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Abstract Mixed Boolean-Arithmetic (MBA) is a mechanism for data obfuscation. It trans-
forms constants and simple expressions into expressions that contain a mix of boolean and
arithmetic operations. Due to the lack of general rules when mixing these two types, MBA-
obfuscations manage to thwart most static and dynamic program analysis techniques. Recently,
program synthesis proved to be quite successful in deobfuscating MBA transformations. By
analysing the input-output behaviour of an MBA expression, a synthesiser can reconstruct a
simplified version with the same semantics, essentially bypassing the obfuscation. However, the
different program synthesis approaches do not consider the issue of locating the MBA-obfuscation
within the program. Therefore, this thesis proposes a method to locate MBA obfuscations within
a program binary. To achieve this, we first derive all possible segments in a program binary. We
then leverage the power of supervised classification to flag the MBA expressions. We train this
classifier by constructing a dataset of MBA-obfuscated functions and constructing a featureset
inspired by the natural language processing field. Our results demonstrate that our approach
manages to locate 89% of the MBA-obfuscated segments. This work is a first step in the local-
isation of MBA obfuscations. The proposed classifier and featuresets can also serve as a basis
for the localisation and classification of other obfuscations.
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Abstract
Mixed Boolean-Arithmetic (MBA) is a mechanism for
data obfuscation. It transforms constants and simple
expressions into expressions that contain a mix of boolean
and arithmetic operations. Due to the lack of general
rules when mixing these two types, MBA-obfuscations
manage to thwart most static and dynamic program analysis
techniques. Recently, program synthesis proved to be
quite successful in deobfuscating MBA transformations.
By analysing the input-output behaviour of an MBA
expression, a synthesiser can reconstruct a simplified
version with the same semantics, essentially bypassing the
obfuscation. However, the different program synthesis
approaches do not consider the issue of locating the
MBA-obfuscation within the program. Therefore, this
thesis proposes a method to locate MBA obfuscations
within a program binary. To achieve this, we first derive all
possible segments in a program binary. We then leverage
the power of supervised classification to flag the MBA
expressions. We train this classifier by constructing a
dataset of MBA-obfuscated functions and constructing
a featureset inspired by the natural language processing
field. Our results demonstrate that our approach manages
to locate 89% of the MBA-obfuscated segments. This work
is a first step in the localisation of MBA obfuscations. The
proposed classifier and featuresets can also serve as a basis
for the localisation and classification of other obfuscations.

Keywords: software protection, obfuscation, mixed
boolean-arithmetic, classification, localisation

1. Introduction
Code obfuscation is the process of transforming a program into
a more complex equivalent. While the semantics stay the same,
the program’s complexity increases significantly, hampering
the analysis of the code [1]. This technique is widely used
in software protection against reverse engineering attacks. It
is an essential protection mechanism in scenario’s where the
attacker has complete control over the execution environment
of the software, called a Man-At-The-End (MATE) Attack
[2]. MATE attacks can either be used for malicious purposes,
like the removal of Digital Rights Management (DRM) [3, 4],
or benign goals, like malware inspection [3]. Hence, there is
continuous research into obfuscation mechanisms as well as
deobfuscation tools that break these mechanisms.

Over the years, researchers have devised various obfuscation

mechanisms to counter MATE attacks. They can roughly be
divided into three categories: layout obfuscation, control flow
obfuscation, and data obfuscation [5]. Layout obfuscation
removes relevant information, like object names, without
altering the behaviour of the code. Control flow obfuscations
aim to change the program’s flow by, e.g. inserting opaque
predicates or flattening the control flow. Data obfuscation tries
to hide data within the program, like important outcomes or
secret keys.

This thesis will focus on a mechanism for data obfuscation
called Mixed Boolean-Arithmetic (MBA). This technique
hides simple expressions and constants by transforming them
into expressions that contain a mix of boolean (e.g. and, or)
and arithmetic (e.g. +, ∗) operators [6, 7]. This mix proves
difficult to simplify to the original expression.

In recent literature, program synthesis is put forward as a tool
to undo certain obfuscations, including MBA. Blazytko et al.
developed a black box synthesis framework called SYNTIA
that automatically reconstructs obfuscated segments based on
their input-output behaviour [8]. David et al. followed up on
this research with QSYNTH that also take context into account
to improve the synthesis performance [9]. While these tools
prove effective in the deobfuscation of MBA expressions, they
do not consider the problem of locating these segments within
a program binary.

To improve the automation of MBA deobfuscation, we develop
a method to locate MBA segments within a program binary
based on classification using supervised machine learning.
We derive all the possible segments of a program binary and
classify them as MBA or not. Tools, like SYNTIA or QSYNTH,
can then synthesise the MBA segments to obtain the original
expression. With this purpose in mind, we make the following
contributions in this thesis:

1. We devise a method to obtain all the possible segments
from a program binary.

2. We gather a dataset consisting of 1400 MBA-obfuscated
functions and 3075 unobfuscated functions.

3. We design a method for constructing register-dependency
N-grams from a program binary.

4. We build a classifier that is able to differentiate between
an unobfuscated segment and an MBA expression. We
then locate MBA expressions by classifying all the
possible segments in a program binary.
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2. Background
Before getting into the design of our work, we provide some
technical background on the topics relevant to this thesis.

2.1. Mixed Boolean-Arithmetic
In general, any expression consisting of both arithmetic
operators (+, ∗, . . .) and boolean operators (and, xor, ...)
can be referred to as a mixed boolean-arithmetic expression.
The use of mixed boolean-arithmetic for obfuscation was
formalized by Zhou et al. [6]. They defined polynomial MBA
expressions as follows:

Definition 1 (Polynomial MBA [6][7]) An expression E of
the form

E =
∑
i∈I

ai

∏
j∈Ji

ei,j (x0, . . . , xt−1)


where the arithmetic sum and product are modulo 2n, ai are
constants in Z/2nZ, ei,j are bitwise expressions of variables
x0, . . . , xt−1 in {0, 1}n, I ⊂ Z and for all i ∈ I, Ji ⊂ Z are
finite index sets, is a polynomial Mixed Boolean-Arithmetic
(MBA) expression. A linear MBA expression is a polynomial
MBA expression of the form∑

i∈I
aiei (x0, . . . , xt−1)

Using this definition, Zhou et al. formalised a way to
rewrite simple expressions and constants as MBA expressions,
effectively obfuscating the original expression.

The strength of the MBA transformation lies in the
incompatibility between the arithmetic and bit-wise operators.
No general rules (like distributivity or associativity) exist to
simplify these expressions. As a result, it is resilient against
most static and dynamic analysis. MBA is used by various
commercial and academic obfuscators, like Quarkslab[10],
Irdeto [11] and Tigress [12].

2.2. Program synthesis
Program synthesis is the task of automatically constructing
a program based on a given high-level specification [13].
While it has many different applications, it has recently
been proposed as a way to deobfuscate programs. For
deobfuscation, program synthesis can be used to reconstruct an
obfuscated code segment based solely on specific observations,
like input-output behaviour. A synthesiser tries to produce a
program that retains the specified properties of the obfuscated
code yet is more readable for a reverse engineer. The result is
a code segment that is easier to understand than the obfuscated
program, essentially bypassing the effects of the obfuscation
transformation.

Blazytko et al. proposed such a solution, called SYNTIA[8].
This tool reconstructs fragments of programs based on
the input-output behaviour of that segment. It essentially
considers the segment as a black box. SYNTIA first generates
random inputs and looks at the corresponding outputs. These

I/O pairs are then used to retrieve the semantics of the segment
by using a heuristic based on MCTS trees. David et al.
improved on this approach with QSYNTH[9]. They combine
the black box approach of SYNTIA with Dynamic Symbolic
Execution to simplify the problem further. Both SYNTIA
and QSYNTH prove effective at undoing MBA-obfuscations,
virtualization obfuscations and ROP chains. However, they
need the exact start and end of the obfuscated segment to
generate correct input-output pairs. They do not consider the
problem of locating said obfuscations in the program.

2.3. Supervised Classification
A supervised machine learning model tries to approximate the
unknown function y = f(x) based on a training set of example
input-output pairs (x1, y1) , (x2, y2) , . . . (xN , yN ) [14]. The
vector of inputs x1, x2, . . . , xk ∈ xi are called features, the
outputs yi are referred to as labels. In a classification scenario,
the labels are discrete. For unknown data, a model predicts
a label based on the features of that data. These features are
derived from the data through a process known as feature
extraction.

3. Design
To locate the MBA segments in a program binary, we propose
the following design. First, we derive all the possible code
windows from a program binary. A supervised machine
learning model then automatically classifies each of these
windows as MBA-obfuscated or unobfuscated. After this step,
we now know the location of the MBA-obfuscated segments.
These segments can then be fed to a program synthesiser, like
SYNTIA to obtain the original expression.

4. Retrieving all possible segments
To obtain all the possible segments in a program binary,
we apply a varying sliding window algorithm. Every
iteration, we obtain a different code segment of the program
binary. The first window starts at the first instruction of
the binary and is minimum_size instructions long. The
next window is one instruction longer than that. This
incremental growth continues until the window has a size
of maximum_size instructions. At this point, the window
moves an instruction and starts at the second instruction, again
of size minimum_size instructions. This window grows
again until the maximum size is reached and moves again.
This algorithm continues until the end of the code segment is
reached. An example is illustrated in Figure 1.
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Figure 1. Example of the varying sliding window algorithm for a
minimum_size of 1 and a maximum_size of 3. This algorithm
continues to create new windows until the end of the binary is reached.

5. Feature Extraction
The raw program binaries need to be turned into useful features
for the classifier. This process is called feature extraction. It
is essential that these features are informative for the task at
hand. For this problem, the chosen features need to contain the
necessary information to indicate whether a specific segment
of a program binary is an MBA expression or not. To achieve
this, we first reconstruct the assembly of the program binary
using objdump [15]. We then devise two types of features,
inspired by the field of natural language processing (NLP).

5.1. Bag-of-instructions
A traditional NLP bag-of-words approach sees a text document
as an unordered set of words with their position ignored [16].
Only the frequency of these words is kept. In the context
of a program binary, we can use the assembly instructions
instead of words. We will refer to this technique as a
bag-of-instructions. For a given segment, every occurrence of
each instruction is counted. The frequency of each instruction
is then calculated and used as a feature for the machine
learning model.

A downside of the bag-of-instructions model is the fact that
it takes no context into account. Segments with the same
instructions but with a different order receive the same label.
Therefore, we turn to N-grams instead.

5.2. Register Dependency N-grams
In natural language processing, N-grams try to encapsulate
the order of words into machine learning features. An
N-gram is a combination of N consecutive words. For text
classification, the frequency of each N-gram in a text is
registered and then used as a feature. Therefore, an N-gram
can be seen as a generalisation of the bag-of-words scenario,
with a bag-of-words corresponding to a 1-gram or unigram.
Intuitively, information about the order of words is important
for understanding a text segment: words that follow each
other are often related in a sentence. In assembly code, this
is not necessarily the case. Consecutive instructions can act
on different registers and memory addresses, being placed in
a particular order because of compiler optimisations.

Instead of creating N-grams based solely on the instruction
order, we also take register dependencies into account.
Instructions that form a read-after-write dependency chain can
form an N-gram. As mixed boolean-arithmetic expressions
mix boolean and arithmetic instructions, their N-grams should
be distinguishable from ordinary N-grams. Like in natural
language processing research, we will limit ourselves to
2-grams and 3-grams (often called bigrams and trigrams).
Larger N-grams result in a bigger and sparser featureset, both
attributes that will lead to overfitting and worse performing
models.

5.2.1. DERIVING N-grams

To create these N-grams from the program binary, we use
a custom pintool with PIN [17]. The pintool dynamically
executes the program to derive the read-after-write register
dependencies of the program. Therefore, it is essential that the
segment containing the MBA expression is actually executed.

To efficiently retrieve all N-grams of a specific segment, we
model all the register dependencies of a program binary as
a directed graph. Nodes correspond to instruction addresses,
and edges indicate the read-after-write register dependencies
between them. For a specific segment, we can take the
subgraph that contains the instructions of that segment. This is
illustrated in Figure 2. An N-gram then corresponds to a walk
of length N. With this method, we can obtain all the N-grams
for a given segment.

Figure 2. Illustration of how N-grams of a specific segment, ranging
from instruction 8 to 24, are devised (here for N=3). First, all the
register dependencies of the program binary are mapped to a graph.
Then the subgraph is taken that only contains the instructions of the
segment. Lastly, all the paths of length N are considered.

Instead of modelling raw register dependencies, we alter our
pintool to model shortcut dependencies. When an instruction
uses a value that is copied by a mov, it is dependent on this
mov instruction. While this is technically correct, we are
interested in the dependency between the instruction that
last wrote to the mov source and the instruction after the
mov. Shortcut dependencies do not consider the intermediary
mov instructions and show the dependency between the prior
instruction and the latter instruction instead.

