
Framework
Enforcing Data Protection in Solid: A Policy-Oriented

Academic year 2021-2022

Master of Science in de informatica

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Dr. ir. Ruben Taelman
Supervisors: Prof. dr. ir. Ruben Verborgh, Prof. dr. Pieter Colpaert

Student number: 01602685
Laurens Debackere

Samenvatting

Het Solid project heeft als doel om gebruikers opnieuw controle te geven over hun data, door applicaties en diensten los

te koppelen van de opslag van gegevens die ze verwerken. Om deze visie te realiseren definieert men binnen dit project

een specificatie voor persoonlijke datakluizen, gebaseerd op bestaande Web-standaarden en -principes zoals Linked Data,

REST en OpenID Connect. Binnen het Solid Protocol 0.9 wordt gebruik gemaakt van Web Access Control om het voor een

eindgebruiker mogelijk temaken om uit te drukkenwie toegang heeft tot de gegevens in diens datakluis. Web Access Control

heeft echter beperkingen op vlak van expressiviteit en interpreteerbaarheid, eigenschappen die enerzijds toelaten dat dit

mechanisme efficiënt kan ingezet worden bij het bepalen van de autorisatie van een client maar het anderzijds moeilijk

maken voor gebruikers om in de praktijk controle te houden over hun persoonlijke data.

Recente wetgeving op vlak van gegevensbescherming, zoals de Algemene Verordening Gegevensbescherming (AVG) die in

mei 2018 van kracht werd in de Europese Unie, stelt echter specifieke vereisten aan toepassingen die persoonsgegevens

verwerken op technisch, organisatorisch en juridisch vlak. Zo reguleert de AVG alle aspecten van gegevensverwerking en

zorgt ze ervoor dat een eerlijk en transparant proces met betrekking tot het data subject moet worden gevolgd. Sindsdien

werd gelijkaardige wetgeving rond gegevensbescherming ook in andere landen en regio’s geïntroduceerd. Waar de AVG

uitgaat van het principe van gegevensbescherming ”by design and by default” worden we als eindgebruiker nog al te vaak

geconfronteerd met ellenlange gebruiksvoorwaarden, toepassingen die op bedenkelijke wijze onze toestemming vragen en

omslachtige processen om transparantie te verkrijgen omtrent hoe onze gegevens effectief worden verwerkt.

De principes van het Solid-project op vlak van controle over persoonsgegevens en transparante opslag en verwerking sluiten

vrijwel naadloos aan bij de doelen van de wetgever bij het opstellen van de AVG. Echter voorziet de huidige Web Access Con-

trol specificatie niet de nodige granulariteit of contextuele informatie om aan de juridische vereisten te voldoen wanneer

een toepassing of dienst geautoriseerd wordt om gegevens uit de datakluis op te halen. Recent werk van de Solid Data Inter-

operability panel, een werkgroep binnen de Solid gemeenschap, aangevuld met onderzoek rond de inzet van de semantische

policy languages ODRL en SPECIAL in de context van Solid kan echter een oplossing bieden voor de beperkingen in de huidige

standaard.

In deze thesis onderzoeken we dan ook de tekortkomingen van de bestaande Solid specificatie op vlak van autorisatie en

authenticatie in de context van toepassingen die persoonsgegevens verwerken, waarbij we vertrekken vanuit de vereisten

gesteld door de Algemene Verordening Gegevensbescherming. Op basis van de bevindingen uit deze evaluatie wordt een

referentie-architectuur voorgesteld om de autorisatie-mechanismen van Solid in overeenstemming te brengen met de wet-

telijke criteria, waarbij we trachten om onze oplossing intuïtiever te maken voor zowel eindgebruikers als ontwikkelaars.

We bespreken tot slot een implementatie van deze architectuur op basis van de Solid Application Interoperability ontwerp-

specificatie en de Community Solid Server waarbij we aanknopingspunten voor verder onderzoek aanduiden op vlak van

semantische modelering, efficiëntie en informatieveiligheid.

iii

Summary

The Solid project aims to restore end-users’ control over their personal data by decoupling applications and services from

data storage. To realize this vision of data governance by the end-user, the Solid community is developing a specification for

personal data vaults, also referred to as Pods, based on existing Web-standards and -principles like Linked Data, REST and

OpenID Connect. In the context of the Solid Protocol 0.9, Web Access Control is used for enabling an end-user to express who

can access the data in their Pod. Web Access Control does however have important limitations concerning expressivity and

interpretability, properties that are simultaneously essential for efficiently evaluating the authorization of a given client and

detrimental to an end-user’s practical ability to control their personal data.

In contrast, recent legislation concerning data protection, like the General Data Protection Regulation (GDPR) which entered

into force in the European Union in May 2018, defines very strict requirements for applications that process personal data at

a technical, legal and organizational level. This way the GDPR regulates all aspects of personal data processing and ensures

a transparent and fair process with respect to the data subject is strictly adhered to. Since the introduction of the GDPR

similar legislation has been introduced in other countries and regions, such that its principles and requirements have been

adopted far beyond the borders of the European Union. Whereas the GDPR assumes data protection principles to be applied

”by design and by default” in data processing applications, we still find ourselves confronted with lengthy privacy policies,

applications employing dark patterns to trick us into giving consent and cumbersome processes for obtaining the promised

transparency as to how our personal data is being processed.

The principles of the Solid project with respect to control over our personal data as well as the transparent storage and pro-

cessing it could enable fit seamlessly with the goals of the legislator while drafting the GDPR, namely enabling data gover-

nance and data protection. In contrast, the Web Access Control specification lacks the granularity and contextual awareness

needed to enforce the regulatory requirements defined under legislation like the GDPR. Recent work by the Solid Application

Interoperability panel, a panel in the Solid community, combined with research concerning the use of the semantic data

usage policy languages ODRL and SPECIAL in the context of Solid could provide a solution to the limitations of the current

standard.

In this thesis we will be identifying the shortcomings of the existing Solid specification concerning authorization and au-

thentication in the context of applications which process personal data, where we will be using the GDPR as a reference for

this evaluation. Based on our findings, a reference architecture is proposed in order to bring Solid’s authorizationmechanism

in compliance with the relevant regulatory requirements, while improving end-user and developer experiences. Finally, we

discuss a reference implementation of this architecture based on the Solid Application Interoperability draft specification

and the Community Solid Server, which we also use to highlight further work concerning semantic modeling, efficiency and

information security that is necessary for this architecture to become viable in practice.

v

1

Enforcing Data Protection in Solid:
A Policy-Oriented Framework

Laurens Debackere

Abstract—The Solid project aims to restore end-users’ control
over their data by decoupling services and applications from
data storage. To realize data governance by the user, the Solid
Protocol 0.9 relies on Web Access Control, which has limited
expressivity and interpretability. In contrast, recent privacy
and data protection regulations impose strict requirements on
personal data processing applications and the scope of their oper-
ation. The Web Access Control mechanism lacks the granularity
and contextual awareness needed to enforce these regulatory
requirements. Therefore, we suggest a reference architecture
for relating Solid’s low-level technical access control rules with
higher-level concepts such as the legal basis and purpose for
data processing, the abstract types of information being pro-
cessed, and the data sharing preferences of the data subject.
Our architecture combines recent technical efforts by the Solid
community panels with prior proposals made by researchers on
the use of ODRL and SPECIAL policies as an extension to Solid’s
authorization mechanism. In implementing this architecture we
were able to demonstrate its feasibility, even though performance
optimizations will be required to enable its use in a practical
setting. Nevertheless, our architecture shows promise in enabling
data usage policies to resolve shortcomings of the access control
mechanisms in Solid when implementing data processing based
on consent.

Index Terms—Solid, Consent, Semantic Web, ODRL, Access
Control

I. INTRODUCTION

The Solid project1 aims to realize Tim Berners-Lee’s vision
on decoupling personal data storage from the apps and services
that use it, in order to return control and data governance to the
user. Ultimately, Solid aims to re-establish a proper balance
of power between service providers and their users [1], by
providing the latter with the tools to make their own choices in
data sharing and storage rather than having their data exist out
of sight and out of control. To that end, the Solid community
is developing a draft specification for decentralized personal
data storage servers, also referred to as Pods.

At its core, the Solid Protocol version 0.9 [2] has three
crucial building blocks that make up most of its footprint:

1) Solid implements parts of the Linked Data Platform
W3C recommendation [3] to allow for read/write-access
to the resources stored in a Pod with specific affordances
for handling Linked Data.

2) Solid proposes WebIDs [4] and Solid OIDC [5] for
identification and authentication purposes respectively.
Through these standards, agents can be linked to a
decentralized identifier expressing information on them
like the agent’s trusted identity providers. This allows

1https://solidproject.org

for authentication between resource and authorization
servers that have no prior trust relation.

3) Web Access Control [6] provides the critical controls
over sharing of information stored in the Pod. Web
Access Control is a cross-domain, decentralized solu-
tion for authorizing requests using Access Control Lists
(ACLs) expressed as Linked Data. It identifies both
agents and resources through the use of IRIs. Notably,
ACLs can both be defined specifically for a given
resource, or be inherited from a parent container.

While largely a refinement of existing legal frameworks like
the 1995 Data Protection Directive and the 2005 ePrivacy
Directive, the EU’s General Data Protection Regulation2 [7]
set a major legislative milestone in the realm of data protection
and privacy law when it entered into force in 2018.

It afforded data subjects with both transparency and greater
control regarding the processing of their personal data by data
controllers and took new and emerging technologies such as
Big Data, AI, and the internet explicitly into account when it
was first drafted. While far from perfect [8], it bestows a much
greater deal of autonomy upon the data subject when making
decisions regarding the processing of their personal data than
has previously been the case.

One of the major shortcomings of the GDPR regulation
boils down to the legal basis of consent and how it is typically
realized on the Web [9], [10], [8]. In Article 6 of the GDPR,
the six possible grounds for lawful data processing are laid
out by the legislator, one of these being a freely given consent
that can be withdrawn by the data subject at any time. The
informedness of the data subject when giving their consent is
emphasized greatly in the GDPR, meaning that a data subject
should be able to accurately assess the consequences of the
data processing to which they are consenting. In practice,
the way consent is used by many services neither constitutes
consent nor can it be considered informed. Most often the
information required by Articles 133 and 144 of the GDPR
is hidden away in lengthy privacy policies, which the data
subject would have to read in their entirety to fully grasp the
impact of their consent.

The prevalence of dark patterns on the internet [11], that are
used to obtain the consent of a data subject, highlights a clear
issue with respect to how this legal basis is being employed in
practice. Today, the act of giving consent in an online setting is
mostly a unilateral activity, where the data controller sets out

2http://data.europa.eu/eli/reg/2016/679/oj
3Article 13, ”Information to be provided where personal data are collected

from the data subject”
4Article 14, ”Information to be provided where personal data have not been

obtained from the data subject”

2

the conditions and the data subject has little impact on what
information is being processed and how it is being handled.
Solid’s model for returning a user’s control over their personal
data might tip the scales in favor of the data subject when
negotiating with a data controller in the context of consent.
While in typical online service relationships, a data subject
has little negotiating power and consent becomes a take-it-or-
leave-it offer more often than not, Solid allows the data subject
to have a clear overview of what data their Pod contains and
granularly control with whom they share it. Therefore, it could
bring crucial bilateral protections that consent depends upon in
order to be used as intended by the legislator in data processing
applications.

A. Motivation

While Solid has the potential to become a major driver for
realizing the vision of informed consent as a legal basis for
data processing as it was envisioned by legislators, several
technical shortcomings still exist. As described earlier, Solid’s
current access control mechanisms, while suited for simple use
cases, lack interpretability for average users and only capture
very limited information on the identity of the parties involved,
the data being exchanged, and the purpose and legal basis
of this exchange. Furthermore, only limited analysis of how
data sharing patterns and required legal safeguards can be
implemented in Solid has happened so far [12].

The core idea of using policies in modeling and enforcing
security and data privacy requirements for the Semantic Web
has been the subject of prior work [13], [14]. Some extensions
to the access control mechanisms in Solid based on the use
of policy languages have already been proposed, such as the
use of ODRL policies [15], [16] or the SPECIAL policy lan-
guage5 [17]. While these address some concerns with regard
to interpretability and flexibility raised above, they also inherit
or worsen some of the flaws of Solid’s ACL mechanism.
Issues include poor interpretability due to rule inheritance,
increased runtime complexity of the authorizing process, and
limited abstractions for identifying resources. Furthermore, the
process by which a data controller requests the explicit consent
and how this consent is then materialized in the new ACL
policies needs to be considered in order to address the current
shortcomings of Solid’s ACL-based authorizations in a data
processing context.

There is a distinction between the technical and end-user
perspectives when using explicit consent as the basis for
accessing resources in the data subject’s Solid Pod. Whereas
end-users need to understand what data they are sharing, with
whom, for what purpose and in which ways these data are to be
processed, a developer should not have to consider how their
interactions map to these user-interpretable concepts. Rather
we want developers to interact with the existing technical
concepts from the Solid specification while having the Solid
Pod or an intermediary validate whether these interactions are
covered by a prior consent (or perhaps even some other legal
basis). Therefore, we will define an architecture allowing for
the decoupling of the legal and end-user interactions regarding

5https://ai.wu.ac.at/policies/policylanguage/

consent from the technical interactions that were authorized by
it.

Our contributions through this paper can be summarized as
follows:

• defining the shortcomings of Solid’s existing access con-
trol mechanism;

• presenting a framework reconciling end-user and legal
requirements for data processing with Solid’s existing
access control model;

• implementing parts of this architecture in order to assess
its practical feasibility and performance characteristics.

This paper continues as follows: Section II provides back-
ground information on the state of the art regarding Solid’s
authorization mechanism and briefly introduces concepts and
standards that will be used throughout the rest of this paper.
Section III details our proposed architecture, its interaction
patterns and primary data structures. Section IV touches upon
our implementation of the technical realm of this architecture
and discusses its performance characteristics. Section V sum-
marizes the reasoning behind this architecture, provides a brief
interpretation of our results and discusses further work needed
for the proposal to become viable in practice.

II. BACKGROUND

In this section we will introduce the state of the art with
respect to authorization and access control in Solid. Addition-
ally we will present some of the technologies relevant to the
architecture we are defining and evaluating in this paper.

A. Authorization in Solid

Solid’s primary mechanism for authorizations is the Web
Access Control (WAC) specification [6]. It employs the
ACL ontology6 to express access modes applicable to some
resource for an agent, where both the agent and the resource
are identified using IRIs. WAC supports four access modes in
its rules, namely:

• Read Allowing for full or partial read operations on
resources.

• Write Allowing for write operations on resources, i.e.,
create, update, or delete.

• Append Allowing for append operations on resources,
i.e., to add information to the resource but not remove
any.

• Control Allowing for read and write operations on the
resource’s associated ACL resource. This permits the
grantee to delegate or revoke access to the resource.

Notably, these access modes are broad and do not map well to
the more common CRUD7 permission model [18]. Also, some
of these access modes will align poorly with user expectations:
e.g., what does it mean to have Append permissions over a
container of resources?

The use of IRIs to both identify resources and agents might
also contribute to poor user experience and lead to security

6http://www.w3.org/ns/auth/acl
7Acronym for Create, Read, Update, Delete.

3

breaches. For example, users might perceive an analogy be-
tween how they would typically manage a photo collection
in a filesystem on a computer, and how pictures are stored
in a folder in one’s Pod. That way, an end-user could have
some understanding of what kind of data are being shared,
as they can easily open the files and look at their contents.
However, the analogy falls short when it comes to structured
data, which is commonly persisted as Linked Data in the
Solid Pods. In this case, resource IRIs do not necessarily have
meaning, and the organization of resources can be chosen
arbitrarily by application developers. A similar concern is
applicable to agent IRIs: How do I know my doctor’s IRI is
actually https://nhs.gov.uk/id/123#me? According
to the UK Government’s Department for Digital, Culture,
Media & Sport’s 2020 Cyber Security Breaches Survey [19]
phishing attacks are one of the most common type of breaches
experienced by UK businesses. Being just ordinary IRIs in
the context of ACL rules, WebIDs suffer the same risk of
being used in phishing attacks, where very similar looking
WebIDs could be constructed that open the doors of your Pod
to malicious actors. Detection mechanisms for phishing IRIs
have been proposed, however these fall largely in the realm
of heuristics.[20]

B. The Data Privacy Vocabulary

The Data Privacy Vocabulary8 (DPV) [21] is a vocabulary
that attempts to translate concepts and requirements related to
the processing of personal information under data processing
and privacy regulations, like GDPR, into classes and properties
that can be used as Linked Data. It is structured to be extend-
able with concepts and requirements for specific jurisdictions,
like the DPV-GDPR extension9 that defines the GDPR-specific
rights and legal bases concerning data processing.

C. Prior proposals for improving authorization in Solid

The Open Digital Rights Language (ODRL) [16] is a
language for expressing policies that define permitted and
prohibited actions over some entities. An ODRL profile and
algorithm was proposed [15] as an extension of the existing
ACL-mechanism used by Solid Pods to authorize requests.
Furthermore, obligations and constraints can be imposed upon
these actions. The proposed ODRL profile10 enables the use of
concepts from the Data Privacy Vocabulary in order to define
policies that relate to data processing over some resources.
The proposal also contextualizes the use of such policies
for materializing complex data sharing preferences and legal
bases for processing like informed consent. The authors [15]
do highlight some significant challenges with their proposal,
such as the efficiency of compliance checking with these
ODRL policies, especially when used in a heterogeneous,
decentralized architecture and combined with an inheritance
mechanism, as well as the privacy risks associated with making
these policies publicly accessible.

8https://w3id.org/dpv#
9http://www.w3id.org/dpv/dpv-gdpr#
10https://w3id.org/oac/

While evaluating different technical approaches that support
the enforcement of legal rights given to data subjects under
data protection regulation like GDPR, an assessment [17]
was made of the affordances with respect to data governance
provided by Solid and the SPECIAL project11 in compari-
son to the current defacto standard of data subjects giving
very broad consent to processing. In the evaluation of Solid
in relation to data protection regulations it was found that
Solid’s current ACL-based solution for authorization falls
short when trying to implement solutions adhering to the
strict regulatory requirements set forth. Firstly, because of
its poor user experience caused by issues like the lacking
interpretability of access mode and resource identifiers for
non-technical users, risk of phishing attacks due to the use of
IRIs to identify agents, and the security concerns that arise
from inherited ACL rules. Secondly, because ACLs fail to
capture important concepts under data protection regulations
that define what type of information is being shared, how that
data will be processed and for what purpose, and which legal
basis is used to warrant this processing. And lastly because the
burden of modifying these ACL rules is currently delegated
to application developers themselves, thus contradicting the
original goals of returning control back to the end-user as
developers have unlimited authority when modifying ACL
rules and could resort to the dark patterns that have haunted
modern-day implementations of consent on the web.

A layered, decentralized architecture for combining SPE-
CIAL and Solid was also proposed and compared to these
other approaches [17]. The concrete mechanics of the policy
exchange and negotiation are left as future work by the
authors, however their evaluation provides a good insight into
the existing limitations of ACL based authorization when
confronted with complex data processing applications.

D. Solid’s Data Interoperability Panel

The Data Interoperability Panel within the Solid Commu-
nity Panels12 was started with the goal of standardizing the
mechanics by which multiple applications can interoperate
over the same data safely and effectively. In the process
they try to increase user awareness and interpretability of
the data stored in a Pod, by abstracting away complexities
such as resource organization that are currently not governed
by the Solid protocol, to finally enable multiple agents to
safely and effectively interoperate over the same data. Most
importantly, they aim to tackle these hurdles while preserving
the fundamentals of the Solid protocol as it exists today.

In the context of the panel, two significant proposals have
begun to take shape over the past year, namely the Shape
Trees [22] and the Solid Application Interoperability [23]

11The SPECIAL project was a research project that aimed to deliver
technologies to reconcile big data applications with the necessary regulatory
compliance with respect to data processing. It delivered user interfaces for
consent and processing transparency as well as ontologies for the logging
by data processing applications and for modeling data usage policies of
both data subjects and data controllers that are machine verifiable. (https:
//specialprivacy.ercim.eu)

12The Solid specification is drafted by different community panels, each
focused on specific issues or domains that are relevant to Solid like authen-
tication, authorization or data interoperability.

4

draft specifications. The former builds upon the existing
specifications of RDF13 and data shapes [24], [25], which
respectively provide us with the foundations for interoper-
ability through unambiguous identifiers (IRIs) and a structural
schema against which individual RDF graphs can be validated.
Where these existing specifications fall short however is in
modeling complex resource hierarchies. Consider for example
the organization of a collection of medical records that takes
form in a Solid Pod where developers have relative freedom in
both resource naming and the use of containers to gather their
data. A Shape Tree defines structural constraints for a tree of
resources in any ecosystem that has a notion of containers14.
For each container, it allows shape constraints to be imposed
on the contained resources. Shape Trees themselves can also
contain other Shape Trees giving form to tree hierarchies (for
example medical records as a whole may consist of medical
images, prescriptions, bills, reports, etc.). The major strength
of Shape Trees is that they can unambiguously define resource
organization in a Pod and provide a higher-level abstraction
that can be more easily understood by end-users. This way,
Shape Trees guide applications and users by determining
where data should be written to and where it can be read from.
The modeling of related resource collections in this manner
allows us to perform operations such as authorization, data
migration and validation on this higher abstraction level as
well. Especially in the context of authorization, defining rules
at the level of Shape Trees rather than individual resources
reduces complexity, the likelihood of errors and allows us to
relate these higher-level conceptual resource aggregations to
legal concepts such as Data Categories.

The Solid Application Interoperability (SAI) draft specifica-
tion [23] leverages these proposed Shape Trees to standardize
concrete mechanics by which applications and agents request
access to information in a Solid Pod, the way by which they
locate the concrete instances of the Shape Trees, and how they
can interoperate over these. Up until now most of the specifics
of these different operations were left open to individual
application developers by the Solid specification, complicating
interoperability over the same data. In the context of this paper,
the standardizing of access requests is of specific importance,
and will be used as a building block in our proposal. The SAI
specification introduces the concept of an Authorization Agent
as a service linked to an agent’s WebID that manages the data
under their control. It is tasked with processing access requests
for the agent, managing previously granted permissions, and
recording the concrete instances of Shape Trees through a
collection of registries. While the specification is still under
discussion by the panel, and some aspects of the mechanics
of the authorization agent have not yet been fully defined or
are deliberately being left open for implementation, we will be
using many of the core concepts it sets forth in our proposal.

13The Resource Descriptor Format, core data model used in Semantic Web
technologies to construct Linked Data resources.

14Solid builds upon the Linked Data Platform specification which governs
the semantics of a container resource.

E. Linked Data Integrity & Authentication

The Data Integrity 1.0 draft community report [26] is a
recent proposal by the W3C’s Credentials Community Group,
with the aim of providing authentication and data integrity
capabilities to Linked Data resources through the use of math-
ematical proofs such as digital signature algorithms. It details
a vocabulary for describing proof types, verification methods
and algorithms. The origins of this work are to be found in
the W3C’s recommendation of the Verifiable Credentials Data
Model [27], a data model that can be used to assert specific
claims on a subject (such as a degree, driver’s license, etc.) and
which should be accompanied by a cryptographic proof that
can assert their authenticity and integrity. These techniques
will provide us with the necessary building blocks, in terms
of authentication and accountability, we need to realize our
proposed authorization architecture.

III. ARCHITECTURE

As we have highlighted before, the Solid Protocol 0.9 [2]
relies on the Web Access Control specification [6] as a mecha-
nism for discretionary access control over the resources stored
in a Solid Pod. While it offers adequate affordances for simple
use cases related to authorization in social contexts, some
of its capabilities and design choices may be problematic in
more complex data processing applications that are governed
by regulations like the GDPR. In contrast, our architecture
splits out the implementation of consent as a legal basis for
accessing personal data in the Solid Pod into two domains,
shown in Fig. 1, where policies stored in the subject’s Solid
Pod form an interface between these different realms:

1) On the one hand, the end-user domain is governed
by a so-called Access Management Application which
is tasked with validating the data processing request
coming from the responsible data controller against
applicable legal requirements, end-user data sharing
preferences and, if the processing request is approved,
storing it as a Processing Grant in the data subject’s
Solid Pod.

2) On the other hand, the technical domain uses the Au-
thorization Agent, as proposed by the Solid Application
Interoperability specification, to handle concrete access
requests made by applications and other agents in terms
of Shape Trees, Data Shapes and ACL access modes.
The interface between the two realms is formed by
Processing Grants which are generated by the Access
Management App and persisted in the agent’s Solid Pod.

For authentication and identification of the different actors
in the architecture we depend on the WebID [4] and Solid
OIDC 0.1.0 [5] specifications that are defined within the
Solid Protocol version 0.9 [2]. In the following paragraphs we
will be expanding upon both the Access Management App,
Authorization Agent and the proposed concepts of Process-
ing Requests and Processing Grants used to bind these two
services.

5

6ROLG�6HUYHU

$FFHVV�&RQWURO�5HVRXUFHV
:HE�$FFHVV�&RQWURO��$FFHVV

&RQWURO�3ROLF\������

,GHQWLW\�
:HE,'

$XWKHQWLFDWLRQ�
6ROLG�2,'&

6WRUDJH�
/LQNHG�'DWD�3ODWIRUP

$XWKRUL]DWLRQ�6HUYLFH
80$�����

7HFKQLFDO�5HDOP

(QG�8VHU�5HDOP

���

$XWKRUL]DWLRQ�$JHQW

��

���5HWULHYH�DQ\��
DSSOLFDEOH�SROLFLHV

��

$FFHVV�0DQDJHPHQW�$SS�
H�J��&RQVHQW�$SSOLFDWLRQ��&RQWUDFW

6LJQLQJ�6HUYLFH�����

���$SSURYH

'DWD�6XEMHFW

��

*UDQW�3URFHVVRU

��

$XWKRUL]HU��

$SS�<
V�$FFHVV�1HHGV�
���(QWLW\�;
V�3URFHVVLQJ�*UDQW

'DWD�&RQWUROOHU�
2UJDQLVDWLRQ�;

'DWD�3URFHVVRU�
$SSOLFDWLRQ�<

��

'DWD�&RQWUROOHU�
2UJDQLVDWLRQ�;

$SSOLFDWLRQ�<
V��
$FFHVV�*UDQW

(QWLW\�;
V�
3URFHVVLQJ�*UDQW

(QWLW\�;
V�
3URFHVVLQJ�*UDQW

(QWLW\�;
V�
3URFHVVLQJ�*UDQW

��

(QWLW\�;
V�
3URFHVVLQJ�5HTXHVW

Fig. 1. Overview of our proposed architecture, linking an End-User realm
governing Data Processing permissions with a Technical realm following the
Application Interoperability specification

A. End-User Realm: Access Management App

The Access Management App is used by Data Controllers to
obtain the necessary approval for the Data Processing they are
requesting for some personal data categories and processing
actions in fulfillment of a processing purpose that was allowed
for through a specific legal basis. Once it has received a Data
Processing Request, the Access Management App will first
verify if the request is admissible and will attempt to match
it against any explicit data sharing preferences the user might
have in their Pod that can lead to an automatic granting of
the request. If no preferences turn out to explicitly match
the request, the data subject must be polled for their explicit
consent. Once a Processing Request is granted, it is stored
as a Processing Grant in the Solid Pod and delivered to the
inbox [28] of the Data Controller.

B. End-User Realm: Processing Requests and Processing
Grants

Whenever a Data Controller (Requesting Party) wants to
obtain permissions for performing some data processing on
the data subject, it will be constructing a Processing Request.
This Request is constructed based upon a proposed ODRL

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix odrl: <http://www.w3.org/ns/odrl/2/>.
@prefix dpv: <http://www.w3.org/ns/dpv#>.
@prefix cert: <http://www.w3.org/ns/auth/cert#>.
@prefix oac: <https://w3id.org/oac/>.

@prefix : <https://example.com/#>.

:medicalRecordsConsent a odrl:Policy, dpv:
PersonalDataHandling;
odrl:profile oac:;
dpv:hasLegalBasis [

a dpv:Consent;
];
dpv:hasDataController <https://example.com/id/doctor#me
>;
odrl:permission [

a odrl:Permission;
odrl:assignee <https://example.com/id/doctor#me>;
odrl:target dpv:HealthRecord, dpv:Prescription, dpv:

HealthHistory;
odrl:action dpv:Collect, dpv:Consult, dpv:Analyse,

dpv:Alter;
odrl:constraint [

odrl:leftOperand oac:Purpose;
odrl:operator odrl:isA;
odrl:rightOperand :MedicalConsultation

]
].

Listing 1. Example Unsigned Processing Grant Request

profile [15] and concepts from the Data Privacy Vocabulary.
An example request for medical records based upon explicit
consent is shown in Listing 1. The request details handling of
the personal data, in terms of legal basis (in the case of this
paper we will only consider explicit consent), data controller,
and specific permissions that will be needed in the context of
the processing.

Each permission specifies what personal data categories it
concerns as a target, what actions it needs to perform on
this data, and constraints on the purpose or output of the
processing. Other constraints could be envisioned as well, like
technical measures used in the processing and associated risks,
however these haven’t been explored in the current proposal.

The Data Processing Request itself is presented to the
Access Management App accompanied by a Data Integrity
Proof that was generated by the Data Controller, this way
the provenance and integrity of the request can be validated.
Through this signing mechanism, the risk of spam or other
malicious attacks with respect to the Access Management
App and Processing Request procedures could be reduced, for
example by assigning different trust levels to issuer services
that can be used by Data Processors to sign their request
based upon requirements like identity validation or regulatory
compliance.

Finally, a Processing Grant is constructed from the Process-
ing Request by first completing the legal basis, i.e., consent,
with any other necessary attributes that were either gathered
in interaction with the data subject or in an automated manner
by the access management app. Thereafter any permissions
that have not been witheld will be removed from the Grant,
the RDF graph is supplemented with a Revocation Status
attribute conforming to the W3C Revocation List 2020 speci-
fication [29] for revoking Data Integrity Proofs such that the
Access Management App can revoke the Processing Grant
at a later time, and a Data Integrity Proof will be created

6

and signed by the Access Management App to indicate that
the legal requirements for the data processing to be approved
are fulfilled. The signed Processing Grant can be seen as
an instruction for the authorization agent to provision certain
types of information to a Data Controller and its designated
processors.

C. Technical Realm: Authorization Agent

The Authorization Agent is largely based upon the proposed
Solid Application Interoperability specification in terms of its
semantics and API, which is still under discussion by the
panel and thus might be subject to changes. This is enabled by
the fact that mechanics of the authorization agent are largely
left open to implementation, such that additional authorization
checks can be executed between the Access Needs being
presented to the authorization agent and the delivery of a so-
called Access Grant that specifies the concrete data that has
been elected for sharing with the application.

In fact, the only modification to the authorization agent in-
terface that we are proposing in this paper is that a Processing
Grant should accompany the Data Processor’s access needs
when access is being requested. This way the authorization
agent can link the access request being made by the application
or service, acting as a Data Processor for the Data Controller,
to a valid legal basis for data processing. It then becomes the
task of a Grant Processor module in the Authorization Agent to
match the specified Processing Grant to the Processor’s Access
Needs in terms of Data Needs (Shape Trees) and Access
Modes. The latter confronts us with the need for an unam-
biguous equivalence relation between the abstract definitions
in the Processing Grant and their technical counterparts in the
Access Needs.

Finally, once the Grant Processor has determined that the
Data Processor’s request actually matches our initial Process-
ing Grant, it can proceed with an Authorizer that is tasked with
modifying the atomic access control rules applicable to the
instances of the Shape Trees that were specified in the service’s
Data Needs. Once this process has ended, an Access Grant is
returned to the Data Processor and the necessary registrations
are added to the Pod.

D. Auxiliary Rules & Policies

While the ODRL-based processing request and processing
grant may suffice for defining the data processing that is being
requested and approved on a business-level, it is insufficient
for the authorization agent to relate these with the technical
access needs specified by a Data Processor like an application.
The semantic gap here is twofold, on the one hand we need
to unambiguously define what data in the Pod falls under the
approved processing and on the other hand we must know
what actions on this data are permitted.

Firstly, the abstract data categories used to specify the
personal data being shared under the approved data processing
activities must be related to concrete technical data type infor-
mation. As was elaborated upon in the background section, the
combination of data shapes and shape trees as a mechanism for
defining resource collections and their structure allows us to

delimit conceptually related resources in the Pod like medical
records, pictures, notes, etc. Through an additional set of rules
that is configured by the data subject in their Solid Pod, a so-
called Data Category Equivalence policy, we link the technical
resource type information provided by Data Shapes and Shape
Trees to Personal Data Categories as they are specified under
DPV and used in the ODRL profile.

As higher level abstractions are used to define the actions
that the processing allows for, we must also relate the Pro-
cessing categories from the DPV with the Access Modes as
they are used in both Solid’s Access Control mechanism and
the technical Access Needs specified by the Data Processor.
These can be defined by the subject as Processing Access
Needs, which are stored as an additional set of rules in the
Pod.

Furthermore, while not elaborated upon in this paper, the
proposed ODRL profile [15] was devised with the concept of
data sharing preferences which allowed for the data subject to
also express more complex data processing activities that could
automatically be permitted to some requesting party based on
purpose, data and processing categories. Such policies could
also be persisted in the Solid Pod besides these previously
noted equivalence relations and the concrete processing grants
that flow from them.

IV. IMPLEMENTATION

In order to assess the performance of our architecture, an
implementation15 of the technical realm presented in section
III-C was developed in TypeScript using the Components.JS
framework [30]. Components.JS permitted us to develop a
modular architecture, both with respect to the authorization
logic being implemented as well as for the support of different
capabilities defined in the Solid Application Interoperability
specification. Furthermore, we rely on the Community Solid
Server v4.0.116 to provide us with a modular Solid server
instance that is compliant with the Solid protocol 0.9 [2].

The implementation itself takes advantage of the recently
introduced concept of a UMA Authorization Service [31]
in the Solid-OIDC 0.1.0 specification [5], which allows for
the decoupling of authorization logic from the actual Solid
server implementation. Nevertheless, a performance penalty is
incurred because of the additional communication overhead
involved. Through modular interfaces for respectively authen-
tication and authorization capabilities, our Authorization Ser-
vice can serve as a basis for research into different mechanisms
for access control in Solid.

The modularity of this Authorization Service enabled us to
implement authorization logic based on the Solid Application
Interoperability draft specification. Whenever an Access Grant
is provided by the Authorization Agent to a data processor,
this information is recorded in the resource owner’s Registry
Set. The information contained in these registries is used
by our authorization modules to subsequently authorize the
incoming requests from a designated data processor.

15https://github.com/laurensdeb/interoperability
16https://github.com/CommunitySolidServer/CommunitySolidServer

7

Fig. 2. Median response times by resource type for a token request to the
UMA Authorization Service in different configurations of the Solid Pod. Data
collected over 250 requests per configuration, 95% confidence intervals are
marked in black. Validated using the 1.0.0 release of the implementation (Node
v16.14.0 / Apple M1 Pro / 32GB RAM).

The implementation was benchmarked using a synthetically
constructed Solid Pod template, of varying size in terms
of Shape Tree instances and registered agents (processors).
The benchmark itself consisted of 250 authorization requests
for the various resource types that are defined under the
Application Interoperability draft specification [23], where we
measured the total time to authorize a request with the UMA
Authorization Service. The results of our evaluation are shown
in Fig. 2. While auxiliary data structures like Agent Regis-
trations, Access Grants, Data Grants and Data Registrations
only see a very limited impact in terms of median response
times as we scale the dimensions of the Solid Pod, the Data
Instances that store the actual information to which access is
being authorized start showing much poorer performance. This
leads us to conclude that the time complexity of authorizations
for this resource type is heavily dependent on the amount of
information to which access is being authorized, at least in the
current implementation and under the current revision of the
specification [23].

In addition to the implementation of a UMA Authorization
Service, we also developed a modular Authorization Agent
that can bridge the gap between the technical and end-user
realms of our architecture. The Authorization Agent allows
for the discovery of what resources an agent is allowed to
access, and can process new requests based on Access Needs
of the application or service in terms of Shape Trees [22].
Interfaces were also defined for integrating data usage policy
languages, like ODRL or SPECIAL, into this component such
that it can evaluate whether incoming access requests match a
prior Processing Grant given through an Access Management

Application.

V. CONCLUSION & FUTURE WORK

One of the major departures from previous proposals is
that our proposed reference architecture aims to separate the
problem of reconciling technical authorization with the legal
requirements for data processing into two distinct domains. On
the one hand, there is an end-user realm where the user is pre-
sented with requests for data processing in terms of processing
actions happening on more abstract data categories, and where
an end-user can determine explicit data sharing preferences.
On the other hand, there is a technical realm where Solid’s
proposed Application Interoperability Specification governs
how application developers can gain access to resources in an
agent’s Solid Pod, once a proper legal basis for processing has
been established. The concept of Data Processing Grants that
are verifiable through the W3C’s Data Integrity Specification
for Linked Data form the link between these two distinct
domains, combined with policies that relate the meaning of
Data Categories and Processing Actions to technical concepts
that can be understood by the Solid Pod.

Whereas previous solutions aimed to integrate business
concepts into Solid’s existing authorization mechanisms, for
example through expanding upon Access Control with purpose
and policy concepts, our proposal takes advantage of the ab-
stractions enabled by Application Interoperability specification
and defines a layered architecture on top of it to introduce
business and legal concepts.

Performance benchmarks of an implementation of the cru-
cial authorization mechanism used by the technical realm of
the architecture do show elevated response latencies as the
dimensions of the Pod, in terms of data to which access is
granted, increase. Nevertheless, our implementation was able
to demonstrate the technical feasibility of authorization based
on the abstractions offered by Shape Trees, as was proposed
in the Solid Application Interoperability specification [23].

Some of the highlighted challenges in the ODRL pro-
posal [15] have been addressed here, while others, like per-
formance optimizations, will necessitate further consideration.
By introducing the access management app and authorization
agent as dynamic negotiators in the request flow we avoided
the need for public policies to be advertised by the Solid
Pod, which addresses important privacy concerns with a policy
based solution (i.e., what if anyone can see that you have
shared your medical records for the purpose of a past treatment
with a psychiatrist). Additionally, by introducing the Autho-
rization Agent as an intermediary for providing the technical
access, we avoid the necessity of matching policies for each
HTTP request on a resource in the Pod. Specific legal issues
raised in the ODRL proposal [15] remain largely applicable
to our proposal as well, i.e., the legal implications of user
choice enabled by Solid’s novel approach to data governance,
the necessity of awareness of the applicable jurisdiction and
its requirements for data processing activities and whether
data sharing preferences, as were briefly touched upon, indeed
constitute a form of consent.

While we have focused largely on the problem space of
implementing explicit consent as a legal basis throughout

8

this proposal, there could be room for enabling other legal
bases to be enforced by the access management app as well.
For example when processing is requested on the basis of
a contractual obligation, the Access Management App could
retrieve the contract from the subject’s Pod and validate
it against the identity of the requesting party for the data
processing.

ACKNOWLEDGMENT

Parts of this work are based on the paper ”A Policy-
Oriented Architecture for Enforcing Consent in Solid” by
Debackere et al.[32].

REFERENCES

[1] R. Verborgh, “Re-decentralizing the Web, for good this time,” in Linking
the World’s Information: A Collection of Essays on the Work of Sir Tim
Berners-Lee, O. Seneviratne and J. Hendler, Eds. ACM, 2022. [Online].
Available: https://ruben.verborgh.org/articles/redecentralizing-the-web/

[2] S. Capadisli, T. Berners-Lee, R. Verborgh, and K. Kjernsmo,
“Solid protocol,” Tech. Rep., Dec. 2021. [Online]. Available:
https://solidproject.org/TR/2021/protocol-20211217

[3] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform 1.0,”
Tech. Rep., Feb. 2015. [Online]. Available: https://www.w3.org/TR/ldp/

[4] A. Sambra, H. Story, and T. Berners-Lee, “WebID 1.0,” Tech. Rep.,
Mar. 2014. [Online]. Available: https://www.w3.org/2005/Incubator/
webid/spec/identity/

[5] A. Coburn, elf Pavlik, and D. Zagidulin, “Solid-OIDC,” Tech.
Rep., Mar. 2022. [Online]. Available: https://solidproject.org/TR/2022/
oidc-20220328

[6] S. Capadisli and T. Berners-Lee, “Web Access Control,” Tech. Rep.,
Jul. 2021. [Online]. Available: https://solidproject.org/TR/wac

[7] “Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the Protection of Natural Persons with
Regard to the Processing of Personal Data and on the Free Movement of
Such Data, and Repealing Directive 95/46/EC (General Data Protection
Regulation).” Official Journal of the European Union, vol. L 119, 2016-
04-27.

[8] “The GDPR: The Emperors New Clothes - On the Structural
Shortcomings of Both the Old and the New Data Protection Law,
author=Winfried Veil,” Consumer Law eJournal, 2018. [Online].
Available: https://papers.ssrn.com/sol3/papers.cfm?abstract id=3305056

[9] M. Kretschmer, J. Pennekamp, and K. Wehrle, “Cookie Banners and
Privacy Policies: Measuring the Impact of the GDPR on the Web,”
ACM Trans. Web, vol. 15, no. 4, jul 2021. [Online]. Available:
https://doi.org/10.1145/3466722

[10] G. G. Karcsony, “Managing personal data in a digital environment
- did GDPRs concept of informed consent really give us control?”
International Conference on Computer Law, AI, Data Protection & the
Biggest Tech Trens, 2019. [Online]. Available: https://papers.ssrn.com/
sol3/papers.cfm?abstract id=3452573

[11] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal,
Dark Patterns after the GDPR: Scraping Consent Pop-Ups and
Demonstrating Their Influence. New York, NY, USA: Association
for Computing Machinery, 2020, p. 113. [Online]. Available:
https://doi.org/10.1145/3313831.3376321

[12] D. De Bot and T. Haegemans. (2021, Jan.) Data Sharing Patterns
as a Tool to Tackle Legal Considerations about Data Reuse with
Solid: Theory and Applications in Europe. [Online]. Available:
https://lirias.kuleuven.be/retrieve/599839

[13] L. Kagal, T. Finin, and A. Joshi, “A policy based approach to security
for the semantic web,” in The Semantic Web - ISWC 2003, D. Fensel,
K. Sycara, and J. Mylopoulos, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 402–418.

[14] P. A. Bonatti, S. Kirrane, I. M. Petrova, and L. Sauro, “Machine
understandable policies and GDPR compliance checking,” CoRR, vol.
abs/2001.08930, 2020. [Online]. Available: https://link.springer.com/
article/10.1007/s13218-020-00677-4

[15] B. Esteves, H. J. Pandit, and V. Rodrguez-Doncel, “ODRL Profile for
Expressing Consent through Granular Access Control Policies in Solid,”
in 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW), 2021, pp. 298–306.

[16] R. Iannella and S. Villata, “ODRL Information Model 2.2,” Tech. Rep.,
Feb. 2018. [Online]. Available: https://www.w3.org/TR/odrl-model/

[17] G. Havur, M. Vander Sande, and S. Kirrane, “Greater Control and
Transparency in Personal Data Processing,” 01 2020, pp. 655–662.

[18] S. Villata, L. Costabello, N. Delaforge, and F. Gandon, “Social Semantic
Web Access Control?” Journal on Data Semantics, vol. 2, 03 2012.

[19] UK Department for Digital, Culture, Media & Sport . (2020, Mar.) Cyber
Security Breaches Survey 2020. [Online]. Available: https://www.
gov.uk/government/statistics/cyber-security-breaches-survey-2020/
cyber-security-breaches-survey-2020

[20] M. Khonji, Y. Iraqi, and A. Jones, “Phishing Detection: A Literature
Survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp.
2091–2121, 2013.

