that we correctly simulate a situation where all N

operators are different. For a full update of all resources, all operators must update their resource one-by-one. This means

the full end-to-end latency equals the accumulated individual operator latencies. This synthetic workload simulates a highly

dependent and interactive operator setup.

8.2 System details

All tests were performed on a machine with the hardware details described in Table 8.1a. The versions of the software

installed on the machine are described in Table 8.1b.

CPU
Intel Xeon

E3-1220 v3 @ 3.10GHz

RAM
2x8GB Samsung

M391B1G73QH0-CMA

disk
250GB Travelstar Z7K500

HTS725025A7E630

(a) hardware details

kernel version 5.15.0-30-generic

go version 1.18.2

rustc version 1.60.0

containerd version 1.6.4

kind version v0.13.0

kubernetes version v1.24.0

wasmtime version 0.36.0

(b) software details

Table 8.1: The details of our end-to-end test and benchmarking system.

8.3 Memory usage measurement method and analysis

Measuring the memory footprint of a workload execution, requires accounting all the memory usage effects that the process

has on the system. This is a non-trivial problem. The Linux kernel provides multiple measures for memory usage, both

for individual processes and control groups (cgroups). The process-based metrics do not account for resources used by

the workload outside of the process, like kernel data structures. The cgroup v2 measure memory.current [98] is the

most complete measure currently exposed by the Linux kernel [99, 100]. It includes ”Userland memory - page cache and

anonymous memory”, ”Kernel data structures such as dentries and inodes” and ”TCP socket buffers” [98]. This metric is also

used by Kubernetes to limit memory usage and prevent rogue processes from starving other processes.

In case of limited available memory, the kernel instantiates a set of procedures to reduce the system’s memory usage.

Memory can be reclaimed, which means that data is dropped from memory. For memory mapped from a file, this can be

25

8 Resource utilisation

done instantly. For other memory regions, first the memory contents are stored to a swap file on disk. Additionally, memory

management systems within processes can reduce memory consumption. Garbage collected programs for example can

additionally free memory by more frequently performing garbage collection. It is necessary to take into account all these

memory reducing procedures when determining the minimal memory footprint of an application. Objects or memory pages

that are rarely used, or that were only used on process startup, would otherwise inflate the memory usage metric.

All memory reducing procedures comewith a runtime performance overhead. Loading and saving a frequently usedmemory

region from and to disk, will slow down the process, which makes it unusable. That is one of the the reasons why swapping

is not broadly supported on Kubernetes nodes [101]. If garbage collection has five times as much memory available as is

required, its runtime performance matches or slightly exceeds that of explicit memory management. However, performance

degrades substantially when it must use smaller heaps. With three times as much memory, it runs 17% slower on average.

With twice as much memory, it runs 70% slower [97]. This slowdown, for example, is very noticeable for Golang applications

that are running in a very constrained environment. Since execution advancement of an operator workload is mainly I/O-

bound, most of the time, the operator is waiting for responses from the Kubernetes API server. A small slowdown of the

execution might thus not directly cause the operator to advance slower. To detect execution slowdown because of memory

limitations, Linux exposes a Pressure Stall Information (PSI) metric [102].

The memory utilization measure that we use is determined by limiting the memory usage until the application is being

slowed down as determined by the PSI metric. Figure 8.2 shows an example run. The accumulated current memory value

memory.current of a set of operators is displayed together with the accumulated memory.high cgroup v2 memory

usage throttle limit. The figure shows that the throttle limit is updated based on the PSI metric. After triggering and

completing a sequence of successful resource reconciliations, the synthetic test stops the resources updates. This simulates

an idle operator and allows reclaiming of a big part of the memory resources. For each run, we selected memory usage

samples from the active and idle period. The selections are the last 100 second that the operator is active or idle, to prevent

measuring transitional behaviour at the start of the active or idle period. Since the WASM operators show a periodic behavior

when idle, we selected 300 seconds, instead of 100 seconds, for those experiments as that roughly matches its periodicity.

Figure 8.2 shows an example of such a selection.

0min 2min 4min 6min 8min 10min 12min 14min 16min
run time

10MiB

26MiB

42MiB

58MiB

74MiB

m
em

or
y

us
ag

e

memory.current
memory.high
active sample
idle sample

Figure 8.2: The memory usage of a single run for an operator, the operator idles after being active for 7 minutes; samples

are selected such that transient behaviour is not captured.

26

8 Resource utilisation

8min 10min 12min
run time

47MiB

79MiB

111MiB

143MiB

m
em

or
y

us
ag

e

memory.current
memory.high
idle sample

0 50 100 150 200
frequency

(a) example run and frequency plot

-1 0 1 2 30

500

1000

1500

2000

2500

fre
qu

en
cy

(b) full frequency plot of all idle WASM operators

Figure 8.3: The distribution of the idlememoryWASM operator on the right (b) is amixture of Gaussians because of temporary

memory increases such as shown in the figure on the left (a).

Thememorymeasurements within a selected period are distributed as amixture of Gaussians. This can be explained by tem-

porary increases in memory usage combined with periods of stable memory usage, as is visible in Figure 8.3. Furthermore,

we notice that within a run the memory usage samples are more strongly correlated than for samples across runs for the

same configuration. In order to prevent obtaining an obscured view on our measurements, we eliminate the correlation by

reducing our samples for one run to a single value. In order to also take into account the different distributions, we decided

to reduce each run to a single 95% quantile measure. Each upper bound is defined as the memory limit that is not exceeded

for 95% of the selected time range duration. Figure 8.4 shows these upper bounds for five runs that are part of the same

configuration.

0.00min 1.00min
run time

0MiB

64MiB

128MiB

192MiB

256MiB

m
em

or
y

us
ag

e

0.00min 1.00min 2.00min 3.00min 4.00min 5.00min
run time

memory.current
95% upper bound
active sample

Figure 8.4: The memory 95% upper bounds for active and idle periods and the selected memory samples they are based on.

For each configuration, which is defined by an operator type and a number of operators, five independent runs were per-

formed, each yielding one upper bound for the active and one for the idle period. Per operator type, we tested the number

of operators from 10 to 100, in increments of 10. For the active and idle selection separate, based on the resulting 50 upper

bounds qj : j = 1..50 for each operator type, we trained a linear regression model. Using this linear model, we deter-

mined the 95% prediction interval in which we expect with 95% certainty the upper bound memory usage of a new run with

27

8 Resource utilisation

the given configuration. Formula 8.1, by Neter et al. [103], gives us the relation between this 95% prediction interval for an

unknown upper boundQi of an new run i, and the predicted upper bound q̂i for that run, with xi the number of operators

used in the configuration.

Pr

(
|Qi − q̂i| < t97,5% ∗

∑50
j=1(qj − q̂j)

2

50− 2

√
1 +

1

50
+

(xi − x̄)2∑50
j=1(xj − x̄)2

)
= 95% (8.1)

8.4 End-to-end latency measurement method and analysis

The end-to-end latency is measured by the synthetic-operator test for the active period of the test. Each set of reconcil-

iations starts from an update of the TestResource in namespace 1 until the TestResource in namespace N is

updated. The time from start to end is measured and each reconciliation set is repeated 500 times per run, resulting in

500N reconciliation iterations. As described in Section 8.3, for each configuration, which is defined by an operator type and

a number of operators, five independent runs are performed.

