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Capsule Networks for Hyperspectral Image
Classification: From Theory to Practice

Zeno Dhaene

Supervisors: Prof. dr. ir. Aleksandra Pizurica, Nina Žižakić, Dr. Shaoguang Huang, Xian Li

Abstract— Understanding the Earth and seeing how it evolves is an im-
portant field of study with applications in climate research and land usage.
Hyperspectral image classification is the process of assigning a geological
label to each pixel of images captured by dozens or hundreds of sensors
on aircrafts or satellites, and has greatly benefited from the rise of deep
learning techniques. In this thesis, I propose a new multi-stream architec-
ture based on capsule networks, a supervised deep learning technique that
models hierarchical relationships of pixels in spatial regions. This new ar-
chitecture combines the spectral features captured by the sensors with the
information of the spatial neighborhood in a 3D model. Apart from the
theoretical modelling of a classifier, I develop a user-friendly software tool
for classifying unlabeled hyperspectral images that can be used for both
practical and research purposes. In this web application, hyperspectral im-
ages and architectures with corresponding hyperparameters are combined
to create a classification map of the terrain.

Keywords— hyperspectral images, hyperspectral image classification,
capsule networks, classification tools, web applications, remote sensing

I. INTRODUCTION

THE assignment of a geological class to an area on the globe
can be useful information for many applications. For ex-

ample, the agricultural productivity of an area may be linked to
the area covered by a specific crop, to determine soil fertility
and optimal sowing strategies [3]. In climate research, we can
monitor the area covered by lakes, deserts, and glaciers to bet-
ter predict how climate change will affect the Earth in the years
to come. Gathering these statistics is a difficult process, and
involves looking at aerial and satellite images. However, the in-
formation contained in these RGB images is limited, and lacks
detailed information on distinguishing different crop types.

Hyperspectral images can provide this required additional in-
formation by capturing more than the three traditional spec-
tral bands red (wavelengths 564–580 nm), green (wavelengths
534–545 nm) and blue (wavelengths 420–440 nm), but mea-
sure dozens or even hundreds of spectral wavelengths ranging
from 400 nm to far beyond the capabilities of human vision, up
to 2500 nm. Each sensor therefore captures light in a specific
way, leading some sensors to see the difference between two
crop types, and other sensors able to discern water from land.
Combining the output of these sensors creates a data cube with
two spatial dimensions - representing the relative location of the
pixels - and one spectral dimension with the sensor values of
the different spectral bands. A single pixel in the dataset cov-
ers a certain area, determined by the resolution of the dataset.
The sensor values that were captured over that area is called the
spectral signature of the area.

In Figure 1c, we can see the ground truth of the Salinas
dataset, an academic dataset of a part of the Salinas valley in
California, one of the most productive agricultural regions in

(a) Band 75 (b) Band 125 (c) Ground truth

Fig. 1: Spectral bands 75 and 125, and the ground truth map of
the Salinas dataset

California. The different colors indicate different crop types,
ranging from celery and lettuce fields to vinyards. In this par-
ticular dataset, which measures 512 × 217 pixels, has a reso-
lution of 3.7 metres. Therefore, each pixel covers an area of
3.7m × 3.7m = 13.69m2, with the entire dataset covering ap-
proximately 1.52 km2. Each pixel in the hyperspectral image
has a spectral signature consisting of 224 values. An example
of a normalized spectral signature is provided in Figure 2. Nor-
malization of the different spectral bands is necessary, as the
variance within the bands can range from 101 to 107.

II. RELATED WORK

A. Hyperspectral image classification

In supervised hyperspectral image classification, a hyperspec-
tral image is classified by feeding a limited amount of labeled
training samples to a machine learning architecture which can
be used to predict the geological class for the remaining pix-
els in the dataset. The network architecture can either be 1-
dimensional, by taking only the spectral values of the target
pixel as input, or multidimensional. 1-dimensional architectures
like the deep belief network by Chen et al. [4] is an example
of such a network that only uses spectral information for the
currently classified pixel. They note that their proposed archi-
tecture, which uses spatial information as well, performs signif-
icantly better.



Fig. 2: Spectral signature

In both 2 and 3 dimensions, the spatial neighbourhood of the
target pixel is taken into account. For 2D architectures, often
PCA is used to select the most relevant spectral slices over the
pixels in the spatial neighborhood. An example is 2D-CNN [6],
which uses PCA to reduce the dimensionality of the hyperspec-
tral image from three dimensions to 2 dimensions. Computa-
tionally, this delivers faster and sometimes more accurate mod-
els compared to 3D architectures where all spectral bands of all
pixels in the neighborhood are included in the input data. 3D ar-
chitectures like multi-scale wavelet 3D convolutional neural net-
work (MW-3D-CNN) [7] and multi-scale 3D deep convolutional
neural network (M3D-DCNN) [8] often use multiple streams or
scales to reduce the level of overfitting that accompanies higher-
dimensional data.

Hybrid solutions are available as well: M3D-DCNN [5] is a
multi-scale deep convolutional neural network proposed for HSI
classification, which can jointly learn both 2D multi-scale spa-
tial features and 1D spectral features. Additionally, there are a
number of architectures that provide the entire dataset as train-
ing sample to the network. This can be done in a Graph Con-
volutional Network like in LWCNN [9] and TGRS-CNN [10],
which exploit spatial information by representing the pixels as
a connected graph, where two pixels are connected if they are
similar in spectral signature while not necessarily being adja-
cent to eachother.

Apart from supervised techniques, there are semi-supervised
unsupervised techniques for transfer learning, in an attempt to
classify unlabeled hyperspectral images using previously ob-
tained models. These deep transfer learning models like mul-
tiscale spectral-spatial networks (MSSN) [11] and the Deep Do-
main Adaptation architecture (DDA-Net) [12] utilize modules
in subsequent stages to train an architecture that can be used for
transfer learning. Finally, there are architectures that use more
than hyperspectral data alone, like the Multimodal Deep Learn-
ing Meets Remote Sensing framework (MDL-RS) [13] which
uses multiple modalities like heightmaps to classify the dataset.

B. Capsule Networks

Capsule networks were proposed only recently [1] and are
seen as an extension of traditional convolutional neural networks
(CNN). They exploit hierarchical features, meaning that the rel-
ative position of two detected features is also important. In the
domain of general image classification, we might draw the par-
allel with detecting face, where the existence of two eyes and
one mouth is not enough to detect a face. In contrast to CNN,
where the output of a neuron is a scalar, capsule layers output a
vector instead. The neurons in CNN are called capsules in cap-
sule networks. The norm of the output vector represents the con-
fidence of the capsule that a certain learned feature is present in
the convolutional window. The direction of the vector describes
its instantiating parameters. This describes the hue or brightness
of a color, or the rotation of a feature. In practice, these instanti-
ating parameters are not as intuitive since they are learned from
the data.

Usually, a capsule network consists of two layers: a primary
and a secondary layer. Applied to general image classification,
the primary layer would detect basic features, such as eyes and
ears, while the secondary capsule layer would combine the out-
put vectors of the primary layer to create more complex features
like a face. In hyperspectral image classification too, this hi-
erarchical structure of features can be detected, by combining
spectral and spatial features together into the predicted geologi-
cal class.

III. PROPOSED MULTI-STREAM CAPSULE ARCHITECTURE

A difficulty with hyperspectral images is that datasets are usu-
ally not labeled. This creates the need of some sort of pre-
processing stage, either manually or automatically through pro-
cesses like clustering, where training samples and their respec-
tive classes are initialized. Therefore, it is useful to create an
architecture that can give accurate classification results with rel-
atively little training data. Additionally, a 3-dimensional archi-
tecture contains the most information about the target pixel, as
the spatial neighborhood of the pixel has been shown to be very
important for accurate classification results and PCA is not ap-
plied. However, computational complexity for 3D training sam-
ples is high and suffers from the curse of dimensionality, de-
grading classification performance.

The final difficulty that will be addressed in the proposed ar-
chitectures is the influence of the neighborhood size on the clas-
sification results. The neighborhood size must be chosen large
enough, so that outliers in the spectral signature of the target
pixel or its immediate neighbours don’t influence the prediction.
However, a neighborhood that is chosen too large will result in
lost details, as information is mixed over a big area. This might
cause very narrow geological classes to disappear.

To remedy these limitations, I propose a new 3D, multi-
stream architecture based on capsule networks. The architec-
ture takes training samples with dimensions n × n × d, where
n (odd) is the highest neighborhood size and d is the number of
spetral bands in the dataset. The center column with dimension



1× 1× d denotes the spectral values of the target pixel. For the
training process, 50 labeled samples per class are used, which is
approximately 1.5% of the labeled pixels in the Salinas dataset.
This number is chosen empirically, and delivers a balance be-
tween under- and overfitting, taking the problem of unlabeled
datasets into account. The training process starts in three distinct
streams, where each stream takes in a smaller neighborhood ra-
dius around the target pixel. This way, the benefits of having
detailed information about edges between geological classes is
preserved while also having the robustness of large neighbor-
hood sizes. The balance between the larger and smaller streams
is learned by the architecture.

The 3-dimensional training samples are fed through the net-
work in batches. First, a convolutional filter is applied to reduce
the dimensionality of the data cube. Afterwards, the 3D data is
fed into the primary capsule layer, where the primary features
are learned. The squash function alters the output vectors to
have a length between 0 and 1. These squashed vectors are then
concatenated into a single stream, and are provided as features
to the secondary capsule layer, which has k capsules, with k
the number of labeled classes in the ground truth of the dataset.
Each output vector of the k capsules is again squashed, making
the norm of the vectors interpretable as the confidence of the
network that the target pixel belongs to that class. The output
vector with the highest norm is chosen as the predicted class of
the network.

IV. WEB APPLICATION

Current state-of-the-art models achieve an accuracy in excess
of 99%, which is also a score obtained by the proposed archi-
tecture on some datasets. These performance numbers are good
enough to be applied in practice, where we can compare clas-
sification performance in an academical context to a practical
context. A lot of hyperspectral images are available openly and
for free through various satellite programs of NASA and ESA.
These datasets are completely unlabeled, creating the need of a
manual preprocessing step.

I present an application that can be used both by remote sens-
ing researchers and machine learning experts in the field to clas-
sify unlabeled hyperspectral images. The application can gener-
ate a complete classification map for any hyperspectral image,
along with the area coverage for each class. To achieve this, the
application, which is deployed as a web application, requires 4
inputs: (1) the unlabeled hyperspectral image, (2) manually as-
signed training samples - indicated through the user interface,
(3) an architecture - which can be uploaded by the researcher
and used by the expert, and (4) the hyperparameters for the ar-
chitecture. The output is a classification map, the area per class
indicated in pixels or km2 if the resolution was provided, and a
confusion map. This confusion map can be used to see whether
hyperparameters or training samples need to be adjusted.

The web application is written in a way that models are en-
queued on a server and trained one after the other, which en-
ables multiple users to use the system at the same time without
needing powerful hardware, with the additional benefit that a lot

of models can be enqueued and are run automatically without
the need for supervision. The source code of this application is
available on GitHub [2].

V. RESULTS

The results in this section were obtained by running the pro-
posed multi-stream architecture on both labeled datasets and un-
labeled datasets. For the labeled datasets, the performance of a
model trained with manually indicated classes is compared to
the ground truth of the dataset. Per dataset, the hyperparam-
eters of the model are fixed regardless of whether the model
is trained with manually labeled or ground truth training sam-
ples. Per class, 50 labeled samples were used in the training set
and 50 different labeled samples were used in the validation set.
The multi-stream model consists of three streams, with neigh-
borhood sizes 3× 3, 7× 7, and 11× 11.

A. Classifying academical HSI

In Table I, we compare the single-stream architecture with
the proposed multi-stream architecture. It is clear that there is
an improvement in classification performance by going from a
single stream to three streams. The difference lies between 1 and
4 percent with regards to overall accuracy and average accuracy,
as well as an increase of up to 0.04 for Cohen’s Kappa metric.

