
Robotics Control
Bottom-up Exploration of Curriculum Learning for

Academic year 2020-2021

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Andreas Verleysen, Victor-Louis De Gusseme
Supervisor: Prof. dr. ir. Francis wyffels

Student number: 01608772
Thomas Lips

Robotics Control
Bottom-up Exploration of Curriculum Learning for

Academic year 2020-2021

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Andreas Verleysen, Victor-Louis De Gusseme
Supervisor: Prof. dr. ir. Francis wyffels

Student number: 01608772
Thomas Lips

Permission of Use

The author gives permission to make this master dissertation available for consultation and to
copy parts of this master dissertation for personal use. In all cases of other use, the copyright
terms have to be respected, in particular with regard to the obligation to state explicitly the
source when quoting results from this master dissertation.

Thomas Lips
June 2021

Acknowledgements

Throughout the writing of this master’s thesis, I have learned more than I could have hoped for.
I had the opportunity to get acquainted with Deep Reinforcement Learning and its application
in robotics control, which I found incredibly exciting. Furthermore, and even more importantly,
I learned a great deal about scientific research and methodology, and about myself. None of this
would have been possible without the support and assistance that I received, not only throughout
this thesis but during my entire studies these past five years. Therefore, some words of gratitude
are in place.

To my supervisors Francis, Andreas and Victor-Louis, for introducing me to Industrial Robotics
and Deep Reinforcement Learning (its fascinating achievements as well as its more daunting
aspects), both of which were completely new to me. For being so involved in the entire process
and for providing a stimulating environment. Finally, for having a critical and multi-disciplinary
view on science.

To Bruno Huysmans, for helping me discover the fascinating worlds of robotics and programming
in the context of the Dwengo robot competition, in which I participated under his supervision
many years ago. This experience was the motivation to pursue an engineering degree.

To my friends, for sharing the load, providing perspective and for the countless good memo-
ries.

To my parents, for their continued support and guidance. Not only during these past years but
throughout my entire life.

Lastly, to Clara, for everything and so much more.

Bottom-up Exploration of Curriculum Learning
for Robotics Control

Thomas Lips
Supervisor: Prof. dr. ir. Francis wyffels

Counsellors: Andreas Verleysen, Victor-Louis De Gusseme

Master’s dissertation submitted in order to obtain the academic degree of
Master of Science in Computer Science Engineering

Academic year 2020-2021

Abstract

Curriculum learning is becoming increasingly popular for Deep Reinforcement Learning to address
issues related to exploration, generalization and sample efficiency. In this work, goal curriculum
learning for multi-goal robotics problems with continuous action spaces is explored. This is
done in a bottom-up fashion, where we describe the entire process of solving a custom robotics
problem with Deep Reinforcement Learning and discuss some lessons learned along the way. We
focus on generating curricula using asymmetric self-play, where a teacher sets the goals for the
student by reaching them from a shared initial environment state. This framework has a number
of potential issues, in particular with continuous action spaces where policies learn a unimodal
action distribution, resulting in convergence of the teacher to certain regions of the goal space.
We first implement and evaluate two state-of-the-art learning algorithms. These are then used to
create an implementation of the asymmetric self-play framework. Furthermore, a replay buffer
is introduced to the framework to mix the goals proposed by the teacher. The performance of
this framework is then explored using a custom motion planning learning environment. From
these experiments, we conclude that the convergence leads to overfitting of the student on the
goals proposed by the teacher, which results in the system getting stuck. Introducing the replay
buffer does not completely solve this problem. Future work for overcoming the observed issues is
then discussed. Finally, the framework is also compared to an alternative curriculum method,
hindsight experience replay, which is considerably less complex and results in a good performance
on the motion planning task.

Keywords — Curriculum Learning, Asymmetric Self-Play, Deep Reinforcement Learning,
Robotics

Bottom-up Exploration of Curriculum Learning
for Robotics Control

Thomas Lips*

Supervisor: Prof. dr. ir. Francis wyffels
Counsellors: Andreas Verleysen, Victor-Louis De Gusseme

Abstract – Curriculum learning is becoming increasingly
popular for Reinforcement Learning to address issues related to
exploration, generalization and sample efficiency. In this work,
we explore the use of goal curriculum learning for multi-goal
robotics problems with continuous action spaces. We focus on
asymmetric self-play, where a teacher sets the goals for the
student by reaching them from a shared initial environment
state. This framework has some potential issues, in particular
with continuous action spaces where policies learn a unimodal
action distribution resulting in convergence of the teacher in the
goal space. The impact of these issues is explored using a motion
planning learning environment, from which we conclude that the
convergence results in overfitting of the student on the current
goals proposed by the teacher. We introduce a replay buffer for
the student to mix these goals but find that it does not completely
solve the issues. Finally, future work for overcoming the observed
issues is discussed and the framework is also compared against an
alternative curriculum method, hindsight experience replay.

Keywords — Asymmetric Self-Play, Curriculum Learning,
Reinforcement Learning, Robotics

I. INTRODUCTION

Model-free Deep Reinforcement Learning (DeepRL) has been
shown a promising learning framework for complex robotics
control problems in recent years [1], [2]. However, DeepRL
faces several issues that make it challenging to apply to
real-world robotics. These issues include delayed rewards,
sample inefficiency and generalization to related tasks [3].

To overcome the explorational difficulties caused by delayed
rewards, additional reward signals are often added. However,
this can easily lead to local optima, which makes learning
from the natural binary reward of interest for robotics [4],
[5]. Generalization on the other hand is often achieved by
randomizing certain aspects of the task, which can also reduce
performance and further decreases the efficiency [6], [7].
Curriculum learning has been used increasingly to guide both
exploration and generalization for DeepRL [8]. This work
focuses on curriculum learning for goals, which is one of the
aspects that can be controlled by curricula [8].

Asymmetric self-play (ASP) is a teacher-student framework
for creating such goal curricula that has the potential to guide
agents for exploration, generalization and even discovery of the
goal space. The framework is illustrated in Fig. 1. However,
the unimodal policy representation for agents in continuous
action spaces has been suggested to lead to convergence
issues for ASP [9]. This work evaluates ASP, compares
it to another curriculum method and based on the resulting

*thomas.lips@ugent.be

findings, proposes extensions to the framework to overcome
the observed issues.

Figure 1: Schematic overview of the agents and their
interactions in the asymmetric self-play framework

II. RELATED WORK

Asymmetric self-play was first introduced in [10] as an addition
to regular RL training to improve exploration. The novelty
of the approach lies in the way the teacher Alice proposes
the goals to the student Bob: she does this by reaching the
goal from the shared initial state of the environment. Alice
is incentivized to reach goals of an appropriate difficulty
by a time-based episode reward: γ max(0, tB − tA). The
authors interleaved regular play with 10% self-play on a
number of tasks with discrete action spaces and delayed dense
rewards, where they found that this framework increased the
performance by increasing the explorational capacity.

The same idea was more recently used by OpenAI to learn
generalized manipulation behavior using only self-play [11].
The authors added behavioral cloning (BC) to the framework,
which allows Bob to learn directly from the trajectory Alice
used to reach the goal. This was found to be an essential
addition. Furthermore, they used binary rewards for both Alice
and Bob. Again the framework was used in discrete action
spaces with on-policy methods for Alice and Bob.

In other work on goal curriculum learning, Florensa et Al.
argue that using ASP in continuous action spaces does not work
as the unimodal policy representation would result in Alice
converging to small parts of the goal space at each time [9].
This would then result in Alice getting stuck as Bob learns
to solve the goals she is proposing. As a consequence, the
framework is unstable and results in low performance.

III. BACKGROUND

A. Deep Reinforcement Learning

Reinforcement learning (RL) is a framework for learning
optimal strategies for agents in environments that are modelled
using a (fully-observable) Markov Decision Process (MDP)
T = 〈S,A,P,r,ρ0〉. The agent observes at each timestep a state
st ∈ S and has to decide on an action at ∈ A. This action then

1

updates the environment state according to p(st+1|st ,at) and
leads to a reward r(st ,at ,st+1). Initial states for each episode
are sampled according to ρ0.

The agent’s objective is to learn a policy π(a|s) that
maximizes its discounted expected return, given by

J(π) = Eτ∼π,s0∼ρ0

[
T

∑
t=0

γ tr(st ,at ,st+1)

]
, (1)

where τ represents a trajectory of the agent starting from an
initial state: (s0,a0,s1,a1, ...).

In [12] a goal-based extension to the MDP is proposed for
multi-goal tasks. To this end a goal space G is added to the
MDP from which goals are sampled according to ζ . The
reward function now additionally depends on the current goal
g. Furthermore as in [4], a mapping m : S→ G from each state
to a corresponding goal is assumed.

Finally, in Deep Reinforcement Learning (DeepRL) neural
networks are used as function approximators. These networks
are then typically optimized using gradient descent.

B. Curriculum Learning

The idea behind curriculum learning is that the training process
might benefit from structuring the training data in a certain way,
e.g. by starting with easier samples and then moving on to more
difficult samples [8], [13].

Curricula can be introduced for various aspects of the task
T , but this thesis focuses on goal curricula which vary the
goal distribution ζ . Whereas these curricula used to be
hand-designed or were based on heuristics, more recently the
curricula C themselves are learned concurrently to maximize
the agent’s performance on the target task distribution Ttarget
by optimizing

max
C

ET∼Ttarget [J(π|T)] . (2)

IV. METHOD

Our objective is to generate goal curricula using asymmetric
self-play. To this end, we create an implementation of the
asymmetric self-play framework that is shown in Fig. 1. We
then construct a simulation environment for a motion planning
task using continuous joint control for a UR3e industrial robot,
which we use to explore the framework. More details on the
framework, environment and experimental setup are provided
in the next subsections.

A. Asymmetric Self-Play

In an attempt to anticipate on the convergence of Alice we used
Twin-Delayed Deep Deterministic Policy Gradient (TD3)1 [14]
for Bob. This is an off-policy algorithm, which allows for using
a replay buffer to mix the goals proposed by Alice so far. For
Alice we used Proximal Policy Optimization (PPO) [15], which
is the go-to on-policy algorithm. Bob’s policy takes as an input
the state and the goal provided by Alice, whereas Alice’s policy
takes as input the current state as well as the initial state of the
environment.

As we use a multi-goal formulation, a goal can be extracted
from the final state reached by Alice. This goal can then

1For TD3, a small implementation error was made and only discovered
afterwards: the target noise for the actions is sampled from a uniform
distribution instead of a Gaussian distribution. This is not expected to influence
the results too much.

be presented to Bob, which allows for simply using the
environment reward for Bob instead of an internal reward as
in [10]. For Alice, we use the time-based reward function
proposed in [10] but remove the lower bound in an attempt
to avoid Alice getting stuck as reported in [9]. The resulting
episode reward for Alice is then given by 0.01(tB− tA). For
Alice to control her episode duration, a STOP action needs to
be encoded. Unlike the original framework where this was
done with a separate action head, we simply use the action
norm: STOP = ||a||2

action dim < 0.2. Note that this does not allow
Alice to take fine-grained actions and might be problematic for
other tasks than the motion planning task we consider.

Finally as proposed by OpenAI [11], we also evaluate
behavioral cloning (BC) on Alice’s trajectories. Since a replay
buffer is used, we simply add Alice’s trajectory to this buffer if
Bob did not manage to reach the goal.

The resulting pseudo-code for asymmetric self-play can be
found in Algorithm 1. The entire codebase is available online2

for more details about the framework or individual learning
algorithms.

Algorithm 1 Asymmetric self-play

Initialize A: Alice’s PPO policy, B: Bob’s TD3 policy, E:
Environment, D: Bob’s replay buffer
for N episodes do

get initial state s0 ∼ ρ0
tA = 0
while atA 6= STOP and tA < tMAX do

atA ∼ πA(·|stA ||s0)
get stA+1, rtA from E using atA
tA = tA +1

end while
g = m(stA)
tB = 0
while goal not reached and tB < tMAX do

atB = πB(stB ||g)+ ε
get stB+1, rtB from E using atB
tB = tB +1

end while
rA = 0.01(tB− tA)
if Behavioural Cloning active and Bob did not reach goal

then
τBC←relabel τA with g
add τBC to D

end if
set reward of the transitions in τA to (0, ...,0,rA)
train Alice using τA
add τB to D and train Bob using D

end for

B. Task Description

The simulated environment can be seen in Fig. 4. We modelled
a 6DOF UR3e robot using the Unity Engine3. This robot is
controlled using joint positional control. The task for Bob is
to bring the end-effector to a specific position in the Euclidean
space, starting from a random initial joint configuration. Using
random initialization was found to be important to increase
diversity in the goals proposed by Alice. Bob has to control
all joints except for a rotational wrist that does not add to
the robot’s reachable space for this motion planning task.

2https://github.ugent.be/tlips/thesis-curriculum-learning
3https://unity.com/

2

The action space is limited to [−3,3]5 degrees with a control
frequency of 10Hz. Each action sets a new relative target
orientation for the PD joint controllers. The state space is
16 dimensional and consists of the absolute orientation and
velocity of all 6 joints as well as the linear position of the
grippers and the Euclidean position of the end-effector.

The bounds on the joint space are chosen in such a way that
the entire quarter sphere with radius (0.1-0.7) m and origin in
the robot base is reachable by the robot. This quarter sphere
also makes up the target goal space.

C. Experimental Methodology

All hyperparameters are listed in Appendix A. For a number of
hyperparameters that were empirically found to be important, a
random search with 30 runs is performed for each experiment.
Furthermore, each experiment is repeated with 5 different
random seeds to ensure robustness. To optimize the networks,
Adam [16] is used. We report the mean and standard deviation
of the performance metric, which is the average success rate
over 20 goals sampled uniformly in spherical coordinates4 from
the target goal space. Videos of the learned behaviors are
available5.

V. EXPERIMENTS

A. Asymmetric self-play with dense rewards

For this experiment we used a distance based reward function
for Bob:

r(s,a,s′|g) = ||xs′ −g||2 . (3)

We compared random goal selection with asymmetric
self-play with and without behavioral cloning. The resulting
performance can be seen in Fig. 2. From this comparison, it is
first of all clear that the reward function does not suffer from
local optima and that random goal selection results in a good
performance. Asymmetric self-play on the other hand seems to
plateau on a lower success rate. Bob’s training success rate on
the goals proposed by Alice however (Fig. 3) shows that Bob
still manages to solve a good portion of the goals proposed by
Alice. Furthermore, the resulting curriculum (Fig. 4) of goals
proposed by Alice as well as the dips in the success rate show
that Alice is still presenting Bob with new goals he does not yet
know how to solve.

However, from the same curriculum, it can be seen that
Alice is converging to certain parts of the goal space. This
suggests that a possible explanation for the stagnation of the
performance would be that as Alice starts to converge, Bob is
overfitting on these goals which results in no progress on the
target goal space.

B. Asymmetric self-play with sparse rewards

These experiments use a sparse, binary reward function:

r(s,a,s′|g) = 1||xs′−g||2<0.05 , (4)

which makes exploration much harder.

4This results in non-uniform sampling in the Euclidean space which makes
some goals slightly more valuable than others, a mistake that was only
discovered after performing the experiments. It is however expected not to
influence the results too much.

5https://youtube.com/playlist?list=

PLeFCx883OreTeSIMPKRYskru_fymswiGf

Figure 2: Performance Comparison of asymmetric self-play
(ASP), asymmetric self-play with behavioural cloning (ASP +
BC) and random goal selection when using dense rewards for
the motion planning task.

Figure 3: Train success rates for Bob when training with
asymmetric self-play (ASP) on dense rewards.

(a) 0 - 1000 (b) 1000 - 2000

(c) 2000 - 3000 (d) 3000 - 4000
Figure 4: Curriculum created by Alice for Bob using dense
rewards and asymmetric self-play. Each frame contains the
goals proposed by Alice during 1000 consecutive episodes.

3

Figure 5: Performance Comparison of random goal selection,
asymmetric self-play (ASP), ASP with Behavioural cloning
(ASP + BC) and ASP with dynamic windowing when using
binary rewards for the motion planning task.

As before we compared random goal selection with
asymmetric self-play with and without behavioral cloning. To
enforce more diversity and shorter goal distances, we also
added a dynamic windowing heuristic to limit the maximum
episode duration for Alice: whenever Bob reached the previous
goal the maximum duration is incremented if Bob did not reach
the previous goal it is decremented.

The resulting performance curves can be seen in Fig. 5.
As expected random goal selection now results in no learning
progress at all, as the probability of reaching a random goal is
too small which results in non-informative experiences given
the binary rewards.

Asymmetric self-play improves on random goal selection yet
plateaus on a low success rate of around 0.2. Adding behavioral
cloning does not improve this asymptotic performance
although it slightly increases the initial learning speed.
Furthermore, the resulting behavior for Bob is often very shaky
with behavioral cloning, which is related to the high entropy
loss that resulted from the parameter search. This highlights
that Alice’s trajectories are no ’expert’ trajectories, as is usually
the case with BC, and should hence be used with care.

Adding the restriction on Alice’s episode duration increased
the success rate to about 0.4, where it starts to stagnate. From
the curriculum proposed by Alice (Fig. 6) it can be seen that
she indeed starts to converge later on, which will make Bob
overfit on the goals proposed by Alice and most likely explains
this stagnation.

C. Hindsight experience replay with sparse rewards

At this point, it seemed that the tendency of Alice to converge
limits the performance for asymmetric self-play. A method
that presents Bob with more diverse goals should give better
results. To this end we also evaluated hindsight experience
replay (HER) [4]. We used the future replay strategy and
replayed each transition with 4 goals. For this experiment,
the HER + TD3 implementation of stable baselines [17]
was used. Hyperparameters were chosen to match the ASP
hyperparameters or set to their default values and are included
in Appendix A. Unlike previous experiments, the performance
is evaluated against the number of steps taken by Bob in the
environment. Note that this does not take the additional steps

(a) 1000 - 2000 (b) 3000 - 4000

(c) 5000 - 6000 (d) 7000 - 8000
Figure 6: Curriculum created by Alice for Bob using binary
rewards and asymmetric self-play with dynamic windowing to
restrict Alice’s episode duration. Each frame contains the goals
proposed by Alice during 1000 consecutive episodes.

taken by Alice into account for ASP.
The results can be seen in Fig. 7 and clearly show that HER

reaches a higher success rate and is considerably more sample
efficient.

VI. DISCUSSION AND FUTURE WORK

The curricula that were obtained in our experiments confirm
that asymmetric self-play indeed has the potential to learn goal
curricula for continuous action spaces in an unsupervised way.
We also observed how Alice converges to particular parts of
the goal space, as suggested in [9]. Unlike the authors of this
work, we do not observe Alice getting stuck as a result. This
might be due to the removal of the lower bound on her reward
function or because of the use of a replay buffer which partially
prohibits Bob from overfitting.

However, next to inherently slowing down the learning
speed, the convergence seems to cause overfitting on the goals
proposed by Alice. Using a replay buffer to mix previous goals
did not solve this and we believe this is caused by the buffer
itself becoming too unbalanced. To overcome both issues, we
now suggest a few options.

First of all to deal with the overfitting of Bob we see two
possible approaches:

• Fall back to on-policy methods for Bob and use an
explicit replay mechanism to avoid overfitting. This was
successfully used by OpenAI [11] although no details
were provided. It also remains the question how this will
transfer to continuous action spaces.

• Use non-uniform experience replaying, as was introduced
in [18] to increase learning speed. In this case, it would be
used to overcome the impact of unbalanced buffer content
by selecting the most informative transitions. This should
be combined with a better integration of the behavioral
cloning trajectories by using separate replay buffers
combined with additional direct training of the policy
using supervised imitation loss, as suggested in [19].

4

Figure 7: Performance Comparison of asymmetric self-play
(ASP) with dynamic windowing and hindsight experience
replay (HER) when using binary rewards for the motion
planning task.

To limit the convergence (which is the fundamental issue) we
suggest two possible extensions:

• Provide Alice with additional reward signals using
curiosity-driven exploration [20] to make Alice care more
directly about Bob’s generalization on the goal space and
have her condition the goals more on the initial state.

• Use multiple Alices as was already suggested in [10].
Using Stein Variational Policy Gradients (SVPG) [21],
should prevent them from converging to the same regions
and increase sample efficiency.

VII. CONCLUSION

In this work, we explored asymmetric self-play for creating
curricula in continuous action spaces. As pointed out in [9],
we observed that the unimodal policy of Alice results in
convergence of the goals that were proposed. This reduces the
learning speed and often even results in complete stagnation as
Bob overfits on these goals.

Using a replay buffer with uniform sampling did not solve
this, the hypothesis being that the buffer itself becomes too
unbalanced by the goals Alice is proposing.

It is expected that with further improvements on the
framework these issues can be solved and suggestions hereto
were formulated.

The solutions will however make the framework even more
complex and harder to analyze. Hence from a pragmatic point
of view reward shaping or more heuristic goal curriculum
methods such as hindsight experience replay should be tried
before turning towards asymmetric self-play.

REFERENCES

[1] S. Levine, P. Pastor, A. Krizhevsky, et al., “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale
data collection,” The International Journal of Robotics Research
(IJRR), vol. 37, no. 4-5, pp. 421–436, 2018.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, et al., “Solving rubik’s cube
with a robot hand,” arXiv preprint arXiv:1910.07113, 2019.

[3] J. Ibarz, J. Tan, C. Finn, et al., “How to train your robot with deep
reinforcement learning: Lessons we have learned,” The International
Journal of Robotics Research (IJRR), vol. 40, no. 4-5, pp. 698–721,
2021.

[4] M. Andrychowicz, F. Wolski, A. Ray, et al., “Hindsight experience
replay,” in Advances in Neural Information Processing Systems (NIPS),
vol. 30, 2017.

[5] I. Popov, N. Heess, T. Lillicrap, et al., “Data-efficient deep
reinforcement learning for dexterous manipulation,” arXiv preprint
arXiv:1704.03073, 2017.

[6] B. Mehta, M. Diaz, F. Golemo, et al., “Active domain randomization,” in
Conference on Robot Learning (CoRL), PMLR, 2020, pp. 1162–1176.

[7] V. Kumar, D. Hoeller, B. Sundaralingam, et al., “Joint space control via
deep reinforcement learning,” arXiv preprint arXiv:2011.06332, 2020.

[8] R. Portelas, C. Colas, L. Weng, et al., “Automatic curriculum learning
for deep rl: A short survey,” arXiv preprint arXiv:2003.04664, 2020.

[9] C. Florensa, D. Held, M. Wulfmeier, et al., “Reverse curriculum
generation for reinforcement learning,” in Conference on robot learning
(CoRL), PMLR, 2017, pp. 482–495.

[10] S. Sukhbaatar, Z. Lin, I. Kostrikov, et al., “Intrinsic motivation and
automatic curricula via asymmetric self-play,” in 6th International
Conference on Learning Representations (ICLR), 2018. [Online].
Available: https://openreview.net/forum?id=SkT5Yg-RZ.

[11] O. OpenAI, M. Plappert, R. Sampedro, et al., “Asymmetric self-play
for automatic goal discovery in robotic manipulation,” arXiv preprint
arXiv:2101.04882, 2021.

