FACULTY OF ENGINEERING
Al | AND ARCHITECTURE

Automated Localisation of a Mixed Boolean
Arithmetic Obfuscation Window in a Program Binary

Antoine De Schrijver
Student number: 01506917

Supervisors: Prof. dr. ir. Bjorn De Sutter, Dr. Bart Coppens
Counsellor: Dr. ir. Bert Abrath

Master's dissertation submitted in order to obtain the academic degree of
Master of Science in Computer Science Engineering

Academic year 2020-2021

)

GHENT
UNIVERSITY

FACULTY OF ENGINEERING
Al | AND ARCHITECTURE

Automated Localisation of a Mixed Boolean
Arithmetic Obfuscation Window in a Program Binary

Antoine De Schrijver
Student number: 01506917

Supervisors: Prof. dr. ir. Bjorn De Sutter, Dr. Bart Coppens
Counsellor: Dr. ir. Bert Abrath

Master's dissertation submitted in order to obtain the academic degree of
Master of Science in Computer Science Engineering

Academic year 2020-2021

)

GHENT
UNIVERSITY

Preface

This dissertation marks my final step as a student at Ghent University. It combines my interest
in cybersecurity with my acquired knowledge in artificial intelligence. Despite this unusual year,
I am very grateful I got to work with such enthusiastic supervisors. The pleasant online meetings

were a delightful change in the stay-at-home invariance.

I want to express my sincere gratitude towards the following people. First, I'd like to thank
Prof. dr. ir. Bjorn De Sutter for introducing me to the field of reverse engineering with his
enlightening course on software hacking and protection. I would also like to thank him, Dr.

Bart Coppens and Dr. ir. Bert Abrath for their insights and support throughout this work.

I would also like to thank my family and my girlfriend for supporting me throughout my studies.
I am sure that without their support and encouragement, I would never have made it this far.
Lastly I want to thank my friends, old and new, for the great times we had during our university

years.

The author(s) gives (give) permission to make this master dissertation available for consultation
and to copy parts of this master dissertation for personal use. In all cases of other use, the copy-
right terms have to be respected, in particular with regard to the obligation to state explicitly

the source when quoting results from this master dissertation.

Ghent, August 25" 2021

Automated Localisation of a Mixed Boolean-Arithmetic
Obfuscation Window in a Program Binary

Antoine De Schrijver

Supervisors: Prof. dr. ir. Bjorn De Sutter Dr. Bart Coppens
Counsellor: Dr. ir. Bert Abrath

Master’s dissertation submitted in order to obtain the academic degree of

Master of Science in Computer Science Engineering

Academic year 2020-2021

Abstract Mixed Boolean-Arithmetic (MBA) is a mechanism for data obfuscation. It trans-
forms constants and simple expressions into expressions that contain a mix of boolean and
arithmetic operations. Due to the lack of general rules when mixing these two types, MBA-
obfuscations manage to thwart most static and dynamic program analysis techniques. Recently,
program synthesis proved to be quite successful in deobfuscating MBA transformations. By
analysing the input-output behaviour of an MBA expression, a synthesiser can reconstruct a
simplified version with the same semantics, essentially bypassing the obfuscation. However, the
different program synthesis approaches do not consider the issue of locating the MBA-obfuscation
within the program. Therefore, this thesis proposes a method to locate MBA obfuscations within
a program binary. To achieve this, we first derive all possible segments in a program binary. We
then leverage the power of supervised classification to flag the MBA expressions. We train this
classifier by constructing a dataset of MBA-obfuscated functions and constructing a featureset
inspired by the natural language processing field. Our results demonstrate that our approach
manages to locate 89% of the MBA-obfuscated segments. This work is a first step in the local-
isation of MBA obfuscations. The proposed classifier and featuresets can also serve as a basis

for the localisation and classification of other obfuscations.

Keywords software protection, obfuscation, mixed boolean-arithmetic, classification,

localisation

Automated Localisation of a Mixed Boolean-Arithmetic Obfuscation Window in a
Program Binary

Antoine De Schrijver

Supervisors: Prof. dr. ir. Bjorn De Sutter, Dr. Bart Coppens
Counsellor: Dr. ir. Bert Abrath

Abstract
Mixed Boolean-Arithmetic (MBA) is a mechanism for
data obfuscation. It transforms constants and simple
expressions into expressions that contain a mix of boolean
and arithmetic operations. Due to the lack of general
rules when mixing these two types, MBA-obfuscations
manage to thwart most static and dynamic program analysis
techniques. Recently, program synthesis proved to be
quite successful in deobfuscating MBA transformations.
By analysing the input-output behaviour of an MBA
expression, a synthesiser can reconstruct a simplified
version with the same semantics, essentially bypassing the
obfuscation. However, the different program synthesis
approaches do not consider the issue of locating the
MBA-obfuscation within the program. Therefore, this
thesis proposes a method to locate MBA obfuscations
within a program binary. To achieve this, we first derive all
possible segments in a program binary. We then leverage
the power of supervised classification to flag the MBA
expressions. We train this classifier by constructing a
dataset of MBA-obfuscated functions and constructing
a featureset inspired by the natural language processing
field. Our results demonstrate that our approach manages
to locate 89% of the MBA-obfuscated segments. This work
is a first step in the localisation of MBA obfuscations. The
proposed classifier and featuresets can also serve as a basis
for the localisation and classification of other obfuscations.

Keywords: software protection, obfuscation, mixed

boolean-arithmetic, classification, localisation

1. Introduction

Code obfuscation is the process of transforming a program into
a more complex equivalent. While the semantics stay the same,
the program’s complexity increases significantly, hampering
the analysis of the code [1]. This technique is widely used
in software protection against reverse engineering attacks. It
is an essential protection mechanism in scenario’s where the
attacker has complete control over the execution environment
of the software, called a Man-At-The-End (MATE) Attack
[2]. MATE attacks can either be used for malicious purposes,
like the removal of Digital Rights Management (DRM) [3, 4],
or benign goals, like malware inspection [3]. Hence, there is
continuous research into obfuscation mechanisms as well as
deobfuscation tools that break these mechanisms.