8.5 Golang container, Rust container and Rust WASM compared

0 20 40 60 80 100
operators

0.00GiB

0.25GiB

0.50GiB

0.75GiB

1.00GiB

1.25GiB

1.50GiB

m
em

or
y

us
ag

e

1.37GiB

0.60GiB

0.22GiB

Golang container
Rust container
Rust WASM

(a) active

0 20 40 60 80 100
operators

0.00GiB

0.25GiB

0.50GiB

0.75GiB

1.00GiB

1.25GiB

1.50GiB

m
em

or
y

us
ag

e

1.10GiB

0.57GiB

0.18GiB

Golang container
Rust container
Rust WASM

(b) idle

Figure 8.5: The memory 95% upper bounds of the different languages/ isolation techniques are ordered as follows: Rust

WASM < Rust container < Golang container; all operators use less memory when idle.

Figure 8.5 shows the obtained memory upper bounds for container-isolated operators written in Golang and Rust and a

WASM-isolated Rust operator. The coloured areas represent the 95% prediction intervals for the regression models as de-

scribed in Section 8.3. Figure 8.5a shows the results for the active period. The Golang-based operator clearly uses the most

memory. For 100 active operators, switching from Golang to Rust resulted in a 56.06% upper bound memory reduction.

WASM operators even yielded an 83.81% reduction compared to Golang operators. Compared to Golang, the Rust oper-

ators use entirely different operator library and framework implementations. Each implementation has its own memory

trade-offs, which can lead to large differences in memory usage. Additionally, as discussed in Section 8.3, garbage collected

28

8 Resource utilisation

languages like Golang, typically are less memory efficient than languages without garbage collector like Rust. The Rust

container-based operator and the WASM-based operator share much of their source code. However, the WASM-based oper-

ators use less memory than container-based operators. This is due to the reduced complexity of the WASM child operator,

as much of its low-level operator logic is moved to the parent operator. Moreover, the different isolation techniques used

result in a net reduced isolation overhead, which is further explored in Section 8.6.

Figure 8.5b shows that, as expected, all operator types utilize less memory in case of idle workloads, we observed a 14.21%

reduction on average. Compared to 100 idle Golang operators, 100 idle Rust operators utilized 48.04% less memory, which

is a smaller reduction than when comparing active operators. However, 100 idle WASM operators still used 83.65% less

memory compared to idle Golang operators, similar to the active situation. The smaller reduction in memory usage of

container-based Rust operators versus Golang operators is due to Golang experiencing a higher relative reduction inmemory

consumption when going from active to idle. Based on the typical usage pattern of an operator, which can be idle for a long

period of time, it is clear that idle memory usage is important.

8.5.1 End-to-end latency

100.0s

0.5s

1.0s

1.5s

2.0s

2.5s

en
d-

to
-e

nd
 la

te
nc

y

20 30 40 50 60 70 80 90 100

Golang container
Rust container
Rust WASM

0.0 0.2 0.4 0.6 0.8 1.0
operators

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.6: The end-to-end latency of WASM operators is identical to Rust operators.

In Figure 8.6, the obtained latency distributions for the different operator types are displayed, which were obtained as

described in Section 8.4. Based on Jangda et al. [104], WASM performance can be 2.5x slower worst-case compared to native

execution. TheWASM version of the synthetic-operator, however, did not experience any latency penalties. The latency for the

Golang operator increased more than the other operators with increased number of operators. However, this is most likely

due to the memory pressuring algorithm that adds more latency to Golang because its less memory efficient. There was no

measured useful difference in latency between the WASM and Rust implementations that was greater than the measured

noise. The main bottleneck in the operator’s execution is I/O. Therefore, the latencies that occur in CPU-heavy workloads do

not affect the synthetic-operator workload much. Additionally, if there would be a situation in which an operator workload

suffers from such a slowdown, it is possible to expose the operation as a natively implemented host function from the

runtime, since the WASM runtime is quite easily extendable.

29

8 Resource utilisation

8.6 Cost of isolation

Figure 8.7 shows the obtainedmemory upper bounds for Rust operators using no isolation, using containers and using WASM.

The coloured areas represent the 95% prediction intervals for the regression models as described in Section 8.3. The solution

with no isolation is the most resource efficient. This operator is able to scale to 100 control loops without significant addi-

tional memory overhead. Both the WASM-based and container-based setups experience significant per-operator overhead.

Additionally, the WASM-based operator has a higher initial constant memory overhead. However, since the container-based

solution performs worse per-container, this initial overhead can be compensated. In case of the active situation, the WASM-

based solution is more memory efficient than the container-based solution with 95% certainty starting from six operators.

For the idle operators, this starts from eight operators.

The container-based operators are managed by Kubernetes and each run in a separate Kubernetes pod. Our Kubernetes

setup uses containerd [105] to manage the containers. As described in Section 2.2, each Kubernetes pod comes with some

overhead. In our tests, the biggest overhead contributor was the per-pod containerd-shim process which equates to about

5MiB per pod. The WASM runtime can isolate the modules without introducing such a big overhead. Instead, it introduces

a constant initial overhead that does not depend on the number of operators. This memory overhead is due to the WASM

runtime, including the low-level operator logic.

In Chapter 6 we noted that the kube-controller-manager does not incorporate isolation between controllers, partly because

this improves efficiency. Our tests showed that indeed amajormemory usage reduction can be achieved by using no isolation.

However, having no isolation between operators means that all operators should be fully trusted even for not having errors.

Additionally it results in a lack of modularity: it is not possible to dynamically add or remove controllers. In an operator

design based on Kubernetes pods, operators can be added and removed dynamically. Also, WASM modules can be loaded

dynamically by the parent operator, without having to restart the parent operator process. WASM is a good intermediate

solution, providing isolation and modularity while still being more memory efficient than the container-based solution.

0 20 40 60 80 100
operators

0MiB

128MiB

256MiB

384MiB

512MiB

640MiB

m
em

or
y

us
ag

e

28MiB

616MiB

227MiB

no isolation
container
WASM

(a) active

0 20 40 60 80 100
operators

0MiB

128MiB

256MiB

384MiB

512MiB

640MiB

m
em

or
y

us
ag

e

27MiB

587MiB

185MiB

no isolation
container
WASM

(b) idle

Figure 8.7: The memory 95% upper bounds of non-modular, container-modular and WASM-modular operators show that

WASM outperforms container-based isolation, but additional improvements are possible since having no isolation is still

much more efficient.

30

8 Resource utilisation

8.7 Automatically unloading WASM modules

0 20 40 60 80 100
operators

0MiB

64MiB

128MiB

192MiB

256MiB

320MiB

384MiB

448MiB

m
em

or
y

us
ag

e

227MiB

409MiB
without unloading
with unloading

(a) active

0 20 40 60 80 100
operators

0MiB

64MiB

128MiB

192MiB

256MiB

320MiB

384MiB

448MiB

m
em

or
y

us
ag

e

185MiB

86MiB

without unloading
with unloading

(b) idle

Figure 8.8: The memory 95% upper bounds of the WASM operator with automatic unloading enabled/ disabled; very frequent

unloading causes more memory usage, for idle operators it can save memory.

