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Summary

Decentralized social Web applications are advantageous in comparison to their centralized
counterparts for various reasons, including the improvement of their users’ privacy and the
reusability of data across multiple applications. Solid, a decentralized Web ecosystem, makes
these applications possible by letting users store their own data in personal online data stores
or pods. Users can then decide which applications have access to which parts of their data.
However, as user data can be distributed across thousands of remote pods, querying over this
data becomes difficult. In this research, we implement source selection based on Approximate
Membership Functions in order to reduce the number of HTTP requests to be performed by the
guery engine. This way, we try to make networks of personal data stores more scalable.

Samenvatting

Gedecentraliseerde sociale webapplicaties tonen verschillende voordelen in vergelijking met
hun gecentraliseerde tegenhangers, waaronder de verbetering van de privacy van hun
gebruikers en de herbruikbaarheid van data doorheen meerdere applicaties. Solid, een
gedecentraliseerd web-ecosysteem, maakt dit soort applicaties mogelijk door gebruikers hun
eigen data te laten opslaan in persoonlijke online datastores of pods. Als gevolg kunnen
gebruikers beslissen welke applicaties toegang hebben tot welke delen van hun gegevens.
Omdat gebruikersdata echter gedistribueerd kan zijn over duizenden externe pods, wordt het
opvragen van deze gegevens moeilijk. In dit onderzoek implementeren we bronselectie op basis
van Approximate Membership Funtcions om het aantal HTTP-requests dat door de query-



engine moet worden uitgevoerd, te verminderen. Op deze manier proberen we netwerken van
persoonlijke datastores schaalbaarder te maken.

Keywords: Semantic Web, Linked Data, decentralized social Web applications, source selection

Trefwoorden: Semantisch Web, Linked Data, gedecentraliseerde sociale webapplicaties,
bronselectie
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advantageous in comparison to their centralized counterparts for
various reasons, including the improvement of their users’ privacy
and the reusability of data across multiple applications. Solid, a
decentralized Web ecosystem, makes these applications possible
by letting users store their own data in personal online data stores
or pods. Users can then decide which applications have access to
which parts of their data. However, as user data can be distributed
across thousands of remote pods, querying over this data becomes
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I. INTRODUCTION

Data on the Web is now more prominent than ever. Using
data, we can communicate with each other, find the nearest
grocery store, order pizza, and so much more. To enable not
only humans, but also machines to actually understand
information on the Web, the Semantic Web [1], [2] was
introduced. This extension of the Web makes data machine-
readable by giving meaning or semantics to it.

In this context, the idea of Linked Data [3] was developed,
which encourages people to publish and interlink as much data
as possible, following predefined guidelines. The result is a
large Web of Data (WoD), which is expanding exponentially.
The Linking Open Data (LOD) cloud [4], an initiative that
visualizes this WoD, currently contains 1255 datasets
interconnected by 16174 links.

This concept of Linked Data opens up a new world of
possibilities. One of these possibilities, which has already been
brought into reality, is the Social Linked Data (Solid) project.
[5] Solid is an ecosystem that defies the traditional method of
centralized data storage by providing users with their own
personal online data store (POD). As it is based on the
principles of Linked Data, information stored in the pods can
be linked, creating a network of personal data stores. This
enables the realization of decentralized social Web
applications, which provide some major advantages in
comparison to their centralized counterpart. For one, giving
users control over their own data significantly improves their
privacy. Secondly, storing a user’s data at a single location
avoids duplication of data and lets users reuse information
across multiple decentralized social Web applications.

However, in the case of large-scale decentralized Web
applications, data might be spread across thousands or millions
of remote datasources. In contrast to centralized social
networks, where all data is fetched from a single database,

retrieving data in a large-scale decentralized environment is not
that straightforward. To this end, in this research we will try to
find a way to make efficient data retrieval in decentralized
networks of personal data stores more attainable.

We will rely on the implementation of a source selection
process in a client-side query engine to achieve this goal.
Source selection reduces the number of datasources to be
contacted for a given query, by ruling out irrelevant datasources
for that query. More specifically, we will use Approximate
Membership Functions, which are small probabilistic data
structures, to enable source selection.

The outline of this work is as follows. Section 2 looks into
related work. Section 3 and section 4 discuss the
implementation and the experimental setup, respectively. The
results of the experiments are analyzed in section 5 and further
discussed in section 6. Finally, some conclusions are drawn in
section 7, followed by a summary of possible future work in
section 8.

Il. RELATED WORK

A. The Semantic Web

The Semantic Web is an idea which Tim Berners-Lee, who
also invented the World Wide Web, came up with. It is an
extension of the current Web, in which information can be
processed, understood, and manipulated by computers. The
idea behind it is to give meaning to data by applying a well-
defined structure to it. RDF [6], a language that represents
information in the Web, expresses this meaning. It does this by
uniquely identifying any object and interlinking these objects
to form webs of information. [1]

B. Linked Data

The idea of connecting all related data to form a Web of Data
is referred to as Linked Data by Tim Berners-Lee. [3] It is a set
of rules for publishing and linking information on the Web.
Initially, the Web consisted of linked documents, without
machines being able to comprehend the actual meaning of the
information. Now, the Web is evolving into a global space in
which both documents and data are connected. [7] This
upgraded version of the Web has many advantages and
applications. Linked Data search engines, for example, have the
ability to aggregate data from many data sources by following
links between them. The accumulated data can then be queried.

C. The Resource Description Framework

The Resource Description Framework (RDF) presents a data
model optimized for linking data that defines resources. This
model is graph-based, which means it can be visualized by a
directed labeled graph. This makes RDF suitable for



representing social network data. [7], [9] A resource is an object
that can be identified by a URI. [10] When Hypertext Transfer
Protocol (HTTP) URIs are used, these resources can be looked
up on the Web. [3]

RDF can encode data as triples. These triples consist of a
subject, a predicate (also called a property type) and an object.
The subject (aresource) and predicate of atriple are represented
by URI’s, whereas the object may be a URI or a string. [7] A
predicate and an object together form a property of a subject.
[8] The relation between a subject and an object is determined
by the predicate. A Web of Data is established when for
instance a subject from one dataset is linked to an object from
another dataset. In this case, the RDF triple becomes an RDF
link. Both the subject and the object must then be URI
references. [7]

For data to be exchanged and processed, a general syntax or
data serialization format is required. [8] Using such a format,
an RDF graph can have a textual representation. There are
several RDF syntaxes, including RDF/XML, N-Triples, Turtle
and JSON-LD. [11]

D. SPARQL

Data encoded in the RDF format does not have much use if
it cannot be queried in some way. For that matter, the SPARQL
Protocol and RDF Query Language (SPARQL) [9], [12] was
developed by W3C in 2008. SPARQL is a query language for
RDF encoded data and can be used for querying multiple
graphs. In addition to the possibility of executing SPARQL
queries over RDF dumps, content providers can set up a
SPARQL endpoint. A big advantage of these endpoints is that
the data does not necessarily need to be stored in RDF, as it can
be created at run-time from other data sources.

A SPARQL query consists of a basic graph pattern, which is
a series of triple patterns. These are much like RDF triples, but
they can contain variables. The subject, the object or the
predicate of the triple pattern may be replaced by a variable.
When RDF terms (RDF literals, IRIs, or blank nodes) from a
subgraph can be replaced by variables, resulting in a graph
equal to that subgraph, then the basic graph pattern matches the
subgraph. A successful SPARQL query results in a sequence of
solutions, specified by the variables present in the SELECT
clause. This sequence can be represented as a table, with one
solution per row. The basic graph pattern is defined in the
WHERE clause. Note that for every solution, all the variables
mentioned in the wHERE clause must bind to the RDF terms of
the solution.

E. Solid

The Social Linked Data (Solid) project [5] puts users in
control of their own data. Although referred to as a platform,
Solid is in fact a protocol or ecosystem for decentralized social
Web applications, working on top of existing W3C
recommendations and the Linked Data stack. [13] With Solid,
users each have one or more personal online data stores
(PODs), in which all of their data is stored. These pods can be
accessed through the Web and are independent from
applications, which means that the same data can be reused
throughout multiple applications. Users decide which
applications and which people have access to which parts of
their data. This results in a major improvement in protecting
people’s privacy. [5]

The Solid ecosystem was built on top of some existing W3C
standards. It relies on the principles of the Semantic Web,

which allows for interlinking data that resides anywhere in the
Web. Standards used by Solid include RDF, Linked Data,
SPARQL, WebID, Web Access Control, LDP and Linked Data
Notifications. [5], [15], [16]

F. Querying over Linked Data

The difficulty with decentralized environments using Linked
Data is data retrieval. Especially in use cases like decentralized
social Web applications, query processing becomes a challenge
as the number of independent data sources can increase
quickly. Currently there are two main approaches [17], [18] for
data integration and querying in a decentralized environment.

The first approach is warehousing, also called
materialization-based approaches. This method assumes a
single, central database, in which RDF dumps of all remote data
sources are collected in advance. By applying preprocessing
and indexing techniques on the aggregated data, queries can
easily be answered using the central repository. Data
warehousing offers the fastest query response times, but it has
some major disadvantages. One of these is that the data in the
central repository is not always synchronized with its sources.

The second method is distributed query processing (DQP) or
federated querying. This approach does not need a central
database, but instead queries the data sources directly. To that
end, input queries are parsed and split into separate subqueries,
which are then sent to the individual data sources, according to
source selection. Finally, the responses from the remote sources
are combined into a valid result. Distributed query processing
is advantageous in various ways. One advantage is that, in
contrast to warehousing, the data is always synchronized, as
there is only one copy of it. Unfortunately, availability and
reliability of this federated approach cannot be guaranteed
because the system relies on a lot of possibly unstable or
inactive data stores. [18]

G. Source selection

Most distributed query processing approaches are not very
scalable when the network of data sources gains in size.
Existing methods are often designed to handle only a small
number of endpoints exposing a fairly large amount of data,
instead of thousands of separate sources, each containing fewer
resources. The latter case, however, would be ideal for
decentralized social Web applications, whereby possibly
thousands or millions of users, located all around the world,
each have their own personal data pod. But when there is a very
large number of data sources, checking every source for
potential data contributing to the result of a query is
unattainable. To that end, a source selection process must be
executed, in order to rule out sources that do not contain
valuable data for the query and keep only those that can
contribute to the query answer. This process takes a triple
pattern as input and returns a set of data sources that contain
potential variable bindings. [18]

Two effective data structures to enable source selection over
many sources are data summaries [16], [18] and Approximate
Membership Functions (AMFs). [16], [20], [21] They are both
probabilistic, which means that they can produce false
negatives, but they cannot produce false positives. The chance
of false positives occurring can be chosen by setting a false
positive probability.

AMFs have two different implementations, being Bloom
filters [22] and Golomb-coded sets. [23]



I1l. IMPLEMENTATION

This research applies Approximate Membership Functions to
a Solid environment in order to evaluate their effect on query
performance. The emphasis lies on scalability of decentralized
networks of datasources, by simulating an expanding social
network. With this study, we hope to get somewhat closer to
making large-scale decentralized social Web applications
reality.

A. Data generation

In order to simulate a social network to run experiments over,
a lot of synthetic data had to be generated. For this, a
decentralized version of the LDBC SNB Data Generator [24]
was used.

The decentralized version splits the large Turtle file, created
by the SNB data generator, so that the data is spread across a
multitude of files, each containing the data of one specific
entity in the social network. More specifically, each file
contains all the triples of which the subject is one specific URI,
denoting an entity in the network. In this research, for the
purpose of performance, only the files containing data of
persons and cities were used, with a maximum of 3500 persons
and the 1231 cities they live in.

B. Server

Behind the scenes, the decentralized data generator uses the
Community Solid Server (CSS) [25] to host and serve the RDF
files over HTTP. CSS is an open-source and modular
implementation of the Solid specifications. Using the server,
developers can create decentralized Solid applications and
experiment with them. The decentralized data generator tool
exploits the file-based store functionality of the Solid Server to
serve the generated social network data over HTTP. That way,
a decentralized social network can be simulated, as the data of
every single entity must be accessed using a separate URI.

C. Approximate Membership Functions

For the construction of the Approximate Membership
Functions, a separate script was written. The script uses Bloom
filters as the probabilistic data structure. First, the number of
bits in the bitmap of the filter and the number of hash functions
are determined, based on the number of triples in the RDF file
and the desired false positive probability. Then, a Bloom filter
is initialized for each term (subject, predicate, object). Finally,
the corresponding term of each triple is added to the filter. The
pseudocode below shows the AMF construction algorithm.

m = calculateBitmapSize ()
k = calculateNumberOfHashes ()
filters = ['subject', 'predicate', 'object']
for (variable in filters):
filters[variable] = new Bloem(m, k)
for (triple in triples):
for (variable in filters):
filters[variable].add (Buffer.from(triple[variable]))
for (variable in filters):
filters[variable] = {
type: 'http://semweb.mmlab.be/ns/membership#BloomFilter"',
filter: filters[variable].bitfield.buffer.toString('base6d'),
m: m,
k: k
}

D. Client-side query engine

The most important aspect of the implementation of this
research was the process of extending a client-side query
engine to support source selection based on Approximate
Membership Functions. For this, we used the Comunica [26]
query engine. Comunica is a modular Web-based SPARQL

query engine that allows for the development and testing of new
Linked Data query processing functionalities. It enables
federated querying over heterogeneous datasource interfaces
out-of-the-box.

For this research, the modularity of Comunica was exploited
to implement source selection capabilities based on AMFs. A
new actor was developed for the sole purpose of filtering the
datasources array.

E. Source selection

The purpose of the generated Approximate Membership
Functions is to enable a source selection process, in which
many of the irrelevant datasources for a given query can be
filtered out. This leaves a smaller set of sources to be queried
over, which leads to better performance. The lower the chosen
false positive probability for the AMFs, the smaller the filtered
set of sources. The pseudocode below shows the algorithm used
for source selection.

filteredSources = []
for source in originalSources:
addSource = true
for term in [‘subject’,’predicate’,’object’]:
if triplePattern[term] not variable:
if not source.bloomFilter[term].contains (triplePattern[term]) :
addSource = false
if addSource:
filteredSources.push (source)

IV. EXPERIMENTAL SETUP

To ensure the results to be as reliable as possible, the
experiments were run with many different combinations of
parameters. First, 15 different SPARQL queries were tested.
Next, the number of datasources in the social network was
varied to obtain a network of 10, 100, 500, 1000, 2000 and 3500
sources. Thirdly, six different false positive probabilities were
tested for the Bloom filters, being 1/4096, 1/1024, 1/128, 1/64,
1/4 and 1/2. Finally, each possible combination of the
aforementioned parameters was iterated three times. Each time,
the average of the metrics of those three iterations was
calculated to obtain the definitive result.

In addition to the number of results produced by the query,
four other metrics were measured, namely the number of HTTP
requests issued by the query engine, the total query execution
time, the client-side memory usage, and the client-side CPU
load. Unfortunately, the CPU load metric produced seemingly
random values, making it unusable in the discussion of the
experiment results.

In order to make the experiment reproducible, a Bash script
was written, which iteratively invokes the query engine with
different parameters. This way, the whole experiment could be
run by executing only one script. A query timeout was set for 5
minutes, in combination with a maximum memory usage limit
of 4096 MB for Nodejs. All experiments were run on a single
machine with an Intel Core i7-8705G CPU at 3.10 GHz and 8
GB of RAM.

V. RESULTS

A. HTTP requests

The first and most important metric to evaluate is the number
of HTTP requests performed by the querying process. Figure 1
shows the number of HTTP requests per number of
datasources, averaged over all queries (lower is better). The
legend shows the different false positive probabilities of the
Bloom filters, whereby Default refers to the use of the query



engine without Approximate Membership Functions. The
default query engine will from now on be referred to as E, while
the AMF-extended query engine will be called E’.
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Figure 1 - Average number of HTTP requests per number of
datasources.

Note that the chart is not completely accurate, as several
queries (executed over 2000 and 3500 datasources) resulted in
a timeout or a heap out of memory error. This only occurred in
the default version of the query engine, not with the use of
AMFs. Due to these failures, no metrics have been measured
and as such, the number of HTTP requests of these queries has
not been included in the averages. Therefore, in reality, the
averages for 2000 and 3500 datasources using the default
version are much higher, following the pattern found in the
lower numbers of datasources.

Still, the default version of the query engine immediately
stands out, as the number of HTTP requests increases much
quicker than with the use of AMFs. Going from 500 to 1000
datasources in the default version results in an increase of
264%, while the increase with the use of AMFs at a false
positive rate p = 1/64 is just 137%. The difference in the
average number of HTTP requests between E and E’ (at p =
1/64) for 500 datasources is 2347 requests. The same
difference for 1000 datasources is 9152 requests, which means
an increase of 290%.

While the number of HTTP requests at p = 1/4096, p =
1/1024, p = 1/128 and p = 1/64 almost perfectly align, a
significant increase is observed at rates of p = 1/4 and p =
1/2. At 3500 datasources, p = 1/2 performs more than 3 times
as many HTTP requests in comparison to p = 1/4096.
Therefore, high false positive probabilities contribute to poorer

query performance.
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Figure 2 - Number of HTTP requests per query for 10 datasources.
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Figure 3 - Number of HTTP requests per query for 3500 datasources.

The above clustered column charts were constructed to
examine the results more into detail. These histograms show
the exact number of HTTP requests for each executed query
(averaged over 3 iterations). Figure 2 and Figure 3 show the
observations for 10 and 3500 datasources, respectively. It is
clear that an increase in the number of datasources leads to a
bigger difference between E and E’, at least for low false
positive rates.

B. Query execution time

In addition to the number of HTTP requests, the total query
response times were also measured. This metric is directly
affected by the HTTP requests, as an important part of the
querying process involves contacting remote datasources.
Figure 4 illustrates the total query execution time per number
of datasources, averaged over all queries (lower is better).
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Figure 4 - Average query execution time per number of datasources.

The same pattern arises as with the number of HTTP
requests. E’ with low false positive probabilities shows the best
response times, followed by E’ with higher false positive rates.
The averages of E are relatively close to those of E’ for very
small networks but increase much more rapidly when the
network expands. Going from 500 to 1000 datasources while
using E' and p = 1/64 produces an increase of 162% in the
average query response time. This increase rises to 236% using
the default query engine. The difference between E and E' (at
p = 1/64) when scaling up from 500 to 1000 sources shows
an increase of 273%.

False positive rates p =1/4 and p =1/2 again show
reduced performance in comparison to lower rates. p =
1/4096 contributes to slightly better results than p = 1/1024,



p=1/128 and p = 1/64, of which the averages almost
perfectly align.