Over the years, researchers have devised various obfuscation

mechanisms to counter MATE attacks. They can roughly be
divided into three categories: layout obfuscation, control flow
obfuscation, and data obfuscation [5]. Layout obfuscation
removes relevant information, like object names, without
altering the behaviour of the code. Control flow obfuscations
aim to change the program’s flow by, e.g. inserting opaque
predicates or flattening the control flow. Data obfuscation tries
to hide data within the program, like important outcomes or
secret keys.

This thesis will focus on a mechanism for data obfuscation
called Mixed Boolean-Arithmetic (MBA). This technique
hides simple expressions and constants by transforming them
into expressions that contain a mix of boolean (e.g. and, or)
and arithmetic (e.g. +, *) operators [6, 7]. This mix proves
difficult to simplify to the original expression.

In recent literature, program synthesis is put forward as a tool
to undo certain obfuscations, including MBA. Blazytko et al.
developed a black box synthesis framework called SYNTIA
that automatically reconstructs obfuscated segments based on
their input-output behaviour [8]. David et al. followed up on
this research with QSYNTH that also take context into account
to improve the synthesis performance [9]. While these tools
prove effective in the deobfuscation of MBA expressions, they
do not consider the problem of locating these segments within
a program binary.

To improve the automation of MBA deobfuscation, we develop
a method to locate MBA segments within a program binary
based on classification using supervised machine learning.
We derive all the possible segments of a program binary and
classify them as MBA or not. Tools, like SYNTIA or QSYNTH,
can then synthesise the MBA segments to obtain the original
expression. With this purpose in mind, we make the following
contributions in this thesis:

1. We devise a method to obtain all the possible segments
from a program binary.

2. We gather a dataset consisting of 1400 MBA-obfuscated
functions and 3075 unobfuscated functions.

3. We design a method for constructing register-dependency
N-grams from a program binary.

4. We build a classifier that is able to differentiate between
an unobfuscated segment and an MBA expression. We
then locate MBA expressions by classifying all the
possible segments in a program binary.

2. Background

Before getting into the design of our work, we provide some
technical background on the topics relevant to this thesis.

2.1. Mixed Boolean-Arithmetic

In general, any expression consisting of both arithmetic
operators (+,*,...) and boolean operators (and, xor, ...)
can be referred to as a mixed boolean-arithmetic expression.
The use of mixed boolean-arithmetic for obfuscation was
formalized by Zhou et al. [6]. They defined polynomial MBA
expressions as follows:

Definition 1 (Polynomial MBA [6][7]) An expression E of
the form

E:Zai H €i,j (.’E()7...71't,1)

icl jeJ;

where the arithmetic sum and product are modulo 2", a; are
constants in Z/2"Z, e, j are bitwise expressions of variables
2oy -1 in {0,1}", 1 C Zand foralli € I,J; C Z are
finite index sets, is a polynomial Mixed Boolean-Arithmetic
(MBA) expression. A linear MBA expression is a polynomial
MBA expression of the form

Zaiei (xo, . ,a’,‘tfl)

icl

Using this definition, Zhou et al. formalised a way to
rewrite simple expressions and constants as MBA expressions,
effectively obfuscating the original expression.

The strength of the MBA transformation lies in the
incompatibility between the arithmetic and bit-wise operators.
No general rules (like distributivity or associativity) exist to
simplify these expressions. As a result, it is resilient against
most static and dynamic analysis. MBA is used by various
commercial and academic obfuscators, like Quarkslab[10],
Irdeto [11] and Tigress [12].

2.2. Program synthesis

Program synthesis is the task of automatically constructing
a program based on a given high-level specification [13].
While it has many different applications, it has recently
been proposed as a way to deobfuscate programs. For
deobfuscation, program synthesis can be used to reconstruct an
obfuscated code segment based solely on specific observations,
like input-output behaviour. A synthesiser tries to produce a
program that retains the specified properties of the obfuscated
code yet is more readable for a reverse engineer. The result is
a code segment that is easier to understand than the obfuscated
program, essentially bypassing the effects of the obfuscation
transformation.

Blazytko et al. proposed such a solution, called SYNTIA[S8].
This tool reconstructs fragments of programs based on
the input-output behaviour of that segment. It essentially
considers the segment as a black box. SYNTIA first generates
random inputs and looks at the corresponding outputs. These

I/O pairs are then used to retrieve the semantics of the segment
by using a heuristic based on MCTS trees. David et al.
improved on this approach with QSYNTH[9]. They combine
the black box approach of SYNTIA with Dynamic Symbolic
Execution to simplify the problem further. Both SYNTIA
and QSYNTH prove effective at undoing MBA-obfuscations,
virtualization obfuscations and ROP chains. However, they
need the exact start and end of the obfuscated segment to
generate correct input-output pairs. They do not consider the
problem of locating said obfuscations in the program.

2.3. Supervised Classification

A supervised machine learning model tries to approximate the
unknown function y = f(x) based on a training set of example
input-output pairs (X1,¥1), (X2,92), ... (Xn,yn) [14]. The
vector of inputs z, o, ...,z € X; are called features, the
outputs y; are referred to as labels. In a classification scenario,
the labels are discrete. For unknown data, a model predicts
a label based on the features of that data. These features are
derived from the data through a process known as feature
extraction.

3. Design

To locate the MBA segments in a program binary, we propose
the following design. First, we derive all the possible code
windows from a program binary. A supervised machine
learning model then automatically classifies each of these
windows as MBA-obfuscated or unobfuscated. After this step,
we now know the location of the MBA-obfuscated segments.
These segments can then be fed to a program synthesiser, like
SYNTIA to obtain the original expression.