6. Data
We need representative training data to get a working classifier.
For this, we first explore existing data sources and conclude
with the need for a new dataset.
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6.1. Datasets
To train the classifier, we use three data sources. The first
dataset comes from the SYNTIA framework [18]. It consists
of 500 small functions and 500 obfuscated variants, obtained
by using the Tigress encode arithmetic transform. The second
dataset comes from the QSYNTH dataset [19]. It contains 500
small functions and their obfuscated counterparts, similar to
the SYNTIA dataset. These two datasets were conceived to
evaluate the performance of the program synthesis frameworks.
While they are perfect for this purpose, they do not reflect
real-life program binaries. Therefore, we create a new
dataset based on a public Github repository that is called
THE ALGORITHMS (referred to as ALGO for brevity). This
repository is comprised of 300 small C programs that
implement various computer science algorithms, like number
conversions, hash calculations, and data structures. These
small programs are turned into a dataset by obfuscating
the functions within them with Tigress encode arithmetic
transform and compiling both the original and the obfuscated
versions using GCC. After removing erroneous program
binaries and failed obfuscations, we end up with the ALGO
dataset consisting of 2075 unobfuscated functions and 400
MBA-obfuscated functions.

6.2. Funcions vs. Expressions
While our dataset consists of original and MBA-obfuscated
functions, we want to be able to classify MBA-obfuscated
expressions. These segments do not necessarily correspond to
an entire function. However, labelling every MBA-obfuscated
expression would require manual analysis of every program
binary. Instead, we opt to label entire functions as original or
MBA-obfuscated. This can be done automatically with the
debug information in the program binaries.

For the SYNTIA and QSYNTH dataset, every function
computes one expression. When obfuscated, this function is
roughly similar to one obfuscated MBA expression. This is not
the case for the ALGO dataset, where functions contain logic
besides expressions. One function will thus likely contain
multiple MBA-obfuscated expressions, together with some
unobfuscated logic (e.g. for output).

6.3. Static vs. Dynamic dataset
In section 5.2.1 we explained the use of dynamic analysis to
retrieve the register dependency N-grams. We stressed that
the MBA expression must be executed to obtain the N-grams
for that segment. This means that we need to define inputs
for all the program binaries in each dataset. Otherwise, these
programs will not execute anything meaningful and return an
error, resulting in no N-grams.

The inputs for the SYNTIA and QSYNTH datasets are
straightforward: all the functions require five input numbers
to return a computed result. However, for the ALGO dataset,
every algorithm expects different inputs. This requires an
extensive manual process for all the available programs. Due
to time constraints, we defined the inputs for 30 programs.
This cuts down the usable ALGO dataset to 96 obfuscated
functions and 599 unobfuscated functions.

6.4. Train-Test Split
To train the classifier, the data must first be split into a train
set and a test set. Every dataset is divided according to an
80%-20% train-test ratio. To avoid data-leakage, duplicates
were removed and every obfuscated function is in the same
set as its unobfuscated counterpart. In summary, we end up
with the data distribution shown in Table 1.

Dataset Set #MBA #Original
SYNTIA + QSYNTH train 1170 874

test 113 92
ALGO dynamic train 140 1134

test 13 112
ALGO static train 294 1607

test 73 387

Table 1. Overview of the class distribution for the different datasets
after removing duplicates and keeping original and obfuscated
functions in the same set. The values represent the amount of
functions

7. Classifier
7.1. Multinomial Naive Bayes Classifier
We build our classifier using a multinomial naive Bayes
classifier. This model is often used in natural language
processing with the bag-of-words or N-gram features. The
classifier works by choosing the class with the maximum
probability given the input features:

y = argmaxy P (y|x1, x2, . . . , xn) (1)

Due to the naive Bayes assumption that the features are not
dependent on each other given a certain class, this problem is
simplified to:

y = argmaxy P (y)
n∏

i=1

P (xi | y) (2)

The prior P (y) and the posteriors P (xi|y) can now be inferred
from the training data.

The features for this model are the raw counts of the different
tokens. To every token, a constant count is also added to
prevent multiplications with posteriors of value 0. This process
is called Laplace Smoothing [20].

The naive Bayes model is based on the naive assumption that
features are not dependent on each other, given a certain class.
While this assumption does not hold for our data, this model
has empirically been shown to work even when the assumption
is not valid [naiveBayes˙study].

7.2. Evaluation metric
Due to the imbalances in the data, we opt to use Matthews
Correlation Coefficient (MCC) [21] as a metric instead instead
of accuracy. Accuracy alone can mislead the observer when
class imbalances are present, as overpredicting the bigger class
can still yield good accuracy. The MCC metric is more robust
in this scenario. The MCC formula is shown below. MCC
takes all the elements of the confusion matrix into account,
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compared to only the true positives and the true negatives in
the case of accuracy. It yields a value between -1 and 1, where
a higher score is indicative of a better model.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

7.3. Results
The performance of the classifier is shown in Table 2. Both the
bag-of-instructions and the bigrams perform quite well for the
separate datasets. The bad performance when working with trigrams
is likely caused by the sparseness of the featureset. One obfuscated
function often only contains a few trigrams, especially in the case of
the SYNTIA and QSYNTH dataset. The ALGO dataset does not suffer
as hard because the functions are bigger and contain more trigrams.
When combining these two datasets, the small class probabilities of
the SYNTIA+QSYNTH dataset are in stark contrast with the bigger
class probabilities of the ALGO dataset, resulting in even worse
performance when combined. However, combining the two sets
should result in a model that generalises better on unseen data.

Dataset Instructions Bigrams Trigrams
Syntia + Qsynth 0.65 0.70 0.51
Algo 0.96 0.90 0.87
All 0.69 0.49 0.42

Table 2. MCC scores for the multinomial naive Bayes classifier using
the token count as features. The rows indicate the dataset on which the
model was trained and tested. The columns show the used featuresets.

8. Evaluation
With the trained classifier, we now want to assess its performance for
the problem at hand: locating MBA expressions in a program binary
by classifying every possible segment. To evaluate the performance,
we devise a dataset consisting of 30 program binaries that represent
functions similar to the three datasets.
For every program binary, we manually label the segments that
correspond to an MBA-obfuscated expression with the help of debug
information from the compilation. Contrarily to the training datasets,
these segments do not necessarily correspond to entire functions. One
function can contain multiple MBA-obfuscated expressions. Those
need to be separately located in order to be simplified by program
synthesis.
To test the classifier’s performance, we generate all the possible
segments of the evaluation program binaries using the varying
sliding window process with a minimum_size of 5 and a
maximum_size of 100. We categorise every segment depending
on what kind of instructions they contain:

1. Segments that correspond exactly to an MBA expression.

2. Segments that only contain part of an MBA expression.

3. Segments that are bigger than, but completely contain an MBA
expression.

4. Segments that contain part of an MBA expression, along with
some unobfuscated code.

5. Segments that contain no MBA expressions.

The different categories are illustrated in Figure 3.

Figure 3. Visualisation of the different type of segments. The
MBA-obfuscated segment starts at obf1 and ends at obf4. The green
blocks show one segment.

We now label every segment using the naive Bayes classifier
and look at the results for every category. We do this for the
bag-of-instructions, the bigrams and the trigrams. The results are
shown in Table 3.
The values should be interpreted as follows: for the exact MBA
category, we want the percentage to be as high as possible in order to
label as many MBA expressions as possible correctly. The no MBA
values should be as low as possible: these segments offer nothing
interesting when synthesised. The mix values are preferably also low;
while they can indicate to the reverse engineer that an MBA segment
is nearby, the synthesis result will not be meaningful. The same
reasoning holds for the In MBA category. However, this category
will be highly correlated with the Exact MBA category. The results
of the Over MBA category are hardest to understand. Some of these
segments will still produce a meaningful synthesis result, but most of
them will not reveal the semantics of the obfuscated segments.
The model seems to perform best with the bag-of-instructions
features. This is likely due to the difference in the amount of data: it
only needs static program binaries for this featureset, compared to
dynamic execution for the bigrams and trigrams. Hence, the entire
ALGO dataset can be used. Nevertheless, the bigram and trigram
model still deliver good results.
All three feature types are able to distinguish between unobfuscated
segments and segments containing MBA obfuscations. Notably, 95%
to 99% of the non obfuscated segments are classified correctly. Of
the exact segments, 80% to 89% is classified correctly. For the other
categories (in MBA, over MBA, mix), the results are mixed. While
they are preferably classified as unobfuscated code, they do reveal to
the reverse-engineer that there is an MBA expression nearby.

9. Conclusion
In this thesis, we proposed a method to locate mixed
boolean-arithmetic obfuscations in a program binary. We achieved
this by constructing a Multinomial Naive Bayes classifier and
classifying each possible segment of a program binary as either
unobfuscated, or MBA-obfuscated. For the classifier features, we
explored the bag-of-instructions, the register dependency bigrams
and the register dependency trigrams. We trained these models on a
dataset comprising of the SYNTIA dataset, the QSYNTH dataset and
a self-constructed ALGO dataset.
The bag-of-instrcutions resulted in the best performance when tested
on an evaluation set of 30 program binaries. However, this is most
likely due to the difference in the amount of training data compared
to the bigram and trigram model.
Our best model correctly labels 89% of the MBA-obfuscations and
99% of the segments that contain no obfuscations. For the segments
that are partly obfuscated, partly unobfuscated, the results vary.
However, these segments do indicate that an MBA expression is
nearby.
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Featureset Exact MBA In MBA Over MBA Mix No MBA Total

Segment amount 41 1632 38523 24063 256943 321202
Bag-of-instructions 89 % 41 % 36 % 26 % 1 % 9 %
Bigrams 80 % 89 % 94 % 66 % 5 % 21 %
Trigrams 80 % 66 % 93 % 56 % 2 % 17 %

Table 3. Performance of the classifier on the evaluation set. The first row shows the amount of segments for each category. The other rows
show the percentage of segments that were classified as MBA-obfuscated for each category.

10. Future Work
Our approach is based on supervised machine learning classification.
In the scope of this thesis, a classifier was used to locate
MBA-obfuscated segments. However, with the procured data
and constructed features, this classifier can be extended to the
classification and localisation of other types of obfuscation. The
featureset can also be expanded by taking a look at the memory
dependencies between instructions.
For this particular research, a next step could be the omission of the
sliding window component. Instead, the following segmentation
approach can be researched: train a classifier to classify an
MBA-obfuscated expression’s first and last instruction. In this way,
the MBA-obfuscated segment can be located in the program binary.
The bigrams and trigrams can serve as features for each instruction.
These dependency chains give a sense of previous and future context
to each instruction.
In general, machine learning processes requires meaningful data in
order to be trained and evaluated correctly. This is a bottleneck for
the adaptation of machine learning in the field of reverse engineering.
This field could benefit from more data sources to drive this kind of
research forward.
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1
Introduction

1.1 Reverse Engineering

Reverse engineering has been around since the beginning of civilisations. Throughout history,
people have been reverse-engineering inventions to extract know-how and gain an edge in the
world. This has often been the case in warfare; accounts date back to the Roman empire,
where their victory in the First Punic War is attributed to them being able to capture and
mass-produce a Carthaginian ship [4]. In modern times, the growth of software has created yet
another field where reverse engineering plays a significant role.

Chikofsky and Cross define reverse engineering in software as “the process of analysing a subject
system to (i) identify the system’s components and their inter-relationships and (ii) create rep-
resentations of the system in another form or at a higher level of abstraction” [5]. This process
has different use cases; it is needed when documenting legacy systems [6], or for the reimple-
mentation of software on new hardware [7]. It is also crucial in the discovery and exploitation of
security vulnerabilities. Understanding the inner workings of some software enables an attacker
to make a program behave differently than intended, e.g. by crafting specific inputs that ex-
ploit design flaws or disabling certain security mechanisms within the code. Protecting against
such attacks is not a trivial task, especially when the attacker has complete control over the
environment in which the software runs. Such a scenario is called a Man-At-The-End attack.

1
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1.2 Man-At-The-End Attack

In a Man-At-The-End (MATE) attack, the attacker has physical access to the execution platform
and the software implementation. As a result, the attacker can control the execution environ-
ment, tamper with the software and hardware, analyse the software with various tools or even
perform side-channel attacks. Due to this broad attack vector, traditional security solutions for
remote attacks cannot be deployed in this scenario.

MATE attacks have their roots in the removal of licenses for programs [8]. However, the range of
applications susceptible to MATE attacks has grown in parallel with the ever-increasing amount
of digital services and systems. This increasing threat has sparked research regarding possible
security measures. The majority of this research is focused on software protection [9]. It should
be noted that malicious parties can also benefit from better software protection, given that
malware can apply the same principles as legitimate software, making it tougher to detect and
analyse [8]. Consequently, there is also research on how to break software protection. These two
sides of research result in a cat-and-mouse game, where both protection and attack mechanisms
keep evolving.

1.3 Thesis Outline

This thesis starts by exploring the existing MATE attack landscape in Chapter 2. We depict
the broad software protection scene and more clearly define various obfuscation and deobfus-
cation techniques. Chapter 3 clarifies the goal of our work: the localisation of Mixed Boolean-
Arithmetic code within a program binary. This is followed up by an in-depth analysis of Mixed
Boolean-Arithmetic in Chapter 4. Consecutively, we expand on our methodology in Chapter
5, followed by the implementation in Chapter 6. We then evaluate this work in Chapter 7 and
draw the conclusions and future work in Chapter 8.



2
Background

In this chapter, we provide some background to software protection. Section 2.1 clarifies what
software protection is and why it is needed. Section 2.2 clarifies code-obfuscation and its wanted
properties. In Section 2.3 and Section 2.4, we depict the methods for analysing binaries. This is
followed up by obfuscation techniques in Section 2.5. Finally, Section 2.6 introduces the concept
of program synthesis and its relevance for deobfuscation.