The clustered column charts are left out here, as the results
are the same as with the number of HTTP requests: the
difference between E and E’ also grows with the expansion of
the network of datasources.

C. Memory usage

The third measured metric is the memory usage at the client,
who runs the query engine. Just as the query response time,
memory usage is also greatly affected by the number of HTTP
requests. More sources to be retrieved means more data to keep
in memory. Figure 5 displays the evolution of the memory
usage with an increasing number of sources, averaged over all
queries (lower is better).
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Figure 5 - Average memory usage per number of datasources.

As the number of HTTP requests has a big influence on the
client memory usage, we can observe the same pattern here.
Just as with the use of AMFs, the memory usage of the regular
query engine setup starts off fairly low. But again, adding more
datasources means a faster increase for E than for E’. Moving
from 500 to 1000 datasources using the default engine and with
p = 1/64 causes an increase of 78% in the average memory
usage at the client. The same calculation for the default engine
yields an increase of 119%. The difference between E and E’
(at p = 1/64) when scaling up from 500 to 1000 data stores
increases 143%.

Lower false positive rates again show better performance
than p=1/4 and p =1/2. Oddly, the probability p =
1/4096 causes higher memory usage for 2000 datasources than
p =1/1024,p = 1/128 and p = 1/64, but then again lower
usage for 3500 sources. This is likely due to the lower accuracy
of the memory usage metric.

Again, the clustered column charts are left out, as the same
pattern can be observed as with the previous two metrics.

D. AMF construction

To evaluate the performance of the AMF construction
process, some experiments were carried out in which the time
it takes to create the Bloom filters was measured, together with
the disk space these filters require. As the experiments in the
previous sections were executed over a maximum of 3500
datasources, each containing one person’s info, the same 3500
sources are used in the experiments in this section. However,
an additional 1231 datasources, each containing the data of a
location, are included as well. This brings the total to 4731
datasources for the experiments concerning AMF construction.
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Figure 6 - Construction time per false positive probability for the
Bloom filters of 4731 datasources.

Figure 6 clarifies that a lower false positive probability leads
to a higher overall construction time, with a maximum of 15.3
seconds for p = 1/4096 (approximately 3 milliseconds per
datasource). This behavior is expected, as a lower false positive
rate means more precision, and so the filter must contain more
data and thus, it takes more time to create. The difference
between the two extremes is relatively small, being only 1.4
seconds. However, this number can quickly rise in networks
with a scale of hundreds of thousands or even millions of
datasources.

If we look at the disk space these Bloom filters require, the
same pattern can be observed. This is illustrated in Figure 7.
Adding more precision to the Bloom filters, requires them to
contain more data and take up more space. Although the
difference in construction time between the lowest and highest
false positive rate is relatively small, the difference in size
between these two extremes is a lot bigger. The filters with a
probability of p = 1/4096 require almost 3 times as much
space as the filters with p = 1/2. In this setting, that difference
is only 2.37 MB, but in networks with very large scale, the
difference can be crucial.
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Figure 7 - Disk space per false positive probability for the Bloom
filters of 4731 datasources.

In the previous sections, we learned that lower false positive
rates do it better, performance-wise. Contrarily, in this section
we discovered that Bloom filters with lower probabilities take
more time to create and require more disk space. Therefore, the
optimal balance between query performance, construction time
and disk space lies somewhere between the highest and the
lowest false positive probability.

It seems p = 1/64 would be the recommended false positive
rate, as it performs much better than p = 1/4 and p = 1/2,
while less time and disk space are required to create the filters
than with p = 1/4096, p = 1/1024 and p = 1/128 (and it
barely differs from them performance-wise).



VI. DISCUSSION

The use of Approximate Membership Functions when
querying over an expanding network of datasources proves to
be advantageous in multiple ways. The number of HTTP
requests, as well as the overall query execution time and the
client-side memory usage are improved significantly by using
Bloom filters. We saw that the difference between the regular
query engine and the AMF-extended query engine is negligible
for very small networks with no more than 100 datasources, but
as soon as that number increases, the difference increases with
it.

However, the problem with the current method of applying
Approximate Membership Functions is that, without the use of
an external server taking care of the AMFs, the number of
HTTP requests at the client can rise up to more than the number
of HTTP requests when using the default query engine. This is
because of the need of the Bloom filters to be constantly up to
date. Given an input query, the client would first have to contact
every datasource in the network in order to construct the filters.
Only thereafter would the client be able to perform source
selection and execute the query. As such, the total number of
HTTP requests for each query would be equal to the sum of the
number of datasources in the network and the number of
sources retrieved from the source selection process. As a result,
query performance would be worse than with the default setup.

Luckily, there are a few solutions to this problem, of which
two will be discussed here. Both of them implement an
aggregator, which is separated from the client. Both also have
their own preferable use cases.

The first solution is to add an aggregator to the network,
which crawls from datasource to datasource and keeps a list of
all sources in the network. It can renew all AMFs periodically,
or it may generate a new filter upon file changes, in which case
the datasource can send a notification to the aggregator. When
the client wants to perform a query, it can let the aggregator
know, after which the aggregator combines all filters into one
large file and sends it back to the client. Then, the client can
perform source selection and execute the query. This method
adds only one HTTP request to the complete process of the
client. Moreover, this solution becomes particularly interesting
if the client needs to execute multiple queries across the same
range of sources. In that case, it can download the combined
AMF file from the aggregator once and reuse it for different
queries. However, this approach is not ideal for very large
networks of sources, as the file containing the AMFs grows
with the number of sources and must be sent to the client over
the network. For p = 1/64 and 4731 sources, sending a file
with a size of 2.41 MB is achievable. Scaling the network up to
100.000 sources, however, leads to a size of 51 MB, while a
network of 1 million sources means an unattainable 510 MB.

The second method is more favorable to large-scaled
networks. In this approach, the aggregator discovers new
sources and updates its AMFs in the same way, but it differs in
the querying process itself. When the client must execute a
query, it first sends the query over to the aggregator. After that,
the aggregator performs the source selection process itself, and
sends the list of selected sources back to the client. Based on
this list of sources, the client can immediately execute the
query. Just as with the first solution, this approach adds only
one HTTP request to the complete querying process of the
client. In this method, the size of the network matters less, as
the query and the list of sources are the only pieces of data to
be exchanged with the aggregator. However, this solution
demands more processing power from the aggregator.

Furthermore, this method may be less ideal in situations where
protection of privacy plays a very important role, as each query
from the client must be sent over the network and can be read
by the aggregator. Therefore, the choice of which solution to
implement mostly depends on the use case, but this trade-off
needs to be further investigated in future work.

VII. CONCLUSIONS

In this research, we tried to find a way to make querying over
a large number of datasources more feasible. By investigating
this matter, large-scale decentralized social Web applications
could become reality. The proposed method is to extend the
client-side query engine by implementing source selection
based on Approximate Membership Functions. By performing
source selection, irrelevant datasources for a given input query
can be filtered out, significantly reducing the number of HTTP
requests to be executed by the client. Approximate Membership
Functions can be given a false positive probability. A higher
probability means a higher chance for an irrelevant source to
end up in the selected list of sources. There is however a trade-
off, as AMFs with a lower false positive probability are bigger
in size.

Some experiments were set up, in order to measure the query
performance of a query engine extended with AMFs (E’), in
comparison to the default engine (E). The goal was to find that
the difference in performance between E’ and E increased with
the expansion of the network of datasources. For this, three
different metrics were measured: the number of HTTP requests,
the total query execution time, and the client-side memory
usage.

For all three metrics, we saw the same pattern. In very small
networks, the metrics of E' and E are almost equal. However,
the more datasources are added, the more the difference in
performance between E' and E grows, with E' providing much
better results than E. Some queries in the regular setup even
failed due to timeouts or heap out of memory errors, while these
queries caused no issues in the AMF setup.

Different false positive probabilities were also tested, in
order to find the optimal balance between query performance,
filter construction time and filter size. We discovered that a
false positive rate of p = 1/64 proved to contribute to the best
results overall.

Although the use of Approximate Membership Functions
provides a significant improvement in query performance, the
construction of these filters must also be considered. In a setup
where the client itself must maintain the AMFs, the total
number of HTTP requests invoked by a query is much higher
than in a regular setup without AMFs. This causes the query
response times to escalate significantly. However, two
solutions have been proposed to this problem, both involving
an external aggregator.

Both of these methods add only one HTTP request to the
complete querying process of the client, making the complete
process still very performant in comparison to the regular query
engine setup. However, the approaches differ in other ways and
each have their own preferable use cases.

To summarize, we can state that the use of Approximate
Membership Functions when querying over a large number of
sources provides a major improvement to query performance,
but only if the resources are available to implement an external
aggregator, which manages the AMFs. Unfortunately, even
with the use of AMFs, the measured metrics are for some
queries over many sources still rather poor to make responsive



decentralized social Web applications possible. Nonetheless,
the findings in this research might help us take a step closer to
that goal.

VIII.

Various subjects may be further investigated to continue the
work of this research. In the discussion, we mentioned two
solutions for reducing the number of HTTP requests using the
proposed AMF-enabled query engine in combination with an
aggregator. Although the optimal use cases and the advantages
and disadvantages of each approach were briefly discussed,
these methods must be further investigated and experimented
with in future research, as the correct use of aggregators in a
decentralized environment can significantly improve query
performance.

Furthermore, other AMF approaches should be tested, such
as compressed Bloom filters and Golomb-coded sets. These
data structures are more space-efficient than regular Bloom
filters. Therefore, they could be particularly useful in the first
of the two mentioned solutions regarding aggregators, as the
biggest issue there is that sending a large AMF file over the
network drastically reduces query performance.

In fact, Approximate Membership Functions are not the only
way of implementing source selection in a client-side query
engine in the context of Solid. Other summarization approaches
must be investigated and tested as well.

Finally, decentralized social Web environments could be
simulated in larger scale, and queried over using more elaborate
queries. We have a long way to go before we can achieve truly
large-scale decentralized social Web applications, but the first
steps have already been taken.

FUTURE RESEARCH
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Abstract - Gedecentraliseerde sociale webapplicaties tonen
verschillende voordelen in vergelijking met hun gecentraliseerde
tegenhangers, waaronder de verbetering van de privacy van hun
gebruikers en de herbruikbaarheid van data doorheen meerdere
applicaties. Solid, een gedecentraliseerd web-ecosysteem, maakt
dit soort applicaties mogelijk door gebruikers hun eigen data te
laten opslaan in persoonlijke online datastores of pods. Als gevolg
kunnen gebruikers beslissen welke applicaties toegang hebben tot
welke delen van hun gegevens. Omdat gebruikersdata echter
gedistribueerd kan zijn over duizenden externe pods, wordt het
opvragen van deze gegevens moeilijk. In dit onderzoek
implementeren we bronselectie op basis van Approximate
Membership Funtcions om het aantal HTTP-requests dat door de
query-engine moet worden uitgevoerd, te verminderen. Op deze
manier proberen we netwerken van persoonlijke datastores
schaalbaarder te maken.

Trefwoorden - Semantisch Web, Linked
gedecentraliseerde sociale webapplicaties, bronselectie

Data,

I. INTRODUCTIE

Data op het web is nu belangrijker dan ooit. Met behulp van
data kunnen we met elkaar communiceren, de dichtstbijzijnde
supermarkt vinden, pizza bestellen, en nog veel meer. Om niet
alleen mensen, maar ook machines in staat te stellen informatie
op het web daadwerkelijk te begrijpen, werd het Semantisch
Web [1], [2] geintroduceerd. Deze uitbreiding van het Web
maakt gegevens leesbaar voor machines door er betekenis of
semantiek aan te geven.

In dit verband is het idee van Linked Data [3] ontwikkeld, dat
mensen aanmoedigt om zoveel mogelijk gegevens te
publiceren en aan elkaar te koppelen, volgens vastgestelde
richtlijnen. Het resultaat is een groot Web of Data (WoD), dat
zich exponentieel uitbreidt. De Linking Open Data (LOD)
cloud [4], een initiatief dat deze WoD visualiseert, bevat
momenteel 1255 datasets die onderling verbonden zijn door
16174 links.

Dit concept van Linked Data opent een nieuwe wereld van
mogelijkheden. Eén van deze mogelijkheden, die reeds in de
praktijk is gebracht, is het Social Linked Data (Solid) project.
[5] Solid is een ecosysteem dat de traditionele methode van
gecentraliseerde gegevensopslag tegengaat door gebruikers
hun eigen persoonlijke online datastore (POD) te bieden.
Aangezien het gebaseerd is op de principes van Linked Data,
kan informatie opgeslagen in de pods aan elkaar worden
gekoppeld, waardoor een netwerk van persoonlijke datastores
ontstaat. Dit maakt de realisatie  mogelijk  van
gedecentraliseerde sociale webapplicaties, die een aantal grote
voordelen bieden in vergelijking met hun gecentraliseerde
tegenhangers. Door gebruikers controle te geven over hun

eigen gegevens wordt hun privacy aanzienlijk verbeterd. Ten
tweede voorkomt het opslaan van de gegevens van een
gebruiker op een enkele locatie duplicatie van gegevens en stelt
het gebruikers in staat informatie te hergebruiken doorheen
meerdere gedecentraliseerde sociale webapplicaties.

In het geval van grootschalige gedecentraliseerde applicaties
kunnen gegevens echter verspreid zijn over duizenden of
miljoenen externe gegevensbronnen. In tegenstelling tot
gecentraliseerde sociale netwerken, waar alle gegevens uit één
enkele database worden gehaald, is het ophalen van gegevens
in een grootschalige gedecentraliseerde omgeving niet zo
eenvoudig. Daarom zullen we in dit onderzoek proberen een
manier te vinden om het efficiént ophalen van gegevens in
gedecentraliseerde netwerken van persoonlijke datastores
haalbaarder te maken.

We zullen een bronselectieproces implementeren in een
client-side query engine om dit doel te bereiken. Bronselectie
vermindert het aantal databronnen dat gecontacteerd moet
worden voor een gegeven query, door irrelevante databronnen
voor die query uit te sluiten. Meer specifiek zullen wij gebruik
maken van Approximate Membership Functions, Kkleine
probabilistische datastructuren, om bronselectie mogelijk te
maken.

De opzet van dit werk is als volgt. Sectie 2 gaat in op verwant
werk. Sectie 3 en sectie 4 bespreken respectievelijk de
implementatie en de experimentele opzet. De resultaten van de
experimenten worden geanalyseerd in sectie 5 en verder
besproken in sectie 6. Ten slotte worden enkele conclusies
getrokken in sectie 7, gevolgd door een samenvatting van
mogelijk toekomstig werk in sectie 8.

Il. GERELATEERD WERK

A. Het Semantisch Web

Het Semantisch Web is een idee van Tim Berners-Lee, die
ook het World Wide Web heeft uitgevonden. Het is een
uitbreiding van het huidige Web, waarin informatie door
computers kan worden verwerkt, begrepen en gemanipuleerd.
Het idee erachter is betekenis te geven aan gegevens door er
een vastgelegde structuur op aan te brengen. RDF [6], een taal
die informatie op het Web weergeeft, drukt deze betekenis uit.
Dit gebeurt door elk object op unieke wijze te identificeren en
deze objecten onderling te verbinden om informatiewebben te
vormen. [1]

B. Linked Data

Het idee om alle verwante gegevens met elkaar te verbinden
om zo een Web of Data te vormen, wordt door Tim Berners-



Lee "Linked Data" genoemd. [3] Het is een verzameling regels
voor het publiceren en koppelen van informatie op het Web.
Aanvankelijk bestond het Web uit gekoppelde documenten,
zonder dat machines in staat waren de werkelijke betekenis van
de informatie te begrijpen. Nu ontwikkelt het Web zich tot een
wereldwijde ruimte waarin zowel documenten als gegevens
met elkaar worden verbonden. [7] Deze opgewaardeerde versie
van het Web heeft vele voordelen en toepassingen.
Zoekmachines voor Linked Data hebben bijvoorbeeld de
mogelijkheid om gegevens uit vele gegevensbronnen samen te
voegen door links tussen deze bronnen te volgen. Op deze
verzamelde gegevens kunnen vervolgens zoekopdrachten
worden uitgevoerd.

C. Het Resource Description Framework

Het Resource Description Framework (RDF) biedt een
datamodel dat is geoptimaliseerd voor het koppelen van data
die resources definiéren. Dit model is graaf-gebaseerd, wat
betekent dat het kan worden gevisualiseerd door een gerichte
gelabelde graaf. Dit maakt RDF geschikt voor het representeren
van data voor sociale netwerken. [7], [9] Een resource is een
object dat kan worden geidentificeerd door een URI. [10]
Wanneer Hypertext Transfer Protocol (HTTP) URI's worden
gebruikt, kunnen deze bronnen op het Web worden opgezocht.
[3]

RDF kan gegevens coderen als triples. Deze triples bestaan
uit een subject, een predicaat (ook wel een property type
genoemd) en een object. Het subject (een resource) en predicaat
van een triple worden voorgesteld door URI's, terwijl het object
een URI of een string kan zijn. [7] Een predicaat en een object
vormen samen een eigenschap van een subject. [8] De relatie
tussen een subject en een object wordt bepaald door het
predicaat. Een Web of Data komt tot stand wanneer
bijvoorbeeld een subject uit een dataset wordt gekoppeld aan
een object uit een andere dataset. In dit geval wordt de RDF
triple een RDF link. Zowel het subject als het object moeten
dan URI-referenties zijn. [7]

Om data te kunnen uitwisselen en verwerken is een algemene
syntax of serialisatieformaat nodig. [8] Met behulp van zo'n
formaat kan een RDF graaf een tekstuele representatie krijgen.
Er zijn verschillende RDF syntaxen, waaronder RDF/ XML, N-
Triples, Turtle en JSON-LD. [11]

D. SPARQL

Data gecodeerd in RDF formaat heeft niet veel nut als het niet
op een of andere manier kan worden opgevraagd. Daarom is
SPARQL Protocol and RDF Query Language (SPARQL) [9],
[12] ontwikkeld door W3C in 2008. SPARQL is een querytaal
voor RDF gecodeerde data en kan worden gebruikt voor het
opvragen van data over meerdere grafen. Naast de
mogelijkheid om SPARQL queries uit te voeren over RDF
dumps, kunnen content providers een SPARQL endpoint
opzetten. Een groot voordeel van deze endpoints is dat de data
niet noodzakelijk in RDF hoeft te zijn opgeslagen, omdat deze
at run-time uit andere databronnen kan worden gecreéerd.