4. Retrieving all possible segments

To obtain all the possible segments in a program binary,
we apply a varying sliding window algorithm. Every
iteration, we obtain a different code segment of the program
binary. The first window starts at the first instruction of
the binary and is minimum_size instructions long. The
next window is one instruction longer than that. This
incremental growth continues until the window has a size
of maximum_size instructions. At this point, the window
moves an instruction and starts at the second instruction, again
of size minimum_size instructions. This window grows
again until the maximum size is reached and moves again.
This algorithm continues until the end of the code segment is
reached. An example is illustrated in Figure 1.

window
window
window
window
window
window
window

window

W 00 N OO U1 A W N R

window

Figure 1. Example of the varying sliding window algorithm for a
minimum_size of 1 and amaximum_size of 3. This algorithm
continues to create new windows until the end of the binary is reached.

5. Feature Extraction

The raw program binaries need to be turned into useful features
for the classifier. This process is called feature extraction. It
is essential that these features are informative for the task at
hand. For this problem, the chosen features need to contain the
necessary information to indicate whether a specific segment
of a program binary is an MBA expression or not. To achieve
this, we first reconstruct the assembly of the program binary
using objdump [15]. We then devise two types of features,
inspired by the field of natural language processing (NLP).

5.1. Bag-of-instructions

A traditional NLP bag-of-words approach sees a text document
as an unordered set of words with their position ignored [16].
Only the frequency of these words is kept. In the context
of a program binary, we can use the assembly instructions
instead of words. We will refer to this technique as a
bag-of-instructions. For a given segment, every occurrence of
each instruction is counted. The frequency of each instruction
is then calculated and used as a feature for the machine
learning model.

A downside of the bag-of-instructions model is the fact that
it takes no context into account. Segments with the same

instructions but with a different order receive the same label.

Therefore, we turn to N-grams instead.

5.2. Register Dependency N-grams

In natural language processing, N-grams try to encapsulate
the order of words into machine learning features. An
N-gram is a combination of N consecutive words. For text
classification, the frequency of each N-gram in a text is
registered and then used as a feature. Therefore, an N-gram
can be seen as a generalisation of the bag-of-words scenario,

with a bag-of-words corresponding to a I-gram or unigram.

Intuitively, information about the order of words is important
for understanding a text segment: words that follow each
other are often related in a sentence. In assembly code, this
is not necessarily the case. Consecutive instructions can act
on different registers and memory addresses, being placed in
a particular order because of compiler optimisations.

Instead of creating N-grams based solely on the instruction
order, we also take register dependencies into account.
Instructions that form a read-after-write dependency chain can
form an N-gram. As mixed boolean-arithmetic expressions
mix boolean and arithmetic instructions, their N-grams should
be distinguishable from ordinary N-grams. Like in natural
language processing research, we will limit ourselves to
2-grams and 3-grams (often called bigrams and trigrams).
Larger N-grams result in a bigger and sparser featureset, both
attributes that will lead to overfitting and worse performing
models.

5.2.1. DERIVING N-grams

To create these N-grams from the program binary, we use
a custom pintool with PIN [17]. The pintool dynamically
executes the program to derive the read-after-write register
dependencies of the program. Therefore, it is essential that the
segment containing the MBA expression is actually executed.

To efficiently retrieve all N-grams of a specific segment, we
model all the register dependencies of a program binary as
a directed graph. Nodes correspond to instruction addresses,
and edges indicate the read-after-write register dependencies
between them. For a specific segment, we can take the
subgraph that contains the instructions of that segment. This is
illustrated in Figure 2. An N-gram then corresponds to a walk
of length N. With this method, we can obtain all the N-grams
for a given segment.

(12)—(16)—(20)
(12)—16)—~20)

N\ 7N\ N\
(16 —>{20 —>{24)

Figure 2. Illustration of how N-grams of a specific segment, ranging
from instruction 8 to 24, are devised (here for N=3). First, all the
register dependencies of the program binary are mapped to a graph.
Then the subgraph is taken that only contains the instructions of the
segment. Lastly, all the paths of length N are considered.

Instead of modelling raw register dependencies, we alter our
pintool to model shortcut dependencies. When an instruction
uses a value that is copied by a mowv, it is dependent on this
mov instruction. While this is technically correct, we are
interested in the dependency between the instruction that
last wrote to the mov source and the instruction after the
mov. Shortcut dependencies do not consider the intermediary
mov instructions and show the dependency between the prior
instruction and the latter instruction instead.

6. Data

We need representative training data to get a working classifier.
For this, we first explore existing data sources and conclude
with the need for a new dataset.

6.1. Datasets

To train the classifier, we use three data sources. The first
dataset comes from the SYNTIA framework [18]. It consists
of 500 small functions and 500 obfuscated variants, obtained
by using the Tigress encode arithmetic transform. The second
dataset comes from the QSYNTH dataset [19]. It contains 500
small functions and their obfuscated counterparts, similar to
the SYNTIA dataset. These two datasets were conceived to

evaluate the performance of the program synthesis frameworks.

While they are perfect for this purpose, they do not reflect
real-life program binaries. Therefore, we create a new
dataset based on a public Github repository that is called
THE ALGORITHMS (referred to as ALGO for brevity). This
repository is comprised of 300 small C programs that
implement various computer science algorithms, like number
conversions, hash calculations, and data structures. These
small programs are turned into a dataset by obfuscating
the functions within them with Tigress encode arithmetic
transform and compiling both the original and the obfuscated
versions using GCC. After removing erroneous program
binaries and failed obfuscations, we end up with the ALGO
dataset consisting of 2075 unobfuscated functions and 400
MBA-obfuscated functions.

6.2. Funcions vs. Expressions

While our dataset consists of original and MBA-obfuscated
functions, we want to be able to classify MBA-obfuscated
expressions. These segments do not necessarily correspond to
an entire function. However, labelling every MBA-obfuscated
expression would require manual analysis of every program
binary. Instead, we opt to label entire functions as original or
MBA-obfuscated. This can be done automatically with the
debug information in the program binaries.

For the SYNTIA and QSYNTH dataset, every function
computes one expression. When obfuscated, this function is
roughly similar to one obfuscated MBA expression. This is not
the case for the ALGO dataset, where functions contain logic
besides expressions. One function will thus likely contain
multiple MBA-obfuscated expressions, together with some
unobfuscated logic (e.g. for output).