[21] H. J. Pandit, A. Polleres, B. Bos, R. Brennan, B. Bruegger, F. J. Ekaputra,
J. D. Fernndez, R. G. Hamed, E. Kiesling, M. Lizar, and et al., “Creating
a Vocabulary for Data Privacy: The First-Year Report of Data Privacy
Vocabularies and Controls Community Group (DPVCG),” Oct 2019.

[22] J. Bingham and E. Prud’hommeaux, “Shape Trees Specification,”
Tech. Rep., Feb. 2022. [Online]. Available: https://shapetrees.org/TR/
specification/

[23] J. Bingham, E. Prud’hommeaux, and elf Pavlik, “Solid Application
Interoperability,” Tech. Rep., May 2022. [Online]. Available: https:
//solid.github.io/data-interoperability-panel/specification/

[24] E. Prud’hommeau, I. Boneva, J. E. L. Gayo, and G. Kellogg, “Shape
Expressions Language 2.1,” Tech. Rep., Oct. 2019. [Online]. Available:
http://shex.io/shex-semantics/index.html

[25] H. Knublauch and D. Kontokostas, “Shapes Constraint Language
(SHACL),” Tech. Rep., Jul. 2017. [Online]. Available: https://www.w3.
org/TR/shacl/

[26] M. Sporny and D. Longley, “Data Integrity 1.0,” Tech. Rep., Jan. 2022.
[Online]. Available: https://w3c-ccg.github.io/data-integrity-spec/

[27] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials
Data Model v1.1,” Tech. Rep., Nov. 2021. [Online]. Available:
https://www.w3.org/TR/vc-data-model/

[28] S. Capadisli and A. Guy, “Linked Data Notifications,” Tech. Rep., May
2017. [Online]. Available: https://www.w3.org/TR/ldn/

[29] M. Sporny and D. Longley, “Revocation List 2020,” Tech. Rep., Apr.
2021. [Online]. Available: https://w3c-ccg.github.io/vc-status-rl-2020/

[30] R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh,
“Components.js: Semantic Dependency Injection,” Semantic Web
Journal, 2022. [Online]. Available: https://linkedsoftwaredependencies.
github.io/Article-System-Components/

[31] M. Machulak, J. Richer, and E. Maler, “User-Managed Access
(UMA) 2.0 Grant for OAuth 2.0 Authorization,” Tech. Rep., Jul.
2018. [Online]. Available: https://docs.kantarainitiative.org/uma/wg/
rec-oauth-uma-grant-2.0.html

[32] L. Debackere, P. Colpaert, R. Taelman, and R. Verborgh, “A policy-
oriented architecture for enforcing consent in Solid,” in Proceedings
of the 2nd International Workshop on Consent Management in
Online Services, Networks and Things, Apr. 2022. [Online]. Available:
https://www2022.thewebconf.org/PaperFiles/88.pdf

1

Afdwingen van Gegevensbescherming in Solid:
Een Policy-gebaseerd Raamwerk

Laurens Debackere

Abstract—Het Solid project tracht de controle van gebruikers
over hun data te herstellen, door diensten en applicaties los te
koppelen van hun data-opslag. Om dit beheer van persoonlijke
data mogelijk te maken, gebruikt het Solid Protocol 0.9 de
Web Access Control standaard, dewelke beperkt is qua ex-
pressiviteit en interpreteerbaarheid. Daarentegen stelt recente
wetgeving rond privacy en gegevensbescherming strikte eisen
aan toepassingen en diensten die persoonsgegevens verwerken en
hun werkingsgebied. Binnen het Web Access Control mechanisme
ontbreekt de vereiste granulariteit en contextuele informatie die
nodig is om aan deze wettelijke vereisten te voldoen. Daarom
presenteren we in dit werk een referentie-architectuur, die toelaat
om Solid’s elementaire autorisatie mechanisme te verbinden met
bredere, juridische concepten zoals de wettelijke basis en het doel
van de gegevensverwerking, de categorieën van persoonsgegevens
die men wil verwerken, en de voorkeuren rond gegevensdeling
van het data subject. Onze architectuur brengt recent technisch
werk uit de Solid community panels samen met eerder onderzoek
over het gebruik van de ODRL en SPECIAL policy languages
als een extensie op het access control mechanisme van Solid.
Aan de hand van een implementatie van deze architectuur
konden we de technische haalbaarheid van het voorstel aantonen,
hoewel optimalisaties op vlak van performantie een vereiste zullen
zijn om ons raamwerk ook in de praktijk te gebruiken. De
architectuur lijkt evenwel een beloftevolle poging te zijn om aan
de hand van data usage policies tekortkomingen te verhelpen
in de mechanismen voor toegangsbeheer binnen Solid, bij het
implementeren van gegevensverwerking die onderhevig is aan
juridische vereisten, zoals gesteld door de AVG.

Index Terms—Solid, Consent, Semantic Web, ODRL, Access
Control

I. INLEIDING

Het Solid project1 tracht de visie van Tim Berners-Lee te
realiseren om de opslag van persoonlijke data los te koppelen
van de applicaties en diensten die gebruik maken van deze
gegevens, om op die manier gebruikers in staat te stellen
om zelf hun data te beheren. Zo probeert Solid een meer
evenwichtige machtsverhouding tussen dienstverleners en ge-
bruikers te bekomen, door die laatsten de middelen te geven
om hun eigen keuzes te maken omtrent gegevensopslag en -
deling in plaats van hun data buiten hun bereik en controle te
laten bewaren. Hiertoe ontwikkelt de Solid gemeenschap een
ontwerp-specificatie voor decentrale persoonlijke datakluizen,
ook wel Pods genoemd. In de kern bestaat dit Solid protocol
versie 0.9 uit drie cruciale bouwstenen:

1) Solid implementeert delen van de Linked Data Plat-
form W3C recommendation [1] om lees- en schrijftoe-
gang mogelijk te maken voor gegevens die opgeslagen
worden in de Pod, met specifieke functionaliteiten voor
het verwerken van Linked Data.

1https://solidproject.org

2) Solid stelt het gebruik van WebIDs [2] en Solid
OIDC [3] voor om identificatie en authenticatie mo-
gelijk te maken. Door middel van deze standaarden kun-
nen partijen gelinkt worden aan een decentrale identifier
die gegevens over hun uitdrukt, zoals de vertrouwde
identity providers. Het laat toe om authenticatie te
voorzien tussen resource en autorisatie servers die geen
eerdere vertrouwensband hebben.

3) Web Access Control [4] maakt de cruciale controle
over het delen van informatie in de Pod mogelijk.
Web Access Control is een cross-domain, decentrale
oplossing voor het autoriseren van verzoeken op basis
van Access Control Lists (ACLs) die uitgedrukt worden
als Linked Data. Het identificeert zowel gebruikers als
data aan de hand van IRIs. In het bijzonder kunnen
ACLs specifiek voor een bepaalde gegevensbron worden
uitgedrukt of worden overgeërfd van een bovenliggende
map.

Hoewel het grotendeels een verfijning betreft van bestaande
juridische kaders zoals de Data Protection Directive uit 1995
en de ePrivacy Directive uit 2005, was de Algemene Veror-
dening Gegevensbescherming2 [5] een belangrijke juridische
mijlpaal op vlak van wetgeving rond gegevensbescherming en
privacy bij haar introductie in mei 2018[6].

De AVG voorziet voor een data subject meer transparantie
en controle betreffende de verwerking van hun persoonli-
jke data door data controllers. Daarenboven heeft men bij
het opstellen van deze verordening nieuwe en opkomende
technologieën zoals Big Data, artificiële intelligentie, en het
internet expliciet in beschouwing genomen. Hoewel de AVG
ongetwijfeld tekortkomingen heeft [7], voorziet het in een veel
grotere autonomie voor een data subject wanneer die beslissin-
gen maakt over de verwerking van diens persoonsgegevens dan
voorheen het geval was.

Eén van de voornaamste tekortkomingen met de AVG be-
treft de juridische basis van toestemming voor de verwerking
van persoonsgegevens, en hoe deze typisch gebruikt wordt
op het Web [8], [9], [7]. In artikel 6 van de AVG worden
de zes mogelijke gronden voor rechtmatige verwerking van
persoonsgegevens vastgelegd door de wetgever, vrijwillige
toestemming die op elk moment ingetrokken kan worden door
het data subject is één van deze gronden. Het informeren van
het data subject wanneer die toestemming geeft wordt sterk
benadrukt binnen de verordening, waarbij die accuraat moet
kunnen inschatten wat de gevolgen zijn van de gegevensver-
werking waarmee wordt ingestemd. Echter, in de praktijk
implementeren diensten deze verwerkingsgrond op een manier

2http://data.europa.eu/eli/reg/2016/679/oj

2

die noch geı̈nformeerd is noch een eigenlijke toestemming
inhoudt van het data subject. Vaak wordt immers door de AVG
vereiste informatie verborgen in lange privacy policies die de
gebruiker in zijn geheel zou moeten lezen om de impact van
diens toestemming te kunnen inschatten [7].

De prevalentie van dark patterns op het Web [10], die
gebruikt worden om de toestemming van een data subject te
verkrijgen, wijst op een duidelijk probleem met betrekking
tot hoe de verwerkingsgrond van geı̈nformeerde toestemming
in de praktijk wordt gebruikt. Momenteel is het geven van
een dergelijke toestemming in een online omgeving veelal
een eenzijdige gebeurtenis, waarbij de data controller de
voorwaarden uiteenzet en het data subject weinig impact heeft
op hoe diens data wordt verwerkt en opgeslagen.

Het model wat Solid naar voren schuift om gebruikers
opnieuw de controle te geven over hun persoonlijke data
zou aanleiding kunnen geven tot een beter evenwicht in de
machtsverhoudingen tussen data subject en data controller,
wanneer die laatste vraagt om de toestemming van de ge-
bruiker. Klassieke online dienstverlening biedt aan het data
subject weinig mogelijkheden heeft om te onderhandelen
waardoor toestemming eerder herleid wordt tot een alles-of-
nietskwestie. Daarentegen maakt Solid het mogelijk voor een
data subject om een duidelijk overzicht te krijgen van de data
die hun Pod bevat en op granulaire wijze te kiezen welke data
gedeeld wordt met wie. Hierdoor zou het cruciale, bilaterale
beschermingen kunnen bieden die de verwerkingsgrond van
geı̈nformeerde toestemming vereist om gebruikt te worden
zoals bedoeld door de wetgever.

A. Motivatie

Hoewel Solid het potentieel heeft om een belangrijke
drijfveer te vormen voor verwezenlijking van echte,
geı̈nformeerde toestemming als rechtsgrondslag voor
gegevensverwerking, zoals de wetgever voor ogen had, zijn
er nog verschillende technische tekortkomingen die eerst
verholpen moeten worden. Zoals eerder aangehaald zijn de
huidige mechanismen voor autorisatie in Solid weliswaar
geschikt voor eenvoudige gebruikssituaties, maar vertonen
ze voor de gemiddelde gebruiker tekortkomingen op vlak
van interpreteerbaarheid. Immers legt Web Access Control
slechts in beperkte mate informatie vast over de identiteit van
de betrokken partijen, de gegevens die worden uitgewisseld
en het doel en de rechtsgrondslag van deze uitwisseling.
Voorts is tot dusver slechts in beperkte mate geanalyseerd hoe
patronen voor gegevensuitwisseling en de vereiste juridische
waarborgen in Solid kunnen worden geı̈mplementeerd [11].

Het kernidee om policies te gebruiken bij het modelleren en
afdwingen van veiligheids- en gegevensbeschermingsvereisten
voor het Semantisch Web is al onderwerp geweest van eerder
werk [12], [13]. Enkele uitbreidingen van de autorisatie mech-
anismen in Solid op basis van het gebruik van policy languages
zijn reeds voorgesteld, zoals het gebruik van ODRL-policies
[14], [15] of de SPECIAL policy language3 [16]. Hoewel
deze de hierboven genoemde bezorgdheden met betrekking
tot interpreteerbaarheid en flexibiliteit deels wegnemen, erven

3https://ai.wu.ac.at/policies/policylanguage/

of verergeren ze ook enkele van de gebreken van het ACL
mechanisme van Solid. Deze problemen zijn onder andere
slechte interpreteerbaarheid als gevolg van de overerving van
toegangsregels, verhoogde uitvoeringstijd van het autorisatie
proces, en beperkte abstracties voor het identificeren van
data. Voorts moet het proces worden beschouwd waarbij
een controller de geı̈nformeerde toestemming vraagt van een
gebruiker en over de wijze waarop deze toestemming vervol-
gens in het nieuwe autorisatie-regels wordt gematerialiseerd,
teneinde de huidige tekortkomingen van het autorisatie mech-
anisme in Solid te verhelpen bij de verwerking van persoons-
gegevens.

Er is een belangrijk onderscheid tussen het technische en het
eindgebruikersperspectief wanneer uitdrukkelijke toestemming
wordt gebruikt als basis voor toegang tot gegevens in de Solid
Pod van de betrokkene. Waar een eindgebruiker moet begri-
jpen welke gegevens zij delen, met wie, met welk doel en op
welke manier deze gegevens zullen worden verwerkt, zou een
ontwikkelaar niet moeten nadenken over hoe zijn interacties
zich verhouden tot deze door de gebruiker begrijpbare con-
cepten. We willen veeleer mogelijk maken dat ontwikkelaars
interacties aangaan met de bestaande technische concepten van
de Solid-specificatie terwijl de Solid Pod of een tussenpartij
valideert of deze interacties onder een voorafgaande toestem-
ming vallen (of misschien zelfs een andere rechtsgrond).
Daarom definiëren we in dit paper een architectuur die het
mogelijk maakt de juridische en eindgebruikersinteracties met
betrekking tot toestemming los te koppelen van de technische
interacties waarvoor toestemming is verleend.

Onze bijdragen in deze paper kunnen als volgt worden
samengevat

• een overzicht bieden van de tekortkomingen van het
bestaande access control mechanisme in Solid;

• het presenteren van een kader dat de eindgebruikers- en
wettelijke vereisten voor gegevensverwerking verzoent
met het bestaande autorisatie mechanisme van Solid;

• het implementeren van delen van deze architectuur om de
praktische haalbaarheid in te schatten en de prestatieken-
merken te beoordelen.

Dit paper gaat verder als volgt: Paragraaf II geeft achter-
grondinformatie over de stand van de techniek met betrekking
tot het autorisatiemechanisme in Solid en introduceert kort
de concepten en specificaties die in de rest van dit werk
zullen worden gebruikt. In paragraaf III worden de door
ons voorgestelde architectuur, de interactiepatronen en voor-
naamste gegevensstructuren beschreven. Vervolgens beschrijft
paragraaf IV onze implementatie van het technische domein
van deze architectuur en de prestatiekenmerken. Paragraaf V
vat tot slot de redenering achter deze architectuur samen, geeft
een korte interpretatie van onze resultaten en bespreekt het
verdere werk dat nodig is om ons voorstel in de praktijk
uitvoerbaar te maken.

II. ACHTERGROND

In dit hoofdstuk introduceren we de stand van de techniek
met betrekking tot autorisatie en toegangscontrole in Solid.
Daarnaast zullen we enkele van de technologieën presenteren

3

die relevant zijn voor de architectuur die we in dit document
definiëren en evalueren.

A. Autorisatie in Solid

Het primaire mechanisme van Solid voor autorisaties is
de Web Access Control (WAC) specificatie [4]. Deze maakt
gebruik van de ACL ontologie4 om access modes uit te
drukken die van toepassing zijn op een bestand of map voor
een bepaalde agent, waarbij zowel de agent als de bron worden
geı̈dentificeerd met behulp van IRI’s. WAC ondersteunt vier
toegangsmodi in deze toegangsregels, namelijk:

• Read Maakt volledige of gedeeltelijke leesbewerkingen
op bronnen mogelijk.

• Write Maakt schrijfbewerkingen op bronnen mogelijk,
i.e., creëren, bijwerken of verwijderen.

• Append Maakt het mogelijk om informatie toe te voegen
aan bronnen, maar niet om gegevens te verwijderen.

• Control Staat lees- en schrijfbewerkingen toe op de
Access Control List horende bij de bron. Dit laat de
begunstigde toe om toegang tot de bron te delegeren of
in te trekken.

Deze toegangsmodi zijn echter ruim gedefinieerd en
sluiten niet goed aan bij het meer gebruikelijke CRUD-
toestemmingsmodel5 [17]. Ook zullen sommige van deze
toegangsmodi niet steeds overeenkomen met de verwachtin-
gen van de gebruiker: Bijvoorbeeld, wat betekent het om
Append permissies te hebben op een map in de Pod?

Bovendien maakt WAC gebruik van een overervingsmech-
anisme om te bepalen welke Access Control List de effectieve
ACL is voor een bestand of map in de Pod. Hoewel dit
overervingsmechanisme redelijk eenvoudig te begrijpen is voor
ontwikkelaars, kan het gedrag voor een onwetende eindge-
bruiker contra-intuı̈tief zijn of zelfs leiden tot onbedoelde
onthulling van informatie. Als een gebruiker een applicatie
bijvoorbeeld toegang verleent tot een map, verleent hij impli-
ciet toegang tot alle gegevens en submappen die zich onder de
map bevinden, inclusief nieuwe bronnen die zijn toegevoegd
nadat de gebruiker toegang heeft verleend.

Het gebruik van IRI’s om bronnen en gebruikers te identifi-
ceren kan evenzeer bijdragen aan een slechte gebruikerser-
varing en leiden tot privacy-inbreuken. Gebruikers zouden
bijvoorbeeld een analogie kunnen zien tussen hoe zij gewoon-
lijk een fotoverzameling beheren in een bestandssysteem
op een computer, en hoe foto’s worden opgeslagen in een
map op iemands Solid Pod. Daarbij kan een eindgebruiker
enigszins begrijpen wat voor soort gegevens worden gedeeld,
aangezien hij de bestanden gemakkelijk kan openen en de
inhoud ervan kan bekijken. De analogie stopt echter wan-
neer het gaat om gestructureerde gegevens, die gewoon-
lijk als Linked Data in de Solid Pods worden opgesla-
gen. In dit geval hebben IRI’s van bronnen niet noodza-
kelijkerwijs betekenis, en de organisatie van bronnen kan
willekeurig worden gekozen door ontwikkelaars van toepassin-
gen. Een soortgelijke zorg is van toepassing voor agent

4http://www.w3.org/ns/auth/acl
5Acroniem voor Create, Read, Update, Delete.

IRI’s: Hoe weet ik dat de WebID van mijn dokter ook echt
https://nhs.gov.uk/id/123#me is? Volgens onder-
zoek uit 2020 [18] van het Department for Digital, Culture,
Media & Sport van de Britse regering, zijn phishing-aanvallen
één van de meest voorkomende veiligheidsinbreuken die
opgelopen worden door Britse bedrijven. WebID’s zijn gewone
IRI’s in de context van ACL-regels, en lopen een gelijkaardig
risico om te worden gebruikt in de context van phishin-
gaanvallen, waarbij zeer gelijkaardig uitziende WebID’s kun-
nen worden geconstrueerd die de deuren van de Pod open-
stellen voor kwaadwillende actoren. Detectiemechanismen
voor phishing IRI’s werden reeds eerder voorgesteld, maar
deze vallen grotendeels in het domein van de heuristiek [19].

B. De Data Privacy Vocabulary

De Data Privacy Vocabulary6 (DPV) [20] is een ontolo-
gie die concepten en vereisten met betrekking tot de ver-
werking van persoonsgegevens onder gegevensbeschermings-
en privacywetgeving, zoals de AVG, tracht te vertalen naar
klassen en eigenschappen die als Linked Data kunnen worden
gebruikt. De ontologie is zo gestructureerd dat deze kan
worden uitgebreid met concepten en definities voor specifieke
jurisdicties, zoals de DPV-GDPR-uitbreiding7 die de AVG-
specifieke rechten en rechtsgrondslagen met betrekking tot
gegevensverwerking definieert.

C. Eerdere voorstellen tot het verbeteren van autorisatie in
Solid

De Open Digital Rights Language (ODRL) [15] is een taal
voor het uitdrukken van policies die toegestane en verboden
acties over bepaalde entiteiten definiëren. Een ODRL profiel
en algoritme werd reeds voorgesteld [14] als een uitbreiding
op het bestaande ACL-mechanisme dat door Solid Pods wordt
gebruikt om verzoeken te autoriseren. Bovendien kunnen met
deze techniek verplichtingen en beperkingen aan dergelijke ac-
ties worden opgelegd. Het voorgestelde ODRL-profiel8 maakt
het gebruik mogelijk van concepten uit de Data Privacy
Vocabulary om policies te definiëren die betrekking hebben
op gegevensverwerking over bepaalde bronnen. Het voorstel
contextualiseert ook het gebruik van dergelijke policies voor
het vastleggen van complexe voorkeuren voor het delen van
gegevens en wettelijke grondslagen voor de verwerking zoals
geı̈nformeerde toestemming. De auteurs [14] benadrukken
enkele belangrijke uitdagingen met hun voorstel zoals de
efficiëntie van de controle op de naleving van deze ODRL
policies, vooral wanneer deze gebruikt worden in een hetero-
gene, gedecentraliseerde architectuur en gecombineerd worden
met een overervingsmechanisme, alsook de privacyrisico’s die
verbonden zijn aan het publiekelijk toegankelijk maken van
deze policies.

Bij de evaluatie van verschillende technische benaderingen
ter ondersteuning van de handhaving van gegevensbescher-
mingsrecht, zoals de AVG, werd een beoordeling [16] gemaakt

6https://w3id.org/dpv#
7http://www.w3id.org/dpv/dpv-gdpr#
8https://w3id.org/oac/

4

van de mogelijkheden rond gegevensbeheer die worden ge-
boden door Solid en het SPECIAL-project9 in vergelijking
met de huidige defacto-standaard waarbij betrokkenen zeer
ruime toestemming geven voor verwerking. Bij de evaluatie
van Solid met betrekking tot de vereisten voor gegevens-
bescherming is gebleken dat de huidige, op ACL gebaseerde
oplossing van Solid voor autorisatie tekortschiet bij het im-
plementeren van toepassingen die moeten voldoen aan de
strenge wettelijke eisen die worden gesteld. Ten eerste, van-
wege de slechte gebruikerservaring veroorzaakt door onder
andere de gebrekkige interpreteerbaarheid van access modes
en resource identifiers voor niet-technische gebruikers, het
risico op phishing aanvallen vanwege het gebruik van IRI’s
om gebruikers te identificeren, en de veiligheidsproblemen
die voortkomen uit overgeërfde ACL regels. Ten tweede,
omdat ACL’s belangrijke concepten in het kader van gegevens-
beschermingsrecht niet vastleggen, zoals welk soort infor-
matie wordt gedeeld, hoe die gegevens worden verwerkt en
met welk doel, en welke rechtsgrondslag wordt gebruikt om
deze verwerking te rechtvaardigen. En ten slotte omdat het
wijzigen van deze ACL-regels momenteel wordt gedelegeerd
naar de ontwikkelaars van toepassingen, wat conflicteert met
de oorspronkelijke doelstellingen om controle terug te geven
aan de eindgebruiker, aangezien ontwikkelaars onbeperkte
bevoegdheid hebben bij het wijzigen van ACL-regels. Op die
manier zouden ze wederom hun toevlucht kunnen nemen tot de
donkere patronen die huidige implementaties van toestemming
op het Web vertonen.

Een gelaagde, decentrale architectuur voor het combineren
van SPECIAL en Solid werd eveneens voorgesteld en
vergeleken met deze andere benaderingen [16]. De con-
crete mechanismen voor de uitwisseling van policies en
onderhandeling voor toegang worden door de auteurs als
toekomstig werk overgelaten. Hun evaluatie geeft evenwel
een goed inzicht in de beperkingen van op ACL gebaseerde
autorisatie wanneer deze geconfronteerd wordt met complexe
gegevensverwerking.

D. Solid’s Data Interoperability Panel

Het Data Interoperability Panel binnen de Solid Community
Panels10 werd opgericht met als doel het standaardiseren
van de mechanismen waarmee verschillende applicaties veilig
en effectief kunnen samenwerken over dezelfde data. Hier-
bij proberen ze het gebruikersbewustzijn en de interpreteer-
baarheid omtrent in de Pod opgeslagen gegevens te vergroten,
door complexiteiten zoals resource-organisatie weg te abstra-
heren, om uiteindelijk verschillende toepassingen in staat te
stellen efficiënt en zinvol overheen dezelfde gegevens te laten

9Het SPECIAL-project was een onderzoeksproject dat tot doel had tech-
nologieën te leveren om big data-toepassingen in overeenstemming te brengen
met de toepasselijke regelgeving rond gegevensverwerking. Het leverde ge-
bruikersinterfaces op voor toestemming en transparantie omtrent de verwerk-
ing, en ontologieën voor de logging door gegevensverwerkingstoepassingen
en voor het modelleren van policies inzake gegevensgebruik van zowel
data subjects als data controllers, die machinaal verifieerbaar zijn. (https:
//specialprivacy.ercim.eu)

10De Solid specificatie wordt opgesteld door verschillende community
panels, elk gericht op specifieke kwesties of domeinen die relevant zijn voor
Solid zoals authenticatie, autorisatie of data-interoperabiliteit.

samenwerken. Noemenswaardig is dat zij deze problemen
trachten aan te pakken met behoud van de fundamenten van
het Solid-protocol zoals het nu bestaat.

In de schoot van het panel hebben het afgelopen jaar
twee belangrijke voorstellen vorm gekregen, namelijk de
ontwerpspecificaties voor Shape Trees [21] en voor Solid
Application Interoperability [22]. De eerste bouwt voort op de
bestaande specificaties van RDF11 en data shapes [23], [24],
die respectievelijk de basis leggen voor interoperabiliteit door
ondubbelzinnige identifiers (IRI’s) en een structureel schema
waaraan individuele RDF-grafen kunnen worden gevalideerd.
Waar deze bestaande specificaties echter tekort schieten is
in het modelleren van complexe resource hiërarchieën. Denk
bijvoorbeeld aan de organisatie van een verzameling medis-
che dossiers die vorm krijgt in een Solid Pod en waar
ontwikkelaars relatieve vrijheid hebben in zowel het benoemen
van bronnen als het gebruik van mappen om hun data te
verzamelen. Een Shape Tree definieert structurele beperkingen
voor een boomstructuur van bestanden in elk ecosysteem
dat een notie van mappen heeft12. Voor elke map kunnen
vormbeperkingen worden opgelegd aan de bevatte bronnen.
Shape Trees zelf kunnen ook andere Shape Trees bevatten
om zo vorm te geven aan complexere hiërarchieën (zo kun-
nen bijvoorbeeld medische dossiers als geheel bestaan uit
medische beelden, voorschriften, rekeningen, verslagen, ...).
De grote kracht van Shape Trees is dat ze de organisatie
van bronnen in een Pod ondubbelzinnig kunnen definiëren
en een abstractie op hoger niveau kunnen bieden, die door
eindgebruikers gemakkelijker kan worden begrepen. Op deze
manier gidsen Shape Trees toepassingen en gebruikers, door
te bepalen waar gegevens naartoe moeten worden geschreven
en waarvandaan ze kunnen worden gelezen. Door op deze
manier verzamelingen van gegevens te modelleren kunnen we
bewerkingen zoals autorisatie, datamigratie en validatie ook
op dit hogere abstractieniveau uitvoeren. Vooral in de context
van autorisatie vermindert het definiëren van regels op het
niveau van Shape Trees, in plaats van individuele resources,
de complexiteit en de kans op fouten, en stelt het ons in
staat deze conceptuele resource-aggregaties op hoger niveau
te relateren aan juridische concepten zoals categorieën van
persoonsgegevens.

De Solid Application Interoperability (SAI) ontwerpspeci-
ficatie [22] maakt gebruik van deze voorgestelde Shape Trees
om het concrete mechanisme te standaardiseren waarmee
applicaties en gebruikers toegang vragen tot informatie in een
Solid Pod, de manier waarop ze de concrete instanties van de
Shape Trees lokaliseren, en hoe ze overheen deze data kunnen
samenwerken. Tot nu toe werden de meeste details van deze
verschillende operaties door de Solid specificatie overgelaten
aan individuele ontwikkelaars, wat interoperabiliteit over deze
gegevens bemoeilijkt. In de context van dit paper is het
standaardiseren van toegangsverzoeken van bijzonder belang,
deze functionaliteit zal dan ook als bouwsteen dienen voor
onze referentie-architectuur. De SAI-specificatie introduceert

11Resource Descriptor Format, het centrale data model dat gebruikt wordt
door Semantic Web technologieën om Linked Data bronnen op te stellen.

12Solid bouwt voort op de Linked Data Platform specificatie die de
semantiek van dergelijke mappen of containers bepaalt.

5

het concept van een Authorization Agent als een dienst die
gekoppeld is aan de WebID van een gebruiker en die diens
gegevens beheert. De Authorization Agent heeft als taak
verzoeken om toegang voor de gebruiker te verwerken, eerder
verleende machtigingen te beheren en de concrete instanties
van Shape Trees bij te houden via een verzameling registries.
Hoewel de specificatie nog verder door het panel wordt
verfijnd en sommige aspecten van de Authorization Agent nog
niet geheel zijn gedefinieerd of bewust worden opengelaten
voor implementatie, zullen we veel van de kernconcepten die
erin worden beschreven in ons voorstel inzetten.

E. Linked Data Integrity & Authentication
Het Data Integrity 1.0 draft community report [25] is een

recent voorstel van de Credentials Community Group van
het W3C, dat tot doel heeft authenticatie en data-integriteit
mogelijk te maken voor Linked Data-bronnen door mid-
del van wiskundige bewijzen, zoals algoritmen voor digitale
handtekeningen. Het omvat een ontologie voor de definitie
van verschillende soorten bewijzen, verificatiemethoden en
algoritmen. De oorsprong van dit werk ligt in de W3C rec-
ommendation van het Verifiable Credentials Data Model [26],
een datamodel dat kan worden gebruikt om specifieke eigen-
schappen van een gebruiker uit te drukken (zoals een diploma,
rijbewijs, ...) en dat vergezeld moet worden van een cryp-
tografisch bewijs dat de authenticiteit en integriteit ervan kan
bevestigen. Deze technieken zullen ons voorzien van de nodige
bouwstenen, op vlak van authenticatie en data-integriteit, die
we nodig hebben om de door ons voorgestelde referentie-
architectuur te realiseren.

III. ARCHITECTUUR

Zoals we al eerder hebben aangehaald, baseert het Solid
Protocol 0.9 [27] zich op de Web Access Control speci-
ficatie [4] als mechanisme voor discretionary access con-
trol over de gegevens die zijn opgeslagen in de Solid
Pod. Hoewel het voldoende mogelijkheden biedt voor een-
voudige gebruikssituaties met betrekking tot autorisatie in
sociale contexten, kunnen sommige van de ontwerpkeuzes
van WAC problematisch zijn in complexere gegevensverwerk-
ingstoepassingen die onderhevig zijn aan regelgeving zoals de
AVG. Onze architectuur splitst daarentegen de implementatie
van toestemming als rechtsgrondslag voor verwerking van per-
soonsgegevens in de Pod op in twee domeinen, weergegeven in
Fig. 1, waarbij policies die zijn opgeslagen in de Solid Pod van
de betrokkene een interface vormen tussen deze verschillende
domeinen:

1) Enerzijds wordt het domein van de gebruiker beheerd
door een zogeheten Access Management Applicatie, die
als taak heeft het verzoek om gegevensverwerking van
de Controller te toetsen aan de toepasselijke wetgeving
en de voorkeuren van de eindgebruiker inzake gegevens-
deling, en die, indien het verzoek om gegevensverw-
erking wordt goedgekeurd, dit als een Data Processing
Grant opslaat in de Solid Pod van de betrokkene.

2) Anderzijds gebruikt het technische domein de Autho-
rization Agent, zoals voorgesteld door de Solid Ap-
plication Interoperability specificatie, om de effectieve

toegangsverzoeken af te handelen die door applicaties en
gebruikers worden gemaakt in termen van Shape Trees,
Data Shapes en ACL toegangsmodi. De interface tussen
de twee domeinen wordt gevormd door de Processing
Grants die worden gegenereerd door de Access Manage-
ment App en bewaard in de Solid Pod van de gebruiker.

Voor de authenticatie en identificatie van de verschil-
lende actoren in de architectuur zijn we afhankelijk van
de WebID [2] en OIDC 0.1.0 [3] specificaties die werden
gedefinieerd binnen het Solid Protocol versie 0.9 [27]. In
de volgende paragrafen zullen we dieper ingaan op zowel
de Access Management App, de Authorization Agent en de
voorgestelde concepten van Processing Requests en Process-
ing Grants die worden gebruikt om deze twee diensten aan
elkaar te koppelen.

6ROLG�6HUYHU

$FFHVV�&RQWURO�5HVRXUFHV
:HE�$FFHVV�&RQWURO��$FFHVV

&RQWURO�3ROLF\������

,GHQWLW\�
:HE,'

$XWKHQWLFDWLRQ�
6ROLG�2,'&

6WRUDJH�
/LQNHG�'DWD�3ODWIRUP

$XWKRUL]DWLRQ�6HUYLFH
80$�����

7HFKQLFDO�5HDOP

(QG�8VHU�5HDOP

���

$XWKRUL]DWLRQ�$JHQW

��

���5HWULHYH�DQ\��
DSSOLFDEOH�SROLFLHV

��

$FFHVV�0DQDJHPHQW�$SS�
H�J��&RQVHQW�$SSOLFDWLRQ��&RQWUDFW

6LJQLQJ�6HUYLFH�����

���$SSURYH

'DWD�6XEMHFW

��

*UDQW�3URFHVVRU

��

$XWKRUL]HU��

$SS�<
V�$FFHVV�1HHGV�
���(QWLW\�;
V�3URFHVVLQJ�*UDQW

'DWD�&RQWUROOHU�
2UJDQLVDWLRQ�;

'DWD�3URFHVVRU�
$SSOLFDWLRQ�<

��

'DWD�&RQWUROOHU�
2UJDQLVDWLRQ�;

$SSOLFDWLRQ�<
V��
$FFHVV�*UDQW

(QWLW\�;
V�
3URFHVVLQJ�*UDQW

(QWLW\�;
V�
3URFHVVLQJ�*UDQW

(QWLW\�;
V�
3URFHVVLQJ�*UDQW

��

(QWLW\�;
V�
3URFHVVLQJ�5HTXHVW

Fig. 1. Overzicht van onze referentie-architectuur, die een gebruikersdomein
met de toelatingen voor gegevensverwerking koppelt aan een technisch
domein volgens de Application Interoperability specificatie.

A. Gebruikersdomein: Access Management App

De Access Management App wordt door Data Controllers
gebruikt om de noodzakelijke goedkeuring te krijgen voor
de verwerking die zij verzoeken voor bepaalde categorieën
persoonsgegevens en verwerkingshandelingen in kader van een
verwerkingsdoel dat is toegestaan via een specifieke rechts-
grondslag. Zodra de app een verzoek om gegevensverwerking

6

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix odrl: <http://www.w3.org/ns/odrl/2/>.
@prefix dpv: <http://www.w3.org/ns/dpv#>.
@prefix cert: <http://www.w3.org/ns/auth/cert#>.
@prefix oac: <https://w3id.org/oac/>.

@prefix : <https://example.com/#>.

:medicalRecordsConsent a odrl:Policy, dpv:
PersonalDataHandling;
odrl:profile oac:;
dpv:hasLegalBasis [

a dpv:Consent;
];
dpv:hasDataController <https://example.com/id/doctor#me
>;
odrl:permission [

a odrl:Permission;
odrl:assignee <https://example.com/id/doctor#me>;
odrl:target dpv:HealthRecord, dpv:Prescription, dpv:

HealthHistory;
odrl:action dpv:Collect, dpv:Consult, dpv:Analyse,

dpv:Alter;
odrl:constraint [

odrl:leftOperand oac:Purpose;
odrl:operator odrl:isA;
odrl:rightOperand :MedicalConsultation

]
].

Listing 1. Voorbeeld van een niet-ondertekende Processing Grant Request

ontvangt, controleert het eerst of het verzoek ontvankelijk
is en wordt de aanvraag vergeleken met eventuele expliciete
voorkeuren voor gegevensuitwisseling die de gebruiker in zijn
Pod heeft staan en die kunnen leiden tot een automatische
goedkeuring van het verzoek. Als er geen voorkeuren blijken
te zijn die exact overeenkomen met het verzoek, moet de
betrokkene om zijn expliciete toestemming worden gevraagd.
Zodra een Processing Request is ingewilligd, wordt het als een
Processing Grant opgeslagen in de Solid Pod en afgeleverd
bij de inbox [28] van de Controller.

B. Gebruikersdomein: Processing Requests en Processing
Grants

Telkens wanneer een Data Controller (verzoekende partij)
toestemming wil krijgen om gegevens over een data subject
te verwerken, stelt die een Processing Request op. Dit ver-
zoek wordt opgesteld op basis van een voorgesteld ODRL-
profiel [14] en concepten uit de Data Privacy Vocabulary. Een
voorbeeld van een verzoek om medische gegevens op basis van
uitdrukkelijke toestemming is te zien in Listing 1. Het verzoek
bevat details over de verwerking van de persoonsgegevens,
in termen van rechtsgrondslag (in het geval van dit werk
beschouwen we alleen uitdrukkelijke toestemming), de data
controller en de specifieke toelatingen die in het kader van de
verwerking nodig zullen zijn.

Elke permissie in dit verzoek specificeert welke categorieën
persoonsgegevens verwerkt dienen te worden, welke han-
delingen met deze gegevens zullen worden gesteld, en welke
beperkingen op het doel of de resultaten van de verwerking
worden opgelegd. Er kunnen ook andere beperkingen worden
bepaald, zoals de technische maatregelen die bij de verwerking
worden gebruikt en de daarmee samenhangende risico’s, maar
deze werden in het huidige voorstel niet onderzocht.

De Data Processing Request wordt aan de Access Manage-
ment App aangeboden samen met een Data Integrity Proof

dat door de Controller is gegenereerd, zodat de herkomst en
de integriteit van het verzoek kunnen worden gevalideerd.
Door dit ondertekeningsmechanisme kan het risico op spam of
andere kwaadaardige aanvallen met betrekking tot de Access
Management App en de procedures voor de verwerking van
Processing Requests worden beperkt, bijvoorbeeld door ver-
schillende vertrouwensniveaus toe te wijzen aan de uitgevende
diensten van de Processing Requests op basis van vereisten
zoals identiteitsvalidatie of naleving van regelgeving.

Ten slotte wordt uit de Processing Request een Processing
Grant geconstrueerd door eerst de rechtsgrondslag, d.w.z.
toestemming, aan te vullen met vereiste attributen die ofwel in
interactie met de gebruiker ofwel op geautomatiseerde wijze
door de Access Management App zijn verzameld. Daarna
worden alle toestemmingen die niet zijn weerhouden uit de
Processing Grant verwijderd, wordt de RDF-graaf aangevuld
met een Revocation Status attribuut conform de W3C Re-
vocation List 2020 specificatie [29] voor het intrekken van
Data Integrity Proofs zodat de Access Management App de
Processing Grant op een later tijdstip kan intrekken, en wordt
een Data Integrity Proof aangemaakt en ondertekend door de
Access Management App om aan te geven dat aan de wettelijke
eisen voor de goed te keuren gegevensverwerking is voldaan.
De ondertekende Processing Grant kan worden gezien als een
instructie voor de Authorization Agent om bepaalde soorten
informatie te verstrekken aan een Data Controller en de door
hem aangewezen verwerkers.

C. Technisch Domein: Authorization Agent

De Authorization Agent is wat betreft zijn semantiek en API
grotendeels gebaseerd op de voorgestelde Solid Application
Interoperability-specificatie, die nog door het panel wordt
besproken en dus aan wijzigingen onderhevig kan zijn. Dit
wordt mogelijk gemaakt door het feit dat de mechanismen
van de Authorization Agent grotendeels open zijn gelaten voor
implementatie, zodat aanvullende autorisatiecontroles kunnen
worden uitgevoerd tussen het moment waarop de Access Needs
aan de autorisatieagent worden gepresenteerd en de uitgifte
van een zogeheten Access Grant die de concrete gegevens
specificeert die kunnen gedeeld worden met de toepassing.

In feite is de enige wijziging van de interface van de
Authorization Agent die wij in dit document voorstellen, dat
de access needs van de controller vergezeld moeten gaan van
een Processing Grant. Op die manier kan de Authorization
Agent het verzoek om toegang dat wordt gemaakt door de
toepassing of dienst, die optreedt als gegevensverwerker voor
de controller, koppelen aan een geldige wettelijke basis voor
gegevensverwerking. Het wordt dan de taak van een Grant
Processor module in de Authorization Agent om de aange-
boden Processing Grant af te toetsen aan de Access Needs
van de Processor in termen van Data Needs (Shape Trees) en
toegangsmodi. Dit laatste confronteert ons met de noodzaak
van een ondubbelzinnige gelijkwaardigheidsrelatie tussen de
abstracte definities in de Processing Grant en hun technische
tegenhangers in de Access Needs van de toepassing of dienst.

Tenslotte, zodra de Grant Processor heeft vastgesteld dat
het verzoek van de verwerker daadwerkelijk overeenkomt met

7

onze initiële Processing Grant, kan deze verder gaan met
een Authorizer die de taak heeft atomaire toegangsregels aan
te passen die van toepassing zijn op de instanties van de
Shape Trees die werden gespecificeerd in de Access Needs
van de dienst. Zodra dit proces is afgerond, wordt een Access
Grant teruggestuurd naar de Gegevensverwerker en worden de
noodzakelijke registraties toegevoegd in de Pod.

D. Hulpregels & Policies

Het op ODRL gebaseerde verwerkingsverzoek en de bi-
jhorende Processing Grant kunnen weliswaar volstaan voor
het definiëren van de gegevensverwerking die op gebruiker-
sniveau wordt gevraagd en goedgekeurd, maar ze zijn voor de
authorization agent ontoereikend om deze te relateren aan de
access needs die door een gegevensverwerker, bijvoorbeeeld
een applicatie, worden gespecificeerd. De semantische la-
cune is hier tweeledig: enerzijds moet ondubbelzinnig worden
gedefinieerd welke gegevens in de Pod onder de goedgekeurde
verwerking vallen, en anderzijds moet bekend zijn welke acties
op deze gegevens zijn toegestaan.

Ten eerste moeten de abstracte gegevenscategorieën die
worden gebruikt om de persoonsgegevens te specificeren in
kader van de verwerkingsactiviteiten, worden gerelateerd aan
concrete, technische informatie over het datatype. Zoals eerder
is aangehaald, stelt de combinatie van Data Shapes en Shape
Trees als mechanisme voor het definiëren van gegevensverza-
melingen en hun structuur ons in staat conceptueel gere-
lateerde bronnen in de Pod af te bakenen, zoals medische
dossiers, foto’s, aantekeningen, enz. Door middel van een
aanvullende reeks regels die door de betrokkene in zijn Solid
Pod worden geconfigureerd, een zogeheten Data Category
Equivalence Policy, koppelen wij de door Data Shapes en
Shape Trees verstrekte technische informatie over het datatype
aan Personal Data Categories zoals die in het kader van de
DPV zijn gespecificeerd en in het ODRL-profiel[14] worden
gebruikt.

Aangezien abstracties van een hoger niveau worden gebruikt
om de acties te definiëren die de verwerking mogelijk maken,
moeten we ook de verwerkingscategorieën uit de DPV in
verband brengen met relevante Access Modes, aangezien deze
worden gebruikt in zowel het toegangscontrolemechanisme
van Solid als de technische Access Needs die door de ver-
werker worden gespecificeerd. Deze kunnen door het subject
worden gedefinieerd als Processing Access Needs, die een
aanvullende reeks regels in de Pod vormen.