Een SPARQL query bestaat uit een basic graph pattern, dat
een serie van triple patterns is. Deze lijken veel op RDF triples,
maar ze kunnen variabelen bevatten. Het subject, het object of
het predicaat van het triple pattern kan worden vervangen door
een variabele. Wanneer RDF termen (RDF literals, IRI’s, of
blank nodes) uit een subgraaf vervangen kunnen worden door
variabelen, wat resulteert in een graaf gelijk aan die subgraaf,
dan komt het basic graph pattern overeen met de subgraaf. Een

succesvolle SPARQL query resulteert in een opeenvolging van
oplossingen, gespecificeerd door de variabelen in de SELECT-
clausule. Deze reeks kan worden voorgesteld als een tabel, met
één oplossing per rij. Het basic graph pattern van de graaf wordt
gedefinieerd in de weERE-clausule. Merk op dat voor elke
oplossing, alle variabelen vermeld in de wHERE clausule
moeten binden aan de RDF termen van de oplossing.

E. Solid

Het Social Linked Data (Solid) project [5] geeft gebruikers
de controle over hun eigen gegevens. Hoewel Solid een
platform wordt genoemd, is het in feite een protocol of
ecosysteem voor gedecentraliseerde sociale webapplicaties, dat
bovenop de bestaande W3C-aanbevelingen en de Linked Data-
stack werkt. [13] Met Solid hebben gebruikers elk één of
meerdere persoonlijke online datastores (PODs), waarin al hun
gegevens worden opgeslagen. Deze pods zijn toegankelijk via
het Web en zijn onafhankelijk van toepassingen, wat betekent
dat dezelfde gegevens kunnen worden hergebruikt in meerdere
toepassingen. Gebruikers bepalen zelf welke toepassingen en
welke mensen toegang hebben tot welke delen van hun
gegevens. Dit leidt tot een grote verbetering in de bescherming
van de privacy van mensen. [5]

Het Solid ecosysteem is gebouwd bovenop een aantal
bestaande W3C standaarden. Het is gebaseerd op de principes
van het Semantisch Web, dat het mogelijk maakt gegevens die
zich overal op het Web bevinden aan elkaar te koppelen.
Standaarden die door Solid worden gebruikt zijn RDF, Linked
Data, SPARQL, WebID, Web Access Control, LDP en Linked
Data Notifications. [5], [15], [16]

F. Queries uitvoeren over Linked Data

De moeilijkheid met gedecentraliseerde omgevingen die
Linked Data gebruiken is het opvragen van gegevens. VVooral
in situaties zoals gedecentraliseerde sociale webapplicaties
wordt het verwerken van queries een uitdaging omdat het aantal
onafhankelijke databronnen snel kan toenemen. Momenteel
zijn er twee belangrijke benaderingen [17], [18] voor data-
integratie en opvraging van data in een gedecentraliseerde
omgeving.

De eerste aanpak is warehousing, ook wel materialisatie-
gebaseerde aanpak genoemd. Deze methode gaat uit van één
centrale database, waarin vooraf RDF-dumps van alle externe
gegevensbronnen worden verzameld. Door preprocessing- en
indexeringstechnieken op de geaggregeerde data toe te passen,
kunnen queries eenvoudig worden beantwoord met behulp van
de centrale repository. Data warehousing biedt de snelste
responstijden voor queries, maar heeft een aantal grote nadelen.
Eén daarvan is dat de gegevens in de centrale opslagplaats niet
altijd gesynchroniseerd zijn met de bronnen.

De tweede methode is distributed query processing (DQP) of
federated querying. Bij deze aanpak is geen centrale databank
nodig, maar worden de gegevensbronnen rechtstreeks
bevraagd. Daartoe worden de ingevoerde queries geparsed en
opgesplitst in afzonderlijke subqueries, die vervolgens naar de
afzonderlijke gegevensbronnen worden gestuurd, afhankelijk
van het bronselectieproces. Ten slotte worden de antwoorden
van de externe bronnen gecombineerd tot een geldig resultaat.
Distributed query processing is op verschillende manieren
voordelig. E&n voordeel is dat, in tegenstelling tot warehousing,
de gegevens altijd gesynchroniseerd zijn, aangezien er slechts
één kopie van is. Helaas kunnen de beschikbaarheid en
betrouwbaarheid van deze aanpak niet worden gegarandeerd,



omdat het systeem afhankelijk is van een groot aantal mogelijk
onstabiele of inactieve data stores. [18]

G. Bronselectie

De meeste distributed query processing benaderingen zijn
niet erg schaalbaar wanneer het netwerk van databronnen
groeit. Bestaande methoden zijn vaak ontworpen om slechts
een Klein aantal bronnen te verwerken die een grote
hoeveelheid gegevens bevatten, in plaats van duizenden
afzonderlijke bronnen die elk minder resources bevatten. Het
laatste geval zou echter ideaal zijn voor gedecentraliseerde
sociale webapplicaties, waarbij mogelijk duizenden of
miljoenen gebruikers, verspreid over de hele wereld, elk hun
eigen persoonlijke datastore hebben. Maar wanneer er een zeer
groot aantal gegevensbronnen is, is het onhaalbaar om elke
bron te controleren op potentiéle gegevens die bijdragen tot het
resultaat van een query. Daarom moet een bronselectieproces
worden uitgevoerd, om bronnen uit te sluiten die geen
waardevolle gegevens voor de query bevatten en alleen die
bronnen te behouden die kunnen bijdragen aan het antwoord op
de query. Dit proces neemt een triple pattern als invoer en geeft
een reeks databronnen terug die potentiéle variable bindings
bevatten. [18]

Twee effectieve datastructuren om bronselectie over vele
bronnen mogelijk te maken zijn data summaries [16], [18] en
Approximate Membership Functions (AMF's). [16], [20], [21]
Ze zijn beide probabilistisch, wat betekent dat ze false
negatives kunnen produceren, maar geen false positives. De
kans dat false positives optreden kan worden gekozen door een
false positive probabiliteit in te stellen.

Er zijn twee verschillende implementaties van AMF's,
namelijk Bloom filters [22] en Golomb-coded sets. [23]

I1l. IMPLEMENTATIE

In dit onderzoek worden Approximate Membership
Functions toegepast op een Solid-omgeving, om het effect
ervan op de query-performantie te evalueren. De nadruk ligt op
schaalbaarheid van gedecentraliseerde netwerken van
databronnen, door een uitbreidend sociaal netwerk te
simuleren. Met dit onderzoek hopen we iets dichter te komen
bij het realiseren van grootschalige gedecentraliseerde sociale
webapplicaties.

A. Datageneratie

Om een sociaal netwerk te simuleren waarop experimenten
kunnen worden uitgevoerd, moesten veel synthetische
gegevens worden gegenereerd. Hiervoor werd een
gedecentraliseerde versie van de LDBC SNB Data Generator
[24] gebruikt.

De gedecentraliseerde versie splitst het grote Turtle bestand,
gecreéerd door de SNB data generator, zodat de data verspreid
wordt over een veelvoud van bestanden, die elk de data
bevatten van één specifieke entiteit in het sociale netwerk.
Meer specifiek bevat elk bestand alle triples waarvan het
onderwerp een specifieke URI is, die verwijst naar een entiteit
in het netwerk. In dit onderzoek werden, om
performantieredenen, alleen de bestanden met gegevens van
personen en steden gebruikt, met een maximum van 3500
personen en de 1231 steden waarin zij wonen.

B. Server

Achter de schermen gebruikt de gedecentraliseerde data
generator de Community Solid Server (CSS) [25] om de RDF

bestanden te hosten en aan te bieden via HTTP. CSS is een
open-source en modulaire implementatie van de Solid
specificaties. Met behulp van de server kunnen ontwikkelaars
gedecentraliseerde  Solid-applicaties maken en ermee
experimenteren. De gedecentraliseerde data generator tool
maakt gebruik van de file-based store functionaliteit van de
Solid Server om de gegenereerde data over HTTP aan te
bieden. Op die manier kan een gedecentraliseerd sociaal
netwerk worden gesimuleerd, aangezien de gegevens van elke
afzonderlijke entiteit moeten worden benaderd via een
afzonderlijke URI.

C. Approximate Membership Functions

Voor de constructie van de AMEF’s is een apart script
geschreven. Het script gebruikt Bloom filters als
probabilistische datastructuur. Eerst wordt het aantal bits in de
bitmap van de filter en het aantal hashfuncties bepaald,
gebaseerd op het aantal triples in het RDF bestand en de
gewenste false positive probabiliteit. Vervolgens wordt een
Bloom filter geinitialiseerd voor elke term (subject, predicate,
object). Ten slotte wordt de corresponderende term van elke
triple toegevoegd aan de filter. De pseudocode hieronder toont
het algoritme voor de constructie van AMF’s.

m = calculateBitmapSize ()
k = calculateNumberOfHashes ()
filters = ['subject', 'predicate', 'object']
for (variable in filters):
filters[variable] = new Bloem(m, k)
for (triple in triples):
for (variable in filters):
filters[variable].add (Buffer.from(triple[variable]))
for (variable in filters):
filters([variable] = {
type: 'http://semweb.mmlab.be/ns/membership#BloomFilter’',
filter: filters[variable].bitfield.buffer.toString('base64"),
m: m,
k: k
}

D. Client-side query engine

Het belangrijkste aspect van de uitvoering van dit onderzoek
was de uitbreiding van een client-side query engine om
bronselectie op basis van AMF’s te ondersteunen. Hiervoor
hebben we de Comunica [26] query engine gebruikt. Comunica
is een modulaire web-gebaseerde SPARQL query engine die
het mogelijk maakt om nieuwe Linked Data query processing
functionaliteiten te ontwikkelen en te testen. Het maakt
federated querying over heterogene databron-interfaces out-of-
the-box mogelijk.

Voor dit onderzoek werd de modulariteit van Comunica
benut om bronselectie op basis van AMFs te implementeren.
Een nieuwe actor werd ontwikkeld met als doel het filteren van
de lijst van databronnen.

E. Bronselectie

Het doel van de gegenereerde Approximate Membership
Functions is een bronselectieproces mogelijk te maken, waarbij
veel van de irrelevante gegevensbronnen voor een gegeven
query kunnen worden weggefilterd. Hierdoor blijft er een
kleinere lijst met bronnen over die bevraagd moet worden, wat
tot betere prestaties leidt. Hoe lager de gekozen false positive
probabiliteit voor de AMF's, hoe kleiner de gefilterde lijst met
bronnen. Onderstaande pseudocode toont het algoritme dat
voor de bronselectie wordt gebruikt.

filteredSources = []
for source in originalSources:
addSource = true
for term in [‘subject’,’predicate’,’object’]:
if triplePattern[term] not variable:
if not source.bloomFilter[term].contains(triplePattern[term]):
addSource = false
if addSource:
filteredSources.push (source)



IV. EXPERIMENTELE SETUP

Om de resultaten zo betrouwbaar mogelijk te maken, zijn de
experimenten met veel verschillende combinaties van
parameters uitgevoerd. Om te beginnen werden 15
verschillende SPARQL queries getest. Vervolgens werd het
aantal databronnen in het sociale netwerk gevarieerd om een
netwerk van 10, 100, 500, 1000, 2000 en 3500 bronnen te
bekomen. Ten derde werden zes verschillende false positive
rates getest voor de Bloom filters, namelijk 1/4096, 1/1024,
1/128, 1/64, 1/4 en 1/2. Ten slotte werd elke mogelijke
combinatie van de bovengenoemde parameters driemaal
herhaald. Telkens werd het gemiddelde van de metrieken van
die drie iteraties berekend om het definitieve resultaat te
verkrijgen.

Naast het aantal resultaten dat de query opleverde, werden
nog vier andere metrieken gemeten, namelijk het aantal HTTP-
requests dat door de query-engine werd gedaan, de totale
uitvoeringstijd van de query, het client-side geheugengebruik
en de client-side CPU-belasting. Helaas leverde de CPU-
belasting willekeurige waarden op, waardoor deze onbruikbaar
werd in de bespreking van de experimentele resultaten.

Om het experiment reproduceerbaar te maken, werd een Bash
script geschreven, dat iteratief de query engine aanroept met
verschillende parameters. Op deze manier kon het hele
experiment worden uitgevoerd door slechts één script uit te
voeren. Een query timeout werd ingesteld op 5 minuten, in
combinatie met een maximale geheugenlimiet van 4096 MB
voor Nodejs. Alle experimenten werden uitgevoerd op een
enkele machine met een Intel Core i7-8705G CPU aan 3,10
GHz en met 8 GB RAM.

V. RESULTATEN

A. HTTP-requests

De eerste en belangrijkste metriek om te evalueren is het
aantal HTTP-requests dat door het queryproces wordt
uitgevoerd. Figuur 1 toont het aantal HTTP-verzoeken per
aantal databronnen, uitgemiddeld over alle queries (lager is
beter). De legende toont de verschillende false-positive
probabiliteiten van de Bloom filters, waarbij Default verwijst
naar het gebruik van de query engine zonder AMEF’s. De
standaard query engine wordt vanaf nu aangeduid met E,
terwijl de AMF-extended query engine E’ wordt genoemd.
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Figuur 1 — Gemiddeld aantal HTTP-requests per aantal databronnen.

Merk op dat de grafiek niet helemaal accuraat is, omdat
verschillende queries (uitgevoerd over 2000 en 3500
databronnen) resulteerden in een timeout of een heap out of
memory error. Dit kwam alleen voor in de standaardversie van
de query-engine, niet bij het gebruik van AMF's. Vanwege deze

fouten zijn er geen metrieken gemeten voor die queries en dus
is het aantal HTTP-requests van deze queries niet meegenomen
in de gemiddelden. Daarom zijn de gemiddelden voor 2000 en
3500 databronnen met de standaardversie in werkelijkheid veel
hoger en volgen ze het patroon dat is gevonden bij de lagere
aantallen databronnen.

Toch valt de standaardversie van de query-engine meteen op,
omdat het aantal HTTP-requests veel sneller toeneemt dan bij
het gebruik van AMF's. Van 500 naar 1000 databronnen in de
standaardversie resulteert in een toename van 264%, terwijl de
toename bij het gebruik van AMF's bij een false positive rate
p =1/64 slechts 137% bedraagt. Het verschil in het
gemiddelde aantal HTTP-requests tussen E en E’ (bij p =
1/64) voor 500 databronnen is 2347 requests. Hetzelfde
verschil voor 1000 databronnen is 9152 requests, wat neerkomt
op een toename van 290%.

Terwijl het aantal HTTP-requests bij p = 1/4096, p =
1/1024, p =1/128 en p = 1/64 bijna perfect op elkaar
aansluiten, wordt een significante toename waargenomen bij
percentages van p = 1/4 en p = 1/2. Bij 3500 databronnen
voert p = 1/2 meer dan 3 keer zoveel HTTP-verzoeken uit in
vergelijking met p = 1/4096. Hoge false positive rates dragen
dus bij aan slechtere query-performantie.
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Figuur 2 — Aantal HTTP-requests per query voor 10 databronnen.

50000

m1/4096
40000

1/1024

30000 1/128

HTTP requests

1/64

20000 1/4

1/2
| mDefault

10000
Il ol el il ||||||

Figuur 3 — Aantal HTTP-requests per query voor 3500 databronnen.

De bovenstaande geclusterde kolomdiagrammen werden
geconstrueerd om de resultaten meer in detail te onderzoeken.
Deze histogrammen tonen het exacte aantal HTTP-requests
voor elke uitgevoerde query (gemiddeld over 3 iteraties).
Figuur 2 en Figuur 3 tonen de waarnemingen voor
respectievelijk 10 en 3500 databronnen. Het is duidelijk dat een
toename van het aantal databronnen leidt tot een groter verschil
tussen E en E’, althans voor lage false positive rates.



B. Query uitvoeringstijd

Naast het aantal HTTP-requests werd ook de totale
responstijd van de queries gemeten. Deze metriek wordt
rechtstreeks beinvloed door de HTT-requests, aangezien een
belangrijk deel van het query proces het contacteren van remote
databronnen inhoudt. Figuur 4 illustreert de totale query
uitvoeringstijd per aantal databronnen, uitgemiddeld over alle
queries (lager is beter).

160

2 Heap out of memory errors
140

3 Timeouts
1 Heap out of memory error

120

1/1024
100 1/128

1/64

ccution time (s)

Query exe

1/409

1/4

— 12

e Default

10 100 500 1000 2000 3500

Number of datasources

Figuur 4 — Gemiddelde query uitvoeringstijd per aantal databronnen.

Hetzelfde patroon doet zich voor als bij het aantal HTTP-
verzoeken. E' met lage false positive probabiliteiten vertoont
de beste responstijden, gevolgd door E' met hogere false
positive rates. De gemiddelden van E liggen relatief dicht bij
die van E’ voor zeer kleine netwerken, maar nemen veel sneller
toe als het netwerk zich uitbreidt. Van 500 naar 1000
databronnen bij gebruik van E' enp = 1/64 levert een toename
op van 162% in de gemiddelde query responstijd. Deze
toename loopt op tot 236% bij gebruik van de standaard query-
engine. Het verschil tussen E en E' (bij p = 1/64) bij een
verandering van 500 naar 1000 bronnen laat een toename zien
van 273%.

False positive rates p =1/4 en p =1/2 laten opnieuw
verminderde prestaties zien in vergelijking met lagere
probabiliteiten. p = 1/4096 draagt bij tot iets betere resultaten
dan p=1/1024, p=1/128 en p =1/64, waarvan de
gemiddelden bijna perfect op elkaar aansluiten.

De geclusterde kolomdiagrammen zijn hier weggelaten,
omdat de resultaten hetzelfde zijn als bij het aantal HTTP-
requests: het verschil tussen E en E’ groeit ook met de
uitbreiding van het netwerk van databronnen.

C. Geheugengebruik
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Figuur 5 — Gemiddeld geheugengebruik per aantal databronnen.

De derde gemeten metriek is het geheugengebruik van de
client, die de query-engine uitvoert. Net als de responstijd van
de query, wordt ook het geheugengebruik sterk beinvlioed door
het aantal HTTP-requests. Meer bronnen die moeten worden
opgehaald betekent meer gegevens om in het geheugen te
bewaren. Figuur 5 toont de evolutie van het geheugengebruik
met een toenemend aantal bronnen, uitgemiddeld over alle
queries (lager is beter).

Aangezien het aantal HTTP-requests een grote invloed heeft
op het geheugengebruik bij de client, kunnen we hier hetzelfde
patroon waarnemen. Net als bij het gebruik van AMF's, begint
het geheugengebruik van de gewone query-engine setup
redelijk laag. Maar ook hier betekent het toevoegen van meer
datasources een snellere toename voor E dan voor E’. Van 500
naar 1000 databronnen met de standaard engine en met p =
1/64 leidt tot een toename van 78% in het gemiddelde
geheugengebruik bij de client. Dezelfde berekening voor de
standaard engine geeft een toename van 119%. Het verschil
tussen E en E’ (bij p = 1/64) bij een verandering van 500 naar
1000 data stores neemt toe met 143%.

