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Abstract

The influence of the Channelrhodopsin-2 variant ChR2(H134R) distribution on the optogenetic
excitability in a CA1 pyramidal neuron is studied in this dissertation. An extensive comparison
is made between the response of this neuron on optogenetic stimuli for different ChR2(H134R)
distributions in view of finding distributions that will improve the efficiency and selectivity of
the optogenetic stimulation. The neuronal response is computationally obtained by combining a
model of ChR2(H134R) and a CA1 pyramidal neuron model. ChR2(H134R) was modeled by the
double two-state model of Schoeters et al. (2021). Two neuron models of different complexities
are used to model the neuron: a modified version of the reduced-morphology model of Cut-
suridis and Poirazi (2015) by Tomko et al. (2021) (CP15TK21 model) and the full-morphology
model of Migliore et al. (2018) (M18 model). This was done to investigate the impact of the
neuronal model’s complexity on the obtained results. For both models, the results show that an
optogenetic stimulation of the apical dendritic tuft region leads to the highest mean firing rates
measured in the soma.

Keywords Optogenetics, CA1 pyramidal neuron, Channelrhodopsin-2 distribution, computa-
tional study
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Yearly, millions of people are affected by neurolog-
ical diseases like epilepsy, schizophrenia, and Parkin-
son’s disease. Some of them do not react to pharma-
cological treatment, others are not eligible for resec-
tion (Tønnesen and Kokaia, 2017; White et al., 2020).
Optogenetics is a promising brain stimulation tech-
nique in which molecules are genetically expressed
in target cells with the aim of controlling their activ-
ity by exposing them to pulses of appropriate wave-
lengths (He, 2020). The main advantages over other
neurological techniques are the cell-type specificity
and a higher spatiotemporal resolution (Tønnesen and
Kokaia, 2017). However, clinical trials for the use of
optogenetics within the brain still face a lot of chal-
lenges (White et al., 2020). Here we aimed at finding
optogenetic stimulation strategies that can improve the
efficiency of optogenetic excitation of the CA1 pyra-
midal neuron. In this computational study, the well-
know Channelrhodopsin-2 variant ChR2(H134R) is
expressed on six different locations across the neu-
ron: the soma, the axon, a basal dendrite section,
an apical trunk section, a radial oblique dendrite sec-
tion, and an apical dendritic tuft section. The opsin
is modeled by the double two-state opsin model of
(Schoeters et al., 2021) because of its high precision
simulations and computational speed. This model was
already fitted to and tested on ChR2(H134R). Two neu-
ron models of different complexities are used to model
the CA1 pyramidal neuron: a modified version of the
reduced-morphology model of Cutsuridis and Poirazi
(2015) by Tomko et al. (2021) (CP15TK21 model) and
the full-morphology model of Migliore et al. (2018)
(M18 model). The models are implemented in the
NEURON simulation platform (Carnevale and Hines,
2006). A comparative analysis is done of the cell re-
sponse on optogenetic stimulations with different opsin
distributions and subsequently compared for both neu-
ronal models.

METHODS

Neuron model of Cutsuridis and Poirazi by Tomko
The first neuronal model that is used to model the CA1
pyramidal neuron is the reduced-morphology model of
Cutsuridis and Poirazi (2015) modified by Tomko et al.
(2021) (CP15TK21). A representation of the morphol-
ogy is shown in Figure 1, together with the names of
the nine sections on which the opsin will be expressed.
These are inspired by the corresponding sublayer of
the cornu ammonis, one of the main zones of the hip-
pocampus, in which they are located. The morphology
is symmetric and the right and left side are respectively
indicated by suffix one and two.

Figure 1: CA1 pyramidal neuron morphology of the
CP15TK21 model with the corresponding section
names (Cutsuridis and Poirazi, 2015).

The original model of Cutsuridis and Poirazi
(2015) (CP15) had a low excitability, which was not
ideal in the analysis of the subcellular optogenetic stim-
ulation effects. Recently, Tomko et al. (2021) pro-
posed to replace the content of the ion channels with
those of the full-morphology model of Migliore et al.
(2018). This new model, CP15TK21, was more ex-



citable, had improved physiological properties, and
was able to capture key physiological features of CA1
pyramidal neurons. It can be found on modelDB1. The
neuron includes eleven active conductances: a volt-
age gated Na+ conductance (GNa), a delayed rectifier
K+ conductance (GKdr), two A-type K+ conductances
(GKa), an M-type K+ conductance (GKmb), a H con-
ductance (GHd), two Ca2+-activated K+ (GKca) con-
ductances, three Ca2+ conductances (GCa), and a cal-
cium accumulation mechanism. The currents are de-
scribed according to the Hodgkin-Huxley model. All
sections containing calcium channels also include a
simple calcium accumulation mechanism, with a single
exponential decay of 100 ms (Migliore et al., 2018).

Neuron model of Migliore et al.

A second, more complex model was used to study the
effects of the morphological complexity on the results:
the model of Migliore et al. (2018) (M18). This model
can be found on modelDB under accession number
244688. The 165 sections compared to the 19 sections
of CP15TK21 make it a morphological realistic model.
Both models can be compared in Figure 2. However,
the computational time increases with complexity. The
biophysics of M18 are similar to those of CP15TK21.

Uniform distribution

A characteristic of the ChR2(H134R) channel is its
adaptation to both light and darkness. Light adapted
molecules have a lower conductance than dark adapted
ones. In the double two-state model of Schoeters
et al. (2021) ḡChR2 is the maximal specific conduc-
tance in mS/cm2 of a fully dark adapted channel. The
opsin distribution can be controlled by adapting this pa-
rameter. It can be seen as the opsin density. The higher
the maximal specific conductance, and the higher the
transmembrane current for a certain optogenetic stim-
ulus intensity (I) and pulse duration (PD).

Simulations were done via the NEURON simula-
tion platform (Carnevale and Hines, 2006). The opsin
model is inserted in the CP15TK21 model and imple-
mented in the NEURON 8.0.0 environment in Python
3.7.11. In each simulation, the opsin in expressed
on a different section, also called stimulation location.
These include the soma (1), the axon (2), a basal den-
dritic section (3 or 4), an apical trunk section (5), a ra-
dial oblique section (6 or 7), and an apical dendritic
tuft section (8 or 9). If the opsin is simultaneously ex-
pressed on the symmetrical sections (e.g. oridist1 and
oridist2), it will be referred to by the same name with-
out suffix (e.g. ’oridist’). In order to compare the opto-
genetic stimulation of locations with different surface
areas, the maximal specific conductance is scaled ac-
cording to Eq. 1, with the soma as reference. This
ensures an equal maximal conductance (ḠChR2) for all

stimulation locations.

ḡChR2 section = ḡChR2 soma
Asoma

Asection
(1)

With Asoma and Asection the surface area of respec-
tively the soma and the section for which the maximal
specific conductance is scaled.

Gaussian distribution

Table I: The mean (µ) and standard deviation (σ) used
for the normal distribution of the maximal specific con-
ductance of ChR2(H134R) in M18 and CP15TK21,
corresponding with the stimulation locations.

For the full-morphology model (M18), it is not use-
ful to look at separate sections as was done for the
CP15TK21 model since there are 165 sections. The
maximal specific conductance now follows a normal
distribution in function of the distance to a reference
point. The general form of a Gaussian probability den-
sity function is given by:

ḡChR2(x) = ḡChR2,max · e− 1
2 (

x−µ
σ )2 (2)

with x the path distance between the segment for which
ḡChR2 is determined and the reference point, not the
distance between the vectors. For reasons elaborated
on later, the soma is the reference point for all stimula-
tion location except of the axon. There are two param-
eters: the mean (µ) and the standard deviation (σ). The
mean of the distribution is the distance to the reference
point where ḡChR2(µ) = ḡChR2,max. To target similar
locations as in CP15TK21, the distances to the soma of
the stimulation locations of CP15TK21 are determined
and used as mean values for the corresponding stimu-
lation locations of M18. They can be found in Table I.
ḡChR2,max is defined such that all stimulation locations
have an equal maximal conductance (ḠChR2) for all
locations:

ḡChR2,max =
ḠChR2∑

sec

∑
seg e

− 1
2 (

x−µ
σ )2 · Asec

nseg

(3)

Where the sum is evaluated for all segments of the
165 sections and x is the distance between the segment
and the reference point. Asec is the surface area of the
section and nseg the number of segments in that sec-
tion.

1 https://github.com/tomko-neuron/HippoUnit



The axon is a special case, because it is one spe-
cific part of the neuron. Applying the same methodol-
ogy as for the other sections results in a high ḡChR2

in all basal and apical sections at the same distance
from the soma as the axon, which is not desired. To
solve this, the axon itself is used as reference point and
µ is set to zero. So, x is now the distance between
the segment in question and the axon. The standard
deviations were chosen such that the maximal specific
conductance is within the range of 0-200 mS/cm2 for
ḠChR2 desired = 0.7π µS. Table I lists the chosen stan-
dard deviation for every stimulation location. In the
following, the same names as used for the stimulation
locations of CP15TK21 will be designated to the cor-
responding stimulation locations of M18.

The transition to a normal distributed maximal spe-
cific conductance is also made for CP15TK21. A sim-
ilar methodology as for the axon is used, i.e. the sec-
tion itself as reference point and a mean of zero. The
distance between the section itself and the segment
in question is x. The standard deviations are again
adapted for every case in order to have similar ḡChR2

ranges. The values can be found in Table I. The Gaus-
sian maximal specific conductance distribution around
an apical trunk dendrite (radTmed) is plotted for both
models in Figure 2.

Figure 2: Distribution of the maximal specific conduc-
tance for an apical trunk stimulation (radTmed) for the
M18 (left) and CP15TK18 (right) model. A desired
maximal conductance of 0.7π µS was used. The maxi-
mal specific conductance follows a normal distribution
with parameters µ, σ, given in Table I, and scalingsfac-
tor C.

RESULTS

Uniform distribution

The opsin is consecutively inserted in the soma, axon,
oridist1, radTmed, obl2 1, and lm thin1. It is uni-
formly distributed along the section. The mean firing
rate (FR) is defined as the number of peaks measured
during the stimulation time, divided by the pulse du-
ration (PD). It is calculated for a set of optogenetic
pulse intensities and maximal specific conductances of
the ChR2(H134R) channel with a pulse duration of
500 ms. The results are visualized in 2D colorplots
in Figure 3.

Figure 3: 2D colorplots of the mean firing rate in func-
tion of the optogenetic pulse intensity and maximal
specific conductance of ChR2(H134R). A continuous
pulse of 500 ms is used. The mean firing rates are
recorded in the soma and the opsin is uniformly dis-
tributed along the indicated section of CP15TK21.

The sections have different values on the y-axis be-
cause of the surface area scaling factor (Eq. 1). In
general, the mean firing rate increases for increasing
values of intensity and maximal specific conductance.
Placement of the opsin in the axon gives zero mean fir-
ing rates for all intensities and maximal conductances,
while the membrane potential is at a constant depolar-
ized level (see also Figure 4 b)). The same is observed
for oridist1 for maximal specific conductances above
133.3 mS/cm2. This phenomenon is described as a
depolarization block. Lastly, a remarkably higher mean
firing rate is observed for lm thin1 compared to obl2 1.

The mean firing rate reveals only a part of the
membrane potential trace. Figure 4 shows the mem-
brane potential traces for I = 10000 W/m2 and
ḠChR2 = 0.5π µS. The optogenetic pulse is continu-
ous with a duration of 500 ms. The upper plot consists
of the sections in which more than one action potential
(AP) was measured. Targeting of the soma, the apical
trunk dendrite (radTmed) and the radial oblique den-
drite (obl2 1) results in an equal spiking pattern. The
optogenetic pulse is characterized by an initial peak
current. This is reflected in the initial burst seen in the
spiking pattern for the different sections. Thereafter,
the neuron adjusts until a steady-state is reached. If the
steady-state optogenetic current is sufficient, a contin-
uous firing is observed. The higher the pulse intensity
and conductance of the opsin channel, the more cur-
rent injection and the shorter the period of silence in



between the initial burst and the steady-state continu-
ous firing. The firing rate increases. Lm thin1 has a re-
markably higher equilibrium potential and an increased
mean firing rate compared to the other stimulation lo-
cations. The membrane potentials of the other two sec-
tions are shown in Figure 4 (b). Stimulation of both
sections results in one AP, followed by a depolarized
membrane potential during the stimulus time.

Figure 4: The membrane potential trace for a contin-
uous optogenetic pulse of 500 ms and 10000 W/m2

(blue area). The opsin is located in the section in-
dicated in the legend with a maximal ChR2(H134R)
conductance of 0.5π µS. The membrane potential is
measured at the center of this section. The sections for
which more than one AP was measured are plotted in
(a), the others in (b).

In a second test, the opsin was placed in both sym-
metrical sections and the mean firing rate was simi-
larly determined. For example, oridist1 and oridist2
are both targeted instead of only oridist1. The results
were mostly similar. Most importantly, the increased
FR that was observed for lm thin1 is even more pro-
nounced when both lm thin1 and lm thin2 are targeted.

Normally, excitatory postsynaptic potentials (EP-
SPs) from different synapse inputs are integrated at the
soma and can result in an action potential. It is also
possible that the action potential was actually initiated
in the dendrite, which is called an dendritic action po-
tential. In order to investigate the AP initiation, the
time of the first AP in the soma and stimulation loca-
tion are compared and the delay in calculated. Figure 5
shows the result. The pulse intensity and maximal con-
ductance have limited impact on the delay. All delays
are positive, leading to the conclusion that the action
potential is initiated at the stimulation location. The
observations are expandable to all observed action po-
tentials. The spiking pattern measured at the soma re-
sembles the spiking pattern measured at the stimula-
tion location, with a slight delay due to the propagation
of the action potential. If the stimulation location is
distinct from the soma and axon, we can say that the

measured spikes are dendritic spikes. Figure 4 (a) il-
lustrates one of the characteristics of dendritic spikes:
a more depolarized action potential voltage threshold
compared to the soma (Gasparini, 2004).

Figure 5: Delay between an AP measured in the indi-
cated section and in the soma. The opsin is located in
the same section. The optogenetic pulse is continuous
with a pulse duration of 500 ms. The indicated val-
ues are used for the pulse intensity and ChR2(H134R)
maximal conductance.

Another way to compare different locations is
by comparing their strength-duration curves. The
rheobase intensities and strength-duration time con-
stants are calculated for the different opsin locations
in function of the maximal conductance and plotted in
respectively Figure 6 (a) and (b). The strength-duration
time constant is determined as follows:

τSD =
I[0] · PD[0]

IRH
(4)

With PD[0] the shortest pulse duration, I[0] the cor-
responding intensity, and IRH the rheobase. All record-
ings were done in the soma. Strength-duration curves
reveal information about the excitability of a stimu-
lation location. Optogenetic stimulation of a distal
basal dendrite (oridist1) or apical dendritic tuft den-
drite (lm thin1) result in rheobases that are on aver-
age 79% lower than those obtained for the other sec-
tions. These two sections are therefore more excitable
and will trigger a somatic AP already for lower pulse
intensities. The other four sections have comparable
strength-duration time constants but their rheobase dif-
fer. The highest rheobase and lowest strength-duration
time constant is observed when the opsin is located in
the axon. For all sections applies that a higher maximal
conductance decreases the rheobase because a higher
maximal conductance means that for the same opto-
genetic pulse intensity, more current is injected into
the section. An AP will thus be evoked for lower op-
togenetic intensities. The increasing strength-duration
time constant is slightly more complex to understand.
In Eq. 4 PD[0], the shortest pulse duration, remains



unchanged. IRH and I[0], the intensity correspond-
ing with the smallest pulse duration, will both decrease
so an increasing strength-duration time constant learns
us that the rheobase decreases slower than I[0]. So a
higher ChR2(H134R) maximal conductance will have
more impact on the pulse intensity necessary to gener-
ate an AP for small pulse duration than for long pulse
durations. It is observed that the strength-duration
curves of oridist1 and lm thin1 intersect for pulse dura-
tions around 20 ms, for both small and large maximal
conductances. This indicates that lm thin1 is more ex-
citable for smaller pulse durations, oridist1 for larger
pulse durations. All the other strength-duration curves
do not intersect, independent of ḠChR2.

Figure 6: Plot (a) represents the rheobase calculated for
the different opsin locations in function of the maximal
conductance. The strength-duration time constant in
function of the maximal conductance is visualised in
the plot (b).

Gaussian distribution

The transition from a normal to a Gaussian
ChR2(H134R) distribution for CP15TK21 resulted
in a different behavior upon an axonal stimulation.
Instead of a depolarization block, FR increases with
an increasing optogenetic pulse intensity and max-
imal conductance. It reaches a mean firing rate of
38 Hz. The absence of the depolarization block can
be explained by the lower maximal specific conduc-
tances. The stimulation is more distributed, resulting
in a smaller injected current. All the other observa-
tions made in the case of a uniform distribution, can
be copied. The same 2D colorplots were generated for
the full-morphology model of Migliore et al. (2018)
and shown in Figure 7. In general, M18 is a more ex-
citable model, leading to higher firing rates for equal
optogenetic stimulations. For higher pulse intensities
and maximal conductances, stimulation of apical trunk

(radTmed) and oblique radial dendrites (obl2) leads to
a FR of 42 Hz. There is no further increase. Most
importantly, the complexity of the morphology did not
influence the main observation: a higher firing rate is
measured in the soma in case of apical dendritic tuft
(lm thin1) stimulation. This means that this result is
independent of the complexity of the model and is
likely to be observed in other models.

Figure 7: 2D colorplots of the mean firing rate in func-
tion of the optogenetic pulse intensity and maximal
specific conductance of ChR2(H134R). A continuous
pulse of 500 ms is used. The mean firing rates are
recorded in the soma. The M18 model was used as
neuronal model with a normally distributed maximal
opsin conductance around the indicated location.

DISCUSSION

The mean firing rates showed how stimulation of dis-
tal dendritic tuft sections (lm thin) leads to a higher
mean firing rate compared to the other locations, al-
most independent of the optogenetic pulse intensity,
maximal specific conductance of the opsin channel,
and the complexity of the neuronal model. Positive AP
delays showed that the spikes are initiated at the stim-
ulation location, also called dendritic spikes. Jarsky
et al. (2005) studied the dendritic spike propagation
following a distal synaptic activation of hippocampal
CA1 pyramidal neurons. They found that somatic APs
could only be initiated when the input resulted in the
generation of dendritic spikes. EPSPs are attenuated
during their propagation to the soma and have a lim-
ited ability to trigger somatic APs. Their conclusions
were confirmed by experimental results. Remarkably,
Jarsky et al. (2005) also observed that in models with



strongly excitable dendrites, the apical dendritic tuft in-
put (perforant-path input) is more efficacious than up-
per apical dendritic inputs (Schaffer-collateral input),
in that a lower number of inputs are necessary to trig-
ger a spike. Both CP15TK21 and M18 are assumed to
be classified as strong dendritic excitable models be-
cause almost all measured dendritic spikes could prop-
agate to the soma and trigger a somatic spike. Tomko
et al. (2021) also describes how M18, of which the
biophysics are adopted for CP15TK21, is a strongly-
propagating model based on the weak attenuation of
back-propagating action potentials. Similar observa-
tions are made in this study by the fact that a higher
mean firing rate is measured in the soma when the
opsin is located in the apical dendritic tuft region. Ac-
cording to Jarsky et al. (2005), this can be explained
by the high input impedance of the small-diameter
tuft branches. Measurements of the input impedances
gave different results for CP15TK21 and M18. Using
CP15TK21, the highest input impedances were mea-
sured in the soma and radTmed, which contradicts the
assumption of Jarsky et al. (2005) because they have
the largest diameters. However, using M18, the input
impedances of the small diameter apical dendritic tuft
en distal basal dendritic section were indeed elevated
compared to the others. The input impedance is there-
fore expected to play a role in the efficacious stimula-
tion of the small-diameter branches but combined with
other factors.