Voorts is het voorgestelde ODRL-profiel [14] ontworpen
met het concept van voorkeuren voor gegevensuitwisseling in
het achterhoofd, hoewel deze functionaliteit in dit paper niet
in verder detail wordt beschouwd. Zo kan de betrokkene ook
complexere verwerkingsactiviteiten vastleggen die automatisch
aan een verzoekende partij worden toegestaan op basis van
doel, gegevens en verwerkingscategorieën. Dergelijke policies
worden ook in de Solid Pod bewaard, naast de eerder ge-
noemde Data Category Equivalence Policy en de concrete
Processing Grants die daaruit voortvloeien.

IV. IMPLEMENTATIE

Om de prestaties van onze architectuur te beoordelen, werd
een implementatie13 van het in paragraaf III-C gepresen-
teerde technische domein ontwikkeld in TypeScript met be-
hulp van het Components.JS-framework [30]. Components.JS
maakt een modulaire architectuur mogelijk, zowel met be-
trekking tot de autorisatielogica die wordt geı̈mplementeerd
als voor de ondersteuning van verschillende functionaliteiten
die zijn gedefinieerd in de Solid Application Interoperability-
specificatie. Daarnaast maken we gebruik van de Community
Solid Server v4.0.114 om ons te voorzien van een modu-
laire Solid server instantie die voldoet aan het Solid proto-
col 0.9 [27].

De implementatie zelf maakt gebruik van het recent
geı̈ntroduceerde concept van een UMA Authorization Ser-
vice [31] in de Solid-OIDC 0.1.0 specificatie [3], waar-
door de autorisatielogica kan worden losgekoppeld van de
feitelijke Solid server implementatie. Desalniettemin wordt
er een prestatieverlies geleden door de extra communicatie-
overhead die hiermee gepaard gaat. Door modulaire interfaces
voor respectievelijk authenticatie en autorisatie, kan onze
Authorization Service dienen als basis voor onderzoek naar
verschillende mechanismen voor toegangscontrole in Solid.

De modulariteit van deze Authorization Service stelde
ons in staat autorisatielogica te implementeren op basis van
de Solid Application Interoperability ontwerpspecificatie. Im-
mers, telkens wanneer de Authorization Agent een Access
Grant verleent aan een verwerker, wordt deze informatie
opgenomen in de Registry Set van de eigenaar van de
gegevens. De informatie in deze registers wordt door onze
autorisatiemodules gebruikt om vervolgens de inkomende ver-
zoeken van de verwerker te autoriseren.

De implementatie werd gebenchmarkt met behulp van syn-
thetisch geconstrueerde Solid Pods, van wisselende grootte in
termen van Shape Tree instanties en geregistreerde gebruikers
(gegevensverwerkers). De benchmark zelf bestond uit 250
autorisatie verzoeken voor de verschillende datatypes die zijn
gedefinieerd in de Application Interoperability ontwerpspec-
ificatie, waarbij we de totale tijd hebben gemeten om een
verzoek te autoriseren met de UMA Authorization Service.
De resultaten van onze evaluatie zijn te zien in Fig. 2. Hoewel
hulpdatastructuren zoals Agent Registrations, Access Grants,
Data Grants en Data Registrations slechts een zeer beperkte
impact zien op vlak van mediane reactietijden als we de di-
mensies van de Solid Pod schalen, beginnen de Data Instances
die de eigenlijke informatie opslaan waartoe toegang wordt
geautoriseerd, veel slechtere prestaties te vertonen. Hieruit
kunnen we concluderen dat de tijdcomplexiteit van autorisaties
voor dit resourcetype sterk afhankelijk is van de hoeveelheid
informatie waartoe toegang wordt geautoriseerd, althans in
de huidige implementatie en onder de huidige revisie van de
specificatie [22].

Naast de implementatie van een UMA Authorization Ser-
vice, hebben we ook een modulaire Authorization Agent on-
twikkeld die de kloof kan overbruggen tussen de technische en

13https://github.com/laurensdeb/interoperability
14https://github.com/CommunitySolidServer/CommunitySolidServer

8

Fig. 2. Mediane responstijden per datatype voor een request naar de UMA
Authorization Service bij verschillende configuraties van de Solid Pod. Data
verzameld over 250 verzoeken per configuratie, 95% betrouwbaarheidsinter-
vallen worden getoond in het zwart. Gevalideerd met de 1.0.0 release van de
implementatie (Node v16.14.0 / Apple M1 Pro / 32GB RAM).

gebruikersdomeinen van onze architectuur. De Authorization
Agent maakt het mogelijk om te ontdekken tot welke data een
gebruiker toegang mag hebben, en kan nieuwe verzoeken ver-
werken op basis van de toegangsbehoeften van de toepassing
of dienst in termen van Shape Trees. Er zijn ook interfaces
voorzien voor de integratie van data usage policy languages,
zoals ODRL of SPECIAL, in deze component, zodat die kan
evalueren of inkomende access needs overeenkomen met een
voorafgaande Processing Grant die is gegeven via een Access
Management Applicatie.

V. CONCLUSIES & AANVULLEND WERK

Eén van de belangrijkste verschillen met eerdere voorstellen
is dat de door ons voorgestelde referentiearchitectuur het
probleem van het verenigen van technische autorisatie met
de wettelijke vereisten voor gegevensverwerking in twee af-
zonderlijke domeinen opsplitst. Enerzijds is er een gebruik-
ersdomein waar de gebruiker verzoeken om gegevensverw-
erking krijgt voorgelegd in termen van verwerkingsacties die
plaatsvinden op abstractere gegevenscategorieën, en waar een
eindgebruiker expliciete voorkeuren voor gegevensdeling kan
bepalen. Anderzijds is er een technisch domein waar de
Solid Application Interoperability ontwerpspecificatie regelt
hoe ontwikkelaars van toepassingen toegang kunnen krijgen
tot bronnen in de Solid Pod van een gebruiker, zodra een
adequate rechtsgrondslag voor verwerking is vastgesteld. Het
concept van Data Processing Grants die verifieerbaar zijn via
de Data Integrity Specification van het W3C [25] vormen
de schakel tussen deze twee domeinen, gecombineerd met
policies die de betekenis van Data Categories en Processing

Actions relateren aan technische concepten die door de Solid
Pod kunnen worden begrepen.

Waar eerdere oplossingen beoogden juridische concepten
te integreren in de bestaande autorisatiemechanismen van
Solid, bijvoorbeeld door toegangsregels uit te breiden met een
concept zoals verwerkingsdoel of verwerkingsgrond, maakt
ons voorstel gebruik van de modulariteit die wordt voorzien
door de nieuwe UMA Authorization Service en voorziet het
in een gelaagde architectuur om data usage policy languages
te introduceren.

Benchmarks van een implementatie van het cruciale au-
torisatiemechanisme dat door het technische domein van deze
architectuur wordt gebruikt, laten evenwel verhoogde reacti-
etijden zien naarmate de dimensies van de Pod, in termen van
gegevens waartoe toegang wordt wordt verleend, toenemen.
Desondanks was onze implementatie in staat om de technische
haalbaarheid aan te tonen van autorisatie op basis van de
abstracties die worden geboden door Shape Trees, zoals werd
voorgesteld in de Solid Application Interoperability specifi-
catie [22].

Sommige van de in het ODRL-voorstel [14] genoemde
uitdagingen zijn hier aangepakt, terwijl andere, zoals opti-
malisatie van de prestaties, verdere overweging behoeven.
Door de access management app en de authorization agent
als dynamische onderhandelaars in de request flow te intro-
duceren, hebben we vermeden dat usage policies openbaar
door de Solid Pod moet worden geadverteerd, wat belangrijke
bezorgdheden omtrent privacy wegneemt bij een oplossing
op basis van dergelijke policy languages (bijvoorbeeld, wat
als iedereen kan zien dat je je medische gegevens hebt
gedeeld met het oog op een behandeling met een psychiater).
Bovendien vermijden we, door de Authorization Agent te
introduceren als tussenpartij voor het verschaffen van de
technische toegang, de noodzaak om de policies te evalueren
voor elk HTTP-verzoek op de data in de Pod. Specifieke
juridische kwesties die in het ODRL-voorstel [14] aan de orde
zijn gesteld, blijven ook grotendeels van toepassing op ons
voorstel, d.w.z. de juridische implicaties van keuzes van de
gebruiker die mogelijk worden gemaakt door de specifieke
benadering rond gegevensbeheer in Solid, de noodzaak om
rekening te houden met het toepasselijke rechtsgebied en de
bijhorende vereisten voor gegevensverwerking en de vraag
of voorkeuren voor het delen van gegevens, zoals kort werd
aangestipt, inderdaad een vorm van toestemming inhouden.

Hoewel wij ons in dit voorstel grotendeels hebben gecon-
centreerd op het probleem van de implementatie van uit-
drukkelijke toestemming als rechtsgrondslag, zou er ruimte
kunnen zijn om ook andere rechtsgrondslagen door de access
management app te laten afdwingen. Wanneer bijvoorbeeld
om verwerking wordt verzocht op basis van een contractuele
verplichting, zou de access management app het contract
kunnen ophalen uit de Pod van de betrokkene en het kunnen
valideren aan de hand van de identiteit van de partij die om
de gegevensverwerking verzoekt.

ACKNOWLEDGMENT

Delen van dit werk zijn gebaseerd op ”A Policy-Oriented
Architecture for Enforcing Consent in Solid” door De-

9

backere et al.[32].

REFERENCES

[1] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform 1.0,”
Tech. Rep., Feb. 2015. [Online]. Available: https://www.w3.org/TR/ldp/

[2] A. Sambra, H. Story, and T. Berners-Lee, “WebID 1.0,” Tech. Rep.,
Mar. 2014. [Online]. Available: https://www.w3.org/2005/Incubator/
webid/spec/identity/

[3] A. Coburn, elf Pavlik, and D. Zagidulin, “Solid-OIDC,” Tech.
Rep., Mar. 2022. [Online]. Available: https://solidproject.org/TR/2022/
oidc-20220328

[4] S. Capadisli and T. Berners-Lee, “Web Access Control,” Tech. Rep.,
Jul. 2021. [Online]. Available: https://solidproject.org/TR/wac

[5] “Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the Protection of Natural Persons with
Regard to the Processing of Personal Data and on the Free Movement of
Such Data, and Repealing Directive 95/46/EC (General Data Protection
Regulation).” Official Journal of the European Union, vol. L 119, 2016-
04-27.

[6] C. J. Hoofnagle, B. van der Sloot, and F. Zuiderveen Borgesius, “The
European Union General Data Protection Regulation: What it is and
what it means,” SSRN Electronic Journal, 2018.

[7] “The GDPR: The Emperors New Clothes - On the Structural
Shortcomings of Both the Old and the New Data Protection Law,
author=Winfried Veil,” Consumer Law eJournal, 2018. [Online].
Available: https://papers.ssrn.com/sol3/papers.cfm?abstract id=3305056

[8] M. Kretschmer, J. Pennekamp, and K. Wehrle, “Cookie Banners and
Privacy Policies: Measuring the Impact of the GDPR on the Web,”
ACM Trans. Web, vol. 15, no. 4, jul 2021. [Online]. Available:
https://doi.org/10.1145/3466722

[9] G. G. Karcsony, “Managing personal data in a digital environment
- did GDPRs concept of informed consent really give us control?”
International Conference on Computer Law, AI, Data Protection & the
Biggest Tech Trens, 2019. [Online]. Available: https://papers.ssrn.com/
sol3/papers.cfm?abstract id=3452573

[10] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal,
Dark Patterns after the GDPR: Scraping Consent Pop-Ups and
Demonstrating Their Influence. New York, NY, USA: Association
for Computing Machinery, 2020, p. 113. [Online]. Available:
https://doi.org/10.1145/3313831.3376321

[11] D. De Bot and T. Haegemans. (2021, Jan.) Data Sharing Patterns
as a Tool to Tackle Legal Considerations about Data Reuse with
Solid: Theory and Applications in Europe. [Online]. Available:
https://lirias.kuleuven.be/retrieve/599839

[12] L. Kagal, T. Finin, and A. Joshi, “A policy based approach to security
for the semantic web,” in The Semantic Web - ISWC 2003, D. Fensel,
K. Sycara, and J. Mylopoulos, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 402–418.

[13] P. A. Bonatti, S. Kirrane, I. M. Petrova, and L. Sauro, “Machine
understandable policies and GDPR compliance checking,” CoRR, vol.
abs/2001.08930, 2020. [Online]. Available: https://link.springer.com/
article/10.1007/s13218-020-00677-4

[14] B. Esteves, H. J. Pandit, and V. Rodrguez-Doncel, “ODRL Profile for
Expressing Consent through Granular Access Control Policies in Solid,”
in 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW), 2021, pp. 298–306.

[15] R. Iannella and S. Villata, “ODRL Information Model 2.2,” Tech. Rep.,
Feb. 2018. [Online]. Available: https://www.w3.org/TR/odrl-model/

[16] G. Havur, M. Vander Sande, and S. Kirrane, “Greater Control and
Transparency in Personal Data Processing,” 01 2020, pp. 655–662.

[17] S. Villata, L. Costabello, N. Delaforge, and F. Gandon, “Social Semantic
Web Access Control?” Journal on Data Semantics, vol. 2, 03 2012.

[18] UK Department for Digital, Culture, Media & Sport . (2020, Mar.) Cyber
Security Breaches Survey 2020. [Online]. Available: https://www.
gov.uk/government/statistics/cyber-security-breaches-survey-2020/
cyber-security-breaches-survey-2020

[19] M. Khonji, Y. Iraqi, and A. Jones, “Phishing Detection: A Literature
Survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp.
2091–2121, 2013.

[20] H. J. Pandit, A. Polleres, B. Bos, R. Brennan, B. Bruegger, F. J. Ekaputra,
J. D. Fernndez, R. G. Hamed, E. Kiesling, M. Lizar, and et al., “Creating
a Vocabulary for Data Privacy: The First-Year Report of Data Privacy
Vocabularies and Controls Community Group (DPVCG),” Oct 2019.

[21] J. Bingham and E. Prud’hommeaux, “Shape Trees Specification,”
Tech. Rep., Feb. 2022. [Online]. Available: https://shapetrees.org/TR/
specification/

[22] J. Bingham, E. Prud’hommeaux, and elf Pavlik, “Solid Application
Interoperability,” Tech. Rep., May 2022. [Online]. Available: https:
//solid.github.io/data-interoperability-panel/specification/

[23] E. Prud’hommeau, I. Boneva, J. E. L. Gayo, and G. Kellogg, “Shape
Expressions Language 2.1,” Tech. Rep., Oct. 2019. [Online]. Available:
http://shex.io/shex-semantics/index.html

[24] H. Knublauch and D. Kontokostas, “Shapes Constraint Language
(SHACL),” Tech. Rep., Jul. 2017. [Online]. Available: https://www.w3.
org/TR/shacl/

[25] M. Sporny and D. Longley, “Data Integrity 1.0,” Tech. Rep., Jan. 2022.
[Online]. Available: https://w3c-ccg.github.io/data-integrity-spec/

[26] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials
Data Model v1.1,” Tech. Rep., Nov. 2021. [Online]. Available:
https://www.w3.org/TR/vc-data-model/

[27] S. Capadisli, T. Berners-Lee, R. Verborgh, and K. Kjernsmo,
“Solid protocol,” Tech. Rep., Dec. 2021. [Online]. Available:
https://solidproject.org/TR/2021/protocol-20211217

[28] S. Capadisli and A. Guy, “Linked Data Notifications,” Tech. Rep., May
2017. [Online]. Available: https://www.w3.org/TR/ldn/

[29] M. Sporny and D. Longley, “Revocation List 2020,” Tech. Rep., Apr.
2021. [Online]. Available: https://w3c-ccg.github.io/vc-status-rl-2020/

[30] R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh,
“Components.js: Semantic Dependency Injection,” Semantic Web
Journal, 2022. [Online]. Available: https://linkedsoftwaredependencies.
github.io/Article-System-Components/

[31] M. Machulak, J. Richer, and E. Maler, “User-Managed Access
(UMA) 2.0 Grant for OAuth 2.0 Authorization,” Tech. Rep., Jul.
2018. [Online]. Available: https://docs.kantarainitiative.org/uma/wg/
rec-oauth-uma-grant-2.0.html

[32] L. Debackere, P. Colpaert, R. Taelman, and R. Verborgh, “A policy-
oriented architecture for enforcing consent in Solid,” in Proceedings
of the 2nd International Workshop on Consent Management in
Online Services, Networks and Things, Apr. 2022. [Online]. Available:
https://www2022.thewebconf.org/PaperFiles/88.pdf

Lay Summary

This thesis aims to address the challenge of implementing the relevant controls and safeguards for compliance with data

protection law in applications and services that interact with personal data vaults following the Solid specification.

Solid

Personal data vaults provide a novel way of counteracting the asymmetries of power that exist in today’s online applications

and services. Such asymmetries are at the heart of the take-it-or-leave-it approach taken by many in asking for permission

to access, process and store our personal data. By separating apps and services from the data they use, the Solid project

aims to restore user choice, ensure data portability and improve transparency in data processing.

Data Protection Law: GDPR

When it came into force in May 2018, the General Data Protection Regulation harmonized rules and requirements concerning

the processing of personal data of people in the European Union. At the heart of the Regulation is the concept of data

protection, which aims to safeguard our personal data by requiring that it is used in a fairmanner and following the principles

of due process. Under the GDPR, the burden of proof for showing that these requirements are met falls on the party seeking

to process the personal data rather than the individual whose information is being used.

Policy Languages & Data Usage

Policy languages enable operators of a distributed system to regulate the behavior of its components. An example of such a

policy could be that a government requires its citizens, by law, to share income data with the tax authority. Semantic policy

languages take advantage of the affordances of the Semantic Web to define machine-readable policies that are meaningful

and enforceable at a global level. A specific subtype of policy languages enables the specification of data usage policies,

which regulate the access, use and storage of data. If data usage policies only govern the initial access to data, they are also

referred to as access control policies.

Problem statement

While the Solid specification already offers controls over the sharing of personal data, this is currently enabled through access

control policies which offer limited affordances in ensuring compliance with data protection law. The strict requirements

set by regulations like the GDPR thus require additional measures, outside of what is offered by the Solid specification, to

be applied by organizations taking advantage of the data sharing enabled by Solid Pods. Such proprietary measures could

be detrimental to the open ecosystem Solid tries to enable and reduce transparency for end-users.

Solution

In this thesis we propose an architecture for relating Solid’s low-level access control mechanism with the higher-level re-

quirements set by data protection law through the application of data usage policies. Additionally, we implement part of this

architecture to evaluate its technical feasibility and performance. While our implementation shows adequate performance

for small amounts of data stored in the Pod, further optimizations will be needed for the architecture to be practicable.

xxv

Acknowledgment

You may have heard of the expression ”It takes a village to raise a child.”, a proverb originating from a family of expressions

that likely find their roots in African culture. At the start of this thesis I would like to add to that family of sayings, because it

very much also takes a ”village” to write a thesis. From the advise, feedback and interesting discussions I’ve had the pleasure

of having with my supervisors, Ruben Verborgh, Ruben Taelman and Pieter Colpaert, over the last year to the collaboration

and late-night brainstorming on the future of Solid and privacy on the Web within the Solid community panels, with people

like Justin, Pavlik, Mathieu and Eric, and the feedback I’ve received from researchers across a wide range of fields, I can only

conclude that this thesis was no ’one person job’.

Furthermore, I want to thank my friends and family for their support, proofreading sessions and motivation. And perhaps

most importantly, for sometimes pulling me away from my keyboard.

And finally, I must not forget my colleagues with Digital Flanders and the Flemish Data Utility Company. Working with them

over the last year on bringing Solid into a wide range of practical applications with the aim of improving life for every citizen

in Flanders has simultaneously been one of the biggest challenges and most rewarding experiences so far.

Laurens Debackere,

Brugge, June 2022.

xxvii

Permission of Use on Loan

EN: The author gives permission to make this master dissertation available for consultation and to copy parts of this master

dissertation for personal use. In all cases of other use, the copyright terms have to be respected, in particular with regard to

the obligation to state explicitly the source when quoting results from this master dissertation.

NL: De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van de masterproef te

kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de bepalingen van het auteursrecht, in het bijzonder met

betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze masterproef.

Laurens Debackere, June 2022

xxix

Table of Contents

List of Figures xxxiv

List of Tables xxxv

1 Preface 1

1.1 Surveillance capitalism . 1

1.2 How do we define privacy and data protection? . 3

1.3 Solid: Redefining a web of platforms into a web of data . 4

1.4 Motivation . 5

1.5 Research Question . 6

1.6 Outline . 7

2 Background: GDPR 9

2.1 Legal views on privacy . 9

2.2 The EU’s General Data Protection Regulation . 11

2.2.1 Terminology . 12

2.2.2 Scope . 12

2.2.3 Requirements for Data Processing under GDPR . 13

2.3 The Data Privacy Vocabulary . 18

2.4 Conclusion . 18

3 Related Work 19

3.1 Semantic Policy Languages . 19

3.1.1 Access Control Policies vs. Data Usage Policies . 19

3.1.2 ODRL . 21

3.1.3 SPECIAL . 23

3.2 Solid’s Data Interoperability Panel . 24

4 Authorization in Solid 27

4.1 An introduction to Web Access Control . 27

4.2 Technical Capabilities & Limitations . 28

4.3 Adherence to Data Protection principles & Fair Information Practices . 33

4.3.1 Informational Requirements . 33

xxxi

4.3.2 Legal basis & Purpose of Processing . 35

4.3.3 Fair Information Practices . 35

4.4 The introduction of User-Managed Access in Solid-OIDC 0.1.0 . 36

4.4.1 Introduction of UMA 2.0 in the request flow . 36

4.4.2 Role of the UMA Authorization Service . 38

4.5 Access Control Policy: A proposal for improving Access Control in Solid . 39

4.6 Conclusion . 40

5 An Architecture for Enforcing Data Protection In Solid 41

5.1 Background: Linked Data Integrity . 41

5.2 Overview . 41

5.3 End-User Realm . 42

5.3.1 Access Management App . 42

5.3.2 Data Model: Processing Requests & Grants . 44

5.4 Technical Realm . 45

5.4.1 Authorization Agent . 45

5.4.2 Data Model: Auxiliary Rules & Policies . 46

5.5 Illustration with an Example Use Case . 47

6 Implementation 49

6.1 Context & Technology Stack . 49

6.1.1 Components.JS . 50

6.1.2 Community Solid Server . 50

6.1.3 User-Managed Access 2.0 . 51

6.2 Technical Realm: Authorization Service . 52

6.2.1 UMA-support for the Community Solid Server . 52

6.2.2 A UMA Authorization Service using Components.JS . 56

6.2.3 Authorizing requests using the Solid Application Interoperability specification 60

6.3 Technical Realm: Authorization Agent . 63

6.3.1 Data & Authorization Discovery . 64

6.3.2 Agent Registration . 64

7 Discussion 67

7.1 Assessment of Web Access Control & Prior Research . 67

7.2 Architecture . 69

7.3 Implementation . 70

7.3.1 Affordances for researchers and developers . 70

7.3.2 Real-world performance evaluation . 71

7.3.3 Potential Optimizations . 73

8 Conclusion 77

8.1 Further Work . 79

8.2 Ethical and Societal Reflection . 80

References 81

Appendix 87

Appendix 1: ”A Policy-Oriented Architecture for Enforcing Consent in Solid” . 89

Appendix 2: ”Performance Evaluation of UMA Authorization Service” . 99

List of Figures

3.1 UCON model highlighting the continuity of enforcement throughout the lifecycle of data usage. 20

3.2 The ODRL information model . 22

3.3 Overview of an example resource hierarchy for medical records using Shape Trees. 24

4.1 Illustration of information sharing based on Web Access Control in Solid. 29

4.2 Illustration of exchange of medical records between a patient and a doctor using Solid’s access control. 32

4.3 Authentication and Authorization under Solid-OIDC 0.1.0 . 37

5.1 Component overview of the proposed reference architecture . 43

5.2 Sequence diagram highlighting an example use-case of the proposed architecture 47

6.1 Interactions between components with respect to the UMA 2.0 Authorization Service in the Solid-OIDC 0.1.0

specification. 51

6.2 Classes & interfaces for the UMA client that was introduced in the Community Solid Server. 53

6.3 Classes & interfaces pertaining to authentication in the Community Solid Server. 54

6.4 Classes & interfaces pertaining to authorization in the Community Solid Server. 55

6.5 Classes & interfaces modified pertaining to error handling in the Community Solid Server. 56

6.6 Overview of HTTP Handlers in the UMA Authorization Service . 58

6.7 Overview of the modules involved in processing the UMA token request . 59

6.8 Architecture of the Solid Application Interoperability Authorizer-module . 62

6.9 Overview of the registries used by the Solid Application Interoperability specification 63

6.10 Interfaces of the Authorization Agent relating to the creation of a new authorization. 66

7.1 Median response times for the UMA Authorization Service in different scenario’s 72

7.2 Median response times for the UMA Authorization Service for varying Data Instances 74

7.3 Median response times for the different phases of UMA Authorization when compared to WAC-based autho-

rization without UMA AS . 75

xxxiv

List of Tables

2.1 Overview of the Europeanized Fair Information Practices . 14

2.2 Overview of the required information disclosure by the data controller to a data subject under the GDPR. . . . 17

4.1 Properties of a Web Access Control ACL and their relation to the informational requirements under Article 15

of the GDPR . 34

xxxv

List of Listings

4.1 Example ACL resource . 30

5.1 Example Unsigned Processing Grant Request . 44

6.1 Example UMA Token Request . 59

xxxvi

1
Preface

”You mean Laertes’ son, from Ithaca. I saw him on an

island. He was weeping in the palace of the nymph

Calypso, who keeps him there by force. He has no way

of getting back to his own land — he lacks

companions.”

—Homer, Odyssey, Book IV

The unprecedented growth of online services and applications over the last two decades has fundamentally reshaped our

society, determining the ways in which we communicate, do commerce, entertain ourselves, consume the news, This

digital revolution has also cleared the way for a society where fundamental rights like privacy and data protection are under

increased pressure, often leaving the governance of our data in the hands of the corporations that provide us with these

essential tools of the modern era. In this thesis we research Tim Berners-Lee’s Solid Project and how it could form the basis

for a more equitable web where the balance of power between service providers and end-users is restored.

1.1 Surveillance capitalism

In the 2019 book ”The Age of Surveillance Capitalism”[1] professor Shoshana Zuboff warns her readers of the way technology

has radically changed the fabric of our society over the last few decades. Her book discusses the advent of a new economic

model, called surveillance capitalism, that has fostered the explosive growth of platform economies like Google, Facebook,

Microsoft, TikTok, WeChat, These services have all discovered new ways of extracting value from their customers, very

different from the traditional product- or service-oriented approaches employed by the capitalists of the 20th century like

Ford or Edison.

According to Zuboff, surveillance capitalism developed rather unassumingly in the background of major societal changes

that followed World War II, like decolonization, the women’s rights movement, the civil right’s movement, the fall of the

Berlin Wall, Over the course of this post World War II era, people have asserted a greater sense of self. Rather than

1

1 Preface

the collectivism and sense of solidarity that drove the Allied forces to victory during the War, the relative peace of the last

decades has led people to an exploration of themselves and their own identity, she argues. This trend is what some social

scientists also call the second modernity[2].

Just a short two hundred years ago the first modernity originated at a time when industrialization allowed ordinary people

to trade in their predetermined future as the ”son of ...” or ”daughter of ...” for a hard life in one of the new factories that the

industrial revolution had given birth to. While they had some freedom to escape their descent, people were still expected

to conform to their community’s expectations and norms. This first modernity gave some headroom for self-determination,

think for example of the many Europeans who endeavored on a quest for a better life in the Americas at the beginning of the

20th century, but nothing as radical as the changes that have occurred in our lifetimes. The people of the first modernity did

lay the building blocks for our capitalist economic system, which was a critical enabler of these radical changes that were to

follow, first as part of an underpaid workforce and later as a consumer when Henry Ford and his contemporaries discovered

the power of mass consumption and transformed their workforce into a consumer base.

When Sir Tim Berners-Lee and Robert Cailliau invented the World Wide Web at CERN in 1989, they could never have imagined

the profound impact their invention would have on our society. The individualism that had grown in our second modernity

society over the preceding decades provoked a very real need for information. As our identities, beliefs and values were

no longer predetermined by the environment we grew up in every individual had to discover and construct the open-ended

reality that is their life. The Web was and is a critical enabler for the sharing of opinions, facts and thoughts that help

us form this reality. Furthermore, it also broadened the horizon for so many, not restricting the dissemination of ideas to

one single geographic community or neighborhood. But for all the good that the Web provided to these new generations

of information-seekers eager to understand their world, it also formed the breeding ground for surveillance capitalism’s

meteoric rise.

Of particular note is that the original vision of the Web, as set forward by its inventors, was one of decentralization, where no

single entity could control the dissemination of information. Think of how a hyperlink allows anyone to link to some article

or website, without even requiring the permission of the author. This lack of centralized control enabled one of the central

drivers of the Web’s explosive growth: permissionless innovation.

It is this concept of permissionless innovation that enabled platforms like Google, Facebook and others to become the be-

hemoths they are today, driven by an ever growing wave of people trying to determine their own identity in this era and

connect with their kins. Social norms and expectations that were considered as if set in stone just a few decades ago, are

now under constant discussion and scrutiny. It is up to each individual to navigate this society without certainties. This is

the environment that gave birth to surveillance capitalism’s economic driver. To these platforms it quickly became apparent

that the information needs of a generation in search of their identity could be reappropriated for the profit of investors.

Surveillance capitalism, like any form of capitalism, involves the trade of a product or service. Surveillance capitalism’s

product is what Zuboff describes as behavioral surplus, it is the information that is extracted from our behavior as users on

this platform not for improvement of the product but rather for the benefit of its investors. Such behavioral surplus is no

longer the finished product these days, rather the aim is to predict and even influence future behavior of consumers. You

may have heard the platitude ”If it is free, then you are the product”, but rather than the product we have become subjects

2

1 Preface

whose personal data are being extracted, analyzed and sold for profit.

Crucially these platforms currently undermine the very foundational aspect of the web that enabled them to exist in the first

place, they have largely traded in the decentralized roots of the Web for increased centralization and in the process hollowed

out the very enabler of permissionless innovation. Other forms of capitalism also have some very negative consequences

when allowed to go unchecked, think of the monopolistic behavior of the so-called Titans of Industry at the turn of the

20th century which gave birth to the first antitrust laws[3], how big e-commerce players use union-busting tactics in order

to keep low-wage workers from improving their working conditions[4] or how Big Oil has knowingly contributed to global

warming and polluted our environment in their search for Black Gold[5]. Traditionally, a combination of legislation and

public outcry have aimed to balance the interests of our society as a whole with those of the shareholders of these big

corporations. However, the unprecedented speed at which surveillance capitalism has become the dominant force behind

the social media and other platforms we have all become so dependent on and the fact that it directly targets some of our

most fundamental desires, like self-determinism, a feeling of belonging and our connections to the people we love have

made it very difficult to clearly see what is happening here.

How can society fix this imbalance between the surveillance capitalism that drives the platform economies we have become

so dependent on and the negative effects it has likemisinformation and fake news, mental health problems, the filter bubble

effect and privacy breaches? In 2017, confronted with both the tremendous positive effects of his invention as well as the

negative impact of modern platforms and the economic systems that support them, Sir Tim Berners-Lee set forth three

challenges for the Web[6]:

• Taking back the control over our personal data.

• Tackling the spread of misinformation on the web.

• Ensuring transparency for political advertising.

These challenges reflect the problems that we’ve highlighted in the preceding paragraphs and their supposed origins in the

economic models of these large platforms which today function as islands of centralization in the decentralized world the

Web once fostered. At the heart of the problem is the invisibility of these Platform’s actions. As Zuboff describes it, we must

be wary of not confusing the puppets (the platforms and services that we’ve become so dependent on) and their puppet

master (the economics that feed of the behavioral surplus these platforms are so good at extracting from our actions). Over

the last decade a lot of progress has been made in making this puppet master more visible, both at a legal, societal and

technical level. Something which we will touch upon in the next sections of this introduction.

1.2 How do we define privacy and data protection?

Research into consumer awareness around privacy in Flanders[7], demonstrates an increased concern with users over how

their data are being used by the applications and services they rely upon. Fifty-two percent of respondents are notably

3

1 Preface

concerned with their privacy, in particular the lack of transparency into data processing and collection as well as the impact

of social media are noted as areas of concern.

An important distinction to bemade here is between privacy and data protection. Data protection ensures that the processing

of personal data happens following the principles of due process and in a fair and transparent manner with respect to the

data subject. The principle of data protection has shaped much of the contemporary European legal view regarding the

protection of an individual’s privacy, which is perhaps best demonstrated by its status as a fundamental right under the

Charter of Fundamental Rights of the European Union and, perhaps more visibly, the General Data Protection Regulation

(GDPR). While data protection in the EU delegates most of the legal responsibility to the party seeking to process personal

data, the United States have followed a markedly different approach to privacy protection which puts a lot of the burden

on the individual to make informed choices in a free market. While the US does have specific sectoral laws governing the

protection of certain data, no all-encompassing protections exist akin to those afforded by the GDPR.

Even in the light of growing consumer awareness and strict regulation enforcing the principles of data protection at the EU-

level, dark patterns are still employed bymany applications and services [8], transparency into how information is being pro-

cessed is often hidden away behind cumbersome processes and lengthy privacy policies, and take-it-or-leave-it approaches

regarding consent are even now wide-spread[9]. Progress has been noted[8], however, mostly in the area of transparency

through updated privacy policies and the use of cookie banners. Nevertheless, the mandated controls for end-users over

their data are rarely provided and only a minority of web services are able to meet the high-standards set by GDPR[10].

1.3 Solid: Redefining a web of platforms into a web of data

The Solid project1 aims to realize Tim Berners-Lee’s vision on decoupling personal data storage from the apps and services

that use it, in order to return control and data governance to the user. Ultimately, Solid aims to re-establish a proper balance

of power between service providers and their users [11], by providing the latter with the tools to make their own choices in

data sharing and storage rather than having their data exist out of sight and out of control. To that end, the Solid community

is developing a draft specification for decentralized personal data storage servers, also referred to as Pods.

At its core, the Solid Protocol version 0.9 [12] has three crucial building blocks that make up most of its footprint:

1. Solid implements parts of the Linked Data PlatformW3C recommendation [13] to allow for read/write-access to the

resources stored in a Pod with specific affordances for handling Linked Data.

2. Solid proposes WebIDs [14] and Solid OIDC [15] for identification and authentication purposes respectively. Through

these standards, agents can be linked to a decentralized identifier expressing information on them like the agent’s

trusted identity providers. This allows for authentication between resource and authorization servers that have no

prior trust relation.

1
https://solidproject.org

4

https://solidproject.org

1 Preface

3. Web Access Control [16] provides the critical controls over sharing of information stored in the Pod. Web Access

Control is a cross-domain, decentralized solution for authorizing requests using Access Control Lists (ACLs) expressed

as Linked Data. It identifies both agents and resources through the use of IRIs. Notably, ACLs can both be defined

specifically for a given resource, or be inherited from a parent container.

Recently, governments and businesses have started showing interest in Solid as an enabler for improved data sharing while

respecting the requirements set by privacy and data protection law. In Flanders, the Data Utility Company is being launched to

kick-start an ecosystem centered around data sharing enabled by technologies like Solid Pods. These evolutions emphasize

the need for a thorough study of how Solid can meet or even exceed legal requirements. Research which encompasses not

only a technical evaluation but also furthers our understanding of the user experience and user attitude with respect to this

new model of data governance, the legal implications of the use of personal data vaults, and the economic model by which

this data-sharing ecosystem can create value for the parties involved.

1.4 Motivation

Typical online service relationships show significant asymmetries of power between end-users and service providers[17],

due to economical, technical and organizational choices. In contrast, Solid allows for a user to have a clear overview of

what data their Pod contains and granularly control with whom they share access. Therefore, it could bring crucial bilateral

protections that legal bases for data processing, like consent, depend upon in order to be used as intended by the legislator

in data processing applications.

Moreover, as was highlighted in prior research[8], there is little effort currently being spent by data controllers in affording

data portability to their end-users. A capability which is mandated by the GDPR, but obviously conflicts with business inter-

ests inspired by the surveillance capitalism model as presented by Zuboff[1]. Solid may be a critical enabler for such data

portability given its use of Semantic Web technologies allows for interoperability by design. Also, the model of personal data

vaults for storing data puts the controls over data sharing in the hands of the end-user instead of leaving these decisions

up to the different service providers.

Nevertheless, the current Solid protocol 0.9[12] relies on Web Access Control to realize end-user control over data sharing,

which has limited expressivity and interpretability. In contrast, recent privacy and data protection regulations impose strict

requirements on personal data processing applications and the scope of their operation[18]. Crucially, theWeb Access Control

mechanism lacks the granularity and contextual awareness needed to enforce these regulatory requirements and shows

critical shortcomings when used as a tool for realizing end-user data governance.

5

1 Preface

1.5 Research Question

In this thesis we investigate the implementation of consent-based data-processing in Solid, with the aim of validating in

which ways it conforms to or falls short of realizing the legal requirements set forth by the GDPR regulation. In order to

realize this goal we define a number of intermediate research objectives:

1. Identify the the relevant informational and technical requirements for consent-based data-processing under GDPR.

2. Provide an overview of prior research on the topic of reconciling Solid’ authorization mechanism with the require-

ments for data processing under data protection law.

3. Evaluate the existing solutions for implementing data processing based on consent in Solid using Web Access Control.

4. Define a novel architecture for implementing consent in Solid, mindful of the requirements and shortcomings that

were previously identified.

5. Implement and assess this novel architecture with respect to the identified legal requirements and shortcomings of

prior proposals.

Through these research objectives we want to answer the following central research question: ”Can we rely on data usage

policies to implement consent-based data-processing in Solid which conforms to the requirements under the GDPR regu-

lation and is applicable within the constraints of a practical application?”. In order to evaluate this practical applicability

requirement, we should validate that when given an authorization based on such a data usage policy an application can use

these access rights in an interactive setting. This research question will in fact imply three separate sub-questions we need

to answer:

1. Can data usage policies be integrated into the Solid protocol as it exists today?

2. Does our implementation conform to the informational and technical requirements of consent as a legal basis for

data processing under GDPR?

3. Does our implementation have bounded performance guarantees that ensure it can be used in the constraints of an

interactive, end-user application?

We will hypothesize that our architecture, which builds upon the work of the Solid Application Interoperability specification

and prior research defining the use of ODRL policies as an authorizationmechanism in Solid, in fact successfully integrates the

model of data usage policies in Solid’s existing protocol (1), can comply with the requirements set by the General Data Pro-

cessing regulation (2), and provides bounded performance guarantees in authorization of a request from a specific client (3).

6

1 Preface

1.6 Outline

This thesis continues with chapters 2,3, and 4 that aim to provide the reader with information on the requirements for

data processing under the General Data Protection Regulation as well as how Solid currently implements authorizations

and what efforts have been made to improve this. Thereafter chapter 5 details our proposed reference architecture for the

implementation and enforcement of the requirements set out by data protection regulations. In chapter 6 we present our

implementation of this architecture using the Components.JS semantic dependency injection framework, followed by an

evaluation in chapter 7. Finally, we present our conclusions reflecting on the fulfillment of the initial research objectives and

define further work that will be necessary in this field.

7

2
Background: GDPR

”Speak softly and carry a big stick; you will go far”

—Theodore Roosevelt

While largely a refinement of existing legal frameworks like the 1995 Data Protection Directive and the 2005 ePrivacy Direc-

tive, the EU’s General Data Protection Regulation1 [19] set a major legislative milestone in the realm of data protection and

privacy law when it entered into force in 2018. Its use of a ”big stick” approach to compliance, through hefty fines and the

introduction of new internal and external control mechanisms awakened both the legal and business community. It affords

data subjects with both increased transparency and greater control regarding the processing of their personal data by data

controllers and takes new and emerging technologies such as Big Data, AI, and the internet explicitly into account. While far

from perfect [9], it bestows a much greater deal of autonomy upon the data subject when making decisions regarding the

processing of their personal data than has previously been the case.

This chapter starts with an overview of the broader history and context of data protection and privacy regulations, informa-

tion that is critical for understanding the objectives but also the limitations of such legislation. Thereafter we look at the

specifics of the EU’s General Data Protection Regulation, namely which parties are subject to it, what requirements it sets

for data processing applications and how it relates to similar laws in other regions. Finally we aim to establish the specific

informational requirements data controllers must retain, in fulfillment of research objective 1.

2.1 Legal views on privacy

Widely considered as the father of modern day data privacy law, in his 1967 book ”Privacy and Freedom”[20] Alan F. Westin

describes in detail the threats he sees our modern society pose to privacy and how we should tackle the challenges posed

by new technologies like ”closed-circuit TV cameras”, ”directional microphones”, and the ”computerization of vast amounts

of personal data”. For this last technological trend, Westin coins the term ”data surveillance”. The solutions proposed[21]

in his work are fourfold; Firstly, a requirement of due process should be imposed on personal data processing. Secondly,

1
http://data.europa.eu/eli/reg/2016/679/oj

9

http://data.europa.eu/eli/reg/2016/679/oj

2 Background: GDPR

the individual must be notified when their data are collected. Additionally, they must be able to examine the data being

processed. Finally, the individual should be able to challenge its contents if inaccuracies are found. Most poignantly Westin

notes that much progress could already be made with regards to limiting the encroachment on privacy he describes without

necessarilymodifying legislation but by introducing privacy controls like professional standards or even some ”old-fashioned

good manners”[21].

In her work ”Privacy as Contextual Integrity”, Helen Nissenbaum introduces privacy as ”...one of the most enduring social is-

sues associated with information technologies.”[22]. Through themodel of contextual integrity, which breaks down the issue

of evaluating breaches of privacy into an assessment of the two social norms appropriateness and distribution, Nissenbaum

aims to resolve the limitations of existing models for determining breaches in the context of so-called public surveillance.

Public surveillance refers to the use of technology in novel ways which greatly expand our capacity to gather, process or

analyze personal information such that existing law falls short in curtailing the privacy infringements these applications

may enable. In contrast with some prior approaches towards defining privacy, Nissenbaum argues that there are no areas in

life where ”anything goes” with respect to our personal information. Nevertheless, in different contexts there will be distinct

norms which apply to the flow of information. In the model of contextual integrity, these norms are split into two realms

firstly norms of appropriateness and secondly norms of distribution. Both categories of norms should be respected for con-

textual integrity to be maintained. The norms of appropriateness define what details are appropriate to be revealed about

a person in some context whereas norms of distribution regulate the transfer of personal information between parties.

The recently published W3C group draft note on ”Privacy Principles”[23], aims to guide specification writers and policy mak-

ers by defining a reference framework for concepts related to privacy that can be applied at a global scale. The growing

asymmetries of power that the Web has been confronted with over the last decades because of the ability to process, col-

lect an analyze an ever increasing volume of data pose an important challenge with respect to privacy and data protection,

according to the authors. And even in jurisdictions where data protection is legally established as the norm, dark patterns

are prevalent in many services to evade the protections this legislation aims to give individuals[8]. Many of the ideas by

Nissenbaum and Westin regarding privacy and the appropriateness of specific flows of information in certain contexts can

be found in this draft document and should serve to inform future writers and implementers of web specifications.

An important concept which is also introduced in the W3C draft note[23] is that of data governance, a set of principles which

enables actors to regulate flows of information. For a system to enable data governance for its individual users, it should

allow these parties to define which flows of information can or cannot be produced, exchanged or processed about them

by other actors. In fact, data governance goes beyond the idea of privacy and perhaps serves to enable what Nissenbaum

names[22] ”preferences” of the individual, when discussing a more conservative approach for handling the issue of public

surveillance. As we will highlight in the next sections the choices of an individual with respect to flows of information are

rarely absolute, for example how would a tax agency collect taxes if everyone simply chooses not to share their financial

details. Thus, data governance might not always be the right model to strive for when implementing better data protection

for the Web.