2.1 Software Protection

Software protection refers to mechanisms that try to protect software against reverse engineering,
piracy and tampering [10]. They are used both by developers wanting to protect their code,
as well as malicious parties trying to protect their malware from being detected and analysed.
This section starts with the rationale behind software protection, followed by the classification
of the types of protection.

3
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2.1.1 Motivation

In a MATE attack, everything is under the control of the adversary. Hence, the attack vector
in that scenario is only limited by the tools and knowledge of the attacker. For example, the
attacker can attach a debugger to the program or alter the assembly during execution. He can
measure power to perform side-channel attacks or tamper with the clock frequency to perform
an instruction skip attack.

Since the skills and tools can evolve as new research surfaces, it is unlikely that deployed protec-
tion mechanisms hold up for an extended time. Therefore, a developer can only try to implement
enough protection to disincentivise an attacker by increasing the effort needed for a successful
attack.

For example, a game publisher tries to apply enough protections in order to generate as much
revenue as possible before illegitimate copies appear. For the attacker, the incentive for cracking
that game also decreases as time advances due to the diminishing public interest in said game.

Likewise, malicious parties try to obfuscate their malware to stay inconspicuous as long as
possible and to delay defences against their work.

2.1.2 Categories

Software protection can be divided into four categories: code obfuscation, tamper-proofing,
watermarking, and birthmarking [11]. Code obfuscation aims at making programs harder to
reverse engineer. Tamper-proofing tries to make programs harder to modify by causing side-
effects such as failure when running modified software. Watermarking tries to identify the
program so that it can be tracked. Birthmarking is a way to detect if one’s code is lifted from
one program to another. The last three all benefit from obfuscation to complicate the detection
and reversing of these mechanisms.

2.2 Code Obfuscation

Obfuscation techniques aim to make the program unintelligible as to complicate the reverse en-
gineering process. An obfuscator O can informally be described as a “compiler” that transforms
a program P into a new program O(P) that has the same functionality as P yet is unintelligible
to the attacker [12].

Multiple obfuscation transformations exist and, in order to complicate comprehension even
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further, they can also be combined in a layered manner. However, obfuscation comes at a cost:
obfuscation can expand program size, increase overhead, or even introduce new bugs. Hence,
a programmer must consider the trade-off between the benefit of added protection against the
drawbacks that accompanies this protection [13]. A common approach is to obfuscate only vital
parts of the program with high-overhead techniques. The type of obfuscation then depends on
the purpose of hiding that specific segment.

2.2.1 Metrics for obfuscation

The quality of an obfuscation is often defined by the following metrics [13, 14, 15]:

1. Potency: the amount of obscurity added by the obfuscation. A potent obfuscation increases
the complexity of the program. It is hard to define this metric concretely. Intuitively, an
obfuscation is potent whenever the protection does a good job at hiding the code’s original
intent to the attacker.

2. Resilience: how well a transformation holds up against human and automatic deobfusca-
tion. The needed effort can, for example, be measured in time.

3. Cost: the additional memory, storage or time that the obfuscation brings with him.

4. Stealth: the measure in which an obfuscation can be detected. Ideally, obfuscated code is
indistinguishable from the rest of the code.

By combining these four metrics, we can evaluate the quality of an obfuscation.

2.3 Program Analysis

Program analysis is essential for reverse engineering. By analysing the program, a reverse
engineer tries to elevate his program understanding to a higher abstraction layer. This is the
opposite of what happens during the development and compilation of a program. We illustrate
this with Figure 2.1.
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Figure 2.1: Illustration of the different steps in the development cycle and in reverse engineering.
The blue arrows represent steps in the development cycle. The orange arrows represent steps
used in reverse engineering.

In software development, a programmer writes code in a higher-level language, like C or C++.
The compiler then compiles this code into assembly instructions. To do this, it uses various
intermediate representations to optimise the program. The assembly then gets assembled into
machine code.

The reverse engineer tries to reverse this process to get a better understanding of the control and
data flow within the program. Intermediate representations can be very useful in this aspect.
Contrarily to the forward process, the reverse engineering process does not have to be sound or
complete. The only thing that matters is that the retrieved information provides insights about
the program to the attacker.

Scripts and tools implement various techniques to analyse a target program. The different
methods can roughly be divided into two categories: static analysis and dynamic analysis. Before
explaining these categories in Section 2.3.2 and 2.3.3, we expand on two important graphical
representations that assist the reverse engineer: control flow graphs and abstract syntax trees.

2.3.1 Graphical representations

Graphical representations prove to be very useful for a reverse engineer. They can reveal the
control and data flow of the program and act as the basis for further analysis.
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Control flow graphs

A control flow graph (CFG) represents all possible execution paths of a specific function [11].
Each function is divided into basic blocks; these are code segments (depicted in assembly)
without any jumps. Edges between these basic blocks represent jumps in the control flow. A
CFG reveals the internal flow of the program. As such, CFGs can reveal valuable information
about the program’s inner workings. An example of a CFG, constructed with IDA Pro [16] is
shown in Figure 2.2.

Figure 2.2: Example of a control flow graph constructed in IDA Pro.

Abstract syntax trees

Abstract syntax trees (ASTs) are often used to represent programs or expressions. Each node
represents an operator, a function or a structure of the program. Each leaf usually corresponds
to a variable or constant. ASTs can provide valuable insights into the control flow of a program
or the data flow of an expression. An example of an AST for a function and for an expression
are shown in Figure 2.3 and Figure 2.4 respectively.
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Figure 2.3: AST representation of a simple function [1].

Figure 2.4: AST representation of the expression 2× (x ∧ y) + (x ∧ y) [1].

2.3.2 Static analysis

In static analysis, all information is gathered without executing the code. Everything is inferred
from the static application by inspecting the code and data as present in the binaries. The first
step in this type of analysis is usually the disassembly of the machine language by a disassembler
[17].

A disassembler tries to transform raw machine code into assembly code to make it interpretable
by humans. The process is the opposite of that of an assembler used during the production of
the application. Static disassemblers usually follow one of these two approaches: linear sweep
or recursive traversal [17].

In linear sweep, the disassembler starts at the first byte of the binary’s text segment and continues
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from there, decoding one instruction after another. This technique is employed by GNU’s
objdump [18]. This approach suffers from potential errors due to embedded data between the
instructions. In recursive traversal (used in IDA Pro [16]), the disassembler follows the control
flow of the program. In this way, the disassembler avoids the problems with embedded data.
However, the control flow can not always be reconstructed correctly, resulting in unexplored parts
of the program. Therefore, a hybrid of the two approaches exist, called speculative disassembly,
where unreachable code blocks are explored using linear sweep.

The assembly that is generated by the disassembler is not necessarily an exact reproduction of
the original assembly. The quality of the generated assembly depends on the capability of the
disassembler. For example, dynamically generated code and data (i.e. generated during the
program’s execution) will not be present in the disassembled code.

Another useful static analysis technique is the construction of control flow graphs, as explained
in Section 2.3.1. After disassembly and control flow analysis using a CFG, decompilation can be
attempted. This process is similar to disassembling, but the goal is a higher-level language, like
C. As the compilation of a program removes a substantial amount of information, decompilation
is not a trivial task. The chances of reconstructing meaningful source code are small. On top of
this, the reconstructed code is often non-humanlike and thus difficult to understand [19].

An attacker can also resort to pattern matching. This technique tries to identify patterns of
bits present in a database of implementations of some functionality. The attacker can construct
these databases based on his previous manual work or by compiling known open source libraries.

Although static analysis can reveal valuable information, it can easily be thwarted by various
obfuscation techniques. Static analysis also becomes less effective when working with sizeable
programs, as it assumes no particular input or output and takes into account all possible ex-
ecutions of a program. Consequently, there is a need for an alternative approach: dynamic
analysis.

2.3.3 Dynamic analysis

Contrarily to its static counterpart, dynamic analysis gathers information out of execution paths
and data modifications by executing the program. These methods do not necessarily reveal
all possible program execution paths, as the taken paths highly depend on the given inputs.
However, the attacker is not necessarily interested in all those execution paths, as some will
never be taken. This reduction can even be advantageous to simplify the problem, as some
ignored edge cases might be unimportant.

A classic dynamic technique is debugging. Using a debugger, like GDB [20], an adversary can
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pause the program, iteratively step through it, alter register and memory values and set break-
points. This fine-grained control can quickly provide insights that would be very tedious to get
in static analysis. It can also reveal dynamically created data and expressions. Certain tools,
like PIN [21], take this concept one step further by enabling a user to insert new snippets of code
in between the original program. This technique is called instrumentation. Dynamic analysis
is also more robust against obfuscation techniques. Consequently, it plays an essential part in
reverse engineering.

2.4 Symbolic Execution

Symbolic execution is a type of program analysis that explores the data flow of a program by
using symbolic inputs instead of concrete ones [22]. In a traditional execution, a program runs
based on specific inputs, leading to one specific control flow path. In contrast, symbolic execution
uses symbolic values instead, enabling a symbolic execution engine to explore all possible control
flow paths. For each path, the attacker can verify whether specific properties (e.g. null pointer
dereferencing) are violated.

For each path, the symbolic execution engine keeps track of the branch conditions, under the
form of a Boolean formula, and the mapping of variables to symbolic expressions or values. This
information is then fed into model checker that checks if the wanted conditions are violated and
verifies whether that path is realisable. The model checker is typically based on a satisfiability
modulo theories (SMT) solver [23].

In traditional (static) symbolic execution, only symbolic variables are used. On top of the
aforementioned limitations of static analysis, this method suffers from state space explosion.
Therefore, it is only feasible for relatively small applications. Hence, a partial exploration of
the space of possible execution states might be desirable. Contrarily to a complete exhaustive
search, this method is not sound, but its performance gain is considerable.

A popular way to deal with state space explosion is to combine symbolic execution with con-
crete execution [24]. This is generally known as dynamic symbolic execution (DSE) or concolic
execution [25]. In dynamic symbolic execution, the execution engine simultaneously executes
the program concretely and symbolically. Whenever a branch arises, the symbolic execution
can follow the path of the concrete execution, so the constraint solver does not need to evaluate
whether that branch satisfies the wanted conditions. In order to explore multiple paths, different
inputs can be used. This process can be repeated until the desired coverage is reached. DSE is
commonly used in frameworks like Miasm [26] and Triton [27].
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2.5 Obfuscation types

The point of obfuscations is to make the mentioned program analysis as arduous as possible.
Collberg et al.[15] classify obfuscation transformations into three main classes, according to the
kind of information they target: layout obfuscation, control-flow obfuscation, and data obfusca-
tion. Layout obfuscation attempts to remove relevant information without changing behaviour.
A typical example is the renaming of functions into meaningless characters [28]. Control-flow
obfuscations aim to change the program’s flow to make it more challenging to reconstruct ab-
stract representations of the program, such as control flow graphs. Data obfuscation tries to
transform application data and data structures, making them difficult to find or interpret.

With the purpose of staying ahead of newly developed deobfuscation methods, there is contin-
uous research to invent new and enhance existing obfuscation techniques. Multiple research-
oriented and commercial tools, such as Tigress [29] and Themida [30], offer a myriad of obfusca-
tion transformations to programmers. Explaining and evaluating each of these transformations is
out of the scope of this thesis. The following sections will outline some common data and control
obfuscation techniques. For brevity, we will not expand on anti-tampering and anti-debugging
techniques. For the interested reader, we refer to the study by Berlato et al. [31].

2.5.1 Opaque Predicates

A typical obfuscation for hampering control flow analysis is the insertion of opaque predicates.
These are conditional expressions that will always evaluate to the same result [32]. This is known
by the obfuscator but difficult to deduce by the attacker.

Opaque predicates can be constructed in different ways. For example, they can be based on
a mathematical expression that always evaluates to true (or false). An example of this type
is given in Figure 2.5. The obfuscator can then insert junk bytes in the path that is never
taken. If the adversary does not notice the opaque predicate, he will consider this junk code
when disassembling. This will result in an inaccurate reconstruction of the program behaviour,
thereby complicating further control flow and data flow analysis.

There is broad research into different types of opaque predicates and ways to attack them. The
example in Figure 2.5 is very basic. More complex constructions exist, like dynamic predicates
that depend on each other or two-way predicates. These mechanisms are outside of the scope
of this dissertation. For a broader overview of different types of opaque predicates, we refer to
the work by Xu et al. [33]. Zobernig et al. also provide an extensive overview of the different
attack strategies [34].
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Figure 2.5: Example of a simple opaque predicate transformation. The original code gets split by
the opaque predicate, indicated in orange. The branch that is never taken leads to meaningless
junk bytes to confuse the reverse engineer.

Please note that the predicate used in Figure 2.5 is merely an example to illustrate how opaque
predicates work. The predicate in question is trivial to recognise and unobfuscate by the use of
pattern matching.

2.5.2 Function inlining/outlining

Function inlining and outlining is often done by compilers for optimisation [35]. Apart from
potential performance enhancements, it can also be used in the context of obfuscation [36]. For
inlining, a function call is replaced by the function body. For outlining, parts of a function are
split as a separate function. Applying one of these techniques (or both) makes the control flow
complicated, thereby confusing the attacker.