Figure 8.8 shows the obtained memory upper bounds for the synthetic-operator running as WASM modules. Two versions

of the WASM operator are compared: one does not unload the WASM instances and the other unloads each WASM instance

in-between each iteration of the reconciliation loop. The coloured areas represent the 95% prediction intervals for the

regressionmodels as described in Section 8.3. Figure 8.8a shows that the effect of constantly unloading and reloading active

WASM operator was an 80.49% increase in memory usage for 100 operators. In Figure 8.9, the effect of actively unloading

and reloading operators on the measured end-to-end latencies is displayed, this figure was obtained as described in 8.4.

Figure 8.8b shows, running 100 operators, we achieved a 52.66% reduction for idle operators compared to not unloading.

Unloading the modules reduces memory usage in case of idle operators. The parent operator writes the memory of idle

WASM instances to disk and reloads it later when a Kubernetes watch event is received, as described in Section 6.1. Since most

operators often stay idle for a long time, this can greatly optimize resource utilization in memory-constrained environments.

However, in case of a worst-case unload and reload pattern, memory usage is higher than in case no unloading and reloading

takes place. Frequent unloading also introduces a large end-to-end latency penalty due to the disk overhead of swapping

the WASM instance, as shown in Figure 8.9.

To properly benefit from automatic WASM module unloading in a mixed active-idle situation, a predictive scheduler is a ne-

cessity, this is considered as future work in this dissertation. Such a scheduler could help unloading only when it is beneficial

to unload a WASM module instead of unloading it in-between each control loop iteration. The optimization opportunity also

greatly depends on the heapmemory allocated by the operators, necessary for Kubernetes API state caches. This relationship

is further discussed in Section 8.8.

31

8 Resource utilisation

100s

2s

4s

6s

8s

10s

12s
en

d-
to

-e
nd

 la
te

nc
y

20 30 40 50 60 70 80 90 100

without unloading
with unloading

0.0 0.2 0.4 0.6 0.8 1.0
operators

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.9: The end-to-end latency for active WASM operator with unloading enabled/ disabled. Actively unloading and

swapping modules introduces significant latency.

8.8 Dynamically allocated memory

Figure 8.10 shows the average memory upper bound increase and average end-to-end latency increase per operator due to

a 1MiB increase in dynamically allocated memory. The metric is obtained based on the slope of the linear regression models

trained on 20 upper bound memory usage samples obtained for experiments with allocation sizes of 0MiB to 3MiB, with 5

runs per experiments. Also indicated are the 95% confidence intervals for these slopes.

Figure 8.10a shows that dynamically allocating 1MiB additional heapmemory in each operator resulted in in a memory upper

bound increase of roughly 100MiB for 100 active operators with unloading disabled, and in an increase of 130MiB for active

WASM operators with unloading enabled. The 30MiB extra overhead originates from the additional memory required to

reload the WASM module. Figure 8.10b shows that the memory consumption for idle operators only increased with 0.35MiB

when using our unloading and swapping solution. This is significantly lower than thememory increases for operatorswithout

unloading and swapping. As discussed in Section 8.7, adding swapping also adds end-to-end latency. Figure 8.10c shows that,

for our experiments, it took about 26ms to swap 1MiB of data to disk per operator, which can be fully attributed to the disk

read and write overhead of the hard disk drive in the test server, listed in Section 8.2. No latency increase was experienced

when using the containerised solution or the WASM solution without unloading.

Operators that watch a large amount of Kubernetes cluster resources will typically keep many of these resources in a cache

that they update once the Kubernetes API notifies that a resource change took place. This means that these operators have

large amounts of dynamically allocated memory, which directly translates to a memory upper bound increase, as discussed

in this section. To reduce this memory usage, it is possible to use our unloading implementation in combination with a tuned

scheduler. However, such a solution will result in larger latency overhead due to disk writes. Using native Linux swapping

could also further improve performance, since that swap implementation is more optimized than our custom swap solution.

Another solution is to move all operator caches to the parent operator and to deduplicate the resources in these caches, this

is further discussed in Section 9.

32

8 Resource utilisation

Rust
container

WASM
without

unloading

WASM
with

unloading

0.00MiB

0.25MiB

0.50MiB

0.75MiB

1.00MiB

1.25MiB

m
em

or
y

us
ag

e
in

cr
ea

se
 d

ue
to

 a
dd

in
g

1M
iB

 a
llo

ca
tio

n 0.99MiB
0.88MiB

1.30MiB

(a) The per-operator memory 95% upper bounds increase due to

an extra 1MiB of dynamically allocated memory for active opera-

tors.

Rust
container

WASM
without

unloading

WASM
with

unloading

0.00MiB

0.25MiB

0.50MiB

0.75MiB

1.00MiB

m
em

or
y

us
ag

e
in

cr
ea

se
 d

ue
to

 a
dd

in
g

1M
iB

 a
llo

ca
tio

n

1.00MiB
1.03MiB

0.35MiB

(b) The per-operator memory 95% upper bounds increase due to

an extra 1MiB of dynamically allocated memory for idle operators.

Rust
container

WASM
without

unloading

WASM
with

unloading

0ms

5ms

10ms

15ms

20ms

25ms

30ms

en
d-

to
-e

nd
 la

te
nc

y
in

cr
ea

se
 d

ue
to

 a
dd

in
g

1M
iB

 a
llo

ca
tio

n

0.26ms -0.06ms

26.38ms

(c) The per-operator end-to-end latency increase for active oper-

ators due to an extra 1MiB of dynamically allocated memory

Figure 8.10: The effects of allocating 1MiB of heap memory in each operator on the 95% upper bounds.

33

9
Open challenges and research directions

9.1 Implementation improvements

We have identified a number of open challenges that can directly improve our operator implementation. Firstly, as shown

in Section 8.8, it is possible to reduce memory consumption by implementing a shared Kubernetes cluster state cache in the

parent operator that replaces the individual caches in the child operators. This will eliminate duplicated and fragmented

resource caches. It would also allow us to faster swap inactive child operators. Furthermore, a future caching algorithm

can drop resources from cache in case memory becomes too limited. Secondly, we identified a limitation that originates

from the Kubernetes pod resource constraints. Running more child operators in our WASM runtime directly results in higher

memory usage, this was shown for all experiments in Chapter 8. However, since all operators run in a single Kubernetes pod,

as described in Chapter 6, the resource constraints for the workload do not adapt dynamically when adding new operators

dynamically. The resource constraints in Kubernetes are configured per pod. The operator architectures that run operators

in separate pods, do have dynamically adapting constraints. As a workaround, our current implementation does not limit the

resources for the WASM operator pod. Instead the parent operator and its embedded runtime are responsible for limiting

the per-operator resources.

