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1 Introduction

This master’s thesis is mostly about using similarity relations for multi-instance classifi-
cation. Multi-instance classification, like any other classification problem, tries to classify
objects to its correct class. However, what makes multi-instance classification unique is
that these objects are a collection of instances. These collections of instances will be called
bags. Normally speaking classification problems only have to deal with a single instance
at a time, and therefore there are several approaches that try to solve the multi-instance
classification problem by predicting the labels of the instances separately in order to then
aggregate these predictions to a single prediction for the whole bag. This can be challenging
because the training data often only gives the labels on the bag-level which means making
accurate models to classify single instances can become virtually impossible. Extrapolating
the bag label to the instances may, after all, lead to a lot of miss-classified training samples.
The aim of this thesis is to circumvent these problems by directly labelling the bags. How-
ever, this approach leads to other challenging problems, many of which will be discussed
in further chapters.

More specifically, similarity between bags will be studied using concepts from fuzzy set
theory and graph theory. This thesis aims to provide some theoretical results regarding
these similarity relations between bags, as well as some experimental results. The theo-
retical discussion will mainly regard distances between bags and the connection between
distance and similarity between bags. The experimental results come from putting several
of these similarity relations to the test in a fuzzy multi-instance classification algorithm. I
have chosen this topic for several reasons. First of all, I have a keen interest in machine
learning and graph algorithms. Both of which are used to some extent in this master’s
thesis.

Secondly, this topic offered a good balance between theoretical and practical work. This is
also largely how this master’s thesis is structured. First, Chapter 2 introduces some basic
concepts that will be used throughout this master’s thesis. In Chapter 3 the theoretical
properties of similarity relations and distances between bags are discussed. We take a look
at some distances between bags that are common in the literature and some bag distances
that are new to the context of multi-instance classification. Secondly, we discuss the con-
version of bag distance to bag similarity. This conversion can lead to some interesting
additional properties of the similarity relation which are also studied. Lastly, this chapter
handles some theoretical properties of the newly introduced bag distances using concepts
from graph theory. These theoretical results are vital for the implementation of these bag
distances in any practical application, because they significantly decrease the computa-
tional complexity of these distances.
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1 Introduction

Chapter 4 introduces the concept of multi-instance learning and aims to give an overview
of the approaches taken for solving the multi-instance classification problem in the liter-
ature. Furthermore, we introduce the BFMIC family of multi-instance classifiers that will
be used in the experimental study.

In Chapter 5 we conduct the experimental study and compare the performance of different
similarity relations on both balanced datasets and imbalanced datasets. We also consider
the use of some pre-processing steps and study their effect on the performance of different
similarity relations.

Finally, in Chapter 6 we summarize the master’s thesis and the obtained results. Further-
more, we provide some potential possibilities for further research.
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2 Preliminaries

2.1 Fuzzy set theory

Fuzzy set theory is an extension to classical set theory where objects can belong to a set
to a given degree. In classical set theory objects either belong to the set or they do not.
In fuzzy set theory we model these fuzzy sets as an X → [0, 1] mapping that signifies to
which degree the object belongs to the fuzzy set.

Analogous to classical set theory we can define a fuzzy relation R in X as a fuzzy set
in X × X . If the fuzzy relation R is reflexive and symmetric, the relation R is called a
fuzzy tolerance relation. That is:

R(x, x) = 1 ∀x ∈ X

R(x, y) = R(y, x) ∀x, y ∈ X

These fuzzy tolerance relations can be used to express how similar two objects are to each
other.

The classical logical connectives can also be extended to fuzzy logical connectives. The
Boolean conjunction is extended to a conjunctor C , which is a mapping C : [0, 1]×[0, 1]→
[0, 1] that is increasing in both arguments and satisfies the following border conditions:

• C(0, 0) = 0

• C(1, 0) = 0

• C(0, 1) = 0

• C(1, 1) = 1

A conjunctor C for which ∀x, y, z ∈ [0, 1]

• C(1, x) = x

• C(x, y) = C(y, x)

• C(C(x, y), z) = C(x,C(y, z))

is called a t-norm. Some well-known examples of t-norms are the Łukasiewicz t-norm
TL(x, y) = max(0, x + y − 1), the product t-norm Tp(x, y) = xy, and the minimum
Tmin(x, y) = min(x, y).
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2 Preliminaries

2.2 Ordered weighted average aggregation

Ordered weighted average (OWA) aggregation [1] is a versatile way to aggregate a vector of
values to a single value. The aggregation follows the following procedure: first, the values
of the vector are sorted in decreasing order. Secondly, the weighted sum is calculated using
a weight vector W by assigning each weight of W according to the ordered position.

Definition 2.2.1. The OWA-aggregation of a vector V = ⟨v1, v2, . . . , vn⟩ is given by:

OWAW(V ) =
n∑

i=1

wivρ(i) = W · Ṽ ,

where Ṽ = ⟨vρ(1), vρ(2), . . . , vρ(n)⟩ with vρ(i) being the i-largest element of V and weight
vector W = ⟨w1, w2, . . . , wn⟩ with ∀i : wi ∈ [0, 1] and

∑n
i=1wi = 1.

Many common aggregation strategies can be modelled using these weight vectors. Take
for instance:

1. Wmax = ⟨1, 0, . . . , 0⟩

2. Wmin = ⟨0, . . . , 0, 1⟩

3. W avg = ⟨w1, w2, . . . , wn⟩ with ∀i : wi =
1
n

These weight vectors can be used to respectively determine the maximum, minimum and
average value of a vector V . It should however be clear that there are many more possible
OWA-operators. A property that characterizes an OWA-operator is its orness-value. This
value represents how close the aggregation is to a regular maximum. The orness of an
OWA-operator W = ⟨w1, w2, . . . , wn⟩ is calculated as:

orness(W ) =
1

n− 1

n∑
i=1

(n− i)wi

It can be easily verified that orness(Wmax) = 1, orness(Wmin) = 0, orness(Wavg) =
1
2

It is common to also define the andness of an OWA-operator. This value expresses how close
the aggregation is to a normal minimum and is defined as 1−orness(W ). If orness(W ) >
1
2

the OWA-aggregation using W as weight vector corresponds to a softened maximum.
Similarly andness(W ) > 1

2
indicates a softened minimum. We will now see what the effect

of reversing such a weight vector is on the orness and andness.
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2 Preliminaries

Lemma2.2.2. Aweight vectorW = ⟨w1, w2, . . . , wn⟩ and its reverseW ′ = ⟨w′
1, w

′
2, . . . , w

′
n⟩ =

⟨wn, wn−1, . . . , w1⟩ satisfy orness(W ) + orness(W ′) = 1

Proof. We can write orness(W ′) as

orness(W ′) =
1

n− 1

n∑
i=1

(n− i)w′
i

=
1

n− 1

n∑
i=1

(n− i)wn+1−i

If we now carry out the substitution j = n+ 1− i, we find

orness(W ′) =
1

n− 1

n∑
j=1

(j − 1)wj

This indicates that

orness(W ′) + orness(W ) =
1

n− 1

n∑
j=1

(j − 1)wj +
1

n− 1

n∑
j=1

(n− j)wj

=
1

n− 1

n∑
j=1

(n− j + j − 1)wj

=
n− 1

n− 1

n∑
j=1

wj

=
n∑

j=1

wj = 1.

□

Lemma 2.2.2 provides a natural way to couple OWA-operators. If orness(W ) > 1
2

then
we know that the orness of its reverse weight vector W ′ will be smaller than 1

2
and vice

versa. This allows each OWA-operator to define a substitute for the normal maximum and
minimum. From now on we will write a weight vector that has an orness greater than or
equal to 1

2
as Wu and its reverse as Wl. This allows us to define:

W strict
u = ⟨1, 0, . . . , 0⟩ = Wmax

W strict
l = ⟨0, . . . , 0, 1⟩ = Wmin

and moreover allows us to only define one of the two in a pair. The most common pairs of
OWA-operators are:

• Strict weights (strict):

W strict
u =

〈
1, 0, . . . , 0

〉
W strict

l =

〈
0, . . . , 0, 1

〉

11



2 Preliminaries

• Additive weights (add):

W add
u =

〈
2

n+ 1
,
2(n− 1)

n(n+ 1)
, . . . ,

4

n(n+ 1)
,

2

n(n+ 1)

〉

W add
l =

〈
2

n(n+ 1)
,

4

n(n+ 1)
, . . . ,

2(n− 1)

n(n+ 1)
,

2

n+ 1

〉
• Exponential weights (exp):

W exp
u =

〈
2n−1

2n − 1
,
2n−2

2n − 1
, . . . ,

2

2n − 1
,

1

2n − 1

〉

W exp
l =

〈
1

2n − 1
,

2

2n − 1
, . . . ,

2n−2

2n − 1
,
2n−1

2n − 1

〉
• Inverse additive weights (invadd):

W add
u =

〈
1

Dp

,
1

2Dp

, . . . ,
1

(p− 1)Dp

,
1

pDp

〉

W add
l =

〈
1

pDp

,
1

(p− 1)Dp

, . . . ,
1

2Dp

,
1

Dp

〉
with Dp =

∑n
i=1

1
i

• Average weights (avg):

W avg
u =

〈
1

n
,
1

n
, . . . ,

1

n
,
1

n

〉

W avg
l =

〈
1

n
,
1

n
, . . . ,

1

n
,
1

n

〉

2.3 Similarity measures for fuzzy sets

To express the degree to which two fuzzy sets overlap or resemble each other, we define the
concept of a similarity measure. This concept plays a role in many practical applications,
and will be of notable importance for the classification of multi-instance data.

Definition 2.3.1. Let F(X) be the class of all fuzzy sets on a universe X . A similarity
measure (or similarity relation) is a mapping S : F(X)×F(X)→ [0, 1] that satisfies the
following conditions:

(∀A,B ∈ F(X)×F(X)) S(A,B) = S(B,A)

(∀A,B ∈ F(X)×F(X)) A = B =⇒ S(A,B) = 1

12



2 Preliminaries

Similarity measures can be categorized using several properties they might possess. Some
common properties are summed up in the following definition.

Definition 2.3.2. Let S be a similarity measure and T a t-norm. We define:

• S is T-transitive if and only if

(∀(A,B,C) ∈ F(X)×F(X)×F(X))(T (S(A,B), S(B,C)) ≤ S(A,C))

• S satisfies the separation property if and only if

(∀(A,B) ∈ F(X)×F(X))(S(A,B) = 1 ⇐⇒ A = B)

• S is exclusive if and only if

(∀(A,B) ∈ (F(X)×F(X)\(∅,∅)))(A ∩B = ∅ =⇒ S(A,B) = 0)

• S is co-exclusive if and only if

(∀(A,B) ∈ (F(X)×F(X)))(S(A,B) = 0 =⇒ A ∩B = ∅)

2.4 GraphTheory

In the following section several concepts from graph theory, that will be used throughout
the following chapters, will be introduced.

Definition 2.4.1. A (undirected) graph is an ordered pair G = (V,E), where V is a set
whose elements are called vertices and E ⊆ {{x, y} | x, y ∈ V } is a set whose elements
are called edges. Two vertices x and y are said to be adjacent when {x, y} ∈ E. Similarly
two distinct edges are said to be adjacent when they share a common vertex as one of
their endpoints. A graph is said to be complete whenever every two distinct vertices are
adjacent.

Definition 2.4.2. A subgraph G′ = (V ′, E ′) of a graph G = (V,E) is a graph such that
V ′ ⊆ V and E ′ ⊆ E.

Certain types of (sub)graphs are given a name to communicate the composition of the
(sub)graph more easily.

Definition 2.4.3. A pair is a graph consisting of two adjacent vertices. A star is a con-
nected graph where all but one vertices have degree 1. The vertex that does not have degree
1 is called the center and is connected to all the other vertices of the star.

Definition 2.4.4. A directed graph, or digraph for short, is an ordered pair G = (V,A),
where V is once again a set of vertices. However, A ⊆ V ×V is now a set of ordered pairs,
whose elements are now called directed edges.