6.3. Static vs. Dynamic dataset

In section 5.2.1 we explained the use of dynamic analysis to
retrieve the register dependency N-grams. We stressed that
the MBA expression must be executed to obtain the N-grams
for that segment. This means that we need to define inputs
for all the program binaries in each dataset. Otherwise, these
programs will not execute anything meaningful and return an
error, resulting in no N-grams.

The inputs for the SYNTIA and QSYNTH datasets are
straightforward: all the functions require five input numbers
to return a computed result. However, for the ALGO dataset,
every algorithm expects different inputs. This requires an
extensive manual process for all the available programs. Due

to time constraints, we defined the inputs for 30 programs.

This cuts down the usable ALGO dataset to 96 obfuscated
functions and 599 unobfuscated functions.

6.4. Train-Test Split

To train the classifier, the data must first be split into a train
set and a test set. Every dataset is divided according to an
80%-20% train-test ratio. To avoid data-leakage, duplicates
were removed and every obfuscated function is in the same
set as its unobfuscated counterpart. In summary, we end up
with the data distribution shown in Table 1.

Dataset Set | #MBA | #Original
SYNTIA + QSYNTH | train | 1170 874

test 113 92
ALGO dynamic train | 140 1134

test 13 112
ALGO static train | 294 1607

test 73 387

Table 1. Overview of the class distribution for the different datasets
after removing duplicates and keeping original and obfuscated
functions in the same set. The values represent the amount of
functions

7. Classifier

7.1. Multinomial Naive Bayes Classifier

We build our classifier using a multinomial naive Bayes
classifier. This model is often used in natural language
processing with the bag-of-words or N-gram features. The
classifier works by choosing the class with the maximum
probability given the input features:

s Tn))

y = argmax, P(y|zi,za,. ..

Due to the naive Bayes assumption that the features are not
dependent on each other given a certain class, this problem is
simplified to:

n

y = argmax, P(y) H P(z; |y) 2
i=1

The prior P(y) and the posteriors P(z;|y) can now be inferred
from the training data.

The features for this model are the raw counts of the different
tokens. To every token, a constant count is also added to
prevent multiplications with posteriors of value 0. This process
is called Laplace Smoothing [20].

The naive Bayes model is based on the naive assumption that
features are not dependent on each other, given a certain class.
While this assumption does not hold for our data, this model
has empirically been shown to work even when the assumption
is not valid [naiveBayes study].

7.2. Evaluation metric

Due to the imbalances in the data, we opt to use Matthews
Correlation Coefficient (MCC) [21] as a metric instead instead
of accuracy. Accuracy alone can mislead the observer when
class imbalances are present, as overpredicting the bigger class
can still yield good accuracy. The MCC metric is more robust
in this scenario. The MCC formula is shown below. MCC
takes all the elements of the confusion matrix into account,

compared to only the true positives and the true negatives in
the case of accuracy. It yields a value between -1 and 1, where
a higher score is indicative of a better model.

TPxTN —-FP x FN

MCC =
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

7.3. Results

The performance of the classifier is shown in Table 2. Both the
bag-of-instructions and the bigrams perform quite well for the
separate datasets. The bad performance when working with trigrams
is likely caused by the sparseness of the featureset. One obfuscated
function often only contains a few trigrams, especially in the case of
the SYNTIA and QSYNTH dataset. The ALGO dataset does not suffer
as hard because the functions are bigger and contain more trigrams.
When combining these two datasets, the small class probabilities of
the SYNTIA+QSYNTH dataset are in stark contrast with the bigger
class probabilities of the ALGO dataset, resulting in even worse
performance when combined. However, combining the two sets
should result in a model that generalises better on unseen data.

Dataset Instructions Bigrams Trigrams
Syntia + Qsynth 0.65 0.70 0.51
Algo 0.96 0.90 0.87
All 0.69 0.49 0.42

Table 2. MCC scores for the multinomial naive Bayes classifier using
the token count as features. The rows indicate the dataset on which the
model was trained and tested. The columns show the used featuresets.

8. Evaluation

With the trained classifier, we now want to assess its performance for
the problem at hand: locating MBA expressions in a program binary
by classifying every possible segment. To evaluate the performance,
we devise a dataset consisting of 30 program binaries that represent
functions similar to the three datasets.

For every program binary, we manually label the segments that
correspond to an MBA-obfuscated expression with the help of debug
information from the compilation. Contrarily to the training datasets,
these segments do not necessarily correspond to entire functions. One
function can contain multiple MBA-obfuscated expressions. Those
need to be separately located in order to be simplified by program
synthesis.

To test the classifier’s performance, we generate all the possible
segments of the evaluation program binaries using the varying
sliding window process with a minimum_size of 5 and a
maximum_size of 100. We categorise every segment depending
on what kind of instructions they contain:

1. Segments that correspond exactly to an MBA expression.
2. Segments that only contain part of an MBA expression.

3. Segments that are bigger than, but completely contain an MBA
expression.

4. Segments that contain part of an MBA expression, along with
some unobfuscated code.

5. Segments that contain no MBA expressions.

The different categories are illustrated in Figure 3.

Exact MBA
In MBA
Over MBA
Mix
No MBA

Figure 3. Visualisation of the different type of segments. The
MBA-obfuscated segment starts at obf1 and ends at obf4. The green
blocks show one segment.

We now label every segment using the naive Bayes classifier
and look at the results for every category. We do this for the
bag-of-instructions, the bigrams and the trigrams. The results are
shown in Table 3.

The values should be interpreted as follows: for the exact MBA
category, we want the percentage to be as high as possible in order to
label as many MBA expressions as possible correctly. The no MBA
values should be as low as possible: these segments offer nothing
interesting when synthesised. The mix values are preferably also low;
while they can indicate to the reverse engineer that an MBA segment
is nearby, the synthesis result will not be meaningful. The same
reasoning holds for the In MBA category. However, this category
will be highly correlated with the Exact MBA category. The results
of the Over MBA category are hardest to understand. Some of these
segments will still produce a meaningful synthesis result, but most of
them will not reveal the semantics of the obfuscated segments.