9.2 WebAssembly standards and proposals

Amajor open challenge identified as part of the dissertation is the shortcomings of the WebAssembly system interface spec-

ifications and libraries. As mentioned in Chapter 4, a missing feature in the WASI specification is support for socket handling

[16]. The Golang standard libraries lack proper support for WASI if compiled using the default compiler. The TinyGo [96]

compiler supports the WASM-WASI target but cannot perform serialisation due to its limited support for Golang reflection,

as discussed in Chapter 7. Support for profiling or debugging WebAssembly is very limited. Many of the features are also

lacking documentation and the overall tooling landscape is quite fragmented. This deteriorates the developer experience

and will impact adoption, if not improved upon in the future. The standardisation groups that are working on improving

this experience are organised as follows: ”The open standards for WebAssembly are developed in a W3C Community Group

(that includes representatives from all major browsers) as well as a W3C Working Group.” [106] Both groups are mostly man-

aged by representatives from Google. Additionally, the WebAssembly System Interface is standardised in a subgroup of the

34

9 Open challenges and research directions

WebAssembly W3C Community Group [17].

9.2.1 WASI sockets proposal

The WASI sockets proposal aims to standardise an interface for interacting with network sockets, like TCP and UDP sockets

[16]. These sockets can be used to make network requests or setup a network server in WebAssembly. An important part of

this API would be to limit the capabilities related to these sockets. Once this proposal is finalised and accepted, it can be

used to replace some of the custom host functions that we currently use, as described in Section 7.3. When this proposal gets

implemented, client operators will be able to make generic web requests, furthering the capabilities of WASM operators.

9.2.2 WASM component model proposal

As identified in Section 2.1, an advantage of WASM is that the runtime can be easily extended with extra host functions,

exposing new functionality to the WASM module. This however still requires the host function to be updated. The WASM

component model proposal [107] aims to add support for calling functions exposed by other WASM modules in a simple

and dynamic manner. This would allow to place dependencies in separate WASM modules and deduplicate the logic for all

modules that depend on them. This proposal, when available, could further help reduce resource utilization of our WASM

operators.

An important part of the component model proposal is the ability to pass complex data values to and from WASM modules

in canonical manner. This is the task of the Canonical ABI sub-proposal. This also prevents the repetitive task of writing

(de)serializers in different languages for all possible client operator languages. Instead, these functions can be generated

when required. An example implementation of this proposal can be found in the witx DSL language and code generators [17].

9.3 WASM compilers

As described in Section 9.4, there is still large fragmentation when it comes to the WASM compilers used by the most popular

WASM-based projects. Each of these compilers has its own performance characteristics, withmany of them claiming to be the

fastest [108, 109]. The bytecode alliance develops three compilers: Wasmtime, Lucet [78], and WAMR. However, they promote

Wasmtime as their flagship compiler, and WAMR as a solution for environments that are extremely resource limited. The

Wasmtime compiler is developed mainly by Mozilla and Fastly and internally uses the cranelift compiler, while the WAMR

compiler is created mainly by Intel. An alternative WASM compiler like WAMR, might further reduce the memory utilization

of our implementation since such a compiler optimizes runtime overhead for extremely resource-limited environments.

The WasmEdge compiler, formerly SSVM, was developed by SecondState, and is now part of the Cloud Native Computing

Foundation (CNCF). Another frequently used compiler isWasmer [92], which can switch between a LLVMand cranelift backend.

Google’s v8 Javascipt engine also supports WASM, and much of the research that Google has done on their Native Client

35

9 Open challenges and research directions

solution [34, 110] has been repurposed by WASM. Additionally to performance, support for the latest WebAssembly proposals,

is a very important selection criterion, as described in Section 9.2. These new proposals can drastically improve the developer

possibilities when working with WASM.

9.4 SFI-based FaaS

As mentioned in Chapter 3, Cloudflare Workers [5] and Fastly Compute@Edge [6] are currently the most used FaaS platforms

based on SFI. Although these platforms are not fully open-sourced, the companies have heavily invested in improving the

underlying technologies. Cloudflare collaborated with Graz University of Technology, Sapienza University of Rometo and

CISPA Helmholtz Center for Information Security to create Dynamic Process Isolation [45] for example. Cloudflare’s platform

is build on v8, which is mainly developed by Google and helps to define new standards for Javascript and WebAssembly.

Fastly open-sourced its WebAssembly-to-bytecode compiler as part of the Bytecode Alliance and helps to incorporate their

findings in the other compilers that are open-sourced under the Bytecode Alliance, like Wasmtime. The offering of fully

open-source SFI-based FaaS platforms is very limited. A startup called Fermyon [111], founded by the authors of Krustlet [12],

has created an open-source alternative to the closed-source offerings of Cloudfare and Fastly. Their WASM FaaS solution,

called Spin [85], uses Wasmtime as WASM-to-bytecode compiler. Another WASM-based FaaS platform is WasmCloud, which

was developed by Cosmonic and donated to the Cloud Native Compute Foundation. WasmCloud utilizes Wasmer as WASM-to-

bytecode compiler. Other open-source solutions originate from academic research, like Faasm and Sledge. Faasm [30] was

proposed by Shillaker et al. from Imperial College London and Sledge [84] was proposed by Gadepalli et al. from George

Washington University in collaboration with Arm Research. Faasm uses WAMR or WAVM and Sledge uses its own compiler,

called aWsm. All these startups and projects are still under active development and still require a lot of additional features

to cover the most frequent use-cases at the time of writing. Many of these possible improvements are linked to standards

that are still in the process of being created, as described in Section 9.2.

36

Conclusion

Complex Kubernetes operator workloads are often too heavy for constrained environments. In this dissertation, a novel

WebAssembly-based Kubernetes operator solution is proposed. This solution demonstrates that WebAssembly, a technology

used by edge FaaS solutions, can also be used to reduce the overhead associated with Kubernetes cluster management. It

therefore extends the Wasmtime runtime, adding support for asynchronous Kubernetes API interaction and unloading of

idle operators. Our test results show a reduction in memory footprint of 100 active synthetic operators from 1405MiB to

227MiB and of 100 idle operators from 1131MiB to 86MiB by using WASM operators instead of traditional operators. This

reduction is due to reduced child operator complexity and the lower WebAssembly isolation overhead. We also found that

CPU overhead, identified as a drawback of WASM in prior work [104], does not affect end-to-end latency for our synthetic-

operator workload. Unloading WASM operators reduces memory usage for idle operators, while increasing memory usage

and end-to-end latency for idle operators. Therefore, future work is needed to add a predictive scheduler that fully optimizes

this feature.

Our WASM architecture and implementation demonstrate that initiatives, such as the metacontroller project [86], can inte-

grate a WASM runtime as an alternative to their current webhook solution and benefit from reduced complexity and resource

usage. Resource-constrained edge environments are able to run more WebAssembly operators than traditional operators,

enabling complexworkloads. Cloud deployments becomemore resource efficient by replacing existing operatorswithWASM-

based operators. The shared benefits of our solution across both edge and cloud segments help accelerate research and

adoption.

The biggest open challenges for developing new WASM operators are the WASM and WASI specifications that are still under

development. In addition, Golang lacks proper support for WASI, making it more difficult to write operators in Golang. How-

ever, Rust operators can more easily take advantage of running as WASM modules. We further propose to obtain additional

reductions in memory usage by moving caching logic from the child to the parent operators.