Dataset OA AA κ× 100
Salinas: single-stream 83.44 92.08 83.88
Salinas: multi-stream 87.15 94.51 86.42
Indian Pines: single-stream 65.70 81.19 60.94
Indian Pines: multi-stream 70.52 84.02 66.22
PaviaU: single-stream 97.31 96.91 96.31
PaviaU: multi-stream 98.25 98.13 98.09

TABLE I: Overall Accuracy (OA), Average Accuracy (AA), and
Cohen’s Kappa metric comparison between a single stream and
multiple streams. The kappa metric measures how much better
the classifier performs in comparison to a random classifier.

Now we look at the impact of manually indicated pixels com-
pared to using the ground truth for training samples: in Figure
3a, the manually defined labels are indicated. Training sam-
ples for the manual training result are chosen from these manu-
ally indicated class areas. In Figure 3b, the ground truth for the
Salinas dataset is shown, which serves as a baseline for the re-
sults achieved in the model that used training samples from the
ground truth data (Figure 3c) and the model that used manual
initialization (Figure 3d).

With an overall accuracy of 82.82% and an average accu-
racy of 89.61%, the classification performance of the model that
uses manually indicated training samples performs worse than
the model that used the ground truth training samples, which
achieved an overall accuracy of 88.80% and an average accu-
racy of 94.80% compared to the ground truth data. Note that in
both figures, the pixels that did not have a class in the ground
truth data have been colored black, although they too were clas-
sified. This performance loss is to be expected, as the set of



(a) Manually assigned labels

(b) Ground truth

(c) Classification result using ground truth data

(d) Classification result using manually assigned labels

Fig. 3: Influence of ground truth vs manual labeling on classifi-
cation performance on the Salinas dataset

available training samples is less diverse when using manually
indicated classes.

B. Unlabeled satellite dataset

In Figure 4a, we can see a satellite image of the island of Mo-
roni, near the coast of Mozambique. This hyperspectral image
was captured by the Earth Observation 1 satellite, which uses
the AVIRIS sensor to capture hyperspectral data. The resolution
of this dataset is quite poor, although there are 2 big classes to
be discerned: water and land. In Figure 4b, a grayscale visual-
ization of a spectral slice is shown with 6 manually placed class
areas. The classification result shown in Figure 4c, and is shown
semi-transparent over the map view in Figure 4d, shows that the
architecture is clearly capable of making the distinction between
water and land.

VI. CONCLUSION

The goal of this thesis was to create a novel architecture for
hyperspectral image classification using a capsule network ar-
chitecture, and while it does not yet fully compete with the state
of the art, I am confident that a follow-up article can create an

(a) Map view (b) Labels (c) Classification (d) Overlay

Fig. 4: Classification result on a manually labeled satellite
dataset

architecture based on this 3D multi-stream capsule network ar-
chitecture that can deliver good results. The other goal, applying
the proposed architecture and other architectures to real-world
datasets has been achieved by creating an application that is ca-
pable of training an unlabeled input dataset with the chosen ar-
chitecture and chosen parameters.
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1
Introduction

The human species is driven by exploration. In the early ages exploration was driven by necessity, roaming
the Earth for natural resources in the time of hunters and gatherers. From the 15th century to the 18th
century, during the age of discovery, exploration was driven by the search for silver and gold, as well as
to find a new route for the silk and spice trade. Nowadays, we can find humans from the desolate north
pole to the crowded cities of East Asia. Exploration now is driven by the desire to understand our planet,
from researching how the earth once looked like to seeing how it changes from year to year.

With climate change being one of the greatest challenges of the 21st century, the need to predict how our
world will change over the coming decades has become an important field of academic research. Using
satellite images, we can already see how glaciers around the world are shrinking at a staggering pace [1].
Capturing the bigger picture however, where we try to measure the area occupied by ice, desert, rain
forest, cities, and other land types, can still be improved upon as they are often based on satellite images
[2].

Hyperspectral image classification is the process of assigning each pixel of a hyperspectral image to a
certain class, where the classes represent the different geological features present in the image. Examples
of such classes are mountains, ocean, and farmland, but with hyperspectral images we can go much
further: cornfield, river, road, and so on. If this classification process could be automated, we would be
able to solve a number of problems much faster than we can currently, such as urban development [3],
land change monitoring [4], resource management [5], and many more.

Hyperspectral images can provide a solution for the lack of accuracy in current classification methods that
use traditional RGB images. Hyperspectral sensors measure reflected light in the same way as regular
(RGB) cameras, but capture light on a wider range of spectral wavelengths. RGB images contain 3
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bands: red (wavelengths 564–580 nm), green (wavelengths 534–545 nm), and blue (wavelengths 420–440
nm). Hyperspectral images contain dozens or even hundreds of bands, often beyond the capabilities of
human vision. Hyperspectral images will be discussed in more detail in Chapter 2.

In this thesis, I focus on HSI classification based on capsule networks. These emerging models have
already been successfully applied in some demanding tasks in computer vision, but have not yet been
explored thoroughly in remote sensing. Compared to the common deep learning architectures such as
convolutional neural networks (CNNs), capsule networks can better represent hierarchical representations
in the data. Their power comes from an efficient vector representation of features, referred to as activity
vectors. This efficient feature representation captures also spectral-spatial features from HSI data better
than the more traditional deep learning models. Capsule networks and how they work will be discussed
in detail in Chapter 3.

At the beginning of the thesis, I familiarised myself the problem by researching the latest work in hyper-
spectral image classification. Doing this also taught me a lot about the hyperspectral images themselves:
what the data looks like, where the difficulties lie, and how classification performance is measured. My
research was focused on supervised learning, as capsule networks are a supervised learning technique.
It quickly became apparent that using as little training samples as possible in the supervised learning
training process is very important, as practical datasets often have little or no labeled pixels. Getting
unlabeled data however is not a problem: efforts by NASA and ESA have made a huge number of hy-
perspectral images available to the public. The summary of this research is given in Chapter 2, where I
go over the problem statement, the academical and practical datasets that are available, an overview of
the state of the art, and the limitations of current theoretical models.

With this research, I attempted to create my first deep learning model using convolutional neural networks
(CNN). With my first model, it was time to discover the capsule networks technique. This recent technique
is described in Chapter 3, where I go over the inner workings. In also provide a simple single-stream
architecture for HSI classification, along with experimental results and limitations of this architecture.

1.1 Own contributions

In Chapter 4, I propose a new architecture that will eliminate some of the limitations of the single-
stream architecture. The proposed architecture consists of multiple input streams, which extract different
features based on the surrounding pixels of the target pixel. These features are concatenated and jointly
trained to give the final prediction. The details of this model, along with experimental results and a
comparison with the state of the art, are also included and discussed in this chapter.

While researching the state of the art and creating my own models for HSI classification, it became
apparent that there is no tool to help the deep learning process for both machine learning researchers and
those that want to apply the research in practice, without the need for a computer science background.
This is important if we want to apply state-of-the-art architectures in practice. As running python code is
not something we can expect from the end user, I started working on an application to ease the training
and classification process. With this application, the user can upload a hyperspectral image. They
can then either use the corresponding ground truth map if the dataset is labeled, or manually specify
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classes to enable supervised learning. The user is then able to choose a deep learning architecture,
configure its parameters, and run the classification process. I believe this tool could prove useful for both
academical researchers looking to try out and compare their architectures against other architectures, and
less research-focused institutions and businesses to solve the hyperspectral classification problem on their
own dataset, with architectures provided by the academical community. This application is discussed in
Chapter 5.

In Chapter 6, avenues for future work and development on both the proposed multi-stream architecture
as well as the web application for HSI classification are provided. Finally, I conclude in Chapter 7, where
I look back on what has been achieved in this thesis.



2
An introduction to hyperspectral image classification

As is the case with many research problems, understanding what the problem entails is a very important
first step. It requires research in literature as well as practical experimentation. My thesis subject focuses
in particular on two subjects: hyperspectral image classification (HSI classification), and capsule neural
networks or capsule networks in short.

In Section 2.1 of this overview chapter, I will take a look at some of the frequently used datasets when it
comes to evaluating model performance for HSI classification. These datasets are used throughout this
thesis, and serve as a useful benchmarking tool for both the multi-scale capsule network architecture I
created (cf. Chapter 3) as well as in a more practical setting (cf. Chapter 5).

The HSI classification problem is not new [6] and there is a significant interest of the scientific community
towards the problem. Before taking a look at some state-of-the-art supervised learning techniques and
their characteristics in Section 2.2, we will look at what the training data looks like and how the spectral
information is combined with the spatial neighborhood of the targetted pixel in Section 2.3.

Limiting the amount of labeled training data is very important for applying theoretical research to
practical scenarios. The difference between academical and practical datasets is that the latter often
have no labeled training samples, which creates a gap between theoretical performance and practical
performance. To close this gap, models that use limited training samples have become an important
branch of HSI classification research. What this means in practice and how limited training data influences
performance is discussed in section 2.4.

19
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2.1 Hyperspectral image datasets

If we take a regular image, for example an aerial view of the fields of a farmer, we distinguish two
dimensions. We call these spatial dimensions, since they give an idea of how two pixels (or places) are
located with respect to each other. In hyperspectral images, we add a third dimension: the spectral
dimension.

In the HSI classification problem, we want to classify each pixel of the image: some pixels may be part
of a road, others represent a river or a pond. When we look at a grayscale picture, we might be able
to discern a building by its straight edges, a river by curvature, and roads by discovering a network of
connected lines with roundabouts and intersections. It might be more difficult to tell a lake apart from
a forest, or a field from a large garden.

In colored images, we can remedy some of these uncertainties: rivers, lakes, and ponds can be distinguished
by a blue or green color. Forests get a colored texture, fields get different colors depending on the crop
that grows on it. In fact, colored images already have 3 spectral bands: red, green, and blue. These
spectral bands provide us humans and computer models with more information. It makes classification
easier.

Hyperspectral images capture spectral information not just in a wider range of wavelength, but also with
a finer spectral resolution. The rich spectral information in HSI allows a better discrimination between
different materials. This yields even more information that a computer can interpret, where our human
eyes can no longer detect that information. This makes it possible to distinguish different forest types,
different crop types, and even how long ago the crops were planted. This is very useful information for
a wide range of applications, including but not limited to sea ice monitoring [7], soil burn due to forest
fires [8], desertification [9], urban planning [10], soil fertility [11], and many more.

2.1.1 Salinas dataset

As a first example, we take the Salinas hyperspectral dataset. This academical dataset was captured by
the AVIRIS sensor [12] mounted on a plane flying over the Salinas valley, California. It contains 224
spectral bands, which capture light frequencies from 400nm to 2500nm. For reference: the human eye
can only perceive light frequencies ranging from 380nm to 700nm. The Salinas dataset consists of 204
spectral bands. 20 bands are water absorption bands, and since there are no water bodies in this scene,
these were removed from the dataset.

In Figure 2.1a, a grayscale visualization of the middle band (band 102) is shown. It was created by
first normalizing the sensor value of the pixels between 0 and 1, which produces this image. This
image represents one slice of the data cube, over the spectral dimension. In Figure 2.2, some grayscale
representations of different spectral bands are depicted.

If we take a look at the fields in the top right of the image, which are shown almost white in spectral
band 75 (Figure 2.2b), we can see that they are clearly different from the rest of the image. It is harder
to see differences between those fields, however. To tell them apart, we can use band 20 (Figure 2.2a)
which shows a lot more variation between those fields.
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(a) Visualization of spectral band 102 (b) Ground truth

Figure 2.1: Grayscale representation of a single spectral band and the ground truth of the Salinas dataset

The HSI classification problem we are trying to solve attempts to assign a class to each pixel in the
dataset. Some examples of the 16 classes from the Salinas dataset are ’Celery’, ’Stubble’, and ’Fallow’.
Also in this image: 4 lettuce fields that were planted 1 week apart, from 4 weeks old to 7 weeks old. Each
of those fields have a different class assigned to them.