10

2 Background: GDPR

2.2 The EU’s General Data Protection Regulation

The origins of the EU’s General Data Protection Regulation can be found in the Charter of Fundamental Rights of the European

Union[24], which aimed to consolidate themost important rights and freedoms applicable to EU citizens into a single, legally

binding document. Articles 7, ”Respect for private and family life”, and 8, ”Protection of personal data”, define the freedoms

that are implemented and enforced in secondary law like the GDPR. It is important to underline the origins of data protection

as a fundamental right2 , firstly because these rights were defined long before the advent of today’s platform economies and

secondly because they give the individual the right to the processing of their personal data in a fair manner[25].

During a 2009 roundtable on Online Data Collection, Targeting and Profiling, then commissioner of Consumer Protection

Meglena Kuneva described[26] personal data as ”the new oil of the internet and the new currency of the digital world”. This

vision on personal data being analogous to a valuable commodity is not new, British mathematician Clive Humby was likely

one of the first to note this parallelism back in 2006, at the time he substantiated this claim by noting: ”It’s valuable, but

if unrefined it cannot really be used”[27]. The implications of this oil metaphor can be found throughout the GDPR, even

though it has been noted[28, 29] that this analogy suffers from the lack of a clear definition of ownership. Similar to how

society has struggled with the ownership of real-world valuable commodities. Especially when considering data protection

as a human right, as it is defined within the European Union, this notion of ownership becomes all the more important.

At this point the fundamental difference between privacy and data protection should also be highlighted. From the per-

spective of the GDPR data protection is considered separate from the right to privacy. Notably, data protection should not

only entail protecting the private life of the individual but also ensures that data are used in a fair manner and following

the principles of due process. The United States on the other hand followed a fundamentally different approach to privacy

law[18], where sectoral rules govern much of the informational privacy of individuals. This notion of informational privacy

puts most of the burden on data subjects whom are tasked with performing a critical evaluation of privacy policies and

then have to make an informed choice from the offerings in the free market. The burden in case of a breach then falls on

the individual, whom should have made a more careful evaluation of the marketplace, at least according to this school of

thought.

Importantly, many of the General Data Protection Regulation’s rights and requirements were already present in prior law,

such as the 1995 Data Protection Directive, which was plagued by poor compliance and inadequate enforcement because it

had to be implemented in national law such that fines and remedies were left at the discretion of the member states[18].

By expanding the powers and responsibilities of Data Protection Authorities, increasing the fines that can be imposed when

data controllers are found to be in breach with the GDPR and more broadly defining who can sue and the ways in which

data subjects can seek remedy when they find that their rights have been violated, the GDPR aims to resolve many of the

shortcomings of the Directive.

2
Used interchangeably with the term ”human right”

11

2 Background: GDPR

2.2.1 Terminology

Before defining the requirements imposed on personal data processing by the GDPR, we will first specify the terminology

used to define the different actors involved, the regulated activities and the entities tasked with enforcement.

Firstly, we should delineate the concept of personal data which is described in Article 4 (Definitions) of the Regulation as

”...any information relating to an identified or identifiable natural person...’[19]. The identifiability of the natural person is

considered in a very broad sense, as it also includes indirect identifiability such that pseudonymous identifiers as well as

information that is typically considered public knowledge may also fall under this broad definition of personal data.

The GDPR regulates the processing of such personal data, which is subsequently defined as ”...any operation or set of opera-

tions which is performed on personal data or on sets of personal data, whether or not by automatedmeans,...”[19] Analogous

to the definition of personal data, this lays out a very wide scope for what can be considered processing. In practice almost

everything one can do with personal data will fall under this definition of processing.

Three important actors are directly involved in the data processing activities as they are taking place. The data subject is

the natural person to whom the personal data being processed can be related. Note that the nationality of this natural

person is irrelevant to the GDPR, the fact that the person is in the EU suffices for the provisions of the GDPR to apply. Data

controllers are the entities responsible for defining the purposes, identifying the legal basis, and implementing the necessary

technical and organizational measures applicable to the data processing. They initiate the personal data processing and also

assume liability in case of breaches and non-compliance to the Regulation. Controllers can delegate the task of processing

personal data to data processors. In this case the due diligence of ensuring data processors, like cloud providers or advertising

networks, are in compliance with the requirements of the GDPR, falls squarely on the data controllers.

Important in the enforcement of the Regulation are Data Protection Authorities which are established at a national level, and

saw their role in supervision and compliance monitoring of data controllers considerably expanded and strengthened under

the GDPR. These authorities are expected to be independent from political influence, can collaborate in broader investigative

efforts and assist data controllers in achieving compliance. As a regulator the Data Protection Authorities are also responsible

for processing the complaints of individuals, as well as notifications of breaches by data controllers. In large organizations

the role of the data protection officer was introduced under GDPR. A DPO is responsible for the monitoring of compliance

with the Regulation within an organization, furthermore they are the primary contact point for both the regulator and the

data subject.

2.2.2 Scope

As we’ve noted before the GDPR interprets both personal data and processing activities in a very broad sense. In fact, only

few exceptions exist that limit the applicability and scope of the Regulation. In the following section we’ll identify the

territorial scope, i.e. where the Regulation is applicable, and the material scope, i.e. to what activities and in which context

the Regulation is applicable.

12

2 Background: GDPR

Territorial Scope

The GDPR evidently applies to organizations and entities that are established in Europe. However, the Regulation can also

apply to organizations which have no real-world presence in the EU, if the controller or processor is ”...offering services to

data subjects in one ormoreMember States in the Union.”[19]. This way the GDPR ensures that entities cannot just move data

to a jurisdiction with more lenient regulations concerning privacy and data protection. Essentially, the GDPR is applicable as

soon as any organization consciously processes the personal data of people in the EU, even if that organization is not based

in the EU.[18]

Material Scope

By default the Regulation applies to processing of personal data in the very broadest sense, however two important excep-

tions have been introduced by the regulator. Firstly, it does not affect processing in the context of pure household or personal

activities. An exception that is interpreted in a very narrow sense by regulators and courts, but exempts for example the

interactions we have with friends and family on social media. Secondly, in the context of national security and prosecution

of criminal offences data processing activities also fall outside the scope of the Regulation.

2.2.3 Requirements for Data Processing under GDPR

The GDPR defines four high-level requirements whichmake data processing proportional and lawful. Firstly, data controllers

must adhere to the Fair Information Practices (FIPs). Secondly, there must be a proper legal basis for processing the personal

data. Also, in the case of specific categories of sensitive data, the controller must have specific grounds for using this

information. Lastly, in the case of transfer of data outside the EU there must be a lawful mechanism for this transfer to

occur.

Fair Information Practices

The Fair Information Practices (FIPs) were introduced as a requirement by the original 1995 Directive with the goal of min-

imizing collection, processing and use of personal data. They consist of six principles that a data controller must take into

consideration in the design, development and operation of data processing activities. In the next paragraphs we will briefly

introduce these principles.

The principle of lawfulness, fairness and transparency is the first of these FIPS. It also relates to the central aim of data

protection. Namely, that the processing of personal data occurs in a fair and transparent manner with relation to the data

subject and respectful of applicable law, like GDPR. This stipulation is central to the requirement for controllers to give data

subjects transparent information on their processing activities in language which they can understand.

13

2 Background: GDPR

Table 2.1: Overview of the Europeanized Fair Information Practices processing activities must adhere to under the GDPR.

Name Description

1. Lawfulness, fairness and transparency The data processing occurs in a fair manner, with a basis in law and transparent to the subject.

2. Purpose limitation Data are only processed for a specific, concrete purpose which is known in advance to the subject.

3. Accuracy The personal data being processed is proactively kept accurate and the subject can rectify inaccuracies.

4. Data minimization The personal data processed must be relevant and limited to what is necessary in relation to the purposes.

5. Limited data storage Controllers must not store data for longer than necessary and

the criteria for deletion should be known beforehand to the subject.

6. Data Integrity and Confidentiality The controller must have appropriate protections in place against loss,

breach or unlawful processing of the personal data.

The second principle of purpose limitation, implies that data should only be stored and processed for a purpose that is known

in advance to the data subject. It has been highlighted[18] that this purpose limitation is a challenge to modern Big Data

and Machine Learning applications. Moreover we could also see it come into conflict with the goal of Solid to improve data

re-use, as Pod providers would be confronted with this purpose limitation provision in their role of Data Controller[30]. In

particular because the FIPs require this purpose be specific and concrete. Nevertheless, the GDPR does allow for a controller

to determine that a new purpose is compatible with the original after an evaluation of the expectations of the subject, the

context and nature of the data being processed, the consequences of the further processing for the subject and the link

between the initial and new purpose.

With respect to accuracy, the FIPs mandate that personal data are correct and even rectified or erased where necessary. The

accuracy principle takes into account the purposes for which the personal data are processed, such that the requirement

is proportional to the processing. Finally, the controller must ensure adherence to the accuracy principle proactively and

provide subjects with the possibility to correct data.

Data minimization determines that personal data must be ”adequate, relevant and limited to what is necessary in relation

to the purposes”[19]. Thus a controller must ensure that only the relevant data are being processed and collected for the

purpose, and no additional personal data.

The fifth Fair Information Practice defines limited data storage, and requires that controllers not store personal data for

longer than necessary and set a timeframe for deletion of the processed personal data beforehand.

Finally, the data controller must provide appropriate protections against loss or unlawful processing of the personal data of

the data subject. This is also called the data integrity and confidentiality principle. Breaches against this and other practices

must be reported to the Data Protection Officer, and, if the interests of the data subject are at risk, also to the supervisory

Data Protection Authority.

14

2 Background: GDPR

Legal Basis

In previous sections we’ve already touched upon the difference between data protection and privacy, while both concepts

aim to realize protection of the private life, the focus in data protection is to ensure fairness and due process with respect

to use of the personal data of the subject. One of the central ways by which the GDPR realizes its aim of data protection is

by mandating a proper legal basis for processing. The Regulation defines six lawful grounds for personal data processing in

Article 6 ”Lawfulness of processing”, namely:

1. The data processing is based on the informed, unambiguous and freely given consent by the subject for specific

purposes.

2. The processing is necessary because of a contractual obligation on the part of the data subject. For example, when

applying for a loan with a financial institution, they can process your financial data to asses your creditworthiness.

3. Processing of personal data in order for the controller to comply with its legal obligations. A typical example of this

ground is the data retention laws that frequently apply to communications providers.

4. Data processing necessary for protecting the vital interests of the data subject. The vital interests of the data subject

could for example be in danger during a medical emergency.

5. The performance of a task in the public interest requires the processing.

6. The processing is performed based on the legitimate interests of the controller. This provision is often also called

the balancing provision as the interests of the controller must be balanced with the interests and fundamental rights

of the subject.

Only if at least one of these legal grounds applies can the data processing be considered legitimate under the Regulation.

Our focus throughout this paper will be use-cases where the legal grounds 1 or 2 typically apply. Our motivation for this

choice is that grounds 4 and 6 entail an element of subjective evaluation on the part of the data controller, which would

be very difficult to model let alone enforce especially in a decentralized architecture as is defined by the Solid specification.

With respect to grounds 5 and 3 an important challenge for enforcement of these grounds is the identification and modeling

of obligations and permissions defined in legislation, the topic of Linked Legal Data[31] and the modeling of rules and

requirements defined in data protection law[32] as well as reasoning over such resources[33] is a complex field of research

which warrants a separate evaluation in relation to the problem space defined in this thesis.

Data Processing based on Consent or Contractual Obligation

In this subsection we will define the two legal grounds for data processing that capture the typical data processing activities

which our reference architecture aims to support. Namely, the legal basis of consent or of a contractual obligation on the

part of the data subject.

15

2 Background: GDPR

In particular with respect to the legal ground of consent specific requirements are imposed on the controller with respect to

the information which should be disclosed to the data subject. When defining this legal basis in the Regulation, the regulator

speaks of a ”freely given, specific, informed and unambiguous indication of the data subject’s wishes”[19]. This explicitly

excludes[18] opt-outmechanisms, take-it-or-leave-it conditionswhen the data subject is presentedwith the consent request

and vague wording or the use of fine-print to obtain consent. Also, specific attention was paid to consent given by minors

where the local regulator can impose a stricter minimum age of consent. Lastly, the consent must be as easily revocable

as it could be given by the subject. It is the burden of the controller to prove that they have met these requirements when

obtaining consent. In practice however, the legal ground of consent is often misused [10, 34, 9] on the Web and it is even

theorized[18] that it likely cannot be applied correctly in many common data processing applications.

A controller can also invoke a contractual necessity on the part of the subject as a ground for processing their personal

data. The important criterion here is that the processing should be genuinely necessary in order to perform the contract. For

example, prior to entering a loan a financial institution may perform a check to assess your creditworthiness, this is allowed

under the legal basis of contractual necessity.

Requirements for Data Controllers

As our aim is to evaluate the compliance of authorization mechanisms with the requirements of data protection regula-

tion, this last subsection will explicitly try to define the technical and informational requirements on the part of the data

controller, based on [19, 18].

Firstly, it is expected that the controller keeps detailed records of its processing activities, as to prove that personal data

was handled carefully and legitimately. This requirement puts the burden of proof with the controller, who has to show its

compliance with legal requirements. Also, the controller must define a data protection policy which specifies why the data

was gathered and for what purposes it is processed, how the accuracy of the data are maintained and whom can access the

data.

The controller also must communicate with the subject in a transparent manner and using plain language. Furthermore,

questions of the subject or supervisory authorities must be answered respecting strict timeframes set in the Regulation. Ad-

ditionally, the controller must apply safe default settings and implement data protection by design, thus explicitly excluding

dark patterns [8] that have haunted many modern-day implementations of consent on the web.

Finally, article 15 of the GDPR sets the minimum requirements for the information which a data controller should disclose

to the data subject concerning the processing of their personal data. We will base ourselves on this article, and prior work

regarding the modeling of the informational requirements under GDPR[35] to define a set of properties that should be

captured by a controller to prove the lawfulness of processing.

At a high level an architecture for data processing under the Regulation should[36] capture the types of personal data being

used by the service, the operations which are to be performed, the purpose of this processing, whom the recipients of the

personal data are and where the data are to be stored[36]. Additionally, the legal grounds of this processing, i.e. the contract

16

2 Background: GDPR

Table 2.2: Overview of the required information disclosure by the data controller to a data subject in the context of

personal data processing activities, under Article 13, 14 and 15 of the General Data Protection Regulation.

Description

1. The identity of the Controller Art.13-1a, Art.14-1a

2. The contact details of the Controller Art.13-1a, Art.14-1a

3. The identity of the Controller’s representative Art.13-1a, Art.14-1a

4. The contact details of the Controller’s representative Art.13-1a, Art.14-1a

5. The contact details of the DPO Art.13-1b, Art.14-1b

6. The purposes of the processing. Art.13-1c, Art.14-1c, Art.15-1a

7. The legal basis of the processing. Art.13-1c, Art.14-1c

8. The legitimate interests of the Controller Art.13-1d, Art.14-2b

9. The categories of personal data concerned. Art14-1d, Art.15-1b

10. The recipients or categories of recipient to whom the personal data have been or will be disclosed. Art.13-1e, Art.14-1e, Art.15-1c

11. The envisaged retention period for the personal data will be stored Art.13-2a, Art.14-2a, Art.15-1d

12. The existence of the right to request from the controller rectification

or erasure of personal data or restrict or to object to processing. Art.13-2b, Art.14-2c, Art.15-1e

13. The right to lodge a complaint with a supervisory authority. Art.13-2d, Art.14-2e, Art.15-1f

14. The source of the personal data. Art.14-2f, Art.15-1g

15. The existence of automated decision-making Art.13-2f, Art.14-2g, Art.15-1h

16. Where personal data are transferred to a third country or to an international organization,

the data subject shall have the right to be informed of the appropriate safeguards. Art.13-1f, Art.14-1f, Art.15-2

17. The controller shall provide a copy of the personal data undergoing processing. Art.15-3

18. Right to withdraw consent Art.13-2c, Art.14-2d

19. Details on the statutory or contractual obligation Art.13-2.e

20. Grounds for not complying with informational right of the subject. Art.13-4, Art.14-5

or consent the processing is based on needs to be recorded by the controller as the burden of proving the lawfulness of

processing lies with them. These attributes align closely with the model defined in the SPECIAL Usage Policy Language[37].

Which uses a 5-tuple in its datamodel defining the information being processed, the purpose of this processing, the operation

that will be performed, the storage location of the data and retention period, and what entities can access the outcome of

the operation.

Table 2.2 highlights the required information disclosure to a data subject by the controller under Article 133 , 144 and 155 of

the GDPR. In Article 15, which describes the right of access, paragraphs 1 and 2 are of particular concern in the context of data

sharing when using personal data vaults, given that a subject can consult their Pod at any time to receive a copy of their

personal data such that requirements related to obtaining a copy of the personal data (as defined in paragraph 3) can be

considered accomplished if the controller or processors do not maintain their own copies of the data.

3
”Information to be provided where personal data are collected from the data subject”

4
”Information to be provided where personal data have not been obtained from the data subject”

5
Right of access by the data subject

17

2 Background: GDPR

Specifically in the context of processing based on consent, additional information should also be captured to ensure that the

consent was informed, freely-given and unambiguous. Under the data model proposed by the GConsent[36] ontology, the

entity providing the consent, status of the consent, context and expiry are persisted. Furthermore, when combined with the

GDPRov[38] the datamodel is extendedwith information that can be used to assess the validity and qualitative requirements

of the consent.

2.3 The Data Privacy Vocabulary

Aswe have highlighted before, the use Semantic Web technologies in the legal field is an active area of research, where schol-

ars try to improve the discoverability of applicable law and prior rulings, describe the use of semantic reasoning techniques

for evaluating compliance with legal requirements and develop ontologies to model real-world activities and processes in

terms that relate them to the relevant legal provisions. One example of such a modeling language for defining personal

data processing activities in relation to requirements set by data protection law is the Data Privacy Vocabulary.

The Data Privacy Vocabulary6 (DPV) [39] is a vocabulary that attempts to translate concepts and requirements related to

the processing of personal information under data processing and privacy regulations, like GDPR, into classes and properties

that can be used as Linked Data. It is structured to be extendable with concepts and requirements for specific jurisdictions,

like the DPV-GDPR extension7 that defines the GDPR-specific rights and legal bases concerning data processing.

2.4 Conclusion

In this chapter we introduced the legal point of view on privacy and data protection, with a particular focus on the require-

ments set by the European Union’s General Data Protection Regulation. While not a comprehensive overview of the legal

realities involved in data protection applications, we highlighted the specific information which should be captured by data

controllers and what considerations must be taken into account in the architecture and design of data protection applica-

tions, like the Fair Information Practices. These requirements should serve as the basis for evaluating existing solutions for

authorization in Solid, and for defining our own architecture to implement compliance with data protection regulation in

Solid.

6
https://w3id.org/dpv#

7
http://www.w3id.org/dpv/dpv-gdpr#

18

https://w3id.org/dpv#
http://www.w3id.org/dpv/dpv-gdpr#

3
Related Work

The topic of data protection compliance using Semantic Web technologies has been the subject of prior work, in particular

with respect to the modeling of legal requirements and processes involving personal data, as well as for expressing data

sharing preferences. We start this chapter by discussing efforts regarding data usage policy languages based on Semantic

Web technologies. Of particular importance in this area are ontologies like ODRL and SPECIAL, that aim to use these policy

languages not only as a way to model permissions and prohibitions but also to enforce compliance. Thereafter we will focus

on the work of Solid’s Data Interoperability Panel with respect to improving developer experience regarding data discovery

and authorization.

3.1 Semantic Policy Languages

Policy languages have been proposed[40, 41] as a flexible means of ensuring security and privacy on the Web, which due

to its decentralized nature suffers from a lack of convenient security mechanisms for developers, content publishers and

end-users. In general, machine-readable policy languages should allow for the regulation of behavior of components in a

(distributed) system, without having to modify code or relying on manual interactions with each of the components that

are governed by the policy. Through the use of Semantic Web technologies, interoperability issues between different policy

languages can be resolved[40] and standardized, reliable semantics may be defined for evaluating these policies in the

heterogeneous, decentralized landscape of the Web.

In this section we will first look at the field of data usage policies, and its subset of access control policies that will be the

focus of subsequent chapters in the context of the Solid project. Thereafter we will highlight two examples of such semantic

policy languages, ODRL and the SPECIAL policy language.

3.1.1 Access Control Policies vs. Data Usage Policies

A specific subset of policy languages enables us to define so-called data usage policies, in general these policy languages

enable the restriction of how data are used in a distributed system[42]. Many current security systems cannot enforce

19

3 Related Work

Figure 3.1: UCON model highlighting the continuity of enforcement throughout the lifecycle of data usage.

Source: [44]

restrictions on the use of data after it was transferred to another system. Thus, once this exchange has occurred a sender

must trust that the receiver will not misuse the information that was shared. Usage policy languages aim to resolve this

shortcoming by broadening the scope of existing security mechanisms beyond just single systems and allowing end-users

to express and enforce restrictions on the access, use and distribution of their information in a decentralized landscape, such

as the Web.

With their UCON model, Park and Sandhu proposed[43] a pattern for usage control as a generalization of access control,

such that it covers not only authorizations but also obligations and conditions. Importantly, UCON views enforcement as

a continuous process. This contrasts sharply with how traditional access control mechanisms typically only make a one-

time determination before resource access. Within the UCON model, three categories of enforcement mechanisms can be

identified[42]; Proactive enforcement entails preventing policy violation before it occurs, through client-side or server-side

techniques. Reactive enforcement is based on the assumption that it is hard to prevent the violation of a policy on a device

that is not controlled by the enforcing party, such that it can be best detected after the violation has occurred. Lastly, trust-

based enforcement mechanisms evaluate whether parties can be trusted to adhere to a data usage policy. In figure 3.1, the

lifecycle of resource usage under the UCON model is shown.

Traditional access control policies, such as the ones we will describe in the next chapters in relation to Solid, are a specific,

more limited subtype of data usage policies[43]. As we noted, they only govern resources before an exchange has occurred,

in order to prevent unintended information disclosure or security breaches. Threemain types of traditional access control are

identified[45, 46], mandatory access control (MAC), discretionary access control (DAC) and more recently role-based access

control (RBAC). Whereas MAC assumes access policies to be built into the design of the system and thus not modifiable, in

DAC users with sufficient privileges can control what resources are shared with other users. MAC has therefore mostly been

limited to military or government settings, whereas DAC has seen broader adoption. The newer RBAC type combines aspects

of both MAC and DAC, by defining roles in the system and assigning access authorizations to these roles. Then, when a user

is assigned to a role they are also granted all authorizations belonging to this role. On the other hand, with DAC the concept

of a per-resource Access Control List is used[46] to express the authorized access of specific users for that resource, with a

20

3 Related Work

particular focus on protecting information within the constraints of a closed architecture. The distributed and open nature

of the Web thus poses a significant challenge to access control policies as a security mechanism. Moreover, the academic

model of the access matrix[47] that is typically used to assess these mechanisms has remained largely unchallenged and

starts showing shortcomings when applied to an open-ended architecture where previously unknown users access resources

and have to be authorized regardless of resource or user location. Nevertheless, these access control mechanisms are so

prevalent because they allow for a straightforward determination[46] of the authorization of an agent and typically only

require little awareness on the client-side of the authorization mechanism being used.

3.1.2 ODRL

The Open Digital Rights Language (ODRL) [48] is a rights expression language for defining policies that specify permissions,

prohibitions and obligations over some entities. These deontic concepts allow for translating policies in natural language

to a machine-readable format. Originally, it was introduced as a means to specify content licenses and regulate access to

electronic assets, but through the ODRL profile mechanism it may be extended to support use cases in specific domains of

application[49]. The ODRL core vocabulary identifies policies consisting of rules that govern assets. Rules determine that an

action is permitted, prohibited or obligated in relation to the asset. Through constraints additional conditions under which

a rule is applicable can be specified. The ODRL became a W3C recommendation in February, 2018.

An ODRL profile and algorithm has been proposed [50] as an extension of the existing ACL-mechanism used by Solid Pods

to authorize requests. Through the semantics of ODRL, obligations and constraints can be imposed upon these authorized

actions. The proposed ODRL profile1 enables the use of concepts from the Data Privacy Vocabulary in order to define policies

that relate to data processing over some resources. The proposal also contextualizes the use of such policies formaterializing

complex data sharing preferences and legal bases for processing like informed consent. The authors [50] do highlight some

significant challenges with their proposal, such as the efficiency of compliance checking with these ODRL policies, especially

when used in a heterogeneous, decentralized architecture and combined with an inheritance mechanism, the privacy risks

associated with making these policies publicly accessible and the legal value of such data sharing preferences in the light

of regulations like the GDPR.

Similarly, more general ODRL profiles on the topic of modeling legal requirements, such as those set by the GDPR, have been

proposed. In [49], De Vos et al. define an ODRL profile to assess the compliance of business processes with regulatory re-

quirements and define a translation of this ODRL profile into Answer Set Programming for enabling automated conformance

evaluations. As an illustration of this profile, it is applied to key articles of the GDPR regarding the lawfulness of processing

and transfer of personal data. The modified ODRL information model that was proposed to enable this compliance evalua-

tion is shown in figure 3.2. Agarwal et al.[51] propose an analogous approach of using the ODRL to model legal obligations

and contextualize this in a broader compliance assessment framework.

Some of the more general shortcomings of the ODRL that have been noted pertain to representing delegation, defining

conflict resolution and resolving semantic ambiguities when defining duties of some party[52]. Nevertheless, the ODRL has

1
https://w3id.org/oac/

21

https://w3id.org/oac/

3 Related Work

Figure 3.2: The ODRL information model

Source: [49]

22

3 Related Work

been used in practice, for example in the RightsML Standard[53] which serves as a rights expression language in the domain

of the media industry allowing for a media asset from a publisher to be annotated with instructions on the rights associated

to the content.

3.1.3 SPECIAL

The SPECIAL project2 was a research project that aimed to deliver technologies to reconcile big data applications with the

necessary regulatory compliance with respect to data protection and privacy. It delivered user interfaces to be used by data

subjects for consent and processing transparency. Moreover, ontologies were developed for the logging of data processing

applications3 and for modeling data usage policies4 of both data subjects and data controllers that are machine verifiable.

Usage policies defined using the SPECIAL Usage Policy Language[54] consist of a set of five-element tuples, detailing the

following information on the processing activity:

Data Information that is to be processed by the operation.

Purpose The purpose of the processing.

Processing A description of the processing itself.

Storage Where the result of the processing is to be stored and for how long.

Recipients The entities allowed to access the result of the operation.

The consent of a data subject for some processing is then materialized as the set of activities that are allowed by the data

subject, in terms of these five-tuples. Similarly, a data controller specifies the processing activities theywould like to perform

in their own usage policy. If all operations in the data controller’s usage policy are also contained in the data subject’s

consent, the controller’s policy is found to be in compliance with the subject’s usage policy. Notably, the SPECIAL policy

language is encoded in OWL2 to enable reasoning engines to efficiently perform these compliance checks in an automated

manner[55].

While evaluating different technical approaches that support the enforcement of legal rights given to data subjects under

data protection regulation like GDPR, an assessment [56] was made of the affordances with respect to data governance

provided by Solid and the SPECIAL project in comparison to the current defacto standard of data subjects giving very broad

consent to processing. In the evaluation of Solid in relation to data protection regulations it was found that Solid’s current

ACL-based solution for authorization falls short when trying to implement solutions adhering to the strict regulatory re-

quirements set forth. Firstly, because of its poor user experience caused by issues like the lacking interpretability of access

mode and resource identifiers for non-technical users, risk of phishing attacks due to the use of IRIs to identify agents, and

2
https://specialprivacy.ercim.eu

3
the SPECIAL Policy Log Vocabulary, https://ai.wu.ac.at/policies/policylog/

4
the SPECIAL Usage Policy Language, https://ai.wu.ac.at/policies/policylanguage/

23

https://specialprivacy.ercim.eu
https://ai.wu.ac.at/policies/policylog/
https://ai.wu.ac.at/policies/policylanguage/

3 Related Work

Alice's Pod

ShapeTrees

st:contains st:contains st:contains

st:shape st:shape st:shape

interop:registeredShapeTreeldp:containsldp:contains ldp:contains

ldp:contains

ldp:contains ldp:contains

ldp:containsldp:contains

Medical Records 🌿

Medical Images 🌿Prescriptions 🌿 Consultation Reports 🌿

Insulin Prescription 🧾

Check-up with GP 📋 Consultation with specialist 📋

Knee X-Ray 🩻 Skull MRI 🩻

Medical Records

Medical Images Medical Reports Prescriptions

Medical Image Shape 🩻 Medical Report Shape 📋 Prescription Shape 🧾

Figure 3.3: Overview of an example resource hierarchy for medical records using Shape Trees.

the security concerns that arise from inherited ACL rules. Secondly, because ACLs fail to capture important concepts under

data protection regulations that define what type of information is being shared, how that data will be processed and for

what purpose, and which legal basis is used to warrant this processing. And lastly, because the burden of modifying these

ACL rules is currently delegated to application developers themselves, thus contradicting the original goals of returning con-

trol back to the end-user as developers have virtually unlimited authority when modifying ACL rules and could resort to the

dark patterns that have haunted modern-day implementations of consent on the web.

A layered, decentralized architecture for combining SPECIAL and Solid was also proposed and compared to these other ap-

proaches [56]. The concrete mechanics of the policy exchange and negotiation are left as future work by the authors, how-

ever their evaluation provides a good insight into the existing limitations of ACL based authorization when confronted with

complex data processing applications.

3.2 Solid’s Data Interoperability Panel

The Solid Community’s Data Interoperability Panel5 was started with the goal of standardizing the mechanics by which

different applications can interoperate over the same data safely and effectively. Furthermore, the panel’s work tries to

increase user awareness and interpretability of the data stored in a Pod, by abstracting away complexities such as resource

organization that are currently not governed by the Solid protocol, in order to finally enable multiple agents to truly inter-

operate over the same data. Most importantly, the Data Interoperability Panel aims to tackle these hurdles while preserving

the fundamentals of the Solid protocol as it exists today.

Two significant proposals have been taking shape in the panel over the past year, namely the Shape Trees [57] and the

Solid Application Interoperability [58] draft specifications. The former builds upon the existing specifications of RDF6 and

5
The Solid specification is drafted by different community panels, each focused on specific issues or domains that are relevant to Solid like authen-

tication, authorization or data interoperability.
6
The Resource Descriptor Format, core data model used in Semantic Web technologies to construct Linked Data resources.

24

3 Related Work

data shapes [59, 60], which respectively provide us with the foundations for interoperability through unambiguous identi-

fiers (IRIs) and a structural schema against which individual RDF graphs can be validated. Where these existing specifications

fall short, however, is in modeling complex resource hierarchies.

Consider for example the organization of a collection ofmedical records that takes form in a Solid Podwhere developers have

relative freedom in both resource naming and the use of containers to gather their data. A Shape Tree defines structural

constraints for a tree of resources in any ecosystem that has a notion of containers7 . For each container, it allows shape

constraints to be imposed on the contained resources. Shape Trees themselves can also contain other Shape Trees giving

form to tree hierarchies (for example medical records as a whole may consist of medical images, prescriptions, bills, reports,

etc. as is shown in figure 3.3).

The major strength of Shape Trees is that they can unambiguously define resource organization in a Pod and provide a

higher-level abstraction that can be more easily understood by end-users. This way, Shape Trees guide applications and

users by determining where data should be written to and where it can be read from. The modeling of related resource

collections in this manner allows us to perform operations such as authorization, data migration and validation on this

higher abstraction level as well. Especially in the context of authorization, defining rules at the level of Shape Trees rather

than individual resources reduces complexity, the likelihood of errors and allows us to relate these higher-level conceptual

resource aggregations to legal concepts such as Data Categories.

The Solid Application Interoperability (SAI) draft specification [58] leverages these proposed Shape Trees to standardize con-

crete mechanics by which applications and agents request access to information in a Solid Pod, the way by which they locate

the concrete instances of the Shape Trees, and how they can interoperate over this data. Up until nowmost of the specifics of

these different operations were left open to individual application developers by the Solid specification, complicating inter-

operability over the same data. In the context of this research, the standardizing of access requests is of specific importance,

and will be used as a building block in our proposal.

The SAI specification introduces the concept of an Authorization Agent as a service linked to an agent’s WebID that man-

ages the data under their control. It is tasked with processing access requests for the agent, managing previously granted

permissions, and recording the concrete instances of Shape Trees through a collection of registries.

While the specification is still under discussion by the panel, and some aspects of the mechanics of the authorization agent

have not yet been fully defined or are deliberately being left open for implementation, we will be using many of the core

concepts it sets forth in our proposal.

7
Solid builds upon the Linked Data Platform specification which governs the semantics of a container resource.

25

4
Authorization in Solid

To realize data governance by the user, the Solid Protocol 0.9 relies on Web Access Control as an authorization mechanism.

Web Access Control is a cross-domain, decentralized solution for authorizing requests using Access Control Lists (ACLs) ex-

pressed as Linked Data. It is typically enabled by having the Solid Pod (Resource Server) make the authorization decision,

based on identity details of the requesting party provided by an IDP1 . This section starts with a technical introduction to Web

Access Control through some practical examples, after which we define the technical capabilities of Web Access Control and

highlight relevant limitations. In fulfillment of research objective 3 we will then look at the adherence of implementations

of data processing using the Solid Protocol 0.9 to the legal requirements defined in chapter 2. Finally, the recent proposal of

Access Control Policy as a new authorization framework and changes to the Solid-OIDC protocol in Solid are briefly discussed

and contrasted with the existing protocol.

4.1 An introduction to Web Access Control

Solid’s primary mechanism for discretionary access control is the Web Access Control (WAC) specification [16]. It employs the

acl ontology2 to express access modes applicable to some resource for an agent, where both the agent and the resource

are identified using IRIs3 . WAC supports four access modes in its rules, namely:

Read Allowing for full or partial read operations on resources.

Write Allowing for write operations on resources, i.e., create, update, or delete.

Append Allowing for append operations on resources, i.e., to add information to the resource but not remove any.

Control Allowing for read and write operations on the resource’s associated ACL resource. This permits the grantee to

delegate or revoke access to the resource.

1
Identity Provider, in the context of Solid any entity implementing the Solid-OIDC specification.

2<http://www.w3.org/ns/auth/acl#>
3
Internationalized Resource Identifier

27

4 Authorization in Solid

The access subject4 is typically referred to by their WebID. TheWebID specification[14] defines how identification is realized in

the Solid ecosystem, i.e. through a profile document that can be retrieved by dereferencing the WebID IRI. The WebID profile

document itself contains identity claims on the identified subject, like their contact details through thevcard5 ontology, in-

terpersonal relations viafoaf6 or, perhapsmore relevant to Solid, information on the trusted IDP of the user by using terms

from thesolid7 namespace. Note that through the special agent IRIsfoaf:Agent andacl:AuthenticatedAgent
authorization can be granted to respectively any public, unauthenticated agent or any authenticated agent. Furthermore, it

is possible to define groups of authorized agents as well as restrict agent access by the origin of their request.

The access object8 can be either the IRI of a folder (container) or a file (RDF- or non-RDF resource) in the Pod. Furthermore,

through the acl:default predicate it is possible for an authorization in the ACL resource to recursively apply to re-

sources contained in the folder it references. This implies that WAC can have recursive inheritance with respect to container

hierarchies, such that any member resource inherits the ACL of the closest container resource when recursing towards the

root of the Pod.

In figure 4.1 we use a sequence diagram to highlight how WAC currently facilitates the sharing of resources by having the

Pod server evaluate both the authentication and authorization of the requesting party (steps 10 to 15). The WebID of actor

Bob plays a crucial role here, as it will be used by actor Alice to identify Bob in the ACLs governing the resource being shared.

At this point we must also note an important caveat with respect to step 1, where Alice grants access to Bob to access her

document, as the Solid Protocol 0.9 does not normatively define the process by which Bob can suggest what access he needs

for using an application to interact with the shared resources. Thus Alice, or the application she is using to interact with

her Pod, has to assess Bob’s access needs through an out-of-band process and then modify the WAC ACLs to reflect these

requirements.

4.2 Technical Capabilities & Limitations

Web Access Control offers many of the capabilities in terms of data sharing controls that users of services like Google Docs

or Dropbox will be familiar with. People can be marked as viewers, editors or administrators9 of some resources in the Solid

Pod, and these permissions are given to a party identified, not by their e-mail address, but by their WebID. The simplicity of

this model, and analogy with this existing user experience are a core strength when using WAC in typical social interactions.

In this setting we can also ignore the strict requirements of data protection law, as it likely does not apply in this household

setting.

A first limitation of Web Access Control is that its access modes are broad and do not map well to the more common CRUD10

4
Authorized agent

5<http://www.w3.org/2006/vcard/ns#>
6<http://xmlns.com/foaf/0.1/>
7<http://www.w3.org/ns/solid/terms#>
8
Resource to which authorization is being managed

9
i.e. able to delegate or revoke access modes for other parties, including themselves

10
Acronym for Create, Read, Update, Delete.

28

4 Authorization in Solid

Alice

Alice's Solid Pod Server Solid Docs Bob's Solid IDP Bob's WebID

Bob

Application

Authorizes Bob's WebIDAuthorizes Bob's WebID
to access documentto access document

1

Enters WebIDEnters WebID
2

Retrieve WebID ProfileRetrieve WebID Profile
3

WebID ProfileWebID Profile
4

The app can now determine Bob's IDP

RedirectRedirect
5

Enter credentialsEnter credentials
6

Redirect with authorization codeRedirect with authorization code
7

Request ID TokenRequest ID Token
8

ID TokenID Token
9

Retrieve Document fromRetrieve Document from
Alice's PodAlice's Pod

1 0

Validate ID Token

Retrieve WebIDRetrieve WebID
1 1

WebID ProfileWebID Profile
1 2

Validate trusted OIDC issuer in Profile

Retrieve OIDC ConfigurationRetrieve OIDC Configuration
1 3

OIDC ConfigurationOIDC Configuration
1 4

Retrieve IdP JWKSRetrieve IdP JWKS
1 5

JWKSJWKS
1 6

Validate ID Token signature

The Pod Server now authorizes the client using
the applicable WAC Access Control List.

DocumentDocument
1 7

Alice

Alice's Solid Pod Server Solid Docs Bob's Solid IDP Bob's WebID

Bob

Figure 4.1: Overview of how Web Access Control may currently facilitate the sharing of a document from the Pod of actor

Alice with actor Bob. Note in particular how Alice’s Pod Server is responsible for both authentication and authorization in

steps 10-15.

29

4 Authorization in Solid

permission model [61]. Also, some of these access modes will align poorly with user expectations: e.g., what does it mean to

have Append permissions over a container of resources? There have been suggestions made by Solid community panels, to

align the access modes with CRUD while retaining backwards compatibility with existing applications of the broader access

modes. However, these discussions have not yet made their way into the specification.

Furthermore, we noted that WAC uses an inheritance mechanism to determine which ACL resource is the effective ACL gov-

erning some resource or container resource in the Pod. While this inheritance mechanism might be reasonably easy to

understand for developers, to an unaware end-user, this behavior can be counter-intuitive or lead to unintended informa-

tion disclosure. For example, when a user grants an app access to a container through acl:default, they implicitly grant

access to all data transitively contained within, including any new resources that are added after the user granted access.

The use of IRIs to both identify resources and agents might also contribute to poor user experience and lead to security

breaches. For example, users might perceive an analogy between how they would typically manage a photo collection in

a filesystem on a computer, and how pictures are stored in a folder in one’s Pod. That way, an end-user could have some

understanding of what kind of data are being shared, as they can easily open the files and look at their contents. How-

ever, the analogy falls short when it comes to structured data, which is commonly persisted as Linked Data in the Solid

Pods. In this case, resource IRIs do not necessarily have meaning, and the organization of resources can be chosen arbi-

trarily by application developers. A similar concern is applicable to agent IRIs: How do I know my doctor’s IRI is actually

https://nhs.gov.uk/id/123#me? According to the UK Government’s Department for Digital, Culture, Media &

Sport’s 2020 Cyber Security Breaches Survey [62] phishing attacks are one of the most common type of breaches experi-

enced by UK businesses. Being just ordinary IRIs in the context of ACL rules, WebIDs suffer the same risk of being used in

phishing attacks, where very similar lookingWebIDs could be constructed that open the doors of your Pod tomalicious actors.

Detection mechanisms for phishing IRIs have been proposed, however these fall largely in the realm of heuristics[63].

@prefix acl: <http://www.w3.org/ns/auth/acl#>.

Your doctor has Read, Write & Control Access to your Medical Records
<#records> a acl:Authorization;

acl:agent <https://nhs.gov.uk/id/123#me>;
acl:default <./MedicalRecords/>;
acl:mode acl:Read, acl:Write, acl:Control.

Listing 4.1: Example ACL resource

Let us illustrate the mechanics of WAC using an example; a doctor is requesting access to the medical records of their

patient. The use case is shown in detail through the sequence diagram in figure 4.2. If we were to realize this type

of interaction pattern with Web Access Control, the patient would have to modify (steps 2-3) an ACL resource governing

the medical records stored in their Pod, as shown in Listing 4.1. Through this ACL, the doctor (identified by their WebID

https://nhs.gov.uk/id/123#me) obtains read and write permissions on the patient’s medical records as well as

control permissions such that information can be shared with trusted colleagues. Note that the choice of a container named

“MedicalRecords” to retain your medical information is a completely arbitrary one, such that the interpretability of this ACL

rule could be considerably worse if the developers of these medical record applications made arbitrarily different naming

choices. Also, as noted before, the Solid protocol currently does not define how the doctor should request for their patient

30

4 Authorization in Solid

to grant these rights (step 1). Having the interpretability and modification of an ACL rule depend fully on implementation

choices of the developer is not a desired behavior for an authorization system, let alone one that aims to maximize end-user

control.

31

4 Authorization in Solid

Alice

Alice's Solid Pod Server EMR Software Doctor's Solid IDP Doctor's WebID

Doctor

Application

Request Access to Medical RecordsRequest Access to Medical Records
1

Updates ACLs such that Doctor's WebIDUpdates ACLs such that Doctor's WebID
can access Medical Recordscan access Medical Records

2

OKOK
3

We assume the physician has a (Solid OIDC)
authenticated session with the software.

Consult Alice's Medical RecordsConsult Alice's Medical Records
4

Retrieve Records fromRetrieve Records from
Alice's PodAlice's Pod

5

Retrieve WebID ProfileRetrieve WebID Profile
6

WebID ProfileWebID Profile
7

Retrieve IDP's Key SetRetrieve IDP's Key Set
8

Key SetKey Set
9

Based on the IDP trusted by the Physician's WebID
and the keyset of the IDP the Pod Server

authenticates the client.

The Pod Server now authorizes the client using
the applicable WAC Access Control List.

Medical RecordsMedical Records
1 0

Visualize Alice's Medical RecordsVisualize Alice's Medical Records
1 1

Alice

Alice's Solid Pod Server EMR Software Doctor's Solid IDP Doctor's WebID

Doctor

Figure 4.2: Illustration of the exchange of a patient’s medical records through a Solid Pod, where the patient must modify

ACL rules to authorize the physician’s Electronic Medical Records software.

32

4 Authorization in Solid

4.3 Adherence to Data Protection principles & Fair Information Practices

In this section we aim to relate informational and technical requirements of data protection law, and more specifically the

GDPR, to the capabilities and limitations of the Solid protocol 0.9 with respect to authorization. Some of these requirements

currently cannot be enforced or can only be captured through out-of-band mechanisms, in which case the controller must

ensure compliance through additional, proprietary measures which potentially reduce transparency for the subject and may

limit the interoperability that Solid aims to enable. We will start by focusing on the informational requirements as sum-

marized in table 2.2 and how these are (partially) realized in the Web Access Control specification, thereafter we will focus

on the ”due process” requirements concerning legal basis and purpose limitation mandated under data protection law. This

relates closely to the Fair Information Practices, which we will use to define areas of improvement for the Solid protocol

when used in data processing applications.