37

Bibliography

[1] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings of the ACM 6th Symposium on Cloud Computing.

ACM, Aug. 2015, p. 167.

[2] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale clustermanagement at Google

with Borg,” in Proceedings of the 10th European Conference on Computer Systems. ACM, Apr. 2015.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega, and kubernetes: Lessons learned from three

container-management systems over a decade,” ACM Queue, vol. 14, no. 1, pp. 70–93, Jan. 2016.

[4] Shubham, C. Bühler, T. Bannister, and Q. Teng, “Kubernetes operator pattern,” Mar. 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

[5] Cloudflare, “Cloudflare workers®,” Mar. 2022. [Online]. Available: https://workers.cloudflare.com/

[6] Fastly, “Fastly compute@edge,” Mar. 2022. [Online]. Available: https://www.fastly.com/products/edge-compute/

serverless

[7] B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review, vol. 8, no. 1, pp. 18–24, Jan. 1974.

[8] D. Bernstein, “Containers and cloud: From LXC to Docker to Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84,

Sep. 2014.

[9] R. Mohr, D. Vossel, S. Gott, V. Romanovsky, and A. Lukianov, “Kubevirt.io,” Dec. 2021. [Online]. Available:

https://kubevirt.io/

[10] A. Randazzo and I. Tinnirello, “Kata containers: An emerging architecture for enabling MEC services in fast and se-

cure way,” in Proceedings of the IEEE 6th International Conference on Internet of Things: Systems, Management and

Security. IEEE, Oct. 2019.

[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the Linux virtual machine monitor,” in Proceedings of the

Ottawa Linux Symposium, 2007. [Online]. Available: https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=225

[12] M. Fisher, “Krustlet,” Apr. 2020. [Online]. Available: https://deislabs.io/posts/introducing-krustlet/

[13] R. Squillace, “WebAssembly meets Kubernetes with Krustlet,” Apr. 2020. [Online]. Available: https://cloudblogs.

microsoft.com/opensource/2020/04/07/announcing-krustlet-kubernetes-rust-kubelet-webassembly-wasm/

[14] M. Yuan, T. McCallum, S.-T. Hsieh, hydai et al., “Crunw,” Apr. 2022. [Online]. Available: https://github.com/second-

state/crunw

[15] A. Rossberg, B. L. Titzer, A. Haas, D. L. Schuff, D. Gohman, L. Wagner, A. Zakai, J. F. Bastien, and M. Holman, “Bringing the

web up to speed with webassembly,” Communications of the ACM, vol. 61, no. 12, pp. 107–115, Nov. 2018.

[16] D. Bakker and L. Clark, “The wasi sockets proposal,” Mar. 2022. [Online]. Available: https://github.com/WebAssembly/

wasi-sockets

38

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://workers.cloudflare.com/
https://www.fastly.com/products/edge-compute/serverless
https://www.fastly.com/products/edge-compute/serverless
https://kubevirt.io/
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=225
https://deislabs.io/posts/introducing-krustlet/
https://cloudblogs.microsoft.com/opensource/2020/04/07/announcing-krustlet-kubernetes-rust-kubelet-webassembly-wasm/
https://cloudblogs.microsoft.com/opensource/2020/04/07/announcing-krustlet-kubernetes-rust-kubelet-webassembly-wasm/
https://github.com/second-state/crunw
https://github.com/second-state/crunw
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-sockets

Bibliography

[17] D. Gohman, P. Hickey, L. Clark, A. Crichton, A. Brown et al., “Wasi,” Apr. 2022. [Online]. Available: https:

//github.com/WebAssembly/WASI

[18] A. Wilk, M. Klein, htuch, phlax et al., “envoy,” Apr. 2022. [Online]. Available: https://github.com/envoyproxy/envoy

[19] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based operating system virtualization: a scal-

able, high-performance alternative to hypervisors,” in Proceedings of the ACM 2Nd European Conference on Computer

Systems. ACM, 2007, pp. 275–287.

[20] P. Hickey, A. Crichton, M. Frysinger, N. McCallum, J. Konka, and katelyn martin, “Wasi snapshot preview1,” Jan.

2022. [Online]. Available: https://github.com/WebAssembly/WASI/blob/main/phases/snapshot/witx/wasi_snapshot_

preview1.witx

[21] R. Dahl, B. Iwańczuk, K. Kelly, B. Belder, L. Casonato, and C. Beyer, “Deno,” Mar. 2022. [Online]. Available:

https://github.com/denoland/deno

[22] M. Kerrisk, “bpf-helpers(7) - linux manual page,” Sep. 2021. [Online]. Available: https://man7.org/linux/man-

pages/man7/bpf-helpers.7.html

[23] L. Torvalds, dhowells, C. Brauner, and A. Lutomirski, “linux/syscall_64.tbl,” Jan. 2022. [Online]. Available:

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

[24] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the hypervisor attack surface for a more secure cloud,” in

Proceedings of the ACM 18th Conference on Computer and Communications Security. ACM, 2011, pp. 401–412.

[25] S. Soller, “Measurements of system call performance and overhead,” Jan. 2017. [Online]. Available: http:

//arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead

[26] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, and X. Wang, “Hyperkernel: Push-button

verification of an os kernel,” in Proceedings of the ACM 26th Symposium on Operating Systems Principles. ACM, 2017,

pp. 252–269.

[27] Y. Shalabi, “The cost of virtualization exits,” Dec. 2014. [Online]. Available: http://yshalabi.github.io/VMExits/

[28] R. Rosen, “Resource management: Linux kernel namespaces and cgroups,” p. 70, May 2013. [Online]. Available:

https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf

[29] M. Kerrisk, “namespaces(7) - linux manual page,” Sep. 2021. [Online]. Available: https://man7.org/linux/man-

pages/man7/namespaces.7.html

[30] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless computing,” in Proceedings

of the USENIX 2020 Annual Technical Conference. USENIX Association, Jul. 2020, pp. 419–433. [Online]. Available:

https://www.usenix.org/conference/atc20/presentation/shillaker

[31] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based fault isolation,” ACM SIGOPS Operating

Systems Review, vol. 27, no. 5, pp. 203–216, Dec. 1993.

39

https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI
https://github.com/envoyproxy/envoy
https://github.com/WebAssembly/WASI/blob/main/phases/snapshot/witx/wasi_snapshot_preview1.witx
https://github.com/WebAssembly/WASI/blob/main/phases/snapshot/witx/wasi_snapshot_preview1.witx
https://github.com/denoland/deno
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
http://arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead
http://arkanis.de/weblog/2017-01-05-measurements-of-system-call-performance-and-overhead
http://yshalabi.github.io/VMExits/
https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.usenix.org/conference/atc20/presentation/shillaker

Bibliography

[32] A. Rudenko, Q. Monnet, D. Thaler, T. Graf, D. Borkmann et al., “ebpf,” Apr. 2022. [Online]. Available: https://ebpf.io/

[33] K. Zandberg and E. Baccelli, “Minimal virtual machines on iot microcontrollers: The case of berkeley packet filters with

rbpf,” arXiv preprint arXiv:2011.12047, vol. abs/2111.12047, Nov. 2020.