Due to the Salinas dataset being used for academical purposes, it is labeled. If we color in the class labels
that are provided with the dataset, we get the image in Figure 2.1b. Black represents unlabeled classes.
The task of the hyperspectral classification model will be to take a subset of these labeled samples and
learn from them to classify the remaining labeled pixels to their respective classes.

The resolution of the dataset is provided as well. For hyperspectral images, the resolution is usually given
in metres per pixel. The Salinas dataset has a spatial resolution of 3.7 meters, which means that every
pixel represents an area of 3.7m ∗ 3.7m = 13.69m2. The Salinas dataset consists of 512 x 217 pixels,
making it span an area of 1.52 km2.

We now know that a hyperspectral image consists of pixels that each represent an area of an aerial
picture. Instead of the usual red, green, and blue color channels, we have up to hundreds of spectral
bands. Each band captures the reflected light in a different way, generating n float values, where n is the
number of spectral bands. Each pixel can be assigned a label based on the geographical features of that
area: examples are forest, a specific type of crop, or a soil type. The HSI classification problem consists
of taking the spectral data as input, and providing a class label as output. What we don’t know, is what
this actual data looks like. This will be demonstrated in the next dataset, the Indian Pines dataset.
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(a) Band 20 (b) Band 75 (c) Band 125 (d) Band 190

Figure 2.2: Different slices from the Salinas dataset

2.1.2 Indian Pines dataset

The Indian Pines dataset is one of the oldest hyperspectral datasets in existence. It was captured in
1992 by the AVIRIS sensor over one of the Indian Pine Test Sites in Indiana [13]. Similar to the Salinas
dataset, 24 water absorption bands were removed bringing the total number of spectral bands to 200.
The dataset is square, measuring 145 x 145 pixels, each with a resolution of 20m2. In the ground truth
data, there are 16 labeled classes.

In Figure 2.3a, the grayscale visualization of band 120 of the Indian Pines dataset is shown. The spatial
resolution of Indian Pines is 20 m/pixel, which is much lower than Salinas. The ground truth map is
shown in Figure 2.3b.

In the original dataset, the values of the spectral bands are not normalized. This leads to varying degrees
of variation in the spectral bands (Figure 2.4). To inspect the spectral signature of a single pixel (and
the 200 spectral values that belong to that pixel), it is necessary to normalize over all spectral bands.
The result is shown in Figure 2.5.

2.1.3 Pavia University dataset

A third academic dataset, which is used multiple times to evaluate classification performance throughout
this thesis is the Pavia University dataset, over Italy. In contrast to the other two academical datasets,
this dataset focuses on urban areas instead of agricultural lands. The grayscale representation of a single
spectral band and the ground truth of this dataset can be seen in Figure 2.6a and Figure 2.6b, respectively.
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(a) Visualization of spectral band 120 (b) Ground truth

Figure 2.3: Grayscale representation of a single spectral band and the ground truth of the Indian Pines
dataset

Immediately it is clear that it differs from the other datasets. There are no longer large areas belonging
to the same class, making the local neighborhood of the target pixel more variable.

As a big local neighborhood is essential for achieving high classification accuracy [14], this variable
landscape can introduce problems during training. This is offset partially by the relatively high resolution
of the Pavia University dataset, where each pixel covers just 1.3m2, as opposed to 13.69m2 (Salinas
dataset), 400m2 (Indian Pines dataset), and 900m2 (Hyperion-1 sensor for satellites).

Figure 2.4: Variations in the different spectral bands of the Indian Pines dataset
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Figure 2.5: Normalized spectral values of a single pixel

2.1.4 An Earth Observation 1 Satellite dataset

So far, we have explored some datasets that were captured specifically because of the challenge they pose
with their many different terrain features. In practice however, the datasets are often of lower resolution
and consist of fewer classification classes. Additionally, the data is often unlabeled, making supervised
learning not as straight-forward anymore. In this section, we explore a satellite image as an example of
a dataset that we might encounter in practice.

In Figure 2.7, one of the countless satellite datasets already openly available is shown. It originates from
the https://earthexplorer.usgs.gov/ website, which enables registered users to download hyperspec-
tral images captured by the Earth Observation 1 satellites, using the Hyperion 1 sensor. This particular
dataset from 2017 features 242 spectral bands and consists of 3261 x 911 pixels. The spatial resolution
is quite low, as each pixel covers 900m2.

It features the island of Moroni, off the coast of Mozambique. Due to its poor resolution, making out
specific terrain features is difficult if not impossible. We can discern two clearly distinct classes: land and
water.

2.2 Spatial neighborhood in training samples

Training any (supervised) deep learning model requires training data. For HSI classification, there are
patch-based methods [15], adjacency graphs [16], and even methods that take the entire dataset as one
single input [17]. Patch-based methods will be explored in more detail below, as it is used throughout
my thesis and lies at the basis of my multi-scale capsule network architecture.

The most simple model for classifying hyperspectral images would take in a feature vector of size n,
where n is the number of spectral bands, along with a classification label. The training sample is then
essentially the collection of all spectral values belonging to a single pixel. The Indian Pines dataset has
10,069 labeled pixels, meaning that there would be as many training samples. Using a convolutional

https://earthexplorer.usgs.gov/
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(a) Visualization of spectral band 51 (b) Ground truth

Figure 2.6: Grayscale representation of a single spectral band and the ground truth of the Pavia University
dataset

neural network [18] [19], we can train a deep learning model to classify the hyperspectral image.

The models that use only spectral features are called spectral-feature networks. Including the spatial
dimension in the training samples improves the classification results [20]. In these spectral-spatial-feature
networks, the model looks not only at the values of the sensor for that specific area, but also at the
surrounding area. This helps to generalize the model and improves the classification performance.

The size of the neighborhood is an important hyperparameter: if the value is too low, the resulting
classification map appears pixelated and has many outliers. If the value is chosen too large, subtle details
are missed, which is especially bad if the class area is narrow. An example of the two extremes can
be found in Figure 4.1. A possible solution to combine the benefits of both large and small patch sizes
is provided in the multi-scale capsule network architecture I created for this thesis, and is explained in
Chapter 4.

2.3 Supervised learning

With the number of published papers on hyperspectral images increasing more year after year [20], it
comes as no surprise that a lot of techniques have been thrown at the classification problem. In this
section, I will outline some key techniques that have been used specifically for a supervised approach.
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(a) Visualization of spectral band 15 (b) Map view of the dataset

Figure 2.7: Grayscale representation of a single spectral band and the map view of the EO1 dataset

With recent efforts to take hyperspectral images of the globe, such as the Sentinel-2 satellite mission
of ESA [21] launched in 2015 and the Earth Observation 1 mission by NASA [22] launched in 2000,
unlabeled hyperspectral image data has become more available. While unsupervised techniques to solve
this problem are very interesting and worth researching, they suffer from lackluster performance and lie
beyond the scope of the thesis.

1) Convolutional Neural Network

CNN’s are some of the most used deep learning techniques in image recognition. Their ability to see pat-
terns was a big leap forward for all kinds of image classification techniques. In HSI classification, we don’t
focus on a large dataset of different pictures, but rather on one picture. A lightweight CNN (LWCNN)
[16] applies a dimensionality reduction technique called Spatial Spectral Shroedinger Eigenmaps (SSSE)
to create an adjacency graph from the data cube. If two pixels are in each others spatial neighborhood,
the weight of the edge between the two is set to 1, and 0 otherwise.

A kernel that measures the similarity between adjacent pixels further calculates the weight of the edges.
This way, feature extraction can be done by calculating the eigenvectors of the matrix. The result is a
datacube that has the same spatial dimensions as the original image, with a 3rd dimension consisting
of the number of features chosen. The number of features is much higher than the number of spectral
bands, which in combination with a limited sample size results in overfitting. To avoid this, distributed
source coding is run a few times to aggregate the features.
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The way to cope with scarce training data is interesting. The performance results are very good for this
architecture, although an extremely small amount of training data was used, which is precisely what
LWCNN performs well in. In practical scenarios we can use a little more data, as practical datasets will
either have no labeled samples at all or a few hundred pixels assigned to each class.

2) Graph Convolutional Network

Graph Convolutional Networks (GCN) [17] also work with a graph-like structure. The idea now however
is to use both labeled and unlabeled data, to create a more robust result. Rather than cutting out patches
from the image, the image is provided in its entirety to the graph-based architecture, which calculates
the non-local graph over the image.

Because the architecture is not targeting specific pixels, but rather the entire image, the resulting classifi-
cation map is way smoother than pixel-based classification methods. It yields favorable results, although
the computational complexity might prevent this model from being used in practice.

This technique has a good idea: if supervised learning can be applied, it is likely that only a fraction of
the data is available as labeled training data. Including unlabeled training samples can not only improve
classification performance on the current dataset, it could also be used to cross the gap between two
datasets captured by the same sensor: the second dataset might not be labeled at all, and will benefit
from the learned classes from the first dataset, aided by their own unlabeled samples to offset noise like
clouds. However, this technique suffers from high computational complexity.

3) Deep Domain Adaptation

The idea to re-use learned architectures to other dataset was the starting point for the Deep Domain
Adaptation architecture (DDA-Net) [23]. In this architecture, three modules are used to train the network:
the domain alignment module, the task allocation module, and the domain adaptation module.

In the domain adaptation module, two branches are used: the source branch (of the original dataset)
and the target branch (of the dataset that has no or little labeled training samples). This unsupervised
module will learn spatial-spectral features so that the output of the two branches is an equal amount
of features. Then, the similarity between any pair of outputs is learned, which results in the similarity
coefficient.

These coefficients are then used in the task allocation module which learns the features on the source
domain. This module minimizes the similarity loss of the domain alignment module. Finally, the learned
classification model is fed to the domain adaptation module which transfers the learned architecture to
the target domain.

While very interesting, the paper that accompanies this architecture calculates their performance results
by splitting an academical dataset in two: one side is left labeled, and the other one is left unlabeled.
While this certainly is a valid technique - and the only one possible on these academical datasets since
they are all captured by different sensors - it would be interesting to see this research applied in practice
and see how it performs. That being said, the domain of transfer learning is certainly an interesting one
for HSI classification.
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4) Cross-Scene Deep Transfer Learning

Transfer learning can take many forms: a learned architecture can be applied to unlabeled datasets
captured by the same sensor, or by different sensors. The last one creates additional problems, which is
exactly what the Multiscale Spectral-Spatial Network (MSSN) [24] attempts to solve. It consists of the
spectral feature adaptation module and the MSSN-based deep learning module.

The spectral feature adapation module is applied first and calculates the distribution of both source and
target domains, where the target domain is largely unlabeled. It calculates the projection of the source
domain onto the target domain, and applies PCA on both the source and target domain features.

This semi-supervised technique, along with a couple others, works with two separate streams. This
concept is what inspired my own proposed architecture in Chapter 4, although most two-stream archi-
tectures split spatial and spectral features. In my proposed architecture, the multiple streams consist of
spatial and spectral features across different spatial neighborhoods. The technique used in this section
approaches the HSI classification problem from a probabilistic point of view. That makes it interesting
from a mathematical stance, and it calculates its performance on two different datasets, rather than
splitting one dataset up in two halves, which arguably is a more interesting problem statement.

5) Multi-Modal Learning

Just like a height map combined with an RGB-image is data with multiple modalities, hyperspectral
images have multiple modalities in that every spectral band captures different light wavelengths. More
modalities like height maps can still be introduced, however, which is exactly what the Multimodal Deep
Learning Meets Remote Sensing (MDL-RS) [25] framework presents.