4.3.1 Informational Requirements

The Web Access Control specification already captures information for the purposes of authorization, like the authorization

subject (i.e., the WebID), the authorization object (i.e., the resources to which access is being granted) and the granted access

modes. In table 4.1 we relate the information captured by WAC to the properties the GDPR requires data controllers to

communicate to data subjects. A summary overview of informational requirements with respect to data subjects under the

GDPR can be found in table 2.2, however we must note that a number of these fall outside the realm of what can reasonably

be enforced by Solid as we will elaborate on in this section.

With respect to the recipients of the personal data, Web Access Control captures information on the authorized agent or

group of agents via the acl:agent and acl:agentClass properties of the ACL. This property will reference to which

agent or agents the authorization has been granted, using their WebID. However we must note that similar to an e-mail

address, a WebID does not uniquely nor strongly identify a person or organization thus this identificationmechanismmay not

comply with legal requirements unless it is supplemented with additional, out-of-band safeguards. Furthermore, additional

recipients may be involved in further processing of information collected from the Pod such that the agents listed here may

give only a partial view on the processing activity.

The resources to which access is being granted are also identified in the access control list. This attribute relates, at least

partially, to the requirement of definingwhat categories of personal data are concerned. Aswe noted in the previous sections,

resource identifiers are not necessarily meaningful thus supplemental information on what category of personal data these

resources fall under will have to be provided. Type indexes have been proposed by members of the Solid community for the

purpose of data discovery and resource organization, but could also prove useful for defining data category membership.

Furthermore, it is possible that additional information outside of what is being shared directly through the Solid Pod is also

being collected and processed by the controller, think for example of recommender systems which build automated profiles

of their user’s tastes and preferences.

When we consider the information that is not being captured by Web Access Control, knowing the purpose and legal basis

33

4 Authorization in Solid

Table 4.1: Properties of a Web Access Control ACL and their relation to the informational requirements under Article 15 of

the GDPR

Property Description Relation to GDPR’s informational requirements

acl:accessTo Identifies the resources to which access is being granted The categories of personal data concerned (Art.15-1b)

acl:default Identifies a container resource whose authorization can be inherited

acl:agent Identifies the agent to which permission is being given The recipients or categories of recipient of the personal data (Art.15-1c)

acl:agentClass Denotes a group of agents to which permission is being given

acl:mode References the access modes that have been granted /

of the data processing may be the most important requirements towards realizing compliance with data protection law.

Especially given the fact that this information is necessary for evaluating the purpose limitation and lawfulness, fairness and

transparency criteria from the Fair Information Practices listed in table 2.1. Nevertheless, the determination of compliance

to the specified purpose and legal basis is one which cannot be made on objective information alone, such that enforcement

will likely have to involve human evaluation by a data protection officer, regulator or court.

The limited data storage requirement from the FIPs, determines that data should not be stored for longer than necessary.

However, in the context of Solid Pods this determination is complicated by the fact that authorizations in Web Access Control

do not define a period of validity. If such a concrete start and end time for an ACL rule were added, it could be objectively

enforced by the Pod’s authorization mechanism. The GDPR does, however, allow the period in which data storage and pro-

cessing is warranted to be defined through other criteria as well, which may not be enforceable through automated means

either.

Given the fact that we consider the data being shared for data processing activities is stored in the user’s Solid Pod, some

requirements of the GDPR will have already been (partially) fulfilled by design. First, the user can access the personal data

they are sharing directly from their Pod, unless copies or derived work is being stored elsewhere by the data controller

in which case additional transparency procedures will still be required. Second, given the fact that the most common Solid

server implementations, like the Community Solid Server11 , explicitly give the ownercontrol access over any ACL governing

their Pod we consider the rectification, erasure and restriction of processing to be enabled by the Solid server, at least for

the information it stores in the context of the processing. Furthermore, the source of the personal information will also be

known to the end-user already. We must note however that these requirements also have implications for other processing

and collection activities in the broader architecture of the service or application that processes the personal data and thus

further legal, technical and organizational measures may be needed for attaining full compliance.

The right to lodge a compliant, existence of automated decision-making and transfer to third countries largely fall outside

of the realm of what can be enforced by the Solid Pod. Therefore we will not consider these requirements as relevant to the

architecture we will be presenting.

11
https://github.com/CommunitySolidServer/CommunitySolidServer

34

https://github.com/CommunitySolidServer/CommunitySolidServer

4 Authorization in Solid

4.3.2 Legal basis & Purpose of Processing

As we highlighted, the Web Access Control ontology does not capture the legal basis nor the purpose for data processing as

mandated under the GDPR and similar data protection laws. From the perspective of a low-level authorization mechanism,

this choice seams reasonable as we would be relying on the authorized party to self-report this information with no auto-

mated means of validating that the provided legal basis and purpose are in fact justified. Nevertheless, such information

would be most relevant in the context of enforcement efforts by regulators and to provide transparency to the end-user.

Efforts to capture these details in Solid have been proposed, for example by combining the proposed ODRL profile for Solid’s

access control mechanism[50] with concepts from the Data Privacy Vocabulary[39]. Moreover, a recent survey[35] of policy

languages and vocabularies for modeling information flows under the GDPR has concluded that when complemented with

the ontology terms of the DPV[39] and GDPRtEXT[32] it is possible for ODRL to model 39 out of the 57 informational items

that have been defined under the regulation. Therefore, it seems like a promising approach to supplement the information

that is strictly needed for enforcement, like is currently modeled by WAC, with concepts from other ontologies like the DPV

that can allow for greater transparency for both regulators and data subjects. Capturing this information would also help in

improving compliance with the lawfulness, fairness and transparency and purpose limitation requirements defined by the

Fair Information Practices under the GDPR.

4.3.3 Fair Information Practices

Besides the lawfulness, fairness and transparency and purpose limitation principles, it is important that we also consider

other Fair Information Practices and how we could improve upon those in the design of Solid’s authorization mechanism. In

particular, because an authorization in the ACL does not define any period of validity or other temporal constraints it is not

possible for Solid’s authorization mechanism to enforce the requirement of limited data storage.

In relation to the data integrity and confidentiality principle, we note the challenges in terms of interpretability for ACL

rules as well as the risks that WAC’s inheritance mechanism may pose for unintended information disclosure. Additionally,

Solid currently does not have standardized mechanisms for audit logging, which complicates the detection of a breach or

occurrence of unlawful processing and thus fully relies on the adherence of the data controller to this requirement.

We must note however that some FIPs will already be adequately fulfilled, even in the current design of the Solid protocol,

given that no additional copies of the data being processed are stored outside of the subject’s Pod. For example, with respect

to accuracy, if a data subject will be sharing data directly from their Pod this enables them to keep this data up-to-date and

instantly rectify any inaccuracies.

35

4 Authorization in Solid

4.4 The introduction of User-Managed Access in Solid-OIDC 0.1.0

In the 0.1.0 revision of the Solid-OIDC specification[15] the concepts defined under the User-Managed Access (UMA) 2.0 Grant

for OAuth 2.0[64] authorization were introduced in Solid as a means of decoupling the authorization process from the Solid

Pod (i.e., the Resource Server). These changes are still relatively new, and haven’t been adopted in common implementations

of Solid like the Community Solid Server12 . Nevertheless, there seems to be significant potential in some of the affordances

of the UMA specification, for example its claims pushing mechanism allows for requesting parties to provide details on their

authentication and authorization, such as the customary OIDC ID Token, but which can now be supplemented with additional

information like Verifiable Credentials. Furthermore, as we will show in the next chapters, the UMA Authorization Server

can also serve as the basis for new authorization mechanisms to be implemented and evaluated, while not impacting the

resource server.

In this section we will first look at how the typical request flow has been impacted by the introduction of User-Managed

Access with respect to the Solid Server and a requesting party. Thereafter, we highlight the role of the authorization service

under UMA 2.0 and its interaction with respect to other components like the Solid server and the Requesting Party. Finally,

some important considerations with respect to the implementation and use of an authorization server are noted.

4.4.1 Introduction of UMA 2.0 in the request flow

In figure 4.3 we demonstrate the request flow that the Solid Docs application, also used in the example in figure 4.1, would

have to perform under the revised Solid-OIDC specification because of the introduction of User-Managed Access 2.0. High-

lighted in the gray boxes are additional requests introduced in the authentication/authorization-flow in Solid-OIDC 0.1.0.

The process of authenticating the end-user through Solid-OIDC has not changed, for this the specification still relies on the

authorization code grant type of OpenID Connect 1.0 with PKCE13 . However the request flow starts to differ significantly when

the requesting party wishes to use the OpenID Connect ID Token to request some resource from a Solid Pod. At this point,

the client will be presented with a 401 Unauthorized error (steps 7-8).

The 401 error will refer to a UMA 2.0 Authorization Service (AS) that is trusted by the resource server (the Solid Pod). A Pod

provider will choose their own AS, and could even change authorization services at some point in the future. In addition to a

reference to the AS, the error will also return a so-called UMA ticket to the requesting party. This ticket value is used by the

AS to identify the resources to which authorization of the requesting party should be determined.

In a subsequent discovery phase the token endpoint of the AS will be discovered by the requesting party such that the UMA

ticket can be exchanged for an access token given the correct authentication and authorization claims (steps 8-9). Thereafter,

the UMA claims pushing process is performed with the Authorization Service’s token endpoint (steps 11-18). During this

process, the requesting party presents its UMA ticket along with the previously obtained OpenID Connect ID Token and the

12
https://github.com/CommunitySolidServer/CommunitySolidServer

13
Proof Key for Code Exchange, extends the Authorization Code flow in order to mitigate the risk of interception of the authorization code.

36

https://github.com/CommunitySolidServer/CommunitySolidServer

4 Authorization in Solid

Bob

Solid Docs Bob's Solid IDP Bob's WebID Alice's Solid Pod Server UMA Authorization Service

Application

Uses applicationUses application
1

The Solid Docs app starts an OpenID Connect
Authorization Code Grant flow

RedirectRedirect
2

Enter credentialsEnter credentials
3

Authenticates the user, and generates
an authorization code

Redirect with Authorization CodeRedirect with Authorization Code
4

Request ID TokenRequest ID Token
5

ID Token & Refresh TokenID Token & Refresh Token
6

The RP can now use their Solid OIDC ID Token to
request an access token with the Authorization Service.

Retrieve Document fromRetrieve Document from
Alice's PodAlice's Pod

7

401 Unauthorized with UMA Ticket401 Unauthorized with UMA Ticket
8

Retrieve UMA Authorization Service's ConfigurationRetrieve UMA Authorization Service's Configuration
9

UMA ConfigurationUMA Configuration
1 0

POST /tokenPOST /token
1 1

Validate ID Token

Retrieve WebIDRetrieve WebID
1 2

WebID ProfileWebID Profile
1 3

Validate trusted OIDC issuer in Profile

Retrieve OIDC ConfigurationRetrieve OIDC Configuration
1 4

OIDC ConfigurationOIDC Configuration
1 5

Retrieve IdP JWKSRetrieve IdP JWKS
1 6

JWKSJWKS
1 7

Validate ID Token signature

The Pod Server now authorizes the client
using the information in the ticket

and the presented claims.

Access TokenAccess Token
1 8

Retrieve Document from Alice's PodRetrieve Document from Alice's Pod
1 9

Validate Access TokenValidate Access Token
2 0

OKOK
2 1

200 OK200 OK
2 2

Bob

Solid Docs Bob's Solid IDP Bob's WebID Alice's Solid Pod Server UMA Authorization Service

Figure 4.3: Illustration of the authentication and authorization flow under the Solid-OIDC 0.1.0 specification using User-

Managed Access 2.0 for Authorization. Sequences marked in gray highlight changes from the previous Solid-OIDC protocol.

37

4 Authorization in Solid

AS will perform the same validations that were previously performed by the Solid Pod Server to determine the validity of

the ID token for the WebID of end-user Bob (steps 12-17).

Finally, the authorization service determines the authorization of the authenticated client with respect to the resources

referred to in the UMA ticket. For this, the Authorization Service evaluates the applicable Web Access Control rules under

the Solid Protocol 0.9. Nevertheless, in the future other authorization mechanisms like ACP or Verifiable Credential-based

access control could also be enforced by the AS.

Once the claims pushing process has completed and the authorization service was able to determine the access modes of

the requesting party, an access token is returned to the client that can be used to interact with the resource server (step 18).

The concrete validation mechanism for these access tokens, which is to be used by the resource server (steps 20-21), is not

normatively defined by the Solid-OIDC 0.1.0 specification but can be determined by the implementer of the resource server.

4.4.2 Role of the UMA Authorization Service

As we’ve noted a trust relationship will have to be established between the UMA Authorization Service and the Resource

Servers (Solid Pods) in order for the access tokens generated by the former to be trusted by the latter. The Resource Server

relies on the AS for authenticating the requesting party and evaluating the authorization it has for the requested resources.

In the process, the resource server need not consider the evaluation of authorization rules, such as the ACLs under Web Access

Control, in its design or implementation which can reduce its complexity. The establishment of this trust is not covered in a

normative sense under the specification, rather it is left open to the implementation by developers and operators of Solid

Pods. A similar reasoning is followed regarding how the resource server obtains the UMA ticket it should present upon a 401

Unauthorized error.

Crucially, under this new authorization flow the interface between the authorization service and the Solid Pod server is

formed by the access modes that are contained in the access token. Thus, specification efforts will have to focus on defining

these access modes independently of individual authorization mechanisms, like Web Access Control, such that the Authoriza-

tion Service could support the enforcement of novel mechanisms as well. An important challenge to this are WAC’s broadly

defined access modes which today are tightly integrated into many implementations (cfr. section 4.2) and the fact that more

granular, CRUD-inspired modes are still under discussion. Thus for now, the choice and meaning of access modes exchanged

between resource server and authorization service is left open to the definition of implementers as well.

While introducing the authorization service reduces technical complexity on the side of the resource server, the AS will

have to take over these responsibilities. Moreover, additional request latency is introduced due to the UMA flow incurring

at least three additional round-trip times (RTT) in a cold-start situation where no cache of the authorization service’s

configuration exists with the requesting party, when compared to the prior Solid-OIDC flow. Depending on implementation

choice on the part of the authorization service, the additional request latency for the requesting party could on average be

as high as 2×RTT in the case where a new ticket is generated for each request to a new resource.

38

4 Authorization in Solid

4.5 Access Control Policy: A proposal for improving Access Control in Solid

Access Control Policy (ACP)[65] is a recent proposal in the Solid Authorization community panel. It is intended as an alterna-

tive to Web Access Control, and addresses a number of the shortcomings we have highlighted about the latter. Consequently

it has been proposed for inclusion in future revisions of the Solid Protocol. In this section we will briefly touch upon ACP and

the ways in which it differs from Web Access Control, as well as link these improvements to the limitations of the current

protocol as were described in section 4.3.

A first significant change in ACP is the fact that it explicitly decouples the location of resources from the storage of their

respective access control lists. This decoupling is realized through the acl Link header relation. Notably, in ACP any resource

has exactly one effective access control resource (ACR) such that it does not rely on a hierarchical mechanism as is defined

by Web Access Control where a recursive traversal of parent containers is needed in order to discover the effective ACLs. We

have previously identified this mechanism as a potential risk for unintended information disclosure, due to the fact that it

is not explicit to the user.

ACP uses the concept of Policies to govern the access modes that are granted or denied for agents that conform to the

requirements of a Matcher. The effective ACR then applies these policies to the resource it governs. Policies can be satisfied

if all, any or none of its Matchers are satisfied. The fact that ACP allows the explicit prohibition of certain access modes

to some agent is another significant difference from WAC, which does not allow for expressing such negative authorization

rules.

A Matcher, as defined under the ACP specification, allows much greater flexibility in defining which agents an authorization

applies to. Besides the identification of the concrete agents that are authorized like in WAC, ACP also explicitly defines

properties such as the creator or owner of a resource, the type of a VC presented by the agent, or the OIDC OP to be used as

criteria by matchers. Also, further matchers can be defined by implementers as a sub-property of acp:attribute such

that this Matcher-class becomes an extension point of the ACP specification.

Nevertheless, ACP does not fully solve the limitations of WAC with respect to informational requirements under data pro-

tection law. For example aspects like purpose and legal basis are not captured in its design. Notably, resource and agent

identification is still handled in the same manner as in WAC, with similar risks for phishing and unintended information

disclosure. However, its extensible matcher concept may allow one to materialize a consent as a Verifiable Credential of a

certain type for example, or define custom matchers for purpose, period of validity and legal basis.

In conclusion, ACP may offer a more flexible and expressive framework for authorizations in Solid while avoiding certain

pitfalls of WAC like resource inheritance. However, it still does not fully align with specific informational requirements

under data protection law and suffers from similar challenges as WAC with respect to resource and agent identification. Its

proposed use of Verifiable Credential based authorization shows significant promise, but a practical implementation of this

concept has not yet been demonstrated.

39

4 Authorization in Solid

4.6 Conclusion

In this chapter we introducedWeb Access Control, Solid’s primary authorizationmechanism under the 0.9 revision of the Solid

Protocol. In an evaluation of its technical affordances we noted that its broad access modes, the inheritance mechanism it

enables and the use of IRIs to identify both resources and agents could lead to unintended information disclosure or even

security breaches when used thoughtlessly. Furthermore, the information recorded in authorization rules lacks some critical

details for compliance with data protection law. For example purpose, legal basis, and time restrictions on the given access

are not registered, while other information that is contained in the access control lists may be incomplete, like the recipients

of the data being shared. The more recent introduction of User-Managed Access and proposal of Access Control Policy modify

and extend the authorization process used by the Solid protocol significantly. While the latter’s additional matchers allow

for enforcement of new restrictions, such as a time limit on authorizations or the presenting of Verifiable Credentials by the

requesting party, fundamentally these techniques remain low-level atomic building blocks and do not succeed in fulfilling all

requirements that data protection lawmandates. In the next chapterwewill present a broader architecturewith components

that take care of these legal requirements at different levels of abstraction.

40

5
AnArchitecture for EnforcingDataProtection In Solid

This chapter of the thesis is also the basis of the peer-reviewed paper ”A Policy-Oriented Architecture for Enforcing Consent

in Solid”[66], which was accepted for publication at the Second International Workshop on Consent Management in Online

Services, Networks and Things (CONSENT ’22). Our aim here is to propose a reference architecture for relating Solid’s low-level

technical access control rules with higher-level concepts such as the legal basis and purpose for data processing, the abstract

types of information being processed, and the data sharing preferences of the data subject. Our architecture combines recent

technical efforts by the Solid community panels with prior proposals made by researchers on the use of the ODRL[50] policy

language as an extension to Solid’s authorization mechanism.

5.1 Background: Linked Data Integrity

Prior to introducing our architecture we must present the W3C’s Data Integrity specification, as it is an important building

block for ensuring data authenticity and integrity in the exchanges between the components of our framework. The Data

Integrity 1.0 draft community report [67] is a recent proposal by the W3C’s Credentials Community Group, with the aim of

providing authentication and data integrity capabilities to Linked Data resources through the use of mathematical proofs

such as digital signature algorithms. It details a vocabulary for describing proof types, verification methods and algorithms.

The origins of this work are to be found in the W3C’s recommendation of the Verifiable Credentials Data Model [68], a data

model that can be used to assert specific claims on a subject (such as a degree, driver’s license, etc.) and which should be

accompanied by a cryptographic proof that can assert their authenticity and integrity. These techniques will provide us with

the necessary security capabilities, in terms of authentication and accountability, which we need to realize our proposed

authorization architecture.

5.2 Overview

As we have highlighted before, the Solid Protocol 0.9[12] relies on the Web Access Control specification[16] as a mechanism

for discretionary access control over the resources stored in a Solid Pod. While it offers adequate affordances for simple use

41

5 An Architecture for Enforcing Data Protection In Solid

cases related to authorization in social contexts, some of its capabilities and design choices may be problematic in more

complex data processing applications that are governed by regulations like the GDPR. In contrast, our architecture splits out

the implementation of consent as a legal basis for accessing personal data in the Solid Pod into two domains, shown in

figure 5.1, where policies stored in the subject’s Solid Pod form an interface between these different realms:

1. On the one hand, the end-user domain is governed by a so-called Access Management Application which is tasked

with validating the data processing request coming from the responsible data controller against applicable legal

requirements, end-user data sharing preferences and, if the processing request is approved, storing it as a Processing

Grant in the data subject’s Solid Pod.

2. On the other hand, the technical domain uses the Authorization Agent, as proposed by the Solid Application Interop-

erability specification, to handle concrete access requests made by applications and other agents in terms of Shape

Trees, Data Shapes and ACL access modes. The interface between the two realms is formed by Processing Grants

which are generated by the Access Management App and persisted in the agent’s Solid Pod.

For authentication and identification of the different actors in the architecture we depend on the WebID [14] and Solid OIDC

0.1.0 [15] specifications that are defined within the Solid Protocol version 0.9 [12]. In the following paragraphs we will be

expanding upon both the Access Management App, Authorization Agent and the proposed concepts of Processing Requests

and Processing Grants used to bind these two services.

5.3 End-User Realm

The end-user realm is responsible for enforcing compliance with data protection regulations in the context of consent-

based data processing applications. Moreover it captures the additional informational items that are not captured by the

lower-level Application Interoperability and access control specifications because they cannot be objectively evaluated in

authorization. Such information will however be relevant in regulatory processes for data controllers and data subjects.

Central to the end-user realm is the access management application, which will validate the incoming request for data

processing by a data controller, present it to the end-user for their explicit consent and persist a Processing Grant once the

consent is given. In this section we will further elaborate on the components of this end-user realm and the data model that

is used.

5.3.1 Access Management App

The Access Management App enables Data Controllers to obtain the necessary approval for the Data Processing they are

requesting for some personal data categories and processing actions in fulfillment of a processing purpose that was allowed

for through a specific legal basis. Once it has received a Data Processing Request, the Access Management Appwill first verify

if the request is admissible based on requirements set by the applicable data protection law. Subsequently, it will attempt

42

5 An Architecture for Enforcing Data Protection In Solid

Solid Server

Access Control Resources
Web Access Control, Access

Control Policy, ...

Identity

WebID

Authentication

Solid OIDC

Storage

Linked Data Platform

Authorization Service
UMA 2.0

Technical Realm

End-User Realm

10.

Authorization Agent

8.

2. Retrieve any

applicable policies

4.

Access Management App

e.g. Consent Application, Contract

Signing Service, ...

3. Approve

Data Subject

1.

Grant Processor

9.

Authorizer7.

App Y's Access Needs

 + Entity X's Processing Grant

Data Controller

Organisation X

Data Processor

Application Y

6.

Data Controller

Organisation X

Application Y's

Access Grant

Entity X's

Processing Grant

Entity X's

Processing Grant

Entity X's

Processing Grant

5.

Entity X's

Processing Request

Figure 5.1: Overview of our proposed architecture, linking an End-User realm governing Data Processing permissions with a

Technical realm following the Application Interoperability specification

43

5 An Architecture for Enforcing Data Protection In Solid

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix odrl: <http://www.w3.org/ns/odrl/2/>.
@prefix dpv: <http://www.w3.org/ns/dpv#>.
@prefix cert: <http://www.w3.org/ns/auth/cert#>.
@prefix oac: <https://w3id.org/oac/>.

@prefix : <https://example.com/#>.

:medicalRecordsConsent a odrl:Policy, dpv:PersonalDataHandling;
odrl:profile oac:;
dpv:hasLegalBasis [

a dpv:Consent;
];
dpv:hasDataController <https://example.com/id/doctor#me>;
odrl:permission [

a odrl:Permission;
odrl:assignee <https://example.com/id/doctor#me>;
odrl:target dpv:HealthRecord, dpv:Prescription, dpv:HealthHistory;
odrl:action dpv:Collect, dpv:Consult, dpv:Analyse, dpv:Alter;
odrl:constraint [

odrl:leftOperand oac:Purpose;
odrl:operator odrl:isA;
odrl:rightOperand :MedicalConsultation

]
].

Listing 5.1: Example Unsigned Processing Grant Request

to match the request against any explicit data sharing preferences the user might have in their Pod that can lead to an

automatic granting of the request. If no preferences turn out to match the request, the data subject must be polled for their

explicit consent. Once a Processing Request is granted, it is stored as a Processing Grant in the Solid Pod, accompanied by a

Linked Data Integrity proof, and delivered to the inbox [69] of the Data Controller.

5.3.2 Data Model: Processing Requests & Grants

Whenever a Data Controller (Requesting Party) wants to obtain permissions for performing some data processing on the data

subject, it will be constructing a Processing Request. This Request is constructed based upon a proposed ODRL profile [50]

and concepts from the Data Privacy Vocabulary[39]. An example request for medical records based upon explicit consent

is shown in Listing 5.1. The request details handling of the personal data, in terms of legal basis (in the case of this paper

we will only consider explicit consent), data controller, and specific permissions that will be needed in the context of the

processing.

Each permission specifies what personal data categories it concerns as a target, what actions it needs to perform on this

data, and constraints on the purpose or output of the processing. Other constraints could be envisioned as well, like technical

measures used in the processing and associated risks, however these haven’t been explored in the current proposal.

The Data Processing Request itself is presented to the Access Management App accompanied by a Data Integrity Proof that

was generated by the Data Controller, this way the provenance and integrity of the request can be validated. Through this

44

5 An Architecture for Enforcing Data Protection In Solid

signing mechanism, the risk of spam or other malicious attacks with respect to the Access Management App and Processing

Request procedures could be reduced, for example by assigning different trust levels to issuer services that can be used by

Data Processors to sign their request based upon requirements like identity validation or prior regulatory compliance.

Finally, a Processing Grant is constructed from the Processing Request by first completing the legal basis, i.e., consent, with

any other necessary attributes that were either gathered in interaction with the data subject or in an automated manner by

the accessmanagement app. Thereafter any permissions that have not beenwitheld will be removed from the Grant, the RDF

graph is supplemented with a Revocation Status attribute conforming to the W3C Revocation List 2020 specification [70] for

revoking Data Integrity Proofs such that the Access Management App can revoke the Processing Grant at a later time, and a

Data Integrity Proof will be created and signed by the Access Management App to indicate that the legal requirements for the

data processing to be approved are fulfilled. The signed Processing Grant can be seen as an instruction for the authorization

agent to provision certain types of information to a Data Controller and its designated processors.

5.4 Technical Realm

The technical realm allows for data controllers to trade in their data processing grants for authorizations to concrete re-

sources, stored in the Solid Pod. Its functionality is enabled by the Solid Application Interoperability draft specification[58],

which allows the Authorization Agent that is central to this realm to relate the processing grant to resources stored in the

data subject’s Pod.

5.4.1 Authorization Agent

The Authorization Agent is largely based upon the proposed Solid Application Interoperability specification in terms of its

semantics and API, which is still under discussion by the panel and thus might be subject to changes. This is enabled by the

fact that mechanics of the authorization agent are largely left open to implementation, such that additional authorization

checks can be executed between the Access Needs being presented to the authorization agent and the delivery of a so-called

Access Grant that specifies the concrete data that has been elected for sharing with the application.

In fact, the only modification to the authorization agent interface that we are proposing in this research is that a Processing

Grant should accompany the Data Processor’s access needs when access is being requested. This way the authorization agent

can link the access request being made by the application or service, acting as a Data Processor for the Data Controller, to

a valid legal basis for data processing. It then becomes the task of a Grant Processor module in the Authorization Agent

to match the specified Processing Grant to the Processor’s Access Needs in terms of Data Needs (Shape Trees) and Access

Modes. The latter confronts us with the need for an unambiguous equivalence relation between the abstract definitions in

the Processing Grant and their technical counterparts in the Access Needs.

Finally, once the Grant Processor has determined that the Data Processor’s request actually matches our initial Processing

Grant, it can proceed with an Authorizer that is tasked with modifying the atomic access control rules applicable to the

45

5 An Architecture for Enforcing Data Protection In Solid

instances of the Shape Trees that were specified in the service’s Data Needs. Once this process has ended, an Access Grant is

returned to the Data Processor and the necessary registrations are added to the Pod.

5.4.2 Data Model: Auxiliary Rules & Policies

While the ODRL-based processing request and processing grant may suffice for defining the data processing that is being

requested and approved on a business-level, it is insufficient for the authorization agent to relate these with the technical

access needs specified by a Data Processor like an application. The semantic gap here is twofold, on the one hand we need

to unambiguously define what data in the Pod falls under the approved processing and on the other hand we must know

what actions on this data are permitted.

Firstly, the abstract data categories used to specify the personal data being shared under the approved data processing

activities must be related to concrete technical data type information. As was elaborated upon in the background section,

the combination of data shapes and shape trees as a mechanism for defining resource collections and their structure allows

us to delimit conceptually related resources in the Pod like medical records, pictures, notes, etc. Through an additional

set of rules that is configured by the data subject in their Solid Pod, a so-called Data Category Equivalence policy, we link

the technical resource type information provided by Data Shapes and Shape Trees to Personal Data Categories as they are

specified under DPV and used in the ODRL profile.

As higher level abstractions are used to define the actions that the processing allows for, we must also relate the Processing

categories from the DPV with the Access Modes as they are used in both Solid’s Access Control mechanism and the technical

Access Needs specified by the Data Processor. These can be defined by the subject as Processing Access Needs, which are

stored as an additional set of rules in the Pod.

Furthermore, while not elaborated upon in this paper, the proposed ODRL profile [50] was devised with the concept of data

sharing preferences which allowed for the data subject to also express more complex data processing activities that could

automatically be permitted to some requesting party based on purpose, data and processing categories. Such policies could

also be persisted in the Solid Pod besides these previously noted equivalence relations and the concrete processing grants

that flow from them.

46

5 An Architecture for Enforcing Data Protection In Solid

8. Grant Consent

23. Withdraws Consent

Patient Doctor

2. Dereference WebID to discover Access Management app

and Authorization Agent

5. Send Signed Processing

Request for "Medical Records"

21. Retrieve resources based on Access Grant

19. Poll Authorization Agent for

Agent Registrations

Electronic Medical Record
Software

No existing Agent Registration in
Authorization Agent

10. Notify Requesting Party

of new Processing Grant

6. Validate Requesting Party's Signature

Patient's Access
Management App

15. Validate Processing
Grant Signature

Patient's Solid
Pod

4. 401 Unauthorized: Not authorized

18. Return Access Receipt to Requesting Party

16. Retrieve matching

resources

20. Return Agent Registration

Patient's Authorization
Agent

Patient's
WebID Doctor's WebID

11. Retrieve Processing Grant from Inbox

Doctor's Inbox

Data Processing Grant can be used to construct a
new Access Request

3. Poll Authorization Agent for

Agent Registrations

24. Notify of revocation

17. Create ACL rules

for request

14. Discover trusted Access

Management app for user

12. Initiate Access Request with Processing Grant

22. Visualize
retrieved records

1. Initiate Record

for Patient

7. Notify Resource Owner of Processing Request

Access Grant can now be used to retrieve
information based on Consent

13. Validate Processing Grant Signature for Requesting Party

9. Store Signed Data Processing

Grant in Pod

Figure 5.2: Sequence diagram highlighting the exchanges for the motivating use case of a doctor requesting explicit consent

for access to medical records of their patient.

5.5 Illustration with an Example Use Case

In this section we will be illustrating our proposed architecture through the motivating use case of a doctor looking to access

the medical records of a patient stored in their Solid Pod based on an explicit, informed consent. We assume no previous

consent or authorizations were given over the patient’s Electronic Medical Records (EMR). Note that for clarity, interactions

with the UMA Authorization Service are omitted. Figure 5.2 provides a complete sequence diagram, highlighting the relevant

exchanges that are initiated by the physician and their electronic patient record application.

The exchange starts with a discovery phase (steps 1–2) where the application aims to determine which Access Management

Application and Authorization Agent the patient has elected to use through their WebID. Once it has been determined that no

previous registration exists for the EMR application with the Authorization Agent (steps 3–4), a new Processing Request will

be initialized and transferred to the patient’s access management application (step 5). After validation and explicit consent

(steps 6–8), a signed Processing Grant is created by the Access Management Application, stored in the patient’s Pod and

47

5 An Architecture for Enforcing Data Protection In Solid

delivered to the physician’s inbox (step 9–10). Subsequently an Access Request for the patient’s Authorization Agent can

be constructed by the EMR application based on its Access Needs defined in terms of Shape Trees (in this case, shape trees

relevant to the patient’s medical records), and accompanied by the physician’s Processing Grant (step 12). After validation of

the Processing Grant by the Authorization Agent (steps 13–15), it is converted into ACL-rules for the instances of the Shape

Trees mentioned in the Access Needs (steps 16–17). An Access Receipt1 is then returned to the physician’s inbox (step 18),

finally allowing for the EMR application to visualize the patient’s medical records (step 19–22). If the patient subsequently

chooses to withdraw their consent through the Access Management App (step 23), the app will modify a Revocation List in

order to revoke the Processing Grant that was initially provided and notify the Authorization Agent (step 24).

1
Notification referencing an Access Grant

48

6
Implementation

In fulfillment of research object 5, this chapter will detail an implementation of the technical realm of the reference archi-

tecture presented in chapter 5. The source code of this implementation is freely available on Github1 . Firstly, the technology

stack on which our development efforts were based will be summarized. Thereafter, the software architecture of the tech-

nical realm is analyzed and implementation choices are discussed. Finally, we touch upon the integration with the proposed

end-user realm and how this could be realized in our implementation.

Additionally, we must clarify why the implementation of the end-user realm was left out-of-scope for the context of this

thesis. The motivation for this choice is threefold; First, significant ontology work will be necessary in order to define a

policy language that is suitable with respect to legal requirements and provides the necessary affordances for the proposed

mapping to definitions of the technical realm. Second, the end-user interactions with the access management application

should be considered from a user-experience point-of-view in order to assess whether user expectations are met in terms

of data governance and transparency. Last, a legal assessment of the access management application and the specific

capabilities it realizes in the context of data protection regulation should be made. Each of these aspects relates to a distinct

field of research, and should warrant a much more thorough evaluation than we can provide in this thesis.

By implementing the technical realm of the architecture we will also be able to evaluate its impact on performance for

clients requesting information based on access grants that have been defined by the authorization agent. As interactions

with other components of the architecture like the access management app should occur much less frequently, typically only

when the purpose or requested data categories change, assessing the performance of the technical realm will already give

us adequate insights into the characteristics and practicability of our proposal.

6.1 Context & Technology Stack

Our implementation for the technical realm of the reference architecture is enabled in large part by the Components.JS se-

mantic dependency injection framework[71]. Not only because it lies at the heart of Community Solid Server and its modular

architecture but also since additional components that were developed in the context of this research have followed sim-

1
https://github.com/laurensdeb/interoperability

49

https://github.com/laurensdeb/interoperability

6 Implementation

ilar design principles. As a starting point of this work, we based ourselves on an existing MIT-licensed implementation of

a User-Managed Access 2.0 Authorization Service2 , using Components.JS dependency injection, which was expanded upon

with authorization logic following the Solid Application Interoperability draft specification[58]3 . Furthermore, an integra-

tion was developed between the Community Solid Server and its authentication and authorization mechanism and this UMA

Authorization Service4 as well as several auxiliary services and utilities to enable the practical use of the Solid Application

Interoperability draft specification.

6.1.1 Components.JS

Dependency injection (DI) is a common pattern in programming, allowing for the loose coupling of objects by defining their

relations not through concrete implementations but only via minimal interfaces. Importantly, the technique decouples the

specific wiring of various components from the main application logic through configuration. A DI framework is then tasked

with retrieving, instantiating and injecting the required dependencies into the objects.

Typical dependency injection frameworks have relied on local semantics, such that they only work within the context of a

single application and for a specific DI framework. Components.JS[71] was developed with the goal of providing a globally

interoperable and addressable DI framework for JavaScript and TypeScript using semantic web technologies. It offers useful

affordances for research, like unambiguous configuration definitions for experiments andmodularity across projects through

its global semantics.

HandlersJS5 is a set of MIT-licensed Components.JS modules, developed by Digita6 . HandlersJS offers generic capabilities

like HTTP request handling, logging, storage and error handling that can be used through dependency injection. It avoids

developers having to implement these generic functionalities themselves, and thus can be used as a building block in more

complex software architectures based on Components.JS DI.

6.1.2 Community Solid Server

The Community Solid Server7 (CSS) is an open-source implementation of the Solid protocol 0.9 co-developed by Inrupt, inc.

and Ghent University for research and development purposes. It has a configurable and extensible architecture, enabling

researchers to quickly reconfigure the CSS for their experiments or extend it with modules enabling new functionality. To

realize this level of openness and modularity, the CSS relies on the Components.JS framework.

In the context of our work we will be using the latest stable release of the CSS at the time of writing, v4.0.1. This version

introduced support for seeding pods through configuration, a useful affordance during testing, and improved error handling

2
https://github.com/laurensdeb/interoperability/tree/main/packages/uma

3
https://github.com/laurensdeb/interoperability/tree/main/packages/aa

4
https://github.com/laurensdeb/interoperability/tree/main/packages/css

5
https://github.com/digita-ai/handlersjs

6
https://www.digita.ai/

7
https://github.com/CommunitySolidServer/CommunitySolidServer

50

https://github.com/laurensdeb/interoperability/tree/main/packages/uma
https://github.com/laurensdeb/interoperability/tree/main/packages/aa
https://github.com/laurensdeb/interoperability/tree/main/packages/css
https://github.com/digita-ai/handlersjs
https://www.digita.ai/
https://github.com/CommunitySolidServer/CommunitySolidServer

6 Implementation

Figure 6.1: Interactions between components with respect to the UMA 2.0 Authorization Service in the Solid-OIDC 0.1.0 spec-

ification.

by allowing error instances to contain metadata that can be used in response handling.

6.1.3 User-Managed Access 2.0

The User-Managed Access (UMA) 2.0 grant type for OAuth 2.0 was recently introduced in the Solid authentication protocol,

Solid-OIDC 0.1.0[15], with the aim of decoupling the authentication of agents in the Solid ecosystem from the authoriza-

tion logic. The UMA specification[64] defines the use of an Authorization Service (AS) as a separate component managing

authorization to resources provided by a resource server.

Figure 6.1 provides an overview of how the UMA authorization service integrates in the typical request flow using Solid-OIDC

authentication. Inherent to the newly introduced UMA AS is the fact that it is trusted by the Pod Server through some out-

of-band process, not governed by the specification. Therefore we consider this AS to fall in the realm of control of the Pod

provider. Upon executing a request to the Pod server a 401 error indicates to the requesting party the need to perform a

UMA token request. The responsibility then falls on the UMA AS to execute authorization logic using authentication details

of the requesting party and information concerning the resource to which access is being requested.

We must note at this point that important aspects to the UMA-flow like the communication between AS and Pod Server as

well as the scope of the access tokens the AS is delivering are not normatively defined under the Solid OIDC 0.1.0 specification.

A consequence of this choice is that requesting parties may be confronted with the overhead of the UMA token request more

than once in their interactions with a single Pod server. Moreover, the lack of interface definition between the AS and Pod

server in the specification leads to a tight coupling between these components, unless if such an interface is introduced at

another level in the software architecture.

51

6 Implementation

6.2 Technical Realm: Authorization Service

The UMA Authorization Service (AS), which is used in our implementation, is based on a prior effort8 of the author to develop

an open-source, modular AS in TypeScript that can support different authentication and authorization mechanisms through

Components.JS semantic dependency injection. This implementation was still lacking integration with the Community Solid

Server, an obvious prerequisite in order for it to be enabled in an architecture such as the onewe described in chapter 5. Addi-

tionally, the UMA authorization service had to be extended with authorization logic which can interpret the Solid Application

Interoperability draft specification[58].

6.2.1 UMA-support for the Community Solid Server

In order for the Community Solid Server (CSS) to become compliant with the User-Managed Access 2.0 profile of OAuth 2.0, as

introduced in the Solid-OIDC 0.1.0 specification, modifications in four main areas were required. Firstly, an interface must be

defined for interactions with the UMA Authorization Service (AS), which can be used by other modules and allows for a more

flexible integration between the CSS and different implementations of the AS. Second, authentication modules in the CSS

should allow for the use of access tokens provided by the AS in requests. Third, the authorization framework must interpret

the accessmodes that are present in the AS’s access token and use these in subsequent request handling. Last, the processing

of errors in the CSS has to be modified such that the WWW-Authenticate which is returned upon an authentication or

authorization failure includes information for the client to initiate the UMA token request.

UMA Client

In figure 6.2, the different classes relating to the UMA client interface and its implementation are shown. As was discussed

before, the Solid-OIDC specification does not normatively define the interface between the AS and Pod Server. Through the

use of a UmaClient interface, we attempt to introduce this interface at a software architecture level. The UmaClient
allows other modules, dependent on interactions with the AS, to:

• Request a UMA permission ticket with the AS that can be returned in the WWW-Authenticate header upon a 401
Unauthorized error. Such a ticket can be used by the client in the UMA claims pushing process to exchange a

Solid-OIDC ID token for an Access Token.

• Verify an Access Token with the UMA AS and determine what access modes where granted to which resource based

on the token.

• Retrieve the configuration of the UMA Authorization Service.

8
https://github.com/laurensdeb/interoperability/tree/main/packages/uma

52

https://github.com/laurensdeb/interoperability/tree/main/packages/uma

6 Implementation

UmaToken

+webid: string
+azp: string
+resource: string
+modes: AccessMode[]

UmaConfig

+jwks_uri: URI
+issuer: URI
+permission_registration_endpoint: URI

PermissionTicketRequest

+resource: URI
+owner: URI
+ticketNeeds: AccessModes[]

«Interface»
UmaClient

+verifyToken(token: string) : UmaToken
+fetchUMAConfig() : UMAConfig
+fetchPermissionTicket(req: PermissionTicketRequest) : string

UmaClientImpl

-authorizationService: URI
-baseUri: URI
-maxTokenAge: int

+verifyToken(token: string) : UmaToken
+fetchUMAConfig() : UMAConfig
+fetchPermissionTicket(req: PermissionTicketRequest) : string

«enumeration»
AccessMode

Read
Write
Append
Create
Delete

Figure 6.2: Classes & interfaces for the UMA client that was developed for the Community Solid Server. The UmaClient
was introduced to provide an interface to the Authorization Service for other modules.

Importantly, the UmaClient interface does not make any assumptions as to the serialization of access tokens. In the case

of the UMA AS wewill be using, the access tokens are JWTs. However, an opaque token could just as well be validated through

token introspection in the verifyToken implementation.

Concerning the information exchanged between AS and Pod server, we opted for access modes and resource URIs to be the

primary building blocks of our interface. This allows for a clear separation of concerns, where authorization logic in the AS

determines which access modes are granted to what client and the Pod server is tasked with determining which modes are

required for a specific request. Notably, the current Web Access Control specification does not follow this distinction yet such

that it contains both the definition of what access modes are needed for a request as well as the semantics of how these

modes are granted.

A concrete implementation of the UmaClient interface was made for the UMA AS we will be discussing in the next section.

This implementation, UmaClientImpl, requires limited prior configuration outside of the base URI of the Pod server, the

URI of the authorization service and the maximum age of trusted access tokens. Trust between the AS and the Pod server is

established out-of-band, through configuration of the former.

53

6 Implementation

UmaTokenExtractor

-umaClient: UmaClient

+handle(input: HttpRequest) : CredentialSet
+canHandle(input: HttpRequest)

DPoPWebIdExtractor

-originalUrlExtractor: TargetExtractor

+handle(input: HttpRequest) : CredentialSet
+canHandle(input: HttpRequest)

«Interface»
CredentialsExtractor

+handle(input: HttpRequest) : CredentialSet
+canHandle(input: HttpRequest)

CredentialSet

+public: Credential?
+agent: Credential?
+ticket: Credential?