[34] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox

for portable, untrusted x86 native code,” Communications of the ACM, vol. 53, no. 1, pp. 91–99, Jan. 2010.

[35] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner, H. Shacham, and D. Stefan, “Retrofitting fine grain

isolation in the Firefox renderer,” in Proceedings of the USENIX 29th Security Symposium. USENIX Association, Aug.

2020, pp. 699–716. [Online]. Available: https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

[36] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan, “Gobi: WebAssembly as a practical path to library sand-

boxing,” arXiv preprint arXiv:1912.02285, vol. abs/1912.02285, Dec. 2019.

[37] M. Kolosick, S. Narayan, E. Johnson, C. Watt, M. LeMay, D. Garg, R. Jhala, and D. Stefan, “Isolation without taxation: Near-

zero-cost transitions for webassembly and sfi,” Proceedings of the ACM on Programming Languages, vol. 6, no. POPL,

Jan. 2022.

[38] G. Tan, “Principles and implementation techniques of software-based fault isolation,” Foundations and Trends® in

Privacy and Security, vol. 1, no. 3, pp. 137–198, 2017.

[39] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity and static analysis for efficient and validated data

sandboxing,” in Proceedings of the ACM 18th Conference on Computer and Communications Security. ACM, 2011, pp.

29–40.

[40] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and

Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in Proceedings of the IEEE 40th Symposium on Security

and Privacy, IEEE. IEEE, May 2019, pp. 1–19.

[41] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, and

R. Strackx, “Meltdown: Reading kernel memory from user space,” Communications of the ACM, vol. 63, no. 6, pp. 46–56,

May 2020.

[42] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita,

H. Shacham, D. Tullsen, and D. Stefan, “Swivel: Hardening WebAssembly against spectre,” in Proceedings

of the USENIX 30th Security Symposium. USENIX Association, Aug. 2021, pp. 1433–1450. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity21/presentation/narayan

[43] A. Barth, C. Jackson, and C. Reis, “The security architecture of the Chromium browser,” Stanford University, Tech. Rep.,

2009. [Online]. Available: http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf

[44] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation for web sites within the browser,”

in Proceedings of the USENIX 28th Security Symposium. USENIX Association, Aug. 2019, pp. 1661–1678. [Online].

Available: https://www.usenix.org/conference/usenixsecurity19/presentation/reis

40

https://ebpf.io/
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

Bibliography

[45] M. Schwarzl, P. Borrello, A. Kogler, K. Varda, T. Schuster, D. Gruss, and M. Schwarz, “Dynamic process isolation,” arXiv

preprint arXiv:2110.04751, vol. abs/2110.04751, 2021.

[46] A. Starovoitov, “BPF backend,” Dec. 2014. [Online]. Available: https://reviews.llvm.org/D6494

[47] J. Bastien and D. Gohman, “WebAssembly: Here be dragons,” Oct. 2015. [Online]. Available: https://llvm.org/devmtg/

2015-10/slides/BastienGohman-WebAssembly-HereBeDragons.pdf

[48] A. Decina, D. Tucker, W. Findlay, D. Everton et al., “Aya,” Apr. 2022. [Online]. Available: https://github.com/aya-rs/aya

[49] W. Huang and M. Paradies, “An evaluation of webassembly and ebpf as offloading mechanisms in the context of

computational storage,” arXiv preprint arXiv:2111.01947, vol. abs/2111.01947, 2021.

[50] Bikram, “Docker namespace vs cgroup,” Oct. 2021. [Online]. Available: https://bikramat.medium.com/namespace-vs-

cgroup-60c832c6b8c8

[51] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of virtual machines and Linux

containers,” in Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software.

IEEE, Mar. 2015, pp. 171–172.

[52] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “The true cost of containing:

A gVisor case study,” in Proceedings of the USENIX 11th Workshop on Hot Topics in Cloud Computing. USENIX

Association, Jul. 2019. [Online]. Available: https://www.usenix.org/conference/hotcloud19/presentation/young

[53] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escalation,” in Proceedings of the USENIX 12th Security

Symposium. USENIX Association, Aug. 2003, pp. 231–242. [Online]. Available: https://www.usenix.org/conference/

12th-usenix-security-symposium/preventing-privilege-escalation

[54] T. Combe, A. Martin, and R. D. Pietro, “To Docker or not to Docker: A security perspective,” IEEE Cloud Computing, vol. 3,

no. 5, pp. 54–62, Sep. 2016.

[55] L. Lamport, “On interprocess communication,” Distributed Computing, vol. 1, no. 2, pp. 77–85, 1986.

[56] N. Natu and P. Grehan, “Nested paging in bhyve,” in 2014 AsiaBSDCon, 2014. [Online]. Available: https:

//people.freebsd.org/~neel/bhyve/bhyve_nested_paging.pdf

[57] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter (and

safer) than your container,” in Proceedings of the ACM 26th Symposium on Operating Systems Principles. ACM, Oct.

2017.

[58] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,” ACM SIGOPS Operating Systems Review, vol. 42,

no. 5, pp. 95–103, 2008.

[59] M. Jones, “Virtio: An i/o virtualization framework for linux,” Jan. 2010. [Online]. Available: https://developer.ibm.com/

articles/l-virtio/

41

https://reviews.llvm.org/D6494
https://llvm.org/devmtg/2015-10/slides/BastienGohman-WebAssembly-HereBeDragons.pdf
https://llvm.org/devmtg/2015-10/slides/BastienGohman-WebAssembly-HereBeDragons.pdf
https://github.com/aya-rs/aya
https://bikramat.medium.com/namespace-vs-cgroup-60c832c6b8c8
https://bikramat.medium.com/namespace-vs-cgroup-60c832c6b8c8
https://www.usenix.org/conference/hotcloud19/presentation/young
https://www.usenix.org/conference/12th-usenix-security-symposium/preventing-privilege-escalation
https://www.usenix.org/conference/12th-usenix-security-symposium/preventing-privilege-escalation
https://people.freebsd.org/~neel/bhyve/bhyve_nested_paging.pdf
https://people.freebsd.org/~neel/bhyve/bhyve_nested_paging.pdf
https://developer.ibm.com/articles/l-virtio/
https://developer.ibm.com/articles/l-virtio/

Bibliography

[60] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S. Kounev, “Experience report: An analysis of hypercall handler

vulnerabilities,” in Proceedings of the IEEE 25th International Symposium on Software Reliability Engineering. IEEE,

2014, pp. 100–111.

[61] A. Milenkoski, M. Vieira, B. D. Payne, N. Antunes, and S. Kounev, “Technical information on vulnerabilities of hypercall

handlers,” arXiv preprint arXiv:1410.1158, vol. abs/1410.1158, 2014.

[62] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M. Popa, “Firecracker:

Lightweight virtualization for serverless applications,” in Proceedings of the USENIX 17th Symposium on Networked

Systems Design and Implementation. USENIX Association, Feb. 2020, pp. 419–434. [Online]. Available: https:

//www.usenix.org/conference/nsdi20/presentation/agache

[63] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels:

Library operating systems for the cloud,” ACM SIGPLAN Notices, vol. 48, no. 4, pp. 461–472, Mar. 2013.