13



2 Preliminaries

Definition 2.4.5. A bipartite graph is a graph where the set of vertices is split up in two
disjoint bipartition classes X and Y . We denote a bipartite graph with bipartition classes
X, Y as (X ⊔ Y,E). We call a bipartite graph G = (X ⊔ Y,E) balanced if |X| = |Y |. A
bipartite graph is called complete when

∀x ∈ X, ∀y ∈ Y : (x, y) ∈ E.

Definition 2.4.6. A weighted graph is a graph were every edge is assigned a certain
weight. We define these weights to be non-negative. Formally we can describe a weighted
graph G as an ordered triple (V,E, ω), where V and E are once again sets of vertices, and
edges respectively. ω is a mapping from E to R+ that assigns a non-negative weight to
each edge.

2.4.1 Matching

Graphs are often used to model connections between objects. A heavily studied problem in
graph theory is that of finding pairs of vertices that best fit together, like in Hall’s famous
marriage theorem [2]. These pairings lead to the concept of a matching.

Definition 2.4.7. Given a graph G = (V,E), a matching M is a subset of edges from E
such that no two edges are adjacent. A vertex is said to be saturated if it is an endpoint of
one of the edges in the matching M . A matching is called perfect whenever every vertex
is saturated. In Figure 2.1 several examples of matchings are shown.

Figure 2.1: Three examples of matchings. Edges in the matching are colored red. Only
example (b) is a perfect matching.

As stated before, we are often interested in a matching that is in a sense optimal. In our
case, it will make sense to pair up vertices that are close to each other. We can define a
complete weighted graph that has the distance between two vertices as the weight of the
edge between these two vertices. Then we can define the following concept:

Definition 2.4.8. Given a weighted graph G = (V,E, ω), the weight of a matching M is
defined as

w(M) :=
∑
e∈M

ω(e).

A minimum weight perfect matching M is a perfect matching of minimal weight. In Figure
2.2 the weight of two matchings is shown, including a minimum weight perfect matching.

14



2 Preliminaries

(a)

w(M) = 2

(b)

w(M) = 3

Figure 2.2: The red edges are the edges of the considered matching. Both matchings are
perfect matchings because they both saturate all vertices. The matching shown
in (a) is a minimum weight perfect matching.

Lemma 2.4.9. A complete, balanced bipartite graphG = (X⊔Y,E) has a perfect matching.

Proof. Since G is balanced, and thus |X| = |Y |, there exists a bijection α : X → Y . Now
we construct the matching M :

M = {(x, α(x)) | x ∈ X}.

By construction and because α is a bijection every vertex of X is contained in a unique
edge of M . Similarly we can see that every vertex of Y must be contained in a unique edge
of M . Therefore M is a matching that saturates all vertices of X ⊔ Y , and thus a perfect
matching. □

2.4.2 Flow Network

Another common application of graphs is models of networks through which a certain
resource travels, e.g. road networks, electrical circuits, and data networks [3].

Definition 2.4.10. A network is a digraph G = (V,E) together with a non-negative
mapping cap : E → R+, called the capacity function. A flow network (G, cap, s, t) is a
network where s and t are vertices from G. s and t are respectively called the source and
sink of the flow network.

The source and sink can be seen as the start and end point of the network respectively. The
capacity of an edge signifies the maximal amount of a certain resource that can go through
that specific edge. This is similar to the concept of bandwidth in data networks. The source
provides the resource while the sink takes the resource out of the network. It makes sense
to require that all vertices, with the exception of the source and the sink, have an equal
amount of resources coming in as going out. In electrical circuits this is called Kirchhoff’s
first law. We often say that the resource flows through the network. To express how many
resources a network can accommodate we introduce the following definition.

15



2 Preliminaries

Definition 2.4.11. A flow on a network flow is a function f : E → R+ satisfying the
following conditions

• For all edges (u, v) ∈ E: f((u, v)) ≤ c((u, v))

• For every vertex v ∈ V \ {s, t}:∑
u∈{x|(x,v)∈E}

f((u, v))−
∑

u∈{x|(v,x)∈E}

f((v, u)) = 0

• The source s has no incoming flow:

∀u ∈ {x | (x, s) ∈ E} : f((u, s)) = 0

• The sink t has no outgoing flow:

∀v ∈ {v | (t, v) ∈ E} : f((t, v)) = 0

The total flow fs→t on the flow network is defined as the total flow going from the source
to the sink:

fs→t =
∑

w∈{x|(s,x)∈E}

f((s, w)).

Figure 2.3: Example of a non-optimal flow defined on a flow network.

A common problem defined on flow networks is determining a flow that maximizes the
total flow on the network [4]. In Figure 2.3 an example of a non-optimal flow f is given.
Indeed, one can easily verify that the flow on this network is 1. However, by defining the
flow of the edge going from the lower branch to the upper branch as 0 and defining the
flow of all other edges as 1, a total flow of 2 can be achieved. A list of algorithms to solve
the maximum-flow problem can be found in [5].

Definition 2.4.12. A weighted flow network is a flow network along with a non-negative
mapping c : E → R+ called the weight function. We denote the weighted flow network
as (G, cap, c, s, t), where G is a digraph, cap is the capacity, c is the weight function and s
and t are once again the source and the sink respectively.

16



2 Preliminaries

Weighted flow networks come from a field where it often makes more sense to talk about a
cost function instead of a weight function. A common problem is to then find a maximum
flow f running through the network and minimizing the cost to achieve this maximal flow.
The cost of running a flow is dependent on how much flow is running through an edge and
the cost of the edge. This gives rise to the following definition:

Definition 2.4.13. Let f be a flow on a weighted flow network N with cost function c .
We define the cost of the flow f as

c(f) =
∑
e∈E

c(e)f(e)

The problem of finding the minimal-cost maximum-flow on a network has been studied in
several papers [6][7].

17



3 Similarity relations between bags

In this chapter we will study similarity relations between bags. Section 3.1 will first focus
on distance functions between bags. Here we also introduce some distances between bags
which are novel in the context of multi-instance learning. This will then be followed up
by Section 3.2, in which the relation between distance functions and similarity relations is
explored. We conclude with Section 3.3, where some theoretical properties of the new bag
distances are proven.

3.1 Metrics for bags

The concept of a bag has already been mentioned a lot. But we can formally define a bag
as follows:

Definition 3.1.1. A bag is a multiset that contains elements of a metric space (M,d).

To determine the similarity between bags we can consider the distance between the bags.
Typically distance is modelled using metrics.

Definition 3.1.2. A metric on a non-empty set X is a function d : X × X → R+ that
satisfies ∀x, y, z ∈ X

d(x, y) ≥ 0 (non-negative)
d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

d(x, y) = d(y, x) (symmetry)
d(x, y) + d(y, z) ≤ d(x, z) (triangle inequality)

We call (X,d) a metric space. Functions that satisfy the first three conditions are called
semi-metrics and functions that satisfy conditions 1,3 and 4 are called pseudo-metrics.

The relation between metrics and similarity will be discussed in Section 3.2. This connec-
tion implies that algorithms that use a certain metric can be transformed in an algorithm
that uses similarity measures. However, we have not yet defined a way to determine the
distance between two bags.

Single instances can be trivially embedded in a metric space (M,d) by using the feature
vector as coordinates, the bags can thus be seen as a multiset of points in that space and
therefore we must extend the metric d to a metric δ on all the non-empty (finite) subsets
of M . This extension should be natural in a sense that ∀x, y ∈ M : d(x, y) = δ({x}, {y})
should be satisfied. The best-known metric between subsets of a metric space is the Haus-
dorff metric.

18



3 Similarity relations between bags

Definition 3.1.3. Let X, Y be two non-empty subsets of a metric space (M,d). We define
the Hausdorff distance δH(X, Y ) between X and Y as

δH(X, Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}
with

d(x, Y ) = inf
y∈Y

d(x, y)

Because the bags will always be finite, we can replace the use of the suprema and infima
in the definition by the maximum and the minimum respectively.

Theorem 3.1.4. Let (M,d) be a metric space, then the Hausdorff distance δH that extends d
is a pseudo-metric.

Proof. We will prove the 3 requirements of a pseudo-metric.

1. ∀X, Y ∈ P(M) : δH(X, Y ) ≥ 0
Since∀x, y ∈M : d(x, y) ≥ 0, we have that supx∈X d(x, Y ) ≥ 0 and supx∈X d(X, y) ≥
0. Therefore, we have that ∀X, Y ∈ P(M) : δH(X, Y ) ≥ 0.

2. ∀X, Y ∈ P(M) : δh(X, Y ) = δh(Y,X)
This follows immediately from the symmetry of d.

3. ∀X, Y, Z ∈ P(M) : δH(X, Y ) + δH(Y, Z) ≥ δH(X,Z)
First of all, the triangle inequality of d gives us:

∀x ∈ X, ∀y ∈ Y : inf
z∈Z

d(x, z) ≤ inf
z∈Z

(d(x, y) + d(y, z)),

and thus
∀x ∈ X, ∀y ∈ Y : d(x, Z) ≤ d(x, y) + d(y, Z).

Since
d(y, Z) ≤ sup

y∈Y
d(y, Z) ≤ δH(Y, Z)

holds for every y ∈ Y , we find that

d(x, Z) ≤ d(x, y) + δH(Y, Z),

and thus

d(x, Z) ≤ inf
y∈Y

(d(x, y) + δH(Y, Z))

d(x, Z) ≤ d(x, Y ) + δH(Y, Z).

And once again since

d(x, Y ) ≤ sup
x∈X

d(x, Y ) ≤ δH(X, Y )
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we find that

d(x, Z) ≤ δH(X, Y ) + δH(Y, Z)

sup
x∈X

d(x, Z) ≤ δH(X, Y ) + δH(Y, Z).

Similarly, we can find that

sup
z∈Z

d(X, z) ≤ δH(X, Y ) + δH(Y, Z)

and thus

δH(X,Z) = max

{
sup
x∈X

d(x, Z), sup
z∈Z

d(X, z)

}
≤ δH(X, Y ) + δH(Y, Z)

□

Remark 3.1.5. The Hausdorff distance satisfies the second requirement of a metric (∀X, Y ∈
P(M) : δH(X, Y ) = 0 ⇐⇒ X = Y ) if all X, Y ∈ P(M) are finite.
Suppose that X = Y , then it is easy to verify that

δH(X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
= 0

Now suppose that δH(X, Y ) = 0. Since X and Y are finite, we find that

max
x∈X

d(x, Y ) = 0 ∧max
y∈Y

d(y,X) = 0

Since d(x, Y ) = miny∈Y d(x, y), we find that

max
x∈X

d(x, Y ) = 0⇒ ∀x ∈ X : min
y∈Y

d(x, y) = 0

⇒ ∀x ∈ X : ∃y ∈ Y : d(x, y) = 0

⇒ ∀x ∈ X : ∃y ∈ Y : x = y

⇒ X ⊆ Y

Analogously, we find that Y ⊆ X and thus X = Y .

It should be noted that for the purpose of MIL the bags are finite. Therefore, the suprema
and infima in the definition can be replaced with maxima and minima respectively. From
now on we will assume that bags are finite. This way, there exist other metrics that are an
extension of metrics on M to subsets of M , for example:

Definition 3.1.6. Let X, Y be two finite non-empty subsets of a metric space (M,d). We
define the average Hausdorff distance davgH(X, Y ) between X and Y as

δavgH(X, Y ) =

∑
x∈X miny∈Y d(x, y) +

∑
y∈Y minx∈X d(x, y)

|X|+ |Y |
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3 Similarity relations between bags

This is sometimes also used without the normalisation for the number of instances in each
bag, giving the so-called sum of minimal distances:

Definition 3.1.7. Let X, Y be two finite non-empty subsets of a metric space (M,d). We
define the sum of minimal distances dSumMin(X, Y ) between X and Y as

δHSumMin(X, Y ) =
∑
x∈X

min
y∈Y

d(x, y) +
∑
y∈Y

min
x∈X

d(x, y)

Lastly, we can also consider the following easy to compute distance between bags.