Using this principle, grass on a roof can be distinguished from grass in a park, and snowy mountain tops
can be distinguished from the flats that lay might next to those peaks, and are also covered in snow.
Another motivation for multiple modalities is the problem of cloud coverage in image acquisition, as to
make the model more robust to bad weather conditions. MDL-RS extracts hierarchical features, mixes
them and fuses them in the fusion network.

With satellites already being able to measure height of the terrain, it makes sense that this data, as
well as weather data, is readily included in hyperspectral datasets. Multiple modalities can only improve
classification performance. Additionally, the ability of these multiple modalities to provide context for
the classification process might prove useful.

6) Multi-Scale Models

Architectures that use multiple streams or scales have proven very impactful on my thesis. It is therefore
only right that I include one of them in my discussion of the state of the art. The Multi-Scale Capsule
Network uses multiple types of capsules to detect types of features. These ”types” are rather abstract,
as is often the case with deep learning, and prove useful both for increasing classification performance
as well as for decreasing training time. It is worth noting that the accompanying paper [26] experiments
with the FashionMNIST and CIFAR10 image datasets, rather than hyperspectral datasets.

The idea of multiple scales has spoken to me from the start of my thesis, and has proven very helpful
in creating my own proposed architecture. As these multiple streams provide a ’different look’ on the
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data, it stands to reason that they might give additional information, therefore increasing classification
performance.

2.4 Limitations of theoretical models

There are a couple of problems that arise when applying theoretical models to real, unlabeled datasets.
These problems are the challenges I had to overcome when building my application. Solutions for these
problems are proposed in the application chapter, while the problems themselves are discussed below.

A major problem has already been discussed: the lack of unlabeled training samples. If supervised
learning is to be applied to these practical datasets, a way of labeling at least some pixels will need to
be devised. No matter how carefully this is done, we won’t have the quality of labeled samples that we
did with the academical datasets. After all, the ground truth of the academical datasets is seen as the
ideal solution for the problem.

The training samples in many of the papers on HSI classification are picked at random, making the
training data very robust. Pixels on the edge of two fields, as well as pixels of the same class but from
different parts of the image are much more likely to be included in the training samples, even if the number
of training samples is purposefully kept low. If all pixels come from a small, labeled area however, the
model might have to discover unlabeled areas of the image with the same features. This is something
that is often not focused on in academical research currently.

With large datasets, like those taken by satellites, the training time often becomes way smaller compared
to the classification stage. This is strong motivation to keep the number of parameters low. Additionally,
the patch size must remain reasonably small. If an architecture has to use patch sizes of 27× 27 [27], the
number of input parameters quickly spins out of control. This can be remedied by applying PCA, among
other techniques. Additionally, it makes it harder to classify large batches of pixels, as the memory
footprint experiences a quadratic growth. Luckily, this problem can be overcome to an extent since
distributed computing is highly applicable to the classification stage.

Resolution is a problem as well. A very interesting research topic would be to generate a road network
based on hyperspectral information. While this might be possible with the Salinas dataset, for example,
where each pixel represents an area of 13.69m2, this is impossible to do with satellite hyperspectral
images, which still have a resolution of 900m2 (EO-1 Hyperion [22]) or more.

Finally, it would be interesting if we could re-use the same model for different datasets. This might
work for some datasets, but not for others. Especially with two different sensors or a different number of
spectral bands, different models will need to be trained. A model that is trained on dataset A, and applied
to dataset B which has a geographical class that is not present in dataset A, might deliver unpredictable
results. The field of transfer learning [28] [23] is a very important research direction for HSI classification,
where much work is still to be done.

A criticism on hyperspectral image classification research is that it attempts to keep improve results on
academical datasets that are already very high. Research resources could better be invested into doing
something with the research, applying it to real problems with real, unlabeled datasets. In Chapter 5
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of this thesis, I discuss the web application I developed, which allows the user to load in hyperspectral
datasets and classify them using an architecture of their choosing. The application’s precise goal as well
as its features are discussed in detail in Chapter 5.



3
Exploring capsule networks

In this chapter, I will focus on a particular deep learning technique: capsule neural networks, or capsule
networks for short. This technique is closely related to convolutional neural networks, which has been
around for a lot longer than capsule networks. While I have expanded the thesis with an application (see
Chapter 5) which supports multiple architectures, capsule networks are the basis for a new architecture
I am proposing, which incorporates multi-scale spatial information by developing a multi-stream based
architecture.

3.1 Introducing capsule neural networks

In the first section, the origin and the idea behind capsule networks is outlined. The idea of instantiating
vectors, which is one of the core ideas behind capsule networks, is quite abstract. To make the concept
more approachable for the reader, I provide a toy example.

In Section 3.1.2, we dive deeper into the architectural properties of a capsule network based architecture.
Using primary and secondary capsule layers, the basis for these architectures is provided. Two concepts
of capsule networks deserve special attention, and are explained in Section 3.1.3. These two concepts,
routing by agreement and the squashing function are respectively algorithmic and mathematical solutions
used by capsule network architectures.

In the final Section 3.1.4, we combine the concepts of the capsule network architecture into a simple model.
Inspiration for this model was gained from a paper by Li et al. [29], and deserves special attention since
it provided me with essential knowledge about capsule networks and hyperspectral image classification
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(a) A raster with a boat and a house (b) Instance vectors for rectangles and triangles

Figure 3.1: Instance vectors: a core idea of capsule networks for hierarchical relationships

early on in my thesis.

3.1.1 Origin & idea

The idea behind capsule networks is to add structures to convolutional neural networks in an attempt
to better model hierarchical relationships. The idea for this algorithm comes from neuroscience research
[30]. In 2000, Hinton proposed a technique for image segmentation and recognition [31] for the MNIST
dataset using parse trees [32]. In 2017, Hinton’s paper that sparked interest into capsule networks was
published [33].

Despite its young age, capsule networks have been used with success on various problems. New ar-
chitectures are often tested on the MNIST dataset, where it was shown that it could compete with
state-of-the-art deep classification methods [34] [35]. Without comparing itself to other architectures,
a multi-lane capsule network architecture [36] managed to classify the Fashion-MNIST dataset [37] and
reconstruct the training samples using the decoder network. In a Kaggle competition about identifying
aggression and toxicity in comments, capsule networks performed as well as other deep learning techniques
[38].

3.1.2 Primary and secondary capsule layers

Pooling layers in CNN are used to introduce rotational invariance with respect to small rotations and
translations, and for dimensionality reduction. This can be useful in some cases: a traffic cone that has
been thrown over should still be recognized as a traffic cone. In other cases, this is less applicable: a face
consists of two eyes, a nose, a mouth, two ears, but the positions of these individual parts with respect
to each other matters too. To visualize this, we can look at a simple example. In Figure 3.1a we can see
a raster with a boat and a house in two of the raster squares.

The capsule architecture in its simplest form consists of a primary layer and a secondary layer. The
first layer will recognize shapes and patterns. In the example of our face, the facial features would be
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(a) Detecting a house (b) Detecting a boat

Figure 3.2: Routing by agreement: detecting objects from shapes

recognized by the first layer. Rather than outputting a value that represents whether a shape is present
in the current window or not, the primary capsule network layer outputs a vector. The length of this
vector is the probability that this shape is present in the current window, while the direction and sense
of the vector indicate the instantiating parameters of the shape.

Some examples of these instantiating parameters are rotation and size for shapes, or hue for color. While
these are parameters that we can understand easily, in reality these are learned from the data, and might
not be so straight-forward. The primary layer is thus already a black box, which might warrant further
research around explainability [39].

A second capsule network combines these outputted vectors, and decides whether the specific combination
of shapes with respective instance vectors should be detected as a particular object. In our simple
example, where the second capsule layer delivers the outputs for classification, the number of capsules in
the secondary capsule layer is equal to the number of classes. It should be noted that the output of the
secondary capsule layer is again a set of vectors: each with the probability that the object is detected in
the current window, and instantiating parameters of the object. In Figure 3.2 we can see this combination
process in action. This process is called routing by agreement and is a cornerstone of capsule networks.

3.1.3 Routing by agreement & the squashing function

The process of routing by agreement is shown in more detail in Figure 3.3. Pseudo code for the algorithm
is shown in Listing 1. This routing algorithm runs for r iterations, where r is the routing parameter. It
calculates the parameters bij , which are initialized as the log prior probabilities that capsule i from the
previous layer l should be coupled to capsule j on layer l + 1. These parameters bij are called coupling
coefficients. In our simple example in Section 3.1.2, the primary layer is layer 0 and the secondary layer
is layer 1.

The initial coupling coefficients are refined in the iterative routing process by measuring the agreement
aij = vj · ûi,j , with ûi,j the prediction vectors indicating the prediction made by capsule i based on the
outputs of capsule j.
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Figure 3.3: Routing by agreement: combining shapes into objects

function routing(ûj,i, r, l)
for all capsules i in layer l and all capsules j in layer l + 1

bij = 0

loop r times
for all capsules i in layer l

ci = softmax(bi)

for all capsules j in layer l + 1

sj = Σicij ûj,i

vj = squash(sj)

for all capsules i in layer l and all capsules j in layer l + 1

bij = bij + ûj,i · vj

Listing 1: Routing by agreement in pseudo code

Before the coupling coefficients are refined, the inputs of capsule j are squashed. The squashing function
is a non-linear function to ensure that short vectors get shrunk to almost zero length while long vectors
are mapped to values close to 1. The squashing function is shown in Formula 3.1 and plotted in Figure
3.4.

vj =
||sj ||2

1 + ||sj ||2
· sj
||sj ||

(3.1)
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Figure 3.4: The squash function used in routing by agreement

3.1.4 A simple architecture

A simple architecture is shown in Figure 3.5. In the example, the Indian Pines dataset is taken as input
for the model. Patches are cut out around the labeled training samples, as can be seen in Figure 2.5. In
this Figure, the training sample subject is the red square, while its neighborhood (the patch) is shown in
dark blue. The spectral signature shown is that of the target pixel, the spectral signature of all pixels in
the neighborhood is also part of the input data.

The first operation is a regular convolutional layer. We will not go into the details of the parameters that
should be used for this layer, these will be discussed in Section 3.3. The convolutional layer introduces
extra features by applying different filters to the input. Since the input is 3D, this is a 3D-convolutional
layer.

Next up is the primary capsule layer. This layer will detect the ’shapes’ in our data. Because we are no
longer talking about our simple example with the boat and the house, this is less intuitive. The output
of this primary capsule layer is then squashed to prepare it for the routing by agreement algorithm. The
routing algorithm will decide how capsules from the primary capsule layer are connected to the secondary
capsule layer. The number of capsules in this primary layer is a hyperparameter.

After routing by agreement, the secondary capsule layer outputs a vector based on the input that was
provided by the primary capsule layer. As a reminder, the length of the vector indicates the probability
that the class X is predicted for the target input. While the number of primary capsules can be chosen
freely, this last capsule layer has n capsules, with n the number of classes in the dataset.

To make the output interpretable, we apply the squashing function again to the outputs of the secondary
capsule layer, which produces vector lengths in the interval [0, 1]. Optionally, a decoder network is
added. This will take the output of the secondary capsule layer and attempt to reconstruct the input.
This sometimes makes the coupling coefficients more robust.

In a practical setting, we would choose the output with the largest length as the predicted class.
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Figure 3.5: A simple capsule network architecture

3.2 Relevance to hyperspectral image classification

In hyperspectral image classification, both spatial and spectral domain are essential to provide good
classification results. Capsule networks can be an improvement on convolutional neural networks, as these
networks perform poorly due to their lack of spatial awareness [15]. This can be remedied to a degree
by reducing the spatial dimension using pooling layers, although this comes at the cost of information
loss. Additionally, CNN fail to detect equivariances in training samples that lie far away from each other,
and are negatively influenced by rotations in the features. By representing features as vectors instead
of scalars, capsule networks are able to detect rotations, and discover hierarchical relationships between
features.