FUTURE WORK

Only one type of optogenetic stimulus was used in this
dissertation: a continuous optogenetic pulse of 500 ms.
Multiple pulse intensities were used but the pulse dura-
tion was kept fixed for all tests. Important to note is that
the observed location-dependent effects are likely to be
a results of the characteristics of dendritic spikes. If the
optogenetic pulse would only evoke sub-threshold EP-
SPs in the apical dendritic tuft region, they would be
attenuated during their propagation to the soma and the
efficacious apical tuft stimulation is no longer applica-
ble. Therefore, the type, spatial extent, duration, and
intensity of the optogenetic pulse necessary to gener-
ate dendritic spikes could be an interesting new field of
study.

CONCLUSION

Optogenetic stimulation strategies, characterized by
the opsin distribution, were searched that could im-
prove the efficiency of optogenetic excitation of the
CA1 pyramidal neuron. A comparison of six stimula-

tion locations led to the conclusion that the symmetri-
cal apical dendritic tuft stimulation resulted in the most
efficient excitation of the soma. Similar effects were
observed with a morphological more complex model.
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Chapter 1

Introduction

Yearly, millions of people are affected by neurological diseases like epilepsy, schizophrenia, and
Parkinson’s disease. Some of them do not react to pharmacological treatment, others are not
eligible for resection. Many patients suffer from side effects of their medication and this can
decrease the quality of life (Tønnesen and Kokaia, 2017; White et al., 2020). Optogenetics is a
promising brain stimulation technique in which molecules are genetically expressed in target cells
with the aim of controlling their activity by exposing them to pulses of appropriate wavelengths
(He, 2020). The main advantages over other neurological techniques are the cell-type specificity
and a higher spatiotemporal resolution (Tønnesen and Kokaia, 2017). However, clinical trials
for the use of optogenetics within the brain still face a lot of challenges (White et al., 2020).

In the past years, lots of research has been done to find computational models to simulate op-
togenetics. In silico predictions of the responses of both the optogenetic tool and the target cell
can facilitate real experimentation and provide guidance for the development of in vivo tools
(Williams et al., 2013). Furthermore, modeling the kinetics of different opsins can be a guide in
the selection of the correct opsin (Schoeters et al., 2021). It has been shown that the kinetics
of the spiking output and the efficacy of the stimulation are function of the spatial pattern
of illumination (Grossman et al., 2013). In this dissertation, the location dependent effects
of optogenetic activation in multi-compartment neuron models will be investigated. A variant
of Channelrhodopsin-2 of the Chlamydomonas reinhardtii (Nagel et al., 2003) (ChR2(H134R))
is used as optogenetic tool. This opsin is expressed in hippocampal CA1 pyramidal neurons.
ChR2(H134R) is modeled by the double two-state model of Schoeters et al. (2021). Two neu-
ron models of different complexities are used to model the neuron: a modified version of the
reduced-morphology model of Cutsuridis and Poirazi (2015) by Tomko et al. (2021) (CP15TK21
model) and the full-morphology model of Migliore et al. (2018) (M18 model). The models are
implemented in the NEURON simulation platform (Carnevale and Hines, 2006). A comparative
analysis of the location dependent effects is done in view of finding stimulation strategies that
will improve the efficiency and selectivity of optogenetic protocols. Finally, the impact of using
neuron models of different complexities on the results will be investigated.

In the second chapter, the transition is made from a real neuron to a computational model.
The main properties of the neuron, necessary to translate the neuron’s kinetics into a model,
are enlightened. Extra attention is given to the hippocampal CA1 pyramidal neuron since this
neuron is used in the modeling. Afterward, the leaky integrate-and-fire model together with the
Hodgkin-Huxley model are explained to grasp the basics of neuron models. The neuron cannot
be reduced to a point in order to investigate the location dependent effects on the neuron. For
that reason, multi-compartment models are explained in the last section.
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CHAPTER 1. INTRODUCTION 2

An introduction to optogenetics is given in Chapter 3. An optimal optogenetic tool can only
be gained by selecting the correct opsin. An overview of the most known opsins is given in
Section 3.1 with the focus on Channelrhodopsin-2. Next to the neuron model, an opsin model is
necessary to conduct the study. A substantiation is given to the choice of working with the double
two-state model of Schoeters et al. (2021). Section 3.2 focuses on the subcellular optogenetics.
Here, the current state of art is discussed. The chapter is ended with the challenges which are
still faced in the field of optogenetics.

The first two sections of Chapter 4 explain the models that are used in more detail: the neuronal
model of Cutsuridis and Poirazi (2015) (CP15TK21) and the ChR2(H134R) model of Schoeters
et al. (2021). An extensive comparison is made between different ChR2(H134R) locations on the
optogenetic excitability in a CA1 pyramidal neuron modeled by the reduced-morphology model
of Cutsuridis and Poirazi (2015). The small number of sections even allows to stimulate sections
in a single dendrite in order to investigate the location dependent effects on the smallest scale. Six
different stimulation locations are chosen diffuse across the neurons. They comprise the soma,
the axon, a basal dendrite section, an apical trunk section, a radial oblique dendrite section, and
an apical dendritic tuft section. Primarily, the generic response of the CA1 pyramidal neuron
on different optogenetic stimulation strategies, is studied. Thereafter, the symmetric sections
are included and finally two sections of the same basal dendrite are stimulated in order to study
the influence of the geometry of the section and distance to the soma.

Many different models have been developed for the CA1 pyramidal neuron, from morphologically
simple to very detailed models. In Chapter 5, a second neuronal model is used with the same
biophysics as CP15TK21 but a more detailed morphology: the model of Migliore et al. (2018).
A description is given in Section 5.1. An increased number of sections led to the necessity of
working with a normally distributed opsin conductance instead of a uniform distribution. Similar
stimulation locations are tested and the results are compared with the reduced-morphology
model of Cutsuridis and Poirazi (2015).



Chapter 2

Computational neurophysiology

Understanding the function of the brain starts with focusing on the biology of the brain. When
the physiology and the dynamics of the brain are known, they can be translated into a compu-
tational model. These computational models can predict the response of the cell which can be
used to facilitate real experiments. In the following, the physiology of the neuron is discussed.
This is then translated into a computational model. Many models have been created and two of
them are discussed in Section 2.2: the leaky integrate-and-fire model and the Hodgkin-Huxley
model. The following part is mainly based on two sources: (Gerstner et al., 2014) and (Petersen,
2016).

2.1 Neurophysiology

When studying the functioning of the brain, it is best to start with its smallest components:
the neurons. These are the brain’s most elementary processing units and are connected via
synapses. Neurons are structured into networks that can contain more than 104 cell bodies.
The basic elements of a neuron are the dendrites, the soma, and the axon. An example of a
neuron is shown in Figure 2.1 (Gerstner et al., 2014).

Figure 2.1: Single neuron in a drawing by Ramón y Cajal. The basic elements are shown: dendrite,
soma, and axon (Gerstner et al., 2014).
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Figure 2.2: Multiple phospholipids forming a cell membrane (Petersen, 2016).

Communication between and within neurons takes place via chemical and electrical signals.
The properties of the neuron’s cell membrane are important in understanding the origin of these
signals. The cell membrane of a neuron is a phospholipid bilayer. Phospholipids are made up of
a lipophilic or hydrophobic tail and a hydrophilic phosphate head group. Figure 2.2 shows how
several phospholipids can form a cell membrane.

The most relevant properties of the cell membrane are the electrical properties. Due to its
anatomy, the cell membrane is only permeable to lipophilic structures like gases, lipids, and
non-polar molecules. There is only a limited permeability to water and, most importantly, no
permeability to ions and charged molecules. Therefore there is a possible concentration difference
between both sides of the cell membrane. A concentration difference of charged ions then leads to
an electrical potential across the membrane and this is called the membrane potential. Sodium
(Na+), potassium (K+), and chloride (Cl−) ions are those with the highest influence on this
potential. A typical cell contains a higher concentration of potassium ions on the inside and a
higher concentration of sodium and chloride ions on the outside (Petersen, 2016).

Electrical signal conduction would not be possible if the membrane potential was static. That is
why the cell membrane comprises ion channels, i.e. transmembrane proteins that can mediate
the flux of ions across the neuron’s membrane. Next to ion channels, there are some other trans-
porters who can control the movement of ions, but these are slower and involve more complex
steps, e.g. the hydrolysis of ATP. Ion channels, on the other hand, are fast and can provide
large electrical currents that have a direct effect on the membrane potential. For this reason, ion
channels are the most interesting transporters to focus on when studying electrical brain signals.
Neher and Sakmann (1976) developed the so-called patch-clamp recording technique which al-
lowed them to determine the 2 major properties of ion channels. The first one is the unitary
opening and closing of ion channels. The second one is the ion channels’ selectivity towards
certain ion types. Thus, ion channels have a conductance which is influenced by the probability
that the ion channel is open, the electrical field across the membrane, and the concentration
gradient (Petersen, 2016).

In brief, a neuron has a cell membrane which is impermeable to ions and charged molecules.
A concentration difference of charged ions is built up across the cell membrane which results
in an electrical potential, the membrane potential. So the two dominant, opposing forces are
the concentration gradient and the electrical gradient. Despite the impermeability of the cell
membrane, there can be an ion flux due to the ion channels. This flux is controlled by the two
major forces and can be described as the electro-chemical diffusion.

An important property of a specific ion is its reversal potential. It is defined as the potential at
which there is no net flux of ions given the extra- and intracellular ion concentration. In this
case, the electrical and the concentration gradient cancel each other out. The reversal potential
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is given by the Nernst equation:

Ex =
RT

zF
ln

[X]o
[X]i

(2.1)

Where X is a certain ion species, R is Avogadro’s gas constant, T is the temperature in Kelvin, F
is the Faraday constant and z is the charge of the ion. [X]o and [X]i are the ionic concentrations
respectively on the outside and inside of the cell. To determine the reversal potential of ions,
the biological concentrations are used (Petersen, 2016). As the values of the reversal potential
of Na+, K+, Cl−, and Ca2+ are important in what follows, they are listed below.

Table 2.1: The reversal potential Eion for Na+, K+, Cl− and Ca2+ given their biological intra- and
extracellular concentrations (Petersen, 2016).

If the neuron would only be permeable for one ion, the resting membrane potential would be
equal to its reversal potential. Because this is not the case, the Goldman-Hodgkin-Katz equation
can be used to calculate the equilibrium potential including multiple monovalent ions (Petersen,
2016). It is given by:

Vm =
RT

F
ln

PK+ [K+]o + PNa+ [Na+]o + PCl− [Cl−]i
PK+ [K+]i + PNa+ [Na+]i + PCl− [Cl−]o

(2.2)

In this equation, the parameters have the same meaning as in Eq. 2.1 and Px is the permeability
ratio for ion x. Typically, the measured resting membrane potential of a neuron is around -65
mV. Thus, the neuron, without any inputs, already has a strongly negative polarization. When
a neuron receives an input from a presynaptic neuron, its membrane potential can increase
or decrease, which is respectively referred to as excitatory (EPSP) or inhibitory (IPSP) post
synaptic potential. Since the neuron receives inputs from multiple presynaptic neurons, the
EPSP and IPSP sum together until the membrane potential exceeds the firing threshold. In
this case, the membrane potential increases rapidly with an amplitude of around 100mV and a
typical duration of 1-2 ms. This rapid change in membrane potential is called an action potential
(AP), the elementary unit of signal transmission (Gerstner et al., 2014).

2.1.1 Hippocampal CA1 neuron

The brain can be seen as a structure organized in different (sub)regions. Every region is made
of different layers and every layer contains neurons of various types (Gerstner et al., 2014). Cor-
tical neurons can be classified based on intrinsic properties like their morphology, connectivity,
or neurochemical profile. As stated before, according to their neurochemical profile neurons can
be excitatory or inhibitory. Morphologically, neurons can be classified based on their shape,
orientation, and projections. Well-known morphologies are the pyramidal, stellate, basket, and
bipolar morphologies. The rest of this study will mainly focus on the pyramidal neuron, visu-
alised below (Figure 2.3). The apical and basal dendritic trees are typical for this kind of neuron,
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which derives its name from the pyramidal shape of the soma. These neurons are abundantly
present in several regions of the brain (Spruston, 2008; Deleanu, 2021).

Figure 2.3: A hippocampal CA1 neuron. Typically contains apical and basal dendrites and has a
pyramidal shaped soma. (Georgiev, 2009)

More specifically, the pyramidal neurons of the CA1 region of the hippocampus will be used
throughout this study. This choice was made based on the extensive available knowledge. More
than 130 model entries can be found on ModelDB, from simple to very detailed models (McDou-
gal et al., 2017; Tomko et al., 2021). Section 4.1 and 5.1 will elaborate further on which models
are most interesting for this research. To correctly situate the CA1 region, it is important to
first have a look into the anatomy of the hippocampus. The hippocampus is involved in mem-
ory processing, learning, spatial navigation, and emotions. According to Fogwe et al. (2022),
it can be described as a curved and recurved sheet of the cortex that folds into the temporal
lobe’s medial surface. The main zones are the dentate gyrus, the cornu ammonis (CA), and the
subiculum. The pyramidal cells of the cornu ammonis are organized into different zones: CA1,
CA2, CA3, and CA4. In the CA1 region, 90% of the neurons are pyramidal neurons and the
remaining ones are interneurons. The axons of the CA1 pyramidal cells are connected to the
subiculum neurons (Fogwe et al., 2022; Chauhan et al., 2021; Hammond, 2015). Furthermore,
the cornu ammonis has 5 sublayers:

1. Alveus

2. Stratum oriens: basal dendrites of pyramidal cells.

3. Stratum pyramidale: principle cell layer, contains 10-30 layers of pyramidal cells. Their
somas are aligned here.

4. Stratum radiatum: apical dendrites of the pyramidal cells are extended here.

5. stratum lacunosum – moleculare: apical dendrites arborize here.
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Figure 2.4: Hippocampus with 3 main zones: dentate gyrus, cornu ammonis, and subiculum. Pyramidal
cells are organized in zones CA1, CA2, CA3 and CA4. The cornu ammonis has five sublayers
as explained in text (medical dictionary: https://medicine.en-academic.com/3923).

In this dissertation, optogenetic stimuli are applied to various locations of the neuron with
as result that signals will propagate along the neuron. The physiological features of a CA1
pyramidal cell are important in the clarification of the way in which signals propagate as we
will observe in the results. In CA1 pyramidal cells the action potential is typically initiated in
the axon hillock and propagated forward to the axon and backward to the dendritic tree as a
back-propagating action potential (bAP) (Tomko et al., 2021). Tomko et al. (2021) and Sáray
et al. (2021) describe some key physiological features. A first one concerns the somatic spiking
properties. The neuron gets inputs from synapses located all over the neuron. These can have
multiple spatiotemporal patterns which are transformed into one single spiking output (Migliore
et al., 2018). Measurements are often performed at the soma, since this is the final integration
site, together with the axon (Magee and Cook, 2000). Spike event features, spike shape features
and voltage features can be studied (Tomko et al., 2021). Another physiological feature is the
somatic depolarization block. When a current is injected into the soma with increasing intensity,
the CA1 pyramidal cell will first respond with an increasing number of action potentials. If the
current intensity exceeds a certain threshold, the cell stops firing after some action potentials,
and the membrane potential reaches an equilibrium point (Bianchi et al., 2012). In the past,
this phenomenon was considered unphysiological but Bianchi et al. (2012) showed that it can
actually occur in vivo for a level of synaptic activity within the physiological range. Furthermore,
depolarization block is said to be relevant in modulating the initiation and spread of focal
epileptic seizures since it seems to be one of the mechanisms that protect this neuron from firing
at high frequencies (Bianchi et al., 2012). Contrary to back-propagating APs, excitatory post
synaptic potentials (EPSP) travel from apical dendrites toward the soma and axon. During this
propagation, they are typically attenuated. The post synaptic potential attenuation is defined as
the ratio between the peak amplitude of the somatic EPSP and the local dendritic EPSP (Tomko
et al., 2021). Action potentials are normally initiated in the soma or axon because of their lowest
voltage threshold for spike generation. However, sometimes local dendritic spikes are observed.
They are characterized by a more depolarized voltage threshold than the soma (Gasparini, 2004).
Gasparini (2004) found that highly synchronized inputs with moderate levels of spatial clustering
are necessary for spike initiation at these locations. Losonczy and Magee (2006) have shown the
same for radial oblique dendrites, namely, asynchronous input patterns are linearly summed and
synchronous inputs supralinear, meaning that there is an initiation of a dendritic spike. Local
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dendritic spikes can provide neurons with additional computational abilities. Not only EPSP,
but also back-propagating action potentials are attenuated to some extent. The propagation
of a bAP is a measure for the dendritic excitability (Sáray et al., 2021). Golding et al. (2001)
describe how there is a dichotomy between strongly, weakly and intermediate backpropagating
cells. Multiple factors have an impact on the degree to which backpropagating action potentials
invade the dendritic arbor, including the dendritic morphology, shape of action potentials in the
soma, and the distribution of sodium and potassium channels in the dendrites.

2.2 Neuron models

The neurophysiology that was discussed in Section 2.1 can now be translated into computational
models. I will start by focusing on the integrate-and-fire model, as it is the simplest of the
following models. The books of Izhikevich (2006) and Gerstner et al. (2014) are used to support
the mathematical foundation of this model. Afterwards, I will focus on the Hodgkin-Huxley
model, also brought forward by Izhikevich (2006) and Gerstner et al. (2014), as it is the most
used model in the computational neuroscience.

2.2.1 Integrate-and-fire model

The name ’integrate-and-fire model’ refers to the integration of all postsynaptic potentials. When
the firing threshold is exceeded, the neuron will fire an action potential which defines the ’fire’
term. The fact that APs are described as events rather than describing the spike generation
mechanism is what simplifies this model. Gerstner et al. (2014) state that this is plausible in
the assumption that the shape of an AP cannot be used to transmit information since it always
has roughly the same form.