Lagere false positive rates laten opnieuw betere prestaties
ziendanp = 1/4 enp = 1/2. Opvallend is dat de probabiliteit
p = 1/4096 een hoger geheugengebruik veroorzaakt voor
2000 gegevensbronnen dan p = 1/1024, p =1/128 en p =
1/64, maar dan weer een lager gebruik voor 3500 bronnen. Dit
is waarschijnlijk te wijten aan de lagere nauwkeurigheid van de
metriek voor geheugengebruik.

Ook hier zijn de geclusterde kolomdiagrammen weggelaten,
omdat hetzelfde patroon kan worden waargenomen als bij de
vorige twee metrieken.

D. AMF constructie

Om de prestaties van het AMF constructieproces te
evalueren, zijn enkele experimenten uitgevoerd waarin de tijd
die nodig is om de Bloom filters te maken is gemeten, samen
met de schijfruimte die deze filters in beslag nemen. Aangezien
de experimenten in de vorige paragrafen werden uitgevoerd
over maximaal 3500 databronnen, die elk informatie over één
persoon bevatten, worden dezelfde 3500 bronnen gebruikt in de
experimenten in deze paragraaf. Er zijn echter een bijkomende
1231 databronnen toegevoegd, die elk de gegevens van een
locatie bevatten. Dit brengt het totaal op 4731 gegevensbronnen
voor de experimenten betreffende de AMF constructie.
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Figuur 6 — Constructietijd per false positive probabiliteit voor de
Bloom filters van 4731 databronnen.

Figuur 6 verduidelijkt dat een lagere false positive rate leidt
tot een hogere totale constructietijd, met een maximum van
15,3 seconden voor p = 1/4096 (ongeveer 3 milliseconden
per databron). Dit gedrag is te verwachten, want een lagere



false-positive rate betekent meer precisie, en dus moet de filter
meer gegevens bevatten en kost de constructie ervan dus meer
tijd. Het verschil tussen de twee uitersten is relatief klein,
namelijk slechts 1,4 seconden. Dit getal kan echter snel oplopen
in netwerken met een schaal van honderdduizenden of zelfs
miljoenen databronnen.

Als we kijken naar de schijfruimte die deze Bloom filters
innemen, zien we hetzelfde patroon. Dit wordt geillustreerd in
Figuur 7. Door meer precisie toe te voegen aan de Bloom
filters, moeten ze meer gegevens bevatten en meer ruimte
innemen. Hoewel het verschil in constructietijd tussen de
laagste en de hoogste false positive kans relatief klein is, is het
verschil in omvang tussen deze twee uitersten een stuk groter.
De filters met een probabiliteit van p = 1/4096 nemen bijna 3
keer zoveel ruimte in beslag als de filters met p = 1/2. In deze
setting is dat verschil slechts 2,37 MB, maar in netwerken met
een zeer grote schaal kan het verschil cruciaal zijn.
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Figuur 7 — Schijfruimte per false positive probabiliteit voor de Bloom
filters van 4731 databronnen.

In de vorige paragrafen hebben we geleerd dat lagere false
positive rates het beter doen, qua prestaties. Daarentegen
hebben we in deze sectie ontdekt dat Bloom filters met lagere
probabiliteiten meer tijd kosten om aan te maken en meer
schijfruimte nodig hebben. Daarom ligt de optimale balans
tussen query-performantie, constructietijd en schijfruimte
ergens tussen de hoogste en de laagste false positive rate.

Het lijkt erop dat p = 1/64 de aanbevolen waarde is, omdat
deze veel beter presteert dan p = 1/4 en p = 1/2, terwijl er
minder tijd en schijfruimte nodig is om de filters te maken dan
met p = 1/4096, p =1/1024 en p =1/128 (en er qua
performantie nauwelijks verschillen zijn).

VI. DISCUSSIE

Het gebruik van Approximate Membership Functions bij
queries over een uitbreidend netwerk van databronnen blijkt op
meerdere manieren voordelig te zijn. Het aantal HTTP-
requests, als ook de totale query uitvoeringstijd en het client-
side geheugengebruik worden aanzienlijk verbeterd door het
gebruik van Bloom filters. We zagen dat het verschil tussen de
reguliere query-engine en de query-engine uitgbreid met
AME’s verwaarlooshaar is voor zeer kleine netwerken met niet
meer dan 100 databronnen, maar zodra dat aantal toeneemt,
neemt het verschil mee toe.

Het probleem met de huidige methode van de toepassing van
Approximate Membership Functions is echter dat, zonder het
gebruik van een externe server die de AMF's onderhoudt, het
aantal HTTP-requests bij de client kan oplopen tot meer dan het
aantal HTTP-verzoeken bij gebruik van de standaard query-
engine. Dit komt doordat de Bloom filters constant up-to-date

moeten zijn. Bij een input query zou de client eerst alle
databronnen in het netwerk moeten contacteren om de filters te
creéren. Pas daarna zou de client in staat zijn om de bronselectie
uit te voeren en de query uit te voeren. Het totale aantal HTTP-
requests voor elke query zou dus gelijk zijn aan de som van het
aantal databronnen in het netwerk en het aantal bronnen dat bij
het bronselectieproces wordt bepaald. Als gevolg daarvan zou
de query-performantie slechter zijn dan met de standaard setup.

Gelukkig zijn er een paar oplossingen voor dit probleem,
waarvan er hier twee zullen worden besproken. Beiden
implementeren een aggregator, die gescheiden is van de client.
Beide hebben ook hun eigen optimale scenario’s.

De eerste oplossing is het toevoegen van een aggregator aan
het netwerk, die van gegevensbron naar gegevensbron gaat en
een lijst bijhoudt van alle bronnen in het netwerk. Hij kan alle
AMF's periodiek vernieuwen, of hij kan een nieuwe filter
genereren bij bestandswijzigingen, in welk geval de databron
een notificatie kan sturen naar de aggregator. Wanneer de client
een query wil uitvoeren, kan hij dit aan de aggregator laten
weten, waarna de aggregator alle filters samenvoegt tot één
groot bestand en dit terugstuurt naar de client. Vervolgens kan
de client de bronselectie uitvoeren en de query uitvoeren. Deze
methode voegt slechts één HTTP-request toe aan het volledige
proces van de client. Bovendien wordt deze oplossing bijzonder
interessant als de client meerdere queries over dezelfde reeks
bronnen moet uitvoeren. In dat geval kan hij het gecombineerde
AMF-bestand één keer downloaden van de aggregator en het
hergebruiken voor verschillende queries. Deze aanpak is echter
niet ideaal voor zeer grote netwerken van bronnen, omdat het
bestand met de AMF's groeit met het aantal bronnen en via het
netwerk naar de client moet worden gezonden. Voor p = 1/64
en 4731 bronnen is het versturen van een bestand met een
grootte van 2,41 MB haalbaar. Uitbreiding van het netwerk tot
100.000 bronnen leidt echter tot een grootte van 51 MB, terwijl
een netwerk van 1 miljoen bronnen een onhaalbare 510 MB
betekent.

De tweede methode is gunstiger voor netwerken van grote
schaal. In deze aanpak gaat de aggregator op dezelfde manier
te werk om nieuwe bronnen te ontdekken en zijn AMF’s bij te
werken, maar het verschil zit in het queryproces zelf. Wanneer
de client een query moet uitvoeren, zendt hij de query eerst naar
de aggregator. Daarna voert de aggregator zelf het
bronselectieproces uit, en zendt de lijst van geselecteerde
bronnen terug naar de client. Op basis van deze lijst van
bronnen kan de client de query rechtstreeks uitvoeren. Net als
bij de eerste oplossing voegt deze aanpak slechts één HTTP-
request toe aan het volledige queryproces van de client. Bij
deze methode is de omvang van het netwerk minder belangrijk,
omdat de query en de lijst van bronnen de enige gegevens zijn
die met de aggregator moeten worden uitgewisseld. Deze
oplossing vergt echter meer rekenkracht van de aggregator.
Bovendien kan deze methode minder ideaal zijn in situaties
waarin de bescherming van de privacy een zeer belangrijke rol
speelt, aangezien elke query van de client over het netwerk
moet worden verzonden en door de aggregator kan worden
gelezen. Daarom hangt de keuze van de te implementeren
oplossing vooral af van de gebruikssituatie, maar deze
afweging moet in toekomstig werk verder worden onderzocht.

VII. CONCLUSIES

In dit onderzoek hebben we geprobeerd een manier te vinden
om queries over een groot aantal databronnen haalbaarder te
maken. Door deze kwestie te onderzoeken zouden
grootschalige gedecentraliseerde sociale webapplicaties



realiteit kunnen worden. De voorgestelde methode is om de
client-side query engine uit te breiden door bronselectie te
implementeren op basis van Approximate Membership
Functions. Door het uitvoeren van bronselectie kunnen
irrelevante databronnen voor een gegeven input query worden
uitgefilterd, waardoor het aantal HTTP-requests dat door de
client moet worden uitgevoerd aanzienlijk wordt verminderd.
Aan Approximate Membership Functions kan een false
positive probabiliteit worden toegekend. Een hogere
probabiliteit betekent een grotere kans dat een irrelevante bron
in de geselecteerde lijst van bronnen terechtkomt. Er is echter
een afweging, want AMF's met een lagere false positive rate
zijn groter in omvang.

Er werden enkele experimenten opgezet om de query-
performantie te meten van een query-engine uitgebreid met
AMF's (E"), in vergelijking met de standaard engine (E). Het
doel was te ontdekken dat het verschil in performantie tussen
E’ en E groter wordt naarmate het netwerk van databronnen
groter wordt. Hiervoor werden drie verschillende metrieken
gemeten: het aantal HTTP-requests, de totale query
uitvoeringstijd, en het client-side geheugengebruik.

Voor alle drie de metrieken zagen we hetzelfde patroon. In
zeer kleine netwerken zijn de metrieken van E’ en E bijna
gelijk. Echter, hoe meer databronnen worden toegevoegd, hoe
meer het verschil in performantie tussen E’ en E groeit, waarbij
E' veel betere resultaten geeft dan E. Sommige queries in de
reguliere setup faalden zelfs door timeouts of heap out of
memory errors, terwijl deze queries in de AMF setup geen
problemen opleverden.

Verschillende false positive rates werden ook getest, om de
optimale balans te vinden tussen query-performantie, filter
constructietijd en filtergrootte. We ontdekten dat een false
positive probabiliteit van p = 1/64 bleek bij te dragen aan de
beste resultaten in het algemeen.

Hoewel het gebruik van Approximate Membership Functions
een aanzienlijke verbetering van de query-prestaties oplevert,
moet ook rekening worden gehouden met de constructie van
deze filters. In een opstelling waarbij de client zelf de AMF’s
moet onderhouden, is het totaal aantal HT TP-requests dat door
een query wordt veroorzaakt veel hoger dan in een reguliere
opstelling zonder AMF’s. Hierdoor escaleren de responstijden
voor queries aanzienlijk. Er zijn echter twee oplossingen voor
dit probleem voorgesteld, die beide een externe aggregator
impliceren.

Beide methodes voegen slechts één HTTP verzoek toe aan
het volledige queryproces van de client, waardoor het volledige
proces nog steeds zeer performant is in vergelijking met de
reguliere query engine setup. De benaderingen verschillen
echter op andere manieren en hebben elk hun eigen optimale
gebruikssituaties.

Om samen te vatten kunnen we stellen dat het gebruik van
Approximate Membership Functions bij queries over een groot
aantal bronnen een grote verbetering van de query-prestaties
oplevert, maar alleen als de middelen beschikbaar zijn om een
externe aggregator te implementeren, die de AMF's beheert.
Helaas, zelfs met het gebruik van AMF’s, zijn de gemeten
metrieken voor sommige queries over een groot aantal bronnen
nog steeds behoorlijk slecht om responsieve gedecentraliseerde
sociale webapplicaties mogelijk te maken. Niettemin kunnen
de bevindingen in dit onderzoek ons een stap dichter bij dat
doel brengen.

VIII.

Verschillende onderwerpen  kunnen verder worden
onderzocht om het werk van dit onderzoek voort te zetten. In
de discussie hebben we twee oplossingen genoemd om het
aantal HTTP-requests te verminderen, door gebruik te maken
van de voorgestelde query-engine uitgebreid met bronselectie
op basis van AMF’s, in combinatie met een aggregator. Hoewel
de optimale gebruikssituaties en de voor- en nadelen van elke
aanpak kort werden besproken, moeten deze methodes verder
worden onderzocht en moet er mee geéxperimenteerd worden
in toekomstig onderzoek, aangezien het juiste gebruik van
aggregators in een gedecentraliseerde omgeving de query-
prestaties aanzienlijk kan verbeteren.

Bovendien moeten andere AMF-benaderingen worden
getest, zoals gecomprimeerde Bloom filters en Golomb-coded
sets. Deze datastructuren zijn efficiénter betreffende
schrijfruimte dan gewone Bloom filters. Daarom zouden ze
bijzonder nuttig kunnen zijn in de eerste van de twee genoemde
oplossingen met betrekking tot aggregators, aangezien het
grootste probleem daar is dat het verzenden van een groot
AMF-bestand over het netwerk de query-performantie
drastisch vermindert.

Daarnaast zijn Approximate Membership Functions niet de
enige manier om bronselectie te implementeren in een client-
side query engine in de context van Solid. Andere
summarization-technieken moeten ook worden onderzocht en
getest.

Ten slotte zouden gedecentraliseerde omgevingen op grotere
schaal kunnen worden gesimuleerd, en met behulp van
uitgebreidere queries kunnen worden doorzocht. We hebben
nog een lange weg te gaan vooraleer we echt grootschalige
gedecentraliseerde sociale webapplicaties kunnen realiseren,
maar de eerste stappen zijn al gezet.
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1. Introduction

Data on the Web is now more prominent than ever. Using data, we can communicate with each
other, find the nearest grocery store, order pizza, and so much more. To enable not only humans,
but also machines to actually understand information on the Web, the Semantic Web [1], [2] was
introduced. This extension of the Web makes data machine-readable by giving meaning or
semantics to it.

In this context, the idea of Linked Data [3] was developed, which encourages people to publish
and interlink as much data as possible, following predefined guidelines. The result is a large Web
of Data (WoD), which is expanding exponentially. The Linking Open Data (LOD) cloud [4], an
initiative that visualizes this WoD, currently contains 1255 datasets interconnected by 16174
links.

This concept of Linked Data opens up a new world of possibilities. One of these possibilities,
which has already been brought into reality, is the Social Linked Data (Solid) project. [5] Solid is
an ecosystem that defies the traditional method of centralized data storage by providing users
with their own personal online data store (POD). As it is based on the principles of Linked Data,
information stored in the pods can be linked, creating a network of personal data stores. This
enables the realization of decentralized social Web applications, which provide some major
advantages in comparison to their centralized counterpart. For one, giving users control over
their own data significantly improves their privacy. Secondly, storing a user’s data at a single
location avoids duplication of data and lets users reuse information across multiple decentralized
social Web applications.

However, in the case of large-scale decentralized Web applications, data might be spread across
thousands or millions of remote datasources. In contrast to centralized social networks, where
all data is fetched from a single database, retrieving data in a large-scale decentralized
environment is not that straightforward. To this end, in this research we will try to find a way to
make efficient data retrieval in decentralized networks of personal data stores more attainable.

We will rely on the implementation of a source selection process in a client-side query engine to
achieve this goal. Source selection reduces the number of datasources to be contacted for a given
query, by ruling out irrelevant datasources for that query. More specifically, we will use
Approximate Membership Functions, which are small probabilistic data structures, to enable

source selection.



Related concepts and research will first be introduced in the literature study. In section 3, the
problem statement and motivation for this research will be clarified, followed by an explanation
of the used methods and technologies in section 4. The results of the performed experiments will
be analyzed in section 5 and will be further discussed in section 6. Finally, we will draw some
conclusions in section 7 and discuss possible future work in section 8.



2. Literature Study

In this research, we try to find an efficient way to collect decentralized data from many
distributed data sources and display it to end users. In order to do this, various concepts and
technologies must be studied, all associated with the Semantic Web.

First, the Semantic Web will be explained, followed by the concept of Linked Data. Then, the
Resource Description Framework (RDF) and its query language, SPARQL, will be investigated. To
conclude, we will study the Social Linked Data (Solid) project and look at existing solutions for
qguerying over Linked Data.

2.1 The Semantic Web

The World Wide Web is a vast and ever-growing ocean of documents and links. Anyone can
upload content to this enormous web, which can be represented as a large directed graph. [6]
Unfortunately, most of the content on the Web is only human-readable. Computers can merely
display the information but have no notion of the actual meaning or semantics of it. That is why
the Semantic Web [1], [2] was invented.

The Semantic Web is an idea which Tim Berners-Lee, who also invented the World Wide Web,
came up with. It is an extension of the current Web, in which information can be processed,
understood, and manipulated by computers. The idea behind it is to give meaning to data by
applying a well-defined structure to it. RDF [7], a language that represents information in the
Web, expresses this meaning. It does this by uniquely identifying any object and interlinking these
objects to form webs of information. [1]

When the technologies supporting the Semantic Web have evolved enough, a broad variety of
possibilities becomes within reach. One of these possibilities is the concept of software agents
[1]. These are pieces of software that aggregate information from various sources, process the
data and then communicate the output with other agents. The use of these intelligent agents
could alter the way we deal with the Web drastically. For instance, using a software agent
compatible with the Semantic Web, one could automatically set up a doctor’s appointment by
letting the agent browse through the Web and gather information about opening hours,
distances, ratings, and so on, while taking the personal calendar into account. However, before
such ideas can become reality, a lot must change about the Web. In the following paragraphs,

we will examine some related concepts more in detail.



2.2 Linked Data

The idea of connecting all related data to form a Web of Data is referred to as Linked Data by Tim
Berners-Lee. [3] It is a set of rules for publishing and linking information on the Web. Initially, the
Web consisted of linked documents, without machines being able to comprehend the actual
meaning of the information. Now, the Web is evolving into a global space in which both
documents and data are connected. [8] This upgraded version of the Web has many advantages
and applications. Linked Data search engines, for example, have the ability to aggregate data
from many data sources by following links between them. The accumulated data can then be
queried.

Tim Berners-Lee formulated four rules [3], known as the Linked Data principles, for publishing
new data on the Web, with the purpose of contributing to the Web of Data:

Use URIs as names for things.