Definition 3.1.8. Let X, Y be two finite non-empty subsets of a metric space (M,d). We
define the minimal Hausdorff distance dmin(X, Y ) between X and Y as

δHmin(X, Y ) = min
y∈Y

min
x∈X

d(x, y)

Furthermore, we can use the OWA-operators by replacing the minima (respectively max-
ima) in the definitions of these distances by soft minima (respectively soft maxima). This
means that for each pair of OWA-operators (OWAWU

, OWAWL
) we can define 4 addi-

tional distance measures between bags. For example the Hausdorff distance and average
Hausdorff distance between X, Y (two finite, non-empty subsets of a metric space (M,d))
would respectively become:

δH,W (X, Y ) = max

{
OWAWU

(
{OWAWL

({d(x, y)|y ∈ Y })|x ∈ X}
)
,

OWAWU

(
{OWAWL

({d(x, y)|x ∈ X})|y ∈ Y }
) }

δavgH,W (X, Y ) =

∑
x∈X OWAWL

({d(x, y)|y ∈ Y }) +
∑

y∈Y OWAWl
({d(x, y)|x ∈ X})

|X|+ |Y |

However, there are more distance measures that are not related to the Hausdorff distance
measures. We will now discuss three distance measures that rely on relations between
the two (multi)sets. These bag distances originally come from the field of philosophy of
science to measure the distance between theories in a logical language L. Nevertheless,
as suggested in [8], these distance measures can be useful in other fields. Note that these
distances are only defined for finite bags.

Surjection distance (δs)
This distance measure considers surjections that map the larger multiset onto the smaller.
This gives rise to the following distance measure between two non-empty subsets X, Y of
a metric space (M,d):

δs(X, Y ) = min
η

∑
(x,y)∈η

d(x, y),

where the minimum is taken over all possible surjections η from the larger multiset to the
smaller multiset. Note that when both multisets have the same cardinality, the surjections
become bijections. In that case it doesn’t matter which multiset is the domain and which
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3 Similarity relations between bags

multiset is the image because when the inverse functions are considered the minimum will
stay the same.

Fair surjection distance (δfs)
Once again surjections that map the larger multiset onto the smaller are considered. The
surjection distance can be susceptible to noise and outliers, so to mitigate this we consider
‘fair’ surjections. The points in the domain should be equally distributed to the pre-images
of the surjection, i.e., ∀x, y ∈ im(η) : ||η−1(x)| − |η−1(y)|| ≤ 1. We define the following
distance measure between two non-empty subsets X, Y of a metric space (M,d):

δfs(X, Y ) = min
η′

∑
(x,y)∈η′

d(x, y),

where the minimum is taken over all possible fair surjections η′ from the larger multiset to
the smaller multiset. Once again it doesn’t matter which multiset is considered the largest
when the cardinalities of the multisets are the same.

The surjection distance and fair surjection distance are very similar. The difference be-
tween these two distances becomes clear when one bag has significantly more instances
than the other bag, such as in Figure 3.1. The surjection distance and the fair surjection
between the bags in this example are illustrated in Figure 3.2.

Figure 3.1: Two bags with different sizes. X is represented by the red dots, while Y is
represented by the blue squares (|X| = 12, |Y | = 4).
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Figure 3.2: The left picture illustrates the surjection distance and the right picture illus-
trates the fair surjection distance. The distances are defined to be the sum of
the lengths of the dotted lines.

As can be seen in Figure 3.2, the fair surjection distributes the instances of X uniformly
over the instances of Y . The surjection distance maps almost all instances of X to a single
instance of Y . However, this point of Y is clearly an outlier, and this unrepresentative
point heavily influences the surjection distance. The influence of this outlier instance is
diminished in the fair surjection distance by distributing the instances. We will illustrate
this effect by removing the outlier. The effect on the distances can be seen in Figure 3.3.
Clearly the computation of the surjection distance changed drastically while the change
is more subtle for the fair surjection distance. This illustrates the distinction between the
two and shows that the fair surjection distance is less susceptible to outliers.

Figure 3.3: The outlier point from Y is removed such that now |X| = 12 and |Y | = 3. The
left picture represents the surjection distance, while the right picture represents
the fair surjection distance.
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Link distance (δl)
Let X, Y be two non-empty subsets of a metric space (M,d). For the last distance measure
based on relations between multisets we consider compatibility relations. A compatibility
relation is a relation R ⊆ X × Y satisfying

1. R is serial:
∀x ∈ X : ∃y ∈ Y : (x, y) ∈ R

2. R is inverse serial:
∀y ∈ Y : ∃x ∈ X : (x, y) ∈ R

We define the following distance measure:

δl(X, Y ) = min
R

∑
(x,y)∈R

d(x, y),

where the minimum is taken over all possible compatibility relations R.

Figure 3.4: An illustration of the surjection distance, the fair surjection distance, and the
link distance respectively between two bags. The instances of bag X are repre-
sented by blue squares, while the instances of Y are represented by green dots.
The distances are defined as the sum of the length of the black lines between
the instances.

In Figure 3.4 all three distances are illustrated using the same pair of bags. It should be
noted that every (fair) surjection is also a compatibility relation. Therefore, there are cases
where the fair surjection distance, surjection distance and link distance are all computed
using the same relation. An example of such a case can be seen in Figure 3.5.
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3 Similarity relations between bags

Theorem 3.1.9. The surjection distance, fair surjection distance and link distance are all
semi-metrics.

Proof. Semi-metrics have to satisfy the following conditions:

δ(x, y) ≥ 0 (non-negative)
δ(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

δ(x, y) = δ(y, x) (symmetry)

We will start by proving these conditions for all three distances.

• Non-negative
All three distances are defined as a sum of distances between points, and therefore
the non-negativity is inherited from the metric between points.

• Identity of indiscernibles
We will demonstrate this proof for the surjection distance. This condition can be
proven for the fair surjection distance and link distance in a similar way. Suppose
there exist bags X, Y such that δ(X, Y ) = 0. It follows from the definition that each
element of X is connected to at least one element of Y and vice versa. Since the
surjection distance is defined as a sum of distances between points, it follows that
every distance between points in the summation must be equal to 0. This proves
that X = Y . Now suppose X = Y . It is clear that the trivial surjection is the
surjection that minimizes the sum of distances. Since the distance between every
pair of instances is 0, the total sum will equal 0. It now easily follows δs(X, Y ) = 0.

• Symmetry
The definition of the link distance is completely symmetric, and therefore symmetry
is trivial. The surjection distance and fair surjection distance however are defined
as a surjection from the largest bag to the smallest bag. Symmetry is once again
trivial when the size of the two bags are different. When there are two bags X, Y
that contain an equal amount of instances, these surjections become bijections and
thus symmetry will still hold.

□

Remark 3.1.10. The triangle inequality does not hold in general for the surjection dis-
tance, fair surjection distance and link distance. An example that the triangle inequality
does not hold for all bags X, Y, Z can be seen in Figure 3.5. This means that these three
distances are not metrics in general.
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3 Similarity relations between bags

Figure 3.5: X , Y and Z are represented by the red, green and blue dots respectively. These
bags are chosen such that the surjection distance, fair surjection distance and
link distance are computed using the same relation, resulting in the same dis-
tance. Therefore, we will write δ to denote any of the three relation-based dis-
tances. Note that we consider the euclidean distance to determine the distance
between instances. δ(X, Y ) equals the sum of the lengths of the blue dotted
lines, δ(Y, Z) equals the length of the red dotted line, and δ(X,Z) equals the
sum of the lengths of the green dotted lines. This results in δ(X, Y ) = 4,
δ(Y, Z) = 4, and δ(X,Z) = 4

√
5.

Remark 3.1.11. When all bags contain the same amount of instances, the triangle in-
equality does hold for the surjection distance and the fair surjection distance.

Proof. First of all it should be noted that every surjection between bags of equal size is
automatically a fair surjection, more precisely every surjection will be a bijection. There-
fore, the fair surjection distance and surjection distance are completely the same when
the bags have the same amount of instances. Suppose we have three bags X, Y, Z with
|X| = |Y | = |Z|. Recall that the surjection distance δs between two bags A,B is defined
using a surjection η : A→ B that minimizes∑

(a,b)∈η

d(a, b),

and that in this particular case the surjection is a bijection because the size of the domain
and the image is equal. Therefore, we can conclude that η minimizes

cAB(η) :=
∑
a∈A

d(a, η(a)).

We will write η1, η2, η3 to denote the bijections used in δs(X, Y ), δs(Y, Z) and δs(X,Z)
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respectively. In other words:

cXY (η1) = δs(X, Y )

cY Z(η2) = δs(Y, Z)

cXZ(η3) = δs(X,Z).

We will now construct a bijection η by considering the composition of η1 and η2:

η : X → Z : x→ η2(η1(x)).

It now follows from the triangle inequality of the metric d that

cXZ(η) =
∑
x∈X

d(x, η(x))

≤
∑
x∈X

d(x, η1(x)) + d(η1(x), η(x))

=
∑
x∈X

d(x, η1(x)) +
∑
x∈X

d(η1(x), η2(η1(x)))

=
∑
x∈X

d(x, η1(x)) +
∑
y∈Y

d(y, η2(y))

= cXY (η1) + cY Z(η2)

= δs(X, Y ) + δs(Y, Z).

Recall that η3 is by definition the bijection that minimizes cXZ , and therefore we get

δs(X,Z) = cXZ(η3)

≤ cXZ(η)

≤ δs(X, Y ) + δs(Y, Z).

Thus, the triangle inequality holds.

□

3.2 Relation between distance and similarity

Intuitively the concepts of distance and similarity are related. When the distance in the
feature space between two objects is small, they must be similar.

Given a certain metric we can always define a similarity measure by transforming it with
a function f : R+ → [0, 1]. As we have seen, a similarity measure S(x, y) = f(d(x, y))
has only 2 requirements: the relation should be symmetric and reflexive. Symmetry is triv-
ially inherited from the symmetry of a distance function. However, to satisfy the reflexive
property, it is required that f(0) = 1.
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These conditions are not difficult to meet, meaning that there are many potential can-
didates for the function f . However, we can add some reasonable assumptions for f . The
function f should also be strictly decreasing. This reflects the intuition that objects that lie
further apart are less similar. Possible functions that satisfy these conditions are:

• f(x) = 1
1+ax

• f(x) = e−ax

• f(x) = 2
π
arctan( 1

ax
)

with a ∈ R+
0

Defining a metric given a similarity measure is not as trivial because only demanding that
a transformation g is strictly decreasing does not necessarily result in a relation that satis-
fies the triangle inequality or the identity of indiscernibles. However, when the similarity
measure S satisfies the separation property, a distance measure d defined as d(x, y) =
g(S(x, y)) with g : [0, 1] → R+

0 strictly decreasing, and g(1) = 0, does result in a
semi-metric. The symmetry and non-negativity are inherited from the similarity mea-
sure. If x = y then d(x, y) = g(S(x, y)) = g(1) = 0. Since g is strictly increasing,
d(x, y) = g(S(x, y)) = 0 implies S(x, y) = 1. The separation property now implies x = y,
thus d is a semi-metric.

We will now examine if there are functions f such that the resulting similarity measures
satisfy any of the additional properties in Definition 2.3.2.

Theorem 3.2.1. Consider a convex metric space (M,d). There is no function f and metric d
such that S(x, y) = f(d(x, y)) is a Tmin-transitive similarity measure.

Proof. Suppose S were Tmin-transitive, i.e.:

∀x, y, z : min(S(x, y), S(y, z)) ≤ S(x, z).

This implies that

f(d(x, y)) ≤ f(d(x, z)) ∨ f(d(y, z)) ≤ f(d(x, z))

and because f is assumed to be strictly decreasing we have that

d(x, y) ≥ d(x, z) ∨ d(y, z) ≥ d(x, z).