Figure 2.5 on the left by Gerstner et al. (2014) illustrates how the membrane can be represented
by an electrical circuit. The cell membrane does not allow ions to move to the other side.
Since the membrane is very thin, the charged ions can interact through electrostatic forces.
Therefore, the membrane can be compared to a capacitor where the lipids act as a dielectric and
the ions as the charges (Petersen, 2016). A neuron at rest has a resting potential Vrest which is
represented by a voltage source Vrest. The input current I(t) can be seen as an experimentally
injected current or synaptic input from other neurons. Since the cell membrane is not a perfect
insulator, there will be a leakage current (Gerstner et al., 2014). When this current is assumed
to be Ohmic with finite leak resistance R, the model is named a leaky integrate-and-fire (LIF)
model.
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Figure 2.5: Left: Electrical equivalent of the neuron for a LIF model. I(t) represents the input current,
V(t) the membrane potential. The cell membrane acts as a capacitor with capacity C. There
is an Ohmic leakage current with resistance R which is in line with a battery of potential
Vrest (Gerstner et al., 2014). Right: Membrane potential in function of time given by the
leaky integrate-and-fire model (solid line) compared to a normal action potential (dashed
line). After crossing the firing threshold θ at time ti, a spike is generated and the membrane
potential is reset to the potential Vr (Gerstner et al., 2014).

Two mechanisms are used to describe the neuronal dynamics. First, a linear differential equation
describes the subthreshold behavior:

C
dV (t)

dt
= I(t)− V (t)− Vrest

R
(2.3)

which is obtained by the law of current conservation. This can be rewritten as:

τm
dV (t)

dt
= −[V (t)− Vrest] +RI(t) (2.4)

with τm=RC the membrane time constant. Eq.2.4 is also called the equation of a passive
membrane (Gerstner et al., 2014). The solution to this equation is:

V (t)− Vrest = ∆V exp(− t− t0
τm

) for t > t0 (2.5)

if the initial conditions V(t0) = Vrest + ∆V and I(t)=0 for t> t0 are satisfied. This equation
shows that for this simple case, the membrane potential decays to its resting potential in the
absence of an input (Gerstner et al., 2014).

The second mechanism is a spike generating mechanism. The neuron generates an AP at the
moment the membrane voltage reaches the firing threshold θ. The representation of the spike is
not defined but a vertical line or δ pulse is often used. Yet, the presence or absence of the spike
is of greater importance than the morphology of the AP. After firing, the membrane potential
is reset to Vr for which Vr < θ applies, and subsequently, these two mechanisms are repeated.
To conclude this model, a graph of the membrane potential over time is shown in Figure 2.5 on
the right to illustrate the LIF model (Gerstner et al., 2014).



CHAPTER 2. COMPUTATIONAL NEUROPHYSIOLOGY 10

2.2.2 Hodgkin-Huxley model

In 1952, Hodgkin and Huxley performed groundbreaking experiments on the squid giant axon.
One of their most notable conclusions was that the following three major ion currents should
be taken into account: the voltage-gated K+ current and Na+ current and an Ohmic leak
current. The leak current comprises mainly the Cl− current and other less important channel
types. These experiments resulted in the famous Hodgkin-Huxley (HH) model which, according
to Izhikevich (2006), is one of the most important models in computational neuroscience. In
the following, a better framework for the ionic currents will be given in order to create an
understanding of the Hodgkin-Huxley model. As stated before, ion channels allow ions to flow
through the cell membrane. To understand how action potentials are built up, it is important
to look at the driving force of an ion current. The bigger the difference between the membrane
potential and the Nernst equilibrium potential Ek of an ion type k, the bigger the ionic current
will be (Izhikevich, 2006):

Ik = gk(V − Ek) (2.6)

The difference (V-Ek) is the driving force and gk is the effective conductance in mS/cm2 of
ion type k. Important to mention is that this conductance is not constant but can depend on
the membrane potential or intra- or extracellular agents. The ionic currents are therefore not
Ohmic. The time-varying conductance allows this model to generate an AP compared to the LIF
model where the AP mechanism is not modelled. According to Izhikevich (2006), the effective
conductance g of a channel can also be written differently:

g = ḡp (2.7)

where ḡ is the maximal conductance of the channel and p is the probability that the channel is
open. The HH model only considers the three major ion currents: IK, INa and the leak current
Il. IK, and INa are both voltage-gated currents while Il is an Ohmic current meaning that the
conductance g is constant. Voltage-gated currents’ conductance depends, as the name implies,
on the membrane voltage. The voltage-gated ion channels can consist of so-called gates. These
gates can be activating or inactivating, meaning that they open or close the ion channel. The
proportion of open channels p in a large population is thus (Izhikevich, 2006):

p = mahb (2.8)

where m denotes the probability of an activation gate being in the open state. The probability
of an inactivation gate being in the open state is indicated by h. Parameters a and b respectively
represent the number of activation and inactivation gates. Depending on the value of m and
h, channels are called (partially) (in)active, deactive, or deinactive. A summary of the above is
given in Table 2.2.

Table 2.2: Designation ion channels depending on the values of m, the probability of an activation gate
being in the open state, and h, the probability of an inactivation gate being in the open state
(Gerstner et al., 2014).
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With all this information in the back of our minds, understanding the Hodgkin-Huxley model
becomes significantly easier. Again, an equivalent circuit is made. Compared to the equivalent
circuit in the LIF model, there are now three currents instead of one leak current, namely the
three major currents discussed above. The capacitor represents the cell membrane. The ion
channels are modelled in parallel with the capacitor and are represented as resistors. I(t) is
the injected current and V the membrane potential. Differences in ion concentrations result
in a Nernst potential which is different for the different ion types. This is implemented in the
circuit as the voltage sources El, ENa, and EK . As discussed above, the sodium and potassium
currents are not Ohmic, meaning that the resistors are not fixed, which is indicated by the
diagonal arrows. (Gerstner et al., 2014)

Figure 2.6: The equivalent circuit corresponding with the Hodgkin-Huxley model (Gerstner et al., 2014).

The following formulas are derived from the book of Gerstner et al. (2014). The injected current
is the sum of the capacitive current and the three ion currents:

I = C
dV

dt
+
∑

k

Ik with k = Na,K, l (2.9)

As in Eq. 2.6, every ion current can be written as Ik = gk(V − Ek). gl is constant given that
the leak current is Ohmic. Sodium channels have three activation gates and one inactivation
gate. Using Eq. 2.7 and Eq. 2.8 gives gNa = ¯gNam

3h. Potassium has four activation gates and
no inactivation gates which gives: gK = ḡKn4. This results in the final HH equation:

C
dV

dt
= I − ḡKn4(V − EK)− ¯gNam

3h(V − ENa)− gl(V − El) (2.10)

The dynamics of the gating variables m, n and h are described by:

τx(V )ẋ = −[x− x∞(V )] for x = n,m, h (2.11)

or

ẋ = αx(V )(1− x)− βx(V )x for x = n,m, h (2.12)

With τx the time constant of gating variable x and x∞(V ) the voltage-sensitive steady-state
(in)activation function. Both variables can be measured experimentally (Izhikevich, 2006). For
a constant potential V, gating variable x will approach x∞ with a time constant τx. In Figure
2.7 on the left can be seen how the steady-state (in)activation functions evolve in function of
the membrane potential. The voltage-dependent time constants are depicted on the right.
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Figure 2.7: Left: the steady-state (in)activation functions x∞ in function of the membrane voltage.
Right: the time constants τx in function of the membrane voltage (Gerstner et al., 2014).

These two graphs are of great importance in understanding how the HH model can actually
generate an AP. Depolarization occurs when the interior of a neuron becomes more positive and
the membrane potential increases. This can be the result of an inward synaptic current. A large
depolarization results in an increase of m∞ and n∞ and a decrease of h∞, which can be seen in
Figure 2.7 on the left. The variable m approaches m∞ fast because τm is small. This means that
there is a large inward current of positive Na+ ions , depolarizing the neuron even more. This is
a positive feedback loop. On the other hand, depolarization results in an increase of n, resulting
in an outward or repolarizing potassium current, which counteracts the depolarization. This is
a negative feedback loop. At the same time, variable h −→ 0, inactivating the Na+ current.
This is called the repolarization phase. So an AP is generated when the positive feedback
loop transcends the negative feedback loop. The after-hyperpolarization can be explained by
the slow dynamics of n, driving the potential toward EK. The absolute refractory period occurs
immediately after the repolarization. No AP can be generated due to the inactivated Na+ current
which is a result of the large time constant of h. The relative refractory period is the period
in which the Na+ current starts deinactivating and there is a possibility to generate an AP but
only if the stimulus is higher than normal (Izhikevich, 2006).

Figure 2.8: Different stages of an action potential in the Hodgkin-Huxley model (Izhikevich, 2006).

A good comparison between simple models like the leaky integrate-and-fire model and more
advanced models like the conductance-based models (e.g. Hodgkin-Huxley model) is given in the
book of Izhikevich (2006). Izhikevich (2006) states that in the latter, each variable and parameter
is linked to a well-defined biophysical meaning which can be measured experimentally. Due to
measurement errors, the results can deviate from those in experiments which is a drawback of
conductance-based models. According to (Izhikevich, 2006) the simple models prove to be a
better solution as they can reproduce the neurocomputational features more faithfully. These
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simple models may be less biophysically detailed, but they prove themselves to be much more
computationally efficient. Yet, the HH model is still used much more often because the simple
models neglect a lot of important dynamics, such as adaptation, inhibitory rebound, conductance
changes after a spike (Gerstner et al., 2014). Both the HH and the LIF models reduce the neuron
to a point and ignore the spatial extent and variability of neurons. Using multi-compartment
models, it is possible to expand the point-like neuron to a more realistic neuron for which spatial
coordinates are included in the model. This is obviously of great importance in this dissertation.
These multi-compartment models are treated in the next section.

2.3 Multi-compartment models

The neuron models treated above reduced the neuron to a point. The membrane potential and
currents were only function of time and no spatial coordinate was used. In this case, the neuron
was assumed to be isopotential. Figure 2.3 shows a potential neuron with an arbor-like structure
with different branches. The size of the soma is around 10µm but the length of a neuron can go
up to hundreds of microns (Petersen, 2016; Gerstner et al., 2014). Spatial aspects are of great
importance in signal processing and the study of optogenetics. Obviously, to investigate the
location dependent effects of optogenetics it is necessary to broaden the view and to include the
spatial aspects of the neuron. For this purpose, the cable equations are derived based on the
books of Gerstner et al. (2014) and Petersen (2016).

A piece of the neuron’s dendrite can be seen as a leaky electrical cable. Gerstner et al. (2014)
represents this piece as a cylindrical tube (Figure 2.9). Intracellular, there is an axial current,
i(x), that follows the spatiotemporal voltage gradients along the length of the neuron. Part of
this current leaks out transversely through the ion channels. Another part of this current is used
to charge the local membrane capacitor. The current difference is, therefore:

i(t, x+ dx)− i(t, x) = −C
∂V (t, x)

∂t
−
∑

ion

Iion(t, x) + Iext(t, x) (2.13)

where the first term represents the change due to charging the local capacitor and the second
term represents the loss of current through the ion channels. Iext is the externally applied
current. The drop in membrane potential V(x) is the result of the longitudinal resistance RL of
the neurons arbor and depends on the geometry.

V (t, x+ dx)− V (t, x) = −RLi(t, x) (2.14)

The capacitance C, ion currents Iion, externally applied current Iext, and longitudinal resistance
RL are rewritten in terms of their specific quantities per unit length:

C = cdx, Iion = iiondx, Iext = iextdx, RL = rLdx (2.15)

Dividing Eq. 2.13 and Eq. 2.14 by dx and taking the limit of dx −→ 0 gives:

∂V (t, x)

∂x
= rLi(t, x) (2.16)

∂i(t, x)

∂x
= c

∂V (t, x)

∂t
+
∑

ion

iion(t, x)− iext(t, x) (2.17)
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And finally, the derivative of Eq. 2.16 is taken and substituted into Eq. 2.17 to get:

∂2V (t, x)

∂x2
= crL

∂V (t, x)

∂t
+ rL

∑

ion

iion(t, x)− rLiext(t, x) (2.18)

This is called the general cable equation.

Figure 2.9: Simplification of a neuronal section with corresponding circuit diagram. RL, and RT are the
longitudinal and transversal resistors, respectively. Capacitor C is the electrical capacity
(Gerstner et al., 2014).

There could be an analytical solution only if the cable was passive and if the electrical and
geometrical properties were uniform across the whole neuron. Since these conditions are not
realistic for natural neuronal structures, numerical solutions should be found. Izhikevich (2006)
explains how the continuous dendritic structure can be replaced with a network of discrete
compartments. This is called a multi-compartment model and is illustrated in Figure 2.10 from
(a) to (b). After this discretization, the ordinary time-dependent differential equations can
be used at each of the chosen discretization points. Each compartment has its capacity and
transversal conductivity. Finally, all compartments are coupled via their conductances. Figure
2.10 (c) depicts two compartments. If Vs and Vd are respectively the membrane potentials of
the soma and the dendrite, they are coupled via:

CsV̇s = −Is(V s, t) + gs(Vd − Vs) (2.19)

CdV̇d = −Id(Vd, t) + gd(Vs − Vd) (2.20)

Where Ix(V, t) is the sum of all currents in compartment x and gs and gd are the coupling
conductances. The relative size of the dendritic and somatic compartments can change these
conductances (Izhikevich, 2006; Petersen, 2016). Such multi-compartment models will be used
for the CA1 pyramidal neuron and are explained in more detail in Section 4.1 and 5.1.
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Figure 2.10: Replacement of a neuronal structure (a) by a multi-compartment model (b). (c) A 2-
compartment model with membrane potential Vd and Vs in the dendrite and soma, re-
spectively (Izhikevich, 2006).



Chapter 3

Optogenetics

Optogenetics is a fast-growing field in which molecules are genetically expressed in target cells
with as result that the cell can either optically report on cellular physiology (sensors) or control
cellular pathways actuated by light (actuators) (Yawo et al., 2021). The research of this disser-
tation specifically focuses on these actuators which can be light-activated ion channels or ion
pumps expressed on the neuron. The modulated cell’s cellular activity, e.g. the excitability, is
controlled by exposing it to sequences of light pulses. Optogenetics allows studying the brain’s
mechanisms to get a better understanding of complex tasks such as perception or cognition (He,
2020). Besides its investigative function, it is also very promising as a therapeutic tool for neuro-
logical disorders. Compared to conventional stimulation or recording methods, optogenetics has
some important advantages: cell-type specificity, higher spatiotemporal resolution, bidirectional
control, and greater convenience (Tønnesen and Kokaia, 2017), (Yawo et al., 2021). Epilepsy is
one of the most prevalent types of neurological diseases that yearly affects millions of people.
Tønnesen and Kokaia (2017) clarify how optogenetics can be used to either shut down excitatory
neurons or activate inhibitory neurons to control abnormal circuit activity. Other examples of
fields of interest are Parkinson’s disease, depression, schizophrenia and different types of ad-
diction (Guillaumin et al., 2021; Fakhoury, 2021; McNally et al., 2021; Stamatakis and Stuber,
2012). Retinitis Pigmentosa, a neurodegenerative eye disease where loss of photoreceptors can
lead to blindness, is one of the few diseases for which clinical trials are conducted (Sahel et al.,
2021). Sahel et al. (2021) report one of the first results of this pioneering study. In these trials,
a viral vector encoding a light-sensing channelrhodopsin protein was injected to target retinal
cells. Engineered goggles were used to capture images and project them as light pulses onto
the retina. This led to partial functional recovery of the vision (Sahel et al., 2021). However,
clinical trials for the use of optogenetics within the brain still face a lot of challenges. The use
of gene therapy techniques to introduce light-sensing proteins and the implantation of electronic
devices to provide optical stimulation to this day still lead to a lot of unsolved puzzles (White
et al., 2020).

3.1 Microbial opsins

Genetically expressed molecules are also referred to as optogenetic probes or tools (Tønnesen
and Kokaia, 2017). In the past years, there has been an expansion of types and variants within
this group. Rost et al. (2017) divide these tools into actuators and sensors. Actuators are
expressed molecules with the aim of manipulating cellular activities like membrane potential,
membrane composition, protein and organelle localization, and gene expression. Sensors, on the
other hand, will visualize physiological events in the cell by means of optical signals. For this
dissertation, the relevant molecules are the actuators who modulate the membrane potential.

16
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Opsin genes are subdivided into microbial opsins (type I) and animal opsins (type II) (Fenno
et al., 2011). Proteins of both types require retinal, which is a vitamin A-related organic cofactor
that serves as an antenna for photons (Fenno et al., 2011). Proteins that are bound to retinal are
called rhodopsins. According to Rost et al. (2017), microbial rhodopsins are the most commonly
used optogenetic actuators. This is explained by the small size of their protein-encoding genes,
the availability of all-trans retinal in mammalian neurons, and the millisecond timescale of their
activation and deactivation (Rost et al., 2017). Thus, the further discussed opsins are microbial
rhodopsins that modulate the membrane potential.

Figure 3.1: Visualisation of excitatory Channelrhodopsin (ChR) and inhibitory Halorhodopsin (HR)
(Fenno et al., 2011).

An important distinction that can be made between opsins is their inhibitory or excitatory
character. Inhibitory opsins will transport protons outward or chloride ions inward the cell via
a pump. This results in a hyperpolarization in response to light stimulation and therefore an
increased electrical threshold and a lower excitability of the neuron. According to Tønnesen
and Kokaia (2017) the most used hyperpolarizing optogenetic probes in research are probes of
the class of Halorhodopsins (HR). These are light-driven inward chloride pumps derived from
the cell membrane of halobacterium (e.g. NpHR). Such a pump is visualised on the right
of Figure 3.1. Examples of the outward proton pumps are Arch derived from Halorubrum
sodomense and ArchT derived from Halorubrum strain TP009. Excitatory opsins will cause
a depolarization of the neurons making them more excitable. Channelrhodopsins (ChRs) are
light-gated cation-channels that passively conduct ions along electrochemical gradients. This
can be seen in Figure 3.1 on the left. Modified versions of Channelrhodopsin-2 (ChR2), isolated
from Chlamydomonas reinhardtii, are the most popular excitatory optogenetic probes among all.
In general, ion channels have simpler molecular mechanisms and faster dynamics than pumps
(Tønnesen and Kokaia, 2017; Rost et al., 2017). This fact and the available literature make
ChR2 an ideal candidate to conduct this study with. Therefore, this study will now proceed to
describe the structure and dynamics of ChR2 in more details.
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3.1.1 Channelrhodopsin-2

Figure 3.2: The opening-and-closing mechanism of the ChR2 protein. All-trans-retinal transforms after
electron-photon interaction into the high-energy 13-cis-retinal. As a results the channel
opens. The high-energy retinal returns to the all-trans state in the absence of light. The
channel closes (He, 2020).