[12] T. Schaul, D. Horgan, K. Gregor, et al., “Universal value function
approximators,” in International conference on machine learning
(ICML), PMLR, 2015, pp. 1312–1320.

[13] Y. Bengio, J. Louradour, R. Collobert, et al., “Curriculum learning,” in
Proceedings of the 26th annual international conference on machine
learning (ICML), 2009, pp. 41–48.

[14] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in International
Conference on Machine Learning (ICML), PMLR, 2018,
pp. 1587–1596.

[15] J. Schulman, F. Wolski, P. Dhariwal, et al., “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Representation Learning (ICLR), 2015.

[17] A. Raffin, A. Hill, M. Ernestus, et al., Stable baselines3, https://
github.com/DLR-RM/stable-baselines3, 2019.

[18] T. Schaul, J. Quan, I. Antonoglou, et al., “Prioritized experience replay,”
in International Conference on Representation Learning (ICLR), 2016.

[19] A. Nair, B. McGrew, M. Andrychowicz, et al., “Overcoming
exploration in reinforcement learning with demonstrations,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2018, pp. 6292–6299.

[20] D. Pathak, P. Agrawal, A. A. Efros, et al., “Curiosity-driven exploration
by self-supervised prediction,” in International Conference on Machine
Learning (ICML), PMLR, 2017, pp. 2778–2787.

[21] Y. Liu, P. Ramachandran, Q. Liu, et al., “Stein variational policy
gradient,” in 33rd Conference on Uncertainty in Artificial Intelligence,
UAI, 2017.

5

A HYPERPARAMETERS

Alice Bob
Hyperparameter Value Hyperparameter Value
learning rate 0.001 actor learning rate [5e-5,1e-3]
ppo clip value 0.2 noise std deviation [0.1-0.4]
gradient clip norm 0.5 critic learning rate 0.001
batch size previous episode duration batch size [32,64,128]
epochs 10 train frequency [1-100]/episode
rollout length previous episode duration buffer size 1e6
discount factor 0.99 discount factor 0.99
GAE factor 0.95 policy update frequency 2
value loss coefficient 0.5 target noise parameter 0.2
entropy loss coefficient [0.0-0.001] target noise clip value 0.5
hidden layer size 128 hidden layer size [128,256,512]
max episode duration [100,150,200] max episode duration [150,200]

Table 1: Hyperparameters for Alice and Bob on the motion planning environment. For hyperparameters that are included in the
hyperparameter search, the range of possible values is given.

Value
Dense Rewards Sparse Rewards

Hyperparameter Random ASP ASP+BC Random ASP ASP + BC ASP + DynWin
Alice
entropy loss coefficient 0.000735 0.000284 0.000827 0.00358* 0.00108*
max episode duration 100 150 150 100 150
Bob
actor learning rate 0.000870 0.000897 0.000509 0.000740 0.000667 0.000745 0.000922
noise std deviation 0.380 0.389 0.380 0.280 0.350 0.380 0.385
batch size 128 128 128 32 64 64 128
train frequency /episode 55 91 60 76 75 95 35
hidden layer size 512 512 512 512 128 128 256
max episode duration 200 200 150 250 150 200 150

Table 2: Hyperparameters obtained with the random search. Note that for some experiments the range for the entropy loss
coefficient was by mistake set to [0−0.005] instead of [0−0.001]. This is indicated with an asterisk.

Hyperparameter Value
learning algorithm TD3
learning rates 0.001
noise std deviation 0.4
train frequency 50 / episode
batch size 64
replay strategy future
replay goals / transition 4

Table 3: Hyperparameters for Hindsight Experience Replay.

6

Table of Contents

Permission of Use iv

Acknowledgements v

Abstract vi

Extended Abstract vii

Table of Contents xiii

List of Figures xvi

List of Tables xviii

Nomenclature xix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Objectives . 4
1.3 Outline . 4

2 Background and Related Work 6
2.1 Reinforcement Learning . 6

2.1.1 Formulation . 6
2.1.2 Multi-Goal Formulation . 8
2.1.3 Deep Reinforcement Learning . 8
2.1.4 Short Taxonomy of Model-Free Deep Reinforcement Learning Algorithms 8

2.2 Automatic Curriculum Learning . 9
2.3 Related Work on Goal Curriculum Learning . 10

3 Robot Simulation Environment 14
3.1 Environment Design Choices . 15
3.2 Unity Simulation World . 16
3.3 ML-Agents . 18
3.4 Python Interface . 20
3.5 Lessons Learned . 20

Table of Contents xiv

4 Experimental Setup 22
4.1 Environments . 22

4.1.1 Benchmark Environments . 22
4.1.2 Pointmass Environment . 23
4.1.3 Motion Planning Environment . 23

4.2 Tools, Hardware and Frameworks . 26

5 Learning Algorithms 28
5.1 Proximal Policy Optimization (PPO) . 29

5.1.1 Policy Gradient Methods . 29
5.1.2 Formulation . 29
5.1.3 Additional Modifications . 31

5.2 Deep Deterministic Policy Gradient (DDPG) . 31
5.2.1 Formulation . 31
5.2.2 Twin Delayed Deep Deterministic Policy Gradient (TD3) 33

5.3 Evaluating the Implementations . 33
5.3.1 Evaluating PPO . 33
5.3.2 Evaluating DDPG . 35
5.3.3 Evaluating TD3 . 37

5.4 Lessons Learned . 38

6 Asymmetric Self-Play 41
6.1 Possible Issues with Asymmetric Self-Play . 41
6.2 Asymmetric Self-Play Framework . 42
6.3 Reward Structures for Alice . 45
6.4 Bringing More Diversity to Bob’s Goals . 47
6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 48

6.5.1 Comparing Reward Structures . 48
6.5.2 Evaluating Convergence . 51
6.5.3 Evaluating Behavioral Cloning . 53

6.6 Discussion . 56

7 Learning Motion Planning using Asymmetric Self-play 58
7.1 Methodology . 58
7.2 Learning Motion Planning with Dense Environment Rewards 59

7.2.1 Learning with Random Goal Selection . 60
7.2.2 Learning with Asymmetric Self-Play . 60

7.3 Learning Motion Planning with Sparse Environment Rewards 63
7.3.1 Learning with Random Goal Selection . 63
7.3.2 Learning with Asymmetric Self-Play . 63
7.3.3 Learning with Hindsight Experience Replay 66

7.4 Discussion . 68
7.4.1 Future Work on Asymmetric Self-Play . 70
7.4.2 Hindsight Experience Replay . 71

Table of Contents xv

7.5 Lessons Learned . 72

8 Conclusion 74

Epilogue 76

References 77

Appendix A Algorithm Pseudo Code 81

Appendix B Search Hyperparameters for the Experiments from Chapter 7 84

List of Figures

1.1 High-level illustration of the Asymmetric Self-play framework. 3

3.1 High-level components and their interactions. The agent itself is also included
to provide an overview of all interactions. Blue arrows indicate sidechannel
communications. 14

3.2 Example Unity scene for the simulation environment. 16
3.3 Illustration of the different degrees of freedom and corresponding joint names of

the UR3e. 17
3.4 Articulation chain (rounded boxes) and controller hierarchy (gray boxes) for the

UR3e. 18

4.1 Learning Environment for motion planning. The red dot indicates the position
that needs to be reached by the end-effector. 24

4.2 Illustration of the goal space by sampling uniformly in spherical coordinates. . . 26

5.1 Comparison of PPO performance for normalized Advantages and different estima-
tion methods for the Returns. 34

5.2 Benchmarking the PPO implementation on the LunarLander-v2 environmnent. . 35
5.3 Benchmarking the DDPG implementation on the LunarLander-v2 environment. . 36
5.4 Benchmarking the TD3 implementation on the LunarLander-v2 environment. . . 38

6.1 Schematic illustration of the agents and their interactions in the asymmetric
self-play framework. 43

6.2 Performance of Bob on the 1D pointmass environment using different reward
structures for Alice. 50

6.3 Comparison of the curricula for a single seed when using different reward structures
for Alice. The color of each goal indicates whether Bob was able to reach this goal. 50

6.4 Performance of Bob on the 2D point mass environment using fixed initial states
with different configurations and hyperparameters for asymmetric self-play. . . . 51

6.5 Resulting Curriculum of goals proposed by Alice and Bob’s training success rate
on those goals, for the default hyperparameters. The goals in the curriculum are
color coded to show the evolution over time, where darker goals are more recent. 52

6.6 Resulting Curriculum of goals proposed by Alice and Bob’s training success rate
on those goals, for the updated hyperparameters. The goals in the curriculum are
color coded to show the evolution over time, where darker goals are more recent. 52

List of Figures xvii

6.7 Performance comparison of Bob on the 2D point mass environment using random
initial states for asymmetric self-play. 53

6.8 Comparison of the curriculum resulting from asymmetric self-play using random
initial states with the curriculum resulting from random goal selection. Goals are
time-encoded where darker is more recent. 54

6.9 Performance comparison of asymmetric self-play with and without Behavioral
Cloning and fixed initial states using the updated hyperparameters. 55

6.10 Comparison of resulting curricula using Behavioral Cloning for different seeds.
Goals are color-coded where darker means more recent. 55

7.1 Performance comparison of asymmetric self-play (ASP), asymmetric self-play with
behavioral cloning (ASP + BC) and random goal selection using dense rewards. . 61

7.2 Training success rates for Bob when training with asymmetric self-play (ASP) on
dense rewards. 62

7.3 Curriculum created by Alice for Bob using dense rewards and asymmetric self-play.
Each frame contains the goals proposed by Alice during 1000 consecutive episodes. 62

7.4 Performance comparison of asymmetric self-play (ASP), asymmetric self-play with
behavioral cloning (ASP + BC) and random goal selection using sparse rewards. 64

7.5 Training metrics for asymmetric self-play on sparse rewards. 64
7.6 Performance comparison of asymmetric self-play (ASP) using dynamic windowing

and random goals on sparse rewards. 66
7.7 Curriculum created by Alice for Bob using sparse rewards and asymmetric self-play

with dynamic windowing to restrict Alice’s episode duration. Each frame contains
the goals proposed by Alice during 1000 consecutive episodes. 66

7.8 Performance comparison of HER and ASP + dynamic windowing with sparse
rewards. 68

List of Tables

4.1 Joint space in degrees relative to the home position for the controllable joints in
the motion planning environment. 24

5.1 Hyperparameters for the PPO Benchmark. 35
5.2 Hyperparameters for the DDPG Benchmark. 35
5.3 Hyperparameters for the TD3 Benchmark. 37

6.1 Default hyperparameters for Alice and Bob on the pointmass environment 49

7.1 Hyperparameters for Alice and Bob on the motion planning environment. For
hyperparameters that are included in the hyperparameter search, the range of
possible values is given. 60

7.2 Hyperparameters for Hindsight Experience Replay. 67

B.1 Hyperparameter values obtained from random search for random goal selection
with dense rewards. All other hyperparameters are listed in table 7.1. 84

B.2 Hyperparameter values obtained from random search for ASP with dense rewards.
All other hyperparameters are listed in table 7.1. 85

B.3 Hyperparameter values obtained from random search for ASP+BC with dense
rewards. All other hyperparameters are listed in table 7.1. 85

B.4 Hyperparameter values obtained from random search for random goal selection
with dense rewards. All other hyperparameters are listed in table 7.1. 85

B.5 Hyperparameter values obtained from random search for ASP with sparse rewards.
All other hyperparameters are listed in table 7.1. 86

B.6 Hyperparameter values obtained from random search for ASP+BC with sparse
rewards. All other hyperparameters are listed in table 7.1. 86

B.7 Hyperparameter values obtained from random search for ASP + dynamic win-
dowing with sparse rewards. All other hyperparameters are listed in table 7.1. . . 86

B.8 Hyperparameter values obtained from random search for ASP + dynamic win-
dowing + random goals every 4th episode with sparse rewards. All other hyperpa-
rameters are listed in table 7.1. 86

Nomenclature

Acronyms / Abbreviations

ACL Automatic Curriculum Learning

ASP Asymmetric Self-Play

BC Behavioral Cloning

DDPG Deep Deterministic Policy Gradient

DeepRL Deep Reinforcement Learning

GAE Generalized Advantage Estimation

HER Hindsight Experience Replay

MDP Markov Decision Process

PER Prioritized Experience Replay

PPO Proximal Policy Optimization

RL Reinforcement Learning

SVPG Stein Variational Policy Gradient

TD3 Twin-Delayed Deep Deterministic Policy Gradient

TD Temporal Difference

Chapter 1

Introduction

This master’s thesis aims to explore the use of asymmetric self-play [1] for curriculum learning in
continuous robotics control with model-free Deep Reinforcement Learning. Asymmetric self-play
is a teacher-student framework in which the teacher tries to aid the student in learning to solve
a particular multi-goal problem. This is done by creating a useful order in the goals presented
to the student during training, which is referred to as goal curriculum learning. Curriculum
learning has become very popular recently as a way to guide robots during exploration or to
guide the randomization that is often used in an attempt to increase the generalization of learned
policies.

In the next sections the context, which was briefly summarized above, will be elaborated upon,
before stating the research objectives and giving an overview of the different chapters of this
work.

1.1 Problem Statement

Industrial Robots1, which are also referred to as robotic arms or robotic manipulators, are used
increasingly across many domains of the industry to perform dangerous or difficult jobs and
to increase efficiency [2]. The behavior of these robots is usually meticulously hand-engineered
upfront using analytical methods such as inverse kinematics and control theory. This approach
is time-consuming, requires expert domain-knowledge and limits the range of tasks for which
robots can be used. Programming Industrial Robots for example to unpack items in warehouses
is not feasible due to a.o. the high variability of these items (softness, size...) and their packaging
(materials, size, shape..).

Recently, instead of programming the behavior, researchers have started to work on developing
systems that can learn the desired behavior by interacting with their environment, resulting in
more domain-agnostic control solutions. Deep Reinforcement Learning (DeepRL) is an approach
to this problem that combines Reinforcement Learning with neural networks. The use of these
powerful function approximators has made it possible to scale the learning to high-dimensional

1Whenever the word robot is used in this thesis, it refers to these Industrial Robots

1.1 Problem Statement 2

problems [3]. Model-free DeepRL is a completely data-driven direction within DeepRL that has
shown great potential for robotics control in recent years [4, 5].

However, model-free DeepRL still faces some issues that limit its application to many real-world
robotics problems [6]. Three of these issues, that are particularly relevant for this thesis, are
delayed rewards, sample inefficiency and generalization to related situations. These issues are
briefly introduced in the next paragraphs.

Learning suffers from delayed rewards, which characterize most robotics problems. A policy
might have to take quite a number of steps before solving a task and receiving the accompanying
reward. This makes exploration an important issue. One approach to deal with this problem
is reward shaping, in which the "natural" reward signal, which is usually a binary indicator of
whether the robot achieved its task, is replaced or combined with a more informative reward
signal. This however can easily introduce local optima and hence reduce the performance of
the learned behavior. Either way, the optimization landscapes in DeepRL tend to be rather
hard [6].

Next to being hard to train, sample efficiency of model-free learning methods is in general
quite poor, often requiring millions of interactions with the environment before learning to solve
a problem. Complicating this even more is the aforementioned need for exploration, which
makes real-world data collection not always safe for the robot or its environment. To mitigate
these problems, researchers often make use of simulation environments to train policies. Using
simulators, however, inevitably creates a reality gap, making transferring the learned policies to
real-world robotics challenging. Overcoming this reality gap requires policies that can generalize,
or deal with problems related but different to those they were trained on.

Generalization can require the policy to deal with changes in the environment (e.g. the obstacles
the robot can face, their location, etc.), the goal (e.g. location to reach with the robot arm or
target position for the item it has to pick-and-place), or properties of the actuators and sensors
(e.g. the dynamics of the robot and its environment or the perception characteristics). This last
category in particular is important for closing the reality gap and making Sim2Real transfers
possible. Generalization however is yet another issue for DeepRL policies, which tend to be
very "narrow-minded" in the sense that they do not perform well on unseen variations on the
aforementioned domains. As a result, these policies often have very limited applicability in the
real world, where variations in the environment are often inherent to the task, such as for the
use case of unpacking items that was introduced before. To deal with this issue, the training
data is typically randomized over the desired domains in the hope of making the policy induce
the desired, generalized behavior [7]. Too much randomization however has been found to lead
to decreased performance and stability issues [8, 9], next to decreasing sample efficiency even
more.

To tackle these issues, curricula have been used increasingly to guide the randomization or
exploration by presenting the policy at each moment of its training with a set of appropriate
environments, goals and/or physical properties. Such curricula used to be engineered upfront but
more and more this is replaced by frameworks for automatically learning the curricula [10].

1.1 Problem Statement 3

Fig. 1.1 High-level illustration of the Asymmetric Self-play framework.

This thesis focuses on curriculum learning for goal selection. Curriculum learning in this context
can be used for three (often overlapping) reasons [10]:

1. Organising exploration for solving task(s) that cannot be solved directly because they are
too hard or the reward is too delayed, which will be referred to as curriculum learning for
exploration.

2. Training agents to generalize to a known goal space, or multi-goal curriculum learning.

3. Organising open-ended exploration of the goal-space if it is not known or cannot be
described easily (which is required to sample from it). This will be referred to as curriculum
learning for goal-discovery.

Asymmetric self-play [1], is an elegant approach for generating such goal curricula. In this
method, a teacher, referred to as Alice, is introduced who proposes goals to the student, Bob, by
reaching them from the shared initial state of the environment. The student Bob then provides
feedback on the difficulty of this goal to the teacher and this enables the teacher to create a
curriculum of appropriate goals. These interactions are illustrated in Fig. 1.1.

This framework was initially introduced to increase the explorational capacities of the student
Bob. More recently however, OpenAI built on top of this idea and used it for goal-discovery, in
which a policy for a range of manipulation tasks was learned unsupervised, using self-play [11].
This shows that Asymmetric self-play has the potential to combine all three reasons for using
goal-curricula within a single framework, which is highly attractive.

However, all previous work has been done on discrete action spaces. This implies that Alice
was able to learn a multimodal distribution over the action space. As suggested by Florensa et
al. [12], using continuous action spaces for Alice might pose additional difficulties as this would
imply Alice has to learn a unimodal distribution over the action space, since continuous policies
are always parameterized with a Gaussian distribution. This would limit her capabilities to
propose a wide range of goals to Bob as she would only be able to move to a particular subset of
the goal space at a time.

Continuous action spaces often come naturally in robotics problems, since the real world is
continuous by nature. One can often discretize the action space, but this approach suffers from

1.2 Research Objectives 4

the curse of dimensionality, leading to a rapidly increasing number of actions if the dimension
of the action space becomes larger even with the coarsest of quantizations [13]. This makes
continuous action space handling of great interest for robotics control.

1.2 Research Objectives

The main objective of this thesis is to explore the idea of asymmetric self-play for creating goal
curricula in the context of robotics control with continuous action spaces.

Asymmetric self-play is an elegant method that could potentially tackle all the three motivations
for using goal curricula but comes with the explicit caveat that combining it with continuous
action spaces might create additional issues. In this thesis, the impact of these issues will be
evaluated. Furthermore, some modifications and extensions to the framework to reduce their
influence will be formulated and explored.

A secondary objective is to explicitly explore this idea in a bottom-up fashion. The motivation
is that such a bottom-up approach will provide more insights into the asymmetric self-play
framework on the one hand but also provide useful information on the process of using DeepRL
frameworks to attempt to solve custom problems.

1.3 Outline

This work contains six chapters (not taking the introduction and conclusion into account), that
build towards evaluating the asymmetric self-play framework for controlling a custom robot setup
with continuous action spaces. This will be learned in a simulated environment to avoid issues
with real-world data collection and efficiency.

In Chapter 2, the necessary background on DeepRL is provided together with a short overview
of related work on asymmetric self-play and related methods for goal curriculum learning.

Details about the simulation environment that was created with the unpacking use case that was
introduced before in mind, are provided in Chapter 3.

The different learning tasks that are used are described in Chapter 4, together with other elements
of the experimental setup.

Chapter 5 introduces the learning algorithms that will be used later on for the teacher, Alice,
and the student, Bob, in the asymmetric self-play framework. This chapter also focuses on the
implementation and testing of these algorithms.

In Chapter 6, the self-play framework is described in more detail and its potential issues are
discussed together with some adaptations that might mitigate them. Then, using the learning
algorithms that were implemented in the previous chapter, an implementation of this framework is
described. Finally, the framework is applied to a low-dimensional task to evaluate the occurrence
of these issues and the effectiveness of the proposed adaptations.

After gaining some intuition, exploring the limitations and some possible strategies for mitigating
them, the framework is used in Chapter 7 to learn a motion planning task using the constructed

1.3 Outline 5

simulation environment. From this chapter, it will become clear that the formulation of asym-
metric self-play as constructed in Chapter 6 is still hindered by some of the described issues and
is hence limited in its performance. Solutions for these issues are discussed and the framework is
also compared with hindsight experience replay, another method for generating curricula.

Finally, since this thesis also aims to provide insight into the process of trying to solve a custom
problem with a DeepRL framework, some chapters contain a section with a number of Lesssons
Learned. Some of these are in hindsight rather obvious and most of them will not come as a
surprise to researchers with experience in DeepRL. However as this research discipline is still
quite new and evolving very fast, information tends to be very fragmented and quite some
knowledge or best practices only live in the minds of the researchers working on it, which makes
these lessons learned hopefully still informative.

Chapter 2

Background and Related Work

This chapter briefly introduces the necessary background on Reinforcement Learning and some
related work on goal curriculum learning. The first section introduces the mathematical back-
ground and notation for Reinforcement Learning, as used in this thesis. The second section
introduces curriculum learning and the third section provides a short overview of the work on
asymmetric self-play and some related methods for the generation of goal curricula.

2.1 Reinforcement Learning

In this section, the Reinforcement Learning (RL) framework is briefly introduced. First, the
necessary notation is introduced. Then an extension to the RL framework is given and the use
of neural networks as function approximators is briefly introduced. Finally, a short overview of
some characteristics of different model-free learning methods is provided.

2.1.1 Formulation

Reinforcement Learning deals with agents that interact with their environment and have to
maximize the expected reward of their actions. This reward defines the task the agent has to
solve [14]. The process of optimal decision making is formalized as a Markov Decision Process
(MDP) and referred to as a task T :

T = ⟨S,A,P, r, ρ0⟩ . (2.1)

Here A represents the action space, which can be discrete or continuous, and from which the
agent can select its action at each step of the process. The state space S describes the entire
state of the environment, in such a way that it obeys the Markov property. P(st+1|st, at) is
the transition function that describes the influence of the agent’s actions on the environment
state given the Markov property for the state. r(st, at, st+1) is the reward function and ρ0 the
distribution of the initial state s0 of the environment. To reduce the notational overload, the
current state is often referred to as s instead of st whereas s′ is a common notation for st+1. The
same goes for the actions and rewards.

2.1 Reinforcement Learning 7

A trajectory consists of a sequence of actions and the resulting states, starting from an initial
state s0 ∼ ρ0:

τ = (s0, a0, s1, a1, ..) . (2.2)

A single step from a trajectory is often referred to as an experience or a transition and is given
by the tuple (s, a, r, s′, d) where d indicates if the transition was terminal.