This would mean that there are no points x, y, z such that

d(x, y) < d(x, z) ∧ d(y, z) < d(x, z).

However, because (M,d) is a convex metric space, for every x, z ∈ M there exists a y
different from x, z such that

d(x, y) + d(y, z) = d(x, z)
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Because x ̸= y ̸= z, the non-negativity and identity of indiscernibles of d imply that

d(x, y) > 0

d(y, z) > 0

Thus, we have found points x, y, z for which

d(x, y) < d(x, z) ∧ d(y, z) < d(x, z),

and therefore S is not Tmin − transitive. □

Theorem3.2.2. If f is a convex, strictly decreasing, continuous function with dom(f) ⊆ R+,
0 ∈ dom(f) and f(0) = 1, and d is a metric, then S(x, y) = f(d(x, y)) is a TL-transitive
similarity measure.

Proof. Suppose f is a convex, strictly decreasing, continuous function with dom(f) ⊆ R+

, 0 ∈ dom(f) and f(0) = 1. f is convex if and only if ∀t ∈ [0, 1] and x1, x2 ∈ dom(f):

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

Suppose we have a, b ∈ dom(f) : a + b ∈ dom(f) \ {0}. If we choose x1 = a + b and
x2 = 0, then we can choose t1 =

a
a+b

, such that t1x1 = a. We get

f(a) = f(t1x1 + (1− t1)x2) ≤ t1f(a+ b) + (1− t1)f(0) = t1f(a+ b) + (1− t1)

and because b = a+ b− a = x1 − a = x1 − t1x1 = (1− t1)x1,

f(b) = f((1− t1)x1 + t1x2) ≤ (1− t1)f(a+ b) + t1f(0) = (1− t1)f(a+ b) + t1

Together these give

f(a) + f(b) ≤ f(a+ b) + 1 = f(a+ b) + f(0)

Thus for all a, b ∈ dom(f) for which a+ b ∈ dom(f) \ {0} it holds that

f(a) + f(b) ≤ f(a+ b) + f(0) (3.1)

The similarity measure S(x, y) = f(d(x, y)) is TL-transitive iff for all points x, y, z of the
metric space

max(0, f(d(x, y)) + f(d(y, z))− 1) ≤ f(d(x, z))

We will denote the distances d(x, y), d(y, z), d(x, z) as a, b, c respectively. This substitution
gives

max(0, f(a) + f(b)− 1) ≤ f(c)

which is equivalent with

f(a) + f(b) ≥ 1⇒ f(a) + f(b) ≤ f(c) + 1. (3.2)

Suppose f(a) + f(b) ≥ 1. Since f is decreasing, this condition is more difficult to satisfy
when c is higher. Note that the triangle inequality implies that a + b ≥ c. The largest
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feasible c is thus c = min(a+ b, sup(dom(f))).
If c = a+ b then a+ b ∈ dom(f) and therefore the condition follows from Equation (3.1).

The case where c = sup(dom(f)) however implies that f(c) = infx∈dom(f) f(x) because f
is strictly decreasing, and the condition becomes ∀a, b ∈ dom(f)

f(a) + f(b) ≥ 1⇒ f(a) + f(b) ≤ 1 + inf
x∈dom(f)

f(x).

Suppose that f(a) + f(b) > 1 + inf(f). We already found that c < a + b and since f is
strictly decreasing we have f(a) < f(c− b). Combined with f(a)+ f(b) > 1+ inf(f) this
becomes:

1 + inf(f) < f(a) + f(b) < f(c− b) + f(b)

And since 1 + inf(f) = f(0) + f(c), we find

f(0) + f(c) < f(c− b) + f(b).

This is however a contradiction with the convexity of f , which states ∀t ∈ [0, 1]:

f(tc+ (1− t)0) ≤ tf(c) + (1− t)f(0) = 1− t+ t inf(f)

f(t0 + (1− t)c) ≤ tf(0) + (1− t)f(c) = t+ (1− t) inf(f).

Together this becomes f(tc) + f((1− t)c) ≤ 1 + inf(f), which for t = c−b
c

becomes

f(c− b) + f(b) ≤ 1 + inf(f) = f(0) + f(c).

The contradiction implies that the condition of T -transitivity still holds. □

Remark 3.2.3. The convexity of f is a sufficient condition forS(x, y) = f(d(x, y)) being a
TL-transitive similarity measure, however it is not necessary. An example of a non-convex
function f that leads to a TL-transitive similarity measure is:

f(x) =

{
1

10x+1
if 0 ≤ x ≤ 1

−14616
1331

x2 + 29122
1331

x+ −14385
1331

if 1 < x ≤ 137
126
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Figure 3.6: Example of a non-convex function that leads to TL-transitive similarity mea-
sure.

This function (shown in Figure 3.6) contains part of a concave parabola and is therefore
not convex. This function has been constructed in such a way that f is differentiable in
1. From Equation 3.2 and c ≥ a + b, it follows that this function leads to a TL-transitive
similarity measure iff for all a, b ∈ dom(f) for which a + b ∈ dom(f), the following
condition holds:

1 ≤ f(a) + f(b)⇒ f(a) + f(b) ≤ 1 + f(a+ b)

or equivalently,

1 ≤ f(a) + f(b)⇒ f(b)− f(a+ b) ≤ f(0)− f(a).

Without loss of generality we can assume that a ≤ b. This leads to the condition f(a) ≥
f(b) and together with f(a) + f(b) ≥ 1 this leads to a ≤ 1

10
. Using the derivative we can

derive bounds for the differences f(b)− f(a+ b) and f(0)− f(a):

f(0)− f(a) ≥ −amax(f ′(a), f ′(0)) ≥ −af ′(a),

f(b)− f(a+ b) ≤ −amin(f ′(b), f ′(a+ b)) ≤ −af ′(a).

Where the second inequality is found by noticing that both a and a + b lie between a
and 137

126
and the derivative in this interval will be smallest in a. Therefore f will lead to a

TL-transitive similarity measure.
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Theorem 3.2.4. If d is a (semi-)metric and f is a strictly decreasing function with f(0) = 1,
then S(x,y)=f(d(x,y)) will satisfy the separation property.

Proof. The separation property states that for all x, y

S(x, y) = 1 ⇐⇒ x = y,

f(d(x, y)) = 1 ⇐⇒ x = y.

Because f is strictly decreasing and f(0) = 1, this is equivalent to

d(x, y) = 0 ⇐⇒ x = y.

and this is true because d is assumed to be a (semi-)metric. □

3.3 Computing the relation-based distances

The three novel relation-based distances all come down to solving an optimization problem.
However, the parameters in these optimization problems are relations that satisfy specific
conditions. In most cases there is a large range of relations that satisfy the necessary con-
ditions. This implies that the search space can be very large, and thus it is not feasible to
consider all the possible relations between two bags. However, these optimization prob-
lems can be translated to optimization problems on graphs and networks [8]. More specif-
ically the optimization problems that we have discussed in Section 2.4 for which many
known algorithms already exist. In this section we will prove that these relation optimiza-
tion problems are indeed equivalent to graph optimization problems. In our experimental
study these bag distances are computed using these equivalent problems in order to lower
the computational complexity.

However, it should be mentioned that even the best algorithms for solving the equiva-
lent graph theory problems have a computational complexity that is considerably larger
than the computational complexity of the Hausdorff distances. The best known complex-
ity for solving the minimum weight matching problem [9] is O(nm + n2 log(n)), where
n is the number of vertices and m the number of edges. All graphs that we will consider
will be complete graphs, which means that this can be simplified to O(n3). The best known
complexity for the minimal-cost maximum-flow problem for weighted bipartite graph [10]
can also be simplified to O(n3) because our problems will only consider complete bipartite
graphs.

3.3.1 Computing the surjection distance δs

To determine δs(X, Y ) for X = {x1, . . . , xn}, Y = {y1, . . . , ym} (assume n ≥ m) multisets
in a metric space (M,d), a surjection η must be found that minimizes∑

(x,y)∈η

d(x, y).
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We will show that this is equivalent to finding a minimum weight perfect matching in a
certain weighted graph G. From X, Y the complete bipartite graph G = (X ∪ Z,E,w) is
constructed as follows: first of all, additional vertices {z1, . . . , zk} are added to the smaller
bipartition class such that both classes have an equal amount of vertices.

Z = Y ∪ {z1, . . . zk} with k = n−m

E = {(x, z)|x ∈ X, z ∈ Z}

∀e = (x, z) ∈ E : w(e) =

{
d(x, z) if z ∈ Y

d(x, Y ) if z /∈ Y

An example of this construction is shown in Figure 3.7. Since G is a complete, balanced
bipartite graph, G is guaranteed to have a perfect matching M by Lemma 2.4.9. Remember
that we denote the weight of the matching as w(M).

Figure 3.7: The graph G is constructed from the bags X and Y .

Theorem 3.3.1. Let M be an arbitrary minimum weight perfect matching of a graph G
defined as above from two multisets X, Y . Then δs(X, Y ) = w(M).

Proof. δs(X, Y ) makes use of an optimal surjection η. We will show that this surjection
gives rise to a perfect matching M ′ of G with w(M ′) ≤ δs(X, Y ). We construct M ′ by
taking all edges of G of the form (xσ(j), yj) with yj ∈ Y and σ(j) = min({i|η(xi) = yj}).
The remaining vertices of Z are Z \ Y = {z1, . . . , zk}. These vertices can be arbitrarily
paired up with the remaining vertices of X because ∀x ∈ X, z ∈ Z \ Y : w((x, y)) =
d(x, Y ). M ′ is clearly a perfect matching of G because it saturates all vertices of X ∪ Z .
We have the following edges in M ′:

1. Every vertex y ∈ Y is connected to a vertex x ∈ η−1(y) and for these edges we thus
have that w((x, y)) = d(x, y).

2. Every vertex z ∈ Z\Y is connected to a vertexx for whichw((x, z)) = miny∈Y d(x, y) ≤
d(x, η(x)).

Therefore, we know that w(M ′) is smaller than δs(X, Y ). M is assumed to be a perfect
matching of minimal weight, so we find w(M) ≤ w(M ′) ≤ δs(X, y).

Conversely, we can define a surjection η′ from the matching M for which

c(η′) :=
∑

(x,y)∈η′
d(x, y) ≤ w(M).
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3 Similarity relations between bags

Since M is a perfect matching every vertex xi ∈ X is saturated and thus connected to a
single vertex of Z . We will now use these edges to construct the surjection η′. For every
edge e = (x, z) ∈M we define:

η′(x) =

{
z if z ∈ Y

argminy∈Y (d(x, y)) if z /∈ Y

η′ is clearly a surjection because for each yj ∈ Y we have an edge (xi, yj) in M , since
M was a perfect matching. Furthermore η′(xi) is defined such that for every edge (xi, z)
of M , d(xi, η(xi)) = w((xi, z)). Therefore w(M) ≥ c(η′) ≥ δs(X, Y ), where the second
inequality comes from the fact that δs uses a surjection η for which c(η) is minimal. The
result now follows from the two inequalities. □

3.3.2 Computing the fair surjection distance δfs

The fair surjection distance δfs(X, Y ) for X = {x1, . . . , xn}, Y = {y1, . . . , ym} (assume
n ≥ m), can be computed by solving a network flow problem, more specifically by finding
a maximal flow with minimal cost. We construct a network N = (V,E, cap, c, s, t), with
V = X ∪ Y ∪ {s, t}. s and t are two new vertices that are added to V to act as the source
and sink respectively. We construct E, cap and c as follows:

• For every xi ∈ X there is an edge e = (s, xi) with cap(e) = 1 and c(e) = 0.

• For every xi ∈ X and every yj ∈ Y there is an edge e = (xi, yj) with cap(e) = 1
and c(e) = d(xi, yj).

• For every yj ∈ Y there is an edge e = (s, yj) with cap(e) = 1 and c(e) = Ω, where
Ω is an arbitrary real number greater than the sum of all distances between points.