Channelrhodopsin-2 (ChR2) is a seven-transmembrane, light-responsive protein. ChR2 utilizes
retinal in the all-trans configuration in order to function. Exposure to light results in the isomer-
ization of the all-trans or low-energy configuration to the 13-cis or high-energy configuration.
As a result of the force of this conformational change, the ChR2 protein structure changes and
the open channel is formed. It is a nonspecific cation channel meaning that opening of the
channel allows H+, Na+, K+, and Ca+ ions to passively diffuse down their concentration gra-
dients (Carter and Shieh, 2015). An illustration of this principle can be seen in Figure 3.2. In
absence of light, the retinal molecule will thermally revert to the low-energy all-trans state and
the channel closes. The process can restart upon exposure to light. The opening and closing
of the channel can happen in less than 1ms, making it possible to control the activity of ex-
citable cells (Fenno et al., 2011; He, 2020). ChR2 is called a single-component optogenetic tool
because a single protein combines 2 tasks: light sensation and ion flux. The peak absorption is
λ = 470 nm (blue light) (Tønnesen and Kokaia, 2017). Short wavelengths correspond to high
energy waves and these are absorbed rapidly by tissue. In this case, it is difficult to reach deeper
layers of the cortex. ChR2 is therefore not ideal for in vivo experiments. Other opsins with
red-shifted spectrum sensitivity are discovered like Volvox Chr, which allows larger penetration
depths (He, 2020). Next to this, other ChR variants with specialized properties were identified
to broaden the range of optogenetic possibilities. One of them is ChR2(H134R). This opsin
exhibits increased photocurrents due to an improved folding and retinal binding (Rost et al.,
2017).

Every opsin has its typical photocycle which includes the different functional and conforma-
tional states through which the opsin goes after illumination (Fenno et al., 2011). Therefore,
understanding this cycle is necessary to be able to model the opsin’s dynamics. Via patch-clamp
studies and UV–visible spectroscopic data, the activation response and photocycle of ChR2 be-
came clearer. Figure 3.3 shows a typical time course of the ChR2 current upon stimulation. The
stimulation length is depicted by the blue line. Three main features can be distinguished: an
initial peak with a fast decay, a steady-state plateau, and postillumination, a fast decay to the
baseline. Williams et al. (2013) use five empirical measures to describe this optocurrent kinetics:
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the peak current Ip and the steady-state current Iss. τon, τoff , and τinact respectively repre-
sent the activation, deactivation, and inactivation time constants. Applying very short stimuli
obstructs the possibility for all channels to be activated before the end of the stimuli. Some
channels open after the stimulus has terminated and this results in a short rise of the current
after the end of the stimulus. This can thus give another type of peak than shown in Figure
3.3. Another observation is the degraded transient response when subsequent stimuli differ less
than 10s (Nikolic et al., 2009; Stehfest and Hegemann, 2010). Now that the dynamics of ChR2
are known, they can be translated into a computational model.

Figure 3.3: The time course of the ChR2 current as a response on light stimulation (blue line) obtained
from experimental observations. Five parameters capture the amplitude and kinetics from
the ChR2 current: the peak current Ip and the steady-state current Iss. τon, τoff , and τinact
are the activation, deactivation, and inactivation time constants, respectively (Williams
et al., 2013).

3.1.2 Computational optogenetics

Taking into consideration all the observations listed in Section 3.1.1 has led to the decision of
working with three- or four-state Markov models (Figure 3.4) (Hegemann et al., 2005; Nikolic
et al., 2006). Nagel et al. (2003) were the first to propose a three-state model. Three-state
opsin models consist of an open (O), closed (C), and desensitized state (D). Desensitized means
that the channel becomes less sensitive to light due to habituation. This state is necessary to
account for the degraded transient response. The kinetics of the currents and relative amplitudes
of the peak-plateau currents can be correctly predicted by this model (Nikolic et al., 2009).
Experimental data shows a postillumination biexponential decay for wild type ChR2. This
is one of the shortcomings of the three-state model and can only be modeled by a four-state
opsin model. Another limitation is the need for light-dependent deactivation and recovery
rates. Hegemann et al. (2005) proposed a four-state Markov model for ChR1. A few years
later, Bamann et al. (2008) did a spectral analysis of ChR2 by stimulating it with short laser
pulses (Nikolic et al., 2009). They could distinguish four different relaxation processes with
independent time constants. For this reason, four-state models were preferred over three-state
models. Figure 3.4 on the right is a four-state model that comprises two open states (O1 and O2)
and two closed states (C1 and C2). Illumination will convert the channel from a closed to an open
state. The transition rates between different states are e12, e21, Gd1, Gd2, and Gr. Williams
et al. (2013) proposed a model that differentiates itself by including voltage dependence for
the relevant kinetic parameters. Previous models primarily grasped light responsiveness which
made the voltage dependence merely linear. Williams et al. (2013) developed the model for the
ChR2(H134R) mutant. Mono-exponential processes were used to describe transitions. This is in
contrast with the biexponential decay that was observed in the wild ChR2. This model was able
to simulate the experimental results with high precision. However, it comprises four differential
equations, resulting in high computational demand. Schoeters et al. (2021) suggested a double
two-state opsin model primarily fitted to and tested on ChR2(H134R). Compared to the model
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of Williams et al. (2013) it could represent the experimental data equally good. Changing to
a double two-state model reduces the number of differential equations from four to two. This
results in an increased computational speed and an easier fitting procedure. Lastly, this model
can be expanded to other opsin types. Of course, every model has its disadvantages. The
double two-state model responds instantaneous to light, overestimating the injected current at
very short pulses. Furthermore, the pH and ion concentrations are not included. Eventually, the
advantages of the double two-state model of Schoeters et al. (2021) together with the accurate
representation of the experimental results led to the decision of working with this model. It is
further elaborated in Section 4.2.

Figure 3.4: Three- (left) and four-(right) state models for the photocycle of ChR2. Different states are
O(open), C(closed), D(desensitized). The four-state model consists of two open and two
closed states. (Nikolic et al., 2009)

3.2 Subcellular optogenetics

One of the advantages of optogenetics was the cell-type specificity. Specific cell-types or neuronal
populations can be targeted by using promotors or by spatially controlling the virus injection
(Fenno et al., 2011). Even more, it is possible to target subcellular neuronal structures. Rost
et al. (2017) have reviewed the most important subcellular targeting strategies. Based on this
review, an overview will be given, followed by the usefulness of working subcellular. The section
ends with the most relevant studies on computational subcellular optogenetics with the aim of
situating this dissertation in existing literature.

There are two ways to obtain spatial selectivity when stimulating a neuron: genetically targeted
expression and focusing the light beam (Nikolic et al., 2013). The genetically targeted expression
can be obtained by modifying the opsin to restrict its expression to desired locations on the
neuron. Rost et al. (2017) give some interesting examples for every compartment.
Axonal targeting can be obtained by fusing ChR2 to an artificial binding domain for myosin
(ChR2-MVIBD-GFP). This is also called targeted axonal trafficking. Grubb and Burrone (2010)
invented a way to target with an even greater spatial selectivity. They added the ankyrinG-
binding loop of voltage-gated sodium channels (NavII-III) to the intracellular terminus of ChR2.
This resulted in a localized ChR2 expression in the axonal initial segment (AIS). Even though
the actual targeting succeeded, it was impossible to initiate APs most likely because of its sparse
expression at the AIS together with the small single-channel conductance of ChR2.
Opposite, it is sometimes desired to exclude the axon from ChR2 expression. Lewis et al. (2009)
obtained enrichment of the somatodendritic compartment by attachment of the myosin Va-
binding domain (MBD) of melanophilin to ChR2. This successfully resulted in reduced spiking
by axonal illumination and enhanced dendritic photocurrents. Postsynaptic densities could be
targeted by the C-terminal addition of the short PDZ domain binding motif ETQV to ChR2
(Gradinaru et al., 2007; Rost et al., 2017).
More recently, Hamada et al. (2021) found a ChR2 modification that resulted in localization
at the presynaptic axon terminals. ChR2 tagged by the metabotropic glutamate receptor 2
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(mGluR2) C-terminal domain fused with a proteolytic motif (mGluR2-PA) could achieve this
targeting without disturbing the normal transmission. In general, modifying ChR2 by the
addition of trafficking motif tags to obtain spatial selectivity is only successful when the function
of the optogenetic tool is not impaired.

The question now remains for what reason specific subcellular compartments are targeted. A
uniform distribution of opsins in the neuron can result in excessive and unphysiological ion
fluxes when a wide-field illumination is used. For example, ChR2 is permeable to calcium so
a uniform distribution of ChR2 can lead to unrealistic calcium concentrations. Clustering the
opsin can avoid this problem. There are also compartment-specific advantages. The AIS is the
most excitable portion of the neuron due to the high voltage-gated sodium channels (Rost et al.,
2017; Grubb and Burrone, 2010). Localization of the optogenetic tool where the AP initiates
can therefore be interesting to manipulate the voltage. For some experiments, it is desired to
avoid the axon and only excite the somatodendritic compartment. By doing this, activation
of passing fibers can be avoided and enables exciting specific neuronal subpopulations with a
higher precision (Rost et al., 2017). And lastly, presynaptic axon terminals can be chosen to
enhance presynaptic activation and to study the functional effects of ChR2 (Hamada et al.,
2021). Hamada et al. (2021) also state that lower levels of photostimulation were needed after
targeting ChR2 to the axon terminals. Summarized, compartment-specific optogenetics allow
to conduct experiments with higher precision and is furthermore used to study the functional
and computational processes performed by the cell. Important to mention is the technique
that is used to visualize the spatial distribution of ChR2 on the neuron. ChR2 is clustered
with a fluorescent protein like YFP and GFP. This fluorophore-bound version of ChR2 can be
envisioned by using a scanning confocal microscope (Grubb and Burrone, 2010).

The second way to stimulate the neuron at very localized points is by focusing the light beam.
Micro-LED arrays can be used to stimulate multiple subcellular compartments (Nikolic et al.,
2013). Grossman et al. (2010) invented this technique because of the lack of optical devices that
could provide 2D stimulation with sufficient irradiance and high spatiotemporal control. This
micro-LED array enables micrometer and millisecond resolution. It is even possible to illuminate
with sophisticated patterns. Grossman et al. (2010) stated that this 2D stimulation opens
the possibility to investigate basic computational functions of individual neurons, like spike-
time-dependent plasticity or the backpropagation of action potentials (bAP). Spike-Timing-
Dependent Plasticity (STDP) is the change in synaptic efficacy after multiple repetitions of
forced spiking. This change is a function of the difference between the firing times of the pre-and
postsynaptic neuron (Gerstner et al., 2014). Backpropagation of APs is the active conduction
along the neuronal dendrites produced by the initiation of an axonal AP (Gasparini and Migliore,
2013). To stimulate only one subcellular compartment, e.g. soma, the laser coupled optical fibers
can be used (Grossman et al., 2013).

Previously mentioned studies mainly conducted in vitro and in vivo experiments to investigate
the response of cells to subcellular targeting. In this dissertation, the location-dependent effects
of optogenetic stimulation are studied using multi-compartment models. Previously, Nikolic
et al. (2013) and Grossman et al. (2013) conducted very similar computational studies.
Grossman et al. (2013) investigated via simulations how the spatial pattern of excitation affects
the response of ChR2 expressing neurons. The simulations were done using NEURON. Four
illumination strategies were used: focal somatic, apical dendritic, focal AIS, and whole cell
illumination. The neuron model of Hay et al. (2011) was used to model a cortical layer V
pyramidal neuron. Channelrhodopsin-2 was modeled with a new six-state model inspired by
Nikolic et al. (2009). The illumination strategies consist of different illuminated areas. When
a constant ChR2 density is assumed, different amounts of photo-current are injected, which
makes it difficult to compare the results. This hurdle was avoided by tuning the ChR2 density
(ḡChR2) in such a way that they all give the same threshold irradiance for spiking. The ChR2
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density for whole cell illumination (area=31.192 µm2, ḡChR2=2.1 pS/µm2) is therefore much
lower compared to that of the soma (area=1.131 µm2, ḡChR2=35.0 pS/µm2). They found that
the illumination strategy has an important effect on the kinetics of spiking output and the
efficiency of stimulation:

1. Whole cell illumination synchronizes the depolarization of the dendritic tree and the soma.
Observed spiking characteristics are an increased bursting rate and enhanced backprop-
agation of APs. This is the most efficient illumination given the low ChR2 density that
is required for the same irradiance threshold. However, due to the larger area, the total
number of channels is of similar magnitude as those of the other illumination strategies.

2. Axonal stimulation. No prolonged spiking was observed when illuminating only the axon.
Interesting for this compartment is to analyze neurodegenerative processes like axon de-
myelination by adapting the membrane capacitance. They found that the threshold irra-
diance increases in proportion to the demyelination level of an axon.

3. Comparing the waveforms of somatic illumination and apical dendritic illumination showed
that there is a stronger and more prolonged depolarization of the dendrites in the case
of the apical dendrite illumination. For somatic illumination, a later AP can be observed
due to backpropagation and there is a quick repolarization. For whole cell illumination,
the effects are combined (last panel).

4. Grossman et al. (2013) also found that bAP had higher amplitudes and shorter latencies
in the case of the whole-cell illumination. Modulation of the bAP is used to spatially
modulate the direction and amplitude of spike time-dependent plasticity protocols. Co-
excitation of the dendritic tree and the soma could enhance the conductivity of bAPs.

Nikolic et al. (2013) conducted a similar study. They used the same four different illumina-
tion types but next to channelrhodopsin-2 (ChR2), also halorhodopsin (NpHR) was used as an
optogenetic tool. Therefore, both optical activation and silencing were possible. Nikolic et al.
(2013) also worked with a layer V cortical pyramidal cell and modeled it using the same neuron
model of Hay et al. (2011). ChR2 was described by a six-state model and NpHR by a three-
state model. The NEURON simulation tool was used. Only the effects of activating NpHR and
co-activating NpHR and ChR2 are studied here since Grossman et al. (2013) examined ChR2
on its own. NpHR turned out to hyperpolarize the best in the case of whole cell illumination.
Apical dendritic illumination showed some hyperpolarization but was insufficient to prevent the
membrane voltage from reaching the threshold. Illumination at the soma or axon did not result
in a significant hyperpolarization of the membrane potential. Activation of both opsins resulted
in different scenarios depending on the relative locations of each illumination. There was a slight
balance towards depolarization. By using the two opsins, two opposing effects can be combined
(excitation and inhibition). This enables controlling the cell’s firing at millisecond precision.

3.3 Hurdles of optogenetics

Optogenetics almost exist for twenty years. It has brought major advances in the field of
neuroscience and is widely used to study signal processing in the brain. Yet, clinical trial design
still faces a lot of challenges. For this reason, only clinical trials for Retinitis Pigmentosa have
been conducted up until now. A first hurdle is the invasiveness. For both the introduction
of the viral vector and the implantation of a medical device that can deliver sufficient light, a
neurosurgical procedure is necessary (White et al., 2020). Retinitis Pigmentosa is treated in the
eye, where ambient light serves as stimulation tool. In this way, both the difficult access to the
brain to inject the vector and the implantation of an optical device can be avoided (White et al.,
2020). Secondly, the brain tissue is directly exposed to light. Prolonged stimulation can lead
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to the production of heat. Stujenske et al. (2015) found that stimulation with high-intensity
light can result in an elevation of the local firing rate, even without any expression of opsins.
They described a realistic model to simulate light and heat propagation during optogenetic
experiments. A third difficulty is the generalization from a mouse brain to the human brain.
The volume of a human brain is a 1000-fold bigger (Tønnesen and Kokaia, 2017). All experiments
done on rodents that provide proof of principle for optogenetics are therefore difficult to extend
to humans. Light in the visible range is quickly absorbed in brain tissue so the use of optical
fibers is necessary to target deeper structures. These optical fibers need to be designed in order
to minimize brain damage and immune responses. A possible solution to the quick absorption is
the use of red-shifted opsins. Red light has a longer wavelength and will penetrate deeper into
the brain tissue (Tønnesen and Kokaia, 2017; Tung et al., 2016).

This dissertation aims at contributing to the conquest of these hurdles. A better understanding
of the neuronal responses after subcellular targeting can result in a more efficient stimulation
of the neuron. Hamada et al. (2021) already showed that lower levels of photostimulation were
possible due to the neuronal targeting with high spatial selectivity. Despite all these challenges,
White et al. (2020) expects the first human trials to occur within the next decade due to the
hard work of several groups.



Chapter 4

Reduced-morphology neuron model

This chapter comprises the investigation of the location-dependent effects on the smallest scale.
With the reduced-morphology model of Cutsuridis and Poirazi (2015), modified by Tomko et al.
(2021), it is possible to focus on individual sections. The aim is to find stimulation strategies that
can improve the efficiency of optogenetic excitation. Primarily, the generic response of the CA1
pyramidal neuron on different optogenetic stimulation strategies, is studied. The stimulation
strategies are characterized by the location on which ChR2(H134R) is expressed. Thereafter,
the focus will shift to a single basal dendrite. Additionally, the impact of the symmetry on
the results is studied. Simulations are done with the NEURON simulation platform, further
elaborated in Section 4.3. The double two-state opsin model of Schoeters et al. (2021) is used
to model ChR2(H134R). This opsin channel is inserted into the neuron model: the modified
version of the Cutsuridis and Poirazi (2015) model by Tomko et al. (2021) (CP15TK21). The
results are represented in Section 4.4 and are discussed in Section 4.5.

4.1 Cutsuridis and Poirazi model by Tomko: CP15TK21

To study the location dependent effects of the optogenetic expression, we need a neuron model
in which the opsin channel can be implemented. Many different models have been developed
for the CA1 pyramidal neuron, from morphological simple to very detailed models. Next to the
morphology, also the composition of ion channels and biophysical properties can be adapted.
To study the impact of the complexity of the neuron model on the results, a comparison is
made between the results obtained by a reduced-morphology model (Chapter 4) and a full-
morphology model (Chapter 5). This section elaborates on the neuron’s morphology, the ion
channel composition, and the model’s ability to reproduce the key characteristic properties of
the CA1 pyramidal neuron, which is studied by Tomko et al. (2021).

Primarily, the model of Cutsuridis and Poirazi (2015) (CP15) was chosen as reduced-morphology
model. This model was used in a computational study on how theta modulated inhibition can
account for the long temporal windows in entorhinal-hippocampal loop (Cutsuridis and Poirazi,
2015). A representation of the morphology is shown in Figure 4.1, together with the 19 different
section names. These are inspired by the corresponding sublayer of the cornu ammonis (see
Section 2.1.1) in which they are located. The morphology is symmetric and the right and left
side are respectively indicated by suffix one and two. Summarized, there are four basal dendrites
(3-6) and three apical dendritic trunk sections (7-9). Four oblique, apical dendrites are connected
to the apical trunk (10-13) and six sections (14-19) form the dendritic tuft. Some sections consist
of multiple segments. The lengths, diameters, total surfaces, and number of segments can be
found in Table A.1 in Appendix A.

24
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Figure 4.1: CA1 pyramidal neuron morphology of the CP15TK21 model with the corresponding section
names (Cutsuridis and Poirazi, 2015; Tomko et al., 2021).