The agent’s objective is to maximize the expected return R(τ), which is given by:

R(τ) =
T∑

t=0
γtrt , (2.3)

where γ is an optional discounting factor and T is the time horizon, which could be infinite.

To do so, the agent has to learn a policy π(a|s) by maximizing

J(π) = Eτ∼π,s0∼ρ0 [R(τ)] , (2.4)

where τ ∼ π indicates that the trajectory is obtained by following the policy π starting from the
initial state s0. The optimal policy is then given by π∗ = argmaxπJ(π).

There are two other functions that are often learned next to the policy: The value function V (s),
which is given by

V (s) = Eτ∼π[R(τ)|s0 = s] , (2.5)

and the Action-Value function (or Q-function) Q(s, a), which is defined as:

Q(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a] . (2.6)

The section is concluded with two simplifications of the RL framework as it was introduced
here:

Fully Observable Markov Decision Process

The formal description that has been introduced in this section implicitly assumed a fully
observable MDP. This implies that the agent’s observation ot of the environment provides him
with information of the full state st of the environment. In this case, to easy notations, the
observation is usually left out of the formulation and the agent’s input is denoted as st as was
done in this section and throughout this thesis.

Model-free RL

In this thesis, only model-free RL will be considered. In model-free RL methods, one learns
directly the policy and/or value functions. This is in contrast with model-based RL, where
usually the transition and/or reward function is learned and then used with other planning
techniques to maximize the return.

2.1 Reinforcement Learning 8

2.1.2 Multi-Goal Formulation

An extension to the RL framework was provided by Schaul et al. [15] by introducing a multi-goal
formulation of the MDP process. In this case the reward function is conditioned on a goal g ∈ G:
r(s, a, s′|g). The resulting MDP is then given by:

T = ⟨S,A,P, r, ρ0,G, ζ⟩ , (2.7)

where ζ(g)1 is a distribution over the goal space.

The objective is still to learn a policy π(a|s, g) that maximizes

J(π) = Eτ∼π,s0∼ρ0,g∼ζ [R(τ)] . (2.8)

As in [16], a mapping m : S → G from each state to a corresponding goal is assumed in this work.
In the most trivial case, this is simply an identity function.

2.1.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DeepRL) tries to solve decision problems under the RL framework
as introduced before by using neural networks as function approximators for learning optimal
policies, value functions, etc. It was successfully used for the first time on high-dimensional
problems by Mnih et al. [17] and has since attracted much interest. To indicate the use of
neural networks as function approximators the functions usually get a subscript that refers to
the parameters of the network:

πθ(a|s) ≈ π∗(a|s) . (2.9)

These parameters are usually optimized using gradient-based optimization, although evolutionary
strategies are also possible. In this work, the gradient-based Adam optimization algorithm [18] is
used.

2.1.4 Short Taxonomy of Model-Free Deep Reinforcement Learning Algo-
rithms

There exist many different model-free DeepRL learning algorithms, which can differ greatly
in many aspects. Four properties that can be used to classify them, are briefly introduced
below.

A first classification is based on what is primarily learned. This divides the algorithms into two
groups: Policy Gradient methods which directly learn a policy π and Q-learning methods which
learn a Q-function Q(s, a). For various reasons, often both a value function or Q-function and
a policy function are learned at the same time and this is usually referred to as Actor-Critic
algorithms. However, there is always one of the two that is the main focus of the learning
algorithm.

1This notation was chosen arbitrarily as it is often implicitly assumed that goals are sampled randomly and
hence no distribution is specified. OpenAI uses G(g) [11] but this seemed confusing as G denotes the goal space.

2.2 Automatic Curriculum Learning 9

Another classification can be made based on the actions that the policy outputs, which can be
discrete or continuous. Discrete actions are always represented with a categorical distribution
whereas continuous action spaces are represented using a diagonal multivariate Gaussian distri-
bution. In this work, continuous action spaces are always used and hence the policies will always
represent such a Gaussian distribution.

The policies can also be either stochastic or deterministic. In the stochastic case, for continuous
policies, both the mean and standard deviation are learned. Deterministic policies only represent
the mean of the action distribution, implying the need for additional noise to enhance exploration.
For deterministic policies, the policy function is given by π(s) instead of π(a|s) and is also often
referred to as µ(s) to emphasize that this policy is deterministic and encodes the mode.

A final difference lies in whether the samples that are used for updating the learned functions
are collected on-policy or off-policy. On-policy algorithms require the samples to be collected by
the current version of the learned policy whereas off-policy algorithms can use samples collected
using any arbitrary policy, including past versions of the learned policy.

2.2 Automatic Curriculum Learning

Curriculum learning for machine learning was proposed by Selfridge et al. [19] and further
popularized by a.o. the work of Bengio et al. [20]. The core concept is that the training process
might benefit from structuring the training data in a certain way, e.g. by starting with easier
samples and then moving on to more difficult samples. This is based on transfer learning [21],
where the idea is that previous training can be reused to increase asymptotic performance or
decrease training time. Because of this, curriculum learning is of particular interest for DeepRL,
for which some of the core issues are dealing with delayed rewards, improving generalization
towards related tasks and increasing sample efficiency [6, 14].

Curricula can be introduced for various aspects of the task T , such as the initial state distribution,
goal distribution, transition function, the reward function or even the experiences to replay
during training (for off-policy methods) [10]. Whereas these curricula used to be hand-designed
or were based on heuristics, more recently the curricula C themselves are learned concurrently to
maximize the agent’s performance on the target task distribution Ttarget:

max
C

ET ∼Ttarget [J(π|T)] . (2.10)

In this thesis, the focus lies on generating goal-curricula by varying the goal-distribution ζ. There
are three use cases for doing so [10]:

1. To improve exploration for difficult tasks or delayed rewards.

2. To increase generalization to a particular goal space G.

3. To organize exploration in case the target goal space is simply not known or can at least
not be described mathematically.

2.3 Related Work on Goal Curriculum Learning 10

2.3 Related Work on Goal Curriculum Learning

This section provides a short overview of related work on goal curriculum learning, with a focus on
asymmetric self-play. Many other methods exist and the ones discussed here were chosen because
they are most relevant for this thesis. A more general overview can be found in [10].

Hindsight Experience Replay (Andrychowicz et al., 2017)

In this work, goal distributions are implicitly created by a careful selection of the goals against
which to replay trajectories during the training phase of off-policy learning algorithms [16]. The
motivation is to learn efficiently from binary rewards and avoid the need for domain-specific
expert knowledge, which is often required to shape rewards without introducing local optima
to the optimization landscape. The problem with binary rewards is that an agent does not
receive informative feedback if it did not achieve the goal, as the reward is then the same for all
experiences in the trajectory.

The idea is that by introducing the multi-goal RL formulation and defining a mapping between
states and goals as was done in Section 2.1.2, trajectories in the replay buffer could be made more
informative by replaying them with a different goal. For example, the goal that was achieved in
the final state of the trajectory. This way, although the agent might not have been able to reach
the intended goal, the trajectory can still be made informative to learn other goals.

The authors showed that even in the case where only one goal is of interest, the performance and
learning speed of the agent increased by introducing the multi-goal formulation in combination
with hindsight experience replay. Furthermore, it was also shown that badly shaped reward
functions can easily hinder the exploration of the agent or create discrepancies between the actual
task of the agent and the optimization landscape, further highlighting the importance of learning
from sparse rewards to avoid the time-consuming reward shaping process.

Different heuristics for selecting the goals against which to replay each trajectory were discussed
and the strategy referred to as future was found to perform best across a range of robotics tasks.
With this heuristic, k goals that were achieved after the current experience in the trajectory are
used to replay this experience with.

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play (Sukhbaatar
et al., 2018)

This paper introduced the idea of asymmetric self-play, in which a teacher (called Alice) proposed
goals to a student (called Bob) by reaching them from a shared initial state of the environment
(cf Fig. 1.1) [1]. In this work, asymmetric self-play was only used as an addition to speed up
exploration and was interleaved with regular training for Bob (90% of the time Bob was using
regular play, only 10% of the time Alice proposed goals). No goal-based formulation is used and
hence the goals that Alice proposed to Bob are simply encoded as the final state Alice managed
to achieve, which means that Bob’s policy is conditioned on both the environment state and the
state reached by Alice: aB ∼ πB(·|st, sA).

2.3 Related Work on Goal Curriculum Learning 11

The authors proposed the following reward function for Alice: rA = γ max(0, tB − tA), which is
supposed to incentivize Alice to find the easiest goal for her that is still hard for Bob, resulting
in goals of appropriate difficulty for Bob. Bob on the other hand receives an internal reward of
−γtB, where γ is used to balance the self-play rewards with the external reward function of the
environment. In order for Alice to stop her episode (and hence decide which state to present to
Bob), an additional STOP action was added to her action space.

This formulation results in a completely unsupervised curriculum, where neither goal space nor
any other aspect needs to be described and hence this method could be used for all three use
cases of goal curriculum learning.

Although the authors applied the self-play to both discrete and continuous state spaces, they
always discretized the action space (even for tasks that are defined with a continuous action
space). This has an important implication for Alice, as pointed out in [12] (more details in the
next subsection).

Finally, the authors briefly mention that Alice sometimes seems to focus on particular parts of
the goal space and propose to use multiple instances of Alice to mitigate this.

Reverse Curriculum Learning for Reinforcement Learning (Florensa et al., 2018)

Florensa et al. introduce another method for creating curricula for exploration [12]. Instead
of creating a goal distribution ζ, they modify the initial state distribution ρ (hence the reverse
curriculum). The idea here is that the curriculum of initial states starts from the goal state and
gradually moves to more distant initial states as the agent’s success rate starts to increase.

This curriculum of initial states ρi is not learned but evolves by performing random walks in
the action space from the current set of initial states. This leverages the idea that the distance
between states should be expressed by the number of steps that need to be taken in the MDP to
reach the state, referred to as the MDP-distance.

This method comes with a number of downsides: first of all, it can only be used within a single
MDP. This is because changing the goal, transition function, or another aspect of the MPD would
destroy the relationship between these initial states, which makes this method only suited for
the exploration of hard tasks in a single-goal context without any kind of randomization.

Furthermore, this method scales badly in the distance from the desired initial states to the goal
state or in the dimensionality of the state space. A proposed solution hereto by the authors is to
bias the curriculum towards the desired initial states, similar to the A* extension to the Dijkstra
Algorithm.

Florensa et al. also explore asymmetric self-play as an alternative to their method and formulate
critique on this framework:

• From some experiments they found that the reward function rA = γ max(0, tB − tA) often
leads to uninformative rewards for Alice as Bob might learn faster than she does and hence
tB − tA becomes negative. They illustrate this with a simple experiment. As stated in [1],
this experiment is however not valid as Bob is modeled by a simple heuristic that evolves

2.3 Related Work on Goal Curriculum Learning 12

with non-continuous steps. This does however not mean that the issue they describe could
not occur.

• Furthermore they also describe how in continuous action spaces, Alice would be limited to
moving into a single direction due to the unimodal Gaussian distribution that is always
used to represent continuous action policies. This seems indeed a very legit concern and
might explain why the authors in [1] always used discrete action spaces.

Generating Automatic Curricula via Self-Supervised Active Domain Randomization
(Raparthy et al., 2020)

In this work, the authors combine an automatic domain randomization method [22] with
asymmetric self-play to generate an unsupervised joint curriculum for goals and environments [22].
This seemed interesting for combining the advantages of goal curricula with sim2real generalization
to overcome the reality gap. The initial research objective of this thesis was hence to use this
framework for learning behaviors related to the unpacking of objects, the use case that was
briefly introduced before.

However, while exploring their work further, a few issues were found:

• The authors use a rather strange variant of asymmetric self-play in which Bob is actually a
time-delayed copy of Alice and where Alice’s goal is still simply to reach goals according to
ζ. An additional ’stopping policy’ is then introduced that decides on where Alice stops
and hence what goal she presents to Bob. This approach however seems to be more related
to Hindsight Experience Replay in the case where only the final state is used for replay
and where an additional network is created for deciding when to stop the current episode.
This is no issue per se but seems to introduce unnecessary complexity by framing it as
asymmetric self-play.

• Another issue was the apparent presence of a coding bug2 in the repository that accompanied
the paper. This bug would seem to make Alice only propose one-step goals due to an
indentation error in a while loop3.

• At the same time, the environment curriculum method results could not be reproduced by
others4.

These observations motivated a switch in the research by taking a step back and focusing only
on goal-curricula, in particular on asymmetric self-play.

Asymmetric Self-Play for Automatic Goal Discovery in Robotic Manipulation
(OpenAI, 2021)

Attracted by the unsupervised curriculum generation, OpenAI extended the asymmetric self-play
formulation recently and used it for automatic goal discovery in robotics manipulation [11]. They

2https://github.com/montrealrobotics/unsupervised-adr/issues/3
3To make sure I was not missing something I asked the authors for feedback on this, however, I did not receive

a response.
4https://github.com/montrealrobotics/active-domainrand/issues/6

https://github.com/montrealrobotics/unsupervised-adr/issues/3
https://github.com/montrealrobotics/active-domainrand/issues/6

2.3 Related Work on Goal Curriculum Learning 13

trained a robot manipulator to bring objects into the desired configuration, which results in a goal
space that is hard to describe mathematically and contains goals of varying difficulty. By using
asymmetric self-play, the goal space was discovered in an unsupervised way, resulting in policies
that performed well across many unseen generalizations using only self-play for training.

The authors started from the formulation in [1] but added Behavioral Cloning to Bob, using the
trajectories provided by Alice as experiences for Bob in case he did not manage to reach the goal
by himself. This addition was found to be crucial in an ablation experiment. Furthermore, the
original reward function for Alice was replaced by a simple binary reward, as this was found not
to influence the resulting performance. As in [1], they use discrete action spaces for the control
policies of Alice and Bob. A final addition is that they make Bob and Alice also train against
past versions of their opponents.

Conclusion
It is clear from this overview that asymmetric self-play is a very appealing method for creating
goal curricula. It can be used for all three use cases for goal-curricula. It does not generate
infeasible goals as all goals are proposed by doing them, does not require the goal space to
be described mathematically and uses by construction an appropriate distance measure: the
MDP-distance. However, some researchers found that the unimodal policy representation of
continuous action spaces increases the tendency of the system to get stuck as the teacher Alice
converges, although without providing a thorough analysis or much details. The goal of this
thesis is hence to explore the issues with asymmetric self-play in continuous action spaces, see
how they limit performance and start on formulating solutions to overcome them.

Chapter 3

Robot Simulation Environment

This chapter describes the Simulation Environment that was created to learn behaviors with
a specific robotics use case in mind: the unpacking of items using a Universal Robotics UR3e1

industrial robot. As this use case comes with some specific needs that are not covered by existing
environments for robotics learning such as the often used OpenAI Robotics environments [23], a
custom simulation environment was built using the Unity Engine2. This simulation environment
allows to create different learning tasks and environments for the UR3e.

The Simulation Environment consists of three high-level components, as shown in Fig. 3.1. These
components are the simulation world, the ML-Agents component and the Python Environment
Interface. Each of these components is discussed in more detail in sections 2-5. First, some design
choices for the environment are discussed. The chapter concludes with some lessons learned
during the implementation of the simulation environment.

1https://www.universal-robots.com/products/ur3-robot/
2https://unity.com/

Fig. 3.1 High-level components and their interactions. The agent itself is also included to provide
an overview of all interactions. Blue arrows indicate sidechannel communications.

3.1 Environment Design Choices 15

3.1 Environment Design Choices

Before the technical details of the environment are elaborated upon, the design choices for the
environment are discussed.

Simulator

Unity was chosen over existing alternatives such as MuJoCo [24] and Pybullet [25], which are
used more often in the robotics community. Unity was created as a game engine at first and
hence focused more on rendering than on physics. Recently, however, Unity Engine has started
to focus more on robotics. They recently integrated the PhysX4.0 physics engine3, which uses
reduced coordinate systems for simulating articulation chains. This greatly improves the accuracy
of robotics simulation.

Combining this with their ML-Agents framework [26] for facilitating reinforcement learning
of simulated agents, the large and active community, the high-end rendering capabilities and
the open-sourced codebase it has become an interesting alternative for the more expensive
MuJoCo.

Control

Controlling a robot can be done in more than a few ways depending on both the abstraction and
precision level of the actions that the policy has to pass to the robot.

Regarding the abstraction level, one has broadly three options:

1. Joint Torque Control,

2. Joint Positional Control,

3. End-effector Positional Control.

The UR3e is a high-end and standardized industrial robot. This makes end-effector control
indeed a very interesting choice as it allows to leverage prior knowledge about the (inverse)
kinematics to control the end effector directly. However, this also has the downside that one can
no longer make full use of the overarticulation of the Robot (the UR3e has 6 degrees of freedom),
which limits the capacity of the robot to for example reach into a box or paper bag.

With joint torque control, the policy actions determine the torques on all joints. This low-level
control strategy does not leverage the high quality and accuracy of the UR3e hardware. The
UR3e comes with built-in controllers that can reproduce4 trajectories with an accuracy of about
0.03 mm, which requires high-precision joint controllers.

Therefore Joint Positional control, in which the policy directly controls the rotation of all joints,
seems to be the appropriate abstraction level considering the range of tasks and the robot that is
used.

3https://developer.nvidia.com/physx-sdk
4https://www.universal-robots.com/media/1802780/ur3e-32528_ur_technical_details_.pdf

https://developer.nvidia.com/physx-sdk
https://www.universal-robots.com/media/1802780/ur3e-32528_ur_technical_details_.pdf

3.2 Unity Simulation World 16

Fig. 3.2 Example Unity scene for the simulation environment.

As is common in robotics learning, the interpretation of the actions is a delta step on the current
joint positions. It is the task of the embedded joint controllers to move the joints to these new
target positions. Furthermore, as argued during the introduction, continuous action spaces are
used as these are the research focus.

Another aspect related to the precision level is the control frequency. Higher control frequencies
make it increasingly hard for the policy to learn the desired behaviors as it has to consider longer
time horizons to accomplish the same tasks (a problem that Hierarchical RL tries to tackle) [27].
At the same time, this provides the policy with more feedback on the actions.

The Robotics environments of OpenAI use a control frequency of 25 Hz and hence this is also
often used in recent work on joint positional control [28]. To reduce the task complexities, this
environment uses a control frequency of only 10 Hz. This choice was not based on measurements5

but only on intuition and visual inspection of the robot behavior for this control frequency (which
did not seem to fail, so there was no obvious reason to increase the control frequency). For more
fine-grained tasks such as pick and place of difficult objects, this control frequency likely needs
to be increased to provide the policy with more feedback.

3.2 Unity Simulation World

The first major component that will be discussed is the simulation world. This Unity simulation
world simulates the influence of the actions on the robot and its environment and reports back
the state of the environment, as is shown in Fig. 3.1.

Each world (called a scene in Unity-speak) contains the robot and possibly some objects it can
interact with, a box, some visual markers that indicate target positions, etc. An example scene is
shown in Fig. 3.2. These additional objects are quite trivial and hence they will not be discussed
in detail. The focus will be on the Robot and in particular on how to create joint position
control.

5Note that no motivation for the 25Hz frequency could be found either, and its adaptation by the research
community seems to be mostly motivated by inertia at first sight.

3.2 Unity Simulation World 17

Fig. 3.3 Illustration7of the different degrees of freedom and corresponding joint names of the
UR3e.

As stated before, the robot that was modeled is the Universal Robotics uR3e. This robot has 6
degrees of freedom, not counting the end-effector. The joints are indicated in Fig. 3.3. For the
end-effector, the Robotiq Hand-E6 parallel gripper is modelled.

Simulating a robot usually comes down to two tasks: Creating a 3D representation of the physical
parts of the robot and how they can move relative to each other (i.e. making a model of the
robot) on the one hand and creating the controllers that can make the robot move as required by
converting the action inputs into actual movements on the other hand. Both parts are discussed
next.

Robot Model

To increase the accuracy of the simulation, Unity’s ArticulationBody components are used for the
robot model. These articulationbodies enable the physics engine to simulate all robot joints in
reduced coordinate systems using the Featherstone algorithm, hence making sure no movements
take place in the locked dimensions of each link between the different parts of the robot [29].

The articulationbody components are chained together to create the articulation chain of the
robot. Each component is anchored to its parent component and has a joint that describes how
it can move with respect to this anchor. Different joint types exist, to express different relations
between each component in the chain.

The model is based on a model provided by Unity in a demo project8 for showcasing the
articulation body component. However an error had been made with the joints of the UR3e, and
a non-existing joint was added. This was corrected to make the joint configuration match the
real UR3e as given in Fig. 3.3.

6https://robotiq.com/products/hand-e-adaptive-robot-gripper
7https://s3-eu-west-1.amazonaws.com/ur-support-site/41166/UR3e_User_Manual_en_

Global.pdf
8https://github.com/Unity-Technologies/articulations-robot-demo

https://robotiq.com/products/hand-e-adaptive-robot-gripper
https://s3-eu-west-1.amazonaws.com/ur-support-site/41166/UR3e_User_Manual_en_Global.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/41166/UR3e_User_Manual_en_Global.pdf
https://github.com/Unity-Technologies/articulations-robot-demo

3.3 ML-Agents 18

Fig. 3.4 Articulation chain (rounded boxes) and controller hierarchy (gray boxes) for the UR3e.

Robot Controller

To control the six Joints of the UR3e and the two joints of the parallel gripper, the following
spring-damper equation (PD control) is used to calculate the torques/forces on each joint using
Unity’s xDrive components:

M = k(θ − θtarget)− c(θ̇ − θ̇target) , (3.1)

where k is called the stiffness of the joint and c the damping. These are all set to default values
of 1000 for k and 100 for c, which results in realistic movements of the robot manipulator.

On top of these low level drives a controller was created for each joint type that allows a.o. to
limit the range of the joint, get the current position and velocity, update the target rotations,
force the rotation to this target(to simulate a perfect controller) and reset the drives to an initial
position. The home position of the robot, which is shown in Fig. 3.2, was for each joint chosen
to be the 0 degrees orientation. Positive angles are defined by the right-hand orientation when
pointing from the child to its parent.

All joint controllers of the robot and/or the gripper are grouped in a RobotController/ Gripper-
Controller for ease of use. The resulting hierarchy for the robot can be seen in Fig. 3.4. For the
robot, all rotations are specified in radians whereas the gripper uses a relative value between 0
(open) and 1 (closed) which allows controlling both joints with a single value.

Note that the robot controller was completely separated from the end-effector to allow for
switching to a different end-effector if desired.

3.3 ML-Agents

The next high-level component of the environment is the ML-Agent. This agent has the following
tasks, as indicated in Fig. 3.1:

• Initialize the robot and objects using the initial state provided to the agent.

• Set the environment goal as provided to the agent.

• Collect the required observations and the environment state.

3.3 ML-Agents 19

• Send the observations and state to the next layer (the Python Interface), ask for a new
decision (action) from the agent and pass this action to the robot and gripper controllers.