HSI classification can be performed in one dimension, two dimensions, or all three dimensions [40]. In
1 dimension, the spatial dimension is ignored, and the spectral features of the training sample are used
for the classification process. The solution in 2 dimensions remedies this by focusing on the spatial
information. In these models, PCA is often used to extract the spectral bands that deliver the most
information. From these spectral planes, patches are cut out around the target pixel and are fed into the
2D architecture. Using a 2D architecture instead of a 1D architecture can give an immediate improvement
of 9 and 10 percent for CNN and CapsNet respectively [41].

Finally, HSI classification can be done in three dimensions. These methods extract small overlapping
3D patches around the target pixel, and feeding it to a 3D classification architecture. This introduces
the curse of dimensionality, a term coined by Richard Bellman in 1966 [42]. Where the introduction of
the spectral domain in the feature space is considered essential for HSI classification, the shift towards
3-dimensional feature space can cause a lot of overfitting. Still, 3D CNN networks [43] and 3D capsule
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Figure 3.6: A simple single-stream capsule network architecture

network architectures [27] exist. In the architecture that I propose in Chapter 4, I will be exploring a
multi-stream 3D capsule network architecture that incorporates multi-scale spatial information to classify
hyperspectral images.

3.3 Experiments

In this section, I provide experimental results of a very simple, single stream capsule network for the
hyperspectral image classification problem for 3 datasets: the Indian Pines dataset, the Salinas dataset,
and the Pavia University dataset. All experiments ran for 50 epochs and used the ground truth as input,
with 100 samples per class selected randomly: 50 for training and the other 50 for validation. If a class
contains less than 100 labeled samples, it was split equally over the two sets, and were upscaled to 50
through picking random samples multiple times. The architecture can be viewed schematically in Figure
3.6

The performance of these models serves as a baseline for what is possible with capsule networks. The
hyperparameters for all models were determined after an extensive parameter search, where the best
performance was searched for one to three hyperparameters at a time. The hyperparameters for the
single-stream architecture are listed below. In total, there are 212,388 trainable parameters in this
architecture.

• Patch radius: the spatial radius of each input patch. A patch radius of 3 means that the input
patch has the following shape: (7, 7, 204), with the third dimension being the spectral dimension.

• Batch size: fixed to 10 for all models

• Learning rate: 0.001 for all models

• Learning rate decay: 0.9 for all models
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• 3D convolutional layer: 64 filters, a kernel with shape (3, 3, 5) and a stride of 1 over all
dimensions. The padding is set to ’valid’

• Primary capsule layer: 12 filters, a kernel with shape (3, 3, 3), an output capsule dimension of
2, and a stride of 1 over all dimensions. The padding is set to ’valid’

• Secondary capsule layer: the number of secondary capsules is equal to the number of classes in
the ground truth data, with output vectors consisting of 2 scalars. The number of channels was
found to be 6. A kernel with shape (3, 3, 3) is used with a stride of 1 over all dimensions, with
padding set to ’valid’

Dataset Indian Pines Salinas Pavia University
OA (%) 65.70 86.79 90.87
AA (%) 81.19 92.73 89.71
κ (x 100) 60.94 85.29 87.91

Class
1 100.0 99.83 86.51
2 40.81 99.92 98.05
3 55.59 70.90 84.56
4 84.67 100.0 97.23
5 93.77 98.72 100.0
6 97.16 99.87 80.83
7 100.0 99.71 91.54
8 96.56 68.74 70.46
9 100.0 97.25 98.23
10 59.40 91.49 -
11 54.41 97.33 -
12 52.86 95.15 -
13 100.0 99.62 -
14 89.27 98.51 -
15 74.30 68.48 -
16 100.0 98.21 -

Table 3.1: Single stream capsule network performance with regards to overall accuracy (OA), average
accuracy (AA) and Cohen’s kappa coefficient (κ)

3.4 Limitations

As can be seen in the classification maps (Figure 3.7) and in the performance overview (table 3.1), there
is much room for improvement. For a full comparison between this simple architecture, the proposed
multi-stream architecture, and other state-of-the-art models, I refer to the ’results’ section of Chapter 4.

To see the effect of the neighborhood size, I ran the single-stream architecture again on the Salinas
dataset. In Figure 4.1a, you can see the result for a model that only uses the spectral values of the
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(a) Indian Pines - classification map (b) Indian pines - ground truth

(c) Salinas - classification map (d) Salinas - ground truth

(e) Pavia University - classification map (f) Pavia University - ground truth

Figure 3.7: Classification maps for single-stream capsule network architecture
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target pixel and the 8 surrounding pixels. It has an overall accuracy of 80.02% and an average accuracy
of 89.68%. In Figure 4.1b, you can see the same dataset, now trained with a neighborhood radius of 6,
where each training sample therefore has a shape of (13, 13) around the target pixel. It has an overall
accuracy of 87.93% and an average accuracy of 94.58%.

With only 212,388 trainable parameters, the training process is very fast. For the Indian Pines and
Salinas datasets, that have 16 labeled classes each, the training time per epoch is 5.6 seconds for all 800
training samples. Inferencing the entire dataset however, has the same time complexity as training 1
epoch. This makes that the time it takes to calculate the performance and create a classification map is
often much higher than training the model.



4
Proposed architecture: a multi-stream capsule network

In this chapter, I propose a new architecture for the hyperspectral image classification problem. In
Section 4.1, I will discuss the motivation for this new architecture, and how it differs from the simple
single-stream architecture used for my early experiments discussed in Section 3.3.

In Section 4.2 the schematic representation of the architecture is explained, which is followed by experi-
mental results for both datasets with ground truth as without in Section 4.3.

4.1 Motivation

Research has shown that the spatial neighborhood of the target pixel that we are trying to classify is
extremely important [14]. Without the spatial neighborhood, there is often too little training data for a
robust model, which leads to overfitting on pixels that have outliers in their spectral signature. When
the spatial neighborhood is included in the training sample, the spectral values of the target pixel are
smoothed by mixing its value with those of its neighbours. We know this mixing process as a convolutional
layer. This layer has 3 dimensions: (x, y, s) with x and y the length and width of the neighborhood region,
respectively. These are hyperparameters, meaning that their value is chosen by the user. The parameter
s denotes the number of spectral bands, and is typically equal to the number of spectral bands in the
original dataset. In this 3D bar (typically a cube) the center pixel is the pixel which we are trying to
classify.

In Figure 4.1, we can see the effect of a large neighborhood versus a small neighborhood. On the
left, a small neighborhood (3x3) leads to a pixelated classification result, while a larger neighborhood
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(a) Result of training with 3x3 neighborhood (b) Result of training with 13x13 neighborhood

Figure 4.1: Impact of neighborhood size on classifying the Salinas dataset

(13x13) leads to smoother edges and less noise inside a clearly distinguishable class. The benefit of small
neighborhoods is that the preprocessing stage takes less time, and very narrow classes are easily detected.
The results are not robust, however, as classification errors are more prone due to spectral outliers. This
is resolved partially by increasing the neighborhood size, and we can see this in the overall accuracy of
the two models. For the small neighborhood, the overall and average accuracy are 80.02% and 89.68%
respectively, compared to 87.93% and 94.58% respectively for the large neighborhood. The downside of
large neighborhood sizes are longer training and inference times, and a longer preprocessing stage. When
the neighborhood is chosen too large, narrow classes are not detected.

Combining the ability to detect narrow classes with the ability to generalize better over different training
samples should deliver a better model. This is what I propose in the architecture that I created. The
term ”multi-stream” or ”multi-scale” networks is not new, and has been used in several papers about
hyperspectral image classification [44] [45] [46], and has even been used with capsule networks for image
recognition in MSCaps [47]. My proposed architecture differs from the first two in that it treats spatial
and spectral features together instead of separately, and that it takes different patch sizes as input for
the different streams.
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Figure 4.2: Schematic overview of the proposed multi-stream architecture

4.2 Architecture

In our simple capsule network model for hyperspectral image classification, the input training sample
consists of the target pixel and its neighborhood pixels. All spectral bands of all pixels in the training
sample are included, making the training sample a subcube. The number of pixels to include in the
training sample is a hyperparameter, determined by the radius of the neighborhood. A radius of for
example 5 would lead to a training sample with dimension (11, 11, s) with s the number of spectral bands
in the hyperspectral image.

In the proposed multi-stream architecture shown in Figure 4.2, we recognize the architecture of the single-
stream architecture. The first stage of the training process, however, up until the primary capsule layer,
is replicated three times, for three different patch sizes. The training sample is therefore exactly the same
as in the single-stream model, with a neighborhood radius equal to the radius of the large neighborhood
stream.

The number of streams is a hyperparameter, as is the neighborhood radius for each stream. Inside of
each stream, the input data is fed into a convolutional layer with a number of filters, a kernel size and a
certain stride for the convolutional window. These are all hyperparameters. Through experimentation it
is clear that increasing the convolutional window size over the spectral dimension benefits the classification
performance. Increasing the stride over the spectral dimension does not lead to immediate performance
loss and should therefore be as large as possible without decreasing classification performance to shrink
the number of parameters. Increasing the window size over the spatial dimension beyond 2 proves to
have a negative effect on performance, as does increasing the stride over the spatial dimensions.
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The output of this 3D convolutional layer is normalized, and the rectified linear unit (ReLU) function is
used to activate features with high outputs. These are required steps in the capsule network architecture,
before feeding the data to the primary capsule layer. The primary capsule layer is essentially another
3D convolutional layer, with the difference that the output data is now reshaped into vectors, which we
call capsules. The hyperparameters for the convolutional part follow the same principles of the input
convolutional layer, with the exception of the number of filters: this parameter is called the number of
channels of the capsule layer, and indicates the number of capsule types. While the number of filters in
the input convolutional layer can be chosen to be 64 or 128 or even more, the number of channels in the
primary capsule layer is best kept low to avoid a large increase in model parameters. 6 or 12 was found to
be sufficient to deliver a good classification result. The reshape layer transforms the set of scalar features
into vectors. Increasing the dimension of these capsules (the number of scalars in each output vector)
beyond 2 delivers no increase in classification accuracy and heavily influences computation time.

The output of the different streams are vectors, and differ in only 1 dimension. This dimension denotes
the number of feature vectors, and the number of features depends on the chosen hyperparameters of
the two 3D-convolutional layers. I found that choosing the hyperparameters such that all layers have an
approximately equal amount of features delivers optimal performance. Because they only differ in one
dimension, these vector features can be concatenated into a single feature vector set. This set is fed into
the secondary capsule layer, which will output the predicted class for the input sample.

The secondary capsule layer consists of n capsules, which are activated or deactivated based on the outputs
of the input feature vectors. In this layer, n denotes the number of classes that supervised learning is
applied to, and will therefore output n vectors of dimension d whose length determine the likelihood that
the sample belongs to that particular class. The dimension parameter d is not necessarily the same as the
dimension of the outputted feature vectors of the primary capsule layer, but I have found that increasing
this parameter beyond 2 also negatively influences computation time, without increasing classification
accuracy. The routing algorithm shown in Listing 1 is run a times, where a is a hyperparameter.

The final and most important hyperparameters are the number of streams, and the neighborhood radii
for each of the streams. I have found 3 streams to be a good compromise between maximizing classi-
fication accuracy while keeping computational time low. While experimenting, I evaluated all possible
combinations of radius sizes 1, 3, 5, 7, 9, and 11 for an architecture with 3 streams, where no two streams
have the same neighborhood size. In Figure 4.3, the effect of increasing the spatial neighborhoods of the
streams can be seen. As 3D data is hard to visualize, I opted to add the dimensions of the three streams
and order them from small to large. It is clear that the smallest model, with neighborhood sizes 3x3,
7x7, and 11x11 for the three streams, performs the best.