The biophysical properties of the original version of the CP15 model were adapted from the
Poirazi model (Poirazi et al., 2003a,b; Cutsuridis and Poirazi, 2015). However, it quickly became
clear that the excitability of this model was not sufficient. Recently, Tomko et al. (2021) proposed
a new reduced-morphology model (To21) in which they changed the content of the ion channels
of a reduced-morphology model based on those of the full-morphology model of Migliore et al.
(2018) (M18). This new model had improved physiological properties and was able to capture
key physiological features of CA1 pyramidal neurons with a shorter computational time. Based
on these conclusions, the same was done for CP15 which eventually led to the modified version of
the Cutsuridis and Poirazi (2015) model by Tomko et al. (2021): CP15TK21. It can be found on
modelDB1. Most importantly, this model has a higher excitability, making it easier to perform
the computational study with. Summarized, the morphological properties of CP15 are preserved
but the ion channel composition is replaced with those from M18. Therefore, the biophysical
properties explained below apply for both the reduced-morphology model (CP15TK21) and the
full-morphology model (M18), elaborated in Chapter 5. In total, there are twelve different ion
currents and a calcium accumulation mechanism. The Hodgkin-Huxley model, as described in
Section 2.2.2, is used to describe the currents:

iL = gL(V − EL) (4.1)

iNa = gNam
3h(V − ENa) (4.2)

iKdr = gKdrn(V − EK) (4.3)

iKad = gKadnl(V − EK) (4.4)

(4.5)

1https://github.com/tomko-neuron/HippoUnit
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iKap = gKapnl(V − EK) (4.6)

iKmb = gKmbm(V − EK) (4.7)

iHd = gHdl(V − EH) (4.8)

iKca = gKcam
3(V − EK) (4.9)

iKcagk = gKcagko(V − EK) (4.10)

iCal = gCalm
2(V − ECa) (4.11)

iCan = gCanm
2h(V − ECa) (4.12)

iCat = gCatm
2h(V − ECa) (4.13)

With gL, gNa, gKdr, gKad, gKap, gKmb, gHd, gKca, gKcagk, gCal, gCan, gCat the maximal conductances
and EL,ENa,EK,EH,ECa the equilibrium potentials. The definition of the currents together with
the sections in which they are present, are summarized in Table 4.1. The rate functions of the
gating variables can be found on modelDB2. The activation and inactivation gating variables
change according to Eq. 2.11. The conductance is mainly uniformly distributed except for the
peak conductance of iKa(d/p) and iHd, and the equilibrium potential of the passive current EL.
These are calculated for each section based on its distance from the soma and described by a
linear function. The parameters were fitted during the M18 optimization process (Migliore et al.,
2018; Tomko et al., 2021). The uniformly distributed parameters can be found in Table A.2 in
Appendix A. The membrane potential is described according to Eq. 2.10:

Cm
dV

dt
= −iNa − iKdr − iKad − iKap − iKmb − iHd − iKca − iKcagk − iCal − iCan − iCat − iL

(4.14)

All sections containing calcium channels include a simple calcium accumulation mechanism, with
a single exponential decay of 100 ms (Migliore et al., 2018). The calcium dynamics are described
by:

d[Ca]i
dt

= −0.52 · i[Ca] +
[Ca2+]0 − [Ca2+]i

τCa
(4.15)

With i[Ca] the sum of all calcium currents, τCa the calcium decay time constant and [Ca2+]0
the intracellular calcium concentration at rest. The values of τCa and [Ca2+]0 can be found
in Table A.2 in Appendix A. ECa is not specified because it depends on the local calcium
concentration.

2https://github.com/tomko-neuron/HippoUnit
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Table 4.1: The current types present in the M18 model and CP15TK21 model with their corresponding
sections (Migliore et al., 2018). Rad, obl, ori, and lm are the respective abbreviations of
stratum radiatum, oblique, stratum oriens, and stratum lacunosum-moleculare.

4.2 ChR2(H134R) model: double two-state opsin model

The consideration elaborated in Section 3.1.2 finally led to the decision of working with the
double two-state opsin model (22OM) of Schoeters et al. (2021). Schoeters et al. (2021) made
an extensive comparison of their model with the accurate four-state Markov model (4SB), derived
by Williams et al. (2013). They showed that the double two-state model is able to represent
experimental data with high accuracy. The performances were overall comparable to those of
the 4SB model and sometimes slightly better. The 22OM model consists of two differential
equations less than the 4SB model, resulting in an increased computational speed. In my
research, it is, obviously, preferred to have faster simulations. However, in the case of very short
light pulses (PD< τon), the 22OM model might overestimate the injected current since it has an
instantaneous response to light.
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Figure 4.2: Double two-state opsin model (22OM) derived by Schoeters et al. (2021). The O-C state
pair accounts for the open-closing mechanism. O and C respectively refer to open and close.
Dark-light adaptation is captured by the mathematical R-S state pair. The light dependent
rates are indicated by blue arrows. The ChR2 photocycle is visualised in the background.

The double two-state model is represented in Figure 4.2 on top of the ChR2 photocycle. There
are two independent two-state pairs: O-C and R-S. After a long time of darkness, the channel is
closed (C) and dark adapted. Upon stimulation, the opsin goes through different functional and
conformational changes and ends up in its open (O) state. As discussed in Section 3.1.1, there
is a degraded transient response when subsequent stimuli differ less than 10s. Molecules can
adapt to both light and darkness. Light-adapted molecules have a lower conductance than dark
adapted ones. When the photostimulation is stopped, the molecules need a recovery period to
return to their dark adapted states, which is of the order of seconds (Nikolic et al., 2009). In this
model, the change in conductance due to light-dark adaptation is captured by the mathematical
model states R and S. Their relationship with the physical dark adapted and light adapted states
is given by:

R =
gChR2 ·DA+ gLA · LA

gChR2
(4.16)

S = 1−R (4.17)

The parameter gLA is the conductance of a light adapted channel. LA and DA are the prob-
abilities of the opsin molecules to be in a light or dark adapted state, respectively. So, in a
fully dark adapted state, R=1 and S=0. After the transition to a fully light adapted state,
R = gLA/gChR2, and S = 1− gLA/gChR2. An expression for the ChR2 photocurrent is obtained
via the same reasoning as for the Hodgkin-Huxley ionic currents (Eq. 2.6).

iChR2 = gChR2G(V )(O ·R)(V − EChR2) (4.18)

The difference (V − EChR2), with EChR2 the equilibrium potential, is the driving force and gChR2

is maximal specific conductance of a fully dark adapted channel. Williams et al. (2013) describe
the importance of a rectification function G(V) to include the strong inward current-voltage
rectification at voltages above 0 mV. The photocurrent is maximal in the open, dark-adapted
state (O=1 and R=1). The derivatives of the states are defined as:
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dO

dt
=

O∞(I, V )−O(t)

τO(I, V )
(4.19)

dR

dt
=

R∞(I, V )−R(t)

τR(I, V )
(4.20)

With O the fraction of molecules in the open state, for which O∞ and τO are the correspond-
ing equilibrium and time constants, respectively. Similarly, R∞ and τR are the corresponding
equilibrium and time constants of state R. Schoeters et al. (2021) primarily fitted the model to
the data reported by Williams et al. (2013) on the ChR2(H134R) opsin. The fitting procedure
was accelerated by the use of an analytical solution to the above set of differential equations.
The closed form analytical expression is only valid under voltage clamp conditions and a rect-
angular optical pulse stimulation with constant light intensity. The experimental data should
meet these conditions in order to use the analytical solution. The intensity and voltage depen-
dence of the time-constants τO and τR are fit separately. Sigmoidal functions on the log scale
and logistic regression are respectively used for the intensity and voltage dependence. Finally,
the dependencies are combined by a reciprocal addition since this gave better results than a
multiplication. Eq. 4.21-4.24 give the relationships for the time constants, with pi, i = 1 −→ 6
the unknown parameters. In the next step, the equilibrium constants, O∞ and R∞, and the
parameters of the rectification function G(V) are fit. O∞ and R∞ are only dependent on the
intensity because the main voltage dependence is covered by G(V). These last relationships are
given in Eq. 4.25-4.27.

τO(I) =
p3

1 + exp(p1/p2) · I1/(p2·ln(10))
(4.21)

τR(I) = p1(1−
p2

1 + exp(p3/p4) · I−1/(p4·ln(10))
− 1− p2

1 + exp(p5/p6) · I−1/(p6·ln(10))
) (4.22)

τX(V ) =
p1

1 + exp(−(V − p2)/p3)
, X = O, R (4.23)

τX(I, V ) = [(τX(I))−1 + (τX(V ))−1]−1, X = O,R (4.24)

O∞(I) =
1

1 + exp(p1/p2) · I−1/(p2·ln(10))
(4.25)

R∞(I) = 1− p3

1 + exp(p1/p2) · I−1/(p2·ln(10))
(4.26)

G(V ) =
p1 · (1− p2 exp(−(V − EChR2)/p3))

V − EChR2
(4.27)

Parameters pi, i = 1 −→ 6 are calculated by minimization of the cost function followed by a global
optimization. Further details of the cost function and fitting procedure can be found in the
original paper of Schoeters et al. (2021). The final parameters are given in Table 4.2. EChR2

and gChR2 are set to zero and one, respectively.
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Table 4.2: The final 22OM model parameters of the ChR2 mutant, ChR2(H134R), for the double re-
ciprocal addition combination of time constant dependencies (Eq. 4.24) (Schoeters et al.,
2021).

Throughout this study, the time constants and time are expressed in ms, the membrane potential
in mV and the intensity in W/m2. The maximal conductance of a dark adapted channel is
redefined since G(V) has a factor p1:

ḡChR2 = p1 · gChR2 = 10.77 · gChR2 (4.28)

The maximal specific conductance ḡChR2 is expressed in mS/cm2. For convenience, ChR2(H134R)
is abbreviated as ChR2 in all parameter designations.

4.3 Methodology

The simulations were done via the NEURON simulation platform (Carnevale and Hines, 2006).
It is a powerful simulation tool created by Hines (1993). The biologically realistic models of
the CA1 pyramidal neuron and the opsin ChR2(H134R), defined in the previous two sections,
are implemented in the NEURON 8.0.0 environment in Python 3.7.11. Biological models like
these are characterized by nonlinearities and spatiotemporal complexities with no analytical
solution. NEURON allows to handle the neuron’s complex membrane currents and inhomoge-
neous membrane properties. Like those explained in Table 4.1 and the ChR2(H134R) channel,
membrane channels are described in NMODL, a high-level language invented by Moore and
Hines (1996) (Hines and Carnevale, 1997). These mechanisms are subsequently translated to
C, compiled, and linked to the rest of NEURON. When all mechanisms and parameters are
defined, the neuron’s response to a stimulus can be simulated. The aim is to find the longitudi-
nal spread of voltage and current along the neuron. In Section 2.3 was declared how the cable
equations form the connection between voltages and currents across different compartments of
the multi-compartment neuron model. In natural neuronal structures, no analytical solutions
can be found for these differential equations. Therefore, a numerical approach should be used,
which is in this case the Backward Euler method (Hines and Carnevale, 1997). A constant time
step of 0.025 ms is used. As initial conditions, the ChR2(H134R) channel is assumed to be in a
closed, dark adapted state (R=1, O=0). The initial membrane voltage is set to -70 mV and the
default temperature of 6.3°C is used. The spiking activity of a neuron and the morphology of
a spike can be quantified by features. In the following, the stimulation strategies are specified,
continued by the features that are used to make a comparison.
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4.3.1 Stimulation strategies

Figure 4.3: The stimulation strategies used for the CP15TK21 model. Yellow sections indicate the
consecutive locations of the ChR2(H134R) channel. The opsin is uniformly distributed
along the section.

In total, three different stimulation strategies are used (Figure 4.3). The yellow sections in
which the ChR2(H134R) channels are consecutively inserted, are listed in the yellow box. For
the first strategy, only one section per simulation is targeted. The sections are chosen diffusive
across the neuron with the aim of studying the generic response of the neuron on different
stimulation locations. The chosen sections are: the soma, the axon, a basal dendrite (oridist1),
an apical trunk dendrite (radTmed), a radial oblique dendrite (obl2 1), and an apical tuft
dendrite (lm thin1). In Section 3.2, different possible methods were given to limit the opsin
expression to certain neuronal structures. This can be obtained by genetically modifying the
opsin to restrict its expression to desired locations on the neuron. However, in reality there are
multiple dendrites belonging to one neuronal structure (e.g. apical dendritic tuft). In the second
strategy, the symmetrical equivalent sections are therefore added. In the third, second last, and
last simulation, the opsin is simultaneously inserted in two sections. This is also done to find the
interaction of the symmetrical sections and the integration of the currents. The last strategy is
the most specific, in which only one basal dendrite and the soma are targeted. Similar behavior
is expected since the biophysics of two sections belonging to the same dendrite are almost equal.
Only their dimension and the distance to the soma differ. The opsin is uniformly distributed
along the targeted sections for all strategies.

4.3.2 Features

The different locations targeted in each strategy are analyzed by comparing different features.
The first and most obvious feature is the mean firing rate (FR). Moor and Geit (2015) described
the mean frequency of the firing rate as the number of peaks measured during the stimulation
time, divided by the time to the last spike:

FR =
#peaks

tlast spike − tstart stimulus
(4.29)

This definition is however not ideal in case of initial bursting. Cortical neurons often show a
distinct transient and steady-state response (Gerstner et al., 2014). For small light intensities
(I) and values of the maximal specific ChR2(H134R) conductance (ḡChR2), only the transient
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response is observed. In case of initial bursting, a high number of peaks is divided by a small time
period, resulting in a high mean firing rate. For higher intensities and maximal conductances, a
regular steady-state spiking behavior results in a lower mean firing rate. It is, however, expected
that the mean firing rate increases with an increasing light intensity and maximal conductance.
Therefore, the firing rate is defined as the number of peaks measured during the stimulation
time, divided by the stimulation duration, also called the pulse duration (PD):

FR =
#peaks

PD
(4.30)

This definition of the mean firing rate clarifies the dependency on light intensity and maxi-
mal ChR2(H134R) conductance. Contrary, it is not possible anymore to observe initial burst-
ing behavior for small values of I and ḡChR2. Important to note is that the mean firing rate
is put to zero in case of a single AP. Throughout this dissertation, the mean firing rate is
defined by Eq. 4.30, denoted as FR, and expressed in Hz, unless other specified. For each
stimulation location in a strategy, the FR measured in the soma is calculated for a set of
light intensities [1000, 2000, 3000, 4000, . . . , 10000] W/m2 and maximal specific conductance
[200, 300, 400, . . . , 1100] mS/cm2. The maximal specific conductance is expressed per cm2 sur-
face area of the neuron. As can be seen in Table A.1 in Appendix A, each section has a different
surface area so insertion of ChR2(H134R) in a section with a different surface area will result in
a different maximal conductance. The amount of injected photocurrent depends on the maxi-
mal conductance. To compare different stimulation strategies, it is important to have an equal
injected photocurrent and thus an equal maximal conductance. In order to solve this problem,
the maximal specific conductance of a section is scaled so that the maximal conductance equals
that of the soma. From now on, the maximal conductance is denoted as ḠChR2 and expressed
in µS.

ḠChR2 soma = ḠChR2 section (4.31)

ḡChR2 soma ·Asoma = ḡChR2 section ·Asection (4.32)

ḡChR2 section = ḡChR2 soma
Asoma

Asection
(4.33)

With Asoma and Asection the surface area of respectively the soma and the section for which the
maximal specific conductance is scaled. The set of maximal specific conductances listed above
applies for the soma and are adjusted for all sections that have a different surface area according
to Eq. 4.33.

Another way to compare different locations is by comparing their strength-duration curves.
Strength-duration curves plot the minimal amplitude of the stimulus, here the optogenetic pulse
intensity, that is necessary to evoke a spike in function of the stimulus duration (Rattay et al.,
2012; Ranck, 1975). This curve is fully described by two constants: rheobase (IRH) and chronaxie
(Stern et al., 2015). The rheobase is defined as the minimum intensity needed for excitation in
case of infinite long pulse duration. The chronaxie is the pulse duration corresponding with an
intensity of twice the rheobase. The cell’s time constant is normally related to the chronaxie
but this correlation fades when working with spatially extended neuron models like CP15TK21
(Stern et al., 2015). The strength-duration time constant (τSD) is more fundamental than
chronaxie and only two measurements are required to calculate it (Mogyoros et al., 1996). It
is defined as a measure of the rate at which the optogenetic pulse intensity increases as the
duration of the stimulus is reduced to zero (Kiernan and Lin, 2012). An expression for the
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strength-duration time constant is obtained via Weiss’ empirical law (Weiss, 1990):

I · PD = IRH(PD + τSD) (4.34)

With I the optogenetic pulse intensity, IRH the rheobase intensity, PD the pulse duration, and
τSD the strength-duration time constant. τSD is then approximated by the limit as the pulse
duration approaches zero:

τSD =
I[0] · PD[0]

IRH
(4.35)

With PD[0] the shortest pulse duration, I[0] the corresponding intensity, and IRH the rheobase.
So only a measurement of the intensity necessary to excite the neuron for very large and very
short pulse duration is needed to compute the strength-duration time constant. The strength-
duration curve is calculated for a logarithmic set of durations, i.e. 15 points between 0.1 and
100 ms. For every pulse duration, a binary search was done to find the corresponding optogenetic
pulse intensity. The lower and upper boundaries were respectively 0 W/m2 and 1e05 W/m2 and
were increased or decreased by a factor of two until an AP was measured. Accuracy of three
decimal places was obtained in a final step. The bisection method was used with as condition
that the upper and lower boundaries differ maximum 1e-7 + 1e-3 · upper boundary. The final
optogenetic pulse intensity corresponding to the given pulse duration is the average of the upper
and lower boundaries. Finally, the rheobase is found as the smallest optogenetic pulse intensity.
The strength-duration time constant is approximated by formula 4.35 with PD[0] equal to 0.1 ms
and I[0] the corresponding determined intensity. If different stimulation locations are compared,
the membrane potential is always recorded at the soma, unless other specified. The applied
maximal specific conductance is multiplied by the area of the section and expressed in µS because
all stimulation locations have the same maximal conductance (µS) but not the same maximal
specific conductance (mS/cm2). The dependency of the rheobase and strength-duration time
constant on ḡChR2 is plotted for the same set of maximal specific conductances applied to the
soma [200, 300, 400, . . . , 1100] mS/cm2. These values are for the same reason converted to the
maximal conductance:

ḡChR2 soma ·Asoma = ḠChR2 (4.36)

[200, 300, ..., 1100]
mS

cm2
· 100π · 10−8cm2 = [0.2π, 0.3π, ..., 1.1π] µS (4.37)

With Asoma the surface area of the soma, which is equal to 100π µm2. The set of maximal
conductances ḠChR2 soma applies for all locations.

Another feature is the delay of the first action potential. Action potentials that are initiated
outside of the soma need some time to propagate to the soma. In the study of location dependent
effects, it is interesting to know what the delay is for an AP starting at the different stimulation
locations. A positive delay corresponds with an AP that arrives at a later time in the soma. On
the other hand, a negative delay can also reveal that the action potential was actually initiated
in the soma. So, the delay of an action potential is the difference in time measured between the
soma and the section where the action potential was initiated.