ML-Agents Framework

With ML-Agents [26], Unity provides a very convenient framework to manage the typical
RL observe-decision-act loop. Although the framework contains an entire stack for designing
and training intelligent agents, only the part that manages this RL loop and the API for
communicating with the agent from python will be discussed as these are used for accomplishing
the tasks that were described above.

An ML-Agent (as the ML-Agents Agent component will be referred to) has 3 main functions
that perform the exact tasks that were outlined above. The OnActionReceived function simply
sends the control inputs to the robot controller and gripperController. The OnCollectObservation
function gathers all relevant information about the state of the environment and ,if required,
additional sensor observations. The onEpisodeBegin function finally, uses the built-in Environment
Sidechannel to get the initial state and the episode goal at runtime and uses this information to
configure the environment at each episode. The ML-Agent can also deal with reward assignment
and episode termination, but these functionalities are not used as both are handled in the python
Interface for more flexibility.

A Unity environment can contain multiple ML-Agents, which are all managed by the Academy.
This Academy keeps track of which agents need a new decision and will pause the unity
world, collects observations and waits for a response from the python interface at each decision
time.

Unity Time Management

As stated in Section 1, a decision frequency of 10Hz is desired for the agent. the ML-Agents
framework provides a decisionRequester script that allows for requesting a decision from the
agent every N steps of the physics engine, which takes regular steps according to an in-game
time interval.

The physics step size was set to 0.01s in the environment, giving a 100Hz in-game physics
frequency. Hence the decisionRequester should request a decision every 10 steps to obtain the
desired 10Hz in-game control frequency.

The in-game time can then be scaled with respect to the realtime in order to speed up the
simulations by scaling the physics frequency with respect to the wall clock time.

Finally, note that the ML-Agents framework by default attempts to lock the rendering frequency
to the physics frequency. This is done to make sure that the visual observations that are collected
by the agent, which are updated according to the rendering frequency, match the current state
of the environment. This resulted in unnecessary rendering computations as there are no visual
observations used and hence this lock was disabled.

3.4 Python Interface 20

3.4 Python Interface

The ML-Agents framework provides an interface based on the standard OpenAI gym template [30]
for communicating in python with the simulator. This interface was extended to provide the
following functionalities:

• Specify initial state and goal on reset of the environment.

• Communicate this initial state and goal over a sidechannel to the simulator at runtime.

• Externalize the reward calculation, as required for the goal-based MDP formulation that
was introduced before to calculate the reward for arbitrary transitions and goals.

The resulting interface deviates from the OpenAI gym interface for goal-based environments [23]
on two aspects:

• The observation is not a dictionary that contains the episode goal and the achieved goal.
This was done to reduce the unnecessary overhead that is induced by communicating both
goals at every step.

• The reset function takes as explicit arguments the initial state and the goal for the episode.
This is required to vary the distributions over the initial state and goals, as is done in
curriculum learning. The OpenAI Gym interface does not allow for this, as both initial
state and goals are always randomly sampled in their goal-based environments.

3.5 Lessons Learned

Reflections on building a custom robotics learning environment

Building custom simulation environments for robotics has proven to be a time-consuming task.
Furthermore, using a custom environment only increases the pool of possible issues that can result
in a failure to learn the desired behavior. Next to wrong hyperparameter ranges, implementation
errors in the learning algorithms and fundamental issues with the learning algorithms, issues
with the learning environment are now also possible.

This additional source of possible issues combined with the implementation time illustrates the
importance of having a suite of available environments and explains why almost all research on
DeepRL uses pre-defined environments such as the OpenAI Robotics environments.

Applying DeepRL to real-world problems, however, requires designing tailored simulation envi-
ronments as every situation has different requirements. Many simulation frameworks exist and
support this process rather well. More guidance on common design choices (such as [31]) would
help to speed up this process and result in appropriate abstraction levels, etc., which results in
more efficient learning.

3.5 Lessons Learned 21

Reflections on the OpenAI gym interface

The OpenAI gym interface has become almost omnipresent in the DeepRL community. This
makes it possible to easily swap algorithms on an environment or use the same algorithm on
multiple environments.

Unfortunately, the gym interface source code is poorly documented and actually also not designed
future-proof. The reset function of the base class for example does not take additional parameters,
although this is required for any kind of curriculum learning where the distribution of goals
initial states is varied.

This was one of the motivations to move away from this interface when creating the simulation
environment. However, this has proven to be a mistake as it made interfacing with existing
implementations difficult.

The better option would have been to stick to the gym interface as close as possible and to
use the wrapper classes that are hidden in the codebase to further customize the environment
interface to e.g. specify the initial states and episode goal, while still sampling them uniformly
in the base class.

Chapter 4

Experimental Setup

This chapter gives an overview of the experimental setup that is used in future chapters. The
first section introduces the different learning environments that are used. The next section gives
a short overview of some tools and frameworks that are used.

4.1 Environments

In this section, the different learning environments that are used in this work are described.
For each environment, a short description is given of the task. For the environments that were
developed in this work, this is followed by the description of the state space, action space and
goal space (if applicable) as well as how the actions influence the state. Finally, the initial
state distribution(s) and reward function(s) are described. These elements make up the Markov
Decision Process as introduced in Chapter 2.

4.1.1 Benchmark Environments

For testing and evaluating implementations of different DeepRL algorithms in Chapter 5, two
environments from the OpenAI gym suite [30] are used. The OpenAI gym suite is a collec-
tion of often-used environments for Reinforcement Learning, introduced to make comparisons
between algorithms easier and to introduce a standardized interface for interacting with RL
algorithms. The environments that are used in this thesis are the Pendulum environment and
the LunarLander environment. Both are 2D, single goal environments with continuous state and
action spaces.

In the LunarLander environment, the agent has to learn to control the engines of a spacecraft
and land it at a specific location, starting from the top of the game screen. The state space is
8-dimensional and is given by

s = [x, y, ẋ, ẏ, θ, θ̇, L, R],

where L and R are indicator functions that encode whether the left and right landing pad of
the spacecraft are touching the ground. The action space is 2-dimensional, encoding the engine
throttles. The agent is penalized for using the engines and rewarded for moving towards the
landing pad. The agent receives an additional reward for landing and is punished for crashing.

4.1 Environments 23

The environment is considered to be solved if the agent achieves more than 200 points. The
episode terminates if the spacecraft has landed or crashed, but an artificial maximum duration
of 1000 steps is added.

The pendulum environment on the other hand requires the agent to balance a pendulum, starting
from a random initial orientation and angular velocity. This environment has a 3-dimensional
observation space given by s = [cos(θ), sin(θ), θ̇] and 1-dimensional action space encoding the
torque on the pendulum. The reward is always negative and depends on the angular distance
and velocity w.r.t. the desired position (which is upright). This reward function is continuous
and convex, limiting explorational challenges. The environment is furthermore non-episodic, but
as usual, an artificial maximum episode duration is introduced and set to 500. This environment
has no threshold on the rewards that indicates the task has been solved, but the closer the reward
is to 0, the better.

More details about these environments can be found in the repository for the OpenAI gym
suite1.

4.1.2 Pointmass Environment

This environment was developed to evaluate the asymmetric self-play framework on a low-
dimensional, goal-conditioned task, which is done in Chapter 6.

The environment simply consists of a pointmass that can move around in 1 or 2-dimensional
space. The state space is limited to [−1.5, 1.5]N and the actions are limited to [−0.05, 0.05]N .
Actions simply update the state as follows: s[t + 1] = s[t] + a[t], implying positional control of
the pointmass.

The goals g are defined as a point in the N-dimensional state space and are considered to be
reached when the distance from the current state to the goal is less than 0.05, in which case the
episode terminates. Mapping states to goals is trivial as they are equivalent.

The initial states can be either fixed to the origin or randomized over the entire state space.
Rewards for the agent are binary: 1 if the goal is reached, else 0.

4.1.3 Motion Planning Environment

In Chapter 7, the asymmetric self-play framework is used to learn a robotics task using the Unity
simulation environment that was introduced in Chapter 3.

In the learning environment constructed using this simulation environment, the agent has to
learn to bring the end-effector of the UR3e Robot to a target position in the Euclidean space.
Fig. 4.1 shows a particular state of the environment, where the target position is indicated with
the red dot. This task can be seen as learning Motion Planning for the UR3e, which is a core
task for robotics and is also a stepping stone towards unpacking items, the use case that was
introduced before.

1https://github.com/openai/gym/tree/master/gym/envs

https://github.com/openai/gym/tree/master/gym/envs

4.1 Environments 24

Fig. 4.1 Learning Environment for motion planning. The red dot indicates the position that
needs to be reached by the end-effector.

Joint name Range
base joint [-90, 90]
shoulder joint [0, 90]
elbow joint [0,150]
wrist01 joint [-180,180]
wrist02 joint [-180,0]

Table 4.1 Joint space in degrees relative to the home position for the controllable joints in the
motion planning environment.

Note that this is a basic environment, containing no obstacles whatsoever making it very well
possible to perform this task using analytical methods. Furthermore, no collisions with the robot
or the table are considered, which simplifies the task and environment design further.

The policy has to control 5 joints and bring the end-effector to a target position in the Euclidean
space. Only 5 joints are used as the wrist03 joint (cf Fig. 3.3) and the gripper do not provide
additional capabilities to the robot for this scenario.

The environment state consists of the current position θ = [θ1, .., θ6] and velocity θ̇ = [θ̇1, .., θ̇6]
of all joints (including the one that is not controlled) of the robot, the relative gripper position2

xgripper and the Euclidean end-effector position x = [x, y, z]. The joint space is given in Table 4.1.
Including the end-effector position is a common choice in robotics learning problems, and does
not limit real-world applicability if the dynamics of the robot are known (which is usually the
case). The current velocity is included to make sure that the Markov property is satisfied for the
state. The resulting state is 16-dimensional and given by:

s = [θ, θ̇, xgripper, x] . (4.1)
2The velocity of the gripper was not included in the state by mistake and this was only noticed later on as the

gripper is not controlled in the motion planning environment.

4.1 Environments 25

The actions encode the desired relative orientation changes with respect to the current state:

a = δθ = [δθ1 , .., δθ5] , (4.2)

and are limited to an absolute value of 3 degrees or 0.052 radians, which gives a velocity
of 30 degrees/s considering the decision frequency of 10Hz. The choice for 30 degrees/s is
mostly arbitrary but the limitation serves to ensure the robot does not make unrealistically
fast movements. These actions are then used to set the desired joint positions θref = θ + δθ in
Equation 3.1. The desired velocity θ̇ref is always set to zero, as this task does not require the
robot to control the velocities.

An artificial maximum episode duration is also added for the agent, although this duration can
vary between experiments. This is because this duration influences the explorational capacities of
the agent and hence there is a trade-off between learning speed and explorational capacity.

Initialization of the environment is done by selecting a random orientation for each joint within
the joint space from Table 4.1.

The goal g represents a Euclidean point that has to be reached by the end-effector and is hence
3-dimensional. Extracting the achieved goal from the current state is done by setting the goal to
the current end-effector position x. Goals are considered to be achieved if the current end-effector
position x is within 0.05m of the target position g, in which case the episode terminates.

The goal space G is described by a quarter sphere with a radius between 0.1 and 0.7 m, and
origin at the base of the robot. The quarter sphere is created by intersection with the plane
of the table and the plane orthogonal on the table through the robot base, parallel with the
front of the table. Note that the end-effector can also reach some positions out of this sphere.
However, it is approximately the largest volume that can be reached given the joint space and
can still be easily described and sampled from, without having to compute the forward dynamics
explicitly.

Sampling this goal space is always done uniformly in the spherical coordinates with origin at the
robot base:

r ∼ Unif(0.1, 0.7), ϕ ∼ Unif(−π

2 ,
π

2), θ ∼ Unif(0,
π

2) , (4.3)

and these are then used to compute the resulting Cartesian coordinates. This results in non-
uniform sampling in Cartesian coordinates as this would require correcting for the the change in
volume:

dV = dx dy dz = r2sin(θ) dr dϕ dθ . (4.4)

This has an impact on the experiments in chapter 7, as the evaluation metric uses this distribution
and hence for experiments with asymmetric self-play, not all goals would have equal importance
in the curriculum. This mistake was unfortunately only caught after performing all experiments.
It is expected that this issue does not impact any conclusions drawn from the experiments
although it might influence the asymptotic performances slightly. The goal space and distribution
are illustrated in Fig. 4.2.

4.2 Tools, Hardware and Frameworks 26

Fig. 4.2 Illustration of the goal space by sampling uniformly in spherical coordinates.

The reward function that is used can be either binary (1 if the goal is reached, 0 if not) or dense.
This dense reward function is given by:

r(s, a, s′|g) = ||xs′ − g||2 , (4.5)

which is the Euclidean distance between the goal and the current end-effector position.

In Chapter 3, the simulation timescale was already briefly discussed. This timescale allows for
making the agent interact with the environment at a higher wall-clock frequency by speeding up
the in-game time, which results in faster training times. Setting this timescale too high, however,
could reduce the quality of the simulation physics, which results in undesired behavior of the
agent. The upper limit of the timescale depends on the specifics of the learning environment
and hence an experiment was performed to find this maximum allowable speedup. From this
experiment, it became clear that a timescale of up to 20 did not result in a decrease in physics
performance, although the runtime at this point was almost entirely dominated by non-physics
code execution, which makes further increasing this timescale not useful. Hence a timescale of 20
is used for all experiments.

4.2 Tools, Hardware and Frameworks

All experiments were executed on a workstation with 2 Nvidia TITAN Xp GPUs and a GeForce
GTX 1080 GPU, where the GPU was chosen randomly for each experiment. The workstation
has an Intel i7-5820 CPU and runs on Ubuntu 18.04 LTS.

All code is written using the Pytorch framework [32]. A complete overview of all software
dependencies and their versions can be found in the accompanying code repository3. This
repository also includes the complete codebase used during this thesis.

3https://github.ugent.be/tlips/thesis-curriculum-learning

https://github.ugent.be/tlips/thesis-curriculum-learning

4.2 Tools, Hardware and Frameworks 27

For managing the experiments and logging metrics, Weights and Biases (wandb) [33] is used.
This tool allows for logging experiment results directly to a cloud-hosted database with an
easy-to-use web client and API. It also provides tools for orchestrating distributed experiment
sweeps (e.g. hyperparameter search or multi-seed experiments) and version management of
datasets and models. It is mostly focused on Deep Learning research but also rather useful for
performing DeepRL experiments.

Finally, Stable Baselines 3 (SB3) [34] is used to obtain a public implementation of some DeepRL
algorithms. This framework provides well-documented and high-quality Pytorch implementations
of many popular DeepRL algorithms. The implementations are explicitly benchmarked against
the reference implementations of OpenAI Baselines [35].

Chapter 5

Learning Algorithms

In this chapter, the different DeepRL algorithms that are used throughout this thesis are
introduced. In theory, these algorithms can be considered as background material and one
could refer to their respective paper for details to implement them or simply use a publicly
available implementation. However, the performance of these algorithms can be quite dependent
on very small implementation details. Details that are often not (explicitly) mentioned in the
original papers proposing these algorithms, or require combining elements from different papers.
Furthermore, popular public implementations often use rather different combinations of these
tricks.

It was Henderson et al. who brought these issues under the attention of the research community.
They showed that performance can differ drastically between often-used public implementations
and their implementation details, between commonly used network architectures and most
notably between different sources of randomness such as the random seed generators or simply
the GPU environment [36].

The goal of this chapter is hence twofold: First and foremost it aims to provide all the necessary
implementation details of the algorithms that were used, and to validate these implementations.
Secondly, it aims to provide insight into the characteristics of the algorithms that are used. It
would be impossible to motivate the choice for particular algorithms for Alice and Bob in later
chapters on asymmetric self-play, without having some insight into these characteristics.

In the first section, the mathematical foundations of Policy Gradient Methods are briefly stated
before introducing a state-of-the-art policy gradient algorithm: Proximal Policy Optimization
(PPO). The next section introduces a popular Q-learning algorithm: Deep Deterministic Policy
Gradient (DDPG) with some extensions. Thereafter, the implementations of these algorithms
are validated against a public implementation. Finally, some lessons learned during the imple-
mentation and testing of these algorithms are formulated.

5.1 Proximal Policy Optimization (PPO) 29

5.1 Proximal Policy Optimization (PPO)

PPO is an on-policy, stochastic policy gradient method. Before formulating the algorithm and
listing some of the tricks that are often used, the mathematical background for optimizing policy
gradient methods is shortly given.

5.1.1 Policy Gradient Methods

As stated in Chapter 2, the goal of any RL learning algorithm is to maximize the expected
(discounted) return, that is to maximize

J(πθ) = Eτ∼πθ
[R(τ)] . (5.1)

Policy Gradient Methods try to optimize the policy πθ directly by maximizing the gradient
∇J(πθ) using a gradient optimization technique.

It can be shown that this gradient can be expressed as

∇J(πθ) = Eτ∼πθ

[∞∑
t=0
∇θ log πθ(at|st)R(τ)

]
. (5.2)

This result is known as the Policy Gradient Theorem and is the mathematical basis of all policy
gradient methods [14].

It can be also be shown that this can be formulated more generally as

∇J(πθ) = Eτ∼πθ

[∞∑
t=0
∇θ log πθ(at|st)Φt

]
, (5.3)

where Φt can be a.o. the advantage function A(st, at), which is defined as Q(st, at)− V (st) [37].
Due to the lower variance, this formulation is almost always chosen in state-of-the-art policy
gradient methods. It does however require an additional network that approximates the value
function V (st) to estimate this advantage from the rollout rewards.

5.1.2 Formulation

The motivation for the Proximal Policy Optimization (PPO) algorithm, as presented by Schulman
et al., was to find a learning algorithm that allows for performing multiple epochs of optimization
over each rollout while being stable and robust1 with respect to the hyperparameter choices [38].
Iterating multiple times over the data is common practice in Supervised Learning to increase
sample (data) efficiency, but had not been used for Policy Gradient Methods as it was empirically
shown to often lead to destructively large policy updates.

Schulman et al. start from the Trust Region Policy Optimisation (TRPO) algorithm [39] and
leverage the idea of limiting the step size that is allowed in each optimization step to make sure
the policy does not move too far away from the current policy.

1as far as this goes in DeepRL

5.1 Proximal Policy Optimization (PPO) 30

They formulated the following loss function for the policy network for a single step:

LCLIP
t (θ, θold) = min

(
πθ(at|st)

πθold
(at|st)

Â(s, a), clip
(

πθ(at|st)
πθold

(at|st)
, 1− ϵ, 1 + ϵ

)
Â(st, at)

)
. (5.4)

If desired, an entropy measure S(π) of the stochastic policy can also be added to help regulating
the variance of the policy, which will tend to decrease over time as the policy converges.

As discussed before, the advantage estimation requires learning an approximation of the value
function V (s). In DeepRL, this approximator is a neural network and is often made to share all
but the last layer with the policy network. The idea here is that both networks should learn
a similar representation of the observations. The loss function hence also includes the value
loss since the same optimizer is often used for the partially shared policy network and value
network.

The final objective then looks as follows:

L(θ) = Et

[
LCLIP

t (θ, θold)− c1LV F (θ) + c2S(πθ)
]

, (5.5)

and is estimated using a finite number of rollout steps and then maximized at every iteration
with a (batched) optimizer for a number of epochs.

To estimate the advantages, Schulman et al. propose to use the Generalized Advantage Estimation
(GAE) [40]. This method trades an acceptable amount of bias on the estimation to reduce the
variance significantly. Furthermore, they perform an additional modification by estimating the
return of the final state with the value function to allow for having rollouts that do not contain
terminated episodes or for non-episodic environments that do not even have a natural termination
state, as proposed in [41].

The advantage estimation is given by:

Ât = δt + (γλ)δt+1 + ... + (γλ)T −t+1δT −1 , (5.6)

where δt = rt + γVϕ(st+1)− Vϕ(st).

As stated by the authors of GAE, for λ = 1 this reduces to

T −1∑
t′=t

γt′−trt′ + Vϕ(sT)− Vϕ(st) , (5.7)

which is simply the Monte Carlo advantage estimation using the future rollout rewards. The
parameter λ allows for trading off the high variance of this formulation (due to the summation)
with a non-zero bias of the estimation [40].

5.2 Deep Deterministic Policy Gradient (DDPG) 31

The value loss is computed using the mean squared error over the return estimations R̂(s):

LV F =
(
Vϕ(s)− R̂(s)

)2
. (5.8)

The resulting algorithm can be found in Appendix A.

This algorithm outperforms most other stochastic policy gradient methods in terms of efficiency,
asymptotic performance, stability and hyperparameter robustness and is hence considered to be
the go-to on-policy stochastic policy gradient algorithm.

Finally, note that Schulman and Al. also proposed a variant of the PPO algorithm as discussed
above in which the policy gradient steps are limited by a Kullback-Leibler (KL) penalty (PPO-KL)
instead of being clipped. This version however showed slightly worse performance and hence the
clip method (referred to as PPO-CLIP) is usually preferred.

5.1.3 Additional Modifications

A closer look at the Stable Baselines [34] implementation revealed that they performed a number
of additional modifications to the algorithm as proposed by Schulman et al.:

• The gradients of the network are clipped before optimizing them.

• The batches are reshuffled at each epoch iteration.

• The advantage estimations are normalized over each batch.

• The value loss is computed using the advantage estimations instead of the Monte Carlo
value estimations.

The impact of these modifications is discussed in more detail in Section 5.3.1.

5.2 Deep Deterministic Policy Gradient (DDPG)

DDPG differs from PPO in almost all aspects. First of all, it is an off-policy algorithm which
means that samples can be collected using any policy. Furthermore, it is a Q-learning algorithm
in which the central learned function represents not the policy itself but the Q-function. DDPG
does have a second network that represents the policy but this is only trained indirectly on the
Q function as will become clear soon.

5.2.1 Formulation

The DDPG algorithm combines some of the tricks of the DQN algorithm (which was the first
algorithm that managed to use neural networks as function approximators for Reinforcement
Learning in high-dimensional observation spaces) [17] with the Deterministic Policy Gradient
method [42].

5.2 Deep Deterministic Policy Gradient (DDPG) 32

The central equation for all Q-learning algorithms is the Bellman Equation, given by (for a
deterministic policy):

Q(s, a) = Es′∼P [r(s, a) + γQ(s′, µ(s′)] , (5.9)

where µ(s) is the greedy policy defined by

µ(s) = argmaxaQ(s, a) . (5.10)

Note that this equation holds for all transitions (s, a, r, s′, d) of the MDP and hence does not
require them to be obtained using the current policy (which explains why DDPG is a so-called
off-policy algorithm). Therefore a replay buffer D is usually introduced in which a number of
previous transitions are stored and from which at each optimization step a random batch is
sampled.

Since DDPG is used on continuous action spaces, one cannot easily compute the argmax in
Equation 5.10. Therefore, the greedy policy is usually approximated by a second network
µθ(s) [37], which is optimized by maximizing

Es∼D [Qϕ(s, µθ(s))] . (5.11)

To optimize the Q function parameterized by ϕ, following loss function2 needs to be mini-
mized:

L(ϕ) = E(s,a,r,s′,d)∼D
[(

Qϕ(s, a)−
(
r + γ(1− d)Qϕ(s′, µθ(s′))

))2]
. (5.12)

This loss function L(ϕ) however, depends twice on the network Qϕ, which makes the optimization
’chasing its own tail’ and leads to unstable behavior [43].