The model seems to perform best with the bag-of-instructions
features. This is likely due to the difference in the amount of data: it
only needs static program binaries for this featureset, compared to
dynamic execution for the bigrams and trigrams. Hence, the entire
ALGO dataset can be used. Nevertheless, the bigram and trigram
model still deliver good results.

All three feature types are able to distinguish between unobfuscated
segments and segments containing MBA obfuscations. Notably, 95%
to 99% of the non obfuscated segments are classified correctly. Of
the exact segments, 80% to 89% is classified correctly. For the other
categories (in MBA, over MBA, mix), the results are mixed. While
they are preferably classified as unobfuscated code, they do reveal to
the reverse-engineer that there is an MBA expression nearby.

9. Conclusion

In this thesis, we proposed a method to locate mixed
boolean-arithmetic obfuscations in a program binary. We achieved
this by constructing a Multinomial Naive Bayes classifier and
classifying each possible segment of a program binary as either
unobfuscated, or MBA-obfuscated. For the classifier features, we
explored the bag-of-instructions, the register dependency bigrams
and the register dependency trigrams. We trained these models on a
dataset comprising of the SYNTIA dataset, the QSYNTH dataset and
a self-constructed ALGO dataset.

The bag-of-instrcutions resulted in the best performance when tested
on an evaluation set of 30 program binaries. However, this is most
likely due to the difference in the amount of training data compared
to the bigram and trigram model.

Our best model correctly labels 89% of the MBA-obfuscations and
99% of the segments that contain no obfuscations. For the segments
that are partly obfuscated, partly unobfuscated, the results vary.
However, these segments do indicate that an MBA expression is
nearby.

Featureset Exact MBA In MBA Over MBA Mix No MBA Total
Segment amount 41 1632 38523 24063 256943 321202
Bag-of-instructions 89 % 41 % 36% 26 % 1 % 9 %
Bigrams 80 % 89 % 94 % 66 % 5% 21 %
Trigrams 80 % 66 % 93 % 56 % 2% 17 %

Table 3. Performance of the classifier on the evaluation set. The first row shows the amount of segments for each category. The other rows
show the percentage of segments that were classified as MBA-obfuscated for each category.

10. Future Work

Our approach is based on supervised machine learning classification.
In the scope of this thesis, a classifier was used to locate
MBA-obfuscated segments. However, with the procured data
and constructed features, this classifier can be extended to the
classification and localisation of other types of obfuscation. The
featureset can also be expanded by taking a look at the memory
dependencies between instructions.

For this particular research, a next step could be the omission of the
sliding window component. Instead, the following segmentation
approach can be researched: train a classifier to classify an
MBA-obfuscated expression’s first and last instruction. In this way,
the MBA-obfuscated segment can be located in the program binary.
The bigrams and trigrams can serve as features for each instruction.
These dependency chains give a sense of previous and future context
to each instruction.

In general, machine learning processes requires meaningful data in
order to be trained and evaluated correctly. This is a bottleneck for
the adaptation of machine learning in the field of reverse engineering.
This field could benefit from more data sources to drive this kind of
research forward.

References

[1] Christian Collberg et al. A taxonomy of obfuscating
transformations. Tech. rep. Citeseer, 1997.

[2] Paolo Falcarin et al. “Guest editors’ introduction: Software
protection”. In: IEEE Software 28.2 (2011).

[3]1 Jasvir Nagra et al. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection:
Obfuscation, Watermarking, and Tamperproofing for Software
Protection. Pearson Education, 2009.

[4] Camille Mougey et al. “DRM obfuscation versus auxiliary
attacks”. In: Recon conference. 2014.

[S] Maurizio Leotta et al. “A Family of Experiments to Assess
the Impact of Page Object Pattern in Web Test Suite
Development”. In: 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE.
2020.

[6] Yongxin Zhou et al. “Information hiding in software with
mixed boolean-arithmetic transforms”. In: International
Workshop on Information Security Applications. Springer.
2007.

[71 Ninon Eyrolles. “Obfuscation with Mixed Boolean-Arithmetic
Expressions: reconstruction, analysis and simplification tools”.
PhD thesis. Université Paris-Saclay, 2017.

[8] Tim Blazytko et al. “Syntia: Synthesizing the semantics of
obfuscated code”. In: 26th {USENIX} Security Symposium
({USENIX} Security 17).2017.

[9] Robin David et al. “QSynth-A Program Synthesis based

Approach for Binary Code Deobfuscation”. In: BAR 2020

Workshop. 2020.

Quarkslab. Quarks App Protect. https://quarkslab.

com/quarks—appshield-app-protect/.

Irdeto. Cloakware By Irdeto. https :
cloakware-by—-irdeto/.

(10]

//irdeto.com/

(1]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

[20]

(21]

University of Arizona. The Tigress C Obfuscator. http://
tigress.wtf.

Sumit Gulwani. “Dimensions in program synthesis”. In:
Proceedings of the 12th international ACM SIGPLAN
symposium on Principles and practice of declarative
programming. 2010.

S. Russell et al. Artificial Intelligence: A Modern Approach.
Pearson Education, 2016.

GNU Project. Objdump - display information from object files.
https://www.gnu.org/software/binutils/.
Daniel Jurafsky et al. Speech and Language Processing - An
Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition (3rd ed. draft). https:
//web.stanford.edu/~jurafsky/slp3.2020.
Intel. Pin - A Dynamic Binary Instrumentation Tool. https:
//software.intel.com/content/www/us/en/
develop/articles/pin-a-dynamic-binary-
instrumentation—-tool.html.

Tim Blazytko et al. Syntia Framework Github Repository.
https://github.com/RUB-SysSec/syntia.
Robin David et al. Qsynth Dataset Github Repository. https:
//github.com/werew/gsynth-artifacts.

Daniel Jurafsky et al. Speech and Language Processing (2Nd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
2009.

Brian W Matthews. “Comparison of the predicted and
observed secondary structure of T4 phage lysozyme”. In:
Biochimica et Biophysica Acta (BBA)-Protein Structure 405.2
(1975).