Use HTTP URIs so that people can look up those names.

When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL).

4. Include links to other URIs, so that they can discover more things.

As the first rule suggests, everything that wants to be a part of the Web of Data, must be defined
by a Uniform Resource Identifier (URI). This is because a URI is a unique identification and it can
easily be parsed by a computer. [9] By using Hypertext Transfer Protocol (HTTP) URIs, as the
second rule states, a name lookup can be performed over HTTP. The third rule says that the
standard Semantic Web technologies such as RDF and SPARQL must be used when transferring
and presenting data. These concepts have been designed to support the evolution of the
Semantic Web and will be discussed in paragraphs 2.3 and 2.4, respectively. The last rule
emphasizes the importance of linking the data to other data already in the Web, with the purpose
of expanding the Web of Data.

2.2.1 The Linking Open Data Community Project

The goal of linked data is to make all data on the Web accessible to everyone, including
computers, and to establish links between all related data. To stimulate this idea, the Linking
Open Data community project [8], [10] was founded under the auspices of W3C. The aim of this
project is to publish existing data sets converted into RDF and creating links between these
various data sources. This is an open project, so anyone can add a data set to the Web of Data
conforming to the Linked Data conventions and link it to the existing sets.



Figure 1 —The Linking Open Data cloud in 2021. Source: [4]

Figure 1 illustrates the current Linking Open Data cloud. It is a graph in which the nodes are data
sets published as Linked Data, and the edges depict the relations between items in the data sets.
[8] This web is continuously growing, with currently 1255 data sets and 16174 links in it, in
comparison to only 203 data sets in 2010. [4]

2.2.2 Linked Data Platform

Linked Data Platform (LDP) [5], [11], specified by W3C, defines a set of guidelines for the use of
HTTP to access, create, update and delete Web resources from servers that rely on Linked Data
to expose their resources. The protocol provides clients and servers to read and write resources
using the representational state transfer (REST) architectural style and HTTP Methods such as
GET and POST. Linked Data Platform Resources (LDPRs) may or may not be RDF-based, with HTML
files and images being examples of LDP Non-RDF Sources. Collections of LDPRs are called Linked



Data Platform Containers (LDPCs). These LDPCs are in fact also LDPRs, which makes creating a
hierarchy of nested LDPCs and LDPRs possible. In practice, an LDPC is a collection of links to
LDPRs, allowing applications to follow paths through the resources.

2.3 The Resource Description Framework

We have access to all sorts of information through the World Wide Web. The way to discover
such information is via metadata, or structured data about data. However, this metadata is used
everywhere, so certain conventions about syntax, structure and semantics are necessary to
achieve a global overview. The Resource Description Framework, specified by the World Wide
Web Consortium (W3C), defines these conventions. RDF allows metadata to be encoded,
exchanged, and reused. [12] This will later be made clear.

RDF presents a data model optimized for linking data that defines resources. This model is graph-
based, which means it can be visualized by a directed labeled graph. This makes RDF suitable for
representing social network data. [8], [13] A resource is an object that can be identified by a URI™.
[14] When Hypertext Transfer Protocol (HTTP) URIs are used, these resources can be looked up
on the Web. [3]

The encoding of data mentioned above is done as triples. These triples consist of a subject, a
predicate (also called a property type) and an object. The subject (a resource) and predicate of a
triple are represented by URIs, whereas the object may be a URI or a string. [8] A predicate and
an object together form a property of a subject. [12] The relation between a subject and an object
is determined by the predicate. A Web of Data is established when for instance a subject from
one dataset is linked to an object from another dataset. In this case, the RDF triple becomes an
RDF link. Both the subject and the object must then be URI references. [8] Below, an example is
shown to illustrate the application of the RDF data model.

Creator

hitp:iwwww. w3.org/HomelLassila > Ora Lassila

Figure 2 - RDF triple represented as an RDF graph. Source: [15]

In Figure 2, a subject identified by the URI http://www.w3.org/Home/Lassila is related to an
object identified by the string literal Ora Lassila. The relation is that the object is the creator of

1 Currently, the term Internationalized Resource Identifier (IRI) is used instead of URI. IRIs are a generalized version
of URIs, that accept more Unicode characters. [7]



the subject, as the predicate suggests. Here, the predicate is no HTTP URI for the purpose of
keeping things simple in this example. The object can, however, also be a resource. That way, the
object can become a subject of a new triple, which means that it can have its own property types
and corresponding values. This makes it possible for the RDF graph to expand.

It is important for resources to have unique identifiers, as it allows them to be unambiguously
defined. This in turn implies that properties may be reused. [12] In the previous example, Ora
Lassila can be the creator of many resources. By uniquely identifying this person with an URI, the
object becomes a resource that can be used throughout the RDF graph. This prevents
unnecessary duplication of objects.

For data to be exchanged and processed, a general syntax or data serialization format is required.
[12] Using such a format, an RDF graph can have a textual representation. There are several RDF
syntaxes, including RDF/XML, N-Triples, Turtle and JSON-LD. [16] Originally, RDF applied the
eXtensible Markup Language (XML) as its syntax. [12] It was designed to be used throughout the
Internet [17] and it allows for RDF to represent its semantics consistently and unambiguously.
The XML syntax can convert instances of the RDF data model into machine-readable files so that
they can be exchanged between applications. [12]

XML provides a system called XML namespaces, which supports the unambiguous representation
described earlier. XML namespaces help property types have a unique identification. This is
convenient because one property type having multiple meanings would counteract the
unambiguity of the semantics. [12] RDF vocabularies (or ontologies [18]) are what XML
namespaces use to assign these unique identifications. Vocabularies are sets of classes and
properties and are represented using RDF. [8] Various resource description communities define
these vocabularies to give their own meaning to property types. [12] Anyone can publish RDF
vocabularies on the Web [18] and relations between vocabularies can be established by
connecting them through RDF links. [8] The Web Ontology Language (OWL) [19] and the Resource
Description Framework Schema (RDFS) [20] form a basis for constructing new vocabularies. They
already specify numerous classes and properties to describe resources and their relations,
especially the rich and widely adopted OWL.
<?xml:namespace version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:dc="http://purl.org/dc/terms/”
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns">
<rdf:Description rdf:about="http://www.w3.org/Home/Lassila”>
<dc:creator>Ora Lassila</dc:creator>

</rdf:Description
</rdf :RDF>

Listing 1 - RDF triple in RDF/XML syntax



The code in Listing 1 is a textual representation of the RDF graph in Figure 2, using the RDF/XML
syntax. Note that the predicate creator is now a property type specified by the Dublin Core
schema (DC). Some namespace prefixes have been defined to make the code more readable.

The XML syntax, however, presents some unwanted overhead [21], and some new formats have
been developed since RDF was invented. N-Triples [16] is the simplest format, in which each
individual line contains an RDF triple. URIs are in between brackets (<>) and each line is ended
with a period.

<http://www.w3.org/Home/Lassila> <http://purl.org/dc/terms/creator>
<http://www.w3.org/staffId/85740> .

Listing 2 - RDF triple in N-Triples syntax

In Listing 2, the previously introduced RDF triple is represented in N-Triples syntax. The string
literal Ora Lassila is now replaced by a URI, uniquely identifying that person.

The Turtle syntax [22] is an extended version of the N-Triples format. It includes features like
namespace prefixes, predicate lists, and object lists.

@prefix DC: <http://purl.org/dc/terms/> .

<http://www.w3.org/Home/Lassila> DC:creator
<http://www.w3.org/staffId/85740> .

Listing 3 - RDF triple in Turtle syntax

Listing 3 represents the triple in Turtle syntax. It uses the prefix DC as reference to the Dublin
Core vocabulary, which makes the code more readable. Prefixes can be reused among multiple
triples, so that typing the entire URI every time becomes unnecessary.

Another extension of N-Triples is the N-Quads format. As the name suggests, a fourth element is
added at the end of a line, being the graph IRI of the corresponding triple. This allows for
exchanging RDF datasets.

2.4 SPARQL

Data encoded in the RDF format does not have much use if it cannot be queried in some way. For
that matter, the SPARQL Protocol and RDF Query Language (SPARQL) [13], [23] was developed
by W3C in 2008. SPARQL is a query language for RDF encoded data and can be used for querying
multiple graphs. In addition to the possibility of executing SPARQL queries over RDF dumps,
content providers can set up a SPARQL endpoint. A big advantage of these endpoints is that the



data does not necessarily need to be stored in RDF, as it can be created at run-time from other
data sources.

A SPARQL query consists of a basic graph pattern, which is a series of triple patterns. These are
much like RDF triples, but they can contain variables. The subject, the object or the predicate of
the triple pattern may be replaced by a variable. When RDF terms (RDF literals, IRIs, or blank
nodes) from a subgraph can be replaced by variables, resulting in a graph equal to that subgraph,
then the basic graph pattern matches the subgraph. A successful SPARQL query results in a
sequence of solutions, specified by the variables present in the seLECT clause. This sequence can
be represented as a table, with one solution per row. The basic graph pattern is defined in the
WHERE clause. Note that for every solution, all the variables mentioned in the wHERE clause must
bind to the RDF terms of the solution.

@prefix DC: <http://purl.org/dc/terms/>

SELECT 7?page 7?name
WHERE

{
?page DC:creator ?name .

}

Listing 4 - A SPARQL query

page name
<http://www.w3.org/Home/Lassila> “Ora Lassila”

Table 1 - Result of a SPARQL query

Listing 4 shows an example of a simple SPARQL query. It extracts data from the previously seen
RDF triple, only that the object is the string literal Ora Lassila again, instead of a URI. The sELECT
clause determines that the solutions should include the RDF terms bound to the variables page
and name. In the WHERE clause, it is stated that we want to query RDF triples that contain any
subject (bound to the page variable), related to any object (bound to the name variable) via the
DC:creator predicate.

The result of this query is illustrated in Table 1. As there is only one RDF triple in the data source,
there cannot be more than one solution. The triple with  subject
http://www.w3.org/Home/Lassila and object Ora Lassila matches with the only triple pattern in
the query, and so it matches with the basic graph pattern. SPARQL queries can be made much
more extensive to allow for complex result sets, but this is outside the scope of this research.

Query results can take on multiple forms, specified by the SPARQL query forms [13]. SELECT is
the simplest form and returns variable bindings. If an RDF graph is desired instead of a table, the
CONSTRUCT clause can be applied. This form needs a triple template, in which the requested
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variables are substituted, to build a result graph. The ask query form returns true when the query
pattern matches the data and returns false when it does not. Finally, the bEscrIBE form returns
an RDF graph describing the matched resources.

2.5 Solid

Deprivation of privacy is an important problem nowadays, especially when it comes to personal
data gathered by all sorts of companies and governments. Since the introduction of the European
General Data Protection Regulation (GDPR), people have become more aware of businesses
collecting personal information. Unfortunately, while companies outside of Europe also must be
compliant to the GDPR for their European clients, many of them do not fully conform to the
regulations. [24]

Centralized social Web applications such as Facebook and Twitter pose additional problems, for
users as well as for application developers. Companies behind social networking websites each
have their own databases in which they manage their users’ data. This means that users cannot
let similar applications reuse the same data, so they must duplicate their data across several of
these social services. Social Web application developers can build upon existing platforms for
reading and writing data and for handling access to it. However, such platforms govern their own
Application Programming Interfaces (APIs) which developers must conform to, eliminating the
freedom of creating custom solutions. [5]

To tackle these issues, the Social Linked Data (Solid) project [5] was developed, which puts users
in control of their own data. Although referred to as a platform, Solid is in fact a protocol or
ecosystem for decentralized social Web applications, working on top of existing W3C
recommendations and the Linked Data stack. [24] With Solid, users each have one or more
personal online data stores (PODs), in which all of their data is stored. These pods can be accessed
through the Web and are independent from applications, which means that the same data can
be reused throughout multiple applications. Users decide which applications and which people
have access to which parts of their data. This results in a major improvement in protecting
people’s privacy. [5]

Not only users of Solid applications, but also developers benefit from this decentralized
approach. They do not have to worry about managing and storing user data, as this is done on
the users’ pods. Secondly, developers can adopt data created by other applications into their
own, thereby enhancing the user experience. [25]
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Figure 3 - Centralized vs. decentralized Web applications. Source: [26]

The difference between centralized and decentralized Web applications is depicted in Figure 3.
In centralized solutions, application and data are combined into one service. This limits
interaction between applications. In contrast, decentralized applications can use all data
available in its users’ personal data stores when granted access. Pod owners can choose to
expose specific parts of their data to any application or person. [24]

When working in a decentralized way, social Web applications must combine data from multiple
pods to provide their services. Posts and comments, for instance, are stored on the data pod of
the user who created them. When a feed of a user’s friends’ activities must be visualized, all the
pods of that user’s friends are queried, in order to aggregate the requested data. By directly
communicating with the data source, problems concerning synchronization are eliminated, as
the data will always be up to date. [24]

Data pods can either be hosted on a person’s own server or on public servers provided by third
party services, and users are free to switch between providers at any given time. Solid
applications can communicate with any pod, regardless of where it is physically located or who
hosts it. [5] This opens up a new market for pod providers, in which competition is based on
service quality, as is illustrated in Figure 4. Providers can distinguish themselves from others by
excelling in various domains, such as reliability, storage space, security and transfer speeds. [5]
As such, it is possible for users to have different pods for different purposes. [24] Currently, there
are three available personal data store providers, solidcommunity.net, hosted by Digital Ocean,
inrupt.net, hosted by Amazon, and solidweb.org, hosted by HostEurope. Each of these provide
their services for free. [27]

11



single market for centralized apps separate data and app markets
. . competition based social
Lmkecll_n on service quality feed Z
data+service
. Facebook _ _ social
competition based  [SRE. compatible with feed Y
i any data pod
on data ownership y p app market
Twitter data market
data+service .
data pod\ competition based (data pod
i i limited i H secure
|nnova|':|ve U %’gee on service quality backups
competitor
data pod
trouble entering market hfgz%l}gfd
because of lack of data

Figure 4 - Market comparison for centralized and decentralized Web applications. Source: [26]

2.5.1 The Solid Technology Stack

Everyone that wants to use Solid apps, has to take care of his or her own data storage. However,
a typical aspect of social network applications is that they require lots of links and relations
between users’ data, in order to make it ‘social’. In centralized Web applications, these links can
easily be established, as all data resides in the same database. With decentralized applications,
and thus, possibly thousands of different data sources, another method must be applied to
obtain the same result. [5], [26]

With that in mind, the Solid ecosystem was built on top of some existing W3C standards. It relies
on the principles of the Semantic Web, which allows for interlinking data that resides anywhere
in the Web. Standards used by Solid include RDF, Linked Data, SPARQL, WebID, Web Access
Control, LDP and Linked Data Notifications. [5], [26], [28] The purpose of these technologies
within the Solid protocol will be clarified in the following sections.

2.5.1.1 Linked Data and RDF

Using the RDF data model and the Linked Data principles, any data in one pod can link to any
data in another pod. [26] In addition, data is given a globally recognized meaning, with the help
of ontologies. [12] Every piece of data in Solid is uniquely identified by a URI. These can either be
structured or unstructured resources. Structured data is represented using the RDF language and
can be serialized using N-Triples, Turtle, JSON-LD or other syntaxes. Unstructured data includes
resources unserializable by RDF syntaxes, such as images and videos. By identifying these
resources with URIs, RDF triples in one data source can reference triples in other data sources.
That way, a Web of Data is formed across all available personal data stores. [5]
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2.5.1.2 Linked Data Platform

Establishing links between related data is only a part of the solution. Solid-based applications
must also be able to access and interact with this data. The previously discussed Linked Data
Platform is one way to do this. It manages data in a RESTful way, by communicating with the APIs
of the data sources. Creating a new resource in an LDP Container can be done by executing an
HTTP POST method towards the URL of that container. Updating items happens with HTTP PUT
or HTTP PATCH and deleting them is done using HTTP DELETE. HTTP GET is the method of choice
for accessing all resources in a container or for obtaining particular items. Resources can also be
found by following links. [5], [11], [28]

2.5.1.3 Linked Data Notifications

Solid pods do not only communicate with applications, they can also communicate with each
other, using Linked Data Notifications (LDN). [28], [29] LDN is a subset of the Linked Data
Platform. It makes use of HTTP methods to send and receive notifications. The communication
process is illustrated in Figure 5 and happens as follows:

o When someone or some automated process wants to send a notification, it provokes a
sender (a certain data pod) to instantiate a notification body.

o The target is the resource which the notification is meant for. This can be any resource,
for example a user profile. Every target has an inbox, which corresponds to a container in
LDP terms, and contains all the notifications meant for the target. The inbox URL can be
discovered by issuing an HTTP GET or HEAD request to the URL of the target. The response
graph then includes a triple that has ldp:inbox as its predicate. The subject of this triple is
the inbox URL.

o The notification, serialized using a supported RDF syntax, is then sent to the inbox through
an HTTP POST.

o The receiver manages GET requests to the inbox or to individual notifications, as well as
POST requests to create new notifications.

o Finally, notifications in the inbox of the target can be requested by consumers. If a
consumer sends an HTTP GET to the inbox, the receiver responds with the URLs of all
available notifications in the inbox. If the request is addressed to a specific notification,
then that notification is returned in a supported syntax. Inbox URL discovery is analogous
to the sender’s method.
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2.5.1.4 SPARQL

Some Solid applications require data retrieval operations that are more complex than the
methods that LDP supports. SPARQL allows developers to implement these more advanced tasks.
Applications can build SPARQL queries and let Solid servers that support this query language
handle them. These queries are classified into two categories, being local and link-following
queries. Local queries only collect data that is present on the pod that executes the query, while
link-following queries retrieve data from multiple different data sources, by following RDF links
across pods. This results in a considerable reduction of HTTP requests and communication
between client and server, in comparison to LDP. Another strength of this approach is that the
actual distribution of the data stores and their data must not be known in advance to execute
such queries. As such, it is not necessary to mention external pods in a link-following query. [5]

Instead, some preprocessing must be done to determine the servers that contain the right data
to answer the query. This process is called source selection. The server that receives the input
qguery, analyses it and breaks it down into subqueries, which are then delivered to the correct
pods through HTTP, according to the source selection process. Servers that support SPARQL
gueries expose a SPARQL endpoint, to which queries are sent. By issuing an HTTP GET or HEAD
to a pod’s URI, the URI of the endpoint can be acquired from the response’s headers. [5], [28]

When the data sources are known, for example through source selection, then the SPARQL
SERVICE extension [30] can be used to perform a federated query. By applying this extension, a
query processor can address certain parts of the query to specific endpoints. After query
execution, the processor aggregates the results into one RDF graph.