To reduce the effect of this double dependency, next to using a large replay buffer to limit
the sample dependencies and clipping the gradients, an additional trick is used: a so-called
target network is introduced for both the Q-network and policy network. This target network
is used for computing the second half of the Bellman Loss. The target networks are updated
at each iteration by a weighted average of the network parameters, often referred to as Polyak
updating:

ϕtarget ← τϕ + (1− τ)ϕtarget . (5.13)

Although the algorithm is off-policy and hence any sampling strategy could be used to obtain new
samples for the replay buffer, usually, a noisy variant of the current (deterministic) policy is used
as this leads to more informative samples in general. Lillicrap et al. propose to use correlated
noise according to an Ornstein-Uhlenbeck process, but later work has found (decaying) Gaussian
noise to work just as well and hence the latter is usually preferred due to its simplicity [37].

2Here I followed the OpenAI Spinning Up notation that uses python-like evaluation of the terminal state
boolean value

https://spinningup.openai.com/en/latest/algorithms/ddpg.html

5.3 Evaluating the Implementations 33

5.2.2 Twin Delayed Deep Deterministic Policy Gradient (TD3)

Whereas Policy Gradient methods often suffer from high variance issues, Q-learning-based
methods tend to suffer from overestimation bias. This is caused by recursively maximizing over
the inherently noisy value estimations of the function approximator, which might lead to high
values for certain state-action pairs resulting in suboptimal policies or even complete divergence
of the policy [44].

To address these overestimation issues and in an attempt to reduce the brittleness of the DDPG
algorithm in general, Fujimoto et al. propose three distinct updates to the DDPG algorithm,
partially inspired by earlier updates to the DQN algorithm [45]:

1. Instead of learning a single Q-function, two Q-functions are learned separately. During the
computation of the Bellman targets, the lowest of the two Q values is used.

2. Gaussian noise is added to the target actions for the sampled states from the buffer. This
is referred to as target policy smoothing. The noise is clipped to stay close enough to the
actual target.

3. The policy network is updated less frequently (once every n updates of the Q networks)

The resulting algorithm can be found in Appendix A.

TD3 is considered to be state-of-the-art for continuous control, beating both PPO and DDPG
on a suite of OpenAI gyms [44].

5.3 Evaluating the Implementations

In this section, the implementations as described previously are benchmarked against Stable
Baselines [34] using the LunarLander environment that was introduced in chapter 4.

For these tests, all hyperparameters are reported as accurately as possible and the random seeds
of the different libraries are fixed to the same value before each run. As the goal is not to assess
absolute performance but rather to perform what could be considered an integration test on the
implementations, performance is not averaged across multiple seeds.

The reported performance metric is the non-discounted cumulative episode reward during training.
The stable baselines implementation averages these rewards over all previous episodes, whereas
this implementation simply reports the average episode reward of each rollout, which is then
averaged using a rolling window of size 10. This choice was made because it seems that not
averaging over all previous episodes should allow to better observe stability issues etc during
training.

5.3.1 Evaluating PPO

Influence of Modifications

As indicated, the stable baselines implementation, as well as others, adds some modifications to
the original algorithm. Reshuffling the batches and clipping the gradients were included in the

5.3 Evaluating the Implementations 34

Fig. 5.1 Comparison of PPO performance for normalized Advantages and different estimation
methods for the Returns.

implementation as these are common tricks to improve stability, although they did not appear to
make too much difference.

The different estimations for the returns and the batch normalization appeared to be more
important. Most notably when using Monte-Carlo (MC) return estimations combined with
non-normalized GAE advantages (which would be the default if you only looked at the paper),
the algorithm was not able to obtain a high performance the LunarLander environment, as can
be seen in Fig. 5.1. The final implementation uses GAE estimations to compute the returns and
normalizes the advantages.

Testing the Final Version

To validate the resulting implementation, the algorithm was tested on the LunarLander en-
vironment and the performance was compared to the StableBaselines3 implementation. The
hyperparameters were chosen identical to the default values in the SB3 implementation, which
correspond to the suggested values of the original paper. These values are listed in Table 5.1.

Note that the network architectures for the action mean differ slightly: Both networks consist
of two hidden layers that are shared between the policy and value network. However, the SB3
implementation uses tanh as activation function whereas this implementation sticks with ReLU
due to bad experiences with tanh, which seems to require more normalization tricks on the inputs
of the network. Furthermore, this implementation uses a hidden layer size of 128 and uses the
default Pytorch initialization, as always in this thesis, whereas SB3 uses 64 hidden nodes per
layer and orthogonal initialization of the weights.

5.3 Evaluating the Implementations 35

Hyperparameter Value Hyperparameter Value
epochs 10 rollout lenght 2048
batch size 64 GAE factor 0.95
learning rate 1e-4 gradient clip norm 0.5
value loss coeffficient 0.5 entropy loss coefficient 0.0
ppo clip value 0.2 discount factor 0.99

Table 5.1 Hyperparameters for the PPO Benchmark.

Fig. 5.2 Benchmarking the PPO implementation on the LunarLander-v2 environmnent.

In both implementations, the diagonal standard deviation of the policy is represented by a
state-independent vector, that learns the natural logarithm of the standard deviation. This
vector is initialized to zeros, resulting in an initial standard deviation of 1.

Results can be found in Fig. 5.2. The performance, in terms of asymptotic cumulative reward
and learning efficiency, of both algorithms is rather close which suggests the implementation has
no issues that would hurt performance too much.

5.3.2 Evaluating DDPG

The implementation is again compared to the StableBaselines3 implementation on the LunarLan-
der environment with hyperparameters as listed in Table 5.2. The StableBaselines implementation

Hyperparameter Value Hyperparameter Value
actor learning rate 1e-3 / 1e-4 critic learning rate 1e-3
buffer size 1e6 batch size 128
train frequency 1 / step noise N (0;0.1)
gradient clip norm 1.0 discount factor 0.99

Table 5.2 Hyperparameters for the DDPG Benchmark.

5.3 Evaluating the Implementations 36

Fig. 5.3 Benchmarking the DDPG implementation on the LunarLander-v2 environment.

does not allow for selecting a different learning rate for the value network and policy network
so both were set to the default value of 0.001. This implementation uses the same value for
the Q-network but a lower value of 0.0001 for the policy network as this is what is used in the
original paper [13].

Again the networks differ in architecture as the SB3 implementation uses hidden layers of size
400 and 300 whereas this implementation uses 128 for both layers. The policy and Q-network do
not share the hidden layers.

The results can be seen in Fig. 5.3, where again the implementation seems to be on par with
the reference framework, suggesting that there are no large problems with the implementation.

Note that the asymptotic reward is lower than for PPO, which is most likely due to non-decreasing
noise that is added to the actions. This is in contrast with the decrease in the standard deviation
of the PPO policy, as the algorithm is converging. This leads to more "qualitative samples" on
the one hand but mostly limits the disturbance during rollouts on the other hand, explaining
higher rewards.

To increase the quality of the DDPG samples, one could use a decreasing standard deviation
for the action noise. However, the DDPG algorithm tends to be very brittle with respect to
tuning these noise parameters. Furthermore keeping the noise higher has the benefit that the
learned policy is more likely to be robust as this noise could be seen as some kind of adversarial
perturbation.

However, for more fine-grained task such as reaching for items in a small box, high noise is
prohibitive as it would hinder the policy from reaching the item without touching the box.
Exploration issues with such fine-grained control tasks are hence even more challenging.

5.3 Evaluating the Implementations 37

Hyperparameter Value Hyperparameter Value
learning rates 1e-3 discount factor 0.99
buffer size 1e6 batch size 128
train frequency 1 / step action noise N (0;0.1)
target noise parameter 0.2 target noise clip value 0.5
policy update frequency 2

Table 5.3 Hyperparameters for the TD3 Benchmark.

To avoid the influence of noise on the performance metrics, one can perform separate evaluation
rollouts where no noise is added to the actions. This is not done here as the goal was mainly to
test the implementation rather than to obtain absolute performance measures.

Visual observation3 of the learned policy shows that the policy does indeed learn to land, even
though it does not reach the score of 200 due to the added noise as explained above.

Finally note that the required number of interactions before reaching the asymptotic performance
is indeed smaller with respect to the PPO algorithm, highlighting the increased sample efficiency
of off-policy algorithms. However in terms of computational wall clock time, the DDPG algorithm
performed worse as the networks are updated more frequently, something which is of course
highly dependant on the hardware platform.

5.3.3 Evaluating TD3

As before, the resulting implementation is compared to the SB3 implementation. The hyper-
parameters are listed in Table 5.3. As was the case for DDPG, the network architectures
differ: whereas the Stable Baselines implementation uses hidden layer sizes of 400 and 300, this
implementation uses 256 for both layers.

The results can be found in Fig. 5.4. Note that there are two line plots next to the baseline. This
is because during the writing of this manuscript after all experiments had been performed, an
implementation error was discovered in the TD3 implementation: The noise added to the target
actions in the implementation is Uniform instead of Gaussian. To briefly evaluate the impact,
the LunarLander test has been performed with Uniform and Gaussian target noise. As can be
seen, the impact of this bug seems to be not too large. Hence it is expected not to influence later
experimental results too drastically, although it is still important to mention for completeness.
The bug has also been added to the algorithm in Appendix A.

Another observation is that the stable baselines implementation reaches a higher performance
than the implementation, although the algorithms should have been allowed to run a little longer
to make sure the asymptotic performance was reached. This difference is most likely caused by
additional implementation differences4.

3https://youtu.be/LzPReCrLXIM
4There was unfortunately no time left to investigate this further as the TD3 algorithm was initially only

benchmarked on the Pendulum environment, where no performance gap was observed. During the writing of this
manuscript, it appeared that using the same environment for all algorithms would be nice, and only then this
difference was discovered, as well as the target action bug.

https://youtu.be/LzPReCrLXIM

5.4 Lessons Learned 38

Fig. 5.4 Benchmarking the TD3 implementation on the LunarLander-v2 environment.

5.4 Lessons Learned

In this section, some of the lessons learned during the implementation and testing of these
algorithms are briefly stated.

Public implementation vs. own implementation

At first, it felt strange to re-implement existing algorithms. However as already explained, details
matter, and implementing an algorithm helps to understand all details better. Furthermore,
qualitative public implementations are often embedded in a software architecture, which implies
one cannot simply extract the code for a particular algorithm. Simply using the framework
interface on the other hand makes it hard to build on these algorithms (as is done later in this
thesis), often reduces the flexibility to adapt logging metrics and limits the option to change
implementation details, etc. So it seems that creating a custom implementation is indeed the best
option for doing research. This is however not straightforward as DeepRL algorithms are very
brittle and can be rather complex. Making them work, even on very simple environments, is far
from trivial. Having a look at the code from well-validated implementations, both before and after
reading the original paper, will speed up this process, although it remains time-consuming.

Choosing the right benchmark environment

In this chapter, two different environments were used initially, where the pendulum environment
is considerably easier than the LunarLander as it has a convex optimization landscape and lower
dimensionality. This allowed for faster iterations during development. On the other hand, this
also occluded some bugs that were present in the algorithm (including comparing scaled and
unscaled actions in the value loss and the difference in performance for the TD3 algorithm, which

5.4 Lessons Learned 39

was not visible with the pendulum environment). This is why the more difficult LunarLander
was eventually used.

Testing an algorithm should preferably be done on an environment of significant complexity,
although even then there are no guarantees. Making 100% sure that the implementations are
working fine, requires testing on a whole suite of environments but in practice, this is often too
time-consuming.

Interaction loop matters

Most learning algorithm papers focus on the training loop, which is of course where the novelty
of the proposed solutions lies. However, when implementing algorithms one should not overlook
the importance of the interaction loop in which the experiences are collected. Two particular
bugs that required quite some time before stumbling upon them were:

• Handling artificial terminations of non-episodic environments, in which case one should not
mark the transitions as done to avoid confusing the value networks.

• The scaling of actions from the [-1,1] range that is produced by the tanh in the final network
layer to the ranges required by the environment. This should either be done consistently in
the network itself, or one needs to take care not to scale the actions before adding them
to the experience buffers and to only scale them before sending them to the environment.
Otherwise, during the training it could be that non-scaled actions are used for some updates
and scaled actions for others, which results in a complete failure of the algorithm.

Hyperparameters matter, bugs even more

It is well known that hyperparameters matter a lot in Deep Learning and this is arguably
even more true in Deep RL. It was hence tempting to start tweaking hyperparameters if the
algorithm did not manage to learn as expected during testing. However, there is one thing
that has a greater influence on the learning algorithms: bugs. Hence when implementing a
learning algorithm a good strategy is to search in the original paper for the hyperparameters that
the authors have reported to work well on similar environments. Using these hyperparameters
the odds become even bigger that the algorithm not working is due to implementation issues.
Alternatively, one could first experiment on the environment using a public framework and then
take the same hyperparameters. A small caveat here is to make sure that the interpretation of all
hyperparameters is as expected, for example when using the OpenAI Spinning Up implementation
of DDPG switches the weights of Equation 5.13, resulting in catastrophic instabilities when using
the same Polyak hyperparameter value.

Get to know the algorithm

Even though initially one should think more about bugs than hyperparameters, it is worthwhile
not to jump to the next task immediately after getting the algorithm to work on a test environment.
Evaluating the algorithm’s sensitivity to some of the hyperparameters can be very insightful and
help to analyze issues later on as well as setting sensible default ranges for some hyperparameters
in later parameter searches. Unfortunately, I did not do this, as I was too eager to start working

5.4 Lessons Learned 40

on the next item on the TODO list. Looking back I believe it would have been an efficiency gain
in the long run though. To make this process more efficient, there exist some papers like [46],
where the influence of hyperparameters is discussed. This can be a useful guideline.

Loss function interpretation

Many loss functions have been formulated in this chapter. However, interpreting loss functions
in DeepRL should be done with caution. In supervised learning, the loss function measures
performance over a fixed data distribution, independent of the parameters that are being
optimized. In DeepRL however, loss functions do not necessarily measure performance and do
most certainly not measure over a fixed data distribution as the policy is typically used for
data collection [37]. As a consequence, loss functions do not behave as in supervised learning
and they do not necessarily need to be monotonically decreasing to indicate that the training
process is going well. Measuring performance and stability should be done using the cumulative
rewards.

Chapter 6

Asymmetric Self-Play

In this chapter, asymmetric self-play is discussed in more detail. The chapter starts by formulating
some issues that can arise due to the interactions between the two agents in the framework. The
next section covers the implementation of the actual framework and relates some implementation
choices to the aforementioned issues. The following two sections describe different possible
reward structures for Alice and some methods for increasing the diversity in the goals presented
to Bob, which will prove to be the main issue of the framework. In the next section, these
reward structures and different modifications are evaluated on a 1 or 2-dimensional point mass
environment. The last section discusses the results of these experiments and draws some initial
conclusions on the use of asymmetric self-play with continuous action spaces.

6.1 Possible Issues with Asymmetric Self-Play

As the asymmetric self-play framework involves interactions between two agents, it has a number
of potential issues. Some of these were already brought up in Chapter 2 as they are already
mentioned in other work related to goal curriculum learning. All of these issues can manifest
themselves in both discrete and continuous action spaces, although some are more severe with
continuous action spaces because of the unimodal policy representation.

The potential issues are briefly described below:

Alice > Bob

This problem relates to Alice exploring the goal region without taking care of presenting goals
to Bob that are not too hard to reach, given his current capabilities. This can result in too
many non-informative experiences for Bob with sparse or delayed rewards, as the probability of
reaching these goals is simply too low.

Bob > Alice

Imagine Bob has learned to perform all tasks Alice is proposing at a certain moment in time
quite well. Then it could be that Alice has no guidance on how to explore the goal space further
as Bob manages to solve all tasks in the nearby space (which Alice would be able to reach given

6.2 Asymmetric Self-Play Framework 42

her explorational capacities). Hence Alice would most likely not be able to find the remaining
goals that Bob has not yet learned to solve. This would limit the generalization of Bob as he
would most likely not be able to solve all goals in the goal space since he was only presented
with a subset of goals.

This issue was briefly mentioned by the original authors [1] and was also described by Florensa
et al. [12].

Note that this problem is more likely to occur in combination with the next issue that is described,
although it could in theory also take place if Alice for example fails to learn more difficult goals
fast enough.

Convergence of Alice

This refers to the main expected issue with Alice in continuous action spaces and is related to
how Alice represents her action policy. In discrete action spaces, the policy usually learns a
categorical distribution over the action space. This categorical distribution is multimodal by
nature and hence would allow Alice to learn to reach multiple goals at the same time, which
she can then present to Bob. In continuous spaces, however, policies usually learn a Gaussian
distribution over the action space, which is a unimodal distribution. This implies that in this
case, Alice would only be able to learn one direction in the goal space at a time from which she
can present goals to Bob.

This is by itself not a fatal issue as Alice could still learn to cover the entire goal space, though
it would take considerably longer. However, it will often lead to either the problem described
before (Bob > Alice) or the one described next (Bob overfitting), which will result in the self-play
framework getting stuck. This unimodality issue was also mentioned by Florensa et al. [12].

Overfitting of Bob

Suppose Alice would only present Bob with a subset of the goal space for a given number of
episodes. It would then be possible for Bob to actually overfit on this subspace, which will likely
be easier to achieve than the generalized task space Alice is supposed to teach Bob. Even if
Alice were to later on move to a part of the goal space, it might prove very hard for Bob to undo
the overfitting that has taken place as this will typically require a great deal of explorational
power.

Note again that this problem is more likely to occur in the case where Alice is converging, but
that it is not strictly limited to it.

6.2 Asymmetric Self-Play Framework

In this section, a version of the asymmetric self-play framework is developed and its implementa-
tion is discussed.

From the components and interactions of Fig. 6.1 it is clear that four decisions need to be
made:

6.2 Asymmetric Self-Play Framework 43

Fig. 6.1 Schematic illustration of the agents and their interactions in the asymmetric self-play
framework.

1. Which learning algorithm to use for Alice,

2. which learning algorithm to use for Bob,

3. how to encode goals from Alice to Bob,

4. how to provide Alice with feedback on the goal difficulty, i.e. what reward structure to use
for Alice.

The first three are discussed in this section, as well as Behavioral Cloning (BC), which was added
to the framework by OpenAI [11], and is indicated with the dashed arrow in Fig. 6.1. Different
reward structures to encode the feedback are discussed in the next section.

Learning Algorithm for Alice and Bob

The original asymmetric self-play algorithm, used Policy Gradient methods for both Alice and
Bob [1], as does OpenAI [11]. As explained in Chapter 5, policy gradient methods require
on-policy data collection and hence do not allow replaying transitions, which makes them less
sample efficient.

In the context of asymmetric self-play an additional argument can be made in favor of using an
off-policy algorithm for Bob: Taking into account the expected issues with the unimodal policy
representation Alice will learn, the replay buffer can also serve as a way of presenting Bob with
more diverse goals during the training by replaying a random batch of all goals Alice has ever
proposed. Therefore, Bob’s policy will be trained using the TD3 algorithm. Since a goal-based
RL formulation is used, Bob’s policy and Q networks take as input the concatenated state and
goal s||g, as explained in Section 2.1.2 on multi-goal RL.

Alice on the other hand, cannot make use of such an off-policy method since her optimization
landscape is constantly changing as Bob evolves, making on-policy data collection necessary.
Therefore PPO is used for Alice since this is known to be a relatively stable method. As is done
in the original formulation [1], Alice is given as input the current state as well as the initial state
of the episode: s||s0 to provide her with information on the trajectory so far.

For both PPO and TD3, the algorithm and all implementation details were described in Chapter 5.
Pseudo-code for the implementations can be found in Appendix A.

6.2 Asymmetric Self-Play Framework 44

Communicating Goals to Bob

In the original ASP framework [1], Bob’s goals during self-play simply consisted of the final state
of Alice, which was passed by Alice to Bob. As this final state was not part of the (single-goal)
goal space of the task, Bob was given an artificial time-based reward during self-play episodes
instead of using the environment reward signal r(s, a).

The introduction of the goal-based extension of the RL formulation (cf. Section 2.1.2) removes
this need for an artificial reward signal. For every state Alice reaches, a corresponding goal can
be extracted using the state to goal mapping. This goal is then presented to Bob, as would be
done in non-curriculum training using random goals. Hence Bob can simply be rewarded with the
environment reward signal during self-play. This formulation was also used by OpenAI [11].

Behavioral Cloning (BC)

An addition to the original framework is inspired by the work of OpenAI [11]. As referred to in
Chapter 2, one benefit of using a second agent to present goals by reaching them, is the certainty
that there exists at least one trajectory to achieve the goal, namely the trajectory Alice used to
get from the initial state to the goal state.

Using this trajectory one could actually perform some kind of Behavioral Cloning (BC) on Bob.
However as always with BC, Bob’s performance will be limited by that of Alice. Alice does not
have as a learning objective to solve the tasks, she only wants to find difficult goals for Bob.
This could limit the quality of the trajectory w.r.t. Bob’s objective. Thereto the OpenAI team
suggested using Alice’s trajectory only in case Bob did not manage to solve the goal within his
maximum episode duration. Even then, they found that using BC potentially leads to instabilities
and used PPO-style loss clipping and an additional hyperparameter to reduce the influence of
the BC-loss.

This implementation, however, uses an off-policy learning algorithm for Bob which allows
to combine Bob’s own experiences with the trajectories provided by Alice in a single replay
buffer.

Note that Behavioral Cloning is not always used, it is considered an addition to the frame-
work.

Resulting Pseudo-Code

In Algorithm 1 high-level pseudo-code for the resulting asymmetric self-play loop is given for
a general reward structure for Alice (this will be discussed in more detail in the next section).
Algorithms 2 and 3 provide details about the interaction loops for Alice and Bob. No details are
provided on the training steps for Alice and Bob as this was described in Chapter 5. Pseudo-code
for these training steps is provided in Appendix A.

Note that for simplicity, it is assumed that Alice and Bob cannot take invalid actions. Hence,
no check is performed during the interaction loop to ensure the last action did not result in a
terminal transition due to invalid actions. The only way for a transition to be terminal, is if the
goal was achieved for Bob.