4.3 Results

In this section, I will compare the single-stream architecture with my proposed multi-stream architecture.
The datasets that were used in this comparison are the Salinas dataset (Section 2.1.1), the Indian Pines
dataset (Section 2.1.2), and the Pavia University dataset (Section 2.1.3). For all results, the hyperparam-
eters of their respective architectures were tuned to deliver optimal performance. The number of training
samples is the same for models on the same dataset.
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Figure 4.3: Influence of increasing neighborhood of the multi-stream architecture on the classification
performance

4.3.1 Salinas dataset

For the Salinas dataset, 50 training samples and 50 validation samples were randomly chosen for each of
the 16 labeled classes in the ground truth data, or about 1.5% of the labeled pixels. For the single-stream
architecture, a neighborhood size of 7 × 7 was used. For the multi-stream architecture, 3 streams with
neighborhood sizes 3× 3, 7× 7, and 11× 11 were chosen.

The overall accuracy on the Salinas dataset increases from 83.44% to 87.15% when transitioning from
the single-stream architecture to the multi-stream architecture. Similarly, the average accuracy increases
from 92.08% to 94.51%. We see that although classification performance is better, the architecture still
is not able to distinguish classes 8 and 15.

4.3.2 Indian Pines

The Indian Pines dataset suffers from a poor spatial resolution, which makes classification more difficult.
For this dataset, again 50 training samples and 50 validation samples were randomly chosen for each of
the 16 labeled classes in the ground truth data, or about 7.8% of the labeled pixels. For the single-stream
architecture, a neighborhood size of 7x7 was used. For the multi-stream architecture, 3 streams with
neighborhood sizes 3x3, 7x7, 11x11 were chosen.

The overall accuracy on the Indian Pines dataset increases from 65.70% to 70.52% when transitioning
from the single-stream architecture to the multi-stream architecture. Similarly, the average accuracy
increases from 81.19% to 84.02%.
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(a) Salinas - single-stream (b) Salinas - multi-stream (c) Salinas - ground truth

(d) Indian Pines - single-stream (e) Indian pines - multi-stream (f) Indian pines - ground truth

(g) PaviaU - single-stream (h) PaviaU - multi-stream (i) PaviaU - ground truth

Figure 4.4: Comparing single-stream and multi-stream classification maps
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Architecture Single-stream Multi-stream
OA (%) 83.44 87.15
AA (%) 92.08 94.51
κ× 100 83.88 86.42

1 98.68 99.32
2 99.06 99.97
3 85.93 94.76
4 100.0 100.0
5 99.46 99.34
6 100.0 99.97
7 99.77 99.53
8 54.56 67.19
9 97.78 97.24
10 89.81 92.09
11 96.16 99.34
12 94.64 100.0
13 99.50 100.0
14 97.77 99.78
15 63.47 64.98
16 96.77 98.59

Table 4.1: Proposed architecture performance comparison on the Salinas dataset with regards to overall
accuracy (OA), average accuracy (AA) and Cohen’s kappa statistic (κ)

4.3.3 Pavia University

For the Pavia University dataset, 150 training samples and 150 validation samples were randomly chosen
for each of the 9 labeled classes in the ground truth data, or about 3.2% of the labeled pixels. For the
single-stream architecture, a neighborhood size of 7x7 was used. For the multi-stream architecture, 3
streams with neighborhood sizes 3x3, 7x7, and 11x11 were chosen.

The overall accuracy on the Pavia University dataset increases from 97.31% to 98.25% when transitioning
from the single-stream architecture to the multi-stream architecture. Due to the classification performance
already being quite high, a 1% increase is certainly no insignificant result. Similarly, the average accuracy
increases from 96.91% to 98.13%.

4.4 Comparison with state of the art

Now that the single-stream and multi-stream variant are compared, their performance can be compared
to various state-of-the-art architectures. The performance metrics and classification maps shown in
tables 4.4 and 4.5 originate from the paper ”Deep Feature Fusion via Two-Stream Convolutional Neural
Network for Hyperspectral Image Classification” [44], and are used with permission of the authors. All
architectures were trained using 50 labeled training samples, 10% of which were randomly chosen for
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Architecture Single-stream Multi-stream
OA (%) 65.70 70.52
AA (%) 81.19 84.02
κ× 100 60.94 66.22

1 100.0 100.0
2 40.81 52.33
3 55.59 60.51
4 84.69 82.35
5 93.77 96.67
6 97.16 97.35
7 100.0 100.0
8 96.56 97.35
9 100.0 100.0
10 59.40 70.39
11 54.41 58.71
12 52.86 57.27
13 100.0 100.0
14 89.27 88.76
15 74.30 86.67
16 100.0 100.0

Table 4.2: Proposed architecture performance comparison on the Indian Pines dataset with regards to
overall accuracy (OA), average accuracy (AA) and Cohen’s kappa statistic (κ)

the validation set. The architectures are compared on the Salinas and Pavia University datasets. Note
that creating a competing architecture was not the primary goal of the thesis, this is merely additional
information for the reader.

Models included in this comparison are Deep Feature Fusion Network (DFFN) [48], Deformable CNN
for HSI classification (DHCNet) [49], CNN combined with Markov Random Fields (CNN-MRF) [50],
Multigrained Network (MugNet) [51] and a 2-stream 2-D CNN (Fusion) [44]. These architectures are
compared the proposed multi-stream architecture described in this thesis.
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Architecture Single-stream Multi-stream
OA (%) 97.31 98.25
AA (%) 96.91 98.13
κ× 100 96.31 98.09

1 94.37 97.46
2 99.44 99.77
3 91.21 97.62
4 99.34 99.66
5 100.0 100.0
6 95.88 95.75
7 98.45 99.13
8 93.67 93.73
9 100.0 100.0

Table 4.3: Proposed architecture performance comparison on the Pavia University dataset with regards
to overall accuracy (OA), average accuracy (AA) and Cohen’s kappa statistic (κ)

Classes DFFN DHCNet CNN-MRF MugNet Fusion Proposed
1 99.81±0.26 99.96±0.06 99.81±0.29 64.91±3.30 100±0 99.80±0.07
2 99.83±0.26 99.97±0.07 97.51±1.24 99.90±0.10 99.95±0.10 99.97±0.02
3 99.95±0.16 99.93±0.22 98.94±1.17 99.63±0.18 99.99±0.02 95.54±1.32
4 98.79±1.41 99.69±0.22 99.30±0.69 99.87±0.28 99.99±0.03 99.90±0.14
5 98.93±1.14 99.72±0.21 97.87±0.60 99.34±0.37 99.50±0.44 98.91±0.38
6 99.75±0.31 99.91±0.17 99.83±0.30 98.98±0.18 99.92±0.27 99.99±0.01
7 99.86±0.14 99.72±0.19 98.67±0.96 99.31±0.63 99.99±0.02 99.34±0.43
8 97.36±1.56 95.09±2.52 76.69±2.49 99.40±0.34 99.61±2.70 68.93±7.01
9 99.78±0.32 99.70±0.37 98.77±0.42 89.23±2.12 99.94±0.19 98.39±0.49
10 99.21±0.55 99.77±0.35 94.88±1.72 99.12±0.92 99.75±0.19 91.78±0.51
11 99.22±0.70 99.62±0.43 99.08±0.78 94.72±1.56 99.78±0.34 98.86±0.73
12 99.57±0.62 99.87±0.17 99.99±0.02 99.29±0.54 99.58±1.15 100.0±0.00
13 99.38±0.84 99.95±0.14 99.75±0.35 99.85±0.22 99.93±0.18 100.0±0.00
14 99.89±0.21 99.70±0.53 98.25±0.82 98.43±0.69 99.91±0.14 99.21±0.76
15 97.50±1.75 98.73±0.97 82.43±3.55 97.80±1.14 99.16±1.05 71.17±10.10
16 99.92±0.26 99.92±0.12 97.44±1.97 94.02±2.22 99.99±0.04 99.17±0.59

AA (%) 99.30±0.19 99.45±0.20 96.18±0.41 95.86±0.16 99.63±0.20 88.56±0.17
OA (%) 98.86±0.24 98.67±0.56 91.66±0.68 79.74±1.60 99.09±0.56 95.05±0.22
κ× 100 98.73±0.27 98.52±0.63 90.73±0.75 74.35±1.75 98.99±0.62 87.27±0.16

Table 4.4: Comparison of classification accuracies on the Salinas hyperspectral image with regards to
overall accuracy (OA), average accuracy (AA) and Cohen’s kappa statistic (κ)
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Classes DFFN DHCNet CNN-MRF MugNet Fusion Proposed
1 96.63±1.99 97.46±1.73 84.54±1.85 84.07±2.09 97.07±2.09 88.39±1.41
2 95.50±2.66 98.52±1.39 89.77±1.41 98.42±0.57 99.16±0.50 95.77±1.91
3 97.73±2.84 98.74±0.88 83.04±1.19 97.33±1.01 99.38±0.90 91.18±0.37
4 92.57±2.51 95.20±1.31 97.13±0.75 97.47±0.61 98.37±0.59 98.31±0.37
5 98.88±1.24 99.45±0.94 99.70±0.37 99.90±0.10 100.0±0.00 100.0±0.00
6 98.29±1.65 99.39±0.67 87.66±1.96 98.00±0.49 99.72±0.46 81.98±4.24
7 99.70±0.43 99.45±0.53 92.73±1.29 99.11±0.43 99.96±0.10 98.07±0.74
8 98.19±1.14 98.14±1.27 79.51±3.36 96.01±1.31 97.96±1.56 90.64±0.98
9 94.96±1.12 96.22±1.89 98.65±0.94 99.29±0.49 99.88±0.17 99.96±0.05

AA (%) 96.94±0.66 98.06±0.44 90.30±0.36 96.62±0.33 99.05±0.33 92.71±0.24
OA (%) 96.35±1.36 98.21±0.63 88.61±0.50 95.89±0.39 98.82±0.40 93.76±0.36
κ× 100 95.19±1.77 97.62±0.83 85.11±0.60 94.53±0.51 98.43±0.53 90.49±0.28

Table 4.5: Comparison of classification accuracies on the Pavia University hyperspectral image with
regards to overall accuracy (OA), average accuracy (AA) and Cohen’s kappa statistic (κ)



(a) DFFN (b) DHCNet (c) MRFCNN (d) MugNet (e) Fusion (f) Proposed

Figure 4.5: Classification maps for the Salinas dataset

(a) DFFN (b) DHCNet (c) MRFCNN (d) MugNet (e) Fusion (f) Proposed

Figure 4.6: Classification maps for the Pavia University dataset

51



5
Applying theory in practice: a web application

The goal of every academical research is to apply that knowledge to the real world. Research towards
hyperspectral image classification is not different in that regard, as there are a lot of practical problems
that could benefit from this technique.

Hyperspectral image classification has come quite far, to the point that state-of-the-art models now
achieve both an overall and average accuracy of over 99%. When I discovered this during my literature
research, I felt motivated to write an application for hyperspectral image classification. The goal of this
application is to provide a tool to both academical and more practical use, which is explained further in
Section 5.1. This section will serve as context for the thought processes that drove development decisions.
A more in-depth feature overview is provided in Chapter 5.2. In Section 5.3, I will outline the software
architecture of the application, and provide explanations for the design choices that were made during
development.

As the application doesn’t rely on ground truth data but rather on user-indicated training data, it is
important to see how this influences performance. To this end, I compare the results of the model trained
on the ground truth of the Salinas dataset in Section 2.1.1 with the results obtained by the application
in Section 5.4. Additionally, in Section 5.5, we see how the application performs on unlabeled data. The
source code for this application is available on GitHub [52].
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5.1 Goal of the application

Practical hyperspectral datasets become more and more available through various government-run pro-
grams like the NASA Airborne Science Team [12], the Earth-Observation 1 satellite missions [22], and
its European counterpart, the Sentinel-2 satellites [21]. These datasets are unlabeled, making supervised
learning impossible. These practical datasets also differ from academical datasets like the ones discussed
in Section 2.1 in that they are very large. These datasets often contain millions of pixels over areas as
big as American states, instead of spanning only a couple of square kilometers.