2.5.3 Control flow flattening

Flattening the control flow is another obfuscation that obstructs data and control flow analysis.
With this technique, the branching between the different parts of a function are replaced by a
call to a switch statement. This switch statement transfers control based on the value it receives.
In this way, the targets of branches are difficult to determine with static analysis. Figure 2.6
illustrates the described transformation.
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(a) Code before and after control flow flattening.

(b) CFG before and after control flow flattening.

Figure 2.6: Example by László and Kiss [2] that illustrates the control flattening transformation.

2.5.4 Mixed Boolean-Arithmetic

Since Zhou et al.[37] proposed this technique in 2007, it has been widely adopted to hide con-
stants and simple expressions [38]. Mixed Boolean-Arithmetic (MBA) transforms these constants
and expressions to a semantically equivalent but much more complex code.

In MBA, operators are transformed into an equivalent MBA expression and subsequently en-
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coded into an expression that appears to have many more variables. This results in a complicated
MBA expression, where the combination of classical arithmetic operators and boolean operators
makes it hard to retrieve the original expression. We will further expand on this topic in Chapter
4.

2.5.5 Virtualisation obfuscation

In the context of obfuscation, virtualisation is used as a way to hide the control flow of the
original program. So-called “virtualisation obfuscators” translate selected parts of the program
machine code to bytecode in a new, custom virtual instruction set architecture (ISA) [39, 40].
This ISA is randomly generated at the time of protection. It is accompanied by a corresponding
interpreter for this specific ISA. This interpreter is usually heavily obfuscated.

The virtualisation obfuscator stores the ISA in the target binary, along with the interpreter for
this custom ISA. Every call to the original code snippet is replaced with the invocation of the
interpreter. This results in an extra layer of abstraction that makes reverse engineering harder.

If an attacker wants to reverse engineer the program, he must first convert the created bytecode
back into native machine code that resembles the original pre-protected code. To this end, he
must try and understand the underlying architecture and instruction set. This process is highly
time-consuming and is only specific to one ISA. As a result, virtualisation obfuscation is widely
used in the industry. It is the basis of many obfuscation solutions, like VMProtect [41], Themida
[30] and SecuROM [42].

2.6 Program Synthesis

A novel approach for program analysis is the adoption of program synthesis. Program synthesis
is the task of automatically constructing a program based on a given high-level specification
[43]. This technique is applied in different fields, ranging from business applications to program
understanding.

In business applications, companies can leverage program synthesis can to assist non-programmer
employees in automating repetitive tasks; By defining the intended behaviour, a program is
automatically generated without requiring programming knowledge.

Program synthesis can also be used for program understanding. In the context of reverse engi-
neering, program synthesis is the task of reconstructing an obfuscated code segment based solely
on specific observations, like execution traces of input-output behaviour. The synthesiser tries
to produce a program that retains the specified properties of the obfuscated code yet is more
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readable for a reverse engineer. The result is a code segment that is easier to understand than
the obfuscated program, essentially bypassing the effects of the obfuscation transformation.

Three main dimensions must be considered for the design of a program synthesiser [43]: the
expression of the high-level specification, the search space and the search technique. These
design decisions are explained in Section 2.6.1, 2.6.2 and 2.6.3 respectively, followed by some
concrete implementations that are relevant to this thesis in section 2.6.4. For an in-depth
overview of program synthesis and its many applications, we refer to the extensive study by
Gulwani et al. [44].

2.6.1 Expressing the high-level specification

Multiple dimensions must be considered for the design of a program synthesiser [43]. First,
the designer must consider the mechanism for the expression of the high-level specification.
The particular choice depends on the given scenario. In reverse engineering, this mechanism is
usually based on a trace of the obfuscated segment or on input-output behaviour.

2.6.2 Search Space

Next, the search space must be considered. This defines how the synthesiser reconstructs a
candidate program. Not only should the synthesiser be able to synthesise the program segment,
but the search space also needs to be constrained enough in order to obtain this segment in an
acceptable amount of time. Therefore, the designer of the synthesiser needs to strike a good
balance between the expressiveness and the efficiency of the search space. The search space is
mainly defined by two attributes [44]:

1. The operators used in the program: for deobfuscation purposes, this is usually a
combination of arithmetic operators (such as addition +, multiplication ∗, etc.) and
bitwise operators (such as bitwise-and &, bitwise xor ⊕, left-shift, etc.). More operators
result in a larger search space.

2. The control structure of the program: this may e.g. be restricted to a bounded
number of statements or to a loop-free program.

2.6.3 Search technique

The last important dimension is the search technique. The manner in which the search space
is explored is a crucial factor in the effectiveness of the synthesiser. Various techniques exist,
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based on enumerative search, deduction, constraint solving or stochastic techniques [44]. It is
important to note that these techniques are not exclusive to each other. Different techniques
are often applied together to form a concrete search to create a concrete search implementation.

Enumerative search

Enumerative search techniques generate a list of possible programs within the defined search
space. In a later stage, this list is filtered on whether or not a program satisfies the given high-
level specification. An enumerative search is a straightforward approach that, whilst simple, is
very effective. The biggest constraint of this technique is scalability; too large a search space can
result in a combinatoric explosion of the possible results. Therefore, a designer must carefully
design the search space when implementing an enumerative search.

Deductive search

In deductive search, the synthesis problem is divided into smaller subproblems that can be seen as
simpler synthesis problems. These small problems are solved separately in a divide-and-conquer
way and combined to form the final synthesis.

Constraint Solving

The constraint solving technique breaks up the problem into two main parts: constraint gen-
eration and constraint resolution. In the first part, logical constraints (called the synthesis
constraint) are generated that will yield the intended program. This is usually done by making
some assumptions about the control flow of the program to be synthesised. In this way, the orig-
inal program is transformed into constraints that the synthesiser can interpret (e.g. first-order
logic). In the constraint resolution part, this synthesis constraint is then solved, usually by using
existing SMT solvers. If a result satisfies all constraints, it corresponds to a valid reconstruction
of the program.

Stochastic search

In stochastic techniques, the candidate program is viewed as a stochastic optimisation problem.
This problem can be defined in different ways. The approaches to the stochastic techniques
are outside of the scope of this thesis. Instead, the following section expands on the methods
relevant to this thesis.
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2.6.4 Concrete implementations

Brahma

In 2011, Gulwani et al. presented a technique for the synthesis of loop-free programs [45]. The
synthesis is constructed as a combination of components from a given component library. These
components describe the instruction set of the synthesised program, for example, a bitwise
addition or an arithmetic shift. They are provided as logical relations between inputs and their
respective outputs. Such an approach is called a component-based synthesis problem.

The researchers apply a constraint-based approach: they first reduce the problem of loop-free
program synthesis to a satisfiability problem: finding the solution to a ∃∀ first-order logic formula
(the synthesis constraint). This formula encodes the space of all possible programs that can be
obtained with the given components and satisfy certain well-defined constraints. Subsequently,
this formula is solved by using a technique that leverages the power of modern off-the-shelf SMT
solvers. The final result is a program that implements the wanted specification using only the
components provided in the library.

Gulwani et al. implement this constraint generation and solving technique in a tool called
Brahma. They test it on a dataset of 25 bit-manipulating programs of increasing complexity
(1 to 16 bitwise operations) and two programs that also involve arithmetic. They demonstrate
that Brahma can synthesise a solution for all these problems. It should be noted that this work
is geared towards helping programmers code small bit-manipulating functions efficiently. Due
to the parallels with reverse engineering, this tool can also be used for deobfuscation, albeit for
only small fragments, especially when arithmetic is involved.

Syntia

At the 26th USENIX Security Symposium in 2017, Blazytko et al. proposed a new synthesis-
based deobfuscation method and implemented it in a public prototype, called Syntia [46].
They employ a stochastic search technique by modelling the synthesis problem as a heuristic
optimisation problem, where the search is guided by a Monte Carlo Tree Search (MCTS) based
algorithm. They demonstrate that this enables them to successfully synthesise the high-level
semantics of virtualisation obfuscation segments, mixed boolean-arithmetic segments, and ROP
chains.

Their approach is divided into three parts: trace dissection, random sampling and program
synthesis. These parts can be seen as steps in a pipeline. Each step takes the input of a previous
step and provides an output for the next step. The process starts with an instruction trace of the
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obfuscated segment. This trace is partitioned into unique sequences of assembly instructions,
called trace windows. The goal of Syntia is to learn the high-level semantics of the different
trace windows. These semantics are then provided to the reverse engineer, allowing him/her to
gain insights and conduct further analysis.

Trace Dissection First, the boundaries of the trace windows need to be decided. This choice has
a big impact on the synthesis result. If a trace window ends at an intermediary computation step,
Syntia will not be able to construct a meaningful synthesis for that window. By default, the
boundaries coincide with indirect control transfers. This heuristic corresponds to an invocation
to the next handler for virtualisation obfuscation and a transition to the next gadget for ROP
chains. An MBA expression is also usually not interrupted by an indirect control-flow transfer.

Random Sampling Once the different trace windows are defined, their semantics are captured
by deriving input-output relations. First, Syntia identifies the inputs and the outputs of a
trace window by use of the Unicorn Engine [47]. Both register and memory reads/writes are
considered. A random sampler then generates random input values and derives the correspond-
ing output values. This I/O behaviour is then fed into the program synthesis step. The tracing
window itself is thus seen as a black box.

Program Synthesis The program synthesis tries to construct an expression that maps all the
provided inputs to their corresponding outputs. This is known as I/O oracle-guided program
synthesis. Blazytko et al. define a context-free grammar to formalise the search space for the
synthesiser; all candidate programs are expressed in this grammar. A Monte Carlo Tree Search
(MCTS) technique is used for the exploration of candidate nodes. This algorithm builds a search
tree through reinforcement learning. Every new explored node is compared to previous nodes
through a reward, calculated by a similarity function to the wanted input-output behaviour.
The MCTS technique is combined with similated annealing to try and escape local optima in
order to end up with the best global solution.

By only using I/O samples to describe the semantics, the complexity of the synthesiser is not
affected by the complexity of the obfuscated segment. Instead, the complexity of the synthesiser
only depends on the semantic complexity of the underlying code. This is a significant improve-
ment over Brahma, where extensive obfuscations would result in an arduous constraint that
would be too difficult for modern SMT solvers.

Blazytko et al. evaluate their tool on a dataset of 500 randomly generated C functions, MBA-
obfuscated through Tigress [29]. They were able to synthesise 448 out of the 500 functions in 34
minutes. They also tested Syntia on a program that was obfuscated with virtualisation, once
with VMProtect[41] and once with Themida[30]. They managed to respectively synthesise 98%
and 94% of the arithmetic and logical instruction handlers.
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Qsynth

Qsynth improves on Syntia by combining an input-output synthesis approach with dynamic
symbolic execution [3]. The advantage of the input-output synthesis is that this technique is
not hindered by the semantic complexity of the program. However, David et al. argue that this
black-box approach results in a more difficult problem than the original deobfuscation. Namely,
the size of the search space becomes too big to explore exhaustively. Hence heuristics are needed,
like in the case of Syntia.

By combining input-output synthesis with dynamic symbolic execution, the semantics of the in-
structions can more accurately be modelled, drastically reducing the search space. The dynamic
nature of DSE also bypasses certain obfuscations, like dead code or packing. Lastly, David et
al. reduce the synthesis time even further by reusing results for similar obfuscated expressions.

The approach of David et al. consists of four steps. First, they trace the execution of the
obfuscated program to obtain an execution trace. Then, they use DSE to compute a backward
slice for the values of interest. With this slice, they construct an AST representation. This AST
is then forwarded to the synthesis simplification algorithm. Lastly, the simplified expression is
synthesised using a black-box offline enumerative synthesis oracle.

Program Tracing and DSE David et al. use a Dynamic Binary Instrumentation (DBI) to
collect all instructions, together with their side-effects on registers and memory. Consequently,
any obfuscated expressions that are not executed will not be included in this trace. DSE is now
applied on this trace to obtain all symbolic execution paths, keeping track of symbolic values
for both registers and expressions.

AST extraction The AST is obtained by using a backward slicing function. For the values
of interest, this function first backtracks on logical control and data dependencies to model the
data flow of the expression. This flow is then modelled as an AST, with nodes as operators and
leaves as variables. This AST representation is used in all subsequent synthesis steps.

Offline Enumerative Search The synthesis approach is enumerative, meaning that all the
potential expressions are enumerated. To this end, David et al. define a limited context-free
grammar. They then exhaustively explore all the potential outcomes up to a certain depth. To
prevent state space explosion, the synthesis uses a deductive element: instead of attempting
to synthesise large expressions, the sub-expressions are first synthesised. On top of this, their
approach can uses precomputations: the enumerative search is only performed once. With these
results, all the sub-expressions are synthesised. This is the offline part of the search. Lastly, they
reduce the complexity of the search by using a constrained grammar, noting that a mapping of
a larger grammar can be obtained with multiple mappings smaller subsets of the used grammar.
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Simplification The researchers implement the deductive approach by first synthesising sub-
expressions. This is illustrated in Figure 2.7. First, the leaf sub-expressions are replaced by
a placeholder variable. This continues until the root is reached. Then, synthesis is applied in
a random breadth-first fashion. Every time a subtree is successfully synthesised, it is replaced
with a placeholder variable. This continues until all possible synthesis is done. In the end, the
final AST is reconstructed by replacing all placeholder variables with their respective expression.