6.3 Reward Structures for Alice 45

Algorithm 1 Asymmetric Self-Play
Initialize A: Alice’s PPO policy, B: Bob’s TD3 policy, E: Environment, D: Bob’s replay buffer
for N episodes do

Get initial state s0 ∼ ρ0
g, τA ← alice_loop(s0)
τB ← bob_loop(g, s0)
rA ← alice_reward(τA, τB, g)
if Behavioral Cloning active and Bob did not reach goal then

τBC ←relabel τA with g
Add τBC to DB

end if
Set rewards of τA to (0, ..., 0, rA)
Train Alice using τA ▷ see Appendix A for training details
Train Bob using D ▷ see Appendix A for training details

end for

Algorithm 2 Alice Loop
Reset E using s0 and dummy goal g

tA = 0
while tA < Tmax,A do

Observe s

Get noisy action a ∼ πA(·|s||s0)
if a is STOP then ▷ depends on the

reward structure if Alice can signal STOP, see
section 6.3

break
end if
Execute a in the environment
Observe s′, r, d

Add transition (s||s0, a, 0, s′||s0, d) to τA

tA = tA + 1
end while
g ← extract g from s

Return g, τA

Algorithm 3 Bob Loop
Reset E using s0 and Alice’s goal g

tB = 0
while tB < Tmax,B and g not reached do

Observe s

Get noisy action a = πB(s||g) + ϵ, ϵ ∼ N
Execute a in the environment
Observe s′, r, d

Add transition (s||g, a, r, s′||g, d) to τB

tB = tB + 1
end while
Add τB to the replay buffer D
Return τB

6.3 Reward Structures for Alice

In this section, different reward functions for Alice will be formulated and some hypotheses on
their effectiveness will be formulated w.r.t the issues described in Section 6.1.

Sparse Rewards

In their paper on goal-discovery with asymmetric self-play, the OpenAI researchers introduced
sparse rewards for Alice [11]. If there exist no invalid goals for Alice, which is indeed assumed

6.3 Reward Structures for Alice 46

throughout this chapter, the reward for each episode of Alice might be simply given by:

rA = 1{Bob did not reach the goal} . (6.1)

It should be immediately clear that such a reward structure will most likely suffer from the A>B
issue since Alice’s incentive is simply to find goals Bob cannot achieve.

A possible modification is to introduce an external mechanism to regulate the goal difficulty
according to Bob’s current capabilities and will be referred to as dynamic windowing. With this
approach, Alice’s episode duration is dynamically updated as follows:

Tmax,A[t + 1] =

Tmax,A[t] + 1 , if Bob reached goal

max(Tmax,A[t]− 1, 1), else
. (6.2)

Although this addition might indeed keep Alice from proposing goals that are too hard for Bob
and hence solve the A>B issue, sparse rewards are still less informative than more dense rewards
which would seem to reduce Alice’s power w.r.t. to the next reward formulation. Furthermore,
this reward structure requires Alice to always execute episodes of the maximal duration, which
can increase the training time of the framework significantly.

Time-based Rewards

This is the original formulation as proposed by Sukbaatar et al. [1], where Alice’s episode reward
is defined as follows:

rA = max(γ(tB − tA), 0) . (6.3)

No direct motivation was given for the lower bound of zero on the reward. It would seem that
removing this bound provides Alice with more information on Bob’s performance, in particular in
the case of B > A, which would result in in a zero reward for all nearby goals (cf. [12]). Therefore
the lower limit was removed and the resulting reward function reduces to:

rA = γ(tB − tA) , (6.4)

where γ is used to rescale the rewards to a smaller range, as the maximum episode duration is
often well above 100. This thesis uses γ = 0.01 whenever the time-based reward is used.

In order to use this reward structure, Alice needs a way of choosing when to stop her current
episode. Sukhbaatar and Al. accomplished this by adding an additional action to discrete action
space that represented this STOP signal [1]. In continuous settings, however, this is not as
straightforward.

An alternative is to create a separate stopping policy (either a completely separated network
or a separate head of the policy network). An easier solution however could be to encode this
STOP with the action norm: if the L2 norm divided by the action dimension is smaller than a

6.4 Bringing More Diversity to Bob’s Goals 47

certain constant, Alice’s episode is stopped:

STOP = ||ai||2
action_dim < x . (6.5)

Although this would prohibit Alice from taking very small actions, it seems like a low-overhead
way to learn Alice how to signal STOP and evaluate this reward structure, which is expected to
be more informative for Alice.

6.4 Bringing More Diversity to Bob’s Goals

As discussed in the first section, the main expected issue is that because of Alice’s unimodal
policy, she would only present a small subset of the goal space at a time to Bob. In this section,
a few potential methods for mitigating the resulting issues are discussed.

Multiple Alices

A first way of trying to deal with Alice’s tendency to converge would be to add multiple Alice’s
which could be scheduled (e.g. in a Round Robin fashion) for proposing a goal to Bob. This
would present more diverse goals to Bob on the one hand and also reduce the probability of the
Alices getting stuck. Sukbaatar and Al. also suggested this to increase diversity [1].

Such an approach has one immediate disadvantage: Since all Alices would be trained separately,
their learning progress would be inversely proportional to the number of distinct Alices. This
might pose difficulties for the Alices to move to different regions of the goal space or to even
reach harder goals in the goal space.

Another possible issue would be that the Alices are not guaranteed to cover different parts of the
goal space, since they are not aware of each other.

Conditioning on Random Initial States

For robotics, there usually is the notion of a "home position" for a manipulator, to which we can
easily reset the controller. Therefore one is usually only interested in reaching all goals from this
home position, which is why the initial pose can be fixed to reduce the task complexity. Often
the initial state is still randomized as a way to increase explorational power for the agent (Bob).
However, with asymmetric self-play this is not necessary as Alice is supposed to present Bob
with appropriate goals.

Relating to Generative Adversarial Networks (GAN) [47], which share some similarities with
the asymmetric self-play approach, it seems that a possible solution for the convergence issue
might be to add some random prior to the generator, or in this case to Alice. Randomizing
the initial state could serve this purpose and allow Alice to condition her actions and hence the
goals she offers to Bob, on this random initial state. This would allow her to create a somewhat
multimodal goal distribution after all.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 48

This conditioning could be done either explicitly in the policy input: πA(a|s, s0), or implicitly
by using recurrent neural networks. OpenAI uses recurrent networks [11], although they do not
explicitly mention this conditioning as motivation. Using recurrent neural networks as function
approximators instead of simple multi-layer perceptrons has been found to increase learning
speed and performance [28], so it is very well possible that this was the reason for introducing
them. Explicit conditioning seems more straightforward and hence this option is used here.

Interleaving with Random Goals

A final way of increasing the diversity of the goals presented to Bob would be to interleave
self-play episodes with random goal selection, inspired by original formulation where self-play
was combined with regular play [1]. However, these goals would be most likely be too hard to
reach for Bob when using binary rewards in a multi-goal setting, resulting in non-informative
experiences.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task

In this section, the ASP implementation from Section 6.2 and some of the different reward struc-
tures and other modifications will be evaluated on the low-dimensional pointmass environment
that was introduced in Chapter 4.

These experiments have three purposes:

1. First of all they serve as a test for the implementation of the asymmetric self-play framework.

2. Secondly, they serve to evaluate which of the discussed issues are showing up and how they
limit the performance on this low-dimensional task.

3. Finally the experiments allow for evaluating the influence of the different reward structures
and other modifications.

The performance metric is the average success rate over 20 evaluation episodes, for which the
goals are sampled uniformly from the goal space.

To make the results more robust and limit the influence of random seeds as suggested in [36], all
experiments are repeated with 5 different seeds where both the mean and standard deviation are
reported for the performance metric.

6.5.1 Comparing Reward Structures

In this experiment, sparse rewards for Alice are compared to time-based rewards using a 1D-
pointmass. The hyperparameters that are used for Alice and Bob are the default parameters
from Chapter 5 with some exceptions:

• Alice’s rollout length is now set to her episode duration and only a single batch is used
during training.

• Alice’s learning rate is set to 0.001.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 49

Alice Bob
Hyperparameter Value Hyperparameter Value
learning rate 0.001 actor learning rate 0.0001
ppo clip value ϵ 0.2 noise std deviation 0.01
gradient clip norm 0.5 critic lr 0.001
batch size previous episode duration batch size 128
epochs 10 train frequency 1/step
rollout length previous episode duration buffer size 1e6
discount factor 0.99 discount factor 0.99
GAE factor 0.95 policy update frequency 2
value loss coefficient 0.5 target noise parameter 0.2
entropy loss coefficient 0.0 target noise clip value 0.5
max episode duration 100 max episode duration 100
Table 6.1 Default hyperparameters for Alice and Bob on the pointmass environment

• Bob’s exploration noise standard deviation is set to 0.01 to artificially increase the task
difficulty for Bob and to make Alice work harder.

Both Alice and Bob have a maximum episode duration of 100, which should be more than enough
to reach the other side of the state space. The initial state of each episode is fixed to the origin.
All hyperparameters are listed in Table 6.1.

The sparse reward structure is evaluated with and without the dynamic windowing addition.
For the time-based rewards, 0.2 is used as the fraction for the norm threshold. Whenever the
L2 norm of Alice’s actions is below this value, this is interpreted as the STOP signal. The
experiment was run for 400 episodes. Bob’s performance under the different reward shapes for
Alice can be observed in Fig. 6.2, where the performance is evaluated every 50 episodes.

From this figure, it can be seen that the time-based reward structure clearly outperforms the
two other methods, as expected. To see more clearly why this is happening, Fig. 6.3 shows the
emerging curricula using time-based and sparse rewards. Here the goal (a 1D position) proposed
by Alice during each episode is shown. The goals are color-coded to indicate whether Bob was
able to achieve them (green) or not (red). These curricula show how using time-based rewards
results in a more dynamic curriculum, whereas the sparse rewards make Alice converge on one
edge of the goal space resulting in her getting stuck once Bob has learned how to reach these
goals. This confirms the initial hypothesis that using time-based rewards is more informative for
Alice and will result in better performance of the framework.

Another observation from Fig. 6.2 is that dynamic windowing does not improve the results. This
makes sense however as this addition was aimed at keeping Alice from proposing goals that
are too difficult whereas the problem here is that Alice is actually gets stuck in a corner of the
space and has no information on where to go once Bob starts to master this part of the goal
space.

These findings are rather different from the ablation study performed by OpenAI on their
asymmetric self-play framework in which they found the performance rather similar for both
reward structures [11]. This can be most likely explained by the multimodal distribution Alice is

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 50

Fig. 6.2 Performance of Bob on the 1D pointmass environment using different reward structures
for Alice.

(a) time-based rewards (b) sparse rewards

Fig. 6.3 Comparison of the curricula for a single seed when using different reward structures for
Alice. The color of each goal indicates whether Bob was able to reach this goal.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 51

Fig. 6.4 Performance of Bob on the 2D point mass environment using fixed initial states with
different configurations and hyperparameters for asymmetric self-play.

learning in their work, which would prevent her from getting completely stuck as there will always
be a small probability of reaching a different part of the goal space. Furthermore, as mentioned
before, they used behavioral cloning, which would limit the influence of Alice presenting goals
that are too hard for Bob.

6.5.2 Evaluating Convergence

From the previous subsection, it has become clear that time-based rewards are indeed the
best option. In this subsection, using this time-based reward structure, the asymmetric self-
play framework will be evaluated on a 2D-pointmass environment. The goal of this series of
experiments is to assess to which extent Alice exhibits converging behavior, how this limits Bob’s
performance, and whether the proposed countermeasures are able to reduce the impact.

The experiments continue for 4000 episodes where the initial state is always the origin unless
stated differently. Evaluation takes place every 100 episodes using 20 random goals. As before
the average success rate is reported for each evaluation as the performance measure. The results
are smoothed using a moving average with a window of size 5.

The first experiment uses again the default hyperparameter values as reported in Table 6.1. As
can be seen in Fig. 6.4, Bob’s performance is very low. The resulting curriculum of proposed
goals, which is shown in Fig. 6.5, shows clearly that Alice converges to a very small subspace and
seems to indicate she might get stuck there somehow. However, taking a look at Bob’s episode
success rate during training (Fig. 6.5) reveals that the last 2000 goals proposed by Alice are
actually never reached by Bob, in which case Alice has no incentive to move to different regions
of the goal space.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 52

Fig. 6.5 Resulting Curriculum of goals proposed by Alice and Bob’s training success rate on
those goals, for the default hyperparameters. The goals in the curriculum are color coded to
show the evolution over time, where darker goals are more recent.

Fig. 6.6 Resulting Curriculum of goals proposed by Alice and Bob’s training success rate on
those goals, for the updated hyperparameters. The goals in the curriculum are color coded to
show the evolution over time, where darker goals are more recent.

Relating to the anticipated issues of Section 6.1, the hypothesis is that Bob overfits on earlier
goals proposed by Alice and has no way of reaching the subspace of goals Alice is proposing later
on.

A first attempt to deal with this issue was to increase the noise on Bob’s actions to a standard
deviation of 0.2, decrease the batch size to 64 and decrease the number of train steps per
episode from once per step to 10 per episode. The idea is that these changes will increase Bob’s
explorational power and decrease its training rate, to reduce the overfitting impact. As can be
seen from Fig. 6.6 the resulting curriculum and Bob’s training success rate already look more
interesting. It can be observed now that Bob is indeed learning to achieve the goals Alice is
proposing and that Alice seems to find new goal regions once Bob starts to master the current
ones, which Bob then slowly starts to master again. However, the resulting performance is still
rather low, as can be seen in Fig. 6.4. This seems to be caused by Alice presenting only small
regions of the goal space at a given time, resulting in very slow learning progress for Bob. Hence,
bringing more diversity to the goals presented to Bob is what should be aimed for next.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 53

Fig. 6.7 Performance comparison of Bob on the 2D point mass environment using random initial
states for asymmetric self-play.

The first proposed solution was to use two distinct Alices and make them present a goal to
Bob one after the other. However, as can be seen in Fig. 6.4, this actually did not increase
performance. As both Alices are still only presenting Bob with a small part of the goal space,
this does not solve the issue of Bob overfitting. Furthermore using multiple independent Alices
sometimes resulted in them converging to neighboring goal regions.

In a second attempt to bring more diversity into Alice’s goal selection, the initial state is now
randomized over the state space. The hyperparameters are set back the original parameters from
Table 6.1 to clearly evaluate the impact of using random initial states. The resulting performance
can be seen in Fig. 6.7, where it is compared against random goal selection and ASP with fixed
initial states. From this figure, it can be seen that asymmetric self-play with random initial states
enables Bob to learn the task. Using random goals does not result in a good performance. From
the same figure, it can also be seen that asymmetric self-play using the original hyperparameters
and fixed initial states, actually performs worse than using random goals and initial states. This
is most likely because Bob is getting stuck due to overfitting, as described before.

The resulting curriculum of a particular run is shown in Fig. 6.8. This curriculum shows largely
improved coverage of the goal space in comparison to previous curricula. At the same time, it can
be seen that Alice still starts to converge to certain regions of the goal space, although in a more
multimodal way than before as she seems to explore multiple regions at the same time.

6.5.3 Evaluating Behavioral Cloning

In this last subsection, the impact of Behavioral Cloning (BC) on Bob’s performance is evaluated.
The hypothesis is that this addition could help Bob to escape from overfitting on Alice’s earlier
goals even if he does not manage to reach them himself, by explicitly adding a successful trajectory
to the replay buffer.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 54

(a) random goal selection (b) asymmetric self-play

Fig. 6.8 Comparison of the curriculum resulting from asymmetric self-play using random initial
states with the curriculum resulting from random goal selection. Goals are time-encoded where
darker is more recent.

Using the same updated hyperparameters as proposed before to reduce Bob’s overfitting issues,
the performance with and without behavioral cloning is compared. As can be seen from Fig. 6.10,
behavioral cloning increases Bob’s performance, although with a significantly increased standard
deviation.

To illustrate why this is the case, the resulting curricula for 2 different seeds are shown in Fig. 6.10.
The first one shows a diverse curriculum that visits different regions of the goal space over time,
indicating that Behavioral Cloning helps Bob to escape earlier overfitting, unlike in 6.6. This
enables Alice to explore the goal space without being held back by Bob and as Bob learns to
solve the goals proposed by Alice, this results in a good performance.

The second one, however, shows how Alice initially proposed goals from a very concentrated
subspace and then moved on to a different part of the goal space. Since all these previous
experiences are captured in the replay buffer, it makes sense that it takes quite some time for Bob
to accumulate experiences using BC before he can undo the overfitting that has taken place. This
explains the high variance. It is expected that if the learning were to be continued for another
series of episodes, Bob would eventually be able to escape this local optimum with Behavioral
Cloning.

At this point, it seems that using an off-policy algorithm for Bob could in some cases slow down
learning since the experiences that are captured in the replay buffer might make it more difficult
to undo the previous overfitting. By randomizing the initial states as discussed before, it seems
that the goals provided by Alice are diverse enough to limit the impact of this non-balanced
buffer content, while still benefiting from the mixing of all goals previously proposed by Alice in
the replay buffer to reduce the impact of the convergence issues.

6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task 55

Fig. 6.9 Performance comparison of asymmetric self-play with and without Behavioral Cloning
and fixed initial states using the updated hyperparameters.

(a) BC helps to escape overfitting (b) BC unsuccessful in helping to escape overfitting

Fig. 6.10 Comparison of resulting curricula using Behavioral Cloning for different seeds. Goals
are color-coded where darker means more recent.

6.6 Discussion 56

6.6 Discussion

In this section, the main findings from the low-dimensional experiments are discussed.

The low-dimensional experiments first of all allowed to perform some unittests on the asymmetric
self-play framework. Failure to learn the 1D-task with any reward structure, for example, would
have been a strong indicator of bugs in the asymmetric self-play algorithm.

The experiments furthermore allow for making some conclusions on the use of asymmetric
self-play (in continuous action spaces):

• Time-based rewards clearly outperform sparse rewards, which are prone to either Alice
proposing goals that are too hard or Alice getting stuck once Bob has caught up on the
goals she has converged to.

• Using the norm of the actions to encode the STOP signal for Alice seems to work rather
well for these environments.

• Alice’s convergence issue is indeed a fundamental problem for continuous action spaces. By
proposing only a small subset of the goal space at each time, Bob tends to overfit on this
subset and this results in the ASP framework getting stuck. Even if Alice is proposing new
goals that are of an appropriate difficulty, Bob has already converged on the previous goals
and does not have enough explorational power to reach the goals Alice is proposing.

• Using multiple Alices does not solve this issue, since even then Bob is apparently overfitting
on the combined subspaces. Furthermore, it seems that multiple Alices sometimes converge
to the same region of the goal space, as they are not aware of each other.

• Randomizing the shared initial state of Alice and Bob on the other hand seems to provide
enough diversity to avoid this overfitting issue by allowing Alice to condition her actions on
this initial state. It can be seen however that Alice’s tendency to converge is still present
and this might limit the use of asymmetric self-play on more difficult tasks.

• Behavioral Cloning seems to be a useful addition. It can help Bob to learn faster by learning
directly from Alice’s demonstrations and could also help Bob escape from overfitted goal
regions. This can be slowed down however by overconcentrated experiences in the replay
buffer as a consequence of convergence. This shows that using a replay buffer might actually
be problematic if the experiences collected are not diverse enough. Randomizing the initial
state seems to provide a solution.

Finally note that the addition of random initial states, multiple Alices, etc. with the purpose of
avoiding the convergence issue of Alice, all introduce additional randomness to the goals proposed
to Bob. This implies that it becomes harder and harder to assess how much of the credits should
be given to Alice and how much of the performance increase is simply because Bob is learning
from random goals.

To conclude, from the experiments in this chapter it has become clear that the main issue of
asymmetric self-play in continuous action spaces is the tendency of Alice to converge to a small
part of the goal state, caused by the unimodal policy representation. This leads to Bob overfitting

6.6 Discussion 57

on this subspace which results in the learning process being slow and unstable or even getting
completely stuck in a local optimum for Bob.

Chapter 7

Learning Motion Planning using
Asymmetric Self-play

In this chapter, the asymmetric self-play framework will be used to learn a control policy for a
robotic manipulator using the Motion Planning environment described in Section 4.1.3. The
objective is to further evaluate the asymmetric self-play framework described in the previous
chapter on an actual robotics task with higher dimensionality and without straightforward
relation between actions and goals.

In the first section, the methodology for the experiments is elaborated upon. The second and
third sections contain the actual experiments, in which the task is first learned using dense
rewards and then using binary rewards. Asymmetric self-play is also compared against hindsight
experience replay. The fourth section contains a discussion on these results, where they are
related to the results of Chapter 6 and of previous work on asymmetric self-play. This section also
formulates some conclusions on the issues encountered with the asymmetric self-play framework,
some future research directions to deal with these issues, and some conclusions on the pros and
cons of both curriculum methods that were used. The final section again briefly discusses some
of the lessons learned while performing the experiments with asymmetric self-play.

7.1 Methodology

As a performance metric for the motion planning task, 20 random goals are sampled from the
goal space every 100 episodes, and the average success rate on these goals is reported. This
metric does not explicitly capture information on the time the robot requires to reach the target
position. Even though this would be of great importance for real-world industry applications it
is not considered in this work to simplify the analysis and focus on whether the agent can reach
the goals at all. As the discount factor is smaller than 1, the agent is still encouraged to reach
the goals as fast as possible.

As has become clear from the previous chapter, randomizing the initial state is important to
reduce the issues related to the convergence of Alice. Hence, this randomization will be applied
to all experiments in this chapter.

7.2 Learning Motion Planning with Dense Environment Rewards 59

Furthermore, it has become clear that certain hyperparameters have a large impact on the system.
Hence for each experiment, a random search for some of the hyperparameters is performed with
approximately 30 runs. To limit the computational resources required for the hyperparameter
search, other parameters are set to default values for their respective learning algorithms. The
hyperparameters of the run with the most promising evaluation score are then used to repeat
the experiment with 5 different seeds, to make the resulting metrics more robust as it is known
that these random seeds can have a large influence [36]. For each experiment, the average and
standard deviation are reported.

The hyperparameter search contains the actor learning rate, number of epochs, batch size and
noise standard deviation for Bob as these parameters have been found to influence the tendency
of Bob to overfit on Alice’s goals. The critic learning rate is kept at its default value since this
did not seem to influence the outcome significantly on the pointmass environments. The size
of Bob’s hidden layers is also included, as some initial tests showed that this could have some
impact.

For Alice, the entropy loss coefficient is included in the search, as this was expected to play a
role in her tendency to converge. Other parameters for Alice are not included in the search, as
the PPO algorithm is known for its stability and to reduce the computational requirements for
each search.

Finally, the maximal episode durations for Alice and Bob are included in the search since these
influence the explorational capacity of both agents.

All hyperparameters are listed in Table 7.1, where the search range is given for those that are
included in the hyperparameter search. The resulting hyperparameter values for each experiment
are included in Appendix B.

By accident, for some experiments the range for the entropy loss coefficient was set to [0− 0.005]
instead of [0− 0.001], which was the intended search range. This is indicated in the appendix
with an asterisk for completeness.

7.2 Learning Motion Planning with Dense Environment Rewards

In this section, the task is learned using a dense reward consisting of the Euclidean distance
between the target position and the current end-effector position:

r(s, a, s′|g) = ||xs′ − g||2 . (7.1)

The purpose of these experiments is to explore Alice’s capacity for goal discovery and to make
a first evaluation of the behavior in higher dimensions and the influence of convergence on
Bob’s performance. Furthermore, as an additional check, it serves to evaluate whether this
distance-based reward causes local minima for this task, a phenomenon which was discussed in
Chapter 2.