Continuing with the previous example concerning the person named Ora Lassila, imagine that
person has a personal pod with the URI http://oralassila.com/, which contains a file named
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friends.ttl. This file holds a list of RDF triples in Turtle syntax representing the friendships of Ora
Lassila:

@prefix foaf: <http://xmlns.com/foaf/0.1/>

<http://oralassila.com/me> foaf:knows <http://people.org/persond>
<http://oralassila.com/me> foaf:knows <http://people.org/personl0>
<http://oralassila.com/me> foaf:knows <http://people.org/person23>

Listing 5 - RDF triples representing friendships

Notice that the objects of the triples refer to a remote server, outside of Ora Lassila’s pod. This
data source with the URI http://people.org/ exposes a SPARQL endpoint to which queries can be
addressed, and stores triples mapping URIs of people to their names:

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix : <http://people.org/>

:person3 foaf:name “John”
:person4 foaf:name “Tim Berners-Lee”
:personl0 foaf:name “Jane”
:person23 foaf:name “Lisa”
:person24 foaf:name “Craig”

Listing 6 — RDF triples mapping URIs to names

If Ora Lassila wants to retrieve the names of his friends, he can do so by performing a SPARQL
federated query, in which the external data source is mentioned next to the servick keyword:

@prefix foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

FROM <http://oralassila.com/friends.rdf>
WHERE

{

<http://oralassila.com/me> foaf:knows ?person
SERVICE <http://people.org/spargl> {
?person foaf:name ?name . }

Listing 7 - A SPARQL federated query

This query first searches in the local friends.ttl file for occurrences of triples of which the subject
is http://oralassila.com/me and the property is foaf:knows. For the second part of the query, the
query processor contacts the external SPARQL endpoint, to obtain bindings for the name
variable. The query eventually returns three bindings:
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name

“Tim Berners-Lee”
“Jane”
“Lisa”

Table 2 - Result of a SPARQL federated query

To demonstrate the scalability and performance of link-following SPARQL query execution, an
experiment [5] using synthetic RDF data was performed. In this experiment, the time to complete
certain SPARQL queries was measured, with an increasing number of Solid pods. The observation
resulted in a sublinear curve, as the results showed that it took only slightly more time to collect
data from 128 pods, than it took for 2 pods. This is due to the decomposition of the input query
into subqueries, which parallelizes computations across data stores. This experiment confirms
that link-following SPARQL is especially fit for querying large-scale data source distributions.

To obtain data from pods using queries, these pods have to store the data in some way. Luckily,
there are multiple ways to do this. RDF databases or triple stores [2] are most suitable for storing
large amounts of RDF triples and querying them using SPARQL. With this option, non-RDF
resources must be stored somewhere else, but the triple store can still contain their metadata.
The file system is another frequently used implementation. This approach allows for both RDF
and non-RDF resources to be stored. In this case, all resources are saved as files. In addition, this
implementation facilitates the use of LDP. Pods which implement a file system may also be
upgraded to tolerate SPARQL queries. [5]

2.5.1.5 WeblID

User authentication in Solid, just like data storage, works in a decentralized manner. The user’s
identity is not authenticated against the application, but against the data pod. Solid relies on the
WeblID technology for this, which contributes to a global identification system, designed for use
in a decentralized social Web. [5] A WeblD is a personal identifier in the form of an HTTP URI. It
holds a reference to an agent, which can be a person, a device, an organization, et cetera. An
agent’s Profile Document is a web page that describes the agent and is available in an RDF format.
The Profile Document’s URI can either be acquired by leaving out the WebID’s fragment
identifier, if one is available, or by sending an HTTP request to the WeblD. In the latter case, the
WeblID Profile can be obtained from the response’s headers. [31] Figure 6 illustrates the relations
between an agent, his WebID and his Profile Document.
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WeblID Profiles can be publicly or privately interlinked using vocabularies such as the Friend of a
Friend (FOAF) ontology, such that a web of trust can be established. That way, services can decide
whether an agent is authorized to access certain resources or not, based on the agent’s
attributes. [31]

In Figure 7, the Solid Architecture is illustrated. Solid applications obtain the user’s WebID from
a client certificate, provided by the browser. Using the WeblD, the Profile Document can be
located, which in turn links to the user’s data pod. [5] Through the WebID-TLS protocol [32],
which relies on public key authentication, Solid users can then authenticate against their personal
data store via their client certificate. A pod can perform authentication by checking if the user,
described by the Profile Document, is the owner of the private key that corresponds to the public
key mentioned in the certificate. Alternatively, the WebID-OIDC protocol [33] derives the WebID
from an OpenID Connect (OIDC) ID Token.
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Figure 7 - The Solid Architecture. Source: [5]
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2.5.1.6 Web Access Control

Access control at the level of resources and containers is enforced by the Web Access Control
(WAC) system. Agents and applications can be allowed to read, write, control or append to
resources. These are the four different access modes. Each resource or container can have a
corresponding Access Control List resource (ACL), which contains a list of authorization
statements. These rules define the agents that may access the resource, together with their
access modes. ACLs can either be explicitly set or inherited from the resource’s parent container.
The URI of an ACL resource can be derived from the response of an HTTP GET or HEAD request.

[5]
2.6 Querying over Linked Data

The difficulty with decentralized environments using Linked Data is data retrieval. Especially in
use cases like decentralized social Web applications, query processing becomes a challenge as
the number of independent data sources can increase quickly. Currently there are two main
approaches [34], [35] for data integration and querying in a decentralized environment:

o Warehousing or materialization-based approaches. This method assumes a single, central
database, in which RDF dumps of all remote data sources are collected in advance. By
applying preprocessing and indexing techniques on the aggregated data, queries can
easily be answered using the central repository.

o Distributed query processing (DQP) or federated querying. This approach does not need
a central database, but instead queries the data sources directly. To that end, input
queries are parsed and split into separate subqueries, which are then sent to the
individual data sources, according to source selection. Finally, the responses from the

remote sources are combined into a valid result.
2.6.1 Data warehousing

Because data warehousing offers the fastest query response times as a result of the elaborate
preprocessing steps and the lack of need for network communication, it is momentarily the most
widely adopted technique. However, this approach does have some flaws. Due to the collecting
and indexing of RDF dumps from many different sources, which takes a lot of time, the data in
the central repository is not always synchronized with its sources. Furthermore, data providers
cannot control access to their resources, as queries are not addressed directly to the individual
sources. Finally, most queries require only a small portion of the available data, so a lot of data
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aggregation, preprocessing and storage resources are unnecessary for individual queries. [34],
[35]

2.6.2 Distributed Query Processing

As opposed to materialization-based approaches, distributed query processing works in a
decentralized manner. Queries are performed against a federation of remote data sources. These
sources individually respond to subqueries, after which a federator combines the results. For the
user or application entering the input query (also called the consumer), it seems like one solid
RDF store is being queried. To this end, federated querying is sometimes called virtual
integration. [34]

Distributed query processing is advantageous in various ways. Data synchronization is
inapplicable, as there is only one copy of the data and queries are issued directly against the
original sources. As such, gathered resources are always up-to-date and data freshness is
guaranteed. Moreover, adding or removing data sources does not cause any problems or take
much time, as elaborate preprocessing and indexing processes are not required. This makes the
DQP approach more flexible. Lastly, applications building a query do not need storage space for
any central repositories, nor processing power, as this lays at the remote data sources. As such,
guery processing can be parallelized across all sources contributing to the query result. [35], [36]

Unfortunately, availability and reliability of this federated approach cannot be guaranteed
because the system relies on a lot of possibly unstable or inactive data stores. [35]
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Figure 8 - Querying over distributed data sources. Source: [34]
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Within the DQP approach, we can distinguish two variants, as is illustrated in Figure 8. The first
diagram represents the data warehousing method, whereas the second and third diagram depict
the two federation techniques.

In scenario b, the RDF dump from each data source is loaded into a separate repository. Either
the data provider or the federator can populate these repositories. The federation layer splits
the input query and aggregates the results from each repository. Due to the populating of the
databases, there is still an overhead, but it stays limited as this process can be done in advance
and so the federator can perform query optimization. However, write operations in this scheme
are not straightforward, as they need to be propagated back to the source in some way.

Scenario c takes on a different approach. It does not depend on any repositories, but instead
qgueries the SPARQL endpoints of the distributed data sources, again using a federation layer. As
there is no populating of databases to be done, this setup presents no additional overhead next
to the query execution process itself. However, as opposed to the previous scheme, in which the
federator communicates with the separate repositories using their native API, this method
requires the federator to conform to the rules of the SPARQL endpoints. These endpoints provide
a more restricted access, and thus query processing is more challenging. [34] Moreover, the
availability of SPARQL endpoints is problematic. [37]

Systems such as DARQ [23] and FedX [38] are existing solutions that implement the approach of
scenario c. The workings of these systems are entirely transparent to the user, as the query
processing mechanism over a federation of endpoints, and the dynamic addition and removal of
endpoints in the network, happens behind the scenes. Both systems also introduced query
optimization techniques, significantly improving query performance.

More recently, a third variant within distributed query processing, called Linked Data Fragments
[37], was introduced. This approach aims to find the golden mean between the two extremes of
data dumps and SPARQL endpoints. This is done by redistributing the load between clients and

servers.

2.6.3 Query execution plan

According to research [35], generating an efficient query execution plan from an input query
typically takes 7 steps:

Parsing the query into an internal representation.
Normalizing the query by applying equivalence rules.
Unnesting and simplifying of the logical query plan.

P w N PR

Optimizing by reordering the query operators.
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Selecting sources that contribute (partial) answers.
Generating a physical query plan (by replacing the logical query operators with specific
algorithms and access methods).

7. Executing the physical query plan.

In this query processing procedure, the most important problems are source selection and
parallel data retrieval from the correct sources, in a way that these servers are not overloaded
with requests. In the next section, we will look at some existing methods for finding sources that
can contribute to a query.

2.6.4 Source selection

Most distributed query processing approaches are not very scalable when the network of data
sources gains in size. Existing methods are often designed to handle only a small number of
endpoints exposing a fairly large amount of data, instead of thousands of separate sources, each
containing fewer resources. The latter case, however, would be ideal for decentralized social
Web applications, whereby possibly thousands or millions of users, located all around the world,
each have their own personal data pod. But when there is a very large number of data sources,
checking every source for potential data contributing to the result of a query is unattainable. To
that end, a source selection process must be executed, in order to rule out sources that do not
contain valuable data for the query and keep only those that can contribute to the query answer.
This process takes a triple pattern as input and returns a set of data sources that contain potential
variable bindings. [35]

As source selection is the main difficulty with handling networks of large scale, a lot of research
has been done to find more efficient methods, and some different approaches have already been
developed. Some of these disparate techniques will be discussed in the following sections. They
each have their own ideal use case and they are all methods that do not compute full indexes in
advance, but rather do ad hoc query processing and possibly generate concise indexes. As such,
these methods are fit for environments that do not have many resources or much processing
power available. Not being able to perform extensive indexing operations in advance, however,
does come with the price of longer query response times. If faster lookup times are desired, then
materialization-based approaches to data retrieval over distributed sources are more fit for the
job. [35]

2.6.4.1 Direct lookup

The most simplistic method is direct lookup (DL), which does not use an index structure, but
rather looks up the resource URIs stated in the basic graph pattern of the query directly. The
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source URIs can thereby be deduced from the resource URIs in the basic graph pattern. As a
result, URIs outside of the directly associated sources are left out. To that end, only a few types
of triple patterns are supported by this approach and complete answers to queries are not always
guaranteed. In addition, the direct lookup method visits the relevant data sources sequentially,
as it encounters new sources during the query process. As opposed to that, other source selection
techniques can work in parallel, simultaneously retrieving data from multiple servers. [35]

2.6.4.2 Schema-level Indexing

Information in the Semantic Web complies to schemas, and multiple resources can conform to
the same schema. Schema-level indexing (SLI) exploits this by creating an index incorporating the
schema. With this index, query processors can find out which data sources contain which
predicates or classes. Consequently, queries of which the triple patterns contain a URI as
predicate, or of which the patterns search for certain classes (using the rdf: type predicate), can
be answered efficiently. Other types of queries are unfortunately not supported with this
approach.

The schema-level index scales proportionally to the number of data stores and to the number of
URIs they contain. As such, an SLI can get harder to maintain in larger distributed networks. [35],
[36]

2.6.4.3 Inverted URI Indexing

An inverted URI index (Il) specifies which URIs occur in which data sources. That way, given a
resource URI, a query processor can use the index to determine a list of sources that store triples
containing the URI, and thus may possibly contribute to the query response. This approach, as
opposed to the previous two, accepts all types of triple patterns in the query’s basic graph
pattern. However, just as the schema-level index, an inverted URI index grows with the size of
the network and the number of URIs. Therefore, the worst-case complexity of these two
approaches is the same as when keeping a full index. [35]

2.6.4.4 Data summaries

An effective data structure to enable efficient and complete aggregation over many sources are
data summaries [28], [35]. These lightweight summaries provide a succinct description of the
contents of all available sources in a network, and as such, help the query processor decide how
relevant a certain source is for a specific query. By only querying these relevant sources, query
response times are reduced considerably. Not only do summaries simplify source selection, but
they also help in query optimization by adding ranking capabilities and guiding in ordering join
operations. In addition, data summaries are suitable for situations wherein direct lookup is
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desired, such as social networking applications, as they always provide up-to-date information
when constructed at the right times.

Data summaries offer an approximate description of the data stored in the various sources, as
opposed to schema-level indexes and inverted URI indexes, which are exact indexes. Summaries
only naturally grow in size when the number of data sources increases, not necessarily when
these sources store more URIs. Furthermore, summaries can be compressed to save space. The
amount of compression can be chosen depending on how much space is available. Compression,
however, is a matter of give and take, as the list of sources determined by the source selection
process becomes less accurate, the more compact the summary.

As summaries represent the sources’ data more broadly than other indexes, the source selection
process can rule out more sources, and thus the returned list of sources is smaller. This results in
faster execution times as there are fewer servers to be contacted.

To speed up the workings of data summaries, the RDF triples stored in the sources are
transformed into numerical triples. This is done by applying hash functions to the subject,
predicate, and object of the triples separately. The URIs of the sources that contain these triples
are then inserted into lists of sources in the summary, according to the numerical ranges of the
triples. With this approach, the query processor can first decide which range of numerical triples
can answer the query, and then acquire a list of data sources by searching these triples in the
summary. Some of these sources, however, may not contain relevant data for the query. This is
because summaries are probabilistic, which means that they cannot produce false negatives, but
they may produce false positives.

The two proposed approaches of data summaries in [35] are multidimensional histograms (MDH)
and QTrees (QT). The MDH method ensures the construction and maintenance of the index to be
efficient, at the cost of a lower accuracy. QTrees, on the other hand, provide a more accurate
index, but building and maintaining it is more expensive. Therefore, the choice between MDH
and QT is a trade-off.

Earlier research [28] embedded data summaries in Solid environments, with the main purpose of
extending them to work in a privacy-preserving manner, by making sure unauthorized agents do
not have access to restricted information. In addition, summaries can provide an efficient way to
aggregate data from a large number of personal data stores, by enabling source selection.

The study suggested that each data pod may store several files, containing lists of RDF triples,
and that one data summary is generated for each file, by the pod that stores the file. A possible
third-party aggregator can then merge all these summaries into a combined summary, which
contains approximate descriptions of all available data in the network of pods. This independent
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aggregator can be located on a separate server and crawls from source to source to be able to
include all sources in its summaries. Possibly more than one aggregator can be engaged, which
results in separate combined summaries for different source ranges. To that end, each
aggregator must also maintain a list of all sources that were summarized by it. By utilizing
combined summaries, client-side query engines can perform source selection during the
querying process, and thus speed up query execution. The data summary approach in the Solid
ecosystem, as envisioned by [28], is illustrated in Figure 9.

Pod Alice Pod Bob Pod Carol
Summary 1 Summary 2 s -~|\$_ummary 1| Summary 2 Summary 1 Summary 2

Combined Summary

Range:
alicefile_1, alice:file_2, bobfilet, ...

Aggregator

Figure 9 - Engaging data summaries in a Solid environment. Source: [28]

Aggregators and pods must keep their summaries up-to-date such that clients can correctly select
relevant sources for their queries. If data summaries do not have the latest information on the
files they describe, false negatives become a possibility. Data pods can update the summary of a
file either by instantly regenerating it when the file’s contents have changed, or by creating a
new summary periodically. Aggregators can also reconstruct their combined summaries in a
periodic fashion, or they can be notified by pods when the files they store have changed. [28]

While combined data summaries provide clients with relevant pods for their queries, the pods
themselves manage access to the data they store. They do this by checking the access control
policies for each file separately. These rules indicate which agents can access which parts of the
data. Furthermore, as mentioned earlier, summaries can also be enhanced by adding privacy-
preserving capabilities to them. [28]

2.6.4.5 Approximate Membership Functions

Approximate Membership Functions (AMFs) [28], [39], [40] are space-efficient, probabilistic data
structures which enable one to efficiently test the membership of a specific element in a
collection. The fact that they are probabilistic means that there cannot be any false negatives
when testing the presence of items, but there can be false positives. For this, a fixed false positive
probability can be set, influencing the size of the AMF. Consequently, AMFs involve a trade-off
between size and accuracy.
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AMFs have been used in related studies [39], [40] to enable more efficient querying over Triple
Pattern Fragments (TPF) interfaces by reducing the number of HTTP requests performed by the
guerying process. They are particularly useful as a pre-filtering functionality, as they are generally
much smaller than complete datasets. Other use cases of AMFs include the improvement of join
operations in RDF environments [41] and the extension of the SPARQL ask query form. [42]

Two different implementations of Approximate Membership Functions are Bloom filters [43] and
Golomb-coded sets (GCS) [44]. A Bloom filter is a bitmap of size m, in which elements are inserted
using k different hash functions. Initially, every bit is set to 0. When adding an element to the
filter, the k hash functions produce k locations which must be set to 1 (using a bit-wise OR).
Checking if an item is a member of the filter is done by applying the same k hash functions to the
item and doing a bit-wise AND with the corresponding bits in the Bloom filter. If the result is false,
the element is definitely not in the filter. If it is true, the element may possibly be in the filter.
The chances of the element being member of the set depends on the false positive rate. If n is

the number of items that must be added to the Bloom filter, and p is the desired false positive
nlnp
(In2)2

probability, then the filter size is m = — . The optimal number of hash functions is k =

%ln 2. In situations where Bloom filters must be sent over the network or where space-efficiency

is important, the filters may be compressed at the cost of extra delays for compression and

decompression.