Figure 2.7: Illustration by David et al. [3] showing the used simplification approach.

David et al. implement this approach in a tool called Qsynth. They evaluate their approach on
the MBA Syntia dataset and manage to synthesise 100% of functions in 1m35s, making this tool
20x faster than Syntia. They also evaluate their tool on a new dataset of 1500 more complex
functions, obfuscated with MBA and virtualisation and manage to synthesise 82% completely.
A more in-depth analysis can be found in their paper [3].
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Thesis Objecive

Program synthesis is a promising field for deobfuscating MBA and VM-based obfuscations.
Their synthesis result provides insights about the semantics of the original code to the reverse-
engineer. However, all the mentioned synthesisers assume that the reverse-engineer recognizes
the use of obfuscations in a program binary and their exact location. Without this information,
a synthesiser will not necessarily produce any meaningful result.

3.1 Thesis Goal

Intending to automate reverse engineering further, we aim to facilitate the manual process of
locating and identifying obfuscations. More specifically, we look into automatically locating
Mixed Boolean Arithmetic obfuscations in a given binary. Once an obfuscation is found, it can
be fed to a synthesiser, like Syntia.

3.2 Thesis Scope

For this dissertation, we limit ourselves to the Intel x86 architecture. For the sake of consis-
tency, all our experiments are performed on the same computer consisting of an AMD Ryzen
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Threadripper 2990WX 32-Core CPU with a maximum clock speed of 3GHz, 64GB of RAM and
a GeForce GTX TITAN GPU.

3.3 Thesis Outline

After the background study of Chapter 2, we now perform an in-depth analysis of Mixed Boolean-
Arithmetic in Chapter 4. With this research in mind, we start on a design for our approach in
Chapter 5. We then implement this design in Chapter 6 and evaluate it in Chapter 7. Lastly,
the final conclusions are drawn in Chapter 8.
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Mixed Boolean-Arithmetic

In this chapter, we give an in-depth analysis of MBA obfuscation. We start by defining MBA
in Section 4.1. Section 4.2 explains how MBA is used in the context of obfuscation. Subse-
quently, the complexity of MBA expressions is then defined in Section 4.3. Lastly, the different
deobfuscation efforts are applied in Section 4.4.

Apart from the initial papers by Zhou et al. [48, 37], there is barely any research on this topic.
The most comprehensive work on mixed boolean-arithmetic is the PhD thesis by N. Eyerolles
[1]. Because of the scarce literature, the majority of this chapter will be based on this work.

4.1 Polynomial Mixed Boolean-Arithmetic

In general, any expression consisting of both arithmetic operators (+, ∗, . . .) and boolean oper-
ators (and, xor, ...) can be referred to as a mixed boolean-arithmetic expression. Expressions
of this form have already been used in other fields, like the design of cryptographic primitives.
For this work, we specifically look at polynomial mixed boolean-arithmetic formalised by Zhou
et al. [37] in the context of obfuscation.

23
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Definition 1. (Polynomial MBA [37, 1]) An expression E of the form

E =
∑
i∈I

ai

∏
j∈Ji

ei,j (x0, . . . , xt−1)


where the arithmetic sum and product are modulo 2n, ai are constants in Z/2nZ, ei,j are bitwise
expressions of variables x0, . . . , xt−1 in {0, 1}n, I ⊂ Z and for all i ∈ I, Ji ⊂ Z are finite index
sets, is a polynomial Mixed Boolean-Arithmetic (MBA) expression. A linear MBA expression
is a polynomial MBA expression of the form∑

i∈I
aiei (x0, . . . , xt−1)

Equation 4.1 is an example of a linear MBA expression that corresponds to E = x + y [48].
Equation 4.2 shows a non-linear MBA expression [1].

E = (x⊕ y) + 2× (x ∧ y) (4.1)

E = 85 ∗ (x ∨ y ∧ z)3 + (xy ∧ x) + (xz)2 (4.2)

Notably, Definition 1 implies that the composition of polynomial MBA expressions is still a
polynomial MBA expression: x0, . . . , xt−1 can be polynomial MBA expressions of other variables.
This ensures that we stay within the area of polynomial MBA expressions when combining them.
For the sake of brevity, we will refer to polynomial MBA expressions as MBA expressions in the
remainder of this thesis.

4.2 Obfuscation

MBA can be used for obfuscation in two ways. It can be used for the obfuscation of constants
or for the obfuscation of expressions.

4.2.1 Obfuscation of expressions

Zhou et al. first formulated the technique of obfuscating expressions using MBA in 2006 [48]
and formalised this in 2007 [37]. Since then, he has submitted several patents, together with
other authors, based on this work [49, 50, 51]. Zhou proved that any bitwise expression can be
transformed to a non-trivial linear MBA expression by iteratively applying one (or both) of the
following transformations: subexpression rewriting and insertion of modular inverses.
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Subexpression rewriting

In this transformation, parts of expressions are replaced by an MBA equivalent, chosen through
the use of rewriting tables. To construct rewriting tables, Zhou et al. generate MBA Zero
functions. This is an MBA expression that evaluates to zero irrespective of the values of the
variables. They then isolate a small part of the zero function to be equal to the negative of the
rest of the zero function. For example, out of the zero function in equation 4.4, we obtain the
rewrite rule in equation 4.5.

− x− y + (x⊕ y) + 2× (x ∧ y) = 0 (4.3)

=⇒ x+ y = (x⊕ y) + 2× (x ∧ y) (4.4)

x+ y → (x⊕ y) + 2× (x ∧ y) (4.5)

For simplicity, we do not include the theory and proofs on how zero functions are constructed.
This is explained in detail in the paper by Zhou et al. [37]. The essence of the method is that
Zhou et al. find a zero function for the 1-bit space (i.e. for variables that are either 0 or 1) by
using truth tables and are able to map this to integer space to be valid for any variable.

It should be noted that other MBA rewriting rules exist in the literature, like the bit hacks
described by Warren [52].

Insertion of modular inverses

For this transformation: a part e of the expression is rewritten as f(f−1(e)) with f an invertible
function in Z/2nZ. When f−1(e) is transformed with MBA rewriting, it becomes arduous for
the attacker to retrieve e without knowing the exact function. f is usually an affine function as
they are easily invertable and produce only a limited performance overhead. For 8-bit variables,
an example of f is:

f : x 7→ 39x+ 23 (4.6)

f−1 : x 7→ 151x+ 111 (4.7)

The two transformations can be combined to obtain strong MBA expressions. For example, if
we combine rewrite rule 4.5 with function 4.6, we can obtain the following MBA expression for
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the variables x, y ∈ {0, 1}8:

e1 = (x⊕ y) + 2× (x ∧ y) (4.8)

e2 = e1 × 39 + 23 (4.9)

E = (e2 × 151 + 111) (4.10)

4.2.2 Obfuscating constants

Zhou et al. use the same principles of the expression obfuscation to obfuscate constants through
MBA transformations [37]. For this, the following theorem is set forward:

Theorem 1. [1] Let:

• P ∈ Pm (Z/2nZ) and Q its inverse: P (Q(X)) = X ∀X ∈ Z/2nZ,

• K ∈ Z/2nZ the constant to hide,

• E an MBA expression of variables (x1, . . . , xt) ∈ (Z/2nZ)t non-trivially equal to zero,

Then K can be replaced by P (E+Q(K)) = P (Q(K)) = K, no matter the values of the variables
(x1, . . . , xt).

For example, if we have a value K and zero function (4.4), we have:

K = P (x+ y − (x⊕ y)− 2× (x ∧ y) +K)

The variables x and y can then be chosen randomly and the value of K will not be revealed.
However, Eyrolles proves that this technique contains an algebraic weakness if the zero function
contains no constant:

Lemma 1. [1] Let:

• P (X) = a0 + a1X + a2X
2 + · · ·+ adX

d be a polynomial of degree d,

• Q be a polynomial of degree d, such that P (Q(X)) = X for all X ∈ Z/2nZ,

• E =
∑

ai(
∏

ei,j(x0, . . . , xt−1)) be a null MBA expression, with no ei,j such that
ei,j(x0, . . . , xt−1) = 1 whatever the values of x0, . . . , xt1 (i.e. the sum composing the MBA
does not contain any constant).

Then the constant monomial of P (E +Q(K)) is equal to K.
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Proof [1]:
P (E +Q(K)) = a0 + a1(E +Q(K)) + · · ·+ ad(E +Q(K))d

= a0 + a1Q(K) + a2Q(K)2 + · · ·+ adQ(K)d + ϕ(E)

with ϕ(E) =
∑d

k=1 ak

(∑k−1
i=0 Ek−iQ(K)i

)
, a polynomial in variables x1, . . . , xt with no constant

monomial, as every monomial of ϕ(E) is multiplied by a positive power of E. This means that
the constant part of P (E +Q(K)) is:

a0 + a1Q(K) + a2Q(K)2 + · · ·+ adQ(K)d = P (Q(K)) = K.

Thus, zero MBA functions without a constant should be avoided as the value K can be revealed
from the obfuscated form.

4.2.3 MBA Obfuscators

MBA is used in multiple commercial obfuscators, like Quarkslab [53] and Irdeto [54]. It is also
available in the Tigress [29] obfuscator: expressions can be MBA-obfuscated using the encode
arithmetic transform and data can be MBA-obfuscated using the encode data transform. For
this thesis, we are mainly interested in the obfuscation of expressions. Hence, we refer to the
encode arithmetic transformation when talking about Tigress in the remainder of this thesis.

4.3 MBA complexity

4.3.1 Incompatibility of operators

The strength of MBA obfuscations lies in the incompatibility between the arithmetic and bit-
wise operators. There are no general rules, like distributivity or associativity, for this kind of
expression. This makes the simplification of these expressions arduous.

Canonical Forms

The advantage of purely arithmetic or purely boolean expressions is the existence of a canonical
form. These forms represent a unique representation for any equivalent expression. Therefore,
they are a perfect first step for simplification. Every equivalent expression is mapped to the same
canonical form. It should be noted that these forms do not necessarily correspond to the most
readable format for a human. We give an example of a canonical form for boolean functions:
the algebraic normal form (ANF). Unfortunately, there is no canonical form for expressions that
mix boolean and arithmetic operators.
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Lemma 2. Any n-bit boolean expression can be expressed in the following form:

⊕
u∈Fn

2

cu

n−1∧
i=0

xui
i

where cu ∈ F2, x
ui
i = xi if ui = 1 and xui

i = 1 if ui = 0, and ⊕ is the bitwise XOR. This form is
called the algebraic normal form.

Algebraic Tools

Common algebraic tools, like Maple [55], are almost purely geared towards arithmetic expres-
sions. They provide limited functionality for boolean expressions. For example, Maple can do
bitwise computations on constants only. These tools break down when provided with an MBA
expression. They are therefore not usable for simplifying MBA expressions.

SMT Solvers

SMT solvers try to prove the satisfiability of logical formulas. They are a generalization of
boolean satisfiability (SAT) problems by also supporting arithmetic, arrays, quantifiers and
other first-order theories [56]. Popular SMT solvers, like Z3 [56], also offer a simplifier function-
ality. This simplifier applies standard algebraic reduction rules (e.g. p∧ true 7−→ p), together
with “limited contextual simplification”, for example x = 4∧ q(x) 7→ x = 4∧ q(4). Unfortu-
nately, these simplifications do not provide a canonical form, and their simplified results are not
necessarily more readable for a human. On top of this, contextual simplification, which is essen-
tial in MBA expressions, is limited. Therefore, SMT solvers are not suitable for deobfuscating
MBA expressions.

4.3.2 DAG representation

To get a better sense of the complexity of an MBA expression, Eyrolles proposes a Directed
Acyclic Graph (DAG) representation for MBA expressions. An example is given in Figure 4.1.

Definition 2. (DAG representation [1]) The DAG representation of an MBA expression is an
acyclic graph G where:

• all leaves represent constant numbers or variables, other nodes represent arithmetic or
bitwise operators;

• an edge from a node v to a node v’ means v’ is an operand of v;
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• there is only one root node;

• common expressions are shared, which means they only appear once in the graph.

Figure 4.1: DAG representation of the expression 2× (x ∧ y) + (x ∧ y) [1].

4.3.3 Complexity Metrics

Eyrolles uses the DAG representation to define complexity metrics specific to MBA expressions
[1]. Decreasing these metrics corresponds to a simpler MBA expression, both for human as
for automatic analysis. While these metrics give a sense of complexity, they are not necessarily
related to the resilience of the MBA obfuscation technique. For example, program synthesis does
not consider semantic complexity when deobfuscating MBA expressions and is thus impartial
to these metrics. On the other hand, the efficiency of traditional simplification tools (e.g. SMT
solvers) are affected by these metrics.

Number of Nodes

The most evident metric is the size of the MBA expression. This can be expressed in the
number of nodes in the DAG representation. The sharing property of the DAG representation
plays an important role here: subexpressions that occur multiple times will not significantly
increase complexity as they can be simplified in the same way. This is the case because every
expression, obtained through the rewriting rules, has the same value irrespective of the value of
the variables. The example in Figure 4.1 has a size of 6.
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MBA Alternation

MBA alternation tries to capture the “MBA aspect” of the expression. A strong MBA expression
needs to alternate between boolean and arithmetic operators. For example, if an MBA expression
consists solely of arithmetic expressions, it can easily be simplified by any algebraic tool. In the
same manner, subexpressions containing only arithmetic operands can be simplified within the
MBA expression. Therefore, Eyrolles defines MBA alternations as the number of edges linking
two nodes that represent operators of different types (boolean or arithmetic). In the example of
Figure 4.1, the MBA alternation is 2.