Xiv

Contents

List of Figures xxi
List of Tables xxiii
List of Acronyms XXV
1 Introduction 1
1.1 Reverse Engineering 1
1.2 Man-At-The-End Attack e 2
1.3 Thesis Outline e 2

2 Background 3
2.1 Software Protection 3
2.1.1 Motivation e e 4

2.1.2 Categories 4

2.2 Code Obfuscation e 4
2.2.1 Metrics for obfuscation. Lo)

2.3 Program Analysis 5
2.3.1 Graphical representations 6

2.3.2 Staticanalysis 8

XV

xvi CONTENTS

2.3.3 Dynamic analysis e 9

2.4 Symbolic Execution 10
2.5 Obfuscation types e 11
2.5.1 Opaque Predicates 11
2.5.2 Function inlining/outlining L 12
2.5.3 Control flow flattening o o oL 12
2.5.4 Mixed Boolean-Arithmetic. 13
2.5.5 Virtualisation obfuscation oL 14

2.6 Program Synthesis 14
2.6.1 Expressing the high-level specification 15
2.6.2 Search Space 15
2.6.3 Search technique 15
2.6.4 Concrete implementationso 17

3 Thesis Objecive 21
3.1 Thesis Goal 21
3.2 Thesis Scope 21
3.3 Thesis Outline 22
4 Mixed Boolean-Arithmetic 23
4.1 Polynomial Mixed Boolean-Arithmetic 23
4.2 Obfuscation L 24
4.2.1 Obfuscation of expressions 24
4.2.2 Obfuscating constants o o 26

4.2.3 MBA Obfuscators s 27

CONTENTS

4.3 Mixed Boolean-Arithmetic (MBA) complexity
4.3.1 Incompatibility of operators L.
4.3.2 DAG representation L
4.3.3 Complexity Metricso

4.4 Existing deobfuscation tools oo
4.4.1 Arybo . .o
4.4.2 SSPAM
4.43 MBA-Blast

5 Design

5.1 Naive Approach e
5.1.1 Varying Sliding Window Algorithm
5.1.2 Motivating example L L
5.1.3 Observations

5.2 Criteria

5.3 Classification Approach
5.3.1 Classification Pipeline 0oL,
5.3.2 Constructing a classifier oo 0o

6 Implementation

6.1 Data

6.1.1

6.1.2

6.1.3

6.1.4

Data Requirements oo
Existing Data Sources L
Data Assessment L

The Need For Another Dataset

xvii

27

27

28

29

31

31

32

32

35

35

36

37

40

42

42

42

43

47

xviii CONTENTS
6.1.5 Dataset Summary oL 52

6.2 Feature Extraction 53
6.2.1 Data Processingo 53
6.2.2 Bag-of-instructions L 53
6.2.3 Register Dependency N-Grams 54
6.2.4 Harmonizing features in a framework o0 56

6.3 Feature Analysis 56
6.3.1 Imstruction amount Lo 57
6.3.2 Token frequency 58
6.3.3 Dataset comparisono e 61

6.4 Model 62
6.4.1 Train-test split 62
6.4.2 Evaluation Metric L 63
6.4.3 Naive Bayes 64

7 Evaluation 67
7.1 Evaluation Method 67
7.1.1 Evaluation Set 68
7.1.2 Segment labeling L Lo 68
7.1.3 Program Synthesiso 69

7.2 Performance 70
7.2.1 SYNTIA and QSYNTH dataset 70
7.2.2 Avco dataset 72

7.2.3 Entiredataset. e 73

CONTENTS

7.3 Comparison with initial approach

8 Conclusion

Bibliography

Appendices

Xix

74

75

7

XX

CONTENTS

2.1

2.2

2.3

24

2.5

2.6

2.7

4.1

4.2

5.1

5.2

5.3

List of Figures

Illustration of the different steps in the development cycle and in reverse engi-

neering. The blue arrows represent steps in the development cycle. The orange

arrows represent steps used in reverse engineering. 6
Example of a control flow graph constructed in IDA Pro. 7
abstract syntax tree (AST) representation of a simple function [1]. 8

abstract syntax tree (AST) representation of the expression 2 x (x Ay)+ (zAy) [1]. 8

Example of a simple opaque predicate transformation. The original code gets
split by the opaque predicate, indicated in orange. The branch that is never

taken leads to meaningless junk bytes to confuse the reverse engineer. 12
Example by Lészlé and Kiss [2] that illustrates the control flattening transformation. 13

Mlustration by David et al. [3] showing the used simplification approach. 20

Directed Acyclic Graph (DAG) representation of the expression 2 x (zAy)+(zAy)

Directed Acyclic Graph (DAG) for 2 x (z Ay) + (x Ay). The bit-vector size is
added as attribute to the Directed Acyclic Graph (DAG), visible in subscript. . . 31

Visualisation of the varying sliding window algorithm for a MIN_WINDOW_SIZE of
1 and a MAX WINDOW SIZE of 3. 37

Analysis of time per iteration compared to the amount of instructions in that

iteration. L e e s e 41

Example of a bag-of-instructions for a part of an assembly code segment. 44

xxi

xxii

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

LIST OF FIGURES

Ilustration of the workflow for turning THE ALGORITHMS programs into useful

binaries. e

Example exercise for the construction of N-grams. We want to derive all bigrams

and trigrams for the function that starts at address 8 and ends at address 24. . .

Mlustration of how N-grams of a specific function are devised (here for N=3).
First the entire program binary dependencies are mapped to a graph. Then the
subgraph is taken that only contains the instructions of the function. Lastly, all

the paths of length N are considered.

Boxplots of the amount of instructions per function for each dataset. Please note

that the y-axis is not on the same scale for each plot.

Bar plots of the total frequency of every token compared to the amount of tokens

in the dataset. Please note that the y-axis is not on the same scale for each plot.

Bar plots of the total frequency of every token compared to the amount of tokens

in the dataset, with shortcuts instead of raw data dependencies.

Bar plots of the total frequency of every token compared to the amount of tokens
in the dataset, with shortcuts instead of raw data dependencies and without

push/pop dependency chains.