Credential

+webId: string?
+resource: ResourceIdentifier?
+modes: AccessMode[]

«enumeration»
AccessMode

Read
Write
Append
Create
Delete

ResourceIdentifier

+path: string

Figure 6.3: Classes & interfaces pertaining to authentication in the Community Solid Server. The UmaTokenExtractor
was introduced to authenticate requests made using a UMA Access Token.

Authentication

As the v4.0.1 release of the Community Solid Server does not conform to the 0.1.0 revision of the Solid-OIDC specification[15],

the Pod server still performs authentication of clients through Solid-OIDC (DPoP-bound9) ID Tokens. The information derived

from this client authentication is then used by the Pod server in the subsequent authorization process based on Web Access

Control.

In an effort to support the access tokens generated by the Authorization Service as a means of authentication for a request,

a new implementation of the CredentialsExtractor interface was defined. A CredentialsExtractor pro-

cesses an incoming HTTP request in order to extract the credentials that were presented in this request for authentication

purposes. These extracted credentials are returned as a CredentialSet that can be used by the authorization logic

thereafter. Given the specific nature of the UMA access tokens as both a means of authentication and authorization, the

CredentialSet type was amended to include the ticket type. Additionally, the associated Credential type now

also includes fields for a resource identifier and access modes that may be present in a token presented to the Pod server.

Figure 6.3 gives an overview of the CredentialsExtractor interface, and its implementations.

The UmaTokenExtractor was implemented to extract, validate and process UMA access tokens that are presented with

a request. It relies on a UmaClient for its operation, such that the concrete validation logic for the access tokens is ab-

stracted away. Moreover, the UmaTokenExtractor may be used in addition to the existing DPoPWebIdExtractor,

that is able to authenticate requests via Solid-OIDC ID tokens, such that backwards compatibility can be offered to clients of

the Pod server.

9
DPoP: Demonstrating Proof-of-Possession, https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop

54

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop

6 Implementation

«Interface»
PermissionReader

+canHandle(input: PermissionReaderInput)
+handle(input: PermissionReaderInput) : PermissionSet

PermissionReaderInput

+credentials: CredentialSet
+identifier: ResourceIdentifier

AccessTokenPermissionReader

+canHandle(input: PermissionReaderInput)
+handle(input: PermissionReaderInput) : PermissionSet

WebAclReader

-aclStrategy: AuxiliaryIdentifierStrategy
-aclStore: ResourceStore,
-identifierStrategy: IdentifierStrategy
-accessChecker: AccessChecker

+canHandle(input: PermissionReaderInput)
+handle(input: PermissionReaderInput) : PermissionSet

PermissionSet

+public: Permission?
+agent: Permission?
+ticket: Permission?

CredentialSet

+public: Credential?
+agent: Credential?
+ticket: Credential?

Credential

+webId: string?
+resource: ResourceIdentifier?
+modes: AccessMode[]

Permission

+read: boolean?
+write: boolean?
+create: boolean?
+append: boolean?
+delete: boolean?

«enumeration»
AccessMode

Read
Write
Append
Create
Delete

ResourceIdentifier

+path: string

Figure 6.4: Classes & interfaces pertaining to authorization in the Community Solid Server. The

AccessTokenPermissionReader was introduced to process access modes originating from the UMA AS.

Authorization

Only limited modifications pertaining to authorization were necessary in order to enable compatibility between the CSS

and our UMA Authorization Service. Especially given the fact that UMA offloads the evaluation of authorization logic to the

AS, our main implementation of the PermissionReader interface, that the CSS relies upon for determining a client’s

authorization based on their CredentialSet, does little more than check whether the access token in fact does pertain

to the resource that is being requested. If so, it will apply the access modes in the token to the resulting PermissionSet.

Once again we should remark that the AccessTokenPermissionReader which realizes this functionality, is com-

patible with the existing WebAclReader. This way local Web Access Control rules can still be applied to clients that are

authenticating through Solid-OIDC ID tokens.

Error Handling

Lastly, modifications to error handling in the CSS were necessitated by the UMA specification[64]. In particular, when a

resource server is presented with a request that is not properly authenticated, and thus a 401 Unauthorized error is

thrown, it must return to the requesting party a UMA ticket as well as the base URI of the AS in the WWW-Authenticate
header of the response. This way, the requesting party can initiate a request with the AS for an access token by presenting

the UMA ticket alongside authentication and authorization claims in the UMA claims-pushing process.

In order for this WWW-Authenticate header to be added to the response, metadata must be available with the

55

6 Implementation

«Interface»
MetadataWriter

+handle(input: MetadataWriterArgs)

MetadataWriterArgs

+response: HttpResponse;
+metadata: RepresentationMetadata;

UmaWwwAuthMetadataWriter

-umaClient: UmaClient
-accountStore: AccountStore

+handle(input: MetadataWriterArgs)

AccountStore

+authenticate(email: string, password: string) : string
+getSettings(webId: string) : AccountSettings
+generateForgotPasswordRecord(email: string) : string
+getForgotPasswordRecord(recordId: string) : string
+create(email: string, webId: string, password: string, settings: AccountSettings)
+verify(email: string)
+changePassword(email: string, password: string)
+updateSettings(webId: string, settings: AccountSettings)
+deleteAccount(email: string)
+deleteForgotPasswordRecord(recordId: string)

UnauthorizedHttpError

modes: AccessMode[]
resource: URI

+generateMetadata(subject: URI) : Quad[]

Figure 6.5: Classes & interfaces modified pertaining to error handling in the Community Solid Server. The

UmaWwwAuthMetadataWriterwas introduced to add a UMA-specification compliantWWW-Authenticate header

to the response based on metadata in the UnauthorizedHttpError.

UnauthorizedHttpError that defines the resource URI and theminimally required access modes for the request. The

UmaClient then provides the UmaWwwAuthMetadataWriter with the ability to request a permission ticket with

the AS that offers information regarding the request to be authorized.

Importantly, in order to obtain a permission ticket the permission registration flow of the federated UMA 2.0 specification[72]

is followed. This is not normatively part of the Solid-OIDC 0.1.0 specification. Nevertheless, it affords a loose coupling

between the AS and Pod server in the process of obtaining the permission ticket.

In order for this permission registration to be performed, identification of the resource owner through their WebID must

be presented to the AS as well. This explains the injection of an AccountStore instance in the MetadataWriter,

which permits us to query the registered Pods in the Pod server for their owner. An alternative would have been to rely

on the OAuth 2.0 Resource Set Registration specification10 , to register ownership upon resource creation instead of with the

permission registration flow. However, this would have entailed much more intricate modifications to the Community Solid

Server and statefulness on the side of the UMA Authorization Service.

6.2.2 A UMA Authorization Service using Components.JS

In the context of another project of the author, anMIT-licensed implementation of a UMAAuthorization Servicewas developed

in TypeScript using Components.JS dependency injection and based on generic modules for HTTP request and error handling

10
https://docs.kantarainitiative.org/uma/rec-oauth-resource-reg-v1_0_1.html

56

https://docs.kantarainitiative.org/uma/rec-oauth-resource-reg-v1_0_1.html

6 Implementation

from HandlersJS. The source code of this implementation is available via GitHub11 . An overview of its architecture and most

important capabilities will be given in this section.

Overview

At the core of HTTP request handling using the HandlersJS framework is the HttpHandler abstract class, which uses the

Observable pattern fromRxJS12 to enforce asynchronicity following the reactive programming pattern. The API surface of

the Authorization Service is formed by four implementations of this abstract class, each of which is responsible for a different

capability defined by either the UMA 2.0 Grant specification[64] or the Federated Authorization for UMA 2.0 specification[72].

An overview in the form of a class diagram is given in figure 6.7.

TheTokenRequestHandler implements the token request endpoint as defined in section 3.2 of RFC6749, which defines

the OAuth 2.0 Authorization Framework[73]. The TokenRequestHandler parses the request conformant to the generic

definition of the token interface, and then relies on GrantTypeProcessor instances to handle the specific grant types,

like UMA 2.0.

The PermissionRegistrationHandler class realizes looser coupling between the Authorization Service and the

Resource Service (in our case, the Solid Pod server) by delegating the generation of UMA tickets to the AS. For this purpose

section 4.1 of the Federated Authorization for UMA 2.0 specification[72] defines the request of a UMA permission ticket

through the permission registration flow. The PermissionRegistrationHandler implements the interface of

this specification, with the minor addition of a reference to the owner’s WebID in the registration request such that the AS

can determine whom the owner of the resource is. Such information is not part of the main UMA specification, as there it is

assumed the ownership of a resource was established out-of-band.

Lastly, the UmaConfigRequestHandler and JwksRequestHandler are responsible for respectively discovery of

the authorization service and establishing trust with its access tokens. The former provides clients with discovery metadata

on the AS, conformant to the OAuth 2.0 server metadata RFC[74]. Trust between the AS and Pod Server is established by using

asymmetric cryptography, such that a JSON Web Key Set[75] advertising the public keys of the AS must be available for a

client. We will further detail the trust model between authorization service and Pod server in the next subsections.

11
https://github.com/laurensdeb/interoperability/tree/main/packages/uma

12
https://rxjs.dev/

57

https://github.com/laurensdeb/interoperability/tree/main/packages/uma
https://rxjs.dev/

6 Implementation

«a
bs

tr
ac

t»
H
tt
pH

an
dl
er

+h
an

dl
e(

in
pu

t:
 H

tt
pH

an
dl

er
Co

nt
ex

t)
 :

 O
bs

er
va

bl
e<

H
tt

pH
an

dl
er

Re
sp

on
se

>

Pe
rm

is
si
on

Re
gi
st
ra
ti
on

H
an
dl
er

-b
as

eU
rl

:
st

ri
ng

-t
ic

ke
tF

ac
to

ry
:

Ti
ck

et
Fa

ct
or

y
-r

es
ou

rc
eS

er
ve

rs
:

IR
I[

]

+h
an

dl
e(

in
pu

t:
 H

tt
pH

an
dl

er
Co

nt
ex

t)
 :

 O
bs

er
va

bl
e<

H
tt

pH
an

dl
er

Re
sp

on
se

>

To
ke
nR

eq
ue

st
H
an
dl
er

-p
ro

ce
ss

or
s:

 G
ra

nt
Ty

pe
Pr

oc
es

so
r[

]

+h
an

dl
e(

in
pu

t:
 H

tt
pH

an
dl

er
Co

nt
ex

t)
 :

 O
bs

er
va

bl
e<

H
tt

pH
an

dl
er

Re
sp

on
se

>

«i
nt

er
fa

ce
»

G
ra
nt
Ty
pe

Pr
oc
es
so
r

+g
et

G
ra

nt
Ty

pe
()

 :
 s

tr
in

g
+p

ro
ce

ss
(b

od
y:

 M
ap

<s
tr

in
g,

 s
tr

in
g>

)
:

Pr
om

is
e<

To
ke

nR
es

po
ns

e>

Jw
ks
Re

qu
es
tH
an
dl
er

-k
ey

ho
ld

er
:

Jw
ks

Ke
yH

ol
de

r

+h
an

dl
e(

in
pu

t:
 H

tt
pH

an
dl

er
Co

nt
ex

t)
 :

 O
bs

er
va

bl
e<

H
tt

pH
an

dl
er

Re
sp

on
se

>

To
ke
nR

es
po

ns
e

+a
cc

es
s_

to
ke

n:
 s

tr
in

g
+r

ef
re

sh
_t

ok
en

:
st

ri
ng

?
+i

d_
to

ke
n:

 s
tr

in
g?

+t
ok

en
_t

yp
e:

 s
tr

in
g?

+e
xp

ir
es

_i
n:

 n
um

be
r?

+u
pg

ra
de

d:
 b

oo
le

an
?

«i
nt

er
fa

ce
»

Jw
ks
Ke

yH
ol
de

r

+g
et

Pu
bl

ic
Ke

y(
ki

d:
 s

tr
in

g)
 :

 K
ey

Li
ke

+g
et

Pr
iv

at
eK

ey
(k

id
:

st
ri

ng
)

:
Ke

yL
ik

e
+g

et
D

ef
au

lt
Ke

yI
d(

)
:

Pr
om

is
e<

st
ri

ng
>

+t
oP

ub
li

cJ
w

k(
ki

d:
 s

tr
in

g)
 :

 P
ro

m
is

e<
JW

K>
+g

et
Jw

ks
()

 :
 P

ro
m

is
e<

JW
KS

>
+g

et
Ke

yI
ds

()
 :

 s
tr

in
g[

]
+g

en
er

at
eK

ey
pa

ir
()

 :
 P

ro
m

is
e<

st
ri

ng
>

+g
et

A
lg

or
it

hm
()

 :
 s

tr
in

g

«a
bs

tr
ac

t»
O
A
ut
hC

on
fi
gR
eq

ue
st
H
an
dl
er

#g
et

Co
nf

ig
()

 :
 O

A
ut

hC
on

fi
gu

ra
ti

on
+h

an
dl

e(
in

pu
t:

 H
tt

pH
an

dl
er

Co
nt

ex
t)

 :
 O

bs
er

va
bl

e<
H

tt
pH

an
dl

er
Re

sp
on

se
>

U
m
aC

on
fi
gR
eq

ue
st
H
an
dl
er

#g
et

Co
nf

ig
()

 :
 O

Au
th

Co
nf

ig
ur

at
io

n

O
A
ut
hC

on
fi
gu
ra
ti
on

+i
ss

ue
r:

 s
tr

in
g

+j
w

ks
_u

ri
:

st
ri

ng
?

+t
ok

en
_e

nd
po

in
t:

 s
tr

in
g?

+t
ok

en
_e

nd
po

in
t:

 s
tr

in
g?

+g
ra

nt
_t

yp
es

_s
up

po
rt

ed
:

st
ri

ng
[]

?
+d

po
p_

si
gn

in
g_

al
g_

va
lu

es
_s

up
po

rt
ed

:
st

ri
ng

[]
?

+r
es

po
ns

e_
ty

pe
s_

su
pp

or
te

d:
 R

es
po

ns
eT

yp
e[

]?
+s

co
pe

s_
su

pp
or

te
d:

 s
tr

in
g[

]?

Fi
g
u
re

6
.6
:
O
ve

rv
ie
w

o
f
th

e
H
TT

P
H
a
n
d
le
rs

in
th

e
U
M
A
A
u
th

o
ri
za

ti
o
n
Se

rv
ic
e
,w

h
ic
h
im

p
le
m
e
n
t
th

e
U
se

r-
M
a
n
a
g
e
d
A
cc
e
ss

(U
M
A
)
2
.0

G
ra

n
t
fo

r
O
A
u
th

2
.0

A
u
th

o
ri
za

ti
o
n
[6

4
]
a
n
d

th
e
Fe

d
e
ra

te
d
A
u
th

o
ri
za

ti
o
n
fo

r
U
M
A
2
.0
[7
2
]
sp

e
ci
fi
ca

ti
o
n
s.

58

6 Implementation

TokenResponse

+access_token: string
+refresh_token: string?
+id_token: string?
+token_type: string?
+expires_in: number?
+upgraded: boolean?

«interface»
GrantTypeProcessor

+getGrantType() : string
+process(body: Map<string, string>) : Promise<TokenResponse>

UmaGrantTypeProcessor

-claimTokenProcessors: ClaimTokenProcessor[]
-authorizers: Authorizer[]
-ticketFactory: TicketFactory
-tokenFactory: TokenFactory

+getGrantType() : string
+process(body: Map<string, string>) : Promise<TokenResponse>

«interface»
Authorizer

authorize(client: Principal, request: Ticket) : Promise<AccessModes>

«interface»
ClaimTokenProcessor

+getClaimTokenFormat() : string
+process(req: ClaimTokenRequest) : Promise<Principal>

ClaimTokenRequest

+url: URL
+method: HttpMethod
+claim_token: string,
+claim_token_format: string,
+rpt: string?
+dpop: string?

Principal

webId: IRI
clientId: IRI

Ticket

subject: IRI
owner: IRI
requested: AccessMode[]

Figure 6.7: Overview of the modules involved in processing the UMA token request.

Token Request & Claims Pushing

Whenever an incoming token request is received by the TokenRequestHandler, it will perform a validation of the

request in conformance with the broader OAuth 2.0 Authorization Framework’s requirements. Thereafter it delegates fur-

ther processing to a dedicated GrantTypeProcessor, specific to the grant type of the token request. In our case the

UmaGrantTypeProcessor will handle the token request according to the UMA 2.0 Grant[64] specification.

POST /token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Auma-ticket
&ticket=eyJhbG...tSw1y-r_yJeQp9Y9l_Q
&claim_token=eyj0...YWxpY2UvcmVnaXN0cmllcy9hZ2Vu
&claim_token_format=http%3A%2F%2Fopenid.net%2Fspecs%2Fopenid-connect-core-1_0.html%23

IDToken

Listing 6.1: Example UMA Token Request

Listing 6.1 shows a UMA token request, which can be identified by its grant type (urn:ietf:params:oauth:grant-
type:uma-ticket). Additionally, the request includes the UMA permission ticket which identifies the request to be

authorized. In the request we present here, the practice of UMA claims pushing is being demonstrated. Claims pushing

entails that the requesting party includes a claim_token asserting identity or authorization claims in the token request.

This mechanism is used by the Solid-OIDC 0.1.0 specification for the requesting party to present their Solid-OIDC ID token to

the authorization service.

The ClaimTokenProcessors which are injected into the UmaGrantTypeProcessor are responsible for validat-

ing the identity and authorization claims presented to the AS during claims pushing. In order to support Solid-OIDC ID tokens

as a means of authentication with this endpoint, the DpopClaimTokenProcessor class was implemented. Addition-

ally, other ClaimTokenProcessors could be envisioned, for example to validate Verifiable Credentials presented by a

client (a proposed means of authorization in the ACP specification, as was highlighted in a previous chapter).

59

6 Implementation

Once the identity of the requesting party has been asserted through one of the ClaimTokenProcessors and infor-

mation on the request to be authorized was extracted from the UMA ticket, the Authorizer modules execute their au-

thorization logic based on the authenticated Principal and the information in the parsed Ticket. The Principal
is identified both through their WebID as well as the Client ID of the application they are using. The Ticket includes in-

formation on the subject resource of the authorization request, the owner of this resource and the necessary access modes.

The result of the authorization logic will be a set of Access Modes that are available for the requesting party in this context.

The resulting access modes from the authorization framework will be serialized as an access token by a TokenFactory.

This access token identifies the resource, the access modes that have been granted, and the authorized party. As the token

is linked to a concrete resource, it is currently not possible to reuse the access tokens implying that a UMA token request

will be required for every new resource access in our authorization framework. This choice is motivated by the fact that the

Solid-OIDC 0.1.0 specification does not normatively require these access tokens to be DPoP-bound. Consequently, leaking an

UMA access token would allow for its use by parties that cannot provide a DPoP-proof and thus undermine Solid’s security

model. Restricting access tokens to a per-resource basis mitigates this risk somewhat. Additionally, allowing for broader

use of a single UMA access token may blur the line between the responsibilities of the AS and Pod server (or require much

more information to be captured by the access token), whereas a stricter separation of concerns was the primary motivation

for the introduction of UMA.

Trust model between Authorization Service and Pod Server

Both the access tokens and UMA permission tickets that are exchanged between the client and the authorization service

are serialized as JSON Web Tokens[76]. This format offers data integrity and authenticity capabilities when verifying the

signature in these tokens with a JSON Web Key (JWK)[75].

Alternatively, the token introspection flow of the OAuth 2.0 framework[73] could also have been used to validate access

tokens exchanged between the client and Pod server when authenticating a request. In this case, these tokens can even

be considered as opaque access tokens by the resource server thereby delegating verification to the authorization service

and reducing the impact of e.g. a future format change to the access token. Obviously such an active endpoint for token

introspection does introduce an additional HTTP request each time a client accesses a resource using an access token. In

contrast, the JSON Web Key Set of an authorization service can even be cached and validation is performed locally on the

side of the Pod server, which can provide a minor performance improvement.

6.2.3 Authorizing requests using the Solid Application Interoperability specification

Through the Authorizer interface that has been described before, authorization logic based on the Solid Application

Interoperability (SAI)[58] specification was implemented. As we highlighted in chapter 3, the SAI specification allows for

access control rules to be defined at higher abstraction levels, in terms of Data Shapes and Shape Trees. Our proposed

reference architecture relies on this higher abstraction level to relate business and legal concepts from the end-user realm

60

6 Implementation

to the low-level resource-oriented model for authorization which is employed by the Solid Pod server.

The InteropAuthorizer class bridges the Authorizer-interface defined in the UMA authorization service module

to the data model and concepts of the SAI specification. This class was designed with modularity in mind, as the SAI speci-

fication is still evolving with respect to authorization (in particular concerning the delegation of access) and thus it should

be possible to quickly introduce new authorization rules or modify existing ones.

Interoperability Authorization Strategies

The SAI specification defines an agent’s registry set as the source of truth for authorization of applications and other social

agents with respect to the data of the owner. The registry set can refer to data stored across various different Pods, as long

as an entry in the data registry exists. The agent registry and authorization registry will capture the authorization that was

given to some agent in terms of references to concrete data registrations and access modes. Figure 6.9 gives an overview

of how this registry set is referenced from the WebID of the agent and how a single agent can have multiple data registries

pertaining to data in different Pods.

Data registrations relate resources stored in the Solid Pod to Shape Trees[57], which thus enable the enforcement of structural

constraints on the data being stored in the Solid Pod. The resources within this registration are also referred to as data

instances. Whenever an agent requests access to the resources in the Pod of a user, they will specify their access needs in

terms of these Shape Trees. Consequently, the requesting party does not need to know in advance where the concrete data

are located in the Solid Pod before requesting access (as would have previously been required under Web Access Control,

where ACLs are defined in terms of resource IRIs). When the Pod owner decides to grant the access needs of an agent, a new

agent registration along with access and data grants will be made available to the agent. Additionally, an access and data

authorization are stored internally in the authorization registry as a source of truth for the authorization agent.

The InteropAuthorizer we implemented uses these access and data grants for determining the authorization of an

agent. Moreover, the Authorizer not only governs access to the concrete data instances but also considers the discovery

path that is defined by the SAI specification for an agent to determine which resources it can access, through the agent

registration and its related grants.

The specific authorization rules derived from the SAI specification are realized by implementing theInteropAuthorizer-
Strategy interface. Such a strategy is given request details like the resource, resource owner and necessary access modes

as well as the identity of the authenticated client making the request. Under the SAI specification, the authenticated client is

either a Social Agent, identified by aWebID, or an Application, identified by a Client ID. Through theAuthorizationAgent
interface13 that is provided to the strategy for consulting the registry set, relevant information to the authorization process

can be retrieved as defined by the SAI specification. Finally, the strategy returns a set of access modes that were deemed

applicable for the given agent and resource.

13
Not to be confused with the actual Authorization Agent which we will define in the next section.

61

6 Implementation

strategies

modes

«Interface»
Authorizer

+authorize(client: Principal, request: Ticket) : Promise<AccessModes>

InteropAuthorizer

authorizationAgentFactory: AuthorizationAgentFactory

+authorize(client: Principal, request: Ticket) : Promise<AccessModes>

InteropAuthorizerStrategy

+authorize(agent: AuthorizationAgent, request: RequestedPermissions, client: AuthenticatedClient) : Promise<AccessModes>

«Type»
AuthenticatedClient

RequestedPermissions

+resource: IRI
+owner: IRI
+modes: AccessModes

SocialAgent

webId: IRI

Application

webId: IRI
clientId: IRI

AccessModes

+modes: AccessMode[]

«enumeration»
AccessMode

Read
Write
Append
Create
Delete

Figure 6.8: Architecture of the Solid Application Interoperability Authorizer-module.

62

6 Implementation

:hasRegistrySet

:hasAuthorizationRegistry:hasAgentRegistry

:hasDataRegistry :hasDataRegistry :hasDataRegistry

Alice's WebID

Registry Set

Agent Registry Authorization Registry

Work Data RegistryPrivate Data Registry Government Data Registry

Figure 6.9: Overview of the registries used by the Solid Application Interoperability specification

Optimization

Three main optimizations were introduced in the authorization logic to reduce the time needed for evaluating the different

strategies when processing a UMA token request. Firstly, because of the loose coupling between the AS and the Pod Server

a large number of network requests may be necessitated by the evaluation of a strategy that relies on the information in

the Pod owner’s registry set. In order to mitigate this, the strategies themselves are evaluated in an asynchronous manner

by taking advantage of the concurrency enabled through JavaScript’s Promise construct. Second, short circuiting was

introduced in the evaluation of authorization logic. Thus, as soon as any of the authorization strategiesmatches the resource,

this will terminate the authorization process. For this optimization we do make the assumption that a resource is only part

of a single Shape Tree at any given time, for a given client.14 Lastly, we use an LRU cache for the AuthorizationAgent
instances, combined with memoization15 , to speed up repeated requests from the same client. Nevertheless, the underlying

registry set may change such that this caching mechanism must have a very limited expiration time, as to prevent a client

from accessing resources after their authorization was revoked.

6.3 Technical Realm: Authorization Agent

Finally, we will describe our implementation of the Authorization Agent, which facilitates the interactions between agents in

the Solid Application Interoperability specification[58] by performing the crucial tasks of data discovery and access negotia-

tion. Under the SAI specification, eachWebID references their authorization agent through theinterop:hasAuthoriz-
ationAgent predicate. By performing an authenticated request on this authorization agent, an agent can discover their

14
We must remark that this assumption is correct in the context of the ”physical” Shape Trees we rely on in our implementation, which are based on

resource containment.
15
A form of caching, where the resulting function value for the given arguments is stored.

63

6 Implementation

agent registration and subsequently determine what data they are allowed to access. In this section we will briefly highlight

how this discovery process was realized in our modules.

Previously, we noted that the SAI specification is still under discussion, such that there currently is no normative interface

definition yet for how an agent should ”ask” for a registration with the Authorization Agent. Therefore, we have not com-

pleted an API endpoint for this functionality in our implementation. Rather we will present the interface definitions that

should facilitate such a registration process and link the technical realm, which we’ve presented here, to the end-user realm

through the concept of access control and data usage policies.

For the development of this authorization agent, we again opted for a software architecture based on Components.JS de-

pendency injection. Additionally, we chose for the Authorization Agent itself to have a proper identity in the Solid ecosystem,

by defining its own WebID that is used in authentication and authorization with the resource server storing the registry

set. Other implementation of the authorization agent interface exist16 , however these implicitly assume the identity of

the resource owner by keeping alive their Solid-OIDC ID token. In giving the resource server its own identity, we avoid the

complexity associated with this identity management.

In the next sectionswewill provide an overviewof the two core features of the authorization agent, negotiating authorization

and enabling data discovery, and how these were realized in our implementation.

6.3.1 Data & Authorization Discovery

Early on in the design of the SAI specification, The Solid Data Interoperability panel adopted the principle that data discovery

and authorization are inextricably linked. The authorization agent facilitates this process of data discovery by allowing

an agent to retrieve their registration in the registry set of the resource owner. After performing a HEAD request on the

authorization agent of the resource owner, an agent registration is returned as a Link header that can be used to continue

the data discovery. This step in the discovery process ensures the resource owner does not disclose the existence of sensitive

information in their data registry.

We noted before that the authorization agent assumes its own identity for the purpose of accessing the registry set, this is

currently realized by giving the agent’s WebID read permissions via Web Access Control on the registry set. For convenience,

this process was integrated into our Community Solid Server UMAmodules, such that the Pod template being used automat-

ically enables these ACL rules. This fact also highlights the convenience in combining traditional ACL-based authorization

with newer authorization mechanisms that can be integrated into the UMA AS.

6.3.2 Agent Registration

In the case no agent registration exists yet, we did not have any normative specification as to how an access negotiation step

would have to be implemented. Therefore we decided to limit our implementation to providing interfaces that can be used

16
https://github.com/janeirodigital/sai-impl-service

64

https://github.com/janeirodigital/sai-impl-service

6 Implementation

when a definition of the required interactions makes its way into the SAI specification. Notably, we paid particular attention

to how these interfaces would bridge the end-user and technical realms defined by the reference architecture we presented

in chapter 5.

To provide a link between the technical realm of our architecture and the end-user realm which we presented before, the

policy language used to express the data processing granted by the access management app will have to be understood by

the Authorization Agent. We enable this behavior by having the AgentRegistrationService, that is responsible for

processing an incoming request by an authenticated agent in terms of AccessNeeds pertaining to generic Shape Trees,

rely on an AccessPolicy interface which converts the access needs of the agent to an access authorization, following

the semantics of the Policy language. This access authorization can then be stored by the authorization agent and converted

into an access grant and set of data grants.

Figure 6.10 shows these interfaces and how they relate to each other. Thanks to Components.JS dependency injection, an

implementer of a usage policy language could integrate their work into the AgentAuthorizationService simply

by implementing the AccessPolicy interface and wiring their instance into the framework via dependency injection.

65

6 Implementation

accessNeeds

AccessNeed

+registeredShapeTree: URI
+accessMode: AccessMode[]
+creatorAccessMode: AccessMode[]
+accessNecessity: AccessNecessity

AccessNeedsGroup

+accessNeeds: AccessNeed[]
+necessity: AccessNecessity

«enumeration»
AccessNecessity

OPTIONAL
REQUIRED

«Interface»
AgentRegistrationService

+handle(req: RegistrationRequest) : Promise<RegistrationResponse>

PolicyBasedRegistrationService

-policy: AccessPolicy

+handle(req: RegistrationRequest) : Promise<RegistrationResponse>

«Interface»
AccessPolicy

+handle(agent: AuthenticatedClient, needs: AccessNeedsGroup) : Promise<AccessAuthorization>

AccessAuthorization

+accessNeedsGroup: URI
+grantee: URI
+dataAuthorizations: DataAuthorization[]

DataAuthorization

+registeredShapeTree: URI
+scope: URI
+inheritsFromAuthorization: URI?
+satisfiesAccessNeed: URI
+hasDataRegistration: URI?
+accessMode: AccessMode[]
+creatorAccessMode: AccessMode[]?
+hasDataInstance: URI[]?

RegistrationRequest

+agent: AuthenticatedClient
+accessNeedsGroup: AccessNeedsGroup

RegistrationResponse

+agent: AuthenticatedClient
+registration: URI

Figure 6.10: Interfaces of the Authorization Agent relating to the creation of a new authorization.

66

7
Discussion

Our central aim at the start of this thesis was to assess how consent-based data processing applications could be imple-

mented in Solid, in conformance with the requirements of the General Data Processing Regulation, andwhile improving upon

existing approaches using the Web Access Control mechanism for authorization. In this chapter we will discuss our results;

Firstly by reflecting upon the existing affordances offered by the Solid Protocol 0.9 and the results of prior work. Thereafter,

we will discuss our proposed reference architecture in the light of the requirements under the GDPR and the improvements

it enables for end-users or data subjects, data controllers and application developers. Lastly, our implementation of the

technical realm of this architecture is discussed and a limited evaluation of its performance characteristics is made.

7.1 Assessment of Web Access Control & Prior Research

In chapter 4 we highlighted technical capabilities and limitations of the Web Access Control specification, as well as the

informational requirements of the GDPR that can be fulfilled through its design. As was shown in table 4.1, the Web Access

Control specification only partially captures some informational requirements, like categories of personal data concerned

by the processing and recipients of this data, while others are not modelled. The fact this information is not captured also

implies that the technical measures that can be enforced by the Solid protocol 0.9 are limited, for example purpose limitation

and limited data storage cannot be ensured because no purpose or time restrictions aremodeledwith the authorization rules.

While it is possible for current applications interacting with personal data in Solid Pods to conform to the informational and

technical requirements of the GDPR, this will require additional, out-of-band mechanisms on the side of the data controller

to ensure compliance and capture the relevant information for transparency to regulators and end-users. Moreover, as these

customprocesses for ensuring compliance fall outside of the realmof the Solid specification their design and implementation

may be proprietary to the controller or their software vendor. These implementations of the GDPR’s requirements could

also exhibit similar shortcomings and dark patterns as exist today in more traditional applications and services[8], where

significant effort on the part of the data subject is needed to obtain transparency into how personal data are processed.

Also, with respect to the legal basis of consent, the process by which this consent is given to a data controller, and thus

authorization rules are modified to make resources in the Pod accessible, is currently not governed by the Solid specification.

67

7 Discussion

This implies that the user needs to trust the data controller to properly modify authorizations in their Pod when a consent

is given, as well as revoke the relevant authorizations upon an opt-out. Additionally, the management of this consent will

be a vendor- or application-specific affair instead of being integrated into the Solid specification and ecosystem.

The Access Control Policy specification[65] does show promise in expanding the information that can be modeled and rules

which can be enforced through the access control mechanism. Its use of Verifiable Credentials could, for example, enable the

modeling and enforcement of time, legal basis and purpose constraints for an authorization. Nevertheless, it also exhibits

similar shortcomings in terms of interpretability of authorization rules (due to their resource-centric nature and broad access

mode definitions), and does not touch upon the authorization process for applications.

Also, when more explicitly considering the role of the Pod provider as a data controller[30] in a direct exchange of per-

sonal data stored the Solid Pod based on consent, we remark a shared responsibility between the data controller of the

data processing application and this Pod provider to ensure compliance with the GDPR when exchanging information. As

Pod providers are also subject to the GDPR as data controllers, they could be subject to hefty fines in case information is

exchanged without proper legal basis. If the compliance of data processing applications is not verifiable and enforceable

through the Solid specification or a similar open standard, custom and potentially even proprietary mechanisms will have

to be devised by Pod providers in order to capture relevant informational requirements and ensure adherence to techni-

cal principles. Such an evolution could be detrimental to the open nature of the Solid ecosystem, and its aim of enabling

permissionless innovation and end-user governance over personal data.

Some of the problem areas which we have identified for WAC and ACP in this work have also been the noted in prior research

regarding access control frameworks for Linked Data[77, 56]. For example, challenges like access negotiationmindful of user

privacy, understandability of access control rules, and effectiveness of the administration and enforcementmechanisms have

been pointed out[77]. These areas fundamentally impact the security, data governance and user-experience affordances

provided by access control frameworks, and must be properly addressed when aiming to deliver real-world applications

using these mechanisms to enforce authorization.

Prior work, like the proposed ODRL profile for access control in Solid[50] shows promise, by fulfilling additional informa-

tional requirements (through its use of the Data Privacy Vocabulary)[35] and allowing for improved end-user interpretability

of the rules governing use of their data. Moreover, the proposed policy language uses the concept of data categories as an

abstraction on top of concrete resources to which access is being authorized and proposes a procedure for how access re-

quests can be made by applications. Be that as it may, the authors do highlight some issues with their proposal, for example

in the efficiency of evaluating their proposed ODLR profile, the complexity of inheritance mechanism for ACLs which their

architecture also retains, the privacy risks attached to discovery of data categories through the public ODRL policies, the

legal meaning of such policies and interoperability with Pods that do not support this profile.

68

7 Discussion

7.2 Architecture

One of the major departures from previous proposals is that our proposed reference architecture aims to separate the prob-

lem of reconciling technical authorization with the legal requirements for data processing into two distinct domains. On the

one hand, there is an end-user realm where the user is presented with requests for data processing in terms of processing

actions happening onmore abstract data categories, and where an end-user can determine explicit data sharing preferences.

On the other hand, there is a technical realm where Solid’s proposed Application Interoperability Specification governs how

application developers can gain access to resources in an agent’s Solid Pod, once a proper legal basis for processing has

been established. The concept of Data Processing Grants that are verifiable through the W3C’s Data Integrity Specification

for Linked Data form the link between these two distinct domains, combined with policies that relate the meaning of Data

Categories and Processing Actions to technical concepts that can be used by the Solid Pod.

Whereas previous solutions aimed to integrate business concepts into Solid’s existing authorizationmechanisms, for example

through expanding upon Access Control with purpose and policy concepts, our proposal takes advantage of the modularity

enabled by the novel UMA Authorization Service and uses a layered architecture on top of it to introduce business concepts.

While this does not solve the core limitations of the existing ACL mechanisms as were mentioned in previous chapters, like

inheritance concerns and over-permissioning, it prevents us from importing these same issues into the higher level con-

cepts of Access Grants and Data Processing Grants. Furthermore our architecture aims to reduce assumptions made on the

supported features by the Solid server by externalizing the concepts of an Access Management App and an Authorization

Agent such that these can be separate services a user chooses to add to their WebID and link to their Solid Pods. Addition-

ally, an explicit dependency on the authorization logic supported by the UMA Authorization Service can be avoided in this

framework, as long as a sufficient mapping from the business domain to the authorization mechanism supported by the AS

exists for the Authorization Agent to perform. Especially in the light of the recent proposal of the Access Control Policy (ACP)

language [65] as an alternative to Web Access Control, which addresses a number of the shortcomings we have highlighted

about the latter, this decoupling is a desirable property.

Some of the highlighted challenges in the ODRL proposal [50] have been addressed here, while others will necessitate

further consideration. With respect to efficiency, by introducing the Authorization Agent as an intermediary for providing

the technical access, we avoid the necessity of matching policies for each HTTP request on a resource in the Pod and convert

this into a negotiating step that theoretically should only occur if the access needs or the processing grant of the application

have been modified. Moreover, in our proposal, policies do not show the hierarchical inheritance that is common for ACL

resources thus compliance checking does not need to take this into account. Still, it might be the case that complex data

sharing preferences used by the access management app or elaborate processing grants could lead to an unacceptable time

complexitywhen used in practice. By introducing the accessmanagement app as a dynamic negotiator in the flowwe avoided

the need for public policies to be advertised by the Solid Pod, which addresses important privacy concerns with a policy based

solution (i.e., what if anyone can see that you have shared your medical records for the purpose of a past treatment with

a psychiatrist). Specific legal issues raised in the ODRL proposal [50] remain largely applicable to our proposal as well, i.e.,

the legal implications of user choice enabled by Solid’s novel approach to data governance, the necessity of awareness of

the applicable jurisdiction and its requirements for data processing activities and whether data sharing preferences, as were

69

7 Discussion

briefly touched upon, indeed constitute a form of consent.

While we have focused largely on the problem space of implementing explicit consent as a legal basis throughout this

proposal, there could be room for enabling other legal bases to be enforced by the access management app as well. For

example when processing is requested on the basis of a contractual obligation, the Access Management App could retrieve

the contract from the subject’s Pod and validate it against the identity of the requesting party for the Data Processing.

7.3 Implementation

In the implementation of the technical realm of the reference architecture we presented, a couple of novel contributions

can be identified. Firstly, a UMA Authorization Service as well as modules for integrating this novel component into the

authorization logic of the Community Solid Server v4.0.1 were developed. Second, authorization logic based on the Solid

Application Interoperability (SAI) draft specification[58] was implemented and wired into the UMA Authorization Service

through Components.JS semantic dependency injection. Lastly, we realized an Authorization Agent, conformant to the current

SAI draft specification[58], which is capable of bridging the technical and end-user realm of our architecture.

In this section the capabilities of the presented architecture with respect to research into and development of authorization

mechanisms will be highlighted. Thereafter, we will provide our results with respect to an evaluation of the performance

constraints of the SAI-based authorization logic when integrated into the UMA authorization service. Finally, we will discuss

the challenges that still exist and what optimizations we envision could improve performance further.

7.3.1 Affordances for researchers and developers

Through the introduction of UMA 2.0 into the latest editor’s draft of the Solid-OIDC specification[15], an explicit distinction

is made between the roles of the Solid Pod, as a resource server, and the authorization service, which is tasked with au-

thenticating and authorizing requests. This fundamental separation of concerns also opens up new directions for research

into different authentication and authorization mechanisms to be used in the broader Solid ecosystem. While previously

the PermissionReader interface in the Community Solid Server already offered some flexibility as to the implemen-

tation of new authorization logic, it was necessarily still constrained by its integration with the authentication mechanisms

supported by the Solid server.

In contrast, theAuthorizer pattern in our UMA Authorization Service allows for developers to implement new access con-

trol mechanisms in a modular manner. When complemented with ClaimTokenProcessor implementations authen-

tication of the UMA token requests can be done using existing methods like Solid-OIDC, but also through novel mechanisms

like Verifiable Credentials.

With respect to research into policy languages, and more specifically the area of data usage policies which we briefly de-

scribed in chapter 3, our implementation of authorization logic based on the Solid Application Interoperability draft specifi-

70

7 Discussion

cation[58] may enable practical applications of prior research, like the ODRL profile for Solid[50]. The authors note that in

order to relate concrete resources to a personal data category as defined under the GDPR, they rely on this category to be

self-reported in the associated ACL resource. The use of Shape Trees in authorization, as is the case in our implementation,

could resolve this issue by using the structural constraints of the Shape Tree to relate resources to more abstract concepts

like data categories.

7.3.2 Real-world performance evaluation

In order to evaluate the performance of authorization based on the Solid Application Interoperability draft specification,

we set up an experiment where access authorizations for a single agent are simulated over the course of 250 requests.

The data to which access is being authorized were synthetically generated based on the SAI specification’s data model and a

hypothetical Shape Tree for a projectmanagement application. Furthermore, the evaluationwas done for varying dimensions

of the registry set in the Solid Pod. In particular the number of Agent Registrations, Data Grants and Data Registrations were

used as parameters for the generation of this synthetic dataset.

After generating six configurations of the synthetic Solid Pods, with either 20 or 100 agent registrations and 10, 50 or 100 data

grants, we set out to evaluate the authorization performance. In order to assess performance we measured the complete

response time of the UMA Authorization Service’s token endpoint when presented with a ticket for a resource and proper

authentication of the client. Data grants and data instances were randomly sampled when simulating requests in order to

challenge caching behavior of the implementation.

The median response times per resource type and for each of the configurations are shown in figure 7.1, with detailed results

summarized in Appendix 2. In this overview we notice there is a measurable impact when increasing the number of data

grants, and thus also the number of data registrations, especially with respect to the authorizing access to data instances.

This behavior can be explained by the fact that while access grants and data grants are considered immutable resources

under the SAI specification, the same does not apply to data registrations. Thus an additional network request is always

required when authorizing access to data instances in order to assess that the instance is still contained in a registration for

which a data grant exists. In the case of the datasets with 100 data registrations, median response time already exceeds

200 milliseconds and even peaks above 1 second. On the other hand, an increase in the number of agent registrations does

not appear to have a significant effect on the median performance numbers we’ve obtained. Across the different resource

types, we notice the most significant increase in median response time with respect to the data instances, again likely due to

the fact that authorizations for this resource type necessarily introduce an outgoing request to each data registration until

one is found referencing the data instance.

Additionally, we also assessed the impact of a varying number of instances per data registration for a fixed number of

data grants and agent registrations. For this assessment, we fixed the number of agent registrations and data grants at

respectively 20 and 50 and varied the number of data instances between 5 and 100. In figure 7.2 the median response times

are visualized, where we notice that there is no significant impact with an increasing number of data instances. Only in the

authorization of the data instance resource type itself do we notice a slight difference in median response times. However,

71

7 Discussion

Agent Registration Access Grant Data Grant Data Registration Data Instance
Resource Type

0

20

40

60

80

100

120

140

160

180

200

220

240

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

Data collected over 250 requests

Median Response Time of the UMA Authorization Service
Pod Template

20 Agent Registrations with 10 Data Grants
20 Agent Registrations with 50 Data Grants
20 Agent Registrations with 100 Data Grants
100 Agent Registrations with 10 Data Grants
100 Agent Registrations with 50 Data Grants
100 Agent Registrations with 100 Data Grants

Figure 7.1: Median response times by resource type for a token request to the UMA Authorization Service in different config-

urations of the Solid Pod. Data collected over 250 requests per configuration, 95% confidence intervals are marked in black.

Validated using the 1.0.0 release of the implementation (Node v16.14.0 / Apple M1 Pro / 32GB RAM).