Average Bit-Vector Size

The bit-vector size of a node refers to the number of bits of the variable that are truly important.
We illustrate this with a small example: when combining a 32-bit variable with an 8-bit variable
through an and operand, an analyst only has to consider the eight least significant bits, as the
others will be zero. So, the amount of important bits is only eight. Eyrolles summarises such
simplification rules in the following definition of bit-vector size.

Definition 3. (Bit-vector size [1]). For a node v, the bit-vector size bvsize(v) is:

• If v is a leaf node, the bit size of the variable or constant it represents. This size can be
deduced from the context (e.g. size of the input of a function), or by additional indications
(e.g. binary masks). The size of a constant may also be inferred from the actual number
of bits of that constant (possibly rounded to the next power of two).

• If v represents an operator, the bit size of the output of the operation. This depends on
the nature of the operator:

– if v represents a binary operator in {+,−,×,⊕,∨} with v1, v2 as operands, then
bvsize(v) = max (bvsize (v1) , bvsize (v2))

– if v represents a boolean AND with operands v1, v2,
then bvsize(v) = min(bvsize(v1),bvsize(v2))

– if v represents a unary operator in {¬,−}, then bvsize(v) = bvsize (v1) for v1 its
operand.

Using this definition, the bit-vector size can be computed for every node and added as attribute
to the DAG representation. An average can then be taken over the entire DAG. Figure 4.2
shows the bit-vector size added in the DAG. In this case, the average bit-vector size is 22. This
metric can be of use for deobfuscation approaches whose performance relies on this bit-vector
size.
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Figure 4.2: DAG for 2× (x∧ y) + (x∧ y). The bit-vector size is added as attribute to the DAG,
visible in subscript.

4.4 Existing deobfuscation tools

Apart from the program synthesis techniques discussed in Section 2.6, the following paragraphs
describe other efforts to deobfuscate MBA obfuscations.

4.4.1 Arybo

Guinet et al. propose a tool to derive a bit-level symbolic representation of MBA expressions
[57]. This is known as a bit-blasting approach [1]. To obtain this representation, they translate
the MBA expression into a bit-per-bit canonical form. They model arithmetic operators, like
addition and multiplication, as a bit per bit boolean expression (e.g. using a full adder). They
then derive the bit-per-bit algebraic normal form (ANF) of the entire MBA expression and
attempt to translate it back to a word-level representation that is intuitive for humans (a word
can be seen as any number of bits).

They devise a C++ library called libpetanque for the creation of the ANF form. This li-
brary stores the multiple bit vectors using the DAG representation described in Section 4.3.2.
libpetanque transforms this DAG into an ANF canonical form. A python tool, called Arybo
then attempts to reconstruct a word-level representation of the ANFs. While the tool is suc-
cessful in simplifying MBA expressions, its memory and time performance is directly related to
the average bit-vector size of the MBA expression. For example, Arybo can perfectly handle
8-bit expressions but fails to simplify 32-bit expressions in a reasonable time [1]. Guinet et al.
also note that it is not easy to reconstruct a comprehensible word-level representation.
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4.4.2 SSPAM

With SSPAM [58], Eyrolles et al. try to avoid the drawbacks of bit-blasting approaches like
Arybo. Instead of going down to the bit-level, they devise a simplification approach that
stays on the word-level. The main observation is that the rewrite rules used for subexpression
rewriting (described in Section 4.2.1) are reversible. Therefore, the attacker should be able to
reverse these rewrites to obtain the original segment, provided that he knows the set of rewrite
rules. However, the used rewrites are further complicated by the insertion of modular inverses.
This must also be taken into account.

To identify the used rewrites, Eyerolles et al. resort to a pattern matching technique. They
identify subexpressions that can be simplified to simpler expressions based on a database of
rewrite rules. They construct these rewrite rules based on the method described by Zhou et al.
[37] but also add support for the insertion of custom rewrite rules.

Apart from exact matching, SSPAM also implements flexible matching, which matches expres-
sions that appear different but are equivalent. In this way, they try to get around the insertion
of modular inverses. Lastly, the obtained expressions are further simplified using arithmetic
simplification.

SSPAM proves to be effective at simplifying MBA expressions. The main downside of this
method is the need for the original rewrite rules. With this research, Eyrolles et al. conclude
that MBA-obfuscations that only use subexpression rewriting are quite weak. By also inserting
modular inverses, side effects are introduced that are more effective at thwarting this simple
pattern matching approach, making the MBA obfuscation more resilient.

4.4.3 MBA-Blast

At the 30th USENIX conference in august 2021, Liu et al. proposed MBA-Blast [38]. They
analyse the theory about expression rewriting in the paper by Zhou et al. [37] and conclude
that there is also a mapping of integer space back to 1-bit space. This means that every MBA
expression has a mapping to an MBA expression where all the variable values are only 0 or 1.
Simplifying this expression is drastically simpler than solving an expression where all variables
are integers.

Liu et al. provide mathematical proof for this finding and devise a tool that takes advantage of
this property. MBA-Blast essentially transforms MBA expressions to 1-bit space. It can then
uses truth tables to enumerate all possible values and simplify the expression. The tool then
remaps this expression to integer space to obtain the simplified expression.
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Liu et al. test this method on a dataset of existing MBA expressions and MBA samples found
in malware. They outperform all deobfuscation techniques mentioned above.

While this research seemingly renders MBA useless as an obfuscation technique, some assump-
tions seem to be missing in this paper. First of all, this approach only works on MBA obfus-
cations that rely solely on subexpression rewriting. It does not mention the effect of inserting
modular inverses. MBA obfuscations without modular inverses were already proven to be weak
by Eyrolles et al. in SSPAM [58]. Secondly, the proof provided by Liu et al. assumes that the
MBA expression is linear. This means that the findings in MBA-Blast are only applicable to a
subset of MBA expressions. Nevertheless, the results of Liu et al. show that this tool is definitely
valuable in practice. It manages to deobfuscate all MBA obfuscations found in malware.
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5
Design

In this chapter, we present our general approach for the localisation of obfuscated mixed boolean-
arithmetic code. In section 5.1, we start by applying a naive approach on an example to define
the drawbacks and the shortcomings of the current workflow. Based on this, we define criteria
for a better design in Section 5.2. We then attempt to construct a design that meets these
criteria in Section 5.3.

5.1 Naive Approach

Our goal is to enhance the program synthesis pipeline by automatically locating MBA-obfuscated
code in addition to the existing automatic synthesis. We start by creating a naive approach:
applying program synthesis on every possible part of a binary and looking at the output. Section
5.1.1 descibes a method for deriving all possible segments. We then apply this approach to an
example and formulate some observations.

35
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5.1.1 Varying Sliding Window Algorithm

To determine all possible segments, we devise an algorithm that is based on a varying sliding
window approach. A pseudocode implementation is provided in Code Listing 5.1.1 and a visu-
alisation is provided in Figure 5.1. Every iteration, we obtain a different window of the code
segment of a program binary. The first window starts at the first instruction of the binary and is
MIN_WINDOW_SIZE instructions long. The next window is one instruction longer than that. This
incremental growth continues until the window has a size of MAX_WINDOW_SIZE instructions. At
this point, the window moves an instruction and starts at the second instruction, again of size
MIN_WINDOW_SIZE instructions. This window grows again until the maximum size is reached
and moves again. This algorithm continues until the end of the code segment is reached.

Code Listing 5.1.1: Pythonic pseudocode for the naive varying sliding window approach

window_start = 0
while window_start < TOTAL_INSTR_AMOUNT-MIN_WINDOW_SIZE:

# calculate range for end of current window
min_window_end = min(window_start+MIN_WINDOW_SIZE,

TOTAL_INSTR_AMOUNT)-1↪→

max_window_end = min(window_start+MAX_WINDOW_SIZE,
TOTAL_INSTR_AMOUNT)-1↪→

# loop over all possible window sizes
for window_end in range(min_window_end, max_window_end+1):

# calculate window size in bytes
byte_amount = addr_of(window_end)-addr_of(window_start)+1
# feed window to Syntia
solutions, time = syntia(addr_of(window_start), byte_amount,

IO_AMOUNT)↪→

add_to_log(window_start, window_end, time, solutions)
window_start += 1

The following equation shows the amount of segments depending on the variables:

segmentamount =

total−minsize+1∑
n=total−maxsize+1

n

=
1

2
(1 +maxsize−minsize)(2 ∗ total −minsize−maxsize+ 2)

The amount thus grows linearly with the total amount of instructions, and quadratically with
MAX_WINDOW_SIZE and the inverse of MIN_WINDOW_SIZE.
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Figure 5.1: Visualisation of the varying sliding window algorithm for a MIN_WINDOW_SIZE of 1
and a MAX_WINDOW_SIZE of 3.

Every iteration, we pipe the obtained window to the Syntia program synthesizer. Syntia
identifies the different inputs and outputs and generates a number IO_AMOUNT of input-output
samples. Based on these I/O samples, it then attempts to synthesise an expression, using its
MCTS-based heuristic as described in Section 2.6. When Syntia terminates, the synthesis
results are stored in a log file and the next iteration starts. The log file also records the start
and the end of each window together with the elapsed time for each corresponding iteration.

5.1.2 Motivating example

To get a grasp of the described workflow, we want to try out the described method on a simple
compiled C program. Before applying the entire sliding window, we first test Syntia on a simple
arithmetic C function. We can then incorporate this function in a program to analyze the entire
approach. We opt to use Syntia [46] for our program synthesis approach as it is capable of
deobfuscating MBA obfuscations and is publically available on Github [59].

Testing Syntia

Code Listing 5.1.2 shows a simple unobfuscated arithmetic C function. We compile this function
using GCC [60] and feed the resulting binary to Syntia. Syntia perfectly manages to synthesize
the given segment with the following result: RAX = RDI+R8*RDX.
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Code Listing 5.1.2: Simple arithmetic function implemented in C.

int unobf_test (int v0, int v1, int v2, int v3, int v4){
int r = (v0 + (v4 * v2));
return r;

}

We proceed to obfuscate this arithmetic function using Tigress, leading to a mixed boolean-
arithmetic function, shown in Code Listing 5.1.3. After compilation and some adjustments to
Syntia (to fix bugs), we get the same synthesis results.

Code Listing 5.1.3: Same arithmetic function of Listing 5.1.2 but obfuscated using the
Encode Arithmetic transformation in Tigress.

int64_t obf64_test(int64_t v0, int64_t v1, int64_t v2, int64_t v3,
int64_t v4){↪→

int64_t r ;
{

r = (v0 | ((v4 & v2) * (v4 | v2) + (v4 & ~ v2) * (~ v4 & v2))) +
(v0 & ((v4 & v2) * (v4 | v2) + (v4 & ~ v2) * (~ v4 & v2)));↪→

return (r);
}

}

Running the naive algorithm

We now apply the varying sliding window algorithm on a small C program that contains the
obfuscated function from Listing 5.1.3, shown in Code Listing 5.1.4. We compile this program
using GCC to obtain the program binary and use objdump [18] to statically reconstruct the as-
sembly instructions from the program binary. From this reconstruction, we derive the addresses
of all instructions, that are then used in the varying sliding window algorithm to ensure that
the start addresses of every window correspond with the first byte of an instruction and the end
address corresponds with the last byte of an instruction.
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Code Listing 5.1.4: Obfuscated arithmetic function of Listing 5.1.3 inside a working C
program

int main(int argc, char** argv)
{

int64_t v0 = atoi(argv[1]);
int64_t v1 = atoi(argv[2]);
int64_t v2 = atoi(argv[3]);
int64_t v3 = atoi(argv[4]);
int64_t v4 = atoi(argv[5]);

int64_t r = (v0 | ((v4 & v2) * (v4 | v2) + (v4 & ~ v2) * (~ v4 & v2)))
+ (v0 & ((v4 & v2) * (v4 | v2) + (v4 & ~ v2) * (~ v4 & v2)));↪→

printf("%ld\n", r);
}

The entire binary contains 197 instructions. A minimum window size of 1 and a maximum
window size of 197 would result in 19503 possible windows. In order to diminish this amount,
we opt for a window size of at least 10 instructions and at most 50 instructions. We argue that
this window size will be enough to encapsulate the obfuscation of this simple example. With
these choices, there are 6888 candidate windows. For each window, we generate 20 input-output
samples.

Table 5.1 summarizes the measurements of our experiment. The total time to run the naive
algorithm on our example takes 63 hours. Of the 6888 candidate windows, 2685 candidates
triggered an error in the random sampler due to bugs in the code, resulting in no possible
synthesis. While the remaining 4203 windows return a successful synthesis, this synthesis does
not always represent the obfuscated segment. As an example, results like registerX=0 often
appear when registerX remains unalterend in the analysed window. These synthesis results
are correct, but they are of no use to the reverse-engineer. Out of all synthesised windows, only
32 windows reveal the behaviour of the obfuscated segment: RAX = RDI+R8*RDX.
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candidate windows 6888
failed windows 2685
synthesized windows 4203
amount of correct results 32
total time 227022 seconds
average time per synthesized window 55 seconds

Table 5.1: Measurements of the naive approach on our motivating example

5.1.3 Observations

Based on the motivating example, we can draw three main observations. Firstly, one successful
iteration takes an average of 55 seconds to complete on our system. This time increases as the
candidate window gets larger, as seen in Figure 5.2. This means that it would take over 290
hours to compute all 19503 iterations, assuming a non-failing random sampler. We conclude
that this naive approach scales badly, as it is already infeasible for this small, simple example.
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(a) mean

(b) median

Figure 5.2: Analysis of time per iteration compared to the amount of instructions in that
iteration.