Visualisation of the different type of segments. The Mixed Boolean-Arithmetic
(MBA)-obfuscated segment starts at obfl and ends at obf4. The green blocks

show one segment.

Bar plots of the average instruction frequency per instruction for each dataset.
Bar plots of the average bigram frequency per instruction for each dataset.

Bar plots of the average trigram frequency per instruction for each dataset.

95

56

o8

99

61

5.1

6.1

6.2

6.3

7.1

7.2

7.3

7.4

7.5

7.6

List of Tables

Measurements of the naive approach on our motivating example 40

Overview of the class distribution for the different datasets after removing dupli-

cates and keeping original and obfuscated functions in the same set. 63

Matthews Correlation Coefficient (MCC) scores for the multinomial naive bayes
classifier using the token count as features. The rows indicate the dataset on

which the model was trained and tested. 65

Accuracy scores for the multinomial naive bayes classifier using the token count
as features. The rows indicate the dataset on which the model was trained and
tested. .. L L 65

Amount of segments for each category, split by the different type of program
binaries in the evaluation set.o 69

Evaluation results of Naive Bayes classifier trained on the SYNTIA and QQSYNTH

dataset, using instructions as features.o 71

Evaluation results of Naive Bayes classifier trained on the SYNTIA and QSYNTH

dataset, using bigrams as features. L L oo 71

Evaluation results of Naive Bayes classifier trained on the SYNTIA and QSYNTH

dataset, using trigrams as features. Lo 72

Evaluation results of Naive Bayes classifier trained on the ALGO dataset, using

instructions as features. 72

Evaluation results of Naive Bayes classifier trained on the ALGO dataset, using

bigrams as features. 72

xxiii

XxXiv LIST OF TABLES

7.7 Evaluation results of Naive Bayes classifier trained on the ALGO dataset, using

trigrams as features. 73

7.8 Evaluation results of Naive Bayes classifier trained on all datasets, using instruc-

tions as features. 73

7.9 Evaluation results of Naive Bayes classifier trained on all datasets, using bigrams

as features. e 73

7.10 Evaluation results of Naive Bayes classifier trained on all datasets, using trigrams

as features. e 74

List of Acronyms

ANPF algebraic normal form 27
AST abstract Syntax tree.o 7
CFG control low graph 7
DAG Directed Acyclic Graph 28
DSE dynamic symbolic eXecution e 10
ISA instruction set architecture i e 14
MATE Man-At-The-End. e 2
MBA Mixed Boolean-Arithmetic. o e 13
MCC Matthews Correlation Coefficient i e 63
MCTS Monte Carlo Tree Search i e 17
NLP natural language proCessing.ttt e 43
SAT boolean satisfiabilityo 28

SMT satisfiability modulo theories i 10

xxVi LIST OF TABLES

Introduction

1.1 Reverse Engineering

Reverse engineering has been around since the beginning of civilisations. Throughout history,
people have been reverse-engineering inventions to extract know-how and gain an edge in the
world. This has often been the case in warfare; accounts date back to the Roman empire,
where their victory in the First Punic War is attributed to them being able to capture and
mass-produce a Carthaginian ship [4]. In modern times, the growth of software has created yet

another field where reverse engineering plays a significant role.

Chikofsky and Cross define reverse engineering in software as “the process of analysing a subject
system to (i) identify the system’s components and their inter-relationships and (ii) create rep-
resentations of the system in another form or at a higher level of abstraction” [5]. This process
has different use cases; it is needed when documenting legacy systems [6], or for the reimple-
mentation of software on new hardware [7]. It is also crucial in the discovery and exploitation of
security vulnerabilities. Understanding the inner workings of some software enables an attacker
to make a program behave differently than intended, e.g. by crafting specific inputs that ex-
ploit design flaws or disabling certain security mechanisms within the code. Protecting against
such attacks is not a trivial task, especially when the attacker has complete control over the

environment in which the software runs. Such a scenario is called a Man-At-The-End attack.

2 CHAPTER 1. INTRODUCTION

1.2 Man-At-The-End Attack

In a Man-At-The-End (MATE) attack, the attacker has physical access to the execution platform
and the software implementation. As a result, the attacker can control the execution environ-
ment, tamper with the software and hardware, analyse the software with various tools or even
perform side-channel attacks. Due to this broad attack vector, traditional security solutions for

remote attacks cannot be deployed in this scenario.

MATE attacks have their roots in the removal of licenses for programs [8]. However, the range of
applications susceptible to MATE attacks has grown in parallel with the ever-increasing amount
of digital services and systems. This increasing threat has sparked research regarding possible
security measures. The majority of this research is focused on software protection [9]. It should
be noted that malicious parties can also benefit from better software protection, given that
malware can apply the same principles as legitimate software, making it tougher to detect and
analyse [8]. Consequently, there is also research on how to break software protection. These two
sides of research result in a cat-and-mouse game, where both protection and attack mechanisms

keep evolving.

1.3 Thesis Outline

This thesis starts by exploring the existing MATE attack landscape in Chapter 2. We depict
the broad software protection scene and more clearly define various obfuscation and deobfus-
cation techniques. Chapter 3 clarifies the goal of our work: the localisation of Mixed Boolean-
Arithmetic code within a program binary. This is followed up by an in-depth analysis of Mixed
Boolean-Arithmetic in Chapter 4. Consecutively, we expand on our methodology in Chapter
5, followed by the implementation in Chapter 6. We then evaluate this work in Chapter 7 and

draw the conclusions and future work in Chapter 8.

Background

In this chapter, we provide some background to software protection. Section 2.1 clarifies what
software protection is and why it is needed. Section 2.2 clarifies code-obfuscation and its wanted
properties. In Section 2.3 and Section 2.4, we depict the methods for analysing binaries. This is
followed up by obfuscation techniques in Section 2.5. Finally, Section 2.6 introduces the concept

of program synthesis and its relevance for deobfuscation.