The impedance of a neuron is influenced by both the morphology of the neuron and the pres-
ence of voltage-gated conductances in the cell membrane (Káli and Zemankovics, 2012). The
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input impedance describes the local change in membrane potential at the site of the input cur-
rent (Dewell and Gabbiani, 2018). The dendrites of the neuron have different geometries and
voltage-gated conductances, resulting in different input impedances depending on the location
on the neuron. Therefore, the input impedance is determined for the different stimulation loca-
tions. The class ’Impedance’ of NEURON was used. An oscillatory current stimulus of different
frequencies is injected. A logarithmic set of 20 frequencies is used between 0.1 Hz and 100 Hz.
Higher frequencies were not used because the number of segments per sections is not optimized
for those frequencies. The input impedance is calculated 200 ms after the onset of the stimulus,
after the transient response, and is defined as the absolute amplitude of v(x)/i(x), with x the
measuring location.

4.4 Results

Diffuse neuronal stimulation

Figure 4.4: 2D colorplots of the mean firing rate, calculated according to Eq. 4.30, in function of the
optogenetic pulse intensity and maximal specific conductance of ChR2(H134R). A contin-
uous pulse of 500 ms is used. The mean firing rates are recorded in the soma for each
stimulation location of the diffuse neuronal stimulation strategy, indicated in the title of
the surface plots.

The opsin is consecutively inserted in the soma, axon, oridist1, radTmed, obl2 1, and lm thin1.
It is uniformly distributed along the section. The mean firing rate is calculated according
to Eq. 4.30 for a set of optogenetic pulse intensities and maximal specific conductances of
the ChR2(H134R) channel with a pulse duration of 500 ms. The results are visualized in 2D
colorplots in Figure 4.4. Intensities are varied on the x-axis and maximal specific conductance
on the y-axis. Each section has different values on the y-axis because of the surface area scaling
factor (Eq. 4.33), explained in Section 4.3. The total maximal conductance is thereby equal
for all plots: [0.2π, 0.3π, ..., 1.1π] µS. The mean firing rate varies between 0 and 44 Hz. For all
locations, except of the axon and oridist1, the mean firing rate increases for increasing values of
the intensity and the maximal specific conductance. Placement of the opsin in the axon gives
zero mean firing rates for all intensities and maximal conductances. Mean firing rates of around
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30 Hz are measured in the soma when the opsin is placed in oridist1 for low values of ḡChR2

(below 133.3 mS/cm2). Higher values result in a FR of zero. The highest FR is measured if the
opsin is located at radTmed, which is a central apical trunk dendrite. The distance to the soma
of the apical section radTmed, obl2 1, and lm thin1, are respectively 188.33 µm, 288.33 µm, and
633.78 µm. A remarkably higher mean firing rate is observed for lm thin1 compared to obl2 1.

Figure 4.5: The membrane potential (mV) in function of time (ms) for two different optogenetic stimuli.
A continuous pulse with pulse duration 500 ms and intensity 5000 W/m2 was used in a)
and b) and is indicated as the blue area. The opsin is located in the section indicated in the
legend with a maximal ChR2(H134R) conductance of 0.3π µS. The membrane potential is
measured at the center of this section. A similar optogenetic stimulus was used to obtain
(c) and (d) but with a higher intensity (10000 W/m2) and maximal opsin conductance
(0.5π µS). The sections for which more than one AP was measured are plotted in (a) and
(c), the others in (b) and (d).

The mean firing rate reveals only a part of the membrane potential trace. Firing patterns
observed in neuronal responses often show a distinct transient and steady-state part (Gerstner
et al., 2014). Two combinations of optogenetic pulse intensity and maximal conductance were
selected to observe the firing pattern for different stimulation locations. The membrane potential
is recorded in the same section as where the opsin is located. This was done because the
membrane potential influences the functioning of the opsin channel. The optogenetic pulse is
continuous with a duration of 500 ms. Figure 4.5 (a) and (b) show the membrane potential
traces for I = 5000 W/m2 and ḠChR2 = 0.3π µS. The blue area covers the time for which the
optogenetic stimulation was present. In the soma, axon, radTmed, and obl2 1, only one AP is
measured (Figure 4.5(b)). Their membrane potentials are elevated during the remaining time
of the optogenetic stimulus. A slightly higher plateau value is measured in obl2 1. Removing
the stimulus results in a hyperpolarization, i.e. the membrane potential declines further than
the resting membrane potential. A higher activity was measured in the other two sections,
oridist1 and lm thin1 (Figure 4.5(a)). The first AP measured in both sections is higher in
amplitude. A tonic firing was observed in oridist1, covering the whole optogenetic stimulus
time, followed by a hyperpolarization upon removal of the stimulus. Placement of the opsin in
lm thin1 results in a shorter spike train. Thereafter, it reaches a plateau value of -37 mV, again
followed by hyperpolarization upon removal of the stimulus. Figure 4.5 (c) and (d) show the
membrane potential traces for a higher intensity and maximal conductance: I = 10000 W/m2,
ḠChR2 = 0.5π µS. The upper plot consists of the sections in which more than one AP was
measured. When the opsin is localized in the soma, an initial burst can be observed. After about
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200 ms of silence, the neurons starts to fire again with a lower firing rate. Further increasing
the maximal conductance results in a shorter period of silence and a higher firing rate for both
the initial burst and the tonic steady-state firing. The same behavior is observed when the
opsin is located in the apical trunk dendrite (radTmed) and radial oblique dendrite (obl2 1).
However, a different firing pattern is observed in the farthest dendrite of the dendritic tuft
(lm thin1). The firing rate is higher compared to the other sections and there is no initial burst
but only regular spaced spikes. Remarkable is the difference equilibrium potentials. Lm thin1
is the most depolarized, followed by obl2 1, radTmed, and the soma. The membrane potentials
of the other two sections are shown in Figure 4.5 (d). The tonic firing that was measured
in oridist1 for a lower optogenetic pulse intensity and maximal conductance has now changed
to only one action potential. During the stimulus time, the membrane potential in oridist1
is depolarized (-30 mV). And lastly, axonal stimulation results again in one AP followed by a
depolarized membrane potential. A slightly higher depolarization is observed compared to the
first stimulus, i.e. -56 mV versus -61 mV.

Figure 4.6: Delay between an AP measured in the indicated section and in the soma. The opsin is lo-
cated in the same section with a maximal conductance of 1.0π µS, 0.3π µS, and 1.0π µS for
the grey, light green, and dark green bars, respectively. The respective optogenetic intensi-
ties are 5000 W/m2, 5000 W/m2, and 10000 W/m2. The optogenetic pulse is continuous
with a pulse duration of 500 ms.

Normally, EPSP from different synapse inputs are integrated at the soma and can result in
an action potential. It is also possible that the action potential was actually initiated in the
dendrite, which is called an dendritic action potential. In order to investigate the AP initiation,
recordings of the membrane potential at the soma and stimulation location are simultaneously
made. The time of the first AP in the soma and stimulation location are compared and the
delay in calculated. Figure 4.6 shows the result for all stimulation locations of the diffuse
neuronal stimulation. The delay is calculated for the first action potential because for some
stimulation locations, only one AP was measured in total. Optogenetic pulse intensities of
5000 W/m2 and 10000 W/m2 were used, combined with a maximal conductance of 0.3π µS
and 1.0π µS, leading to three cases. The pulse intensity and maximal conductance have limited
impact on the delay. The delays measured between the soma and itself are obviously zero.
All delays are positive, leading to the conclusion that the action potential is initiated at the
stimulation location. Arrangement of the sections from low to high delays gives: radTmed,
obl2 1, oridist1, axon, and lm thin1. The observations are expandable to almost all observed
action potentials. The spiking pattern measured at the soma resembles the spiking pattern
measured at the stimulation location, with a slight delay due to the propagation of the action
potential. If the simulation location is distinct from the soma and axon, we can say that the
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measured spikes are dendritic spikes.

Figure 4.7: (a),(b) Strength-duration curve for different ChR2(H134R) locations and a maximal conduc-
tance of respectively 0.7π µS = 2.2 µS and 1.0 µS, recorded in the soma. The optogenetic
pulse duration (ms) of a continuous pulse is shown on the x-axis and the optical pulse
intensity (W/m2) on the y-axis. Plot (c) represents the rheobase (W/m2) calculated for
the different opsin locations in function of the maximal conductance (µS). The strength-
duration time constant (ms) in function of the maximal conductance (µS) is visualised in
the plot (d).

Figure 4.7 shows the results for the strength-duration plots and its relevant parameters. The
strength-duration curve is plotted in (a) and (b) for two values of maximal ChR2(H134R)
conductance, i.e. 2.2 µS and 1.0 µS, respectively. The recordings were done in the soma for all
stimulation locations. For both maximal conductances, similar relative differences are observed
between the different stimulation locations. Due to the lower maximal conductance used in
plot b), a higher intensity is needed for all pulse durations to generate an action potential. This
results in an upward shift of all curves compared to plot a). The strength-duration curves of
oridist1 and lm thin1 are shifted downward compared to the other curves. Both their rheobase
and strength-duration time constants are comparable. Their curves intersect for a pulse duration
of 19.54 ms in plot a) and 20.67 ms in plot b). Lm thin1 is more excitable for smaller pulse
durations, oridist1 for larger pulse durations. The other four sections have comparable strength-
duration time constants but their rheobase differ. The highest rheobase and lowest strength-
duration time constant is observed when the opsin is located in the axon. The rheobase of the
soma, obl2 1, and radTmed are almost equal, with a slightly higher value for the latter. The
rheobase and strength-duration time constants for ḠChR2 = 2.2 µS can be found in Table 4.3.
The strength-duration curves are calculated for only two values of maximal conductances. To see
the influence of ḠChR2 on the strength-duration curves, the rheobase (c) and strength-duration
time constant (d) are plotted for a set of maximal conductance, i.e. [0.2π, 0.3π, ..., 1.1π] µS. An
increasing maximal conductance results in a decreasing rheobase and an increasing strength-
duration time constant for all locations. The difference in rheobase is the most pronounced for
small values of ḠChR2. Lm thin1 and oridist1 have an equal rheobase for all values of ḠChR2.
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However, τSD is higher when the opsin is located in oridist1. The axon distinguishes oneself from
the other locations with a higher rheobase and smaller strength-duration time constant over the
whole line. Placement of the opsin in the soma, radTmed, and obl2 1 gives very similar values
for both parameters. The strength-duration time constant curves intersect for small maximal
conductances (plot d)). The order of strength-duration time constant magnitude of the different
locations is changed for ḠChR2 = 1.0 µS and ḠChR2 = 2.2 µS, however oridist1 and lm thin1
remain the only two locations for which the curves intersect.

Table 4.3: The rheobase intensity (IRH) and strength-duration time constant (τSD) of the strength
duration curve in Figure 4.7(a). A maximal conductance of 2.2 µS is used.

The measured input impedances are shown in Figure 4.8. The highest input impedance is
measured in the soma, for all frequencies. It has a mean of 158.1 MΩ. Lowest input impedances
are measured in the axon and obl2 1. They intersect at a frequency of 3.37 Hz for an input
impedance of 44.33 MΩ. Obl2 1 has the highest input impedance of the two for low frequencies.
The mean input impedances of the other three sections, i.e. lm thin1, oridist1, and radTmed,
are respectively 55.75 MΩ, 78.25 MΩ, and 117.4 MΩ.

Figure 4.8: Input impedance measured at the indicated location in function of the frequency of the
oscillatory current stimulus. It is measured 200 ms after the onset of the stimulus. The
CP15TK21 neuron model was used.
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Symmetric diffuse neuronal stimulation

Figure 4.9: 2D colorplots of the mean firing rate, calculated according to Eq. 4.30, in function of the op-
togenetic pulse intensity and maximal specific conductance of ChR2(H134R). A continuous
pulse of 500 ms is used. The mean firing rates are recorded in the soma for each stimulation
location of the symmetric diffuse stimulation strategy, indicated in the title of the surface
plots. Oridist refers to the two symmetrical sections: oridist1 and oridist2. Similarly, obl2
refers to obl2 1 and obl2 2 and lm thin to lm thin1 and lm thin2.

Compared to the diffuse neuronal stimulation strategy, the opsin is now placed in both symmet-
rical sections. For example, oridist1 and oridist2 are both targeted instead of only oridist1. The
surface area of two sections is obviously larger so the maximal specific conductance is decreased
to maintain an equal maximal conductance. The opsin is still uniformly distributed along the
targeted sections and the pulse duration is 500ms. In Figure 4.9, the plots for the soma, axon,
and radTmed remain unchanged but these plots are added for comparison. When the opsin
is placed in both oridist1 and oridist2 (indicated with ’oridist’), the mean firing rate does not
become zero anymore for a higher maximal conductance. Primarily, FR increases for increasing
intensity and maximal conductance. However, for large values (right upper corner), there is a
decrease in FR. Figure 4.10 (a) and (b) illustrate the difference between the single case and sym-
metric case. For lower values of I and ḠChR2, continuous firing is observed with a high rate when
the opsin is only located in oridist1. Targeting both sections results in an initial burst, followed
by tonic firing with a lower firing rate as the single case. As was seen in the previous part, the
firing rate becomes zero for a higher intensity and maximal conductance. This is not observed
when both sections are targeted. Contrary, the firing rate increases and the spikes are regularly
spaced. The three lower plots of Figure 4.9 show the activity in the soma when the opsin is
placed in apical dendrites. Again, an overall higher FR is observed for lm thin as for obl2, which
is remarkable because of the longer distance from the soma. Placing the opsin in obl2 1 and
obl2 2 (indicated with ’obl2’) clearly increases the mean firing rate in the soma, compared to
the single case (Figure 4.4). The firing rate in obl2 1 itself is also increased, as expected. This
can be seen in Figure 4.10 (d). The period of silence observed in the single case is not present
anymore when both sections are targeted. The same is observed for lm thin1 and lm thin2 (in-
dicated with ’lm thin’). The mean firing rate at the soma even surpasses the FR measured with
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radTmed as opsin location. This indicates an interaction between both symmetrical sections.

Figure 4.10: The membrane potential (mV) in function of time (ms) with the opsin located in a single
section (blue) and in the two corresponding symmetric sections (orange). In both cases, the
membrane potential was measured in the section with suffix 1. A continuous optogenetic
pulse of 500 ms and 5000 W/m2, and a maximal conductance of 0.3π µS was used in
a), c), and e). For plot b), d), and f), an intensity of 10000 W/m2 and a maximal
conductance of 0.5π µS was used. The optogenetic pulse is indicated with the blue area.

Basal dendritic stimulation

Figure 4.11: 2D colorplots of the mean firing rate, calculated according to Eq. 4.30, in function of the
optogenetic pulse intensity and maximal specific conductance of ChR2(H134R). A contin-
uous pulse of 500 ms is used. The mean firing rates are recorded in the soma. From left
to right, the opsin is located in oridist1, oriprox1, and the soma.

The last strategy consecutively targets different parts of the same basal dendrite. Oridist1
represents the distal part, with a distance of 205 µm between its center and the soma. Oriprox1,
the proximal part, is connected to the soma with a distance of 55 µm between the soma and its
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center. Oridist1 has a total surface area of 300π µm2 and oriprox1 of 200π µm2. The maximal
specific conductance is again scaled, which can be seen on the y-axis of the plots in Figure 4.11.
The soma has a surface area of 100π µm2 so the maximal specific conductance is respectively
divided by three and two for oridist1 and oriprox1. It was expected that an optogenetic stimulus
of the same intensity would elicit a comparable response in the soma for the opsin located in the
distal and proximal part of the same dendrite. Figure 4.11 and 4.12 show that this is not the
case. Placement of the opsin in oridist1 gives higher mean firing rates for small values of ḡChR2.
Only three spikes are measured in oriprox1 for the same stimulus and maximal conductance
when the opsin is located in oriprox1 (Figure 4.12 (a)) and only one for the soma. Increasing
values of the intensity and maximal conductance results in a mean firing rate of zero for oridist1,
as was already seen in the previous parts. In oriprox1, the mean firing rate increases whereafter
it reaches a constant value of 28 Hz.

Figure 4.12: The membrane potential (mV) in function of time (ms) with the opsin location indicated
in the legend. The membrane potential is measured in the same section. A continuous
optogenetic pulse of 500 ms and 5000 W/m2, and a maximal conductance of 0.3π µS was
used in a). For plot b), an intensity of 10000 W/m2 and a maximal conductance of 0.5π µS
was used. The optogenetic pulse is indicated with the blue area.

The input impedances are also measured for the distal and proximal basal dendritic section (Fig-
ure 4.13). It can be seen that the input impedance of oridist1 is higher than that of oriprox1 for
all frequencies. The mean input impedances of oridist1 and oriprox1 are respectively 117.4 MΩ
and 52.00 MΩ. In both cases, an increasing frequency results in a slight increase of the input
impedance until 5.5 Hz, followed by a decreasing in input impedance.

Figure 4.13: Input impedance measured at a distal (oridist1) and proximal (oriprox1) basal dendritic
section in function of the frequency of the oscillatory current stimulus. It is measured
200 ms after the onset of the stimulus. The CP15TK21 neuronal model is used.
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4.5 Discussion

The response of the neuron on optogenetic stimuli with different opsin locations has been char-
acterized by different features. The mean firing rate has learned us how stimulation of a distal
dendritic tuft section (lm thin1) leads to a higher mean firing rate compared to the other loca-
tions, almost independent of the optogenetic pulse intensity and maximal specific conductance of
the opsin channel. A possible explanation could be that the surface of this section is smaller and
thereby the maximal specific conductance is higher, leading to a more spatially clustered stim-
ulation. However, simultaneously targeting two dendritic tuft sections (lm thin1 and lm thin2)
led to a total surface area equal to that of the soma. In this case, an equal maximal specific
ChR2(H134R) conductance was used and yet, higher firing rates are observed. To gain insight
in this distinct behavior, it is important to repeat that the spikes are generated at the stimu-
lation location, a dendritic tuft dendrite in this case. Normally, multiple EPSP travel towards
the soma and if the integration is high enough, an action potential is initiated at the soma. In
case of a dendritic spike, the action potential is already initiated at the dendrite and propagates
along the neuron towards the soma. Jarsky et al. (2005) studied the dendritic spike propaga-
tion following a distal synaptic activation of hippocampal CA1 pyramidal neurons. Some of the
findings in this study are possibly an explanation to the observations made in this dissertation.
They mainly focused on the following two excitatory synaptic inputs: the perforant-path input,
which is an input to the apical dendritic tuft, and the Schaffer collaterals, an input to basal and
apical dendrites. The study was performed by a combination of a computational and experi-
mental approach. As neuronal model they used a strong and weak dendritic excitability model.
Computational simulation led to three main conclusions:

1. Apical dendritic tuft inputs, have a limited ability to trigger somatic action potentials in
CA1 neurons. The reason is that EPSP are attenuated during their propagation to the
soma.