Golomb-coded sets are a variation of compressed Bloom filters, which uses only one hash
function. GCS introduce a small overhead in size and slower decompression compared to
compressed Bloom filters but achieve a higher compression rate. Compared to regular Bloom
filters, GCS are still more space-efficient.
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3. Problem statement

To this day, large-scale social Web applications such as Facebook and Twitter adopt a centralized
approach for collecting and storing their users’ personal data. This method is beneficial for
companies as many of them need this data to be able to provide their services, but it invokes a
lot of problems concerning GDPR compliances. [24] In addition, users of centralized social Web
applications cannot reuse their data across different services or move data between applications,
forcing them to duplicate the same data for each service they want to use. [5]

In reaction to these problems, the Solid ecosystem [5] was introduced. It enables the
development of decentralized social Web applications by letting users store their own data on
their personal online data stores. This gives them complete control over their personal
information and allows the reusage of data between social platforms. For example, using Solid,
one can store a picture on his or her pod, and multiple decentralized social applications can fetch
that picture from the pod. For this, the user must explicitly grant access to these applications for
that specific picture. As a result, only those applications can access the picture.

Unfortunately, while Solid solves some existing problems, it also introduces new problems. The
biggest issue remains the inefficiency of retrieving data stored on the possibly very large
networks of pods. Logically, given a decentralized social network in the range of thousands or
even millions of users, checking every single pod for specific data based on an input query results
in an abundance of HTTP requests and is therefore unattainable. Because of this, large-scale
decentralized social Web applications are still nonexistent.

In order to mitigate this inefficiency and reduce the number of HTTP requests, some sort of
source selection can be performed during the querying process. Earlier studies [39], [40] already
evaluated the impact of Approximate Membership Metadata on the performance of Triple
Pattern Fragment (TPF) interfaces, and one study [28] implemented Approximate Membership
Functions in the Solid ecosystem for privacy-preserving purposes.

This research applies Approximate Membership Functions to a Solid environment in order to
evaluate their effect on query performance. The emphasis lies on scalability of decentralized
networks of datasources, by simulating an expanding social network. With this study, we hope
to get somewhat closer to making large-scale decentralized social Web applications reality.
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3.1 Research questions and hypotheses

In this research, a decentralized network of datasources will be simulated with an increasing
number of sources to resemble a growing social network. The goal is to improve query
performance over this network by implementing Approximate Membership Functions. As such,
various metrics will be measured during the execution of the experiments, including total query
execution time, number of HTTP requests, client memory usage and client CPU load. These
metrics will then be compared to the metrics derived from the same experiments, but without
the use of AMFs. The overhead posed by the construction of the AMFs will also be taken into
account when comparing the two methods. In addition, different false positive probabilities will
be tested, in order to find the optimal balance between query performance, the time it takes to
create the AMFs, and the disk space they require.

To aid the development of this investigation, the following research questions are defined:

Question 1: To what extent can Approximate Membership Functions reduce the number of HTTP
requests when executing SPARQL queries over an expanding network of datasources?

Question 2: To what extent can Approximate Membership Functions reduce the total query

execution time when executing SPARQL queries over an expanding network of datasources?

Question 3: To what extent can Approximate Membership Functions reduce the memory usage
and CPU load at the client, when executing SPARQL queries over an expanding network of

datasources?

To answer the above three questions, not only will the number of datasources be increased, but
the effects of varying the false positive probability of the AMFs will also be examined.
Furthermore, different SPARQL queries will be tested to produce more reliable results.

Question 4: Which false positive probability ensures the optimal balance between performance,
AMF construction time, and disk space?

Question 5: What is the impact of applying AMFs on the performance of the complete querying
process, including the construction of the filters?

To perform the experiments, a client-side SPARQL query engine E will be extended to implement
source selection based on Approximate Membership Functions. This extended version of the
query engine will be referred to as E’.

The following hypotheses are defined as the predicted answers to the research questions:
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Hypothesis 1: As the number of datasources grows, the difference in the average number of HTTP
requests between E and E’ becomes bigger. Using E' in larger networks allows for more
datasources to be ruled out due to source selection, resulting in fewer HTTP requests.

Hypothesis 2: The use of Approximate Membership Functions significantly reduces the average
total query execution time, as a result of the reduction of HTTP requests. Again, the difference
between E and E’ increases with a growing amount of datasources, starting at a negligible
difference for very small networks but evolving to a significant difference for networks of a larger
scale.

Hypothesis 3: As with the previous two hypotheses, the difference between E and E’ concerning
client-side memory usage grows with the number of datasources. In large networks, using E,
much more sources need to be contacted and kept in memory, resulting in a significant increase
in memory usage. The client-side CPU load during the experiments using E’, however, is
increased slightly due to the source selection process.

Hypothesis 4: On the one hand, AMFs with lower false positive probabilities contribute to a more
precise source selection process and therefore better query performance. On the other hand,
lower false positive rates result in higher AMF construction times and require more disk space.
As such, the optimal balance can be achieved by neither choosing very low or very high false
positive probabilities, but by choosing something in between the two extremes.

Hypothesis 5: The application of AMFs poses an extra overhead to the querying process due to
the need for constructing them, but small enough to still achieve a significantly better query
performance with E’ than using E. The difference in performance between querying with E and
querying with E’ (including the AMF construction overhead) gets more significant as more
datasources are added to the network.
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4. Methodology

This section explains how this research was accomplished. First, the implemented technologies
and frameworks are introduced, followed by the SPARQL queries used in the experiments. Then,
the algorithms that were considered and used in the implementation are presented. Next, we
will take a look at the experimental setup and conclude with the encountered problems.

4.1 Implementation

4.1.1 Data generation

In order to simulate a social network to run experiments over, a lot of synthetic data had to be
generated. For this, a decentralized version of the LDBC SNB Data Generator [45] was used.? The
LDBC Social Network Benchmark (SNB) [46] is an initiative with the purpose of testing
functionalities in systems working with graph data. It uses a social networking environment to
accomplish this. The benchmark comes with a data generator, able to generate synthetic social
network data of large scale. With this, a large RDF file in Turtle syntax can be generated
containing the data of persons, forums, blogposts, comments, et cetera. Figure 10 illustrates the
data model of this generated social network.

The decentralized version of the data generator splits the large Turtle file so that the data is
spread across a multitude of files, each containing the data of one specific entity in the social
network. More specifically, each file contains all the triples of which the subject is one specific
URI, denoting an entity in the network. In this research, for the purpose of performance, only the
files containing data of persons and cities were used, with a maximum of 3500 persons and the
1231 cities they live in.

2 The implemented version of this tool for this research can be found at
https://github.com/thomasdevriese/Experimental-Setup.
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Figure 10 - Data model of the LDBC SNB Data Generator. Source: [46]

4.1.2 Server

Behind the scenes, the decentralized LDBC SNB Data Generator uses the Community Solid Server
(CSS) [47] to host and serve the RDF files over HTTP. CSS is an open-source and modular
implementation of the Solid specifications. Using the server, developers can create decentralized
Solid applications and experiment with them. The decentralized data generator tool exploits the
file-based store functionality of the Solid Server to serve the generated social network data over
HTTP. That way, a decentralized social network can be simulated, as the data of every single

entity must be accessed using a separate URI.
4.1.3 Approximate Membership Functions

For the construction of the Approximate Membership Functions, a separate script was written.3
Part of the code in this script is a modification of an earlier implementation of AMFs, used in the
Triple Pattern Fragments server. [48] The script uses Bloom filters as the probabilistic data
structure. First, the number of bits in the bitmap of the filter and the number of hash functions

3 The script for building Approximate Membership Functions can be found at
https://github.com/thomasdevriese/AMF-builder.
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are determined, based on the number of triples in the RDF file and the desired false positive
probability. Then, a Bloom filter is initialized for each term (subject, predicate, object) by invoking
an external npm package Bloem (which uses a bitbuffer internally) and passing the two
parameters. Finally, the corresponding term of each triple is added to the filter. Listing 8 shows
the AMF construction algorithm in pseudocode.

m calculateBitmapSize ()
k = calculateNumberOfHashes ()
filters = ['subject', 'predicate', 'object']

for (variable in filters):
filters[variable] = new Bloem(m, k)

for (triple in triples):
for (variable in filters):
filters([variable].add (Buffer.from(triple[variable]))

for (variable in filters):
filters([variable] = {
type: 'http://semweb.mmlab.be/ns/membership#BloomFilter"',
filter: filters[variable].bitfield.buffer.toString('base6cd'),
m: m,
k: k

Listing 8 - Pseudocode of the AMF construction algorithm.

4.1.4 Client-side query engine

The most important aspect of the implementation of this research was the process of extending
a client-side query engine to support source selection based on Approximate Membership
Functions. For this, we used the Comunica [49] query engine. Comunica is a modular Web-based
SPARQL query engine that allows for the development and testing of new Linked Data query
processing functionalities. It enables federated querying over heterogeneous datasource
interfaces out-of-the-box.

Comunica accomplishes its modularity by wiring different components together through
dependency injection. Consequently, disparate query engine configurations can be initiated by
employing different configuration files. Although each component operates separately from the
other components, they have to be able to interact with each other in some way. For this, a set
of software design patterns are put to use. The publish-subscribe pattern is implemented in
combination with the actor model to allow for independent actors to execute different
interpretations of a task and communicate with the bus responsible for that task. The mediator
pattern is used to delegate actions to actors. The choice of which actor to designate for the
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execution of a task depends on the implementation of the mediator. It is also possible to combine
the results of all actors subscribed to a bus.

The default configuration of Comunica follows a specific data flow upon an input query, of which
a simplified version is illustrated in Figure 11.
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Figure 11 - Simplified data flow of the default Comunica configuration. Source: [50]

For this research, the modularity of Comunica was exploited to implement source selection
capabilities based on AMFs. A new actor was developed* for the sole purpose of filtering the
datasources array. This actor, called Solid-Amf, was positioned just before the federated actor
and also subscribed to the RDF Resolve Quad Pattern bus. That way, when the data flow reaches
the bus, it will first invoke the AMF actor to perform source selection, after which the federated
actor is invoked. This actor will then continue the querying process using a limited sources array,
based on source selection.

4.1.5 Source selection

The purpose of the generated Approximate Membership Functions is to enable a source selection
process, in which many of the irrelevant datasources for a given query can be filtered out. This
leaves a smaller set of sources to be queried over, which leads to better performance. The lower
the chosen false positive probability for the AMFs, the smaller the filtered set of sources.

4 The modified version of Comunica, including the new actor, is published at
https://github.com/thomasdevriese/Comunica-AMF. The Solid-AMF actor can be found in the packages directory,
under the name actor-rdf-resolve-quad-pattern-solid-amf.
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Two slightly different algorithms for source selection were considered. The pseudocode of these
algorithms is shown in Listing 9 and Listing 10. Ultimately, only the second algorithm was used in
the experiments, as the first algorithm shows little to no reduction in the size of the filtered
sources array. For example, if the input query contains a triple pattern »s foaf:name “John”,
and the predicate foaf:name is found in a source’s Bloom filter containing predicates, then that
source will directly be added to the filtered set of sources, even though the subject “gohn” may
not be present at that source. The problem is that a large number of sources contain the
foaf:name predicate, causing almost every source to end up in the filtered sources array.

The second algorithm, however, checks the presence of all three terms in the Bloom filters. If one
of the terms of the triple pattern is not found (and the term is no variable), the corresponding
source is excluded from the filtered set of datasources. In most cases, this approach ensures a
significant reduction of the size of the final sources array.
filteredSources = []
for source in originalSources:
for term in [‘subject’,’predicate’,’object’]:
if triplePattern[term] not variable:
if source.bloomFilter[term].contains(triplePattern[term]) :

filteredSources.push (source)
break

Listing 9 - Pseudocode of the first source selection algorithm.

filteredSources = []
for source in originalSources:
addSource = true
for term in [‘subject’,’predicate’,’object’]:
if triplePattern[term] not wvariable:
if not source.bloomFilter|[term].contains(triplePattern[term]):
addSource = false
if addSource:
filteredSources.push (source)

Listing 10 - Pseudocode of the second source selection algorithm.

4.2 Experimental setup

To ensure the results to be as reliable as possible, the experiments were run with many different
combinations of parameters. First, 15 different SPARQL queries were tested. These queries were
constructed to fit the data model of the generated social network and were diversified enough
to produce different results and query performances. We refer to Appendix A for a listing of the
queries.
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Next, the number of datasources in the social network was varied to obtain a network of 10, 100,
500, 1000, 2000 and 3500 sources. Note that for query 13 to 15, the total number of sources rose
to a maximum of 4731, as those were queries which also searched for the cities in which the
people in the social network live. The data of each city is contained by separate datasources. In
a network of 3500 people, 1231 datasources are added (this is less for a smaller number of
people), representing the different cities they live in. This brings the total number of datasources
to 4731.

Thirdly, six different false positive probabilities were tested for the Bloom filters, being 1/4096,
1/1024, 1/128, 1/64, 1/4 and 1/2. Finally, each possible combination of the aforementioned
parameters was iterated three times. Each time, the average of the metrics of those three
iterations was calculated to obtain the definitive result.

In addition to the number of results produced by the query, four other metrics were measured,
namely the number of HTTP requests issued by the query engine, the total query execution time,
the client-side memory usage, and the client-side CPU load. To count the number of HTTP
requests, an internal function of Comunica was used. For the query response time, the memory
usage, and the CPU load, internal Nodejs functions were exploited. Unfortunately, the CPU load
metric produced seemingly random values, making it unusable in the discussion of the
experiment results. The memory usage metric showed some illogical values as well, but the main
trend is still noticeable. Therefore, this metric is not excluded from the results in this work.

In order to make the experiment reproducible, a Bash script was written, which iteratively
invokes the query engine with different parameters.> This way, the whole experiment could be
run by executing only one script. A query timeout was set for 5 minutes, in combination with a
maximum memory usage limit of 4096 MB for Nodejs. All experiments were run on a single
machine with an Intel Core i7-8705G CPU at 3.10 GHz and 8 GB of RAM.

4.3 Encountered problems

Along the way of the implementation and execution of the experiments, some issues were
encountered. The biggest problem that could not be solved was that the queries in the
experiments had to be rather simplistic, as more elaborate queries (especially over a large
number of sources) caused intensive memory usage and high query response times. This is likely
due to the fact that bigger queries cause the query engine to perform more joins, which becomes

5 The Bash script and the experiment results are published at https://github.com/thomasdevriese/Experimental-
Setup.
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problematic in an environment with many decentralized datasources. The LDBC SNB benchmark
comes with a set of predefined queries, including rather simple ones, but these could still not be
used in this setting. Therefore, we had to construct a set of new queries which were small enough
to enable querying in a large, decentralized network, but still relevant enough to be useful in

realistic scenarios.

Moreover, even with the smaller queries and the AMF-extended query engine, running the
experiments in a network of more than 3500 datasources was unattainable. Some queries still
produced results rather quickly but the majority of them caused poor performance or query

failures.

The Community Solid Server also caused some issues during the experiments, but luckily, these
could be solved. In situations with many requests to the server and high query response times,
the server would throw consecutive resource lock expired errors. This issue was solved by
increasing the expiration time of the resourcelocker utility. Another problem was the
ECONNRESET error, which appeared at the client (but was probably invoked by the server) and
was solved by setting the keepAlive parameter to false and increasing the maxSockets parameter
of the HTTP-Native actor in Comunica.

Lastly, as mentioned earlier, the CPU load metric cannot be used in the results of this research,

as no conclusions could be drawn from it.
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5. Results

Various line charts and histograms were generated based on the results of the experiments.® The
purpose of these data visualizations is to be able to provide reliable answers to our research
guestions. In the following sections, the obtained results will be discussed, and we will look back
at the defined research questions and hypotheses.

5.1 HTTP requests

The first and most important metric to evaluate is the number of HTTP requests performed by
the querying process. Figure 12 shows the number of HTTP requests per number of datasources,
averaged over all queries (lower is better). The legend shows the different false positive
probabilities of the Bloom filters (together forming E’ from the hypotheses), whereby Default
refers to the use of the query engine without Approximate Membership Functions (called E in
the hypotheses).
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Figure 12 - Average number of HTTP requests per number of datasources.

6 CSV files containing the results of the experiments can be found at
https://github.com/thomasdevriese/Experimental-Setup.
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Note that the chart is not completely accurate, as several queries (executed over 2000 and 3500
datasources) resulted in a timeout or a heap out of memory error. This only occurred in the
default version of the query engine, not with the use of AMFs. These queries failed because the
number of HTTP requests they perform is relatively high in comparison to other queries.
However, due to these failures, no metrics have been measured and as such, the number of HTTP
requests of these queries has not been included in the averages. Therefore, in reality, the
averages for 2000 and 3500 datasources using the default version are much higher, following the
pattern found in the lower numbers of datasources.

Still, the default version of the query engine immediately stands out, as the number of HTTP
requests increases much quicker than with the use of AMFs. Going from 500 to 1000 datasources
in the default version results in an increase of 264%, while the increase with the use of AMFs at
a false positive rate p = 1/64 is just 137%. The difference in the average number of HTTP
requests between E and E' (at p = 1/64) for 500 datasources is 2347 requests. The same
difference for 1000 datasources is 9152 requests, which means an increase of 290%.

While the number of HTTP requests at p = 1/4096, p = 1/1024, p = 1/128 and p = 1/64
almost perfectly align, a significant increase is observed at ratesof p = 1/4andp = 1/2. At 3500
datasources, p = 1/2 performs more than 3 times as many HTTP requests in comparison top =
1/4096. Therefore, high false positive probabilities contribute to poorer query performance.

To examine the results more into detail, some clustered column charts were constructed, one for
each number of datasources. These histograms show the exact number of HTTP requests for each
executed query (averaged over 3 iterations). Figure 13, Figure 14 and Figure 15 show the
observations for 10, 1000 and 3500 datasources, respectively. It is clear that an increase in the
number of datasources leads to a bigger difference between E and E’, at least for low false
positive rates. As such, hypothesis 1 is validated.
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Figure 14 - Number of HTTP requests per query for 1000 datasources.
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Figure 15 - Number of HTTP requests per query for 3500 datasources.

On Figure 15, it is indicated which specific queries failed due to timeouts or heap out of memory
errors. For the purpose of visualizing the failures, the bars of these queries have been given a
high value. We refer to Appendix B for the remaining charts, depicting the results for 100, 500
and 2000 datasources.