2.1 Software Protection

Software protection refers to mechanisms that try to protect software against reverse engineering,
piracy and tampering [10]. They are used both by developers wanting to protect their code,
as well as malicious parties trying to protect their malware from being detected and analysed.
This section starts with the rationale behind software protection, followed by the classification

of the types of protection.

4 CHAPTER 2. BACKGROUND

2.1.1 Motivation

In a MATE attack, everything is under the control of the adversary. Hence, the attack vector
in that scenario is only limited by the tools and knowledge of the attacker. For example, the
attacker can attach a debugger to the program or alter the assembly during execution. He can
measure power to perform side-channel attacks or tamper with the clock frequency to perform

an instruction skip attack.

Since the skills and tools can evolve as new research surfaces, it is unlikely that deployed protec-
tion mechanisms hold up for an extended time. Therefore, a developer can only try to implement
enough protection to disincentivise an attacker by increasing the effort needed for a successful
attack.

For example, a game publisher tries to apply enough protections in order to generate as much
revenue as possible before illegitimate copies appear. For the attacker, the incentive for cracking

that game also decreases as time advances due to the diminishing public interest in said game.

Likewise, malicious parties try to obfuscate their malware to stay inconspicuous as long as

possible and to delay defences against their work.

2.1.2 Categories

Software protection can be divided into four categories: code obfuscation, tamper-proofing,
watermarking, and birthmarking [11]. Code obfuscation aims at making programs harder to
reverse engineer. Tamper-proofing tries to make programs harder to modify by causing side-
effects such as failure when running modified software. Watermarking tries to identify the
program so that it can be tracked. Birthmarking is a way to detect if one’s code is lifted from
one program to another. The last three all benefit from obfuscation to complicate the detection

and reversing of these mechanisms.

2.2 Code Obfuscation

Obfuscation techniques aim to make the program unintelligible as to complicate the reverse en-
gineering process. An obfuscator O can informally be described as a “compiler” that transforms
a program P into a new program O(P) that has the same functionality as P yet is unintelligible
to the attacker [12].

Multiple obfuscation transformations exist and, in order to complicate comprehension even

2.3. PROGRAM ANALYSIS)

further, they can also be combined in a layered manner. However, obfuscation comes at a cost:
obfuscation can expand program size, increase overhead, or even introduce new bugs. Hence,
a programmer must consider the trade-off between the benefit of added protection against the
drawbacks that accompanies this protection [13]. A common approach is to obfuscate only vital
parts of the program with high-overhead techniques. The type of obfuscation then depends on
the purpose of hiding that specific segment.

2.2.1 Metrics for obfuscation

The quality of an obfuscation is often defined by the following metrics [13, 14, 15]:

1. Potency: the amount of obscurity added by the obfuscation. A potent obfuscation increases
the complexity of the program. It is hard to define this metric concretely. Intuitively, an
obfuscation is potent whenever the protection does a good job at hiding the code’s original

intent to the attacker.

2. Resilience: how well a transformation holds up against human and automatic deobfusca-

tion. The needed effort can, for example, be measured in time.
3. Cost: the additional memory, storage or time that the obfuscation brings with him.

4. Stealth: the measure in which an obfuscation can be detected. Ideally, obfuscated code is

indistinguishable from the rest of the code.

By combining these four metrics, we can evaluate the quality of an obfuscation.

2.3 Program Analysis

Program analysis is essential for reverse engineering. By analysing the program, a reverse
engineer tries to elevate his program understanding to a higher abstraction layer. This is the
opposite of what happens during the development and compilation of a program. We illustrate
this with Figure 2.1.

6 CHAPTER 2. BACKGROUND

compilation
— —
S ~
.
assembly
source code |—----—- + intermediate representation ————— + assembly language — —» bits
w ®

structure disassembly

decompilation

Figure 2.1: Illustration of the different steps in the development cycle and in reverse engineering.
The blue arrows represent steps in the development cycle. The orange arrows represent steps

used in reverse engineering.

In software development, a programmer writes code in a higher-level language, like C or C++.
The compiler then compiles this code into assembly instructions. To do this, it uses various
intermediate representations to optimise the program. The assembly then gets assembled into

machine code.

The reverse engineer tries to reverse this process to get a better understanding of the control and
data flow within the program. Intermediate representations can be very useful in this aspect.
Contrarily to the forward process, the reverse engineering process does not have to be sound or
complete. The only thing that matters is that the retrieved information provides insights about

the program to the attacker.

Scripts and tools implement various techniques to analyse a target program. The different
methods can roughly be divided into two categories: static analysis and dynamic analysis. Before
explaining these categories in Section 2.3.2 and 2.3.3, we expand on two important graphical

representations that assist the reverse engineer: control flow graphs and abstract syntax trees.

2.3.1 Graphical representations

Graphical representations prove to be very useful for a reverse engineer. They can reveal the

control and data flow of the program and act as the basis for further analysis.

2.3. PROGRAM ANALYSIS 7

Control flow graphs

A control flow graph (CFG) represents all possible execution paths of a specific function [11].
Each function is divided into basic blocks; these are code segments (depicted in assembly)
without any jumps. Edges between these basic blocks represent jumps in the control flow. A
CFG reveals the internal flow of the program. As such, CFGs can reveal valuable information
about the program’s inner workings. An example of a CFG, constructed with IDA Pro [16] is

shown in Figure 2.2.

dl i =

; Attributes: bp-based Frame

public target_Function
target_function proc near

var_8= dword ptr -8
var_bh= dword ptr -&
arg_f= dword ptr &

push ebp
nou ebp, esp
sub esp, 1ih
nov eax, [ebprarg_0]
and eax, 3
moy [ebp+var_4], eax
moy [ebp+var_8], A
cnp [ebpsvar 4], A
jnz short loc_BO4aus1
cng [ebpsvar 4], 1
jnz short loc_SB4E46F
loc_BONERGF
[ebpevar_4], 2
short loc_8B4ELRD
| Y 1 L
eax, [ebprarg_0] eax, [ebprarg_0] eax, [ebprarg_0]
eax, BBAAADBBFN eax, BBAAADBBFN eax, BBAAADBBFN Loc_BSONS4ED:
ed