Secondarily, it is not easy for a reverse-engineer to distinguish interesting synthesis results from
the bulk of trivial or non-informative synthesis results. Most of the candidate windows contain
multiple correct synthesis results that reconstruct the input-output behaviour of that window.
However, most of these windows have no real meaning. These uninformative results create noise
for the reverse-engineer. We could try to automatically filter out trivial results, like registerX
= 0, but these can also be legitimate results, e.g. when using MBA to form an opaque predicate.
Thus, the reverse-engineer has to manually filter out what looks interesting. For thousands of
windows, this becomes time-consuming.
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Lastly, out of the 6888 tested windows, only 32 recover the obfuscated segment semantics. These
successful windows are all clustered around the obfuscated segment: this is the only place where
the correct input and outputs can be observed.

5.2 Criteria

Based on the observations above, we draw the following criteria for an improved design. In order
to get better scaling and reduced computation time, we want to limit the actual synthesis to
windows of interest.

In the same manner, we want to cut down on the noise created by non-interesting synthesis
results. Thus, we want to limit the use of Syntia by pinpointing the areas of interest before
performing the synthesis.

There are relatively few windows where the correct result can be synthesised. This means that
MBA windows must be accurately identified.

In summary, the criteria for a better approach at locating MBA code are:

1. Limit the number of times that Syntia is invoked in order to cut down on computation
time and noise due to uninteresting results.

2. Be accurate enough in the identification of MBA windows in order to be able to recover
the wanted semantics.

5.3 Classification Approach

To improve on the naive algorithm, we use a classification approach. We aim to design a classifier
that can distinguish MBA windows from other windows. Section 5.3.1 details the resulting
pipeline and the rationale behind this approach and Section 5.3.2 describes the construction of
the classifier.

5.3.1 Classification Pipeline

Using a classifier to distinguish between MBA-obfuscated code and other code allows us to define
a new workflow. This workflow can be seen as a pipeline: first, the program binary is analyzed
to produce the instruction addresses. Based on this trace, all possible windows are derived in a
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varying sliding window, as described before. The possible windows are then fed to the classifier
that flags windows that likely contain MBA arithmetic. Now, only the flagged windows are fed
to Syntia.

This approach drastically reduces the number of windows that are synthesised. As synthesis is
the most time-intensive task, this reduction should significantly decrease the computation time
of the varying sliding window approach. On top of this, fewer windows will contain synthesis
results. Hence, the reverse-engineer will have to filter through less noise to find an accurate
reconstruction of an obfuscated segment.

The time gain of this classification approach heavily depends on the time efficiency of the
classifier and the accuracy of its predictions. The following section describes how such a classifier
can be constructed.

5.3.2 Constructing a classifier

The classifier needs to be able to identify the use of MBA code based on the part of a program
binary. We opt for a pattern-matching approach. Instead of devising concrete pattern matching
rules, we leverage the power of supervised machine learning to infer rules from a dataset. This
choice is based on the following observation: MBA obfuscation occurs before the compilation of
the program. Hence, the optimization by the compiler will affect the MBA-obfuscated segment.
On top of this, the assembly reconstruction of the program binary can also influence the resulting
expression. Because of these two effects, patterns relying solely on the mathematical foundations
of MBA would fail. As a bonus, a machine learning classifier is usually quite fast, as most of
the time is spent during the training.

A supervised machine learning model tries to approximate the unknown function y = f(x) based
on a training set of example input-output pairs (x1, y1) , (x2, y2) , . . . (xN , yN ) [61]. The vector
of inputs x1, x2, . . . , xk ∈ xi are called features, the outputs yi are referred to as labels.

In our classification model, yi is a discrete label that indicates whether the input corresponds
to an MBA code segment or not: yi ∈ {True, False}. The features xi are derived from a part
of the program binary. The process of transforming raw data (program binary in our case) into
features xi is called feature extraction.

In the following paragraphs, we devise two feature extraction methods inspired by the field of
natural language processing (NLP). Firstly, we adopt a bag-of-words method to be usable with
assembly coding language. We then improve on this by defining N-grams in the context of
assembly.
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Bag-of-words

A traditional bag-of-words approach sees a text document as an unordered set of words with
their position ignored [62]. Only the frequency of these words is kept. In the context of a
program binary, we can use the assembly instructions instead of words. We will refer to this
technique as a bag-of-instructions. For a given segment, every occurrence of each instruction
is counted. The frequency of each instruction is then calculated and used as a feature for the
machine learning model.

Take the example of a small part of a code segment, shown in Figure 5.3. Every instruction
is counted and divided by the total amount of instructions. The frequency of each instruction
corresponds to one feature xi of the input vector.

Figure 5.3: Example of a bag-of-instructions for a part of an assembly code segment.

A downside of the bag-of-instructions model is the fact that it takes no context into account.
Traces with the same instructions but with a different order receive the same label. Therefore,
we turn to N-grams instead.

N-grams

In natural language processing, N-grams try to encapsulate the order of words into machine
learning features. An N-gram is a combination of N consecutive words. For text classification,
the frequency of each N-gram in a text is registered and then used as a feature. Therefore,
an N-gram can be seen as a generalisation of the bag-of-words scenario, with a bag-of-words
corresponding to a 1-gram or unigram.

Intuitively, information about the order of words is important for understanding a text segment:
words that follow each other are often related in a sentence. In assembly code, this is not nec-
essarily the case. Consecutive instructions can act on different registers and memory addresses,
being placed in a particular order because of compiler optimisations.
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Instead of creating N-grams based solely on the instruction order, we also take register depen-
dencies into account. Instructions that form a read-after-write dependency chain can form an
N-gram. As MBA expressions mix boolean and arithmetic instructions, their N-grams should
be distinguishable from ordinary N-grams. Just like in natural language processing research, we
will limit ourselves to 2-grams and 3-grams (often called digrams and trigrams). Larger N-grams
result in a bigger and sparser featureset, both attributes that will lead to overfitting and worse
performing models.
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6
Implementation

In this chapter, we discuss the software implementation of our proposed designs. The entire
codebase can be found in our Github repository [63]. We start with an analysis of available
data sources in Section 6.1, along with the motivation for creating a new dataset. Section 6.2
outlines the methodology for obtaining the features designed in Chapter 5. This is followed
by an analysis of these features in Section 6.3. Finally, Section 6.4 discusses the choice and
implementation of the model for our classifier.

6.1 Data

When constructing a machine learning model, it is essential to use enough training data. Instead
of mindlessly gathering data sources, it is important to define requirements for the data, tailored
to the purpose of the machine learning task. We start by outlining these requirements in
Subsection 6.1.1. Subsection 6.1.2 then explores the potential sources of existing data, and
Subsection 6.1.3 assesses their utility for the problem at hand. In Subsection 6.1.4, a new
dataset is put forward.

47
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6.1.1 Data Requirements

Our goal is to locate MBA-obfuscated code in a program binary. Thus, the training data must
consist of program binaries that contain MBA obfuscations. To train our models, we need to
provide the location of the obfuscated segments in the program binary.

Manually labelling obfuscated segments of numerous program binaries is infeasible. Instead, we
need to find a way to label specific segments as obfuscated/unobfuscated automatically. Instead
of considering any segment, we opt to look at entire functions as obfuscated/unobfuscated.
Functions are easily identifiable in (non-stripped) binaries. On top of this, obfuscation tools,
like Tigress, also apply obfuscations on a per-function basis. With this knowledge, we can
automatically label functions in program binaries, knowing that they are either one obfuscated
segment or at least contain an obfuscated segment.

This choice results in the following requirements for the used program binaries:

1. The program binary may not be stripped, as the debug information is crucial to locating
the different functions.

2. Functions may not be inlined. Else, a function could be labelled as unobfuscated while
containing the inline code of an obfuscated function.

3. Ideally, an unobfuscated variant of the function should also be present. This ensures that
our model contains a healthy mix of obfuscated and unobfuscated functions.

4. Preferably, the program binaries are compiled with the GCC -O2 flag to reflect real-world
binaries.

With these data requirements in mind, we start to look for existing datasets of MBA-obfuscated
program binaries.

6.1.2 Existing Data Sources

We attempt to acquire data by looking at other research in the field. Fortunately, both the
researchers of the Syntia framework and QSynth have devised a dataset to evaluate the
performance of their synthesis approaches.
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Syntia

As stated in their paper, Blazytko et al. created a dataset of 500 MBA-obfuscated functions [46].
They randomly generate 500 C functions and encode them with Tigress arithmetic encoding,
followed by the Tigress data encoding. The result is a collection of 500 binary files. Unfortu-
nately, the Syntia repository only contains said binary files without debug information. The
source C files are also missing from the repository. Hence, we do not possess enough information
about the program binaries to derive meaningful training data for our model.

QSynth

While the QSynth tool itself is closed source, the used datasets are available on Github [64]. The
repository consists of four datasets. Notably, the researchers provide a complete reconstruction
of the Syntia dataset. They include the unobfuscated C functions, the obfuscation script and
the resulting obfuscated C functions, along with the program binaries. With these files, we have
enough information to label the Syntia dataset for our research. The presence of the C files
also allows for analysis of the data quality.

Apart from the Syntia dataset, David et al. construct three other datasets:

1. EA: 500 C functions obfuscated with the Tigress arithmetic encoding.

2. VR_EA: 500 C functions obfuscated with the Tigress virtualization transformation, fol-
lowed by the Tigress arithmetic encoding.

3. EA_ED: 500 C functions obfuscated with the Tigress arithmetic encoding, followed by
the Tigress data encoding.

Similar to the recreated Syntia dataset, the researchers provide the unobfuscated C functions,
the obfuscation script and the resulting obfuscated C functions along with the program binaries.
Upon closer inspection, the three new datasets are all transformations of the same unobfuscated
C functions. Only the type of obfuscation differs. We are mostly interested in the arithmetic
encoding and will thus use the EA dataset in the remainder of this thesis.

6.1.3 Data Assessment

Code Listing 6.1.1 showcases an example of an unobfuscated C function of the Syntia and
the Qsynth dataset. Both datasets were automatically generated. They were devised to eval-
uate the performance of program synthesis techniques. While they are useful in that regard,
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they do not necessarily represent real-life functions where MBA obfuscations would be applied.
Therefore, their usefulness is limited when trying to extend findings to real-world binaries.

Nonetheless, these functions can still be of use for our problem. Every function only contains
one expression that needs to be obfuscated. Thus, the function can be seen as one obfuscated
segment. In comparison, real-world functions often contain extra logic (e.g. for logging or
output) that is not obfuscated. Such functions would result in noisy data when labelled as
obfuscated, as some parts are not. So, thanks to the simplicity of the functions, we can ensure
that obfuscated functions are entirely obfuscated. This results in clean data for our model.

Code Listing 6.1.1: Example of an original unobfuscated C function of the Syntia dataset
and the QSynth dataset

uint64_t syntia_unobfuscated1(uint64_t a, uint64_t b, uint64_t c,
uint64_t d, uint64_t e){↪→

uint64_t r = ((e & b) * d);
return r;

}

uint64_t qsynth_unobfuscated1(uint64_t a, uint64_t b, uint64_t c,
uint64_t d, uint64_t e){↪→

uint64_t r (((((b-(b&b))&b)*(b^e))+(((b^e)^b)*(e&e))));
return r;

}

When examining the original C files of both datasets, we notice a difference in how both sets are
devised. Both datasets implement functions that mix arithmetic operators (+, ∗, /) with bitwise
operators (AND, NOT, XOR, OR). However, the complexity of these functions differs significantly
between the two. The Syntia dataset consists of functions with at most three variables and
a maximum expression depth of 3. The QSynth functions have at most three variables, but
their instruction depth is significantly larger. On top of this, some of the QSynth functions
are complex representations of simpler functions. As an example, the QSynth function in
Code Listing 6.1.1 is equivalent to calculating e ∗ e. Hence, we could interpret the unobfuscated
expression as obfuscated already. It is improbable that a programmer would implement such a
function manually. For this reason, we argue that the Syntia dataset is more representative of
actual unobfuscated code. Due to the limited amount of data, we still opt to use both datasets
for our experiments.
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6.1.4 The Need For Another Dataset

In the previous subsection, we hypothesised that the Syntia and QSynth datasets are usable
for our problem, despite not being representative of real-life functions. To attest or refute this
claim, we require a more realistic dataset comprising programs that serve a purpose other than
benchmarking. We plan to use meaningful C programs, obfuscate them using the Tigress encode
arithmetic transform, and compile them with GCC -O2 to get usable program binaries. In this
way, we can generate a realistic dataset. The following paragraphs investigate some possible
sources of interesting C programs.