7.2 Learning Motion Planning with Dense Environment Rewards 60

Alice Bob
Hyperparameter Value Hyperparameter Value
learning rate 0.001 actor learning rate [5e-5,1e-3]
ppo clip value 0.2 noise std deviation [0.1-0.4]
gradient clip norm 0.5 critic learning rate 0.001
batch size previous episode duration batch size [32,64,128]
epochs 10 train frequency [1-100]/episode
rollout length previous episode duration buffer size 1e6
discount factor 0.99 discount factor 0.99
GAE factor 0.95 policy update frequency 2
value loss coefficient 0.5 target noise parameter 0.2
entropy loss coefficient [0.0-0.001 / 0.005*] target noise clip value 0.5
hidden layer size 128 hidden layer size [128,256,512]
max episode duration [100,150,200] max episode duration [150,200]

Table 7.1 Hyperparameters for Alice and Bob on the motion planning environment. For hy-
perparameters that are included in the hyperparameter search, the range of possible values is
given.

7.2.1 Learning with Random Goal Selection

For this experiment, we do not make Alice propose goals but simply use random goals sampled
uniformly across the evaluation domain. Combined with the informative reward, this should
allow Bob to learn the task.

As can be seen in Fig. 7.1 and from the learned behavior1, Bob learns to control the manipulator
and manages to reach almost all goals.

The conclusion from this experiment is that there are apparently no local optima for this
dense reward function that limit Bob’s performance. Furthermore, it shows that any failure to
learn in later experiments is not caused by issues with the learning environment or evaluation
method.

7.2.2 Learning with Asymmetric Self-Play

For the next experiments, the random goal selection is replaced by the asymmetric self-play
framework.

As can be seen from Fig. 7.1, the resulting performance is lower than for the random goal
selection. By adding behavioral cloning to the framework, the performance increases slightly and
shows less variance, but still does not reach the level achieved by random goal selection.

Clearly, there must be goals that Bob still does not know to reach, yet there is no increase in
performance anymore. Relating to the issues discussed in Section 6.1, there seem to be two
possible explanations. The first being that Alice is stuck and cannot find these goals anymore.
The second that Alice is still presenting Bob with challenging goals but that he is overfitting on
the goals presented by Alice and hence does not improve on the evaluation success rate.

1https://youtu.be/CLtr6k61CaU

https://youtu.be/CLtr6k61CaU

7.2 Learning Motion Planning with Dense Environment Rewards 61

Fig. 7.1 Performance comparison of asymmetric self-play (ASP), asymmetric self-play with
behavioral cloning (ASP + BC) and random goal selection using dense rewards.

Looking at the training success rate from Fig. 7.2, it is clear that Bob manages to solve most of
the goals presented by Alice, indicating that he has not overfitted completely on earlier goals.
At the same time, the wave-shape of the success rate also seems to indicate that Alice is still
evolving and finding goals that Bob does not yet know how to solve. This is also confirmed by
looking at the curriculum of goals that Alice is proposing, as can be seen in Fig. 7.3.

This seems to imply that even though Alice is still finding relevant goals for Bob and Bob is
still learning to solve them, Bob is making no progress on the evaluation tasks. A possible
explanation could be that Bob is in fact still overfitting slightly on more recent goals, and hence
tends to forget how to reach certain goals he was previously able to reach even though these
goals would still be in the replay buffer. If Alice converges really hard on some parts of the goal
space, this would fill the buffer more than proportional with goals from this region of the goal
space, making Bob overfit slightly on certain parts of the goal space.

Looking again at the curriculum of a particular run as showed in Fig. 7.3 seems to support this
hypothesis. Initially, Alice is proposing rather diverse goals, but later on, she starts to focus
on certain parts of the goal space that are hard for Bob at that moment. This results in very
concentrated goals which indeed could make Bob overfit and help explain the stagnation in Bob’s
performance although both Alice and Bob are doing what they were instructed: Alice is finding
goals that are hard to reach and Bob is learning to solve them.

Another observation from Fig. 7.1 is that the initial learning speed did actually reduce w.r.t.
random goal selection. This suggests that learning benefits from enough diversity in the
goal selection (if the experiences are informative, which is indeed the case using these dense
rewards).

7.2 Learning Motion Planning with Dense Environment Rewards 62

Fig. 7.2 Training success rates for Bob when training with asymmetric self-play (ASP) on dense
rewards.

(a) 0 - 1000 (b) 1000 - 2000 (c) 2000 - 3000 (d) 3000 - 4000

Fig. 7.3 Curriculum created by Alice for Bob using dense rewards and asymmetric self-play. Each
frame contains the goals proposed by Alice during 1000 consecutive episodes.

7.3 Learning Motion Planning with Sparse Environment Rewards 63

Finally, note that Alice found goals that are outside of the quarter sphere used for evaluation but
are still reachable by Bob. This can for example be seen in Fig. 7.3 (d), where most of the goals
are behind the robot although the quarter sphere only covers the space in front of the robot.
This confirms that ASP could indeed be used for goal-discovery in situations where describing
the (entire) goal space mathematically in order to sample from it is not trivial, and is related to
the findings in [11]. However, whether this would also improve the generalization to goals within
the target goal space cannot be assessed as the algorithm gets stuck due to overfitting.

7.3 Learning Motion Planning with Sparse Environment Re-
wards

In this section, the task is learned using binary rewards, 1 if the goal is reached (again using a
threshold of 5 cm) and zero otherwise:

r(s, a, s′|g) =

1, if ||xs′ − g||2 < 0.05

0, else
. (7.2)

In the previous section, Alice did not have to care too much about presenting goals that were
not too hard and could focus on discovery and exploration since with dense rewards every
transition is informative for Bob. In this section, however, Alice’s task is more difficult as Bob
now requires goals that are too easy nor too hard, to make the resulting experiences contain
sufficient informative rewards.

7.3.1 Learning with Random Goal Selection

When presenting Bob with random goals, the agent is not able to learn anything, as can be seen
in Fig. 7.4. This should not be a surprise as the probability of Bob reaching a random goal is
very small and hence it will almost never collect informative experiences, resulting in no learning
progress.

7.3.2 Learning with Asymmetric Self-Play

For these experiments, the random goal selection is again replaced by asymmetric self-play.
A number of different additions and combinations are evaluated and their performance is
analyzed.

Asymmetric Self-Play

From Fig. 7.4, it is immediately clear that ASP improves on random goal selection but does
not result in a good performance. As before, looking at Bob’s training success rate in Fig. 7.5
shows that Bob manages to solve a fraction of the goals presented by Alice and again the drops
in the success rate show that Alice is finding new parts of the goal region. However, when
further comparing the training success rate to the success rate obtained using dense rewards, it
is significantly lower. This is most likely due to the increased explorational difficulty for Bob.
Previously whenever Alice proposed a goal, every step Bob took was informative as the reward

7.3 Learning Motion Planning with Sparse Environment Rewards 64

Fig. 7.4 Performance comparison of asymmetric self-play (ASP), asymmetric self-play with
behavioral cloning (ASP + BC) and random goal selection using sparse rewards.

(a) Training success rate for Bob (b) Episode duration for Alice

Fig. 7.5 Training metrics for asymmetric self-play on sparse rewards.

7.3 Learning Motion Planning with Sparse Environment Rewards 65

always provided guidance on how to change its behavior. With sparse rewards, however, only
when Bob actually reaches the goal, the episode becomes informative, making it harder for Bob
to learn new goals presented by Alice.

Furthermore, Alice’s episode durations, which are also shown in Fig. 7.5, indicate that although
she knows how to stop, she does not present Bob with nearby2 goals. This might further explain
the low training success rate.

Asymmetric Self-Play + Behavioral Cloning

Adding Behavioral Cloning did not improve the asymptotic performance much as can be seen
in Fig. 7.4. This was unexpected as it did improve results before with dense rewards and in
Chapter 6. Furthermore, the resulting behavior of Bob is often very shaky3. This seems to be
caused by the best runs of the hyperparameter search having a high entropy loss coefficient for
Alice. This results in a high standard deviation and hence jerky motion for Alice, and because of
the behavioral cloning this jerky motion is transferred to Bob. This would prohibit any transfer
of this policy to a real robot and highlights that BC on Alice’s trajectories should be used with
care since she is by no means an ’expert’, as is usually the case for the demonstrations used in
BC.

Manually lowering the entropy loss coefficient avoided this shaky behavior but resulted in very
poor performance. So although BC increases the initial learning rate slightly, it does not improve
asymptotic performance.

Asymmetric Self-Play + Dynamic Windowing

In an attempt to force Alice to reduce her episode duration and to increase the diversity of
the goals proposed to Bob, dynamic windowing was added to the asymmetric self-play. This
mechanism was already introduced in Section 6.3. In an additional attempt to avoid overfitting
on the goals proposed by Alice, next to the dynamic windowing to set the maximal episode
duration for Alice, random goals are presented to Bob every 4 episodes. This ratio was found to
be the optimal choice with an initial search.

From the resulting performance in Fig. 7.6, it is clear that adding this restriction on Alice’s
episode duration further increases performance, yet again it seems to plateau eventually. Fig. 7.7
shows the resulting curriculum of a particular run. Initially, the goals proposed by Alice are
diverse as expected due to the restricted episode durations. Later on, however, Alice starts to
converge again and concentrates only on a particular part of the goal space instead of presenting
Bob with more diverse goals. This most likely results again in overfitting of Bob, explaining why
the learning progress is stagnating again. A video of the training process4 for snapshots of Alice
and Bob, confirms that Alice has converged again and is only proposing goals from the region of
the goal space corresponding to Fig. 7.7 (d).

2Note that the MDP-distance is used as the distance metric, which makes the episode duration a good indicator
for the distance.

3https://youtu.be/eTXdMEOeqyQ
4https://youtu.be/H5aOgx-szhE

https://youtu.be/eTXdMEOeqyQ
https://youtu.be/H5aOgx-szhE

7.3 Learning Motion Planning with Sparse Environment Rewards 66

Fig. 7.6 Performance comparison of asymmetric self-play (ASP) using dynamic windowing and
random goals on sparse rewards.

(a) 1000 - 2000 (b) 3000 - 4000 (c) 5000 - 6000 (d) 7000 - 8000

Fig. 7.7 Curriculum created by Alice for Bob using sparse rewards and asymmetric self-play with
dynamic windowing to restrict Alice’s episode duration. Each frame contains the goals proposed
by Alice during 1000 consecutive episodes.

Adding random goals apparently did not help to avoid this, as Bob plateaus at the same
success rate. This is most likely because the majority of these goals are not reachable, which
again makes their episodes not informative. This is in contrast with the original work on
asymmetric self-play [1], where rewards were dense and hence all trajectories were somewhat
informative.

By restricting Alice’s episode duration additional randomness was introduced again to the goals
proposed by Alice, and this increased the performance. At this point, it seems that asymmetric
self-play, because of its convergence, is simply not well suited for this task and that a method
that provides more diverse goals of an appropriate difficulty should give better results. In the
next section, this is explored further.

7.3.3 Learning with Hindsight Experience Replay

From the previous subsection, it has become clear that learning this task using sparse rewards
and the asymmetric self-play framework does not result in optimal performance. In this section,

7.3 Learning Motion Planning with Sparse Environment Rewards 67

Hyperparameter Value
learning algorithm TD3
learning rates 0.001
noise std deviation 0.4
train frequency 50 / episode
batch size 64
replay strategy future
replay goals / transition 4

Table 7.2 Hyperparameters for Hindsight Experience Replay.

hindsight experience replay (HER) will be used to create a goal curriculum for Bob, who still
uses the TD3 algorithm for learning.

HER was introduced in Chapter 2 and has been shown to perform well on similar robotics
tasks [16]. This experiment uses the implementation of the Stable Baselines framework [34].
The replay heuristic that was used is the one referred to as future in the original paper. With
this replay method, for each transition, the goals achieved in k random future transitions from
the same episode trajectory are used as the artificial target goals for the current transition.
The number of replays was set to 4, which was shown to be a good choice in [16]. Other
hyperparameters were simply chosen similar to the ASP hyperparameters or set to their default
values. All hyperparameters are listed in Table 7.2.

Since the goals for HER are sampled randomly at training time, the performance metric used
is simply the training success rate for HER, whereas for asymmetric self-play the same explicit
evaluation is used as before. As usual, the experiment is repeated using 5 random seeds and the
mean and standard deviation are reported.

The performance is compared against ASP and plotted against Bob’s environment steps. This is
different from previous figures, where the performance was always plotted against the episodes for
the ASP framework. This is because Alice proposes a goal for each episode and hence it seemed
more interesting to use the number of episodes as the independent variable. For this comparison,
the number of environment steps is used, which is the default within the research community as
it shows a direct relationship with the sample efficiency. Note that only the environment steps
for Bob are taken into account. Alice’s steps further decrease the total sample efficiency of the
framework.

Furthermore, for HER, the performance is evaluated using random initial states whereas for
ASP the initial state is always the home position. This is simply because the Stable Baselines
implementation uses random initial environment states by default. Manual evaluation of the final
policy using the fixed initial state however confirmed that this does not influence the asymptotic
performance measure.

The resulting performance can be observed in Fig. 7.8. From this figure, it is very clear that HER
outperforms ASP and is able to guide Bob to learn this task effectively using binary rewards.
The success rate seems to stagnate around 0.8. This might be solved by searching for better

7.4 Discussion 68

Fig. 7.8 Performance comparison of HER and ASP + dynamic windowing with sparse rewards.

hyperparameters. Visual observation of the resulting policy5 however, seems to indicate that
the goals not yet mastered by Bob are on the edges of the goal space. These goals are indeed
expected to be harder to solve as there is usually only one joint configuration that can reach them.
This already hints at a potential limitation of uniform sampling of goals, as used in HER.

7.4 Discussion

From the previous experiments, some conclusions can again be made w.r.t. learning motion
planning and the use of asymmetric self-play:

• When using a distance-based dense reward, random goal selection allows Bob to reach
almost perfect performance. This shows that local optima are not a severe problem for this
particular task.

• When using sparse rewards, random goal selection no longer works as expected since the
delayed reward makes almost all experiences non-informative. This shows how well-shaped
dense rewards can improve learning significantly.

• Using asymmetric self-play with dense rewards results in suboptimal performance, caused
by the tendency of Alice to converge on certain parts of the goal space on which Bob then
overfits.

• With sparse rewards, asymmetric self-play improves on random goal selection but gets
stuck on a low performance. This is again caused by the overfitting of Bob on certain parts
of the goal space due to the convergence of Alice. Contrary to the situation with dense
rewards, Bob has a very low training success rate. This is caused by the sparse rewards
that make non-successful episodes not informative.

5https://youtu.be/4yORLbOMZSs

https://youtu.be/4yORLbOMZSs

7.4 Discussion 69

• The fact that Alice does not limit her episode duration more is unexpected and might be
an additional reason for the limited performance when using sparse rewards. This might
be caused by the norm-based STOP encoding and hence using a separate head should be
tried. Next to this, tuning the reward function for Alice by adding more weight to her
episode durations might be required.

• Behavioral Cloning can lead to very shaky policies. Furthermore, it does not seem to
improve asymptotic performance with sparse rewards, which is unexpected.

• Restricting Alice’s episode duration more explicitly using dynamic windowing results
initially in more diverse goals and hence in higher performance. Later on, Alice again starts
to converge and Bob overfits on these goals, resulting again in the system getting stuck.

• The issue of Alice getting stuck and not finding new goals to present to Bob, which was the
main expected issue in [12], was not observed in this or the previous chapter. This might
be related to the removal of the lower bound in Alice’s reward function or the introduction
of the replay buffer which partially prohibits overfitting. It could also be that the author
misinterpreted the stagnation of the system as an issue of Alice getting stuck whereas it
was also caused by Bob’s overfitting.

• Hindsight Experience Replay was able to guide Bob to learn the task much faster and does
not have the increased sample inefficiency that comes with Asymmetric self-play as there is
no Alice that needs to interact with the environment.

It is clear from these findings and those of the previous chapter that asymmetric self-play with
continuous action spaces suffers greatly from the convergence issue. This often results in Bob
overfitting on certain parts of the goal space, which slows the learning process down and even
results in a complete stagnation.

Using an off-policy algorithm with a replay buffer to smoothen the goals presented by Alice, as
was done in this work, does not completely solve this overfitting issue. The hypothesis is that as
Alice fills the buffer with concentrated goals, sampling uniformly from this replay buffer does
not entirely avoid overfitting by Bob as the experiences themselves become too concentrated.
Randomizing the initial states seemed to provide enough diversity in the goals presented by
Alice on the low-dimensional task pointmass environment. On the motion planning task of this
chapter on the other hand using a uniformly sampled replay buffer has proven not to be sufficient
to overcome the overfitting that is caused by Alice’s convergence. This is only a hypothesis
however. Validating the impact of unbalanced data in the replay buffer requires using one of the
suggestions in Section 7.4.1 to test this hypothesis.

Furthermore, replay buffers might make it harder for Alice to teach Bob new goals once Bob
has overfitted as the probability for new experiences to be used in the next Q function update
decreases as the buffer size increases.

These observations should draw explicit attention to the importance of having balanced data
when using replay buffers. Using strongly non-uniform, time-varying distributions of goals and/or
other elements in the MDP, which is often done in active curriculum learning methods, does not
seem to go well with replay buffers because of the aforementioned reasons.

7.4 Discussion 70

7.4.1 Future Work on Asymmetric Self-Play

Avoiding the Overfitting Issue

The most straightforward alternative to deal with the overfitting would be to continue using
an on-policy algorithm for Bob and to somehow replay some previous goals of Alice to reduce
the overfitting on the current goals Alice is proposing. The OpenAI paper on goal-discovery
using asymmetric self-play [11] indeed mentions that both Alice and Bob play 20% of the time
against past versions of their opponent to improve stability and avoid forgetting (which is induced
by overfitting on more recent goals). This indicates that even in discrete action spaces the
authors were confronted with overfitting issues. They however do not provide any details on how
these past versions are sampled and did not include this past replaying in the accompanying
pseudo-code, making it easy to miss this part of their work which is expected to be crucial. This
approach also gives up the increased efficiency that comes with off-policy methods, which are
usually an order of magnitude faster according to [6]. This sample efficiency becomes even more
important when later on again combining goal curriculum learning with domain randomization,
as was the initial idea based on [22], in which case Bob has to learn to achieve Alice’s goals under
different dynamics. Furthermore, it remains a question how well this solution would transfer to
continuous actions spaces where the convergence issue is a lot more severe.

The notion that not every experience in the replay buffer might be equally informative at each
moment in time was explored before by Schaul et al. in [48] to increase learning speed. They
proposed Prioritized Experience Replay (PER), which uses a heuristic based on the error in the Q
function as a measure for how informative an experience is and samples the next batch according
to this measure. This could be an interesting approach to deal with the unbalanced data in the
replay buffer without falling back to on-policy algorithms. Instead of using it to improve learning
speed, this method could be used to overcome the overfitting that is caused by the unbalanced
data in the buffer. Additionally, adding a bias towards the most recent experiences could help in
discovering new parts of the goal space. It might however still be the case that the buffer simply
does not contain enough variety, in which case overfitting would take place even with PER.

Behavioral cloning should be able to help overcome this stagnation while also increasing the
learning speed. However two observations were made here: first of all, it can lead to bad behavior
for Bob as Alice is not an expert and secondly, the improvements from BC were lower than
expected on the motion planning task. A better way to integrate the trajectories from Alice
might be to introduce a second replay buffer for Bob. Separating Bob’s experiences from those
of Alice enables for controlling the ratio of experiences for each batch in the Q function updates.
It also enables to optimize the policy directly in a supervised way, using the regular imitation
learning loss (π(s)− a)2. This was also proposed in [49], where the authors explicitly worked
on integrating behavioral cloning with off-policy RL methods. To anticipate the non-expert
trajectories of Alice, their proposed Q-filter, with which the imitation loss is only used in case
the Q value of Alice’s action is higher than the Q value of the action proposed by Bob’s policy,
would also be a very interesting addition. This would make sure Bob can overcome suboptimal
demonstrations by Alice.

7.4 Discussion 71

Dealing with Convergence

Next to trying to deal with the overfitting issues caused by convergence, it would be even better
to tackle the convergence issue itself as this is inherently slowing down the learning process even
if it does not cause additional issues.

One approach could be to make Alice care not only about the performance of Bob on the current
goals but also more directly about what we care about: Bob’s generalization on the goal space.
One way to try to achieve this could be to leverage the idea of curiosity-driven exploration [50], in
which the prediction error made by an agent on the environment dynamics is used as an indicator
for how well this state space region has been explored. Providing Alice with such information
about Bob might give her increased motivation to propose more diverse goals instead of focusing
on a single region of the goal space at a time or might simply push her away when she starts to
converge, leading to less convergence and hence less overfitting for Bob.

A second approach could be to again make use of different Alices but to make them aware of each
other. A possible method could be to use Stein Variational Policy Gradient (SVPG) [51], which
creates N particles that are repulsed from each other based on the similarity of their network
parameters yet use the experiences from other particles as well. Hence, these particles could
tackle the two issues described with using multiple independent Alices (cf Chapter 6). SVPG
was designed to increase explorational power by having the particles visit different parts of the
state space. However, this makes it also interesting to avoid convergence issues with curriculum
teachers. It has for example been used in an environment curriculum method [8], where it most
likely served this same purpose of avoiding the environment aspects being too concentrated over
time.

7.4.2 Hindsight Experience Replay

In previous paragraphs, some possible directions for future research on asymmetric self-play have
been proposed to limit the impact of convergence and the resulting overfitting that was observed.
However, from the experiments in Section 7.3.3 it has become clear that Hindsight Experience
Replay actually provides a method that is easier to implement and monitor, sample-efficient
as off-policy algorithms can be used, and less prone to overfitting issues as the goals are still
randomly sampled.

It can therefore be concluded that even if one managed to solve the convergence issue or avoid
the resulting tendency of Bob to overfit, Hindsight Experience Replay should be used in a first
attempt to introduce curricula for exploration and generalization on environments where the
desired goal-space can be described mathematically. A limitation of this method is probably that
goal spaces should not contain harder subspaces for which the uniform sampling would most
likely not suffice to learn them.

The performance of HER on problems where the goal space contains harder subspaces that are
of interest seems not to have been evaluated before and this is yet another interesting research
suggestion, as it would be relevant to e.g. evaluate the use of HER for picking items from boxes

7.5 Lessons Learned 72

etc. It might very well be that using slightly non-uniform sampling strategies would allow for
focusing on certain parts that are harder while still avoiding overfitting.

7.5 Lessons Learned

In this final section, some of the lessons learned while performing the experiments with asymmetric
self-play from the last two chapters are briefly discussed.

The Influence of Dimensionality

The results from the experiments with ASP on the motion planning environment resulted in
findings that do not always correspond with the conclusions obtained on the low dimensional
pointmass environment. This again highlights the importance of selecting appropriate benchmark
and test environments. They cannot be overly complex as then training time starts to slow down
iteration time, yet if they are not complex enough it appears that some issues could be masked or
simply not manifest themselves, as was also observed during the implementation of the learning
algorithms in Chapter 5.