• For every yj ∈ Y there is an edge e = (yj, t) with cap(e) = ⌈n/m⌉ and c(e) = 0.

An example of this construction is shown in Figure 3.8. This construction guarantees that at
most ⌈n/m⌉ units of flow can arrive in each vertex yi, which is also the maximum possible
size of the pre-image ξ−1(yi) if ξ is a fair surjection.
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Figure 3.8: The network N constructed from the bags X = {x1, x2, x3} and Y = {y1, y2}.
Note that this is a directed graph, but for clarity the arrows were omitted. In-
stead the graph is illustrated in such a way that every edge goes from its left
vertex to its right vertex. The edge labels in this figure denote the capacity
cap(e) and cost c(e) for every edge e.

Theorem 3.3.2. Let f be a maximum s − t flow of minimum cost in a network N defined
as above from two multisets X, Y . Then δfs(X, Y ) = c(f)− kΩ, with k = ⌈n/m⌉m− n.

Proof. We first show that c(f) ≥ δfs(X, Y )+kΩ. Assume f is a maximal flow of minimum
cost. It can be easily verified that the maximum flow possible is m⌈n/m⌉ by looking at
the vertices of the form yi. Each of these vertices has an outgoing edge with capacity
⌈n/m⌉, which acts as a bottleneck. Since there are m such vertices, an upper bound of the
maximum flow is thus m⌈n/m⌉. To show that this flow can actually be achieved, we can
construct a flow. We partition X in classes X1, . . . , Xm+1, where |X1| = · · · = |Xm| =
⌊n/m⌋ and Xm+1 contains the remaining n − m⌊n/m⌋ vertices of X . We now assign a
flow of 1 to all edges of the form (s, x) with x ∈ X1∪· · ·∪Xm and edges of the form (x, yi)
with x ∈ Xi and i ∈ {1, . . . ,m}. Every vertex yi ∈ Y now receives a flow of ⌊n/m⌋. If
⌊n/m⌋ = ⌈n/m⌉, no extra flow is needed to vertices yi ∈ Y . If this is not the case we can
assign a flow of 1 to all edges of the form (s, yi). Either way we can now assign an outgoing
flow of ⌈n/m⌉ to edges of the form (yi, t), leading to a total flow of m⌈n/m⌉. However, f
is supposed to be the flow with minimum cost that achieves this maximal flow. To achieve
the maximal flow every vertex yi ∈ Y has to receive a flow of ⌈n/m⌉. There are two types
of paths the flow can take from s to a vertex yi: on the one hand there are paths that go
through a vertex xj ∈ X , and on the other hand there is a path straight from s to yi. The
direct path has cost Ω, while the path through a vertex xj has cost d(xj, yi). By definition
the direct path with cost Ω is the path of highest cost. Since f is a flow of minimum cost,
the use of these direct paths will be minimized. Thus, we can infer that f has to assign a
flow of 1 to all edges of the form (s, xi). However, the flow that can go through a vertex
xi is capped by the capacity of the edges of the form (s, xi), such that only a flow of n can
flow through such paths. Therefore a flow of 1 has to be assigned to k edges of the form
(s, yj) such that the maximal flow can be obtained. We can now construct a fair surjection
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ξ′ for which ∑
(x,y)∈ξ

d(x, y) = c(f)− kΩ

We construct ξ′ as follows:
(xi, yj) ∈ ξ′ ⇐⇒ f((xi, yj)) = 1.

We have to show that this is indeed a fair surjection, i.e.
∀y1, y2 ∈ im(ξ′) : ||ξ′−1(y1)| − |ξ′−1(y2)|| ≤ 1.

We can rewrite this condition such that a surjection ξ is fair if and only if
∀y ∈ im(ξ′) : ⌊n/m⌋ ≤ |ξ′−1(y)| ≤ ⌈n/m⌉.

Because all vertices yj ∈ Y only have a single outgoing edge, by construction all going
to t with capacity ⌈n/m⌉, and all of its incoming edges have a flow of either 0 or 1, we
can conclude that each vertex yj will have exactly ⌈n/m⌉ incoming edges with a flow of
1. This means that for every yj ∈ Y there exist at most ⌈n/m⌉ vertices x ∈ X for which
f(x, yj) = 1. Therefore we can conclude that

∀y ∈ im(ξ′) : |ξ′−1(y)| ≤ ⌈n/m⌉.
We previously discussed that every vertex xi ∈ X has an incoming flow of 1 that is passed
through to a vertex yj ∈ Y . Because the total flow is m⌈n/m⌉, the outgoing flow and thus
the incoming flow of every yj ∈ Y must be ⌈n/m⌉. Suppose a vertex y1 ∈ Y receives
less than ⌊n/m⌋ units of flow coming from vertices in X . There are two cases now. In
the case where ⌊n/m⌋ = n/m =⌉n/m⌈, having a vertex y1 that does not receive ⌊n/m⌋
units of flow from vertices in X means that the edge (s, y1) must have flow going through
it. However, this is in contradiction with the minimal cost of f , because it can be easily
verified that a flow using no edges of the form (s, yi) can be constructed. This flow would
have a lower cost because it doesn’t have any edges with a cost of Ω. The case where
⌊n/m⌋ < n/m <⌉n/m⌈ and y1 receives less than ⌊n/m⌋ units of flow come from vertices
xi ∈ X , implicates that the remaining flow must come from the edge (s, y1). However,
this means that a flow greater than one goes through the edge (s, y1), while the capacity
of this edge is 1. These contradictions imply

∀y ∈ im(ξ′) : ⌊n/m⌋ ≤ |ξ′−1(y)|.
We can thus conclude that ξ′ is fair.
Now to show that the sum of distances of pairs (x, y) ∈ ξ′ added to kΩ is indeed equal
to c(f), it suffices to notice that only edges of the form (xi, yj) and (s, yj) have a cost
associated with it. We already mentioned that there are k edges of the form (s, yj) that
have a capacity of 1 and each of these edges attributes a cost of Ω to c(f). We can thus
write c(f) as

c(f) =
∑
e∈E

c(e)f(e)

=
∑

xi∈X,yj∈Y

c((xi, yj))f((xi, yj)) + kΩ

=
∑

(xi,yj)∈ξ′
d(xi, yj) + kΩ
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And because δfs is minimized over all fair surjections, we have that

δfs(X, Y ) + kΩ ≤
∑

(xi,yj)∈ξ′
d(xi, yj) + kΩ ≤ c(f).

Now we will show that δfs(X, Y ) + kΩ ≥ c(f). Assume we have a fair surjection ξ that
minimizes

∑
(x,y)∈ξ d(x, y). We will now construct a maximum flow fξ on the network N

as follows:

fξ(e) =



⌈n/m⌉ if e = (yj, t)

1 if e = (s, xi)

or e = (s, yj) and |ξ−1(yj)| < ⌈n/m⌉
or e = (xi, yj) and (xi, yj) ∈ ξ

0 otherwise

It can be easily verified that fξ is indeed a s−t flow. Furthermore, the total flow is m⌈n/m⌉
and fξ is thus a maximal flow. In a similar way as before we can find that

c(fξ) =
∑

(x,y)∈ξ

d(x, y) + kΩ.

Since f is a minimal cost maximum flow we find that

c(f) ≤ c(fξ) = δfs(X, Y ) + kΩ.

Both inequalities together give: c(f) = δfs(X, Y ) + kΩ. □

An algorithm to find the minimum cost maximal flow in a network is implemented in the
NetworkX Python package.

3.3.3 Computing the linking distance δl

Finally, to compute the link distance δl(X, Y ) for X = {x1, . . . , xn}, Y = {y1, . . . , ym}
(assume n ≥ m) we will show that this is once again equivalent to finding a minimum
weight perfect matching in a weighted graph G. From X, Y the bipartite graph G =
((X ∪ Y ′) ⊔ (Y ∪ X ′), E, w) is constructed as follows: for every instance xi ∈ X we add
a new vertex x′

i, similarly we add a new vertex y′j for every yj ∈ Y .

X ′ = {x′
1, . . . x

′
n}

Y ′ = {y′1, . . . y′m}
E = {(xi, yj)|xi ∈ X, yj ∈ Y }
∪ {(y′j, x′

i)|y′j ∈ Y ′, x′
i ∈ X ′}

∪ {(xi, x
′
i)|xi ∈ X, x′

i ∈ X ′}
∪ {(y′i, yi)|y′i ∈ Y ′, yi ∈ Y }

37



3 Similarity relations between bags

∀e = (a, b) ∈ E :

w(e) =


d(a, b) if (a, b) ∈ {(xi, yj)|xi ∈ X, yj ∈ Y }
0 if (a, b) ∈ {(y′j, x′

i)|y′j ∈ Y ′, x′
i ∈ X ′}

d(a, Y ) if (a, b) ∈ {(xi, x
′
i)|xi ∈ X, x′

i ∈ X ′}
d(b,X) if (a, b) ∈ {(y′i, yi)|y′i ∈ Y ′, yi ∈ Y }

An example of this construction can be seen in Figure 3.9.

Figure 3.9: The graph G is constructed from the bags X and Y . For clarity this graph has
been split up in two parts. The first part contains all the edges of the form (xi, yj)
and (x′

i, y
′
j), while the second part shows all the edges of the form (xi, x

′
i) and

(yi, y
′
i) with dotted lines.

Lemma 3.3.3. Suppose R ⊆ X × Y is a compatibility relation that is a solution to the
optimization problem

min
R′

∑
(x,y)∈R′

d(x, y).

Consider the graph G(R) = (V,E) induced by this compatibility relation in the following
manner:

V = X ∪ Y

E = {(x, y | (x, y) ∈ R)}

Then G(R) is a disjoint union of pairs and stars.
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Proof. Suppose that G(R) contains a connected subgraph K that is not a pair or a star.
Since R is a compatibility relation every vertex has at least degree 1. Therefore K must
have at least 2 vertices a, b with a degree of at least 2. Since K is connected there exists
a path from a to b. Every vertex on this path has a degree of at least 2. It can be verified
that removing any of the edges along this path leads to another compatibility relation R′.
Moreover, since d is non-negative this new compatibility relation will have a smaller sum of
distances. This is however a contradiction since R already minimized this sum. Therefore,
every connected subgraph of G(R) is either a star or a pair. □

Theorem 3.3.4. Let M be an arbitrary minimum weight perfect matching of a graph G
defined as above from two multisets X, Y . Then δl(X, Y ) = w(M).

Proof. δl(X, Y ) makes use of an optimal compatibility relation R. We will show that this
compatibility relation gives rise to a perfect matching M ′ of G with w(M ′) = δl(X, Y ).
We construct M ′ by taking all edges of G of the form (xσ1(j), yj) and (x′

σ1(j)
, y′j) with

yj ∈ Y the center of a star in G(R) and σ1(j) = min({i|(xi, yj) ∈ R}) , along with
the edges of the form (xi, yσ2(i)) (x

′
i, y

′
σ2(i)

) with xi ∈ X the center of a star in G(R) and
σ2(i) = min({j|(xi, yj) ∈ R}). The remaining vertices of G are paired up with their copy.
The unsaturated vertices are thus paired up as follows: (xi, x

′
i), (y′j, yj). These copies are

guaranteed to be still unsaturated because the edges were added in pairs (xi, yj), (x
′
i, y

′
j)

to the matching M ′.

M ′ is clearly a perfect matching ofG, because every vertex is either connected to its copy or
to a vertex in the opposing set. Moreover, we can once again verify that δl(X, Y ) = w(M ′).
M is assumed to be a perfect matching of minimal weight, so we find w(M) ≤ w(M ′) =
δl(X, Y ).
On the other hand we can define a linking R′ from the matching M for which

c(R′) =
∑

(x,y)∈R′

d(x, y) = w(M).