[64] T. Bannister, Ray, Y. Yongsu, Q. Teng, and R. Hvaara, “Controllers,” Jun. 2021. [Online]. Available: https:

//kubernetes.io/docs/concepts/architecture/controller/

[65] P. Perzyna, “Kubernetes operators explained,” Jul. 2020. [Online]. Available: https://blog.container-solutions.com/

kubernetes-operators-explained/

[66] B. Rawat, “Kubernetes: Daemonset,” Dec. 2021. [Online]. Available: https://blog.opstree.com/2021/12/07/kubernetes-

daemonset/

[67] J. Munnelly, J. V. Leeuwen, M. Eyskens, I. Krumina et al., “cert-manager,” Apr. 2022. [Online]. Available:

https://cert-manager.io/

[68] J. Witkowski and K. Korakitis, “The state of cloud native development,” Jan. 2021. [Online]. Available: https:

//www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-of-Cloud-Native-development-FINAL.pdf

[69] J. Polites, “Life of a serverless event: Under the hood of serverless on google cloud platform (cloud next ’18),” Jan.

2018. [Online]. Available: https://youtu.be/MBBQ6P3GauY

[70] F. Cavalcante and E. Laureano, “Azure functions internals - brk4020,” Sep. 2018. [Online]. Available: https:

//youtu.be/9Ep6N4PtAxc

[71] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains of serverless platforms,” in

Proceedings of the USENIX 2018 Annual Technical Conference. USENIX Association, Jul. 2018, pp. 133–146. [Online].

Available: https://www.usenix.org/conference/atc18/presentation/wang-liang

[72] Amazon Web Services, “Creating lambda container images,” May 2022. [Online]. Available: https://docs.aws.amazon.

com/lambda/latest/dg/images-create.html

[73] A. Srikanta and O. Filiz, “Aws fargate under the hood,” Dec. 2019. [Online]. Available: https://d1.awsstatic.com/events/

reinvent/2019/CON423-R1_REPEAT%201%20AWS%20Fargate%20under%20the%20hood_No%20Notes.pdf

42

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://blog.container-solutions.com/kubernetes-operators-explained/
https://blog.container-solutions.com/kubernetes-operators-explained/
https://blog.opstree.com/2021/12/07/kubernetes-daemonset/
https://blog.opstree.com/2021/12/07/kubernetes-daemonset/
https://cert-manager.io/
https://www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-of-Cloud-Native-development-FINAL.pdf
https://www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-of-Cloud-Native-development-FINAL.pdf
https://youtu.be/MBBQ6P3GauY
https://youtu.be/9Ep6N4PtAxc
https://youtu.be/9Ep6N4PtAxc
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://d1.awsstatic.com/events/reinvent/2019/CON423-R1_REPEAT%201%20AWS%20Fargate%20under%20the%20hood_No%20Notes.pdf
https://d1.awsstatic.com/events/reinvent/2019/CON423-R1_REPEAT%201%20AWS%20Fargate%20under%20the%20hood_No%20Notes.pdf

Bibliography

[74] D. Poccia, “Introducing cloudfront functions – run your code at the edge with low latency at any scale,” May

2021. [Online]. Available: https://aws.amazon.com/blogs/aws/introducing-cloudfront-functions-run-your-code-at-

the-edge-with-low-latency-at-any-scale/

[75] Amazon Web Services, “Cloudfront faqs,” May 2022. [Online]. Available: https://aws.amazon.com/cloudfront/faqs/

[76] R. Dahl, B. Iwańczuk, K. Kelly, B. Belder, L. Casonato, and C. Beyer, “Deno deploy,” Apr. 2022. [Online]. Available:

https://deno.com/deploy

[77] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers and where to find them: High-resolution microar-

chitectural attacks in javascript,” in Proceedings of the 21th International Conference on Financial Cryptography and

Data Security, A. Kiayias, Ed. Springer International Publishing, 2017, pp. 247–267.

[78] P. Hickey, “Announcing Lucet: Fastly’s native WebAssembly compiler and runtime,” Mar. 2019. [Online]. Available:

https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime

[79] S. Vasani, T.-C. Chen, S. Sudake, Vishal et al., “Fission,” May 2022. [Online]. Available: https://github.com/fission/fission

[80] A. Ellis, B. Rheutan, V. K. Singh, L. Roesler, J. McCabe, R. Dimitrov et al., “Openfaas,” May 2022. [Online]. Available:

https://github.com/openfaas/faas

[81] M. Moore, V. Agababov, M. Thömmes, J. Friedman, K. Nakayama et al., “Knative serving,” May 2022. [Online]. Available:

https://github.com/knative/serving

[82] R. Rabbah, M. Thömmes, J. Dubee, C. Mehrotra, C. Santana et al., “Openwhisk,” May 2022. [Online]. Available:

https://github.com/apache/openwhisk

[83] E. Duchan, L. BG, E. Nussbaum, O. Messer et al., “Nuclio,” May 2022. [Online]. Available: https://github.com/nuclio/nuclio

[84] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer, “Sledge: A serverless-first, light-weight wasm

runtime for the edge,” in Proceedings of the 21st International Conference on Middleware. ACM, 2020, pp. 265–279.

[85] R. Matei, L. Martin, M. Noorali, I. Towlson et al., “Spin,” Apr. 2022. [Online]. Available: https://github.com/fermyon/spin

[86] A. Yeh, G. Głąb, Mike, J. X. Tee, S. Bartscher, L. Villard et al., “Metacontroller,” Apr. 2022. [Online]. Available:

https://github.com/metacontroller/metacontroller

[87] C. Ferris and K. Schlosser, “controller-zero-scaler,” May 2019. [Online]. Available: https://github.com/ibm/controller-

zero-scaler

[88] D. Srinivas, J. Liggitt, J. Betz, P. Ohly et al., “kube-controller-manager,” May 2022. [Online]. Available: https:

//github.com/kubernetes/kube-controller-manager

[89] T. Cramer, xtutu, stephaneyfx, and I. Dmitrii, “The future trait - asynchronous programming in rust,” Apr. 2022.