Multi-Agent Systems

Throughout the last two chapters, it has proven to be rather difficult to analyze this two-
player system as both influence each other. Finding causality in the observations is hence not
straightforward. For example, the low training success rate for Bob was interpreted as a problem
of Alice not proposing appropriate goals whereas it turned out that actually the problem was
also caused by Bob. Visualizing the curricula and resulting behavior of the agents proved to be
very helpful, as not everything can be expressed in training metrics.

Replay Buffer Issues

In hindsight, the issues with the replay buffer could have been foreseen and it seems unlikely
that other researchers were not aware of this.

Upon looking back at different papers on curriculum learning, I indeed found that most of them
use on-policy methods which seems to suggest that some researchers might have been aware
of these issues. The paper on Active Domain Randomization [8] however uses a replay buffer
with a teacher to set environment curricula, which made me wonder why they did not encounter
this issue. Diving a little deeper in the appendices, the authors mention that they reset and
randomly initialize their curriculum setting agents every 50 episodes, most likely to avoid the
issues with overconcentrated data that were discussed in the previous section.

It is unfortunate that none of them documented this issue, as it seems a useful insight for other
researchers working on curriculum learning. This is again a confirmation that scientific progress
does not only come from publishing success stories and things that work, but also from providing
insight into things that did not work or limitations of current approaches.

7.5 Lessons Learned 73

Reward Shaping

The results of Chapter 7 have also confirmed how much difference a well-shaped reward function
can make. Exploration becomes tremendously difficult when using binary rewards and hence from
a pragmatic point of view, it seems very much worth the trouble of experimenting with reward
shaping before deciding to move to binary rewards to avoid local optima, if present. Creating a
dense reward function without local optima did not exactly require expert knowledge for the
motion planning task, but for more complex tasks it has been shown to be more time-consuming
and to require expert knowledge on the target domain [52]. From a research perspective, binary
rewards are still of much interest as they are completely domain agnostic.

Chapter 8

Conclusion

In this work, asymmetric self-play was explored as a method for generating goal curricula in
environments with continuous action spaces. This research was performed bottom-up, meaning
that the whole process of creating a complex DeepRL framework to solve custom problems was
described and some lessons learned were discussed.

First, a simulation environment to learn various behaviors for an industrial robot using joint
position control was developed. Using this environment, a motion planning task was created in
which the robot has to bring the end-effector to a specified location.

For the teacher and student in the asymmetric self-play framework, two state-of-the-art model-
free learning algorithms were implemented and tested. Using these learning algorithms, a
goal-conditioned implementation of ASP was made. To anticipate on the expected convergence
issues for Alice and to make the framework more sample efficient, a replay buffer was introduced
for the student Bob.

Using a low-dimensional pointmass task, different reward mechanisms and other modifications
were evaluated. From these experiments, it became clear that asymmetric self-play easily gets
stuck due to the convergence of the teacher Alice and resulting overfitting of Bob on the goals
proposed by Alice. Randomizing the initial states and using an informative reward function
for Alice allowed to overcome this overfitting and to learn the pointmass task from binary
rewards.

For the motion planning task it was shown that when using uniform goal selection, a distance-
based, dense reward allows for learning this task without any curriculum. Learning from binary
rewards, on the other hand, requires guidance to overcome the exploration issues. This confirms
that although dense rewards often introduce local optima and hence require manual engineering,
they are from a pragmatic perspective still very valuable.

When using dense rewards, the asymmetric self-play framework was found to reduce the per-
formance w.r.t. random goal selection on the motion planning task. With sparse rewards, the
framework outperforms random goal selection but although multiple modifications were tried,
the performance plateaus at a suboptimal level. This is caused by the convergence issue which
makes the student overfit on the teacher. The use of a replay buffer proved not sufficient to

75

overcome this. The hypothesis is that replay buffers with uniform sampling inherently do not go
well with highly concentrated and time-varying goal distributions as they become too unbalanced
themselves.

Finally, hindsight experience replay was briefly explored as an alternative for asymmetric self-play.
This method is easier to implement and analyze, while resulting in a better performance on the
motion planning task. It requires however that the goal space can be sampled from and is limited
by the uniform goal-sampling strategy.

To conclude, it is clear that asymmetric self-play, in theory, has a lot of potential for guiding
learning w.r.t. exploration, generalization and goal-discovery. For now, its performance is mainly
limited due to a lack of diversity in the goals presented by Alice. This results in a reduced
learning speed and often even in complete stagnation as Bob overfits on these goals. It is expected
that with further research these issues will be solved. However, the solutions will most likely
make the framework even more complex, harder to analyze and less efficient.

Future Work

The first issue to overcome is the overfitting of Bob on Alice’s goals. Using a replay buffer
with uniform sampling did not solve this and hence the next step would be to use non-uniform
sampling to deal with the unbalanced buffer content, which is expected to be the cause of the
overfitting. Prioritized experience replay [48] provides a possible solution for this by sampling
the experiences based on the TD-error. Additionally biasing the probability slightly towards the
most recent experiences would likely help in learning new goal-regions faster.

To make better use of the trajectories provided by Alice, which is one of the main advantages
of asymmetric self-play, a separate replay buffer should be used for the behavioral cloning
trajectories. This allows to fix the ratio in each batch during the Q-function update. Additionally,
it allows for using the supervised imitation loss to update the policy function directly. Both
modifications were proposed in [49].

These updates should allow for overcoming the overfitting and hence should result in increased
performance. In a next step, the convergence issue itself should be tackled as this inherently
slows down learning. To this end, multiple Alices could be introduced and made aware of each
other using Stein Variational Policy Gradient (SVPG) [51].

From a pragmatic point of view, however, reward shaping or more heuristic curriculum methods
such as Hindsight Experience Replay seem to be more efficient for creating guidance, and hence
these should be tried before turning towards asymmetric self-play.

Epilogue

In past years as well as during the course of this thesis, I have been amazed many times by the
achievements of Deep Reinforcement Learning: learning fine-grained dexterous manipulation,
learning to beat the world champion in the game of GO or learning end-to-end robotics control
policies... At the same time, however, during this thesis, I learned that the proof of the pudding
is in the eating.

The deepRL research field seems very much focused on success stories. Published papers often
focus on how well their methods work and sometimes seem to hide or focus too little on negative
results and/or limitations. An observed phenomenon for example is describing these limitations
in appendices (and hence I now always start by looking at the appendices before reading a paper).
Another is only describing final results and not indicating how hard it was to obtain them or how
brittle component X or Y actually is, which is not captured in the mathematical formulations
used to describe them. This focus on success results in my opinion in two problems:

1. New researchers (like myself) have unrealistic expectations of what can be achieved and
overly optimistic views on the robustness of deepRL methods. This can be very discouraging
as these researchers embark on overly ambitious projects in which they then risk getting
stuck. Furthermore, it can be very unproductive as it does not emphasize enough how
important details are and hence how carefully one should conduct research in RL, something
which is then only discovered later on during the process.

2. Even more important: By focusing mainly on these success stories, knowledge is lost or not
optimally spread to a broader research community, which slows down overall progress in
the field.

DeepRL has achieved incredible things in recent years. It is an incredibly promising framework
for learning optimal decision-making strategies in a domain-agnostic way. At the very same time,
the field seems to suffer from a hunger for success. A more balanced focus on both the successes
and limitations or issues, would create a more realistic view on the progress and state of the art.
This would help in spreading knowledge which would result in better decision-making on which
framework to use for a problem or make it easier to identify key bottlenecks in current methods.
All of this would result in more overall progress, which is what we all strive for in the end.

References

[1] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, “Intrinsic
motivation and automatic curricula via asymmetric self-play,” in 6th International Conference
on Learning Representations (ICLR), 2018.

[2] International Federation of Robotics (IFR), “Industrial robotics.” https://ifr.org/
industrial-robots, 2020. Accessed 2020-05-07.

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement
learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, p. 26–38, Nov 2017.

[4] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection,” The International
Journal of Robotics Research (IJRR), vol. 37, no. 4-5, pp. 421–436, 2018.

[5] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al., “Solving rubik’s cube with a robot hand,” arXiv
preprint arXiv:1910.07113, 2019.

[6] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train your
robot with deep reinforcement learning: lessons we have learned,” The International Journal
of Robotics Research (IJRR), vol. 40, no. 4-5, pp. 698–721, 2021.

[7] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization
for transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pp. 23–30, 2017.

[8] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active domain randomization,” in
Conference on Robot Learning (CoRL), pp. 1162–1176, PMLR, 2020.

[9] V. Kumar, D. Hoeller, B. Sundaralingam, J. Tremblay, and S. Birchfield, “Joint space
control via deep reinforcement learning,” arXiv preprint arXiv:2011.06332, 2020.

[10] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer, “Automatic curriculum
learning for deep rl: A short survey,” arXiv preprint arXiv:2003.04664, 2020.

[11] O. OpenAI, M. Plappert, R. Sampedro, T. Xu, I. Akkaya, V. Kosaraju, P. Welinder, R. D’Sa,
A. Petron, H. P. d. O. Pinto, et al., “Asymmetric self-play for automatic goal discovery in
robotic manipulation,” arXiv preprint arXiv:2101.04882, 2021.

[12] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse curriculum
generation for reinforcement learning,” in Conference on robot learning (CoRL), pp. 482–495,
PMLR, 2017.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

https://ifr.org/industrial-robots
https://ifr.org/industrial-robots

References 78

[15] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approximators,”
in International conference on machine learning (ICML), pp. 1312–1320, PMLR, 2015.

[16] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience replay,” in Advances in
Neural Information Processing Systems (NIPS), vol. 30, 2017.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Representation Learning (ICLR), 2015.

[19] O. G. Selfridge, R. S. Sutton, and A. G. Barto, “Training and tracking in robotics.,” in
International Joint Conferences on Artificial Intelligence (IJCAI), pp. 670–672, 1985.

[20] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings
of the 26th annual international conference on machine learning (ICML), pp. 41–48, 2009.

[21] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains: A survey.,”
Journal of Machine Learning Research (JMLR), vol. 10, no. 7, 2009.

[22] S. C. Raparthy, B. Mehta, F. Golemo, and L. Paull, “Generating automatic curricula via
self-supervised active domain randomization,” arXiv preprint arXiv:2002.07911, 2020.

[23] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider,
J. Tobin, M. Chociej, P. Welinder, et al., “Multi-goal reinforcement learning: Challenging
robotics environments and request for research,” arXiv preprint arXiv:1802.09464, 2018.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”
in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5026–5033, 2012.

[25] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games,
robotics and machine learning.” http://pybullet.org, 2016–2021. Accessed 2020-4-16.

[26] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao, H. Henry,
M. Mattar, and D. Lange, “Unity: A general platform for intelligent agents,” arXiv preprint
arXiv:1809.02627, 2020.

[27] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for hierarchical reinforce-
ment learning,” arXiv preprint arXiv:1704.03012, 2017.

[28] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic
control with dynamics randomization,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018.

[29] A. Yakovlev and C. Greene, “Use articulation bodies to easily prototype indus-
trial designs with realistic motion and behavior.” https://blogs.unity3d.com/2020/05/20/
use-articulation-bodies-to-easily-prototype-industrial-designs-with-realistic-motion-and-behavior/,
2020. Accessed 2020-4-15.

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[31] P. Varin, L. Grossman, and S. Kuindersma, “A comparison of action spaces for learning
manipulation tasks,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 6015–6021, 2019.

http://pybullet.org
https://blogs.unity3d.com/2020/05/20/use-articulation-bodies-to-easily-prototype-industrial-designs-with-realistic-motion-and-behavior/
https://blogs.unity3d.com/2020/05/20/use-articulation-bodies-to-easily-prototype-industrial-designs-with-realistic-motion-and-behavior/

References 79

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural Information Processing
Systems (NIPS), vol. 32, pp. 8024–8035, 2019.

[33] L. Biewald, “Experiment tracking with weights and biases,” 2020. Software available from
wandb.com.

[34] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann, “Stable
baselines3.” https://github.com/DLR-RM/stable-baselines3, 2019.

[35] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov, “Openai baselines.” https://github.com/openai/baselines, 2017.

[36] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep rein-
forcement learning that matters,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[37] J. Achiam, “Spinning Up in Deep Reinforcement Learning.” https://spinningup.openai.com/
en/latest/, 2018.

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[39] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-
mization,” in International conference on machine learning (ICML), pp. 1889–1897, PMLR,
2015.

[40] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous
control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-
tional conference on machine learning (ICML), pp. 1928–1937, PMLR, 2016.

[42] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” in International conference on machine learning (ICML),
pp. 387–395, PMLR, 2014.

[43] S. Levine, “Cs-285: Deep reinforcement learning.” http://rail.eecs.berkeley.edu/
deeprlcourse-fa19/, 2019.

[44] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic
methods,” in International Conference on Machine Learning (ICML), pp. 1587–1596, PMLR,
2018.

[45] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[46] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot,
M. Geist, O. Pietquin, M. Michalski, et al., “What matters in on-policy reinforcement
learning? a large-scale empirical study,” arXiv preprint arXiv:2006.05990, 2020.

[47] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing
Systems (NIPS), vol. 27, 2014.

[48] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in
International Conference on Representation Learning (ICLR), 2016.

https://github.com/DLR-RM/stable-baselines3
https://github.com/openai/baselines
https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/
http://rail.eecs.berkeley.edu/deeprlcourse-fa19/
http://rail.eecs.berkeley.edu/deeprlcourse-fa19/

References 80

[49] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming ex-
ploration in reinforcement learning with demonstrations,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299, IEEE, 2018.

[50] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by
self-supervised prediction,” in International Conference on Machine Learning (ICML),
pp. 2778–2787, PMLR, 2017.

[51] Y. Liu, P. Ramachandran, Q. Liu, and J. Peng, “Stein variational policy gradient,” in 33rd
Conference on Uncertainty in Artificial Intelligence, UAI, 2017.

[52] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe,
Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient deep reinforcement learning for
dexterous manipulation,” arXiv preprint arXiv:1704.03073, 2017.

Appendix A

Algorithm Pseudo Code

82

Algorithm 4 PPO
1: Input: combined policy and value function parameters θ, rollout buffer D, environment E
2: repeat
3: Reset the rollout buffer D
4: while |D| < rollout_length do
5: Select action a ∼ πθ(·|s)
6: Execute a in the environment
7: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
8: Store (s, a, r, s′, d) in the rollout buffer D
9: If s′ is terminal, reset environment state.

10: end while
11: θold ← θ

12: Compute rollout advantage estimates Â(si, ai) using GAE
13: Compute rollout return estimates R̂(si, ai) = Â(si, ai) + Vθ(si)
14: Normalize the advantages
15: for epochs iterations do
16: for batch B in shuffle({D, Â, R̂}) do
17: Compute the actor Loss

LCLIP
t (θ, θold, B) = 1

|B|
∑

(si,ai)∈B

min
(

πθ(ai|si)
πθold

(ai|si)
Â(si, ai), clip

(
πθ(ai|si)

πθold
(ai|si)

, 1− ϵ, 1 + ϵ

)
Â(si, ai)

)

18: Compute the value loss

LV F (θ, B) = 1
|B|

∑
(si,ai)∈B

(R̂(si, ai)− Vθ(si))2

19: Compute the policy entropy S(πθ)
20: Compute the combined loss value

L(θ, B) = LCLIP
t (θ, θold, B)− c1LV F (θ, B) + c2S(πθ)

21: Update θ with one step of gradient ascent using

clip(∇θL(θ, B))

22: end for
23: end for
24: until finished

83

Algorithm 5 (Twin-Delayed) DDPG [37]
1: Input: policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay buffer D, environment

E
2: Set target parameters equal to main parameters θtarg ← θ, ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

3: repeat
4: Select action a = clip(µθ(s) + ϵ, aLow, aHigh), where ϵ ∼ N (0, σaction)
5: Execute a in the environment
6: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, d) in replay buffer D
8: If s′ is terminal, reset environment state.
9: if it’s time to update then

10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
12: Compute target actions ▷ noise only added for TD3

a′(s′) = clip
(
µθtarg(s′) + clip(ϵ,−c, c), aLow, aHigh

)
, ϵ ∼ Unif[0, σtarget]

▷ this is an implementation bug, noise should have been ϵ ∼ N (0, σtarget)
13: Compute targets ▷ min only for TD3

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕtarg,i
(s′, a′(s′))

14: Update Q-functions by one step of gradient descent using

∇ϕi

1
|B|

∑
(s,a,r,s′,d)∈B

(
Qϕi

(s, a)− y(r, s′, d)
)2 for i = 1, 2

15: if j mod policy_delay = 0 then ▷ only for TD3
16: Update policy by one step of gradient ascent using

∇θ
1
|B|

∑
s∈B

Qϕ1(s, µθ(s))

17: Update target networks with

ϕtarg,i ← (1− τ)ϕtarg,i + τϕi for i = 1, 2
θtarg ← (1− τ)θtarg + τθ

18: end if
19: end for
20: end if
21: until finished

Appendix B

Search Hyperparameters for the
Experiments from Chapter 7

This appendix lists the values of the hyperparameters that were obtained with a random search.
The hyperparameters that were not included in the search are not listed here to keep the tables
more compact. These values can be found in table 7.1. All experiments use the Adam optimizer
[18] with default hyperparamaters as provided in Pytorch, except for the learning rate.

As already mentioned in chapter 7, for some experiments the range for Alice’s entropy loss
coefficient was set by accident to [0− 0.005] instead of [0− 0.001]. An asterisk is put next to the
entropy loss coefficients if this was the case.

Dense rewards

Bob
Hyperparameter Value
actor learning rate 0.000870
noise std deviation 0.380
batch size 128
train frequency 55/episode
hidden layer size 512
max episode duration 200

Table B.1 Hyperparameter values obtained from random search for random goal selection with
dense rewards. All other hyperparameters are listed in table 7.1.

85

Alice Bob
Hyperparameter Value Hyperparameter Value
entropy loss coefficient 0.000735 actor learning rate 0.000897

noise std deviation 0.389
batch size 128
train frequency 91/episode
hidden layer size 512

max episode duration 100 max episode duration 200
Table B.2 Hyperparameter values obtained from random search for ASP with dense rewards. All
other hyperparameters are listed in table 7.1.

Alice Bob
Hyperparameter Value Hyperparameter Value
entropy loss coefficient 0.000284 actor learning rate 0.000509

noise std deviation 0.380
batch size 128
train frequency 60/episode
hidden layer size 512

max episode duration 150 max episode duration 150
Table B.3 Hyperparameter values obtained from random search for ASP+BC with dense rewards.
All other hyperparameters are listed in table 7.1.

Sparse rewards

Bob
Hyperparameter Value
actor learning rate 0.000740
noise std deviation 0.280
batch size 32
train frequency 76/episode
hidden layer size 512
max episode duration 250

Table B.4 Hyperparameter values obtained from random search for random goal selection with
dense rewards. All other hyperparameters are listed in table 7.1.

86

Alice Bob
Hyperparameter Value Hyperparameter Value
entropy loss coefficient 0.000827 actor learning rate 0.000667

noise std deviation 0.350
batch size 64
train frequency 75/episode
hidden layer size 128

max episode duration 150 max episode duration 150
Table B.5 Hyperparameter values obtained from random search for ASP with sparse rewards.
All other hyperparameters are listed in table 7.1.

Alice Bob
Hyperparameter Value Hyperparameter Value
entropy loss coefficient 0.00358* actor learning rate 0.000745

noise std deviation 0.380
batch size 64
train frequency 95/episode
hidden layer size 128

max episode duration 100 max episode duration 200
Table B.6 Hyperparameter values obtained from random search for ASP+BC with sparse rewards.
All other hyperparameters are listed in table 7.1.

Alice Bob
Hyperparameter Value Hyperparameter Value
entropy loss coefficient 0.00108* actor learning rate 0.000922

noise std deviation 0.385
batch size 128
train frequency 35/episode
hidden layer size 256

max episode duration 150 max episode duration 150
Table B.7 Hyperparameter values obtained from random search for ASP + dynamic windowing
with sparse rewards. All other hyperparameters are listed in table 7.1.

Alice Bob
Hyperparameter Value Hyperparameter Value
entropy loss coefficient 0.00387* actor learning rate 0.000883

noise std deviation 0.397
batch size 64
train frequency 80/episode
hidden layer size 256

max episode duration 150 max episode duration 150
Table B.8 Hyperparameter values obtained from random search for ASP + dynamic windowing
+ random goals every 4th episode with sparse rewards. All other hyperparameters are listed in
table 7.1.

	Permission of Use
	Acknowledgements
	Abstract
	Extended Abstract
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Outline

	2 Background and Related Work
	2.1 Reinforcement Learning
	2.1.1 Formulation
	2.1.2 Multi-Goal Formulation
	2.1.3 Deep Reinforcement Learning
	2.1.4 Short Taxonomy of Model-Free Deep Reinforcement Learning Algorithms

	2.2 Automatic Curriculum Learning
	2.3 Related Work on Goal Curriculum Learning

	3 Robot Simulation Environment
	3.1 Environment Design Choices
	3.2 Unity Simulation World
	3.3 ML-Agents
	3.4 Python Interface
	3.5 Lessons Learned

	4 Experimental Setup
	4.1 Environments
	4.1.1 Benchmark Environments
	4.1.2 Pointmass Environment
	4.1.3 Motion Planning Environment

	4.2 Tools, Hardware and Frameworks

	5 Learning Algorithms
	5.1 Proximal Policy Optimization (PPO)
	5.1.1 Policy Gradient Methods
	5.1.2 Formulation
	5.1.3 Additional Modifications

	5.2 Deep Deterministic Policy Gradient (DDPG)
	5.2.1 Formulation
	5.2.2 Twin Delayed Deep Deterministic Policy Gradient (TD3)

	5.3 Evaluating the Implementations
	5.3.1 Evaluating PPO
	5.3.2 Evaluating DDPG
	5.3.3 Evaluating TD3

	5.4 Lessons Learned

	6 Asymmetric Self-Play
	6.1 Possible Issues with Asymmetric Self-Play
	6.2 Asymmetric Self-Play Framework
	6.3 Reward Structures for Alice
	6.4 Bringing More Diversity to Bob's Goals
	6.5 Evaluating Asymmetric Self-Play on Low-Dimensional Task
	6.5.1 Comparing Reward Structures
	6.5.2 Evaluating Convergence
	6.5.3 Evaluating Behavioral Cloning

	6.6 Discussion

	7 Learning Motion Planning using Asymmetric Self-play
	7.1 Methodology
	7.2 Learning Motion Planning with Dense Environment Rewards
	7.2.1 Learning with Random Goal Selection
	7.2.2 Learning with Asymmetric Self-Play

	7.3 Learning Motion Planning with Sparse Environment Rewards
	7.3.1 Learning with Random Goal Selection
	7.3.2 Learning with Asymmetric Self-Play
	7.3.3 Learning with Hindsight Experience Replay

	7.4 Discussion
	7.4.1 Future Work on Asymmetric Self-Play
	7.4.2 Hindsight Experience Replay

	7.5 Lessons Learned

	8 Conclusion
	Epilogue
	References
	Appendix A Algorithm Pseudo Code
	Appendix B Search Hyperparameters for the Experiments from Chapter 7