We say that (xi, yj) ∈ R′ if one of the following conditions is satisfied:

1. (xi, yj) ∈M

2. (xi, x
′
i) ∈M and d(xi, yj) = d(xi, Y )

3. (yj, y
′
j) ∈M and d(xi, yj) = d(yj, X)

Since M is a perfect matching in G, we know that for every xi ∈ X , there will exist
at least one yj ∈ Y such that (xi, yj) satisfies one of the three conditions, and likewise
for all yj ∈ Y . Therefore R′ is indeed a linking. Furthermore, it is easy to check that
c(R′) = w(M). Therefore w(M) ≥ δl(X, Y ), because δl uses a linking R for which c(R)
is minimal. The result now follows from the two inequalities. □
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4.1 Introduction to multi-instance learning

Multi-instance learning (MIL) is a particular machine learning task in supervised learning,
where the data does not consist of a set of instances that are individually labeled, but in-
stead each observation consists of a labeled multiset of instances. As previously mentioned,
these observations are called bags. This problem was first explored in an artificial problem
[11]. Nowadays several real world applications exist, notably in the field of biochemistry,
bio-informatics [12], and image classification [13, 14]. In [15] a comprehensive overview
of the MIL domain is given.

4.1.1 Structure of multi-instance classification

Training data for multi-instance consists thus of a set of bags B. The set B consists of
m bags B1, . . . , Bm. Each bag Bi in turn contains nBi

instances and is assigned a class
label yi. Each one of these instances can be represented as a d-dimensional vector. These d
dimensions correspond to d features describing each instance. To differentiate the different
instances we will use the following naming convention: xij represents the jth instance
from bag number i. The kth value of the d-dimensional vector of a particular instance in a
problem with descriptive features a1, . . . , ad can then be described using ak(xij). A general
representation of a multi-instance dataset can thus be seen in Table 4.1.

Bag ⟨a1, . . . , ad⟩ Class Label

B1

⟨a1(x11), . . . , ad(x11)⟩
y1...

⟨a1(x1nB1
), . . . , ad(x1nB1

)⟩

B2

⟨a1(x21), . . . , ad(x21)⟩
y2...

⟨a1(x2nB2
), . . . , ad(x2nB2

)⟩
... ... ...

Bm

⟨a1(xm1), . . . , ad(xm1)⟩
ym...

⟨a1(xmnBm
), . . . , ad(xmnBm

)⟩

Table 4.1: General structure of a multi-instance dataset.
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4.2 Multi-instance classification

As in other classification problems, the aim of multi-instance classification (MIC) is to
predict the label of unseen test subjects using our training dataset of labeled bags. It is
important to notice that the unseen test objects are bags themselves. There are a few com-
mon assumptions made when dealing with multi-instance classification. These common
assumptions will first be explored in Section 4.2.1.

4.2.1 Multi-instance assumptions

The most common setting in MIC is that of binary classification where a bag is either
given a positive or a negative label. The following assumptions offer some possible relations
between the instances of a bag and the class label of the bag. An overview of multi-instance
assumptions is given in [16].

• StandardMI assumption: The standard MI assumption implies that every instance
x1, . . . , xnB

of a bag B has a class label associated with it. The bag is labeled positive
if and only if it contains a positive instance. This in turn implies that a bag is labeled
as negative when it only contains negative instances. We model the labels using 0
for the negative label and 1 for the positive label. Assume that the instances have
the (hidden) labels y1, . . . , ynB

, then the label of the bag can be expressed as:

c(B) = 1−
nB∏
i=1

(1− yi)

• Presence-, threshold-, and count-based assumptions: These assumptions all
generalize the standard assumption by not limiting the instances to either be pos-
itively or negatively labeled. Instead the instances each have a hidden label that
represents a concept. This means that a bag can be considered positive if and only
if it contains at least one instance of every required label. This is exactly the case
in the presence-based assumption. The threshold-based assumption generalizes this
even further by requiring a certain threshold of instances to be present for each cor-
responding required label. The count-based assumption is a final generalization by
enforcing both a lower and upper bound for the amount of instances corresponding
to a required label.

4.2.2 Taxonomy of multi-instance classifiers

Multi-instance classifiers are often divided in two or three categories based on their ap-
proach to solving the multi-instance problem. A taxonomy has been proposed in [17].
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• Instance space (IS) paradigm: The MI classifier relies on the classification of indi-
vidual instances and then uses an MI assumption to aggregate the label of the bag.
In essence every single-instance classifier can be used to classify the instances. This
can however be challenging because training instances are not individually labeled,
but are contained in a labeled bag.

• Bag space (BS) paradigm: A classifier using the BS paradigm considers the bag as
a whole. These methods rely on a concept of similarity or distance between bags.

• Embedded space (ES) paradigm: The idea of the embedded space paradigm is to
represent each bag as a single instance. Therefore a mapping has to be defined to
transform each bag in a single feature vector. Subsequently, any single-instance clas-
sifier can be used to predict the bag label of unseen bags.

Sometimes the BS and ES paradigm are grouped together as meta-based approaches be-
cause neither of them relies on any of the MI assumptions, but instead try to extract
instance-independent information about the bags.

4.3 Fuzzy multi-instance classification

The concept of fuzzy multi-instance classification was researched in [18]. In general fuzzy
classifiers define a mapping

f : F → C : X → argmax
C∈C

[C(X)]

Here F is the feature space and C is the set of possible classes. In our case the feature
space is of course the bag space B. The bag X is assigned to the class C for which its
membership degree C(X) is largest. The way this class membership is determined varies
with the chosen paradigm, which leads to two families of algorithms:

• Instance-based fuzzy multi-instance classifiers (IFMIC family): Based on the instance
space paradigm. The value of C(X) is calculated using the class membership degrees
C(xi) of instances xi ∈ X .

• Bag-based fuzzy multi-instance classifiers (BFMIC family): Based on the bag space
paradigm. The value of C(X) is calculated using only bag information. Therefore, a
concept of how similar two bags are to each other is needed.

4.3.1 The BFMIC family

The idea of algorithms in the BFMIC family is to compute the similarity between the test
bag X and all of the bags B1, . . . , Bm of the training dataset. To calculate these bag-wise
similarities, a similarity measure has to be chosen. A common similarity measure is to use
the similarity measure corresponding to the Hausdorff metric or the average Hausdorff
metric. But for the remainder of the explanation we will stick with the general relation R.
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The algorithm will thus compute the values of R(X,B1), . . . , R(X,Bm). Now for each
class label C ∈ C we call TC the set of bags with class label C . To compute the member-
ship of X to a specific class C ∈ C we will aggregate the values R(X,B) with B ∈ TC

using an OWA-operator.

This means that algorithms in the BFMIC family have two hyperparameters:

1. The relation R: this relation can be derived from a distance metric using a strictly
decreasing function f with f(0) = 1.

2. Theweight vectorW : this vector determines the behavior during the OWA-aggregation
of the similarity to bags of a certain class.

In essence, the algorithm finds the value of

argmax
C∈C

(
OWAW

(
{R(X,B)|B ∈ TC}

))
and assigns it as the class label of the test bag X . When we choose a relation derived from
a distance, and the weight vector such that it determines the maximum, this method as-
signs to X the class label of the bag that is closest to X with regards to the corresponding
distance. The algorithm thus essentially becomes a one-nearest neighbour algorithm.

The BFMIC family can be implemented with the following pseudocode:

Algorithm 1 BFMIC
Input: B = B1, . . . Bm (training bags); C (set of decision classes); X (test Bags)
Hyperparameters: R (relation), W (weight vector)
Output: Classification for X
best class← None
best score← 0
for C ∈ C do

score← OWAW

(
{R(X,B)|B ∈ TC}

)
if score ≥ best score then

best score← score
best class← C

end if
end for
return best class
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In this chapter we conduct an experimental study of the performance of different similarity
relations in the BFMIC algorithm. We also perform an experiment to investigate the effect
of pre-processing the dataset with these different similarity relations. These experiments
were implemented in the programming language Python.

5.1 Datasets

To evaluate the performance of the introduced distances between bags for multi-instance
classification, an experimental study was performed. We considered 15 different datasets.
These datasets originate from the KEEL dataset repository [19] and UCI machine learning
repository [20]. The 15 datasets are split into two groups: 10 balanced datasets and 5
imbalanced ones. The characteristics of these datasets are listed in Table 5.1 and Table
5.2.

Number of bags Bag Sizes
Dataset # features # instances # - bags # + bags IR Min Max Mean

eastWest 24 213 10 10 1.0 4 16 10.65
elephant 230 1391 100 100 1.0 2 13 6.96

fox 230 1320 100 100 1.0 2 13 6.6
musk1 166 476 45 47 1.05 2 40 5.17
musk2 166 6598 62 39 1.59 2 1044 65.33

mutag-atoms 10 1618 63 125 1.98 5 15 8.61
mutag-bonds 16 3995 125 63 1.98 8 40 21.25
mutag-chains 24 5349 63 125 1.98 8 52 28.45

tiger 230 1220 100 100 1.0 1 13 6.10
westEast 24 213 10 10 1.0 4 16 10.65

Table 5.1: Properties of the balanced datasets.

Number of bags Bag Sizes
Dataset # features # instances # - bags # + bags IR Min Max Mean
corel1 9 7947 1900 100 19.0 2 13 3.97
corel2 9 7947 1900 100 19.0 2 13 3.97
corel3 9 7947 1900 100 19.0 2 13 3.97
corel4 9 7947 1900 100 19.0 2 13 3.97
corel5 9 7947 1900 100 19.0 2 13 3.97

Table 5.2: Properties of the imbalanced datasets.
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The imbalanced datasets originate from a multiclass multi-instance dataset with 20 mutu-
ally exclusive classes, from which 5 classes where chosen at random to perform a one-vs-
rest classification. This explains why the properties of all imbalanced datasets are equal.

5.2 Experiment design

We considered 10 different similarity relations in our experiment. All 10 of these similarity
relations originate from a distance function between bags. To convert a distance function
δ between two bags X, Y we used the function

f(x) =
1

1 + x
.

Such that the similarity relation between two bags X, Y is defined as

Sδ(X, Y ) =
1

1 + δ(X, Y )
.

The 10 similarity relations can be split up in two groups. The first group consists of the
OWA-based versions of the Hausdorff distance, average Hausdorff distance, minimal Haus-
dorff distance and the sum of minimal distances. These distances rely on two hyperparam-
eters. Firstly the internal distance d between instances of the bags, and secondly a pair
of OWA-weights. The second group consists of the surjection distance, fair surjection dis-
tance, link distance and the version of these three distances that normalize for the number
of instances in the bags X, Y . These distances only rely on a single hyperparameter: the
internal distance d between instances of the bags.

Furthermore, the BFMIC classifiers rely on a OWA-weight vector to aggregate the results.
While we can use the same type of OWA-weight vectors as for the bag distances, it makes
sense to somewhat alter the weights such that only the closest k bags are considered. This
means that in reality this k is also a hyperparameter. For the internal distance hyperpa-
rameter we considered the euclidean distance and the manhattan distance. The OWA-pairs
that we considered were: strict weights, additive weights, inverse additive weights, expo-
nential weights, and average weights. Finally, we considered the following values of k:
1, 2, 3, 5, 10.

The experiment design is similar to that of [21]. The results are generated using a 10-fold
cross validation. To determine the hyperparameters the training data is split up further,
such that a 5-fold cross validation can be performed on the training dataset with all the
different combinations of hyperparameters. The hyperparameters that achieve the best re-
sults in this 5-fold cross validation are then used to classify the test data. To determine the
best results we considered the accuracy for the balanced datasets and the F1-score for the
imbalanced datasets. To compare the various similarity relations we use a Friedman test
[22] combined with a Conover post-hoc analysis whenever significant results are encoun-
tered in the Friedman test.
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In Chapter 3 we observed that the fair surjection distance and surjection distance become
metrics when the number of instances in all bags are equal. Therefore we considered the
following pre-processing steps:

1. Select a number of instances per bag based on the training dataset. To pick the
number of instances we considered the following two methods.

• Pick the median size of the training bags.

• Plot the bag sizes of the training data using a boxplot. Pick the size of the largest
bag that isn’t considered an outlier.