72

7 Discussion

when we compare the 95% confidence intervals we cannot conclude the difference to be statistically significant.

Lastly, the median response times of resource access when using WAC-based authorization were compared to those of UMA-

based request authorization in order to assess whether the use of the UMA access token in authorization negatively impacts

performance. In figure 7.3 we highlight the total response time of a request authorized with UMA in comparison to a request

authorized through Solid OIDC and Web Access Control without intervention of an authorization service. Through the stacked

bar plot we also indicate additional latency introduced by the UMA token request. In the UMA Authorization Service a debug-

ging authorization method was used (AllAuthorizer), such that any incoming request was instantly authorized and

thus a hypothetical, optimal situation was simulated for its response time.

In general, we can conclude that effective resource access when using UMA is somewhat faster due to a reduction in autho-

rization logic that needs to be performed by the Solid server. Nevertheless, a significant overhead is introduced by the ticket

retrieval and subsequent token request with the UMA Authorization service, such that the overall median response time is

still higher for retrieving the same information.

7.3.3 Potential Optimizations

In our experiments, we witnessed a significant increase in response time due to the introduction of the UMA authorization

service as proposed in the Solid-OIDC 0.1.0 draft specification. Moreover, our implementation of authorization logic based on

the Solid Application Interoperability specification performed rather poorly in authorizations for the concrete data instances

to be used by applications and social agents, in particular for increasing numbers of data registrations. This rather poor

scaling behavior leads us to conclude that the current implementation does not allow for bounds on its performance in the

light of an increasing amount of data being stored in the Solid Pod.

These performance results have been the topic of discussion in the Solid Authentication and Data Interoperability panels.

Based on these discussions as well as the choices and assumptions made in our implementation of the Solid-OIDC 0.1.0

specification and Solid Application Interoperability draft specification, this section proposes three potential optimizations

that could be evaluated in future work.

Increased Scope of Access Tokens

A first potential optimization aims to reduce the number of times a client needs to perform the UMA token request flow.

By broadening the scope of access tokens from the level of singular resources to collections of resources, the overhead of

the token request process could be amortized over a greater number of requests. This could be particularly relevant in the

case where clearly defined collections of resources are recognized by the authorization mechanism, as is the case for data

instances referenced through a data grant under the SAI specification.

Nevertheless, this approach may be challenging under the Solid-OIDC 0.1.0 specification because it does not define how

clients could be made aware of the scope of their UMA 2.0 access token. While the UMA 2.0 grant type[64] does govern the

73

7 Discussion

Agent Registration Access Grant Data Grant Data Registration Data Instance
Resource Type

0

20

40

60

80

100

120

140

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

Data collected over 250 requests

Median Response Time of the UMA Authorization Service
Pod Template
5 Data Instances
50 Data Instances
100 Data Instances

Figure 7.2: Median response times by resource type for a token request to the UMA Authorization Service for varying amounts

of Data Instances in the Solid Pod. Data collected over 250 requests per configuration, 95% confidence intervals are marked

in black. Validated using the 1.0.0 release of the implementation (Node v16.14.0 / Apple M1 Pro / 32GB RAM).

74

7 Discussion

U
M

A

W
A

C

Authorization Mechanism

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ed

ia
n

R
es

po
ns

e
Ti

m
e

Data collected over 250 requests

Median response time in WAC- vs. UMA-based authorization
Effective Resource Access
Retrieval of UMA Ticket
UMA Token Request

Figure 7.3: Median response times for the different phases of UMA Authorization when compared toWAC-based authorization

without UMA AS. Data collected over 250 requests. Validated using the 1.0.0 release of the implementation (Node v16.14.0 /

Apple M1 Pro / 32GB RAM).

75

7 Discussion

token request, it does not specifically cover mechanisms like token introspection which could allow for a client to discover

the authorization provided by their access token. Therefore, it may not be straightforward to expand the use of these access

tokens to collections of resources without modifications to the Solid-OIDC specification.

Additionally, under our implementation the UMA 2.0 authorization service returns access tokens as JSON Web Tokens. These

tokens allow for stateless validation of the authorizations of a requesting party. If we choose to expand the scope of access

tokens tomultiple resources, this wouldmean that these tokens suddenly have to containmore information and thus become

considerably larger to handle. Alternatively, our implementation could be modified to use opaque access tokens, such that

token size is not impacted by its scope in terms of resources. However, this would involve additional requests by the Pod

server to perform token validation.

Modifications to the Interoperability specification

The SAI draft specification relies heavily on resource containment as the basis for specifying a client’s authorization. In order

to determine the access modes of a client for a given data instance, we must ensure this instance is part of a data grant for

the client. As it currently is not possible for the authorization service to determine which data grants fall in its authorization

realm, a traversal must be done for all data grants that exist in the registry set when evaluating SAI-based authorization

logic. Inevitably, this causes inefficiency and prevents the authorization service from performing specific optimizations with

respect to retrieving its data grants.

Therefore, a proposal has been made to introduce an additional registration in the registry set, dedicated to the UMA au-

thorization service. This registration will reference the data grants that are relevant for the specific authorization service,

leading to a more flat resource hierarchy for the authorization service to navigate. In particular with respect to the ele-

vated response times we noticed in the authorization of data instances, this new registration type could enable specific

improvements for growing amounts of data grants.

Optimized representations of Authorization Rules

Lastly, the performance of the authorization service could be improved by introducing optimized representations of (cached)

authorization rules. Rather than relying on evaluation of the full SAI specification while processing each authorization, as

is done in the current implementation, the aim would be to convert the access and data grants to more efficient repre-

sentations ahead of time. Such a mechanism would of course require a tighter integration between the UMA AS and the

Solid Pod than is the case in our implementation. The relative decoupling between these two components currently does

provide us with greater flexibility in research and development while incurring this performance penalty. For production

applications, however, performance aspects are of far greater importance and thus it would likely make sense to integrate

the authorization service and Solid Server more tightly.

76

8
Conclusion

In this thesis we aimed to answer the question: ”Can we rely on data usage policies to implement consent-based data-

processing in Solid which conforms to the requirements of the GDPR regulation and is applicable within the constraints of a

practical application?”. Where we hypothesized that it would be possible to use such semantic data usage policy languages

in the context of Solid for a practical, interactive application to achieve compliance with the GDPR regulation.

First, we set out to investigate requirements under the General Data Protection Regulation for data processing activities,

as to properly identify the needs which would have to be fulfilled by our solution. In comparing these requirements with

the affordances provided by the access control policies that Solid currently relies upon in its discretionary access control

mechanism, we concluded that additional means are needed for data controllers to achieve compliance with the stipulations

in data protection law. In particular, no details are captured by the Web Access Control specification related to the lawful

basis, purpose or relevant time period for the data processing. Moreover, out-of-band mechanisms to enforce compliance,

either at the level of the individual application or the individual Pod provider may challenge the open ecosystem that Solid

aims to foster.

In order to address the challenges that exist for Solid to meet the standards of data protection law, we identified the field

of data usage policies among which ODRL[50] and SPECIAL[56] have previously been discussed in relation to Solid. Recent

work[35] shows informational requirements of the GDPR can be properly addressed through a combination of ODRL and the

Data Protection Vocabulary. Nevertheless, these proposals have not been able to integrate such data usage policies into

Solid in a practical setting.

An important challenge identified in the prior work on data usage policies in Solid, is its resource-centric authorization

model and lack of higher level abstractions for resource organization. This complicates the integration of such data usage

policies, which typically govern information use at a coarser granularity than individual resources. Solid’s recent Application

Interoperability draft specification[58] addresses the challenge of allowing different applications in Solid to safely and

effectively interoperate over the same data. Consequently, the specification also has to address issues related to resource

organization in order for apps and services to discover the data that is relevant to their operation. Data Shapes and Shape

Trees have been chosen as solutions for this problem, because they allow developers to define their application’s information

needs in an unambiguous manner and provide them with the affordance of type safety with respect to resources. The novel

component of an authorization agent governs both the data discovery process as well as the authorization procedure for new

77

8 Conclusion

applications and services, thereby addressing the issues caused by relying on developers to modify relevant authorization

rules themselves.

By combining thework of the Data Interoperability Panel with the prior research on data usage policies and their applicability

to Solid, we presented a novel reference architecture with the aim of implementing data processing based on the legal

ground of consent. In this architecture, an authorization agent governs the technical realm and ensures compliancewith data

usage policies of the client. These data usage policies are persisted as data processing grants through access management

applications operating in a distinct end-user realm. By relying on the authorization agent for enforcement, rather than

increasing the complexity of Solid’s lower level authorizationmechanisms, data usage policies can be evaluated out-of-band

from request access using the higher level abstractions for resource organization offered by the Application Interoperability

specification. This resolves crucial issues regarding efficiency and practical applicability of such data usage policy languages

in Solid.

Nevertheless, in order to truly assess whether our proposed architecture is applicable in a practical setting we also had to

evaluate its real-world performance. Due to recent changes in the Solid-OIDC specification[15] this required implement-

ing the novel UMA Authorization Service and integrating it in the Community Solid Server’s request flow. The Authorization

Service was designed in such a way that it can support the implementation and evaluation of novel authentication and au-

thorization mechanisms through Components.JS dependency injection. These capabilities were used to enable authorization

logic based on the Solid Application Interoperability specification, such that its abstractions can in fact be the basis for au-

thorizing client requests. Additionally, an Authorization Agent was developed with the relevant affordances for discovering

the data one is authorized to access in a user’s Solid Pod as well as for authorizing new access needs based on the evaluation

of a data usage policy.

While evaluating our implementation of the technical realm of this architecture, we have to conclude that it currently in-

troduces a request latency that increases significantly with the amount of data to which access is granted for an agent. In

particular with respect to data instances, the concrete informational items to which access is governed, this leads to median

response times above 200 milliseconds for the case where access to 100 Shape Tree instances is provided to a given client.

Whereas Solid’s existing Web Access Control mechanism has a complexity that is not directly related to the amount of data

which it authorizes access to, we cannot come to the same conclusion with respect to our implementation of authorization

based on the Solid Application Interoperability draft specification.

In summary, we presented a framework that integrates ODRL data usage policies in Solid as a layer of abstraction on the

Solid Application Interoperability specification. With respect to the informational requirements of the GDPR, prior work[35]

allows us to conclude it is possible to adhere to the informational requirements of the GDPR using this approach. Moreover,

significant parts of the architecture were implemented in order to partially assess its performance characteristics. Based

on the results of this implementation and evaluation, we have to conclude that we cannot answer affirmatively to all sub-

questions of our initial research question at this point. This is motivated by the fact that poor performance characteristics

were observed with growing amounts of data and that we were not able to practically demonstrate the applicability of the

ODRL data usage policy in an end-to-end scenario due to time constraints. Nevertheless, our architecture offers important

pointers for future research into data usage policies in relation to Solid and our implementation of a modular Authorization

Service and Authorization Agent may enable researchers to apply their future work in a practical setting.

78

8 Conclusion

8.1 Further Work

While the proposed architecture aims to provide a crucial missing link between the atomic ACL-based authorization mecha-

nism currently used by Solid Pods and the more abstract concepts, and safeguards required by data protection regulations

like GDPR, we have identified a number of open challenges that will need to be addressed before such an architecture can

become viable in practice.

Firstly, both the Shape Trees and Solid Application Interoperability specifications are still being discussed by the community

panel and have only very recently seen their first practical implementations. Outside of the context of this panel, the proposal

has not yet gained major traction, which could imply that the specifications may see significant changes before they are

finally adopted into the Solid protocol. Another major hurdle that these important building blocks for our proposal face is

the complexity of implementing them without breaking compatibility for existing applications and services, while retaining

the required semantics for those that do already depend on them. Additionally, the required registries for the Interoperability

Specification and the additional metadata necessitated by the use of Shape Trees might prove challenging to consistently

maintain within the Solid Pod without imposing additional requirements on its operation.

Secondly, in our limited evaluation of UMA-based authorization, as was introduced in the Solid-OIDC 0.1.0 specification, we

noticed a significant performance impact because of the additional requests it requires. This indicates a very real need for

assessing the impact of this mechanism more broadly, especially in the context of semantic querying engines that operate

over the resources stored in Solid Pods. It is likely that real world applications will necessitate further optimization in how

Solid server implementations handle these UMA access tokens.

Additionally, some legal and user-experience challenges related to data processing applications based on Solid were touched

upon in this thesis, like the role of the Pod provider as a data controller, the interpretation of purpose limitation in the context

of the data re-use enabled by Solid, and how consent could be presented to the end-user in a convenient yet transparent

manner. This highlights the need for further investigation into whether and how a Solid-based application or service can

fully comply with data processing regulations throughout its lifecycle, not only in terms of the initial authorization we have

focused on here but also in terms of legal logging, data minimization, compliance monitoring, etc.

Moreover, compliance checking with respect to the proposed ODRL profile [50] is a problem that warrants further investiga-

tion as generic ODRL policy checking algorithms will be necessary for this capability. This way, we should be able tomatch an

incoming processing request with any existing data sharing preferences of the data subject. Managing the ambiguity that is

caused by allowing an end-user’s policies to define how generic concepts used in the processing requests map to attributes

of the Solid Pod is another challenge that still needs thorough consideration. Furthermore, the trust model between the

different entities and services in our architecture needs to be considered in more detail as to identify potential security risks.

Finally, the proposed optimizations in chapter 7 should be evaluated in order to assess whether they can reduce the complex-

ity we observed in authorizing access to data instances. Once the Solid Application Interoperability specification finalizes its

definition of the authorization agent, this evaluation could also be combined with an assessment of our proposed interface

for linking the data usage policies of the end-user realm with the concrete authorization mechanics of the technical realm

79

8 Conclusion

using an actual data usage policy language, like the proposed ODRL profile[50].

8.2 Ethical and Societal Reflection

As was highlighted in chapter 2, the European Union considers privacy and data protection to be fundamental, human rights

of the individual which should be safeguarded by a requirement of due process and appropriate technical, organizational

and legal protections. Whereas legislation like the GDPR significantly strengthened enforcement and explicitly considers

the potential threats posed by new technological evolutions, dark patterns and bad practices are still prevalent on the

Web and data protections authorities have had to prioritize which infringements they challenge because of their increased

responsibilities, and thus workload, under the Regulation.

The Solid project, through its vision of realizing data governance for the end-user, offers the building blocks for giving users

increased control over their personal data. In particular, with respect to whom can access their data and where it is stored.

As we’ve shown in chapter 4 the existing solutions proposed by the Solid Protocol 0.9 only partially succeed in giving users

proper controls over their data. However, through the architecture detailed in chapter 5, we have demonstrated the potential

of Solid to increase control over and visibility into data processing for the user as well as the advantage for data controllers

and processors where it could simplify compliance efforts and enable legally mandated protections by design and by default.

In conclusion this work has investigated the great potential as well as the existing shortcomings of the Solid protocol in rela-

tion to data protection, while proposing and implementing solutions which improve compliance. This should aid researchers

in investigating new methods for users to express their data sharing and data usage preferences and evaluate whether

services are in compliance when processing data. Furthermore, it has already succeeded in informing and evaluating the

specification work happening in the Solid community. Lastly, and most importantly, it shows that Solid can be integrated in

an architecture that gives control to end-users, offers necessary affordances with respect to data protection law and makes

these protections practicable by design and by default for application developers.

80

References

[1] S. Zuboff, The Age of Surveillance Capitalism. London: Profile Books, 2019.

[2] M. P. Sørensen, “Second modernity,” pp. 1–2, Nov. 2019. [Online]. Available: https://doi.org/10.1002/9781405165518.

wbeos1357

[3] W. Collins, “Trusts and the origins of antitrust legislation,” Fordham Law Review, vol. 81, pp. 2279–2348, Apr. 2013.

[4] D. Streitfeld, “How Amazon Crushes Unions,” The New York Times. [Online]. Available: https://www.nytimes.com/2021/

03/16/technology/amazon-unions-virginia.html

[5] S. Hall, “Exxon Knew about Climate Change almost 40 years ago,” Scientific American. [Online]. Available:

https://www.scientificamerican.com/article/exxon-knew-about-climate-change-almost-40-years-ago/

[6] T. Berners-Lee, “Three challenges for the web, according to its inventor,” The Web Foundation. [Online]. Available:

https://webfoundation.org/2017/03/web-turns-28-letter/

[7] R. Sevenhant, J. Stragier, L. De Marez, and D. Schuurman, “imec.digimeter 2021,” Apr. 2022. [Online]. Available:

https://www.imec.be/sites/default/files/2022-04/IMEC_Digimeterrapport_2021.pdf

[8] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal, Dark Patterns after the GDPR: Scraping Consent Pop-Ups and

Demonstrating Their Influence. New York, NY, USA: Association for Computing Machinery, 2020, p. 1–13. [Online].

Available: https://doi.org/10.1145/3313831.3376321

[9] “The GDPR: The Emperor’s New Clothes - On the Structural Shortcomings of Both the Old and the New Data Protection

Law, author=Winfried Veil,” Consumer Law eJournal, 2018. [Online]. Available: https://papers.ssrn.com/sol3/papers.

cfm?abstract_id=3305056

[10] M. Kretschmer, J. Pennekamp, and K. Wehrle, “Cookie Banners and Privacy Policies: Measuring the Impact of the GDPR

on the Web,” ACM Trans. Web, vol. 15, no. 4, jul 2021. [Online]. Available: https://doi.org/10.1145/3466722

[11] R. Verborgh, “Re-decentralizing the Web, for good this time,” in Linking the World’s Information: A Collection of

Essays on the Work of Sir Tim Berners-Lee, O. Seneviratne and J. Hendler, Eds. ACM, 2022. [Online]. Available:

https://ruben.verborgh.org/articles/redecentralizing-the-web/

[12] S. Capadisli, T. Berners-Lee, R. Verborgh, and K. Kjernsmo, “Solid protocol,” Tech. Rep., Dec. 2021. [Online]. Available:

https://solidproject.org/TR/2021/protocol-20211217

[13] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform 1.0,” Tech. Rep., Feb. 2015. [Online]. Available:

https://www.w3.org/TR/ldp/

[14] A. Sambra, H. Story, and T. Berners-Lee, “WebID 1.0,” Tech. Rep., Mar. 2014. [Online]. Available: https:

//www.w3.org/2005/Incubator/webid/spec/identity/

[15] A. Coburn, elf Pavlik, and D. Zagidulin, “Solid-OIDC,” Tech. Rep., Mar. 2022. [Online]. Available: https://solidproject.org/

TR/2022/oidc-20220328

81

https://doi.org/10.1002/9781405165518.wbeos1357
https://doi.org/10.1002/9781405165518.wbeos1357
https://www.nytimes.com/2021/03/16/technology/amazon-unions-virginia.html
https://www.nytimes.com/2021/03/16/technology/amazon-unions-virginia.html
https://www.scientificamerican.com/article/exxon-knew-about-climate-change-almost-40-years-ago/
https://webfoundation.org/2017/03/web-turns-28-letter/
https://www.imec.be/sites/default/files/2022-04/IMEC_Digimeterrapport_2021.pdf
https://doi.org/10.1145/3313831.3376321
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3305056
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3305056
https://doi.org/10.1145/3466722
https://ruben.verborgh.org/articles/redecentralizing-the-web/
https://solidproject.org/TR/2021/protocol-20211217
https://www.w3.org/TR/ldp/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://solidproject.org/TR/2022/oidc-20220328
https://solidproject.org/TR/2022/oidc-20220328

References

[16] S. Capadisli and T. Berners-Lee, “Web Access Control,” Tech. Rep., Jul. 2021. [Online]. Available: https://solidproject.org/

TR/wac

[17] R. Berjon, “Principled Privacy,” May 2022. [Online]. Available: https://berjon.com/principled-privacy/

[18] C. J. Hoofnagle, B. van der Sloot, and F. Zuiderveen Borgesius, “The European Union General Data Protection Regulation:

What it is and what it means,” SSRN Electronic Journal, 2018.

[19] “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural

Personswith Regard to the Processing of Personal Data and on the FreeMovement of Such Data, and Repealing Directive

95/46/EC (General Data Protection Regulation).” Official Journal of the European Union, vol. L 119, 2016-04-27.

[20] A. F. Westin and D. J. Solove, Privacy and freedom. Ig Publishing, 2015.

[21] O. M. Reynolds, Administrative Law Review, vol. 22, no. 1, pp. 101–106, 1969. [Online]. Available: http://www.jstor.org/

stable/40708684

[22] H. Nissenbaum, “Privacy as contextual integrity,” Washington Law Review, vol. 79, no. 1, pp. 119–157, Feb. 2004.

[23] R. Berjon and J. Yasskin, “Privacy Principles,” Tech. Rep., May 2022. [Online]. Available: https://www.w3.org/TR/privacy-

principles/#bp-summary

[24] “Charter of Fundamental Rights of the European Union, volume = C 364, year = 2000-12-18,” Official Journal of the

European Communities.

[25] H. Hijmans and C. Raab, Ethical dimensions of the GDPR. Edward Elgar, 2018.

[26] M. Kuneva. Keynote Speech - Roundtable on Online Data Collection, Targeting and Profiling. Remarks by European

Consumer Comissioner Meglena Kuneva at the Roundtable on Online Data Collection, Targeting and Profiling in

Brussels on 31 March 2009. [Online]. Available: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_09_156

[27] C. Humby, “Data is the new oil,” Nov 2006. [Online]. Available: https://ana.blogs.com/maestros/2006/11/data_is_the_

new.html

[28] A. Tauriņš, “Big Data Ownership: Do we Need a New Regulatory Framework?” Baltic Yearbook of International Law

Online, vol. 18, no. 1, pp. 117 – 133, 2020. [Online]. Available: https://brill.com/view/journals/byio/18/1/article-p117_8.xml

[29] U. Milkau, “The GDPR: Halfway between consumer protection and data ownership rights.” Journal of Digital Banking,

vol. 3, no. 1, p. 7–21.

[30] D. De Bot and T. Haegemans. (2021, Jan.) Data Sharing Patterns as a Tool to Tackle Legal Considerations about Data

Reuse with Solid: Theory and Applications in Europe. [Online]. Available: https://lirias.kuleuven.be/retrieve/599839

[31] E. Filtz, S. Kirrane, and A. Polleres, “The linked legal data landscape: linking legal data across different countries,”

Artificial Intelligence and Law, vol. 29, no. 4, pp. 485–539, 2021. [Online]. Available: https://doi.org/10.1007/s10506-

021-09282-8

82

https://solidproject.org/TR/wac
https://solidproject.org/TR/wac
https://berjon.com/principled-privacy/
http://www.jstor.org/stable/40708684
http://www.jstor.org/stable/40708684
https://www.w3.org/TR/privacy-principles/#bp-summary
https://www.w3.org/TR/privacy-principles/#bp-summary
https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_09_156
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://brill.com/view/journals/byio/18/1/article-p117_8.xml
https://lirias.kuleuven.be/retrieve/599839
https://doi.org/10.1007/s10506-021-09282-8
https://doi.org/10.1007/s10506-021-09282-8

References

[32] H. J. Pandit, K. Fatema, D. O’Sullivan, and D. Lewis, “GDPRtEXT - GDPR as a Linked Data Resource,” in The Semantic

Web, A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, and M. Alam, Eds. Cham: Springer

International Publishing, 2018, pp. 481–495.

[33] M. Palmirani, G. Governatori, A. Rotolo, S. Tabet, H. Boley, and A. Paschke, “LegalRuleML: XML-Based Rules and Norms,”

in Rule-Based Modeling and Computing on the Semantic Web, F. Olken, M. Palmirani, and D. Sottara, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 298–312.

[34] G. G. Karácsony, “Managing personal data in a digital environment - did GDPR’s concept of informed consent really give

us control?” International Conference on Computer Law, AI, Data Protection & the Biggest Tech Trens, 2019. [Online].

Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3452573

[35] B. Esteves and V. Rodríguez-Doncel, “Analysis of Ontologies and Policy Languages to Represent Information Flows in

GDPR,” 2022.

[36] H. J. Pandit, C. Debruyne, D. O’Sullivan, and D. Lewis, “GConsent - A Consent Ontology Based on the GDPR,” in The Semantic

Web, P. Hitzler, M. Fernández, K. Janowicz, A. Zaveri, A. J. Gray, V. Lopez, A. Haller, and K. Hammar, Eds. Cham: Springer

International Publishing, 2019, pp. 270–282.

[37] S. Kirrane, J. D. Fernández, W. Dullaert, U. Milosevic, A. Polleres, P. A. Bonatti, R. Wenning, O. Drozd, and P. Raschke,

“A Scalable Consent, Transparency and Compliance Architecture,” in The Semantic Web: ESWC 2018 Satellite Events,

A. Gangemi, A. L. Gentile, A. G. Nuzzolese, S. Rudolph, M. Maleshkova, H. Paulheim, J. Z. Pan, and M. Alam, Eds. Cham:

Springer International Publishing, 2018, pp. 131–136.

[38] H. J. Pandit and D. Lewis, “Modelling Provenance for GDPR Compliance using Linked Open Data Vocabularies,” in

PrivOn@ISWC, 2017.

[39] H. J. Pandit, A. Polleres, B. Bos, R. Brennan, B. Bruegger, F. J. Ekaputra, J. D. Fernández, R. G. Hamed, E. Kiesling, M. Lizar,

and et al., “Creating a Vocabulary for Data Privacy: The First-Year Report of Data Privacy Vocabularies and Controls

Community Group (DPVCG),” Oct 2019.

[40] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner, “Using Semantic Web Technologies for Policy Management on the

Web,” in Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, ser. AAAI’06. AAAI Press,

2006, p. 1337–1344.

[41] L. Kagal, T. Finin, and A. Joshi, “A policy based approach to security for the semantic web,” in The Semantic Web - ISWC

2003, D. Fensel, K. Sycara, and J. Mylopoulos, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 402–418.

[42] Å. A. Nyre, “Usage Control Enforcement - A Survey,” in Availability, Reliability and Security for Business, Enterprise and

Health Information Systems, A. M. Tjoa, G. Quirchmayr, I. You, and L. Xu, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 38–49.

[43] J. Park and R. Sandhu, “The UCONABC Usage Control Model,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 1, p. 128–174, feb

2004. [Online]. Available: https://doi.org/10.1145/984334.984339

83

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3452573
https://doi.org/10.1145/984334.984339

References

[44] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu, “A logical specification for usage control,” in Proceedings of the

Ninth ACM Symposium on Access Control Models and Technologies, ser. SACMAT ’04. New York, NY, USA: Association

for Computing Machinery, 2004, p. 1–10. [Online]. Available: https://doi.org/10.1145/990036.990038

[45] J. Moffett, M. Sloman, and K. Twidle, “Specifying discretionary access control policy for distributed systems,”

Computer Communications, vol. 13, no. 9, pp. 571–580, 1990, network Management. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/0140366490900085

[46] R. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE Communications Magazine, vol. 32, no. 9, pp.

40–48, 1994.

[47] B. W. Lampson, “Protection,” SIGOPS Oper. Syst. Rev., vol. 8, no. 1, p. 18–24, jan 1974. [Online]. Available:

https://doi.org/10.1145/775265.775268

[48] R. Iannella and S. Villata, “ODRL Information Model 2.2,” Tech. Rep., Feb. 2018. [Online]. Available: https:

//www.w3.org/TR/odrl-model/

[49] M. De Vos, S. Kirrane, J. Padget, and K. Satoh, “ODRL Policy Modelling and Compliance Checking,” in Rules and Reasoning,

P. Fodor, M. Montali, D. Calvanese, and D. Roman, Eds. Cham: Springer International Publishing, 2019, pp. 36–51.

[50] B. Esteves, H. J. Pandit, and V. Rodríguez-Doncel, “ODRL Profile for Expressing Consent through Granular Access Control

Policies in Solid,” in 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), 2021, pp. 298–306.

[51] S. Agarwal, S. Steyskal, F. Antunovic, and S. Kirrane, “Legislative Compliance Assessment: Framework, Model and

GDPR Instantiation,” in Privacy Technologies and Policy, M. Medina, A. Mitrakas, K. Rannenberg, E. Schweighofer, and

N. Tsouroulas, Eds. Cham: Springer International Publishing, 2018, pp. 131–149.

[52] M. G. Kebede, G. Sileno, and T. Van Engers, “A Critical Reflection on ODRL,” in AI Approaches to the Complexity of Legal

Systems XI-XII, V. Rodríguez-Doncel, M. Palmirani, M. Araszkiewicz, P. Casanovas, U. Pagallo, and G. Sartor, Eds. Cham:

Springer International Publishing, 2021, pp. 48–61.

[53] IPTC Rights Expressions Working Group, “IPTC RightsML Standard 2.0,” Tech. Rep., Aug. 2018. [Online]. Available:

https://iptc.org/std/RightsML/2.0/RightsML_2.0-specification.html

[54] B. A. Bonatti, S. Kirrane, I. Petrova, L. Sauro, and E. Schlehahn, “The SPECIAL Usage Policy Language, V0.1,” Tech. Rep.,

2018. [Online]. Available: https://specialprivacy.ercim.eu/vocabs

[55] P. A. Bonatti, L. Sauro, and J. Langens, “Representing Consent and Policies for Compliance,” in 2021 IEEE European Sym-

posium on Security and Privacy Workshops (EuroS PW), 2021, pp. 283–291.

[56] G. Havur, M. Vander Sande, and S. Kirrane, “Greater Control and Transparency in Personal Data Processing,” 01 2020, pp.

655–662.

[57] J. Bingham and E. Prud’hommeaux, “Shape Trees Specification,” Tech. Rep., Feb. 2022. [Online]. Available:

https://shapetrees.org/TR/specification/

84

https://doi.org/10.1145/990036.990038
https://www.sciencedirect.com/science/article/pii/0140366490900085
https://www.sciencedirect.com/science/article/pii/0140366490900085
https://doi.org/10.1145/775265.775268
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/odrl-model/
https://iptc.org/std/RightsML/2.0/RightsML_2.0-specification.html
https://specialprivacy.ercim.eu/vocabs
https://shapetrees.org/TR/specification/

References

[58] J. Bingham, E. Prud’hommeaux, and elf Pavlik, “Solid Application Interoperability,” Tech. Rep., May 2022. [Online].

Available: https://solid.github.io/data-interoperability-panel/specification/

[59] E. Prud’hommeau, I. Boneva, J. E. L. Gayo, and G. Kellogg, “Shape Expressions Language 2.1,” Tech. Rep., Oct. 2019.

[Online]. Available: http://shex.io/shex-semantics/index.html

[60] H. Knublauch and D. Kontokostas, “Shapes Constraint Language (SHACL),” Tech. Rep., Jul. 2017. [Online]. Available:

https://www.w3.org/TR/shacl/

[61] S. Villata, L. Costabello, N. Delaforge, and F. Gandon, “Social Semantic Web Access Control?” Journal on Data Semantics,

vol. 2, 03 2012.

[62] UK Department for Digital, Culture, Media & Sport . (2020, Mar.) Cyber Security Breaches Survey 2020. [Online].

Available: https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2020/cyber-security-breaches-

survey-2020

[63] M. Khonji, Y. Iraqi, and A. Jones, “Phishing Detection: A Literature Survey,” IEEE Communications Surveys Tutorials, vol. 15,

no. 4, pp. 2091–2121, 2013.

[64] M. Machulak, J. Richer, and E. Maler, “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization,” Tech. Rep.,

Jul. 2018. [Online]. Available: https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

[65] M. Bosquet, “Access Control Policy (ACP),” Tech. Rep., Aug. 2021. [Online]. Available: https://solid.github.io/authorization-

panel/acp-specification/

[66] L. Debackere, P. Colpaert, R. Taelman, and R. Verborgh, “A policy-oriented architecture for enforcing consent in Solid,” in

Proceedings of the 2nd International Workshop on Consent Management in Online Services, Networks and Things, Apr.

2022. [Online]. Available: https://www2022.thewebconf.org/PaperFiles/88.pdf

[67] M. Sporny and D. Longley, “Data Integrity 1.0,” Tech. Rep., Jan. 2022. [Online]. Available: https://w3c-ccg.github.io/data-

integrity-spec/

[68] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials Data Model v1.1,” Tech. Rep., Nov. 2021. [Online]. Available:

https://www.w3.org/TR/vc-data-model/

[69] S. Capadisli and A. Guy, “Linked Data Notifications,” Tech. Rep., May 2017. [Online]. Available: https://www.w3.org/TR/ldn/

[70] M. Sporny and D. Longley, “Revocation List 2020,” Tech. Rep., Apr. 2021. [Online]. Available: https://w3c-ccg.github.io/vc-

status-rl-2020/

[71] R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh, “Components.js: Semantic Dependency

Injection,” Semantic Web Journal, 2022. [Online]. Available: https://linkedsoftwaredependencies.github.io/Article-

System-Components/

[72] M. Machulak, J. Richer, and E. Maler, “Federated Authorization for User-Managed Access (UMA) 2.0,” Tech. Rep., Jul.

2018. [Online]. Available: https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

85

https://solid.github.io/data-interoperability-panel/specification/
http://shex.io/shex-semantics/index.html
https://www.w3.org/TR/shacl/
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
https://www2022.thewebconf.org/PaperFiles/88.pdf
https://w3c-ccg.github.io/data-integrity-spec/
https://w3c-ccg.github.io/data-integrity-spec/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/ldn/
https://w3c-ccg.github.io/vc-status-rl-2020/
https://w3c-ccg.github.io/vc-status-rl-2020/
https://linkedsoftwaredependencies.github.io/Article-System-Components/
https://linkedsoftwaredependencies.github.io/Article-System-Components/
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

References

[73] D. Hardt, “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization,” Tech. Rep., Oct. 2012. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6749

[74] M. Jones, N. Sakimura, and J. Bradley, “OAuth 2.0 Authorization Server Metadata,” Tech. Rep., Jun. 2018. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc8414

[75] M. Jones, “JSON Web Key (JWK),” Tech. Rep., May 2015. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc7517

[76] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” Tech. Rep., May 2015. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7519

[77] B. Cuenca Grau, S. Kirrane, A. Mileo, and S. Decker, “Access Control and the Resource Description Framework: A Survey,”

Semant. Web, vol. 8, no. 2, p. 311–352, jan 2017. [Online]. Available: https://doi.org/10.3233/SW-160236

86

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8414
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7519
https://doi.org/10.3233/SW-160236

Appendix

87

Appendix 1: Workshop Paper

This thesis resulted in the publication of the peer-reviewed workshop paper ”A Policy-Oriented Architecture for Enforcing

Consent in Solid” which was accepted to the 2nd International Workshop on Consent Management in Online Services, Net-

works and Things (COnSeNT 2022), co-located with the 31st WEB Conference.

The paper discusses an initial version of the policy-based consent framework for Solid this thesis details. Furthermore, it

elaborates on the shortcomings of existing Access Control mechanisms and how the Solid Data Interoperability panel has

proposed solutions for these issues through its Application Interoperability draft specification.

A Policy-Oriented Architecture for Enforcing Consent in Solid
Laurens Debackere

Laurens.Debackere@UGent.be
IDLab, Department of Electronics and Information

Systems, Ghent University – imec
Ghent, Belgium

Pieter Colpaert
Pieter.Colpaert@UGent.be

IDLab, Department of Electronics and Information
Systems, Ghent University – imec

Ghent, Belgium

Ruben Taelman
Ruben.Taelman@UGent.be

IDLab, Department of Electronics and Information
Systems, Ghent University – imec

Ghent, Belgium

Ruben Verborgh
Ruben.Verborgh@UGent.be

IDLab, Department of Electronics and Information
Systems, Ghent University – imec

Ghent, Belgium

ABSTRACT
The Solid project aims to restore end-users’ control over their data
by decoupling services and applications from data storage. To real-
ize data governance by the user, the Solid Protocol 0.9 relies onWeb
Access Control, which has limited expressivity and interpretability.
In contrast, recent privacy and data protection regulations impose
strict requirements on personal data processing applications and
the scope of their operation. The Web Access Control mechanism
lacks the granularity and contextual awareness needed to enforce
these regulatory requirements. Therefore, we suggest a possible
architecture for relating Solid’s low-level technical access control
rules with higher-level concepts such as the legal basis and pur-
pose for data processing, the abstract types of information being
processed, and the data sharing preferences of the data subject.
Our architecture combines recent technical efforts by the Solid
community panels with prior proposals made by researchers on
the use of ODRL and SPECIAL policies as an extension to Solid’s
authorization mechanism. While our approach appears to avoid
a number of pitfalls identified in previous research, further work is
needed before it can be implemented and used in a practical setting.

CCS CONCEPTS
• Information systems →World Wide Web.

KEYWORDS
Solid, Consent, Semantic Web, ODRL, Access Control

ACM Reference Format:
Laurens Debackere, Pieter Colpaert, Ruben Taelman, and Ruben Verborgh.
2022. A Policy-Oriented Architecture for Enforcing Consent in Solid. In
Companion Proceedings of the Web Conference 2022 (WWW ’22 Companion),
April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3487553.3524630

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9130-6/22/04. . . $15.00
https://doi.org/10.1145/3487553.3524630

1 INTRODUCTION
The Solid project1 aims to realize Tim Berners-Lee’s vision on
decoupling personal data storage from the apps and services that
use it, in order to return control and data governance to the user.
Ultimately, Solid aims to re-establish a proper balance of power
between service providers and their users [28], by providing the
latter with the tools to make their own choices in data sharing and
storage rather than having their data exist out of sight and out of
control. To that end, the Solid community is developing a draft
specification for decentralized personal data storage servers, also
referred to as Pods.

At its core, the Solid Protocol version 0.9 [8] has three crucial
building blocks that make up most of its footprint:

(1) Solid implements parts of the Linked Data Platform W3C
recommendation [23] to allow for read/write-access to the
resources stored in a Pod with specific affordances for han-
dling Linked Data.

(2) Solid proposes WebIDs [22] and Solid OIDC [10] for iden-
tification and authentication purposes respectively. Through
these standards, agents can be linked to a decentralized iden-
tifier expressing information on them like the agent’s trusted
identity providers. This allows for authentication between
resource and authorization servers that have no prior trust
relation.

(3) Web Access Control [7] provides the critical controls over
sharing of information stored in the Pod.Web Access Control
is a cross-domain, decentralized solution for authorizing re-
quests using Access Control Lists (ACLs) expressed as Linked
Data. It identifies both agents and resources through the use
of IRIs. Notably, ACLs can both be defined specifically for
a given resource, or be inherited from a parent container.

The EU’s General Data Protection Regulation2 [1] set a major
legislative milestone in the realm of data protection and privacy
regulation when it entered into force in 2018. It afforded data sub-
jects with both transparency and greater control regarding the
processing of their personal data by data controllers and took new
and emerging technologies such as Big Data, AI, and the internet
explicitly into account when it was first drafted. While far from
perfect [27], it bestows a much greater deal of autonomy upon the
1https://solidproject.org
2http://data.europa.eu/eli/reg/2016/679/oj

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Laurens Debackere, Pieter Colpaert, Ruben Taelman, and Ruben Verborgh

data subject when making decisions regarding the processing of
their personal data than has previously been the case.

One of the major shortcomings of the GDPR regulation boils
down to the legal basis of consent and how it is typically realized
on the Web [16, 18, 27]. In Article 6 of the GDPR, the six possible
grounds for lawful data processing are laid out by the legislator,
one of these being a freely given consent that can be withdrawn
by the data subject at any time. The informedness of the data sub-
ject when giving their consent is emphasized greatly in the GDPR,
meaning that a data subject should be able to accurately assess the
consequences of the data processing to which they are consenting.
In practice, the way consent is used by many services neither con-
stitutes consent nor can it be considered informed. Most often the
information required by Articles 13 and 14 of the GDPR is hidden
away in lengthy privacy policies, which the data subject would have
to read in their entirety to fully grasp the impact of their consent.

The prevalence of dark patterns on the internet [19], that are
used to obtain the consent of a data subject, highlights a clear issue
with respect to how this legal basis is being employed in practice.
Today, the act of giving consent in an online setting is mostly a
unilateral activity, where the data controller sets out the conditions
and the data subject has little impact onwhat data is being processed
and how it is being handled. Solid’s model for returning a user’s
control over their personal data might tip the scales in favor of
the data subject when negotiating with a data controller in the
context of consent. While in typical online service relationships,
a data subject has little negotiating power and consent becomes a
take-it-or-leave-it offer more often than not, Solid allows the data
subject to have a clear overview of what data their Pod contains
and granularly control with whom they share it. Therefore, it could
bring crucial bilateral protections that consent depends upon in
order to be used as intended by the legislator in data processing
applications.

1.1 Motivation
While Solid has the potential to become a major driver for realizing
the vision of true explicit consent as a legal basis for data processing
as it was envisioned by legislators, several technical shortcomings
still exist. As described earlier, Solid’s current access control mech-
anisms, while suited for simple use cases, lack interpretability for
average users and only capture very limited information on the
identity of the parties involved, the data being exchanged, and the
purpose and legal basis of this exchange. Furthermore, only limited
analysis of how data sharing patterns and required legal safeguards
can be implemented in Solid has happened so far [11].

The core idea of using policies in modeling and enforcing security
and data privacy requirements for the Semantic Web has been the
subject of prior work [5, 15]. Some extensions to the access control
mechanisms in Solid based on the use of policy languages have
already been proposed, such as the use of ODRL policies [12, 14]
or the SPECIAL policy language3 [13]. While these address some
concerns with regard to interpretability and flexibility raised above,
they also inherit or worsen some of the flaws of Solid’s ACL mech-
anism. Issues include poor interpretability due to rule inheritance,

3https://ai.wu.ac.at/policies/policylanguage/

increased runtime complexity of the authorizing process, and lim-
ited abstractions for identifying resources. Furthermore, the process
by which a data controller requests the explicit consent and how
this consent is then materialized in the new ACL policies need to be
considered in order to address the current shortcomings of Solid’s
ACL-based authorizations in a data processing context.

There is a distinction between the technical and end-user per-
spectives when using explicit consent as the basis for accessing
resources in the data subject’s Solid Pod. Whereas end-users need
to understand what data they are sharing, with whom, for what
purpose and in which ways this data is to be processed, a developer
should not have to consider how their interactions map to these
user-interpretable concepts. Rather we want developers to interact
with the existing technical concepts from the Solid specification
while having the Solid Pod or an intermediary validate whether
these interactions are covered by a prior consent (or perhaps even
some other legal basis). Therefore, we will define an architecture
allowing for the decoupling of the legal and end-user interactions
regarding consent from the technical interactions that were autho-
rized by it.

Our contributions through this paper can be summarized as
follows:

• identifying the shortcomings of Solid’s existing Access Con-
trol mechanism and how it is typically employed by devel-
opers when implementing a legal concept such as consent;

• presenting a framework reconciling end-user and legal re-
quirements for data processing with Solid’s existing access
control model.

Section 2 provides background information on the state of the art
regarding Solid’s authorization mechanism and briefly introduces
concepts and standards that will be used throughout the rest of this
paper. Section 3 details our proposed architecture, its interaction
patterns and primary data structures. Section 4 applies our architec-
ture to a motivating use case highlighting how explicit consent can
be effectively implemented. Section 5 summarizes the reasoning be-
hind this architecture, how it compares to previous proposals, and
provides a brief interpretation of our findings. Section 6 discusses
further work needed for the proposal to become viable in practice.

2 BACKGROUND
2.1 Authorization in Solid
Solid’s primary mechanism for authorizations is the Web Access
Control (WAC) specification [7]. It employs the ACL ontology4
to express access modes applicable to some resource for an agent,
where both the agent and the resource are identified using IRIs.
WAC supports four access modes in its rules, namely:

Read Allowing for full or partial read operations on resources.
Write Allowing for write operations on resources, i.e., create,

update, or delete.
Append Allowing for append operations on resources, i.e., to

add information to the resource but not remove any.
Control Allowing for read and write operations on the re-

source’s associated ACL resource. This permits the grantee to
delegate or revoke access to the resource.