[Online]. Available: https://rust-lang.github.io/async-book/02_execution/02_future.html

43

https://aws.amazon.com/blogs/aws/introducing-cloudfront-functions-run-your-code-at-the-edge-with-low-latency-at-any-scale/
https://aws.amazon.com/blogs/aws/introducing-cloudfront-functions-run-your-code-at-the-edge-with-low-latency-at-any-scale/
https://aws.amazon.com/cloudfront/faqs/
https://deno.com/deploy
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://github.com/fission/fission
https://github.com/openfaas/faas
https://github.com/knative/serving
https://github.com/apache/openwhisk
https://github.com/nuclio/nuclio
https://github.com/fermyon/spin
https://github.com/metacontroller/metacontroller
https://github.com/ibm/controller-zero-scaler
https://github.com/ibm/controller-zero-scaler
https://github.com/kubernetes/kube-controller-manager
https://github.com/kubernetes/kube-controller-manager
https://rust-lang.github.io/async-book/02_execution/02_future.html

Bibliography

[90] T. Ramlot and F. Guardiani, “Wasmoperator -master thesis project - optimisingmemory usage of kubernetes operators

using wasm,” May 2022. [Online]. Available: https://github.com/thesis-2022-wasm-operators/wasm_operator

[91] F. Guardiani and M. Thömmes, “Kubernetes controllers - a new hope,” Jul. 2020. [Online]. Available: https:

//slinkydeveloper.com/Kubernetes-controllers-A-New-Hope/

[92] S. Akbary, I. Enderlin, M. McCaskey et al., “Wasmer,” Apr. 2022. [Online]. Available: https://github.com/wasmerio/wasmer

[93] E. Albrigtsen, T. K. Röijezon, kazk, M. Bagishov, R. Levick et al., “kube-rs,” Apr. 2022. [Online]. Available:

https://github.com/kube-rs/kube-rs

[94] C. Lerche, A. Crichton, A. Ryhl, T. Endo, I. Petkov et al., “Tokio,” Apr. 2022. [Online]. Available: https://github.com/tokio-

rs/tokio

[95] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 10th ed. John Wiley & Sons, Inc., Apr. 2018, pp.

166–167.

[96] Ayke, R. Evans, Nia, sago35 et al., “Tinygo - a go compiler for small places,” Apr. 2022. [Online]. Available:

https://tinygo.org/

[97] M. Hertz and E. D. Berger, “Quantifying the performance of garbage collection vs. explicit memory management,” in

Proceedings of the ACM 20th Conference on Object Oriented Programming Systems and Applications. ACM, 2005, pp.

313–326.

[98] T. Heo, “cgroupv2 memory,” Oct. 2015. [Online]. Available: https://www.kernel.org/doc/html/latest/admin-guide/

cgroup-v2.html#memory

[99] C. Down, “5 years of cgroup v2: The future of linux resource control,” in Conference at 34th USENIX Large

Installation System Administration Conference. USENIX Association, Jun. 2021. [Online]. Available: https:

//www.usenix.org/conference/lisa21/presentation/down

[100] V. Biriukov, “How much memory my program uses or the tale of working set size,” Sep. 2021. [Online]. Available:

https://biriukov.dev/docs/page-cache/7-how-much-memory-my-program-uses-or-the-tale-of-working-set-size/

[101] E. Hashman, “New in kubernetes v1.22: alpha support for using swap memory,” Aug. 2021. [Online]. Available:

https://kubernetes.io/blog/2021/08/09/run-nodes-with-swap-alpha/

[102] J. Weiner, “Psi - pressure stall information,” Apr. 2018. [Online]. Available: https://www.kernel.org/doc/html/latest/

accounting/psi.html

[103] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, Applied Linear Regression Models, ser. Irwin series in

statistics. Irwin, 2005, ch. Chapter 2.6.

[104] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast: Analyzing the performance of WebAssembly vs. native

code,” in Proceedings of the USENIX 2019 Annual Technical Conference. USENIX Association, Jul. 2019, pp. 107–120.

[Online]. Available: https://www.usenix.org/conference/atc19/presentation/jangda

44

https://github.com/thesis-2022-wasm-operators/wasm_operator
https://slinkydeveloper.com/Kubernetes-controllers-A-New-Hope/
https://slinkydeveloper.com/Kubernetes-controllers-A-New-Hope/
https://github.com/wasmerio/wasmer
https://github.com/kube-rs/kube-rs
https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tokio
https://tinygo.org/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory
https://www.usenix.org/conference/lisa21/presentation/down
https://www.usenix.org/conference/lisa21/presentation/down
https://biriukov.dev/docs/page-cache/7-how-much-memory-my-program-uses-or-the-tale-of-working-set-size/
https://kubernetes.io/blog/2021/08/09/run-nodes-with-swap-alpha/
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://www.usenix.org/conference/atc19/presentation/jangda

Bibliography

[105] M. Crosby, L. Liu, P. Estes, D. McGowan, S. Day, A. Suda et al., “containerd,” May 2022. [Online]. Available:

https://github.com/containerd/containerd

[106] A. Rossberg, D. Gohman, L. Wagner, Ms2ger, B. Smith et al., “Wasm - spec,” Apr. 2022. [Online]. Available:

https://github.com/WebAssembly/spec

[107] L. Wagner, D. Gohman, A. Crichton, N. Fitzgerald et al., “Component model design and specification,” May 2022.

[Online]. Available: https://github.com/WebAssembly/component-model

[108] Y.-Y. He, S.-T. Hsieh, hydai, X. Liu, M. Yuan et al., “Wasmedge,” Apr. 2022. [Online]. Available: https://github.com/

WasmEdge/WasmEdge

[109] V. Shymanskyy, S. Massey, M. Graey, I. Grokhotkov et al., “Wasm3,” Apr. 2022. [Online]. Available: https:

//github.com/wasm3/wasm3

[110] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and B. Chen, “Adapting software fault isolation

to contemporary CPU architectures,” in Proceedings of the USENIX 19th Security Symposium. USENIX Association,

Aug. 2010, pp. 1–11. [Online]. Available: https://www.usenix.org/conference/usenixsecurity10/adapting-software-fault-

isolation-contemporary-cpu-architectures

[111] M. Butcher, A. Reese, B. Hardock, I. Towlson, M. Fisher, M. Dhanani, R. Matei et al., “Fermyon technologies,” Apr. 2022.

[Online]. Available: https://www.fermyon.com/

45

https://github.com/containerd/containerd
https://github.com/WebAssembly/spec
https://github.com/WebAssembly/component-model
https://github.com/WasmEdge/WasmEdge
https://github.com/WasmEdge/WasmEdge
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3
https://www.usenix.org/conference/usenixsecurity10/adapting-software-fault-isolation-contemporary-cpu-architectures
https://www.usenix.org/conference/usenixsecurity10/adapting-software-fault-isolation-contemporary-cpu-architectures
https://www.fermyon.com/

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Comparing Kubernetes isolation techniques
	Function isolation: software-based fault isolation
	Process isolation: containers
	Kernel isolation: virtual machines

	Stateless operator control loop and FaaS
	Operator control loop
	Controller example: Deamonset controller
	Operator example: cert-manager operator

	Stateless design and FaaS
	FaaS platforms

	WebAssembly
	Existing controller architectures
	Containerised operator architecture
	Kube-controller-manager architecture
	Metacontroller architecture
	Controller-zero-scaler architecture

	Solution architecture: WASM operator
	Parent operator asynchronous runtime
	Child operator asynchronous client

	Implementation
	Prior work
	Parent operator: WASM runtime
	Parent operator: host functions
	Child operator: client libraries

	Resource utilisation
	Synthetic-operator workload
	System details
	Memory usage measurement method and analysis
	End-to-end latency measurement method and analysis
	Golang container, Rust container and Rust WASM compared
	End-to-end latency

	Cost of isolation
	Automatically unloading WASM modules
	Dynamically allocated memory

	Open challenges and research directions
	Implementation improvements
	WebAssembly standards and proposals
	WASI sockets proposal
	WASM component model proposal

	WASM compilers
	SFI-based FaaS

	Conclusion
	Bibliography