2. Reduce the number of instances in bags that contain too many instances and increase
the number of instances in bags that contain not enough instances. Once again we
considered two different methods.

• Random undersampling and Random oversampling.

• SMOTE oversampling [23] and k-means undersampling [24].

Initially the undersampling of bags was not considered, and all the bags were just oversam-
pled using the desired oversampling technique. However, some of the datasets contained
bags with an exceptionally large amount of instances. This lead to extreme oversampling,
which introduced bias and increased the computational complexity drastically. Therefore,
I decided to undersample these outliers. This gives rise to four pre-processing methods

1. Median size and random over- and undersampling.

2. No-outliers size and random over- and undersampling.

3. Median size and SMOTE oversampling and k-means undersampling.

4. No-outliers size and SMOTE oversampling and k-means undersampling.

Each experiment has thus been repeated five times. Once without any pre-processing and
with each of the four pre-processing methods. This enables us to compare each of the pre-
processing methods to the experiments where no pre-processing method were used. This
comparison is done using the Wilcoxon signed-rank test [25].
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5.3 Results of the balanced datasets

First we will take a look at the performance of the similarity relations on the balanced
datasets. The accuracy of the classifiers along with their average rank in the Friedman test
are shown in Tables 5.3 and 5.4.

Dataset H avgH MinH SumMin
eastWest 0.999 0.945 0.981 0.621
elephant 0.964 0.956 0.957 0.914
fox 0.850 0.875 0.872 0.810
musk1 0.906 0.905 0.932 0.932
musk2 0.714 0.754 0.724 0.724
mutag-atoms 0.989 0.999 1.000 1.000
mutag-bonds 0.960 0.952 0.569 0.569
mutag-chains 0.926 0.930 0.415 0.415
tiger 0.869 0.848 0.888 0.888
westEast 0.971 0.935 0.88 0.888
Average accuracy 0.915 0.910 0.917 0.776
Average rank 3.5 (3) 3.1 (2) 2.9 (1) 6.4 (7)

Table 5.3: Accuracy and average rank of the classifiers using the similarity relations based
on the Hausdorff distance, average Hausdorff distance, minimal Hausdorff dis-
tance and sum of minimal distances.

Dataset link surj fair surj norm link norm surj norm fair surj
eastWest 0.816 0.825 0.798 0.747 0.747 0.742
elephant 0.948 0.948 0.921 0.915 0.915 0.910
fox 0.855 0.855 0.840 0.804 0.804 0.792
musk1 0.923 0.882 0.810 0.866 0.866 0.843
musk2 0.738 0.738 0.731 0.819 0.732 0.775
mutag-atoms 0.970 0.974 0.974 0.982 0.995 0.970
mutag-bonds 0.932 0.930 0.965 0.952 0.948 0.939
mutag-chains 0.923 0.858 0.866 0.945 0.892 0.918
tiger 0.831 0.831 0.833 0.841 0.841 0.807
westEast 0.941 0.934 0.809 0.790 0.790 0.785
Average accuracy 0.888 0.878 0.855 0.866 0.853 0.848
Average rank 5.4 (4) 6.2 (6) 6.8 (9) 5.85 (5) 6.75 (8) 8.1 (10)

Table 5.4: Accuracy and average rank of the classifiers using the similarity relations based
on the link distance, surjection distance, fair surjection distance and their nor-
malized versions.

The Friedman test reports a p-value of 0.000338, which is significant on the 5% signifi-
cance level. Therefore, we can reject the null hypothesis that all similarity relations per-
form equally well. Hence, we perform a post-hoc analysis. The combinations of similarity
relations that came out as significant on the 5% significance level are shown in Table 5.5.
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S1 S2 p
H norm fair surj 0.023

avgH norm fair surj 0.014
MinH norm fair surj 0.014

Table 5.5: Pairs of similarity relations where a significant difference in performance was
found on the 5% significance level.

We can thus conclude that the normalized fair surjection distance performs significantly
worse than the Hausdorff distance, average Hausdorff distance and minimal Hausdorff dis-
tance.

Now we will take a look at the effect of pre-processing on the performance of the clas-
sifiers. In Tables 5.6 and 5.7 the results of the Wilcoxon signed-rank test are shown.

H avgH MinH SumMin
diff p diff p diff p diff p

(1) -0.03 0.770 0.06 0.846 0.17 0.557 1.21 0.049
(2) -0.19 0.020 -0.07 0.770 0.03 0.846 1.39 0.049
(3) -0.00 1.000 0.02 0.922 -0.22 0.160 1.39 0.037
(4) -0.10 0.275 0.09 0.492 -0.03 0.232 1.45 0.014

Table 5.6: Difference in average accuracy and the p-value obtained by performing a
Wilcoxon signed-rank test to compare the use of no pre-processing to the use of
the median + random pre-processing method (1), no-outlier + random method
(2), median + SMOTE & k-means pre-processing method (3), and no-outlier +
SMOTE & k-means method (4) for the classifiers using similarity relations based
on the Hausdorff distance, average Hausdorff distance, minimal Hausdorff dis-
tance and sum of minimal distances.

link surj fair surj norm link norm surj norm fair surj
diff p diff p diff p diff p diff p diff p

(1) 0.01 0.557 0.12 0.322 0.21 0.275 0.23 0.232 0.31 0.275 0.36 0.160
(2) 0.01 0.846 -0.16 1.000 0.12 0.557 0.20 0.432 0.06 1.000 0.45 0.193
(3) -0.02 0.492 0.00 1.000 0.21 0.131 0.09 0.492 0.19 0.492 0.40 0.131
(4) -0.31 0.432 -0.33 0.105 -0.09 1.000 0.11 0.375 -0.11 0.922 0.06 0.432

Table 5.7: Difference in average accuracy and the p-value obtained by performing a
Wilcoxon signed-rank test to compare the use of no pre-processing to the use of
the median + random pre-processing method (1), no-outlier + random method
(2), median + SMOTE & k-means pre-processing method (3), and no-outlier +
SMOTE & k-means method (4) for the classifiers using the similarity relations
based on the link distance, surjection distance, fair surjection distance and their
normalized versions.
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We can conclude that all of the considered pre-processing methods significantly increase
the performance of the sum of minimal distances on the 5% significance level. Similarly,
we can conclude that using random over- and undersampling to make all bags have the
same amount of instances as the largest bag that isn’t considered an outlier significantly
decreases the performance of the Hausdorff distance. While no other differences are sig-
nificant on the 5% significance level, it is worth to mention that the average accuracy has
increased for several similarity relations.

5.4 Results of the imbalanced datasets

Finally, we will take a look at the performance of the similarity relations on the imbalanced
datasets. The F1-score of the classifiers along with their average rank in the Friedman test
are shown in Tables 5.8 and 5.9.

Dataset H avgH MinH SumMin
corel1 0.441 0.364 0.280 0.323
corel2 0.503 0.584 0.492 0.534
corel3 0.684 0.746 0.762 0.603
corel4 0.830 0.895 0.942 0.940
corel5 0.522 0.602 0.541 0.556
Average F1-score 0.596 0.638 0.604 0.591
Average rank 7.0 (9) 4.4 (2) 6.2 (7) 6.4 (8)

Table 5.8: F1-score and average rank of the classifiers using the similarity relations based
on the Hausdorff distance, average Hausdorff distance, minimal Hausdorff dis-
tance and sum of minimal distances.

Dataset link surj fair surj norm link norm surj norm fair surj
corel1 0.379 0.384 0.368 0.413 0.413 0.389
corel2 0.525 0.515 0.529 0.591 0.584 0.581
corel3 0.768 0.660 0.734 0.753 0.729 0.702
corel4 0.687 0.687 0.690 0.900 0.898 0.898
corel5 0.579 0.573 0.606 0.558 0.552 0.541
Average F1-score 0.588 0.564 0.585 0.643 0.635 0.622
Average rank 5.3 (4) 7.1 (10) 5.4 (5) 2.9 (1) 4.6 (3) 5.7 (6)

Table 5.9: F1-score and average rank of the classifiers using the similarity relations based
on the link distance, surjection distance, fair surjection distance and their nor-
malized versions.

The Friedman reports a p-value of 0.514051, which is not significant on the 5% significance
level. Therefore we can not reject the null hypothesis that all similarity relations perform
equally well. The F1-score can be somewhat difficult to interpret, and therefore we also
show the balanced accuracy of all classifiers in Tables 5.10 and 5.11.
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Dataset H avgH MinH SumMin
corel1 0.714 0.648 0.597 0.657
corel2 0.733 0.784 0.728 0.744
corel3 0.849 0.850 0.892 0.720
corel4 0.960 0.989 0.987 0.991
corel5 0.752 0.825 0.807 0.772
Average balanced accuracy 0.802 0.819 0.802 0.777
Average rank 7.6 (10) 4.0 (2) 6.0 (6) 6.6 (8)

Table 5.10: Balanced accuracy and average rank of the classifiers using the similarity re-
lations based on the Hausdorff distance, average Hausdorff distance, minimal
Hausdorff distance and sum of minimal distances.

Dataset link surj fair surj norm link norm surj norm fair surj
corel1 0.654 0.655 0.649 0.674 0.674 0.683
corel2 0.752 0.751 0.757 0.767 0.762 0.762
corel3 0.864 0.861 0.831 0.900 0.899 0.883
corel4 0.976 0.976 0.976 0.986 0.985 0.985
corel5 0.814 0.809 0.806 0.798 0.785 0.784
Average balanced accuracy 0.812 0.810 0.804 0.825 0.821 0.819
Average rank 5.7 (5) 6.1 (7) 6.8 (9) 3.3 (1) 4.2 (3) 4.7 (4)

Table 5.11: Balanced accuracy and average rank of the classifiers using the similarity re-
lations based on the link distance, surjection distance, fair surjection distance
and their normalized versions.

The classifier using the similarity relation based on the normalized link distance achieves
rank 1 in this experiment. While none of the similarity relations significantly outscores
another similarity relation, we can conclude that the new distances are just as viable for
classifying problems than the similarity relations based on the Hausdorff distance, and
other more standard similarity relations.

It looks like the performance of the BFMIC-classifiers is heavily dependent on the dataset.
In Tables 5.10 and 5.11, we can clearly see that the corel1 dataset was the hardest to clas-
sify. On the other hand the results for the corel5 dataset are exceptionally good. This
is even more surprising because all five of these datasets come from the same multiclass
multi-instance problem.

Finally, we will take a look at the effect of pre-processing on the performance of the clas-
sifiers. In Tables 5.12 and 5.13 the results of the Wilcoxon signed-rank test are shown.
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H avgH MinH SumMin
diff p diff p diff p diff p

(1) -0.42 0.312 -0.38 0.062 -0.36 0.625 -0.18 0.312
(2) -0.30 0.438 -0.26 0.062 -0.53 0.312 0.07 0.438
(3) -0.37 0.625 -0.26 0.438 -0.54 0.438 -0.08 0.625
(4) -0.21 0.625 -0.21 0.062 -0.55 0.062 0.05 1.000

Table 5.12: Difference in average F1-score and the p-value obtained by performing a
Wilcoxon signed-rank test to compare the use of no pre-processing to the use of
the median + random pre-processing method (1), no-outlier + random method
(2), median + SMOTE & k-means pre-processing method (3), and no-outlier +
SMOTE & k-means method (4) for the classifiers using the similarity relations
based on the Hausdorff distance, average Hausdorff distance, minimal Haus-
dorff distance and sum of minimal distances.

link surj fair surj norm link norm surj norm fair surj
diff p diff p diff p diff p diff p diff p

(1) 0.06 1.000 0.15 0.812 0.04 0.812 -0.21 0.312 -0.23 0.125 -0.16 0.125
(2) 0.09 1.000 -0.12 0.812 -0.23 0.625 -0.18 0.062 -0.51 0.062 -0.44 0.062
(3) -0.10 0.438 -0.13 0.625 -0.23 0.438 -0.38 0.188 -0.49 0.062 -0.43 0.062
(4) 0.04 1.000 -0.02 1.000 -0.13 0.438 -0.25 0.188 -0.39 0.125 -0.32 0.125

Table 5.13: Difference in average F1-score and the p-value obtained by performing a
Wilcoxon signed-rank test to compare the use of no pre-processing to the use of
the median + random pre-processing method (1), no-outlier + random method
(2), median + SMOTE & k-means pre-processing method (3), and no-outlier +
SMOTE & k-means method (4) for the similarity relations based on the link
distance, surjection distance, fair surjection distance and their normalized ver-
sions.