4http://www.w3.org/ns/auth/acl

A Policy-Oriented Architecture for Enforcing Consent in Solid WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

Notably, these access modes are broad and do not map well to
the more common CRUD5 permission model [29]. Also, some of
these access modes will align poorly with user expectations: e.g.,
what does it mean to have Append permissions over a container of
resources?

Furthermore, WAC uses an inheritance mechanism to determine
which ACL resource is the effective ACL governing some resource
or container resource in the Pod. While this inheritance mechanism
might be reasonably easy to understand for developers, to an un-
aware end-user, this behavior can be counter-intuitive or even lead
to unintended information disclosure. For example, when a user
grants an app access to a container, they implicitly grant access to
all data transitively contained within, including any new resources
that are added after the user granted access.

The use of IRIs to both identify resources and agents might also
contribute to poor user experience and lead to security breaches.
For example, users might perceive an analogy between how they
would typically manage a photo collection in a filesystem on a
computer, and how pictures are stored in a folder in one’s Pod.
That way, an end-user could have some understanding of what
kind of data is being shared, as they can easily open the files and
look at their contents. However, the analogy falls short when it
comes to structured data, which is commonly persisted as Linked
Data in the Solid Pods. In this case, resource IRIs do not necessarily
have meaning, and the organization of resources can be chosen
arbitrarily by application developers. A similar concern is appli-
cable to agent IRIs: How do I know my doctor’s IRI is actually
https://nhs.gov.uk/id/123#me? According to the UK Govern-
ment’s Department for Digital, Culture, Media & Sport’s 2020 Cyber
Security Breaches Survey [2] phishing attacks are one of the most
common type of breaches experienced by UK businesses. Being just
ordinary IRIs in the context of ACL rules, WebIDs suffer the same
risk of being used in phishing attacks, where very similar looking
WebIDs could be constructed that open the doors of your Pod to
malicious actors. Detectionmechanisms for phishing IRIs have been
proposed, however these fall largely in the realm of heuristics.
@prefix acl: <http://www.w3.org/ns/auth/acl#>.

Your doctor has Read & Write Access to your Medical Records

<#records> a acl:Authorization;

acl:agent <https://nhs.gov.uk/id/123#me>;

acl:accessTo <./MedicalRecords/>;

acl:mode acl:Read, acl:Write.

Listing 1: Example ACL resource

Let us illustrate the mechanics of WAC using an example that
will return throughout this paper; a doctor is requesting access
to the medical records of their patient. If we were to realize this
type of interaction pattern with Web Access Control, the physi-
cian would have to persist an ACL resource governing the med-
ical records of the patient in the patient’s Pod, as shown in List-
ing 1. Through this ACL, the doctor (identified by their WebID
https://nhs.gov.uk/id/123#me) obtains read and write permis-
sions on the patient’s medical records. Note that the choice of a
container named “MedicalRecords” to retain your medical infor-
mation is a completely arbitrary one, such that the interpretability

5Acronym for Create, Read, Update, Delete.

of this ACL rule could be considerably worse if the developers of
these medical record applications made arbitrarily different naming
choices. Also, the Solid protocol currently does not define how the
doctor should request for their patient to grant these rights. Having
the interpretability and modification of an ACL rule depend fully on
implementation choices of the developer is not a desired behavior
for an authorization system, let alone one that aims to maximize
end-user control.

2.2 The Data Privacy Vocabulary
The Data Privacy Vocabulary6 (DPV) [20] is a vocabulary that
attempts to translate concepts and requirements related to the pro-
cessing of personal information under data processing and privacy
regulations, like GDPR, into classes and properties that can be used
as Linked Data. It is structured to be extendable with concepts
and requirements for specific jurisdictions, like the DPV-GDPR
extension7 that defines the GDPR-specific rights and legal bases
concerning data processing.

2.3 Prior proposals for improving authorization
in Solid

The Open Digital Rights Language (ODRL) [14] is a language for ex-
pressing policies that define permitted and prohibited actions over
some entities. An ODRL profile and algorithm was proposed [12] as
an extension of the existing ACL-mechanism used by Solid Pods to
authorize requests. Furthermore, obligations and constraints can be
imposed upon these actions. The proposed ODRL profile8 enables
the use of concepts from the Data Privacy Vocabulary in order to
define policies that relate to data processing over some resources.
The proposal also contextualizes the use of such policies for ma-
terializing complex data sharing preferences and legal bases for
processing like informed consent. The authors [12] do highlight
some significant challenges with their proposal, such as the effi-
ciency of compliance checking with these ODRL policies, especially
when used in a heterogeneous, decentralized architecture and com-
bined with an inheritance mechanism, as well as the privacy risks
associated with making these policies publicly accessible.

While evaluating different technical approaches that support
the enforcement of legal rights given to data subjects under data
protection regulation like GDPR, an assessment [13] was made of
the affordances with respect to data governance provided by Solid
and the SPECIAL project9 in comparison to the current defacto
standard of data subjects giving very broad consent to processing.
In the evaluation of Solid in relation to data protection regulations
it was found that Solid’s current ACL-based solution for authoriza-
tion falls short when trying to implement solutions adhering to the
strict regulatory requirements set forth. Firstly, because of its poor
user experience caused by issues like the lacking interpretability of
access mode and resource identifiers for non-technical users, risk
6https://w3id.org/dpv#
7http://www.w3id.org/dpv/dpv-gdpr#
8https://w3id.org/oac/
9The SPECIAL project was a research project that aimed to deliver technologies to
reconcile big data applications with the necessary regulatory compliance with respect
to data processing. It delivered user interfaces for consent and processing transparency
as well as ontologies for the logging by data processing applications and for modeling
data usage policies of both data subjects and data controllers that are machine verifiable.
(https://specialprivacy.ercim.eu)

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Laurens Debackere, Pieter Colpaert, Ruben Taelman, and Ruben Verborgh

of phishing attacks due to the use of IRIs to identify agents, and the
security concerns that arise from inherited ACL rules. Secondly, be-
cause ACLs fail to capture important concepts under data protection
regulations that define what type of information is being shared,
how that data will be processed and for what purpose, and which
legal basis is used to warrant this processing. And lastly because
the burden of modifying these ACL rules is currently delegated to
application developers themselves, thus contradicting the original
goals of returning control back to the end-user as developers have
unlimited authority when modifying ACL rules and could resort to
the dark patterns that have haunted modern-day implementations
of consent on the web.

A layered, decentralized architecture for combining SPECIAL
and Solid was also proposed and compared to these other ap-
proaches [13]. The concrete mechanics of the policy exchange and
negotiation are left as future work by the authors, however their
evaluation provides a good insight into the existing limitations
of ACL based authorization when confronted with complex data
processing applications.

2.4 Solid’s Data Interoperability Panel
The Data Interoperability Panel within the Solid Community Pan-
els10 was started with the goal of standardizing the mechanics by
which multiple applications can interoperate over the same data
safely and effectively. In the process they try to increase user aware-
ness and interpretability of the data stored in a Pod, by abstracting
away complexities such as resource organization that are currently
not governed by the Solid protocol, to finally enable multiple agents
to safely and effectively interoperate over the same data. Most im-
portantly, they aim to tackle these hurdles while preserving the
fundamentals of the Solid protocol as it exists today.

In the context of the panel, two significant proposals have be-
gun to take shape over the past year, namely the Shape Trees [3]
and the Solid Application Interoperability [4] draft specifications.
The former builds upon the existing specifications of RDF11 and
data shapes [17, 21], which respectively provide us with the foun-
dations for interoperability through unambiguous identifiers (IRIs)
and a structural schema against which individual RDF graphs can
be validated. Where these existing specifications fall short however
is in modeling complex resource hierarchies. Consider for exam-
ple the organization of a collection of medical records that takes
form in a Solid Pod where developers have relative freedom in
both resource naming and the use of containers to gather their
data. A Shape Tree defines structural constraints for a tree of re-
sources in any ecosystem that has a notion of containers12. For
each container, it allows shape constraint to be imposed on the
contained resources. Shape Trees themselves can also contain other
Shape Trees giving form to tree hierarchies (for example medical
records as a whole may consist of medical images, prescriptions,
bills, reports, etc.). The major strength of Shape Trees is that they

10The Solid specification is drafted by different community panels, each focused on
specific issues or domains that are relevant to Solid like authentication, authorization
or data interoperability.
11The Resource Descriptor Format, core data model used in Semantic Web technologies
to construct Linked Data resources.
12Solid builds upon the LinkedData Platform specificationwhich governs the semantics
of a container resource.

can unambiguously define resource organization in a Pod and pro-
vide a higher-level abstraction that can be more easily understood
by end-users. This way, Shape Trees guide applications and users
by determining where data should be written to and where it can
be read from. The modeling of related resource collections in this
manner allows us to perform operations such as authorization, data
migration and validation on this higher abstraction level as well.
Especially in the context of authorization, defining rules at the level
of Shape Trees rather than individual resources reduces complexity,
the likelihood of errors and allows us to relate these higher-level
conceptual resource aggregations to legal concepts such as Data
Categories.

The Solid Application Interoperability (SAI) draft specification [4]
leverages these proposed Shape Trees to standardize concrete me-
chanics by which applications and agents request access to infor-
mation in a Solid Pod, the way by which they locate the concrete
instances of the Shape Trees, and how they can interoperate over
these. Up until now most of the specifics of these different oper-
ations were left open to individual application developers by the
Solid specification, complicating interoperability over the same
data. In the context of this paper, the standardizing of access re-
quests is of specific importance, and will be used as a building block
in our proposal. The SAI specification introduces the concept of
an Authorization Agent as a service linked to an agent’s WebID
that manages the data under their control. It is tasked with pro-
cessing access requests for the agent, managing previously granted
permissions, and recording the concrete instances of Shape Trees
through a collection of registries. While the specification is still
under discussion by the panel, and some aspects of the mechanics
of the authorization agent have not yet been fully defined or are
deliberately being left open for implementation, we will be using
many of the core concepts it sets forth in our proposal.

2.5 Linked Data Integrity & Authentication
The Data Integrity 1.0 draft community report [25] is a recent
proposal by the W3C’s Credentials Community Group, with the
aim of providing authentication and data integrity capabilities to
Linked Data resources through the use of mathematical proofs such
as digital signature algorithms. It details a vocabulary for describing
proof types, verificationmethods and algorithms. The origins of this
work are to be found in theW3C’s recommendation of the Verifiable
Credentials Data Model [26], a data model that can be used to assert
specific claims on a subject (such as a degree, driver’s license, etc.)
andwhich should be accompanied by a cryptographic proof that can
assert their authenticity and integrity. These techniqueswill provide
us with the necessary building blocks, in terms of authentication
and accountability, we need to realize our proposed authorization
architecture.

3 ARCHITECTURE
Our architecture splits out the implementation of consent as a legal
basis for accessing personal data in the Solid Pod into two domains,
where policies stored in the subject’s Solid Pod form an interface
between these different realms:

(1) On the one hand, the end-user domain is governed by a
so-called Access Management Application which is tasked

A Policy-Oriented Architecture for Enforcing Consent in Solid WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

with validating the data processing request coming from
the responsible data controller against applicable legal re-
quirements, end-user data sharing preferences and, if the
processing request is approved, storing it as a Processing
Grant in the data subject’s Solid Pod.

(2) On the other hand, the technical domain uses the Authoriza-
tion Agent, as proposed by the Solid Application Interoper-
ability specification, to handle concrete access requests made
by applications and other agents in terms of Shape Trees,
Data Shapes and ACL access modes. The interface between
the two realms is formed by Processing Grants which are
generated by the Access Management App and persisted in
the agent’s Solid Pod.

For authentication and identification of the different actors in the
architecture we depend on theWebID [22] and Solid OIDC [10] spec-
ifications that are defined within the Solid Protocol version 0.9 [8].
In the following paragraphs we will be expanding upon both the
Access Management App, Authorization Agent and the proposed
concepts of Processing Requests and Processing Grants used to
bind these two services.

3.1 End-User Realm: Access Management App
The Access Management App is used by Data Controllers to obtain
the necessary approval for the Data Processing they are request-
ing for some personal data categories and processing actions in
fulfillment of a processing purpose that was allowed for through
a specific legal basis. Once it has received a Data Processing Re-
quest, the Access Management App will first verify if the request is
admissible and will attempt to match it against any explicit data
sharing preferences the user might have in their Pod that can lead
to an automatic granting of the request. If no preferences turn out
to explicitly match the request, the data subject must be polled for
their explicit consent. Once a Processing Request is granted, it is
stored as a Processing Grant in the Solid Pod and delivered to the
inbox [9] of the Data Controller.

3.2 End-User Realm: Processing Requests and
Processing Grants

Whenever a Data Controller (Requesting Party) wants to obtain
permissions for performing some data processing on the data sub-
ject, it will be constructing a Processing Request. This Request is
constructed based upon a proposed ODRL profile [12] and concepts
from the Data Privacy Vocabulary. An example request for medical
records based upon explicit consent is shown in Listing 2. The re-
quest details handling of the personal data, in terms of legal basis
(in the case of this paper we will only consider explicit consent),
data controller, and specific permissions that will be needed in the
context of the processing.

Each permission specifies what personal data categories it con-
cerns as a target, what actions it needs to perform on this data,
and constraints on the purpose or output of the processing. Other
constraints could be envisioned as well, like technical measures
used in the processing and associated risks, however these haven’t
been explored in the current proposal.

The Data Processing Request itself is presented to the Access
Management App accompanied by a Data Integrity Proof that

Solid Server

Authorization

Web Access Control or Access

Control Policy

Identity

WebID

Authentication

Solid OIDC

Storage

Linked Data Platform

Technical Realm

End-User Realm

10.

Authorization Agent

8.

2. Retrieve any

applicable policies

4.

Access Management App

e.g. Consent Application, Contract

Signing Service, ...

3. Approve

Data Subject

1.

Grant Processor

9.

Authorizer7.

App Y's Access Needs

 + Entity X's Processing Grant

Data Controller

Organisation X

Data Processor

Application Y

6.

Data Controller

Organisation X

Application Y's

Access Grant

Entity X's

Processing Grant

Entity X's

Processing Grant

Entity X's

Processing Grant

5.

Entity X's

Processing Request

Figure 1: Overview of our proposed architecture, linking an
End-User realm governing Data Processing permissions with
a Technical realm following the Application Interoperability
specification

was generated by the Data Controller, this way the provenance
and integrity of the request can be validated. Through this sign-
ing mechanism, the risk of spam or other malicious attacks with
respect to the Access Management App and Processing Request
procedures could be reduced, for example by assigning different
trust levels to issuer services that can be used by Data Processors to
sign their request based upon requirements like identity validation
or regulatory compliance.

Finally, a Processing Grant is constructed from the Processing Re-
quest by first completing the legal basis, i.e., consent, with any other
necessary attributes that were either gathered in interaction with
the data subject or in an automated manner by the access manage-
ment app. Thereafter any permissions that have not been witheld
will be removed from the Grant, the RDF graph is supplemented
with a Revocation Status attribute conforming to the W3C Revoca-
tion List 2020 specification [24] for revoking Data Integrity Proofs
such that the Access Management App can revoke the Processing
Grant at a later time, and a Data Integrity Proof will be created and
signed by the Access Management App to indicate that the legal

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Laurens Debackere, Pieter Colpaert, Ruben Taelman, and Ruben Verborgh

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix odrl: <http://www.w3.org/ns/odrl/2/>.

@prefix dpv: <http://www.w3.org/ns/dpv#>.

@prefix cert: <http://www.w3.org/ns/auth/cert#>.

@prefix oac: <https://w3id.org/oac/>.

@prefix : <https://example.com/#>.

:medicalRecordsConsent a odrl:Policy, dpv:PersonalDataHandling;

odrl:profile oac:;

dpv:hasLegalBasis [

a dpv:Consent;

];

dpv:hasDataController <https://example.com/id/doctor#me>;

odrl:permission [

a odrl:Permission;

odrl:assignee <https://example.com/id/doctor#me>;

odrl:target dpv:HealthRecord, dpv:Prescription, dpv:

HealthHistory;

odrl:action dpv:Collect, dpv:Consult, dpv:Analyse, dpv:Alter;

odrl:constraint [

odrl:leftOperand oac:Purpose;

odrl:operator odrl:isA;

odrl:rightOperand :MedicalConsultation

]

].

Listing 2: Example Unsigned Processing Grant Request

requirements for the data processing to be approved are fulfilled.
The signed Processing Grant can be seen as an instruction for the
authorization agent to provision certain types of information to a
Data Controller and its designated processors.

3.3 Technical Realm: Authorization Agent
The Authorization Agent is largely based upon the proposed Solid
Application Interoperability specification in terms of its semantics
and API, which is still under discussion by the panel and thus might
be subject to changes. This is enabled by the fact that mechanics
of the authorization agent are largely left open to implementation,
such that additional authorization checks can be executed between
the Access Needs being presented to the authorization agent and
the delivery of a so-called Access Grant that specifies the concrete
data that has been elected for sharing with the application.

In fact, the only modification to the authorization agent interface
that we are proposing in this paper is that a Processing Grant should
accompany the Data Processor’s access needs when access is being
requested. This way the authorization agent can link the access
request being made by the application or service, acting as a Data
Processor for the Data Controller, to a valid legal basis for data
processing. It then becomes the task of a Grant Processor module in
the Authorization Agent to match the specified Processing Grant to
the Processor’s Access Needs in terms of Data Needs (Shape Trees)
and Access Modes. The latter confronts us with the need for an
unambiguous equivalence relation between the abstract definitions
in the Processing Grant and their technical counterparts in the
Access Needs.

Finally, once the Grant Processor has determined that the Data
Processor’s request actually matches our initial Processing Grant,
it can proceed with an Authorizer that is tasked with modifying

the atomic access control rules applicable to the instances of the
Shape Trees that were specified in the service’s Data Needs. Once
this process has ended, an Access Grant is returned to the Data
Processor and the necessary registrations are added to the Pod.

3.4 Auxiliary Rules & Policies
While the ODRL-based processing request and processing grant
may suffice for defining the data processing that is being requested
and approved on a business-level, it is insufficient for the authoriza-
tion agent to relate these with the technical access needs specified
by a Data Processor like an application. The semantic gap here is
twofold, on the one hand we need to unambiguously define what
data in the Pod falls under the approved processing and on the
other hand we must know what actions on this data are permitted.

Firstly, the abstract data categories used to specify the personal
data being shared under the approved data processing activities
must be related to concrete technical data type information. As
was elaborated upon in the background section, the combination of
data shapes and shape trees as a mechanism for defining resource
collections and their structure allows us to delimit conceptually
related resources in the Pod like medical records, pictures, notes,
etc. Through an additional set of rules that is configured by the data
subject in their Solid Pod, a so-called Data Category Equivalence
policy, we link the technical resource type information provided by
Data Shapes and Shape Trees to Personal Data Categories as they
are specified under DPV and used in the ODRL profile.

As higher level abstractions are used to define the actions that the
processing allows for, we must also relate the Processing categories
from the DPV with the Access Modes as they are used in both
Solid’s Access Control mechanism and the technical Access Needs
specified by the Data Processor. These can be defined by the subject
as Processing Access Needs, which are stored as an additional set
of rules in the Pod.

Furthermore, while not elaborated upon in this paper, the pro-
posed ODRL profile [12] was devised with the concept of data shar-
ing preferences which allowed for the data subject to also express
more complex data processing activities that could automatically
be permitted to some requesting party based on purpose, data and
processing categories. Such policies could also be persisted in the
Solid Pod besides these previously noted equivalence relations and
the concrete processing grants that flow from them.

4 EXAMPLE USE CASE
In this section we will be illustrating our proposed architecture
through the motivating use case of a doctor looking to access the
medical records of a patient stored in their Solid Pod based on
an explicit, informed consent. We assume no previous consent or
authorizations were given over the patient’s Electronic Medical
Records (EMR). Figure 2 provides a complete sequence diagram,
highlighting the relevant exchanges that are initiated by the physi-
cian and their electronic patient record application.

The exchange starts with a discovery phase (steps 1–2) where
the application aims to determine which Access Management Ap-
plication and Authorization Agent the patient has elected to use
through their WebID. Once it has been determined that no previous
registration exists for the EMR application with the Authorization

A Policy-Oriented Architecture for Enforcing Consent in Solid WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

8. Grant Consent

23. Withdraws Consent

Patient Doctor

2. Dereference WebID to discover Access Management app

and Authorization Agent

5. Send Signed Processing

Request for "Medical Records"

21. Retrieve resources based on Access Grant

19. Poll Authorization Agent for

Agent Registrations

Electronic Medical Record
Software

No existing Agent Registration in
Authorization Agent

10. Notify Requesting Party

of new Processing Grant

6. Validate Requesting Party's Signature

Patient's Access
Management App

15. Validate Processing
Grant Signature

Patient's Solid
Pod

4. 401 Unauthorized: Not authorized

18. Return Access Receipt to Requesting Party

16. Retrieve matching

resources

20. Return Agent Registration

Patient's Authorization
Agent

Patient's
WebID Doctor's WebID

11. Retrieve Processing Grant from Inbox

Doctor's Inbox

Data Processing Grant can be used to construct a
new Access Request

3. Poll Authorization Agent for

Agent Registrations

24. Notify of revocation

17. Create ACL rules

for request

14. Discover trusted Access

Management app for user

12. Initiate Access Request with Processing Grant

22. Visualize
retrieved records

1. Initiate Record

for Patient

7. Notify Resource Owner of Processing Request

Access Grant can now be used to retrieve
information based on Consent

13. Validate Processing Grant Signature for Requesting Party

9. Store Signed Data Processing

Grant in Pod

Figure 2: Sequence diagram highlighting the exchanges for the motivating use case of a doctor requesting explicit consent for
access to medical records of their patient.

Agent (steps 3–4), a new Processing Request will be initialized and
transferred to the patient’s access management application (step 5).
After validation and explicit consent (steps 6–8), a signed Processing
Grant is created by the Access Management Application, stored
in the patient’s Pod and delivered to the physician’s inbox (step
9–10). Subsequently an Access Request for the patient’s Authoriza-
tion Agent can be constructed by the EMR application based on its
Access Needs defined in terms of Shape Trees (in this case, shape
trees relevant to the patient’s medical records), and accompanied
by the physician’s Processing Grant (step 12). After validation of
the Processing Grant by the Authorization Agent (steps 13–15), it
is converted into ACL-rules for the instances of the Shape Trees
mentioned in the Access Needs (steps 16–17). An Access Receipt13
is then returned to the physician’s inbox (step 18), finally allowing
for the EMR application to visualize the patient’s medical records
(step 19–22). If the patient subsequently chooses to withdraw their
consent through the Access Management App (step 23), the app will
modify a Revocation List in order to revoke the Processing Grant

13Notification referencing an Access Grant

that was initially provided and notify the Authorization Agent (step
24).

5 DISCUSSION
One of the major departures from previous proposals is that this
architecture aims to separate the problem of reconciling techni-
cal authorization with the legal requirements for data processing
into two distinct domains. On the one hand, there is an end-user
realm where the user is presented with requests for data process-
ing in terms of processing actions happening on more abstract
data categories, and where an end-user can determine explicit data
sharing preferences. On the other hand, there is a technical realm
where Solid’s proposed Application Interoperability Specification
governs how application developers can gain access to resources
in an agent’s Solid Pod, once a proper legal basis for processing
has been established. The concept of Data Processing Grants that
are verifiable through the W3C’s Data Integrity Specification for
Linked Data form the link between these two distinct domains,
combined with policies that relate the meaning of Data Categories
and Processing Actions to technical concepts that can be used by
the Solid Pod.

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Laurens Debackere, Pieter Colpaert, Ruben Taelman, and Ruben Verborgh

Whereas previous solutions aimed to integrate business con-
cepts into Solid’s existing authorization mechanisms, for example
through expanding upon Access Control with purpose and policy
concepts, our proposal retains the current semantics and mechanics
of Web Access Control and uses a layered architecture on top of
it to introduce business concepts. While this does not solve the
core limitations of the ACL mechanism as were mentioned in pre-
vious sections, like inheritance concerns and over-permissioning,
it prevents us from importing these same issues into the higher
level concepts of Access Grants and Data Processing Grants. Fur-
thermore our architecture aims to reduce assumptions made on
the supported features by the Solid server by externalizing the con-
cepts of an Access Management App and an Authorization Agent
such that these can be separate services a user chooses to add to
their WebID and link to their Solid Pods. Additionally, an explicit
dependency on the use of Web Access Control can be avoided in
this framework, as long as a sufficient mapping from the business
domain to the authorization mechanism supported by the Solid Pod
exists for the Authorization Agent to perform. Especially in the
light of the recent proposal of the Access Control Policy (ACP) lan-
guage [6] as an alternative to Web Access Control, which addresses
a number of the shortcomings we have highlighted about the latter,
this decoupling is a desirable property.

Some of the highlighted challenges in the ODRL proposal [12]
have been addressed here, while others will necessitate further
consideration. With respect to efficiency, by introducing the Au-
thorization Agent as an intermediary for providing the technical
access, we avoid the necessity of matching policies for each HTTP
request on a resource in the Pod and convert this into a negotiating
step that theoretically should only occur if the access needs or the
processing grant of the application have been modified. Moreover,
in our proposal, policies do not show the hierarchical inheritance
that is common for ACL resources thus compliance checking does
not need to take this into account. Still, it might be the case that
complex data sharing preferences used by the access management
app or elaborate processing grants could lead to an unacceptable
time complexity when used in practice. By introducing the access
management app as a dynamic negotiator in the flow we avoided
the need for public policies to be advertised by the Solid Pod, which
addresses important privacy concerns with a policy based solution
(i.e., what if anyone can see that you have shared your medical
records for the purpose of a past treatment with a psychiatrist). Spe-
cific legal issues raised in the ODRL proposal [12] remain largely
applicable to our proposal as well, i.e., the legal implications of
user choice enabled by Solid’s novel approach to data governance,
the necessity of awareness of the applicable jurisdiction and its re-
quirements for data processing activities and whether data sharing
preferences, as were briefly touched upon, indeed constitute a form
of consent.

While we have focused largely on the problem space of imple-
menting explicit consent as a legal basis throughout this proposal,
there could be room for enabling other legal bases to be enforced by
the access management app as well. For example when processing
is requested on the basis of a contractual obligation, the Access
Management App could retrieve the contract from the subject’s
Pod and validate it against the identity of the requesting party for
the Data Processing.

6 CONCLUSIONS & FUTUREWORK
While the proposed architecture aims to provide a crucial miss-
ing link between the atomic ACL-based authorization mechanism
currently used by Solid Pods and the more abstract concepts, and
safeguards required by data protection regulations like GDPR, it
still has a number of open challenges that will need to be addressed
before such an architecture can be practically implemented and
used by developers and end-users.

Firstly, both the Shape Trees and Interoperability Specifications
are still being discussed by the community panel and have only
very recently seen their first practical implementations. Outside
of the context of this panel, the proposal has not yet gained major
traction, which could imply that the specifications might see signifi-
cant changes before they are finally adopted into the Solid protocol.
Another major hurdle that these important building blocks for
our proposal face is the complexity of implementing them with-
out breaking compatibility for existing applications and services,
while retaining the required semantics for those that do already
depend on them. Also the required registries for the Interoperability
Specification and the additional metadata necessitated by the use
of Shape Trees might prove challenging to consistently maintain
within the Solid Pod without imposing additional requirements on
its operation.

Secondly, due to the fact that our authorization mechanism ul-
timately still depends on the enforcement of Web Access Control
rules by the Solid Pod we are again subject to its limitations outside
the context of the proposed granting procedure. This means that
if a single agent or application has obtained multiple processing
grants from the data subject for the same Shape Trees, we cannot
effectively differentiate between them when a request to a concrete
resource comes in. One could ask the question whether this differ-
entiation in context even matters at that point, as it would depend
on the honesty of the client. However from a legal perspective this
distinction could matter, and might need to be logged and recorded
somewhere. This highlights the need for further investigation into
whether and how a Solid-based application or service can fully com-
ply with data processing regulations throughout its lifecycle, not
only in terms of the initial authorization we have focused on here
but also in terms of legal logging, data minimization, compliance
monitoring, etc.

Also, compliance checking with respect to the proposed ODRL
profile [12] is a problem that warrants further investigation as
generic ODRL policy checking algorithms will be necessary. This
way, we should be able to match an incoming processing request
with any existing data sharing preferences of the data subject. Man-
aging the ambiguity that is caused by allowing an end-user’s poli-
cies to define how generic concepts used in the processing requests
map to attributes of the Solid Pod is another challenge that still
needs thorough consideration. Furthermore, the trust model be-
tween the different entities and services in our architecture needs
to be considered in more detail as to identify potential security
risks. Finally, the technical overhead imposed by this solution on
query efficiency should be further analyzed as well, given that the
negotiation process introduces asynchronicity to the process of
accessing resources in a Solid Pod.

A Policy-Oriented Architecture for Enforcing Consent in Solid WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

ACKNOWLEDGMENTS
The authors would like to thank Justin Bingham, Tom Haegemans,
Sabrina Kirrane, and Eric Prud’hommeaux for giving their insights
and feedback regarding this work. This research is supported by
SolidLab Vlaanderen (Flemish Government, EWI and RRF project
VV023/10). Ruben Taelman is a postdoctoral fellow of the Research
Foundation – Flanders (FWO) (1274521N).

REFERENCES
[1] 2016-04-27. Regulation (EU) 2016/679 of the European Parliament and of the

Council of 27 April 2016 on the Protection of Natural Persons with Regard to
the Processing of Personal Data and on the Free Movement of Such Data, and
Repealing Directive 95/46/EC (General Data Protection Regulation). Official
Journal of the European Union L 119 (2016-04-27).

[2] UK Department for Digital, Culture, Media & Sport . 2020. Cy-
ber Security Breaches Survey 2020. Retrieved February 6, 2022 from
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-
2020/cyber-security-breaches-survey-2020

[3] Justin Bingham and Eric Prud’hommeaux. 2022. Shape Trees Specification.
Technical Report. Retrieved February 6, 2022 from https://shapetrees.org/TR/
specification/

[4] Justin Bingham, Eric Prud’hommeaux, and elf Pavlik. 2021. Solid Application
Interoperability. Technical Report. Retrieved February 6, 2022 from https:
//solid.github.io/data-interoperability-panel/specification/

[5] Piero A. Bonatti, Sabrina Kirrane, Iliana M. Petrova, and Luigi Sauro. 2020.
Machine Understandable Policies and GDPR Compliance Checking. CoRR
abs/2001.08930 (2020). arXiv:2001.08930 https://link.springer.com/article/10.
1007/s13218-020-00677-4

[6] Matthieu Bosquet. 2021. Access Control Policy (ACP). Technical Report. Re-
trieved February 6, 2022 from https://solid.github.io/authorization-panel/acp-
specification/

[7] Sarven Capadisli and Tim Berners-Lee. 2021. Web Access Control. Technical
Report. Retrieved February 3, 2022 from https://solidproject.org/TR/wac

[8] Sarven Capadisli, Tim Berners-Lee, Ruben Verborgh, and Kjetil Kjernsmo. 2021.
Solid Protocol. Technical Report. Retrieved February 6, 2022 from https://
solidproject.org/TR/2021/protocol-20211217

[9] Sarven Capadisli and Amy Guy. 2017. Linked Data Notifications. Technical Report.
Retrieved February 6, 2022 from https://www.w3.org/TR/ldn/

[10] Aaron Coburn, elf Pavlik, and Dmitri Zagidulin. 2022. Solid-OIDC. Technical
Report. Retrieved February 7, 2022 from https://solid.github.io/solid-oidc/

[11] Dirk De Bot and Tom Haegemans. 2021. Data Sharing Patterns as a Tool to Tackle
Legal Considerations about Data Reuse with Solid: Theory and Applications in
Europe. https://lirias.kuleuven.be/retrieve/599839

[12] Beatriz Esteves, Harshvardhan J. Pandit, and Víctor Rodríguez-Doncel. 2021.
ODRL Profile for Expressing Consent through Granular Access Control Policies
in Solid. In 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW). 298–306. https://doi.org/10.1109/EuroSPW54576.2021.00038

[13] Giray Havur, Miel Vander Sande, and Sabrina Kirrane. 2020. Greater Control and
Transparency in Personal Data Processing. 655–662. https://doi.org/10.5220/
0009143206550662

[14] Renato Iannella and Serena Villata. 2018. ODRL Information Model 2.2. Technical
Report. Retrieved February 6, 2022 from https://www.w3.org/TR/odrl-model/

[15] Lalana Kagal, Tim Finin, and Anupam Joshi. 2003. A Policy Based Approach to
Security for the Semantic Web. In The Semantic Web - ISWC 2003, Dieter Fensel,
Katia Sycara, and John Mylopoulos (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 402–418.

[16] Gergely G. Karácsony. 2019. Managing personal data in a digital environment -
did GDPR’s concept of informed consent really give us control? International
Conference on Computer Law, AI, Data Protection & the Biggest Tech Trens (2019).
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3452573

[17] Holger Knublauch and Dimitris Kontokostas. 2017. Shape Expressions Language
2.1. Technical Report. Retrieved February 6, 2022 from https://www.w3.org/TR/
shacl/

[18] Michael Kretschmer, Jan Pennekamp, and Klaus Wehrle. 2021. Cookie Banners
and Privacy Policies: Measuring the Impact of the GDPR on the Web. ACM Trans.
Web 15, 4, Article 20 (jul 2021), 42 pages. https://doi.org/10.1145/3466722

[19] Midas Nouwens, Ilaria Liccardi, Michael Veale, David Karger, and Lalana Kagal.
2020. Dark Patterns after the GDPR: Scraping Consent Pop-Ups and Demonstrating
Their Influence. Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376321

[20] Harshvardhan J. Pandit, Axel Polleres, Bert Bos, Rob Brennan, Bud Bruegger,
Fajar J. Ekaputra, Javier D. Fernández, Roghaiyeh Gachpaz Hamed, Elmar Kiesling,
Mark Lizar, and et al. 2019. Creating a Vocabulary for Data Privacy: The First-Year
Report of Data Privacy Vocabularies and Controls Community Group (DPVCG).

https://doi.org/10.1007/978-3-030-33246-4_44
[21] Eric Prud’hommeau, Iovka Boneva, Jose Emilio Labra Gayo, and Gregg Kellogg.

2019. Shape Expressions Language 2.1. Technical Report. Retrieved February 6,
2022 from http://shex.io/shex-semantics/index.html

[22] Andrei Sambra, Henry Story, and Tim Berners-Lee. 2014. WebID 1.0. Technical
Report. Retrieved February 4, 2022 from https://www.w3.org/2005/Incubator/
webid/spec/identity/

[23] Steve Speicher, John Arwe, and Ashok Malhotra. 2015. Linked Data Platform 1.0.
Technical Report. Retrieved February 6, 2022 from https://www.w3.org/TR/ldp/

[24] Manu Sporny and Dave Longley. 2021. Revocation List 2020. Technical Report.
Retrieved February 6, 2022 from https://w3c-ccg.github.io/vc-status-rl-2020/

[25] Manu Sporny and Dave Longley. 2022. Data Integrity 1.0. Technical Report.
Retrieved February 6, 2022 from https://w3c-ccg.github.io/data-integrity-spec/

[26] Manu Sporny, Dave Longley, and David Chadwick. 2021. Verifiable Credentials
Data Model v1.1. Technical Report. Retrieved February 6, 2022 from https:
//www.w3.org/TR/vc-data-model/

[27] Winfried Veil. 2018. The GDPR: The Emperor’s New Clothes - On the Structural
Shortcomings of Both the Old and the New Data Protection Law. Consumer Law
eJournal (2018). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3305056

[28] Ruben Verborgh. 2022. Re-decentralizing the Web, for good this time. In Linking
the World’s Information: A Collection of Essays on the Work of Sir Tim Berners-Lee,
Oshani Seneviratne and James Hendler (Eds.). ACM. https://ruben.verborgh.org/
articles/redecentralizing-the-web/

[29] Serena Villata, Luca Costabello, Nicolas Delaforge, and Fabien Gandon. 2012.
Social Semantic Web Access Control? Journal on Data Semantics 2 (03 2012).
https://doi.org/10.1007/s13740-012-0014-9

Appendix 2: Performance Evaluation of UMA Authorization Service

The table below summarizes a performance evaluation of the response times (in milliseconds) for a token request with

the UMA Authorization Service. For this evaluation 250 authorization requests were randomly made for each of the differ-

ent resource types defined by the Solid Application Interoperability specification[58] and for differing numbers of agent

registrations and data grants.

The experiment was run on NodeJS v16.14.0, with an Apple M1 Pro processor and 32GB RAM, using the 1.0.0 release of our UMA

Authorization Service and SAI Authorizer module. The Community Solid Server v4.0.1 release was used, with both the AS and

CSS running locally on the machine. Data was generated synthetically, using the Python-script included in the repository.

#Agent Registrations #Data Registrations Resource Type Mean Standard Deviation Minimum Median 75th Percentile 99th Percentile Maximum

20 10 Access Grant 5,12 1,34 3,13 4,92 5,76 9,96 14,63

20 10 Agent Registration 5,89 3,93 2,88 5,20 5,83 25,32 37,96

20 10 Data Grant 5,31 2,70 3,21 4,98 5,59 16,21 36,59

20 10 Data Instance 34,39 13,16 10,20 33,64 41,86 72,59 104,75

20 10 Data Registration 7,40 30,28 2,68 4,91 5,67 32,71 480,81

20 50 Access Grant 7,57 2,55 4,51 7,22 8,03 14,87 37,12

20 50 Agent Registration 8,90 24,38 4,60 6,93 7,99 18,42 389,64

20 50 Data Grant 9,04 27,25 5,00 7,10 7,93 17,02 437,12

20 50 Data Instance 120,60 60,40 15,69 126,98 157,29 211,14 648,95

20 50 Data Registration 9,83 29,19 4,80 6,98 7,80 50,95 459,58

20 100 Access Grant 14,29 36,99 7,46 10,21 11,39 51,86 425,98

20 100 Agent Registration 10,88 4,24 7,39 10,08 11,47 23,70 54,56

20 100 Data Grant 14,59 36,96 7,27 9,93 11,05 60,47 420,99

20 100 Data Instance 214,72 98,60 29,66 217,38 288,18 438,03 566,67

20 100 Data Registration 16,56 51,27 7,01 10,08 11,29 251,42 513,31

100 10 Access Grant 8,78 63,31 2,61 4,43 5,17 12,74 1005,14

100 10 Agent Registration 5,01 1,63 2,61 4,77 5,42 11,94 19,41

100 10 Data Grant 4,99 4,22 2,67 4,49 5,06 12,26 62,86

100 10 Data Instance 30,97 11,47 9,86 30,56 38,08 55,59 113,90

100 10 Data Registration 4,72 2,58 2,46 4,40 5,06 8,31 42,11

100 50 Access Grant 8,04 2,38 4,91 7,51 8,56 18,78 24,82

100 50 Agent Registration 19,16 97,81 4,72 7,75 8,95 338,60 1143,02

100 50 Data Grant 12,35 63,03 4,67 7,44 8,46 32,57 1002,74

100 50 Data Instance 127,03 69,48 20,97 130,71 164,13 221,25 890,60

100 50 Data Registration 12,59 70,28 5,13 7,52 8,71 20,00 1118,50

100 100 Access Grant 14,78 66,24 7,26 10,04 11,13 26,23 1056,96

100 100 Agent Registration 24,23 123,12 7,16 9,83 10,99 587,89 1185,42

100 100 Data Grant 14,50 63,48 7,12 9,96 10,91 24,75 1012,74

100 100 Data Instance 222,95 153,32 30,71 210,61 282,48 852,17 1366,28

100 100 Data Registration 11,76 6,70 6,80 10,40 11,55 49,04 73,51

The table below summarizes a performance evaluation of the response times (in milliseconds) for a token request with

the UMA Authorization Service. For this evaluation 250 authorization requests were randomly made for each of the different

resource types defined by the Solid Application Interoperability specification[58] for 10 agent registrations, 50 data grants

per agent and an increasing number of data instances per grant.

The experiment was run on NodeJS v16.14.0, with an Apple M1 Pro processor and 32GB RAM, using the 1.0.0 release of our UMA

Authorization Service and SAI Authorizer module. The Community Solid Server v4.0.1 release was used, with both the AS and

CSS running locally on the machine. Data was generated synthetically, using the Python-script included in the repository.

Data Instances Resource Type Mean Standard Deviation Minimum Median 75th Percentile 99th Percentile Maximum

5 Access Grant 10,32 29,17 4,72 7,56 8,43 42,70 463,02

5 Agent Registration 11,86 38,11 5,02 7,38 8,27 53,02 449,40

5 Data Grant 9,94 30,87 4,75 7,44 8,28 21,52 493,32

5 Data Instance 125,25 57,54 20,93 123,08 166,98 246,97 552,08

5 Data Registration 7,97 3,37 4,92 7,37 8,36 20,99 46,37

50 Access Grant 8,31 4,66 4,72 7,50 8,52 38,68 46,89

50 Agent Registration 10,01 29,65 4,69 7,54 8,55 17,96 473,95

50 Data Grant 9,67 27,76 4,58 7,31 8,25 33,18 442,82

50 Data Instance 126,49 55,23 24,04 124,35 169,96 233,34 283,31

50 Data Registration 11,48 41,69 5,23 7,49 8,40 31,70 490,42

100 Access Grant 10,57 28,26 5,10 7,35 8,23 40,93 333,08

100 Agent Registration 10,60 32,73 5,05 7,39 8,20 18,39 379,26

100 Data Grant 7,64 3,03 4,85 7,20 8,25 13,57 49,14

100 Data Instance 137,88 68,84 25,70 135,67 187,50 270,18 669,78

100 Data Registration 11,01 37,73 4,94 7,27 8,22 34,83 435,44

	List of Figures
	List of Tables
	Preface
	Surveillance capitalism
	How do we define privacy and data protection?
	Solid: Redefining a web of platforms into a web of data
	Motivation
	Research Question
	Outline

	Background: GDPR
	Legal views on privacy
	The EU's General Data Protection Regulation
	Terminology
	Scope
	Requirements for Data Processing under GDPR

	The Data Privacy Vocabulary
	Conclusion

	Related Work
	Semantic Policy Languages
	Access Control Policies vs. Data Usage Policies
	ODRL
	SPECIAL

	Solid's Data Interoperability Panel

	Authorization in Solid
	An introduction to Web Access Control
	Technical Capabilities & Limitations
	Adherence to Data Protection principles & Fair Information Practices
	Informational Requirements
	Legal basis & Purpose of Processing
	Fair Information Practices

	The introduction of User-Managed Access in Solid-OIDC 0.1.0
	Introduction of UMA 2.0 in the request flow
	Role of the UMA Authorization Service

	Access Control Policy: A proposal for improving Access Control in Solid
	Conclusion

	An Architecture for Enforcing Data Protection In Solid
	Background: Linked Data Integrity
	Overview
	End-User Realm
	Access Management App
	Data Model: Processing Requests & Grants

	Technical Realm
	Authorization Agent
	Data Model: Auxiliary Rules & Policies

	Illustration with an Example Use Case

	Implementation
	Context & Technology Stack
	Components.JS
	Community Solid Server
	User-Managed Access 2.0

	Technical Realm: Authorization Service
	UMA-support for the Community Solid Server
	A UMA Authorization Service using Components.JS
	Authorizing requests using the Solid Application Interoperability specification

	Technical Realm: Authorization Agent
	Data & Authorization Discovery
	Agent Registration

	Discussion
	Assessment of Web Access Control & Prior Research
	Architecture
	Implementation
	Affordances for researchers and developers
	Real-world performance evaluation
	Potential Optimizations

	Conclusion
	Further Work
	Ethical and Societal Reflection

	References
	Appendix
	Appendix 1: "A Policy-Oriented Architecture for Enforcing Consent in Solid"
	Appendix 2: "Performance Evaluation of UMA Authorization Service"