2. If apical dendritic tuft inputs result in dendritic spikes, it is possible to trigger somatic
action potentials. This means that the initiation of local dendritic spikes can circumvent
the problem of attenuation along the long distances between the soma and the apical
dendritic tuft. Applied to this dissertation, optogenetic stimulation of the apical dendritic
tuft is expected to have little to no influence on the somatic spiking behavior if no dendritic
spikes were initiated.

3. An additional apical dendritic input (closer to the soma than the apical dendritic tuft) can
facilitate the propagation of the dendritic spike that was initiated in the apical dendritic
tuft.

These three conclusion were confirmed by experimental results. Remarkably, Jarsky et al.
(2005) observed that in models with strongly excitable dendrites, the apical dendritic tuft input
(perforant-path input) is more efficacious than upper apical dendritic inputs (Schaffer-collateral
input), in that a lower number of inputs are necessary to trigger a spike. This is also observed
in our results by the fact that a higher mean firing rate is measured in the soma when the
opsin is located in the apical dendritic tuft (lm thin1). If the opsin is located elsewhere, a lower
mean firing rate is measured even though an equal optogenetic stimulus was used. According to
Jarsky et al. (2005), this can be explained by the high input impedance of the small-diameter
tuft branches. For a high input impedance, an injected current will result in a high change in po-
tential. The input impedances were therefore determined for the different stimulation locations
(Figure 4.8). Contradictory, the soma has the highest input impedance, followed by radTmed,
which has the highest diameter of the used sections. So, no correlation is seen between the
input impedance and the diameter of the sections. Therefore, other factors will play a role in
the elevated activity for apical tuft dendritic stimulation. Next, Jarsky et al. (2005) experimen-
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tally observed that the action potential threshold in the soma was lower when somatic spikes
were triggered by dendritic spikes initiated in the apical tuft compared to the action potential
threshold when somatic spikes were directly evoked by a current injection in the soma. This
would explain why even optogenetic stimulation of the soma results in a lower firing rate in
the soma itself than optogenetic stimulation of the dendritic tuft section. In order to link the
findings of Jarsky et al. (2005) to our results, three major differences are discussed. First, the
biophysics of the models used by Jarsky et al. (2005) are less complex than those of CP15TK21.
However, they tested the robustness of the predictions by repeating their tests with a more com-
plex model and found that the observations remained unchanged even though longer dendrites
and more voltage-dependent currents were included in the model. Another major difference is
their type of input, which is synaptic instead of an optogenetic stimulus. The mechanism by
which a dendritic spike is initiated is therefore different but it is expected that the propagation
of the dendritic spike and the impact on the somatic spiking pattern are equal. And lastly,
the observations of Jarsky et al. (2005) that resemble ours, are mainly seen for strong dendritic
excitability models. In weak excitable models there is an unreliable propagation meaning that
not all dendritic spikes will reach the soma (Jarsky et al., 2005). Our model is assumed to be
classified as a strong dendritic excitability model because almost all measured dendritic spikes
could propagate to the soma and trigger a somatic spike. Tomko et al. (2021) also describes how
M18, of which the biophysics are adopted for CP15TK21, is a strongly-propagating model based
on the weak attenuation of back-propagating action potentials. According to Sáray et al. (2021),
the attenuation of bAPs is a measure for dendritic excitability so this affirms our assumption.
For these reasons, it is assumed that the location dependent propagation characteristics of the
dendritic spikes observed in both our studies can be related.

Next to the increased firing rates observed for apical dendritic tuft stimulation, also other ob-
servation were made. Normally, increasing the stimulation intensities or maximal opsin conduc-
tances lead to higher firing rates. When the opsin is located in the axon or the distal basal
dendrite (oridist1), the firing rate becomes zero, while the membrane potential is at a constant
depolarized level (see Figures 4.4 and 4.5). This phenomenon is described as a depolarization
block. According to Tomko et al. (2021), a large amount of (optogenetic) current injection
will partially block the deinactivation of the sodium channel. The depolarization block is then
observed if delayed the rectifier potassium current does not activate enough to repolarize the
neuron.

Targeting of the soma, the apical trunk dendrite (radTmed) and the radial oblique dendrite
(obl2 1) results in an equal spiking pattern (see Figure 4.5 (b) and (c)). The optogenetic pulse
is characterized by an initial peak current. This is reflected in the initial burst seen in the spiking
pattern for the different sections. Thereafter, the neuron adjusts until a steady-state is reached.
If the steady-state optogenetic current is sufficient, a continuous firing is observed. The higher
the pulse intensity and conductance of the opsin channel, the more current injection and the
shorter the period of silence in between the initial burst and the steady-state continuous firing.
The firing rate increases. Figure 4.5 (c) illustrates one of the characteristics of dendritic spikes:
a more depolarized action potential voltage threshold compared to the soma (Gasparini, 2004).

Strength-duration curves reveal information about the excitability of a stimulation location.
Optogenetic stimulation of a distal basal dendrite (oridist1) or apical dendritic tuft dendrite
(lm thin1) result in rheobases that are on average 79% lower than those obtained for an opto-
genetic stimulation of the other sections. These two sections are therefore more excitable and
will trigger a somatic AP already for lower pulse intensities. A possible explanation is again
the high input impedances because of the small-diameters of both branches. Lm thin1 and
oridist1 have respective diameters of 1 µm and 1.5 µm, which are for this model the smallest
of all sections. Lm thin1 is slightly more excitable for pulse durations smaller than 20 ms.
For all sections applies that a higher maximal conductance decreases the rheobase because a
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higher maximal conductance means that for the same optogenetic pulse intensity, more current
is injected into the section. An AP will thus be evoked for lower optogenetic intensities. The
increasing strength-duration time constant is slightly more complex to understand. In Eq. 4.35
PD[0], the shortest pulse duration, remains unchanged. IRH and I[0], the intensity corresponding
with the smallest pulse duration, will both decrease so an increasing strength-duration time con-
stant learns us that the rheobase decreases slower than I[0]. So a higher ChR2(H134R) maximal
conductance will have more impact on the pulse intensity necessary to generate an AP for small
pulse duration than for long pulse durations. This applies again to all sections.

In order to get closer to the realistic situation in which the opsin is not only expressed on one
dendrite, but rather on all ’equivalent’ dendrites, the symmetrical section were added. The
depolarization block that was observed when a single basal dendrite (oridist1) was targeted has
changed to a continuous firing in the case of two basal dendritic sections (oridist1 and oridist2).
In all cases, the maximal conductance was kept constant, meaning that the larger area of two
sections led to a smaller maximal specific conductance. In other words, the optogenetic input
is more spatially spread. Therefore the depolarization block did not occur in the symmetric
case. The fact that a depolarization block is faster observed in this section indicates a higher
excitability. For all cases, the simultaneous stimulation of two symmetric sections leads to
dendritic spikes in both sections that strengthen each other, leading to a higher amplitude and
firing rate.

The effects of the thin branches in the apical tuft leading to more dendritic spikes and therefore
to a more efficacious optogenetic stimulation also seem to take place in the basal dendrites.
First, the distal part of a basal dendrite was stimulated. This section has a smaller diameter
but a higher surface area than the proximal part so the maximal specific conductance that was
used was lower than that in the proximal basal dendrite. Yet, higher firing rates are observed,
eventually even leading to a depolarization block. Again, the observed spikes are dendritic
spikes, initiated at the stimulation location. Figure 4.13 illustrated that the distal section has
a higher input impedance for all frequencies between 0.1 and 100 Hz. This is different from
the results measured for the stimulation locations of the diffuse neuronal stimulation strategy
(Figure 4.8), explained in Section 4.3.1, where the sections where stimulation led to the highest
firing rates, measured in the soma, were not necessarily the sections with the highest input
impedance. However, this increased input impedance will play a role in the increased higher
mean firing rates measured upon stimulation of the distal basal dendrite.



Chapter 5

Morphologically simple versus
complex neuronal model

The results obtained by in silico modeling should always be treated with caution. Neuron and
opsin models are made as realistic as possible. Yet, they are made for a specific study or tuned
ad hoc for a limited set of experiments. In the choice and interpretation of the neuron model, it
is important to emphasize that there is more than one possible realistic solution (Tomko et al.,
2021). For that reason, a more complex, full-morphology model is adopted. The morphology is
different from CP15TK21 but the biophysics remain. More details can be found in Section 5.1.
The opsin model and main methodology of Chapter 4 are preserved. Localized targeting of the
opsin on specific locations becomes more difficult in an extended model. Section 5.2.1 elaborates
on the stimulation strategies. The results are compared and discussed in Section 5.3 and 5.4.

5.1 Migliore 2018: M18

Figure 5.1: CA1 pyramidal neuron morphology of the M18 model. The soma is the central yellow point,
the axon is represented in green, the basal dendrites in blue, and the apical dendrites in red
(Migliore et al., 2018).
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A second, more complex model was used to study the effects of the complexity of the neuron
model on the results: the model of Migliore et al. (2018) (M18). This model can be found on
modelDB under accession number 244688. Instead of 19 sections, this model has 165 sections. It
was the result of a study that analyzed the peak specific conductance of ion channels in individual
CA1 neurons (Migliore et al., 2018). Morphological, this model is much more accurate than the
reduced-morphology model. However, the computational time increases with complexity. The
biophysics of M18 and CP15TK21 are similar and are explained in Section 4.1.

The question now arises if it is necessary to model the neuron with such high complexity.
Tomko et al. (2021) used HippoUnit to evaluate the capabilities of a model. It is a toolbox
used to compare simulation results from one neuronal model to another, specially made for
CA1 pyramidal neurons. The CP15TK21 model (named as CP15 vTo21 in the paper of Tomko
et al. (2021)) showed lower final error scores on almost all HippoUnit tests than the M18 model,
meaning that it is actually better in reproducing the characteristic properties of a CA1 pyramidal
neuron (Tomko et al., 2021). Therefore, the full-morphology model of Migliore et al. (2018)
should be treated as a distinct model instead of a more accurate model.

5.2 Methodology

The model of Migliore et al. (2018) is implemented in the NEURON simulation platform. The
same versions are used as for CP15TK21 (NEURON 8.0.0 and Python 3.7.11). The double two-
state opsin model of Schoeters et al. (2021) is again used to model ChR2(H134R) and inserted
into M18. The models are solved by the default Backward Euler method with a maximum
time step of 0.025 ms. Similar initial conditions are used: an initial closed, dark adapted state
(R=1, O=0) of ChR2(H134R), an initial membrane voltage of -70 mV, and a temperature
of 6.3 °C. The main goal of changing the CA1 pyramidal neuron model is to study the impact
of the complexity of the model on the results concerning the location-dependent excitation of
optogenetic stimulation. For this model, it is not useful to look at separate sections as was done
for the CP15TK21 model since there are 165 sections. Instead of a uniform distribution along a
section, the opsin is normally distributed around a central location. These locations are chosen
such that they resemble those used in the CP15TK21 stimulation strategies. Features used for
the evaluation of these stimulation locations are similar to those used in Chapter 4. Definitions
and explanations of the features can be found in Section 4.3.

5.2.1 Stimulation strategies

Table 5.1: The mean (µ) and standard deviation (σ) used for the normal distribution of the maximal
specific conductance of ChR2(H134R) in M18 and CP15TK21, corresponding with the stim-
ulation locations, in function of the distance to the reference point.



CHAPTER 5. MORPHOLOGICALLY SIMPLE VERSUS COMPLEX NEURONALMODEL47

In order to compare location dependent effects on two different neuronal models, a methodology
was found for the insertion of the opsin. The aim is to stimulate similar locations on different
neuronal models. M18 consists of 165 sections, so uniformly targeting a specific section, like in
the stimulation strategies in Chapter 4, was not optional. Instead, the opsin channel is inserted
in every segment of the neuron. The presence of the opsin can be controlled by adapting the
maximal specific conductance. A conductance of zero is similar to not inserting the opsin. The
higher the conductance, the more current that is injected for the same illumination intensity.
The maximal specific conductance can therefore be treated as the density of ChR2(H134R).
The maximal specific conductance follows a normal distribution in function of the distance to a
reference point. The general form of a Gaussian probability density function is given by:

ḡChR2(x) = ḡChR2,max · e−
1
2
(x−µ

σ
)2 (5.1)

with x the path distance between the segment for which ḡChR2 is determined and the reference
point, not the distance between the vectors. For reasons elaborated on later, the soma is the
reference point for all stimulation location except of the axon. There are two parameters: the
mean (µ) and the standard deviation (σ). The mean of the distribution is the distance to the
reference point where ḡChR2(µ) = ḡChR2,max. To target similar locations as in CP15TK21, the
distances to the soma of the stimulation locations of CP15TK21 are determined and used as
mean values for the corresponding stimulation locations of M18 (except of the axon). The most
outer part of a section is used to calculate the distance. They can be found in Table 5.1. In
the preceding analysis, an equal maximal conductance was maintained for all locations. The
maximal conductance was determined by multiplying the maximal specific conductance by the
surface area of the targeted section. The fact that it is not uniformly distributed anymore,
makes it more complex to compute the total maximal conductance. If ḡChR2,max = 1, then the
maximal conductance is equal to:
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∑
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∑
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σ
)2 · Asec
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(5.2)

Where the sum is evaluated for all segments of the 165 sections and x is the distance between
the segment and the reference point. Asec is the surface area of the section and nseg the number
of segments in that section. To obtain a desired maximal conductance (ḠChR2,desired), ḡChR2,max

has to be equal to:

ḡChR2,max =
ḠChR2,desired∑

sec

∑
seg e
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2
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σ
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(5.3)

The axon is a special case, because it is one specific part of the neuron. Applying the same
methodology as for the other sections results in a high ḡChR2 in all basal and apical sections
at the same distance from the soma as the axon, which is not desired. To solve this, the axon
itself is used as reference point and µ is set to zero. So, x is now the distance between the
segment in question and the axon. The standard deviation is a measure for the spread of ḡChR2.
Small values of σ result in high maximal specific conductance for all segments on a distance µ
from the reference point and a fast decay for an increasing distance. Table 5.1 lists the chosen
standard deviation for every stimulation location. The axon and oridist have larger standard
deviations. The reason is that there are less sections at a distance µ from the reference point
for these two cases. Because of the requirement of equal maximal conductance, ḡChR2,max will
reach up to very high values. In order to have values in the same order of magnitude, a higher
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standard deviation was chosen. Figure 5.2 shows the maximal specific conductance distribution
for every stimulation location for ḠChR2,desired = 0.7π µS. With the chosen standard deviations,
ḡChR2 ranges between 0 and ±200. In the following, the same names as used for the stimulation
locations of CP15TK21 will be designated to the corresponding stimulation locations of M18,
as was also done in Figure 5.2.

Figure 5.2: Distribution of the maximal specific conductance for the different stimulation locations of
M18 for a maximal conductance of 0.7π µS. The names are derived from the corresponding
stimulation locations of CP15TK21. Maximal specific conductance follows a normal dis-
tribution with parameters µ, σ, given in Table 5.1, and ḡChR2,max determined according to
Eq. 5.3.

Important to note is the fact that both the apical and basal dendrites at a distance µ get
high ḡChR2 values. Therefore, a maximal specific conductance value is only assigned to the
basal dendrites in case of ’oridist’ and to the apical dendrites in case of ’radTmed’, ’obl2’, and
’lm thin’. The sum over the section (sec) in Eq. 5.3 and 5.2 is limited to the same sections. In
some cases, the membrane potential is measured at the stimulation location instead of the soma
because the injected optogenetic current is voltage dependent. For that reason, it is educational
to know the membrane voltage at the location of the opsin. However, the opsin is now inserted
in multiple sections. Sections with similar distances to the soma as the sections of CP15TK21
were found to perform the recordings. They are summarized in Table A.3 in Appendix A.

The transition to a normally distributed maximal specific conductance is also made for CP15TK21
in order to have a distribution that resembles the one of M18 to make the comparison. The
number of segments are increased by a factor three for every section to have a higher spatial
resolution. The same methodology as was used for the axon, is now used for all stimulation
locations, i.e. the section itself as reference point and a mean of zero. The independent variable
of the distribution, x, is the distance between the section itself and the segment for which the
maximal specific conductance is determined. The standard deviations are again adapted for
every case in order to have similar ḡChR2 ranges. The values can be found in Table 5.1.
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Figure 5.3: Distribution of the maximal specific conductance for the different stimulation locations of
CP15TK21 for a maximal conductance of 0.7π µS. Maximal specific conductance follows
a normal distribution with parameters µ, σ, given in Table 5.1, and ḡChR2,max determined
according to Eq. 5.3.

5.3 Results

Figure 5.4: 2D colorplots of the mean firing rate, calculated according to Eq. 4.30, in function of the
optogenetic pulse intensity and maximal conductance of ChR2(H134R). A continuous pulse
of 500 ms is used. The firing rates are recorded in the soma. The CP15TK21 model was
used as neuronal model with a normally distributed maximal opsin conductance around the
indicated location.
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Figure 5.4 is comparable to Figure 4.9 but the maximal specific conductance is now normally
distributed instead of uniformly. The y-axis is transformed according to Eq. 4.37. A different
results is seen for the axonal stimulation. The FR is not equal to zero anymore but increases
with an increasing optogenetic pulse intensity and maximal conductance. It reaches a mean
firing rate of 38 Hz. All the other observations made in Section 4.4 for the symmetric diffuse
neuronal stimulation, can be copied.

Figure 5.5: 2D colorplots of the mean firing rate, calculated according to Eq. 4.30, in function of the
optogenetic pulse intensity and maximal conductance of ChR2(H134R). A continuous pulse
of 500 ms is used. The mean firing rates are recorded in the soma. The M18 model was
used as neuronal model with a normally distributed maximal opsin conductance around the
indicated locations.

The same 2D colorplots were generated for the full-morphology model of Migliore et al. (2018).
The overall FR is slightly higher than for CP15TK21. Somatic and axonal stimulation results in
very similar mean firing rates. For CP15TK21, stimulation of basal dendrites (oridist) led to a
decrease of mean firing rate for higher values of the intensity and maximal conductance. This is
not the case for M18, where FR continues to increase. For higher pulse intensities and maximal
conductance, stimulation of apical trunk (radTmed) and oblique apical dendrites (obl2) leads to
a FR of 42 Hz. There is no further increase. And lastly, the increased FR observed for lm thin
stimulation, is again seen for the M18 model. Compared to the other stimulation locations, the
excitability of the neuron is the highest if the opsin is located in the farthest apical dendrite.
In general, the mean firing rates are higher when simulations are done with the M18 model but
the relative differences between the stimulation locations are preserved.