If we want to apply the architectures of HSI classification research to these practical datasets, we need to
have some sort of partial manual classification. If a human operator could visualize the dataset, he could
easily create relevant classes (eg. forest, grassland, city, crop types, ...), indicate some rough areas where
these classes are present in the dataset, and let the machine learning model of their choice do the work.

Other than in Chapter 3, where I mainly focused on classifying hyperspectral images using very little
training samples, training time is of less importance compared to inference time. It is important that
the preprocessing time per pixel and model complexity is kept low, as to keep the classification time of
unlabeled pixels manageable. Luckily the inference process can be sped up drastically using distributed
computing, which is discussed in Chapter 6.

The application should be user friendly even for experts without computer science background. Previously
obtained results should be easy to retrieve and to visualize, so that the right conclusions can be distilled
from the classification results. These results are not limited to classification performance on the manually
labeled pixels (where a train-validation-test split should be used). The area covered by the various classes,
obtained by multiplying the number of pixels that were classified as that class by the resolution of the
dataset, should be calculated for each dataset.

Additionally, faulty input data should be detected. For every classification result, a confusion matrix
should be generated. This confusion matrix will indicate where the model is still uncertain. In Figure
5.1, we can see an example of how an inaccurate classification result can be detected. In this example,
the pixels with class 7 and 14 are often confused. This example is from the Salinas dataset, where classes
7 (grapes_untrained) and 14 (vineyard_untrained) are very hard to distinguish. This confusion matrix
will allow the operator to make changes to the labeled training data, as well as tune the parameters for
the model to include more training samples, for example.

Every dataset is different. It might be useful and even necessary to tune the parameters from the
models that are present in the application. These models are provided by the user or by the community,
and should therefore be easy to incorporate into the application where parameter validation should be
available in a modular fashion. We need to take security into account, though. Currently, models are
submitted through python code, which requires trust between the user and the author of the model. A
solution for this problem is suggested in Chapter 6.
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Figure 5.1: Confusion matrix for a partially inaccurate classification result (Salinas dataset)



5.2. FEATURE OVERVIEW 55

5.2 Feature overview

In this section, I will go over each page that is present in the web application. Since features are logically
divided into these pages, they serve as the ideal backbone for this feature overview section.

5.2.1 Dashboard

The user is greeted in the dashboard (Figure 5.2). On this page, an overview of the application’s status
is provided. We can see whether the application is currently open for new jobs, and how many jobs are
currently in the queue.

On the left, we can see the recent model results, which are models that have recently been completed.
Note that with the term ’model’ is meant the combination of (1) a dataset, (2) a set of training samples,
(3) a deep learning architecture, and (4) the parameters of that architecture. At first glance, the user
is able to see a thumbnail for each model result, enabling the user to visually inspect the classification
result. Automatically, the overall accuracy is displayed, along with the name of the used dataset and a
generated version number for reference later on. Clicking the ’view more’ button brings us to the model
overview page, which is explained further in Section 5.2.6. Clicking on a particular recent model result
will bring the user to a detailed overview of that specific model, discussed in Section 5.2.7.

In the center of the screen, the currently running and queued models can be observed. The layout is
largely the same as the recent model results, with the addition of a progress indication for the currently
running model, and a queue position for the queued models. Only the top 5 of the queued models is
shown, with the total number of jobs in the queue being displayed above this list.

On the right, some important navigational buttons are shown. Uploading a new dataset (5.2.2), viewing
uploaded models (5.2.4) and a dedicated page for the Earth Observation 1 satellite datasets (5.2.8) is
accessible through these buttons.



Figure 5.2: The dashboard page
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5.2.2 Uploading a new dataset

Before a model can be trained, an input dataset is required. Currently, Matlab and TIF files are sup-
ported. Each dataset has a required part - the data - and an optional ground truth dataset. In Figure 5.3
the user is uploading the academical Kennedy Space Center dataset. After the user uploaded the data
file, the data and its dimensions are automatically detected. Optionally, the user can now also upload the
ground truth for this dataset. The API will check if the dimensions of the ground truth data match with
the dimensions of the dataset. When the user clicks ”Confirm”, the detailed dataset page is displayed.

5.2.3 Detailed dataset page

When a user uploads a new dataset, or wants to change an already existing dataset, they are taken to
the detailed dataset page. On this page, all information of the data itself is gathered and displayed. For
user experience purposes, a dataset can be manually named. This name will show in the model result,
and might be useful when a user has two identical datasets: one that uses the ground truth, and one that
uses manually specified labeled data.

In the details about the model, the extracted information from the data is shown. Information that
can be extracted from the dataset are its dimensions, and how many spectral bands are present in the
dataset. Resolution is often not provided in these datasets, as it is unnecessary to evaluate classification
performance. However, as this application also targets practical problems, the possibility to manually
specify the resolution is provided. This allows the application to calculate the surface area of the various
classes in the resulting classification map. If this field is left blank, the surface areas are calculated in
pixels instead.

If the user chose to upload a ground truth dataset, it is displayed on the right. A predetermined list
of colors is chosen to be contrasting and vibrant. If the user has not uploaded a ground truth map, or
chooses not to use the ground truth for specifying training samples, class colors can be specified manually.
When the user saves the changes done to the dataset, the dataset becomes visible in the dataset overview.

5.2.4 Uploaded datasets

On this page (Figure 5.5), an overview is provided for the different datasets that have been uploaded to the
web application. From here, the user can see an overview of trained models that use this dataset (Section
5.2.6), create a new model for this dataset (Section 5.2.5), or edit the dataset’s properties (Section 5.2.3).



Figure 5.3: Uploading a new dataset
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5.2.5 Creating a new model

The core functionality of the web application is classifying hyperspectral images. A hyperspectral model
consists of four parts: it is trained on a certain dataset (1), using supervised learning. To have supervised
learning, we also need labeled training samples (2). The model is trained on an architecture (3) with
specified hyperparameters for that specific architecture (4). The first and second inputs are specified in
the first window of the model creation process (Figure 5.6), while the third and fourth inputs are shown
in the architecture selection page (Figure 5.7).

A new model can be created in two ways: either through the uploaded datasets page (Section 5.2.4) or
through the result page of an already trained model (Section 5.2.7), in which case the parameters and
selected training samples used for that model are carried to the new model.

Selecting training samples for the supervised learning algorithm can be done manually, or by using the
ground truth if this is available for the chosen dataset. In Figure 5.6, the manual process is shown. On
the right, all classes present in the dataset are displayed. These classes are manually specified by the
user, and are given a color.

On the right, the grayscale visualization of the dataset is shown. This image is obtained through the
backend, by taking a slice from the dataset, normalizing its sensor values, and coloring the result in
grayscale. By default, the spectral band in the middle is displayed. The user can choose to display
another spectral slice by using the appropriate buttons below the grayscale visualization.

By pressing the ”New” button of a specified class, a new rectangle in the color of that class is added to
the canvas of the visualization. All pixels beneath this rectangle are assigned as labeled training samples
of that class. The user can rescale this rectangle to have the desired dimensions. The actual ground truth
data of the Salinas dataset is visualized in Figure 2.1b.

As some colors can become hard to differentiate from each other with many classes, the user can see the
assigned class of each rectangle by selecting it. A tooltip is shown with the assigned class, under the
button that allows the user to delete it altogether.

When the user is satisfied with their work, they click the ”Run model” button, which shows part 2 of the
model creation process: selecting the architecture and its parameters (Figure 5.7). On this page, the user
can select the architecture that will train the model at the top of the page, and configure its parameters.
These parameters are configurable by the architecture, and are displayed dynamically on the page. The
architecture creator can choose default values and limits for these parameters. The values are filled in if
no parameters were carried from an earlier model, and limits are enforced by the application.



Figure 5.6: Model creation page
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5.2.6 Model result overview page

In the model overview (Figure 5.8), the user can search through the model results. Several filtering
options are added on top: filtering by dataset and by architecture, as well as on a specific version using
the ’search version’ input box. The results can be sorted by when they were finished, or their classification
performance on the test set.

Each model can be clicked on, and brings the user to the detailed model result (see 5.2.7). Again, the
name and version of the model is shown, as well as the overall accuracy of the classification performance
of the test set. The user can flip through the pages of model results by using the navigation buttons at
the bottom.

5.2.7 Detailed model result

Clicking on a recent model in the dashboard or on the model overview page brings the user to the detailed
model result page (Figure 5.9). On this page, the user is greeted with the classification map of the entire
dataset. This image is obtained by applying the learned model on every part of the dataset, in order.
The colors represent the different classes. These are specified when indicating classes manually, or picked
automatically if the ground truth was chosen to train the model.

The key metrics of the model are displayed on the left: performance, classification areas and parameters.
Clicking on a section will open that section and close the others. In the ”Performance” section, the overall
and average accuracy are displayed. Additionally, other performance metrics such as the kappa metric
are shown if the model architecture calculates it.

Under the ”Areas” section, the surface area per class is displayed. This allows the user to quickly inspect
how much land a certain class covers, which can be useful to climate research, for example. Finally, under
”Parameters”, the chosen parameters to train the model are displayed. These parameters were specified
when the user enqueued the model.

Using the buttons under ”Change View”, the user can change the current view. By default, the classifica-
tion map of the dataset is shown. The user can also display the confusion matrix should they desire, for
example to see for which classes the model is unsure. This confusion matrix is calculated on the labeled
data that remains after choosing training and validation sets, and is therefore never before seen by the
model. Performance metrics are also calculated on the test set only.



Figure 5.8: The model overview page
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Figure 5.10: Software architecture of the web application

After the user has inspected the classification map and the confusion matrix, they might want to change
the parameters of the model and/or add more training samples to the model. The ”Create new model”
button creates a new instance of the model, where the user can yet again specify the training data and
model parameters. For a good user experience, all parameters and manually defined classification areas
are carried to that new model.

5.2.8 Earth Observation 1 satellite datasets

Datasets provided by NASA of the Earth Observation 1 satellite can also be uploaded to the application.
As the process is quite similar to uploading any other dataset, this process will not be discussed here.
Currently, the EarthExplorer website allows the user to download each dataset in 5 different formats.
For the application, I have chosen to work with the ’L1T’ format, which delivers its data in a zip file.
This zip file contains n files, where n is the number of spectral bands in the image. I have found n to be
242 over all available datasets.

The satellite datasets have lower quality and resolution compared to the academical datasets: atmospheric
features like clouds are more widespread, as the satellites provide a huge number of datasets completely
autonomously. This is different from the academical datasets in that they are gathered at the optimal
moment, where little atmospheric interference is present. Atmospheric interference also causes certain
spectral bands to be completely without data. This is an additional challenge for the supervised learning
process, as the spectral signature is no longer as smooth.

5.3 Software architecture

The software architecture can be seen schematically in Figure 5.10. It provides a high-level overview on
how the functionality of the application is divided and interconnected. In this section, I will go over each
of the four main components, and explain how models are trained in their own process. The motivation
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behind the language and/or framework choices is also provided, along with key libraries if relevant.

5.3.1 Frontend

The frontend is what allows the user to interact with the features that the application provides. Especially
for the goal of this application, much functionality is implemented in Python, and is therefore not directly
accessible to the user. User experience has a very high priority throughout the development process.

In modern web development, one is required to use a frontend library for creating web applications.
Libraries like Angular, React, and Vue, are valuable tools that take care of responsiveness, lifetime
management, avoiding code duplication, and so on. Being experienced with both Angular and React,
I chose React for its very fast prototyping and easy component approach. In React, each page is a
component, which might in turn consist of various components that are reused throughout the application.
In my final product as well, the reuse of components can be seen in Figure 5.8 and Figure 5.2, in the
model result summary items.

Angular also has a very powerful component system, and with its many community-driven libraries is
highly optimized for huge company websites. In the end it came down to learning curve: the learning curve
of Angular is, even for experienced developers, very steep. React on the other hand is not as powerful, but
has an easier learning curve. Due to the application not really needing the powerful features of Angular,
and the limited time constraints, I opted to use React for frontend development.