Pre-processing seems to have no significant impact on the performance, as not a single
pairwise test can be used to reject the null hypothesis. However, it should be noted that the
average F1-score decreased in almost all instances, making it questionable if it is beneficial
to perform pre-processing on imbalanced datasets. A potential cause for this decrease in
average F1-score can possibly be explained by the effect of the oversampling. Since there
are significantly more negative bags, we potentially have to add a lot of instances to the
negative bags. This would only further increase the imbalance in the dataset, making it
harder to classify.
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This master’s thesis can be split up in two roughly equal parts. The first part is a theoretical
study of useful concepts for multi-instance learning. This started by examining distances
between bags that are common in the literature, such as the Hausdorff distance and av-
erage Hausdorff distance, and proving some of their properties. Next, we introduced the
link distance, surjection distance and fair surjection distance. These distances originally
come from the field of philosophy of science to measure the distance between theories in
a logical language, but are also suitable as bag distances.

We continued our theoretical study by looking at the relation of similarity and distance
between bags. We have shown that we can go from a distance function to a similarity
measure using a function f for which f(0) = 1. However, we proposed that it only makes
sense to consider functions f that are (strictly) decreasing. Using these assumptions we
have proven that there exist no function f and metric d such that S(x, y) = f(d(x, y))
is a Tmin-transitive similarity measure. Furthermore, we showed that given a strictly de-
creasing function f , convexity of f is a sufficient condition for S(x, y) = f(d(x, y)) to be
a TL-transitive similarity measure for any metric d. Finally, we have proven that similar-
ity measures coming from a semi-metric using a strictly decreasing function f , satisfy the
separation property.

We then focused on the novel link distance, surjection distance, and fair surjection dis-
tance. The computation of these distances rely on solving an optimization problem, that at
first sight seems completely infeasible to solve in acceptable computational time. However,
we have shown that these optimization problems are equivalent to well-known problems
in graph theory. These clever conversions in equivalent problems, made it possible to im-
plement these bag distances with an acceptable computational complexity.

Finally, we introduced some concepts from the field of multi-instance learning (MIL), and
more specifically those regarding multi-instance classification (MIC). What distinguishes
multi-instance classification from other classification problems is that the objects to clas-
sify are bags. We introduced the most common multi-instance assumptions and paradigms.
Our theoretical results mostly fit in the bag space paradigm, and therefore we introduced
the BFMIC algorithm. BFMIC stands for bag-based fuzzy multi-instance classifiers, and is
in essence a family of multi-instance classifiers.

The introduction of BFMIC takes us straight to the second part of this master’s thesis:
the experimental study. The BFMIC algorithm, all the introduced bag distances, and OWA-
aggregation were all implemented using the Python programming language. This imple-
mentation was then used to conduct an experimental study to compare the performance
of different similarity relations on both balanced datasets and imbalanced datasets. Some
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of the theoretical results made us consider the use of some pre-processing steps to make
the number of instances per bag equal. Therefore we also studied the effect of these pre-
processing methods on the performance of the different similarity relations. The experi-
ments were conducted on 15 datasets, 5 of which were imbalanced.

We used a 10-fold cross validation to generate the results. The hyperparameters of each
experiment were determined using a 5-fold cross validation on the training dataset. The
actual test bags were then evaluated using the best performing hyperparameters in this 5-
fold cross validation. We opted for the accuracy as a performance metric for the balanced
datasets and the F1-score for the imbalanced datasets. The various similarity relations
were compared using a Friedman test combined with a Conover post-hoc analysis when-
ever significant results were encountered in the Friedman test.

Furthermore, each experiment has been repeated five times. Once without any pre-processing
and then four more times using different pre-processing methods. This enabled us to com-
pare each of the pre-processing methods to the performance without any pre-processing
steps. This comparison was done using the Wilcoxon signed-rank test.

From our experimental results we could conclude that the similarity relations based on the
link distance, surjection distance and fair-surjection distance have similar performance to
the similarity relations based on the more standard Hausdorff distance. Especially with the
imbalanced datasets, we could see a potential performance gain from these novel distances.
However, we must keep in mind that the computational complexity of the link distance,
surjection distance and fair surjection distance is significantly higher than that of the more
simple Hausdorff distance and average Hausdorff distance. Depending on the situation,
this trade-off might not be worth it.

Finally, the effect of the pre-processing steps heavily varied between the balanced datasets
and the imbalanced datasets. The sum of minimal distances performed significantly better
on the balanced datasets when we had applied any pre-processing, and overall the average
accuracy rose. The opposite can be said for the imbalanced datasets. While no similarity
relation performed significantly worse on the imbalanced dataset, the average F1-score
almost decreased universally when any form of pre-processing was applied. Presumably,
this is a result of our pre-processing methods of choice. Equalizing the amount of instances
per bag most certainly adds a lot of instances to negative bags. By doing so we inadvertently
increase the imbalance in the dataset, making the classification problem harder.
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A Samenvatting

Deze masterthesis gaat hoofdzakelijk over similariteitsmaten voor multi-instance classi-
fication. De masterthesis bestaat uit twee grote delen. Enerzijds is er een grotendeels
theoretisch deel, en anderzijds is er een deel experimentele studie.

Het theoretische gedeelte start met een opfrissing van enkele concepten uit de vaagverza-
melingenleer en de grafentheorie. Deze concepten zullen immers verder in de masterproef
benodigd zijn. Vervolgens introduceren we het concept van een bag. Dit concept is heel
belangrijk in multi-instance learning. Bij multi-instance classification hebben we namelijk
geen label voor individuele instanties. De instanties zitten namelijk gegroepeerd in een
multiset, dat een bag wordt genoemd. Elke bag heeft wel een klasselabel. Een potentiële
manier om dit probleem op te lossen is om toch de klasselabels van individuele instanties te
voorspellen. Vervolgens kunnen we deze voorspellingen combineren tot een voorspelling
van het klasselabel van de bag. Deze aanpak heeft echter enkele nadelen. Ten eerste moeten
we een manier vinden om de voorspellingen van individuele instanties te combineren tot
een voorspelling voor het label van de bag. Een gebruikelijke assumptie is om een bag een
positief label toe te kennen als de bag minstens één instantie met een positief label bevat.
Een tweede probleem is dat we het label van de bag niet zomaar kunnen veralgemenen
naar de labels van de instanties. Indien we toch het klasselabel van de bag veralgemenen
naar de klasselabels van de instanties kan veel fout geclassificeerde data geı̈ntroduceerd
worden in de trainingsdata.

In deze masterthesis zullen we deze problemen proberen te omzeilen door niet de indi-
viduele instanties te classificeren, maar door meteen het label van de bag te voorspellen.
Hiervoor bestuderen we eerst afstandsfuncties voor deze bags. In de literatuur bestaan
reeds afstanden, zoals de Hausdorff afstand, die het mogelijk maakt om een afstand tussen
twee bags te bepalen. In deze masterthesis bewijzen we onder andere dat de Hausdorff
afstand ook een metriek is. Vervolgens introduceren we enkele afstanden die nieuw zijn in
de context van multi-instance learning. Deze afstanden zijn de surjectie afstand, de faire
surjectie afstand en de linking afstand.

Vervolgens bestuderen we wat de relatie is tussen het concept afstand en similariteit.
Intuı̈tief kunnen we hier een betekenisvol verband maken. Hoe groter de similariteit tussen
twee objecten, hoe kleiner de afstand tussen deze twee objecten. We bewijzen dat bepaalde
overgangsfuncties om van afstand naar similariteit te gaan, voldoen aan enkele bijkomende
eigenschappen voor similariteitsmaten. Zo tonen we aan dat de convexiteit van een strikt
dalende overgangsfunctie een voldoende voorwaarde is om de TL-transitiviteit van de
bekomen similariteitsmaat te garanderen wanneer we vertrekken vanaf een metriek.
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Vervolgens bestudeerden we de surjectie afstand, faire surjectie afstand en linking afs-
tand. Het berekenen van deze afstanden steunt op het oplossen van een optimalisatieprob-
leem, dat op het eerste gezicht een hoge computationele kost heeft. We hebben echter
aangetoond dat deze optimalisatieproblemen equivalent zijn aan bekende problemen in de
grafentheorie. Deze omzettingen maken het mogelijk om deze afstanden te implementeren
met een aanvaardbare computationele complexiteit. Vervolgens introduceren we een fam-
ilie van classifiers die gebruikmaken van similariteitsrelaties om labels van bags te voor-
spellen: BFMIC. BFMIC staat voor bag-based fuzzy multi-instance classifiers. We zullen dit
soort classifier ook gebruiken in de experimentele studie.

De geı̈ntroduceerde concepten werden geı̈mplementeerd in Python. Deze implementatie
werd vervolgens gebruikt om een experimentele studie uit te voeren op 15 datasets. Het
doel van deze experimentele studie is om de performantie van de verschillende similariteit-
srelaties te testen. Bovendien bekeken we ook het effect van enkele pre-processing stappen.
Een van de theoretische resultaten was dat de surjectie afstand en faire surjectie afstand
metrieken zijn wanneer het aantal instanties in alle bags gelijk is. Daarom bestudeerden
we ook het effect van deze pre-processingmethodes op de prestaties van de verschillende
classifiers die deze similariteitsrelaties gebruiken.

We gebruikten een 10-fold cross-validation om de resultaten te genereren. De hyperparam-
eters van elk experiment werden bepaald met behulp van een 5-fold cross-validation op de
training dataset. We kozen voor de nauwkeurigheid als performantiemaat voor de gebal-
anceerde datasets en de F1-score voor de niet-gebalanceerde datasets. De verschillende
similariteitsrelaties werden vergeleken met behulp van een Friedman test in combinatie
met een Conover post-hoc analyse wanneer de Friedman test aangaf dat er significante
verschillen waren tussen de similariteitsrelaties.

Elk experiment werd vijf keer herhaald. Eén keer zonder enige pre-processing en ver-
volgens nog vier keer met verschillende pre-processingmethodes. Dit stelde ons in staat
om elk van de pre-processingmethodes te vergelijken met de prestaties zonder enige pre-
processing. Deze vergelijking werd gedaan met behulp van de Wilcoxon signed-rank test.

Uit onze experimentele resultaten kunnen we concluderen dat de similariteitsrelaties die
gebaseerd zijn op de linking afstand, surjectie afstand en faire surjectie afstand gelijkaardige
resultaten oplevert als de similariteitsrelaties die gebaseerd zijn op Hausdorff afstand.

Vooral bij de niet-gebalanceerde datasets zouden we een potentiële prestatiewinst kunnen
zien van deze nieuwe afstanden. We moeten echter in gedachten houden dat de compu-
tationele complexiteit van de linking afstand, surjectie afstand en faire surjectie afstand
aanzienlijk hoger is dan die van de eenvoudige Hausdorff afstand en zijn varianten.

Ten slotte bespreken we de resultaten van de pre-processingmethodes. De effectiviteit van
deze methodes was sterk afhankelijk van het soort dataset. Op de gebalanceerde datasets
werkten enkele afstanden significant beter wanneer we pre-processing hadden toegepast,
en over het algemeen steeg de gemiddelde nauwkeurigheid. Het tegenovergestelde werd
waargenomen bij de niet-gebalanceerde datasets. Terwijl geen enkele similariteitsrelatie
significant slechter presteerde, daalde de gemiddelde F1-score bijna universeel.
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