As a final example, Figure 16 shows the evolution of the number of HTTP requests for one specific
qguery. This chart also clearly displays the effect of expanding the network of datasources, being
that the number of HTTP requests rises much more quickly when using the default query engine

than when using the AMF approach.
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Figure 16 - Number of HTTP requests per number of datasources for query 10.
5.2 Query execution time

In addition to the number of HTTP requests, the total query response times were also measured.
This metric is directly affected by the HTTP requests, as an important part of the querying process
involves contacting remote datasources. Figure 17 illustrates the total query execution time per
number of datasources, averaged over all queries (lower is better).

As with the HTTP requests, it must be noted that this chart is not completely accurate due to the
query failures without the use of Approximate Membership Functions. However, in this case, it
is known for certain that the timed-out queries have a query response time of at least 5 minutes,
and some possibly a lot higher. To that end, for the purpose of obtaining a more correct
visualization, the query execution times of the timed-out queries were manually set to 320
seconds (just above the maximum). The response times of the queries that resulted in a heap out
of memory error, however, cannot be known and are therefore not included in the averages. Due
to these failures, the line showing the averages obtained with the default query engine is again

lower than it would be in reality.
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Figure 17 - Average query execution time per number of datasources.

The same pattern arises as with the number of HTTP requests. E' with low false positive
probabilities shows the best response times, followed by E’ with higher false positive rates. The
averages of E are relatively close to those of E' for very small networks but increase much more
rapidly when the network expands. Going from 500 to 1000 datasources while using E and p =
1/64 produces an increase of 162% in the average query response time. This increase rises to
236% using the default query engine. The difference between E and E' (at p = 1/64) when
scaling up from 500 to 1000 sources shows an increase of 273%.

False positive rates p = 1/4 and p = 1/2 again show reduced performance in comparison to
lower rates. p = 1/4096 contributes to slightly better results thanp = 1/1024,p = 1/128 and
p = 1/64, of which the averages almost perfectly align.

Figure 18, Figure 19 and Figure 20 illustrate the query execution times for 10, 1000 and 3500
datasources more into detail through clustered column charts. As with the HTTP requests, we
can observe that the difference between E and E’ grows with the expansion of the network of
datasources, validating hypothesis 2. Queries that resulted in timeouts or heap out of memory
errors are indicated on Figure 20 using a label and a value slightly higher than the timeout value.
The remaining charts can be found in Appendix C.
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Figure 19 - Query response time per query for 1000 datasources.
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Figure 20 - Query response time per query for 3500 datasources.

The evolution of the response times for one specific query with an increasing amount of
datasources is depicted in Figure 21. Not applying source selection results in much a faster

increase of the response time. Again, the higher false positive rates perform worse than the lower
rates.
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Figure 21 - Query execution time per number of datasources for query 10.
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5.3 Memory usage

The third measured metric is the memory usage at the client, who runs the query engine. Just as
the query response time, memory usage is also greatly affected by the number of HTTP requests.
More sources to be retrieved means more data to keep in memory. Figure 22 displays the
evolution of the memory usage with an increasing number of sources, averaged over all queries
(lower is better).

Again, we must note that the chart is not completely accurate due to some query timeouts and
failures. This time, it is known for certain that the queries which resulted in a heap out of memory
error cause a memory usage of at least 4096 megabytes. Because of this, for the purpose of
visualization, the memory usage of these queries was set to 5120 MB. The timed-out queries,
however, are not included in the averages.

Another note to be made is that the memory usage metricin Nodejs is not as reliable as the other
metrics discussed in this section. Some of the obtained values seem somewhat illogical, but the
main trend is still clear.
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Figure 22 - Average memory usage per number of datasources.

As the number of HTTP requests has a big influence on the client memory usage, we can observe
the same pattern here. Just as with the use of AMFs, the memory usage of the regular query
engine setup starts off fairly low. But again, adding more datasources means a faster increase for
E than for E'. Moving from 500 to 1000 datasources using the default engine and with p = 1/64
causes an increase of 78% in the average memory usage at the client. The same calculation for
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the default engine yields an increase of 119%. The difference between E and E' (at p = 1/64)
when scaling up from 500 to 1000 data stores increases 143%. Therefore, hypothesis 3 is partly
validated. Unfortunately, we cannot make any statements concerning client-side CPU load, as
this metric appears to consist mainly of arbitrary values.

Lower false positive rates again show better performance thanp = 1/4 andp = 1/2. Oddly, the
probability p = 1/4096 causes higher memory usage for 2000 datasources than p = 1/1024,
p = 1/128 and p = 1/64, but then again lower usage for 3500 sources. This is likely due to the
lower accuracy of the memory usage metric.
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Figure 23 - Memory usage per query for 10 datasources.
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Figure 24 - Memory usage per query for 1000 datasources.
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More detailed results for 10, 1000 and 3500 datasources are presented in Figure 23, Figure 24

and Figure 25, respectively. The more sources are added, the more the memory usage of the

regular setup stands out again, following the pattern from the previous two sections. The

clustered column charts for 100, 500 and 2000 datasources can be found in Appendix D.

Figure 26 depicts the progress of the client-side memory usage for one specific query. Although

there are some illogical values due to the metric’s inaccuracy, the difference between E and E’

is still clearly visible.
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Figure 26 - Memory usage per number of datasources for query 13.
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5.4 AMF construction

When comparing a query engine with or without the use of Approximate Membership Functions,
we must not only evaluate the querying process itself, but also take the construction of the AMFs
into account. After all, Bloom filters do not appear out of nowhere, they must be created at some
time by some process.

To evaluate the performance of the AMF construction process, some experiments were carried
out in which the time it takes to create the Bloom filters was measured, together with the disk
space these filters require. As the experiments in the previous sections were executed over a
maximum of 3500 datasources, each containing one person’s info, the same 3500 sources are
used in the experiments in this section. However, an additional 1231 datasources, each
containing the data of a location, are included as well. This brings the total to 4731 datasources
for the experiments concerning AMF construction.
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Figure 27 - Construction time per false positive probability for the Bloom filters of 4731 datasources.

Figure 27 reveals the construction time of the Bloom filters of 4731 datasources, per false positive
probability. Note that for each datasource, 3 filters are created: one for the subjects, one for the
predicates and one for the objects. Therefore, a total of 14.193 Bloom filters are created for each
false positive rate.

The histogram clarifies that a lower false positive probability leads to a higher overall
construction time, with a maximum of 15.3 seconds for p = 1/4096 (approximately 3
milliseconds per datasource). This behavior is expected, as a lower false positive rate means more
precision, and so the filter must contain more data and thus, it takes more time to create. The
difference between the two extremes is relatively small, being only 1.4 seconds. However, this
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number can quickly rise in networks with a scale of hundreds of thousands or even millions of
datasources.

If we look at the disk space these Bloom filters require, the same pattern can be observed. This
is illustrated in Figure 28. Adding more precision to the Bloom filters, requires them to contain
more data and take up more space. Although the difference in construction time between the
lowest and highest false positive rate is relatively small, the difference in size between these two
extremes is a lot bigger. The filters with a probability of p = 1/4096 require almost 3 times as
much space as the filters with p = 1/2. In this setting, that difference is only 2.37 MB, but in
networks with very large scale, the difference can be crucial.
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Figure 28 - Disk space per false positive probability for the Bloom filters of 4731 datasources.

In the previous sections, we learned that lower false positive rates do it better, performance-
wise. Contrarily, in this section we discovered that Bloom filters with lower probabilities take
more time to create and require more disk space. Therefore, the optimal balance between query
performance, construction time and disk space lies somewhere between the highest and the
lowest false positive probability. As such, hypothesis 4 is validated. It seems p = 1/64 would be
the recommended false positive rate, as it performs much better than p = 1/4 and p = 1/2,
while less time and disk space are required to create the filters than with p = 1/4096, p =
1/1024 and p = 1/128 (and it barely differs from them performance-wise).

To answer research question 5 (What is the impact of constructing AMFs on the performance of
the complete querying process?), we have to take some things into consideration, such as when
the AMFs are constructed, and which entity is constructing them. This will be discussed further

in the next section.
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6. Discussion

The use of Approximate Membership Functions when querying over an expanding network of
datasources proves to be advantageous in multiple ways. The number of HTTP requests, as well
as the overall query execution time and the client-side memory usage are improved significantly
by using Bloom filters. We saw that the difference between the regular query engine and the
AMF-extended query engine is negligible for very small networks with no more than 100
datasources, but as soon as that number increases, the difference increases with it. A relatively
reasonable increase in the number of datasources from 500 to 1000, results in a critical increase
of 273% in the difference in query response times between E and E' (at p = 1/64). If we follow
this pattern beyond the tested 3500 datasources, we can expect to see the difference between
E and E’ growing further. With these results, research questions 1 to 3 are answered and their
hypotheses validated (except for the client-side CPU load).

Constructing the Bloom filters for 4731 datasources takes a maximum of 15.3 seconds for p =
1/4096 and a minimum of 13.9 seconds for p = 1/2. As such, the difference in construction time
is relatively small, at least for a network of around 5000 datasources. The required disk space for
the combined Bloom filters, however, shows a more notable difference, with a maximum of 3.74
MB for p = 1/4096 and a minimum of 1.37 MB for p = 1/2. From these results, in combination
with the results regarding query performance, we can deduce that the optimal false positive
probability is p = 1/64. This false positive rate provides the optimal balance between
performance, filter size, and filter construction time. Consequently, research question 4 is
answered and its hypothesis validated.

Research question 5, however, is yet to be answered. As mentioned, some things apart from the
experiment results must be considered when answering this question. The problem with the
current method of applying Approximate Membership Functions is that, without the use of an
external server taking care of the AMFs, the number of HTTP requests at the client can rise up to
more than the number of HTTP requests when using the default query engine. This is because of
the need of the Bloom filters to be constantly up to date. Given an input query, the client would
first have to contact every datasource in the network in order to construct the filters. Only
thereafter would the client be able to perform source selection and execute the query. As such,
the total number of HTTP requests for each query would be equal to the sum of the number of
datasources in the network and the number of sources retrieved from the source selection
process. As a result, query performance would be worse than with the default setup.
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Luckily, there are a few solutions to this problem, of which two will be discussed here. Both of
them implement an aggregator, which is separated from the client. Both also have their own
preferable use cases.

The first solution is to add an aggregator to the network, which crawls from datasource to
datasource and keeps a list of all sources in the network. It can renew all AMFs periodically, or it
may generate a new filter upon file changes, in which case the datasource can send a notification
to the aggregator. When the client wants to perform a query, it can let the aggregator know,
after which the aggregator combines all filters into one large file and sends it back to the client.
Then, the client can perform source selection and execute the query. This method adds only one
HTTP request to the complete process of the client. Moreover, this solution becomes particularly
interesting if the client needs to execute multiple queries across the same range of sources. In
that case, it can download the combined AMF file from the aggregator once and reuse it for
different queries. However, this approach is not ideal for very large networks of sources, as the
file containing the AMFs grows with the number of sources and must be sent to the client over
the network. For p = 1/64 and 4731 sources, sending a file with a size of 2.41 MB is achievable.
Scaling the network up to 100.000 sources, however, leads to a size of 51 MB, while a network
of 1 million sources means an unattainable 510 MB.

The second method is more favorable to large-scaled networks. In this approach, the aggregator
discovers new sources and updates its AMFs in the same way, but it differs in the querying
process itself. When the client must execute a query, it first sends the query over to the
aggregator. After that, the aggregator performs the source selection process itself, and sends the
list of selected sources back to the client. Based on this list of sources, the client can immediately
execute the query. Just as with the first solution, this approach adds only one HTTP request to
the complete querying process of the client. In this method, the size of the network matters less,
as the query and the list of sources are the only pieces of data to be exchanged with the
aggregator. However, this solution demands more processing power from the aggregator.
Furthermore, this method may be less ideal in situations where protection of privacy plays a very
important role, as each query from the client must be sent over the network and can be read by
the aggregator. Therefore, the choice of which solution to implement mostly depends on the use
case, but this trade-off needs to be further investigated in future work.

With the proposal of these two solutions, hypothesis 5 can also be validated. Applying
Approximate Membership Functions does indeed pose an overhead due to its construction time,
but as the aggregator takes on the task of creating the filters, the only noticeable overhead is the
communication between client and aggregator. Therefore, the overall performance lies very
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close to the obtained results, and consequently, the use of AMFs provides a significant
improvement in query performance, growing with the scale of the network.
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7. Conclusions

In this research, we tried to find a way to make querying over a large number of datasources
more feasible. By investigating this matter, large-scale decentralized social Web applications
could become reality. The proposed method is to extend the client-side query engine by
implementing source selection based on Approximate Membership Functions. By performing
source selection, irrelevant datasources for a given input query can be filtered out, significantly
reducing the number of HTTP requests to be executed by the client. Approximate Membership
Functions can be given a false positive probability. A higher probability means a higher chance
for anirrelevant source to end up in the selected list of sources. There is however a trade-off, as
AMFs with a lower false positive probability are bigger in size.

Some experiments were set up, in order to measure the query performance of a query engine
extended with AMFs (E’), in comparison to the default engine (E). The goal was to find that the
difference in performance between E’ and E increased with the expansion of the network of
datasources. For this, three different metrics were measured: the number of HTTP requests, the
total query execution time, and the client-side memory usage.

For all three metrics, we saw the same pattern. In very small networks, the metrics of E’ and E
are almost equal. However, the more datasources are added, the more the difference in
performance between E' and E grows, with E' providing much better results than E. Some
queries in the regular setup even failed due to timeouts or heap out of memory errors, while
these queries caused no issues in the AMF setup.

Different false positive probabilities were also tested, in order to find the optimal balance
between query performance, filter construction time and filter size. We discovered that a false
positive rate of p = 1/64 proved to contribute to the best results overall.

Although the use of Approximate Membership Functions provides a significant improvement in
qguery performance, the construction of these filters must also be considered. In a setup where
the client itself must maintain the AMFs, the total number of HTTP requests invoked by a query
is much higher than in a regular setup without AMFs. This causes the query response times to
escalate significantly. However, two solutions have been proposed to this problem, both
involving an external aggregator. In both solutions, this aggregator discovers new datasources in
the network and keeps a list of all sources. Based on this list, it creates AMFs, either periodically

or upon file changes.
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The first solution requires the aggregator to combine the filters into one file and send it to the
client when there is a query to be executed. The client must then perform source selection based
on the filters in the file, after which the query can be executed. In the second solution, the
aggregator must perform source selection itself, after it has received the query from the client.
It then responds to the client with the selected set of sources.

Both of these methods add only one HTTP request to the complete querying process of the client,
making the complete process still very performant in comparison to the regular query engine
setup. However, the approaches differ in other ways. The first approach is not ideal for very large
networks, as the combined file containing filters grows with the number of sources and must be
sent over the network. Although the second approach does not have this issue, it requires more
processing power at the aggregator to perform source selection. In addition, it is less secure
regarding privacy, as the client’s query must be sent over the network and read by the
aggregator.

To summarize, we can state that the use of Approximate Membership Functions when querying
over a large number of sources provides a major improvement to query performance, but only if
the resources are available to implement an external aggregator, which manages the AMFs.
Unfortunately, even with the use of AMFs, the measured metrics are for some queries over many
sources still rather poor to make responsive decentralized social Web applications possible.
Nonetheless, the findings in this research might help us take a step closer to that goal.
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8. Future research

Various subjects may be further investigated to continue the work of this research. In the
discussion, we mentioned two solutions for reducing the number of HTTP requests using the
proposed AMF-enabled query engine in combination with an aggregator. Although the optimal
use cases and the advantages and disadvantages of each approach were briefly discussed, these
methods must be further investigated and experimented with in future research, as the correct
use of aggregators in a decentralized environment can significantly improve query performance.

Furthermore, other AMF approaches should be tested, such as compressed Bloom filters and
Golomb-coded sets. These data structures are more space-efficient than regular Bloom filters.
Therefore, they could be particularly useful in the first of the two mentioned solutions regarding
aggregators, as the biggest issue there is that sending a large AMF file over the network drastically
reduces query performance.

In fact, Approximate Membership Functions are not the only way of implementing source
selection in a client-side query engine in the context of Solid. Other summarization approaches
must be investigated and tested as well, such as those discussed in the literature study.

Finally, decentralized social Web environments could be simulated in larger scale, and queried
over using more elaborate queries. We have a long way to go before we can achieve truly large-
scale decentralized social Web applications, but the first steps have already been taken.
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10. Appendices

Appendix A: SPARQL queries

The prefixes listed below are used in each of the 15 SPARQL queries executed during the
experiments. As such, they will only be listed here.
PREFIX snvoc: <http://localhost:3000/www.ldbc.eu/ldbc socialnet/

1.0/vocabulary/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

Query 1

SELECT ?name WHERE {
?person snvoc:firstName ?name

}

Query 2

SELECT ?person WHERE {
?person snvoc:firstName "Tom"

}

Query 3

SELECT ?person WHERE {
?person snvoc:browserUsed "Firefox"

}

Query 4

SELECT ?person WHERE ({
?person snvoc:speaks "fr"

}
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Query 5

SELECT ?person WHERE {
?person snvoc:firstName "Tom"
?person snvoc:gender "male"

Query 6

SELECT ?person WHERE {
?person snvoc:speaks "nl"
?person snvoc:gender "female"

Query 7

SELECT ?person WHERE {
?person snvoc:speaks "nl"
?person snvoc:browserUsed "Internet Explorer"

Query 8

SELECT ?name WHERE ({
?person snvoc:id "4398046512167" "<http://www.w3.0rg/2001/XMLSchema#long>
?person snvoc:firstName ?name

Query 9

SELECT ?friend WHERE ({
?person snvoc:id "4398046512167" "<http://www.w3.0rg/2001/XMLSchema#long>
?person snvoc:knows ?friend

Query 10

SELECT ?friend WHERE ({
?person snvoc:firstName "Tom"
?person snvoc:knows ?friend



Query 11

SELECT ?person WHERE ({
?person snvoc:firstName "Tom"
?person snvoc:gender "male"
?person snvoc:speaks "en"

Query 12

SELECT ?person WHERE ({

?person snvoc:speaks "nl"

?person snvoc:hasInterest
<http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/tag/J. R. R. Tolkien>
}

Query 13

SELECT ?city WHERE ({
?person snvoc:id "4398046512167"""<http://www.w3.0rg/2001/XMLSchema#long>
?person snvoc:isLocatedIn ?place
?place foaf:name ?city

Query 14

SELECT ?city WHERE {
?person snvoc:firstName "Tom"
?person snvoc:isLocatedIn ?place
?place foaf:name ?city

Query 15

SELECT ?name WHERE {
?place foaf:name "Brussels"
?person snvoc:isLocatedIn ?place
?person snvoc:firstName ?name
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Appendix C: Query response time per query
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Appendix D: Memory usage per query
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