Two very important react libraries are the KonvaJS [53] and Bootstrap [54] libraries. Bootstrap is a
widely known frontend-framework directed at responsive, mobile-first front-end web development. It has
responsive CSS and Javascript-based design template for all kinds of HTML elements like buttons, con-
tainers, navigation, forms, and many more. It applies a highly customizable style to the web application,
making it attractive to the end user.

KonvaJS is a Javascript library that expands the Javascript canvas element. A canvas is used in web-
site where graphical user input is required, for example on a website with draggable elements, drawing
functionality, and photo editing in the browser. For my application specifically, it is used when manually
labelling terrain classes, as can be seen in Figure 5.6.

5.3.2 Database

In the database, data that needs to persist restarts of the application is stored. A big part of my
hyperspectral classification application is the uploaded datasets. These datasets need to be stored by the
backend, so that it is accessible to the python model for training. There are some database technologies
that are made specifically for file storage, but I was looking for a technology that could both save files, as
well as regular data entries. These data entries are metadata for the information saved in the application
like model performance and dataset names.

The solution was found in the MongoDB software [55] with the GridFS plugin. MongoDB stores data
rows as so-called BSON documents, where each document has a size limit of 16 MB. For hyperspectral
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images, even the small academical datasets exceed this limit, which is where GridFS comes in. The
GridFS plugin splits an uploaded file into smaller documents, which are then stored in the MongoDB
database. With implemented methods to both split and merge these files, it is well suited for the task of
storing the hyperspectral datasets.

5.3.3 Backend

The motivation for having a backend is twofold: it serves as an interface to the database, which often
contains data that not everyone may view or change, and less often it offloads heavy processes from the
client machine. In the case of this application both are required, and are split in two programs. In the
first section, I will discuss the part of the backend that is responsible for interacting with the database.
In the second section I will focus on offloading the heavy computational processes, mainly training deep
learning models, from the client machine.

1) API

While the processing backend is implemented in python, the API that provides interaction between
the frontend and the database is implemented using the .NET core framework by Microsoft [56]. This
relatively new framework from 2016 is developed as the successor of the .NET framework. In contrast to
.NET framework, it can be used for cross-platform development. Since I work on a Windows machine,
but want my application to be able to be deployed on Linux as well, this is a hard requirement. For
future development as well, .NET core makes more sense since it is designed to work in a microservice
environment. More information on this programming technique can be found in Chapter 6.

The main motivation behind not implementing the API backend in python as well so that I can join both
applications is simple: I am personally more experienced with .NET core, and I feel like .NET core has
more features to make designing an API easier. Additionally, the database-as-code feature of .NET core
through the entity framework system is really powerful, so that database technologies can be swapped
out without much work.

In the API backend, I employ the Model-View-Controller (MVC) software design pattern: database ob-
jects are represented as C# classes. These models can be read from and written to the database through
services, which provide specific implementations of features like renaming a dataset. The functionality
of the services is accessed through API controllers: these controllers provide validation and transforma-
tion for the service method implementations. This way, responsibilities are separated and code can be
maximally reused, making development more efficient.

2) Python worker

While as much functionality as possible is written in the API backend, there is functionality that can only
be implemented in python. Two examples are reading hyperspectral image datasets and training deep
learning models. The academical datasets are published as MATLAB files, which makes reading them
without third-party libraries very difficult. While .NET is advancing to become more centered around
machine learning, it still has a long way to go. For the python language, in contrast, many libraries
focusing on machine learning exist. Reading MATLAB files through the Scipio [57] library is very easy,
making it the preferred method for this specific task.



70 CHAPTER 5. APPLYING THEORY IN PRACTICE: A WEB APPLICATION

Training the deep learning models for the users of the application is done through whatever library
the author chooses. I personally implemented both my proposed method (Section 3) as well as other
deep learning architectures using the TensorFlow framework by Google [58]. As the preferred language
for machine learning by many developers is still python, I decided that the default processing backend
should be written in python. In future development, though, it should be very easy to add an additional
processing backend which uses another language.

The processing backend consists of three distinct parts: API endpoints, a master model runner, and slave
model trainer processes. The functionality of these three parts will be outlined in the following three
paragraphs.

Throughout the application, data visualizations are used. In figures 5.6 and 5.9, the user can respectively
see the ground truth of the dataset and the classification map visualized in the frontend. Since reading
the hyperspectral files is done through the python backend, it needs to provide endpoints to deliver
information directly to the user. This functionality is accessible through API endpoints, which are called
from the API backend on the user’s behalf. Validating uploaded datasets is done through these endpoints
as well, for the same reason.

Every five seconds, the master checks to see whether a new model can be trained. This process runs in the
same process as the API endpoints, but as a separate thread. When a model in the queue is ready to be
trained, the master model runner will spawn a new slave process in charge of actually training the model,
and will monitor that process until it is finished. This prevents a crashing model from bringing down
the entire python backend, and separates the two responsibilities. This way, the API remains responsive
while the slave process is hard at work training the new model.

Finally, the slave model trainer is responsible for actually training the model. As it runs in a separate
process, it is completely isolated from any other program. This way, performance is optimal since no
thread scheduling should be done, and a specific amount of resources can be reserved for that particular
process. Apart from training the model and classifying the entire dataset using the trained model, this
slave process is responsible for updating its progress to the database. This progress can then be displayed
by the frontend.

5.4 Experimental results on academic datasets

In this and the next Section, I will show some experimental results from two academical datasets and one
satellite dataset in my application. The results here are different from the results discussed in Chapter
4.2 in that they were trained using manually defined training data. In rapid succession, I will show the
ground truth (if available), the manually labeled training data, and the generated classification map for
the three datasets. Per dataset, I will also briefly discuss the impact of manually specifying training
samples on the classification accuracy.

All results were obtained by randomly selecting 50 training samples and 50 validation samples. Each
model was trained for 50 epochs, and the parameters are the same across all models. The overall accuracy
and average accuracy is calculated on the test set, which consists of all labeled samples not present in
the training or validation set.
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(a) Ground truth (b) Manually specified labels (c) Classification map

Figure 5.11: Ground truth, labels, and generated classification map for the Indian Pines dataset

5.4.1 Indian Pines dataset

Compared to using the ground truth as input for the training process, the labeled samples indicated in
Figure 5.11 provide an overall accuracy of 94.22%, and an average accuracy of 97.47%. When we look
at the results on the model that was trained using the ground truth data, we see something weird: the
classification scores of 92.23% and 96.53% for overall accuracy and average accuracy are slightly lower
compared to the manually labeled model. This means that if done correctly, manually specifying the
classes has no or even a positive effect on classification performance.

5.4.2 Salinas dataset

For the Salinas dataset, we achieve an overall accuracy of 82.82%, with an average accuracy of 89.61%
when we use manually labeled training samples. Compared to training the ground truth labels, this is
quite a bit lower as this model achieves an overall accuracy of 88.80% and an average accuracy of 94.80%.

5.5 Experimental results on satellite datasets

Finally, we arrive at a satellite dataset. This dataset of the island of Moroni near the coast of Mozambique,
features two rough geographic features: ocean and land. Due to the poor resolution of these datasets,
this is for now as far as we can go.

Again, 50 labeled training samples were used to train the model, although there are millions of pixels in
this classification map. These pixels come from the manually specified labels in the application. When
we process the result, we obtain the classification map, which is accurately mapping the contours of the
island. In Figure 5.13d especially, we can see the overlay of the transparent classification map on the
map view to see that it indeed follows its contours. Note that even the small bulge on top of the island
is detected, even though there are no training pixels in that area.
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(a) Ground truth (b) Manually specified labels (c) Classification map

Figure 5.12: Ground truth, labels, and generated classification map for the Salinas dataset

(a) Map view (b) Labels (c) Classification map (d) Overlay

Figure 5.13: Classification maps for the satellite dataset



6
Future work

In this chapter, I will discuss future work for the multi-stream architecture and capsule networks in
general in Section 6.1, as well as future development for the web application described in Chapter 5 in
Section 6.2.

6.1 Improving the multi-stream architecture

As can be seen in the experimental results, this architecture is not up to par with current state-of-the-art
techniques. I believe that capsule networks can become a state-of-the-art deep learning technique for
HSI classification. A first possible avenue of future work is simply refining this multi-stream architecture.
During the time of my thesis, I primarily focused on three streams, where each stream has an equal
amount of output features. This might be suboptimal: the impact of these hyperparameters should be
investigated more in-depth.

The describe multi-stream architecture uses 3-dimensional inputs. A variant using 2-dimensional inputs
(selecting spectral slices through PCA) and 1-dimensional inputs should also be explored. The impact of
normalization on the spectral layers should be investigated.

6.2 Future development on the web application

In this section, I will discuss avenues for further development on the web application.
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Uploadable model architectures: adding a new model architecture is done by implementing an
interface that will take care of preprocessing, performance evaluation and classification map generation.
However to be able to use the model architecture in the web application, the user needs to modify the
software by manually uploading their code file to the application, recompiling it and redeploying it. Both
for user experience and security (this application could run on internal server infrastructure), it would
be better if the user could upload their code file, just like is already possible with datasets. This way,
the disadvantages of having to modify the software files is avoided.

Implement more data formats: hyperspectral images are always published in a format. While
MATLAB is often used for academical datasets, more practical datasets are often distributed in a custom
data format. For example: the Hyperion hyperspectral images from the Earth Observation 1 mission
that is implemented in the web application uses a custom format based on a .TXT metadata file and
hundreds of geotiff files. As more practical datasets become available, the need for custom data parsers will
inevitably rise. Additionally, some dataset providers provide API access to their datasets. Fetching these
datasets through the API would improve the user experience and would reduce the storage requirements
for the application.

Supporting community-driven development: a major task of any researcher that comes up with a
new deep learning architecture is comparing their results against other architectures. Some researchers
do not provide code to run their architectures, or provide insufficient documentation on how to run the
code, leading to frustration. This forces researchers to reproduce the work of others, taking up valuable
research time and possibly introducing bugs or guessed hyperparameters not described in the paper of
the target architecture. This inevitably leads to unreproducible classification results, leading to biased
research conclusions. Creating a community platform where users can share their architectures using
this web application would greatly reduce these problems and would be a big advantage to the research
community. Additionally, it allows less experienced end-users to ”shop” for an architecture based on their
needs to solve real problems.

Distributed computing: the inference step of most architectures on practical datasets takes orders
of magnitude more time compared to the training time. This inference step can easily be accelerated
through distributed computing: distributing the model and training subsets of pixels would greatly
improve computation time.



7
Conclusion

In this thesis, capsule networks were explored for the hyperspectral image classification task, where the
goal is to assign a geological class to an area on the globe. To remedy the problems of computational
complexity and the trade-off between overfitting and underfitting in current methods, a new 3D multi-
stream architecture was proposed based on capsule networks. This architecture has shown that combining
multiple streams with varying degrees of detail improves the classification performance considerably.
Additionally, the architecture performs well with very little training data, making it fit to be applied in
a practical setting.

To explore this practical setting, a web application was created as a bridge between academic research and
practical applications. This application allows remote sensing researchers and machine learning experts
to work together towards applying hyperspectral image classification on practical datasets like those
captured by satellites at NASA and ESA. The software architecture is designed in a way that multiple
users can test their architectures and run their models in a queue, removing the need for dedicated
hardware for every individual workstation.

To prove that capsule networks are a valid technique for remote sensing applications, and that the results
of this research can be used in a practical context, the architecture was compared to the current state
of the art in hyperspectral image classification. These results show that while the architecture is not as
good as other state-of-the-art architectures for some academical datasets, capsule networks can deliver
very good results for practical applications. A follow-up article may enhance this architecture to further
increase the performance of the proposed multi-stream architecture on hyperspectral image classification.
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