Membrane potential traces are plotted in Figure 5.6 for a continuous pulse of 5000 W/m2 and
a normally distributed maximal conductance of 0.7π µS. This corresponds to a central point in
the 2D colorplots above. Results are obtained for both models and are split over two plots to
have a clearer picture of the different spike trains. The voltage traces measured in the soma and
axon are shown in (a) and (c) for CP15TK21 and M18, respectively. The firing pattern consists
of an initial burst followed by a tonic steady-state firing. The only observed difference between
both is the increased firing rate in case of M18. If the opsin is located in one of the four other
sections, more activity is measured. The firing patterns are continuous with a slightly higher
firing rate in the transient part. The plots are magnified to be able to distinguish the different
action potentials. For CP15TK21, the AP amplitude and morphology measured with obl2 and
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radTmed as opsin location, are comparable and higher compared to oridist and lm thin. For
M18, the size and morphology of the APs corresponding to obl2 are closer to those of oridist
and lm thin. So, not only the mean firing rates of both models are comparable but also the
firing patterns.

Figure 5.6: The membrane potential (mV) in function of time (ms) with the opsin location indicated in
the legend. The membrane potential is measured at the same section. A continuous opto-
genetic pulse of 500 ms and 5000 W/m2, and a normally distributed maximal conductance
of 0.7π µS was used. The optogenetic pulse is indicated with the blue area. The soma and
axon are separately plotted. The plot of the remaining sections (b) and (d) is magnified.
Plot (a) and (b) are generated with the CP15TK21 model. Plot (c) and (d) with the M18
model. The opsin is normally distributed in both cases.

It was already observed for CP15TK21 that there are differences in propagation time for an
AP propagating between a section and the soma. The same was tested for the full-morphology
model, which consists of many more sections and branches. Figure 5.7 shows the delay between
the first AP measured in the indicated section and in the soma for both models. Three different
combinations of stimulation intensity and maximal conductance were tested. In general, the
propagation time for an AP traveling from sections at comparable distance from the soma, is
higher in the full-morphology model. However, the relative differences between the sections are
comparable. The farthest section is the dendritic tuft section (lm thin) for which the highest
delays are measured for both models. The delay is on average 5.2 and 3.9 times higher than
the one initiated in the other sections for CP15TK21 and M18, respectively. The ratio of the
delay for obl2 and oridist is higher for M18 compared to CP15TK21. Modifying the stimulus
intensities and maximal conductance results in slightly higher variations of delays in the M18
model.
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Figure 5.7: Delay between the first AP measured in the indicated section and in the soma. The opsin
is located in the same section with a normally distributed maximal conductance of 1.0π µS,
0.3π µS, and 1.0π µS for the grey, light green, and dark green bars, respectively. The
respective optogenetic intensities are 5000 W/m2, 5000 W/m2, and 10000 W/m2. The
optogenetic pulse is continuous with a pulse duration of 500 ms.

The strength-duration curves are plotted in Figure 5.8 for both models. A maximal conductance
of 0.7π µS is used. The rheobase intensity and strength-duration time constants are listed in
Table 5.2. The rheobase intensities for oridist and lm thin are again lower compared to the
other stimulation locations for CP15TK21. The same was observed in Figure 4.7 for the uniform
distribution. However, the difference in rheobase intensities of both sections is higher. The other
four sections have again similar values for both parameters. In general, the strength-duration
curves of M18 have lower rheobase intensities and higher strength-duration time constants than
CP15TK21. Despite the differences of both parameters, there are no pulse durations for which
the corresponding intensity is equal for both models. Only the strength-duration curves of
the apical dendritic tuft stimulation (lm thin) are almost identical. For M18, the rheobase
for lm thin stimulation is the highest compared to the other sections. Its value is similar to
the rheobase value using the CP15TK21 model but all the other strength-duration curves are
shifted downward. In both cases, the same photocurrent was injected but less optogenetic pulse
intensity was needed to elicit a spike using M18. This indicates a higher excitability when the
CA1 pyramidal neuron is modeled by the M18 model.

Table 5.2: The rheobase intensity (IRH) and strength-duration time constant (τSD) of the strength
duration curves in Figure 5.8. A maximal conductance of 0.7π µS is used.
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Figure 5.8: Strength-duration curve for different ChR2(H134R) locations and a maximal conductance
of 0.7π µS, recorded in the soma. The optogenetic pulse duration (ms) of a continuous
pulse is shown on the x-axis and the optical pulse intensity (W/m2) on the y-axis. The
neuronal models are respectively the M18 model and the CP15TK21 model for the left and
right plot.

The measured input impedances for M18 are shown in Figure 5.9. Input impedances measured
in lm thin and oridist are clearly elevated compared to those measured in the other sections, with
mean values of respectively 383.5 Hz and 400.6 HZ. They intersect at a frequency of 34.7 Hz
for an input impedance of 384.1 MΩ. Oridist has the highest input impedance for smaller
frequencies. The axon, obl2, radTmed, and soma have mean input impedances of respectively
93.84 MΩ, 85.53 MΩ, 56.32 MΩ, and 33.16 MΩ.

Figure 5.9: Input impedance measured at the indicated location in function of the frequency of the
oscillatory current stimulus. It is measured 200 ms after the onset of the stimulus. The
M18 neuron model was used.



CHAPTER 5. MORPHOLOGICALLY SIMPLE VERSUS COMPLEX NEURONALMODEL54

5.4 Discussion

The transition from a uniform maximal ChR2(H134R) distribution to a normal distribution in
CP15TK21 led to a different response on the axonal stimulation. The absence of the depolariza-
tion block can be explained by the lower maximal specific conductances. A standard deviation
of 125 µm was used so 99% of the available opsin is located within 375 µm from the distal part
of the axon. The axon’s length is only 150 µm so some of the surrounding sections also get
stimulated with small ChR2(H134) conductances. The stimulation is more distributed and the
injected current does not lead to a depolarization block anymore. More importantly, the results
of this new CP15TK21 model are compared to the full-morphology neuronal model: M18. This
model has the same biophysics as CP15TK21 but a lot more dendritic branches. The complexity
of the morphology did not influence the main observation: a higher firing rate is measured in
the soma in case of apical dendritic tuft (lm thin1) stimulation. This means that this result is
independent of the complexity of the model and is likely to be observed in other models. Jarsky
et al. (2005) also made this observation in a biophysically simpler and more complex model which
leads to the assumption that this result will also be seen in biophysically deviating models. How-
ever, the neuron should be modeled as a strong dendritic excitable model. In general, M18 is
a more excitable model, leading to higher firing rates for equal optogenetic stimulations. The
input impedances were also measured in the concerning sections of M18. The apical dendritic
tuft input impedance and distal basal dendritic input impedance were clearly higher compared
to the other locations. This affirms the suspicion of Jarsky et al. (2005) that the stimulation
of small-diameter branches is efficacious due to the high input impedances. It is remarkable
how the input impedances of M18 and CP15TK21 are divergent, yet the same observations are
made concerning the efficious apical dendritic tuft stimulation. This indicates that the effects
are not only a result of the increased input impedance, but also of other factors. The delay of
the first AP increased on average 89% compared to CP15TK21. However, the sections used to
calculate the delay for M18 had slightly deviating distances from the soma than the equivalent
sections of CP15TK21 (Table A.3 in Appendix A). The axon of M18 is 52.79 % shorter than the
axon of CP15TK21. Nonetheless, the delay measured for M18 was 83.33 % higher than for the
longer axon of CP15TK21. The recording sites of M18 corresponding with obl2 and lm thin of
CP15TK21 were respectively only 2.879 % and 5.048 % further away from the soma, yet delays
were respectively 211.8 % and 65.38 % higher. This indicates that the difference in distance to
the soma is not the cause of the difference in delay. Instead, the complexity of M18, i.e. the
higher number of branches and sections, is likely to be the reason for these higher delays. The
rheobase intensities obtained by M18 are on average 63.3% smaller than than those obtained
by CP15TK21. This indicates again that M18 is a more excitable model. Despite the highest
mean firing rates, the apical dendritic tuft stimulation results in the highest rheobase intensity
of all sections for M18. However, the strength-duration curve of lm thin for ḠChR2 = 0.7π µS
is almost identical to the one obtained with CP15TK21. For the other locations, compared to
CP15TK21, the strength-duration curves of M18 are shifted downward and there are no inter-
sections meaning that for these locations, M18 is a more excitable model for all pulse durations
in case of ḠChR2 = 0.7π µS.



Chapter 6

Conclusion

The hippocampus is involved in many cognitive functions such as spatial learning and memory.
It also plays an important role in many neurological pathologies. The cornu ammonis 1 (CA1)
zone is the main output area of the hippocampus since it sends axonal outputs to over 50 ar-
eas in the brain (Takata et al., 2015). Excitation or inhibition of this region can affect many
other cortical brain regions which can be used in the treatment of pathologies like temporal lobe
epilepsy, or in the study of brain connectivity (Huynh et al., 2020; Takata et al., 2015). Despite
its powerful characteristics like cell-type specificity and a high spatiotemporal resolution, opto-
genetic stimulation of the human brain still faces a lot of challenges. This dissertation aimed at
finding optogenetic stimulation strategies that can improve the efficiency of optogenetic excita-
tion of the CA1 pyramidal neuron. The well-known Channelrhodopsin-2 variant ChR2(H134R)
was inserted in different locations of the neuron, leading to a spatially localized stimulation of
the CA1 pyramidal neuron. The opsin was modeled by the double two-state opsin model of
Schoeters et al. (2021) because of its high precision simulations and computational speed. This
model was already fitted to and tested on ChR2(H134R).

The model of Cutsuridis and Poirazi (2015), modified by Tomko et al. (2021) (CP15TK21), is
primarily used to model the CA1 pyramidal neuron. This model has a simplified morphology
but the biophysics are adopted from the full-morphology model of Migliore et al. (2018). Dif-
ferent locations of the neuron were stimulated with a continuous optogenetic pulse of 500 ms
for different pulse intensities. The stimulation locations consisted of the soma, the axon, a
basal dendrite, an apical trunk dendrite, a radial oblique dendrite, and an apical tuft dendrite.
Simultaneous recordings of the membrane potential at the stimulation location and the soma
showed that the observed action potentials were initiated at the stimulation locations and could
be defined as dendritic spikes. They propagate to the soma and generate somatic spikes. In
reality, optogenetic stimulation of subcellular structures of the neuron is possible by genetically
modifying the opsin to restrict its expression to desired locations on the neuron. The symmet-
rical equivalent sections of CP15TK21 have identical morphological and biophysical properties
so, in reality, the opsin would be expressed on both sections. For a similar pulse intensity,
stimulation of two symmetrical sections compared to one section resulted in higher firing rates
and action potentials with increased amplitudes. A comparison of all six stimulation locations
led to the conclusion that the symmetrical apical dendritic tuft stimulation resulted in the most
efficient excitation of the soma. The highest somatic mean firing rate and lowest rheobase were
measured. This section has the smallest diameter of all stimulation locations that were tested.
It is located the farthest from the soma, making the results rather unexpected. However, Jarsky
et al. (2005) made similar observations when comparing the propagation of dendritic spikes that
are initiated in the apical tuft dendrite and upper apical dendrite due to synaptic input. For
models with strongly excitable dendrites, apical dendritic tuft input was more efficacious than
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upper apical dendritic input. This is comparable to our result, namely, stimulation of the apical
dendritic tuft dendrite also resulted in higher mean firing rates compared to apical dendritic
trunk stimulation or radial oblique dendritic stimulation. According to Jarsky et al. (2005), this
can be a consequence of the high input impedance of the small-diameter tuft branches. However,
measurements of the input impedance led to a contradictory result: the soma has the highest
input impedance, followed by radTmed, which has the highest diameter of the used sections. So,
no correlation is seen between the input impedance and the diameter of the sections. Therefore,
other factors will play a role in the elevated activity for apical tuft dendritic stimulation. The
computational observations of Jarsky et al. (2005) were also validated by experimental tests.
This phenomena is thus also observed in vitro.

Next to the model of Cutsuridis and Poirazi (2015), the morphologically more complex model
of Migliore et al. (2018) (M18) was used and the tests were repeated. An increased number of
sections led to the necessity of working with a normally distributed opsin conductance instead
of a uniform distribution. Again, stimulation of the apical dendritic tuft section resulted in
the highest mean firing rates measured in the soma. For this model, the apical dendritic tuft
input impedance and distal basal dendritic input impedance were clearly higher compared to
the other locations. This affirms the suspicion of Jarsky et al. (2005) that the stimulation of
small-diameter branches is efficacious due to the high input impedances. However, the results of
CP15TK21 showed that the efficious apical dendritic tuft stimulation is not necessarily a result
of higher input impedance so other factors will also play a role. With this more complex model,
the rheobase obtained by stimulation of the apical dendritic tuft was the highest instead of the
lowest of all sections. In general, the M18 model was more excitable but the results were similar
to those obtained by the reduced-morphology model.

It can be beneficial to stimulate small-diameter branches of the neuron with an optogenetic
stimulus that is sufficient to initiate dendritic spikes at the stimulation location. Even at higher
distances, the initiation of dendritic spikes in small-diameter branches of the neuron results in
somatic spike trains with high firing rates. A possible hurdle that can be overcome by these
findings is the attenuation of light by brain tissue. If this stimulation strategy is indeed more
efficient, less light intensity is needed to obtain a similar spiking output of the CA1 pyramidal
neuron.

6.1 Future work

Only one type of optogenetic stimulus was used in this dissertation: a continuous optogenetic
pulse of 500 ms. Multiple pulse intensities were used but the pulse duration was kept fixed for
all tests. Important to note is that the observations that are made are likely to be a result of the
characteristics of dendritic spikes. Therefore it would be interesting to investigate which type,
spatial extent, duration, and intensity of optogenetic pulse lead to the generation of dendritic
spikes. Gasparini (2006) found that synaptic input has to be synchronous and loosely spatially
clustered in order to initiate action potentials in the dendrites. However, Losonczy and Magee
(2006) describes how the synchronous and spatially clustered input requirement for dendritic
spikes can be circumvent by broad-plateau like events. They can produce both dendritic and
somatic spikes. Channelrhodopsin-2 current input can be seen as a broad-plateau like event,
especially for longer duration as was used in this dissertation. It is thus possible that the char-
acteristic shape of ChR2 current is beneficial for the initiation of dendritic spikes. Optogenetic
stimulation of apical tuft dendrites, or probably more general small diameter branches, seems to
be more efficacious and leads to higher firing rates measured in the soma. Next to different types
of optogenetic stimuli, different types of neurons can be examined. Population based modeling
in which the right variability of neuron types are used, would be even more interesting than
focusing on one neuron (Tomko et al., 2021). Another possible extensions is the opsin type.
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Opsins with different kinetics can have different location-dependent effects on optogenetic stim-
uli. Lastly, next to the opsin distribution, the illumination can be distributed too. Combining
these effects could possibly lead to an even more precise neuronal targeting.



Appendix A

Supplementary tables

Table A.1: The section names, lengths, diameters, surfaces, and number of segments of the reduced-
morphology model (CP15TK21) corresponding with Figure 4.1 (Cutsuridis and Poirazi,
2015; Tomko et al., 2021).
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Table A.2: The modelparameters of the M18 and CP15TK21 model: uniformly distributed passive
parameters, active ionic conductances, and reversal potentials of channels for each section
(Tomko et al., 2021; Migliore et al., 2018).

Table A.3: The stimulation and recording sites of CP15TK21 and their corresponding distances to the
soma. The equivalent sections of M18 that have similar distances to the soma.



Appendix B

Ethics and scientific integrity

For this dissertation, no data was used because it consists of a computational study in which
models were used to simulate the response of a neuron to optogenetic stimuli. The models
have been validated by the authors based on experimental data to assure high accuracy and
simulations that are as close to reality as possible. The neuronal model of Migliore et al. (2018)
is based on a set of morphological reconstructions of neurons and somatic voltage traces obtained
from in vitro slice preparations of rat hippocampal tissue. The double two-state opsin model of
Schoeters et al. (2021) is fit to the data reported by Williams et al. (2013) and the performance
is tested by comparing the neural response in a regular spiking neuron and the response obtained
by the model derived by Williams et al. (2013). The experimental dataset of Williams et al.
(2013) was collected in a ChR2(H134) HEK293 stable cell line and consists of the response of
the ion channel to different irradiances and voltages. Their model was experimentally validated
by comparison of the results and the ChR2 behavior in guinea pig ventricular myocytes. The
neuronal model is based on experiments with rat hippocampal cells while the opsin model is
indirectly validated by experiments done using guinea pig ventricular myocytes. This shows the
variability in datasets and origin of the cells on which the validation of the different models was
based. So, in the interpretation of the results of a computational study, one must always consider
the strengths and weaknesses of the model. They are made for a specific study or sometimes
tuned for a limited set of experiments. In this dissertation, the influence of the morphology
of the neuronal model on the outcome was tested. The simulations done with a morphological
simple model were repeated for one that is much closer to a real pyramidal CA1 neuron observed
in the human brain. Some of the findings were observed in both cases, however, experimental
validation is still needed to really confirm the observations.

The long-term impact of this dissertation would ideally be that the optogenetic activation of
cells becomes more efficient by controlling the opsin distribution in a cell. If the findings can be
extended to other neuron types, this could potentially be a step forward in the optimization of
optogenetic techniques. When all technological hurdles are overcome, optogenetics will evolve
to a real therapeutic tool and emerge in the clinic. However, it still requires both the use of gene
therapy techniques to introduce the opsin and the implantation of an electronic device to provide
optical stimulation. This involves the risk of the neurosurgical intervention needed to access the
brain, the risk of an immune response towards the vector and opsin protein, the risk of implant
rejection, and many more (White et al., 2020). All in all, risks will certainly be involved so a
proper risk assessment should precede the recommendation of this treatment. In the development
and optimization of a novel technique that will possibly become available in the clinic one day,
also the most extreme scenarios should be covered. What if optogenetics becomes suitable for
not only restoring but also extending the brain function of a person? If this technology is able to
provide treatment for neurological and psychiatric diseases like autism, aggression or addiction,
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would it also be possible to change someone’s character or improve someone’s cognitive functions
? According to Adamczyk and Zawadzki (2020), optogenetics even has a memory-modifying
potential including memory enhancement, modification or recovery. Optogenetics can become a
powerful yet highly ambivalent neuromodulation technique. There is definitely a need for ethical
rules and regulations before it can become an accepted form of treatment for humans.

Optogenetics is one of the fastest-developing neuromodulation technologies (Adamczyk and Za-
wadzki, 2020). There is a high availability of papers related to this subject, making it difficult
to deal with the large amount of information. The CA1 pyramidal neuron, for example, is a
well-studied cell so a selection of the most relevant papers was necessary. I listed the information
of the interesting ones and processed it all together in one text. If sentences or ideas were used
from these papers, the author was mentioned after the sentence(s) and the reference was added
to the bibliography at the end of my dissertation. The response of the neuron to an optogenetic
stimuli can be analyzed in many different ways. Multiple features describe the morphology of
an action potential or the spiking pattern of a neuron so in the comparison of different opto-
genetic stimulation locations, a selection of features had to be made. Obviously, features that
revealed the difference in response to different stimulation locations were chosen above those
that didn’t. This can be interpreted as including only the successful results. Different intensi-
ties and maximal ChR2(H134R) had to be tested to select a range of values for which activity
could be measured in the neuron. Simulation settings that resulted in meaningless responses
were therefore omitted. Obviously, limiting the extent of the dissertation is the main reason for
not including all these results.
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