OpenSSL/TLS

The obvious choice when it comes to a realistic dataset is the OpenSSL/TLS Toolkit [65]. It
is a popular open-source toolkit for cryptography and SSL/TLS applications. Some examples
include the generation of public-private keys and the generation of TLS certificates. Whilst
OpenSSL/TLS aims to be completely transparent, cryptographic programs of a similar kind
might want to obscure their inner workings. Therefore, we plan to alter the OpenSSL/TLS
framework by obfuscating certain functions to obtain an obfuscated program binary of the
framework.

After figuring out how to manually build the toolkit, we are unfortunately stopped by the
capabilities of the Tigress obfuscator. As OpenSSL/TLS is an extensive toolkit, it contains many
C files, header files and an extensive build process. However, Tigress only accepts programs that
consist of one C file [66]. The reason is that Tigress needs to do whole-program analysis and
transformations. The makers of Tigress propose to merge the project into one C file, but this is
infeasible for such a big project. Consequently, we decide to abandon the OpenSSL/TLS Toolkit
as a data source and focus on smaller projects instead.

The Algorithms

With larger projects out of the picture, we turn towards the broader internet in search of usable
programs. We finally land on The Algorithms [67], a collection of Github repositories that
contain implementations of various computer science algorithms in multiple different coding
languages. The repository for the C language contains 308 C files. Almost all files contain one
standalone C program. The implemented algorithms range from number conversions to data
structures to hash computations. We decide to use this mix of programs as a representative
dataset. We will abbreviate The Algorithms as Algo in the remainder of this thesis for
conciseness. The next paragraphs describe how we turn this list of unobfuscated C programs
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into usable program binaries.

Figure 6.1 portrays the workflow for producing obfuscated binaries based on an Algo program.
Before obfuscating the program, the target function to obfuscate must be defined. To retrieve all
the functions in the 308 different C files, each file is first compiled using GCC. Then, the assembly
of the resulting binary file is reconstructed using objdump. A script then derives the different
function names by using regular expressions. These function names are then fed to Tigress,
which creates the corresponding obfuscated C files and uses GCC to create the obfuscated binary
simultaneously. After this process, a binary of the original file and a binary per obfuscated
function is available. Hence, our dataset is created.

Figure 6.1: Illustration of the workflow for turning The Algorithms programs into useful
binaries.

After applying this workflow on all the Algo programs, 143 programs remain. The others
either failed to compile with GCC or failed during the obfuscation by Tigress. We now analyse
the obfuscated functions to remove the ones that are wrongly labelled as obfuscated. This
happens when Tigress tries to transform a function without arithmetic. The result is exactly
the same function. After this filtering, we end up with 400 obfuscated MBA functions and 2075
unobfuscated functions.

6.1.5 Dataset Summary

After this data gathering and creation process, the entire dataset consists of the following data:

• The Syntia dataset, consisting of 500 unobfuscated simple benchmark functions and their
500 MBA-obfuscated counterparts.

• The Qsynth dataset, consisting of 500 unobfuscated simple benchmark functions and
their 500 MBA-obfuscated counterparts.

• The Algo dataset, consisting of 2075 unobfuscated functions and 400 MBA-obfuscated
counterparts. These functions are from real programs and should be more truthful to
real-life binaries.
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6.2 Feature Extraction

Currently, all the data is provided in the form of program binaries containing (un)obfuscated
functions. These binaries need to be streamlined into useful features for machine learning models,
in accordance with the design choices of Chapter 5. Subsection 6.2.1 describes the general data
processing, followed by the particular steps to obtain the bag-of-instructions and the register
dependency N-grams in Subsection 6.2.2 and Subsection 6.2.3.

6.2.1 Data Processing

Before deriving the actual features of the data, the program binaries are combined into a list of
functions and their attributes. For each function, the following attributes are stored:

1. The name of the program binary

2. The start address of the function

3. The name of the function

4. The instructions inside the function

5. The address of the instructions

6. A label indicating whether this function is obfuscated using MBA or not.

This information is statically inferred by applying custom regex filters on the assembly recon-
struction of the program binary, obtained through objdump. The information is stored inside a
csv file. This file can now be loaded as a pandas dataframe and altered into the wanted features.

6.2.2 Bag-of-instructions

The implementation of the bag-of-instructions is relatively straightforward. First, the entire
dataset is traversed to obtain all the different instructions. A specific order is defined that will
be used to express the frequency of each instruction in a function. For example, if there are
three instructions in total, the order is: [AND, OR, XOR]. If a function contains 3 times AND and
2 times XOR, the corresponding instruction frequency will be expressed in a list as [0.6, 0, 0.4].
This list forms the features for our classifier.
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6.2.3 Register Dependency N-Grams

Register dependency N-Grams list all read-after-write register dependency chains of length N
for a certain function. To achieve this, we must first derive all register dependencies inside the
program binary. We can then proceed to construct the available N-grams.

Deriving register dependencies

We use PIN to derive the register dependencies within a program binary [21]. PIN is a dynamic
binary instrumentation tool by Intel. It performs instrumentation at run time on compiled
program binaries by the use of pintools. A pintool defines the instrumentation process. This can
vary depending on the instrumentation purpose. In our case, we are interested in the register
dependencies. To this end, we use a data dependency pintool, developed in CSL, the computer
systems lab where this thesis is conducted. For each instruction, the pintool collects the other
instructions it depends on, both through memory as through registers. The output is a csv file
that contains instruction address pairs, together with what register/memory linked them. Code
Listing 6.2.1 shows an example of the output.

Code Listing 6.2.1: Example output after running the data dependency /textitpintool

Write_off addr, Register, Read_off addr
4128 , rsp , 4239
4128 , rsp , 18149
4150 , rax , 4128
4166 , rcx , 4128

When running the pintool, we run into a major issue: to retrieve the register dependencies,
the pintool dynamically runs the program binaries. So, the pintool will only capture data
dependencies for parts of the program that are actually executed. This means that we need to
provide the correct inputs for a program to work. If these inputs are not provided, the program
terminates with an error message and without performing any computations. In this case, the
data dependencies of most instructions are never captured.

The inputs for the Syntia and Qsynth datasets are straightforward: all the functions require
five input numbers to return a computed result. However, for the Algo dataset, every algorithm
expects different inputs. This requires an extensive manual process for all 143 programs. Due
to time constraints, we defined the inputs for 30 programs. This cuts down the usable Algo
dataset to 96 obfuscated functions and 599 unobfuscated functions.
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Constructing N-Grams

All the data is now available to construct N-grams for every function in a dataset. On the one
hand, we have a list of register dependencies between every two instruction addresses in the
program binary. On the other hand, we know for each function which instruction addresses
it contains. These two pieces now need to be combined to form all the N-grams of a specific
function.

Figure 6.2 shows an example to illustrate the complexity of the problem at hand. The assembly
of the program binary, along with the register dependencies of this binary are given. Suppose
that we want to derive all bigrams and trigrams of a function that starts at address 8 and ends
at address 24.

Figure 6.2: Example exercise for the construction of N-grams. We want to derive all bigrams
and trigrams for the function that starts at address 8 and ends at address 24.

The bigrams can be obtained by considering every pair of the register dependencies and only
keeping the pairs where the addresses are inside the wanted function. For the given example, this
results in the following pairs: (12,16) (12,24) (16,20) (20,24). After translating these ad-
dresses to instructions, the resulting bigrams are [(instr_c, instr_a) (instr_c, instr_d)
(instr_a, instr_e) (instr_e, instr_d)].

To obtain trigrams, register dependency pairs must be combined. This could be done by com-
bining all possible bigrams. This results in (12,16,20), (16,20,24) with the corresponding
trigrams: [(instr_c, instr_a, instr_e), (instr_a, instr_e, instr_d)].

We could implement this by using list comprehensions in python. While this approach looks
straightforward for this small example, it becomes impractical for larger functions inside large
program binaries, especially when bigrams link to each other, resulting in loops.

Instead of enumerating all the possible dependency chains, we opt for another approach. We
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model the register dependencies as a directed graph: every node corresponds to one instruction
address, every edge corresponds to a dependency.

Now, one graph G is generated for the entire program binary. When the N-grams of a specific
function need to be computed, we take the subgraph S that only contains nodes inside the
specific function. The N-grams are now generated by computing all the possible walks of length
N in the subgraph. This procedure is illustrated in Figure 6.3. We implement this procedure
using the NetworkX graph library in python. We achieve a speedup of 1000x compared to an
initial list comprehension approach. Computing trigrams for a given function now takes around
150 µs instead of 150 ms. This allows us to devise all N-grams of our dataset in near-instant
time. On top of this, the approach works for larger N-grams if this would be desirable.

Figure 6.3: Illustration of how N-grams of a specific function are devised (here for N=3). First
the entire program binary dependencies are mapped to a graph. Then the subgraph is taken that
only contains the instructions of the function. Lastly, all the paths of length N are considered.

6.2.4 Harmonizing features in a framework

For every function, we now know all the instructions, bigrams and trigrams. These can now be
converted into counts and frequencies to be fed to a machine learning model. To facilitate the
workflow, we implement these transformations to be compatible with the Scikit Learn python
framework [68]. This gives us easy access to an entire suite of machine learning tools, allowing
us to use our data in conjunction with these well-established implementations.

6.3 Feature Analysis

Using the described approach, we derive the instructions, the bigrams and the trigrams for the
Syntia dataset, the Qsynth dataset and the Algo dataset. We can now start with the analysis
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of the features. In parallel to the natural language processing field, we will refer to instructions,
digrams and trigrams as tokens. A token is the building block on which we extract the features,
like frequency. Depending on which features we use, token refers to either instructions, bigrams
or trigrams. In the following subsections, we investigate specific aspects of our datasets by using
various tables and visualisations.

6.3.1 Instruction amount

In the motivating example, we argue that a window size of 10 to 50 instructions is enough
to encapsulate an MBA-obfuscated segment. To assess this claim, we look at the instruction
amounts per function for all three datasets. The results are summarized in figure 6.4. As
expected, we see that the number of instructions increases when MBA obfuscations are applied.
We also see that our assumption about the window size is wrong. Figure 6.4a indicates that
Syntia has a minimum window size of 3 and a maximum window size of 26 for obfuscated
functions. Figure 6.4b shows that Qsynth follows the same trend as Syntia, albeit with slightly
larger windows as the original functions are slightly more complex. The minimum window size is
4, and the maximum window size is 72. When investigating functions with the minimum window
size, we notice that these are caused by a function outlining compiler optimisation. When we
manually remove this optimisation, the minimum size becomes 5 for both datasets.

The distribution of the Algo dataset is completely different from the two other datasets. This
is to be expected, as the Algo dataset contains a broader range of functions with different
purposes. The assumption that one function equals an obfuscated expression is also no longer
valid: most functions contain more than only mixed boolean arithmetic expressions. As a result,
our labels are noisier, as we already theorised in Section 6.1.3. Nonetheless, two outliers stick
out from the rest of the distribution, at an instruction amount of 975 and 903. We investigate
these functions to uncover the cause. It turns out that both obfuscations are from the same
program. Both functions contain some MBA expressions mixed between string assignments.
More specifically, string values are changed by changing each character individually. We decide
to drop these functions as they are not representative of MBA segments.
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(a) Syntia Dataset (b) Qsynth Dataset (c) Algo Dataset

Figure 6.4: Boxplots of the amount of instructions per function for each dataset. Please note
that the y-axis is not on the same scale for each plot.

In conclusion, the window sizes for obfuscated segments are outside of our assumed range.
However, we do notice that most of the functions lie within the range of our assumption. Nev-
ertheless, we want to be able to capture all sizes of MBA obfuscations and will thus increase
our windows from 5 to 100 for the evaluation of unknown program binaries. We do not increase
this further, as we attribute the larger window sizes of the Algo dataset to the “impurities” of
the functions.

6.3.2 Token frequency

To get an idea of the frequency of every token, we plot the distribution of these tokens for the
total dataset. The occurrence of every distinct instruction is counted and divided by the total
amount of instructions in the dataset. This is done for the MBA functions and the original
functions separately. The same thing is done for the bigrams and the trigrams. The results are
shown in Figure 6.5.



6.3. FEATURE ANALYSIS 59

Figure 6.5: Bar plots of the total frequency of every token compared to the amount of tokens
in the dataset. Please note that the y-axis is not on the same scale for each plot.

Right away, the mov instruction stands out from the others. It dominates all three categories.
The reason for the gap between the MBA and the original set, is because the MBA sets contain
more bigrams and trigrams in general, diminishing the frequency of the mov-mov dependency
chains. By looking at the data, we conclude that the mov N-grams occur due to the temporary
storage of register values in memory. When an instruction uses a value that is copied by a mov,
it is dependent on this mov instruction. While this is technically correct, we are interested in
the dependency between the instruction that last wrote to the mov source and the instruction
after the mov.

To eliminate these mov dependencies, we adapt our register dependencies pintool to model short-
cut dependencies instead of raw dependencies. Shortcut dependencies do not consider the inter-
mediary mov instructions and show the dependency between the prior instruction and the latter
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instruction instead. Figure 6.6 showcases the total total token frequencies after applying this
change.

Figure 6.6: Bar plots of the total frequency of every token compared to the amount of tokens
in the dataset, with shortcuts instead of raw data dependencies.

Enabling shortcuts uncovers a lot of pop-pop and push-push dependencies. When taking a
closer look at the dependencies, almost all of them turn out to be caused by rsp register. This
is a natural effect of the push and pop instructions. We decide to remove these chains as they
are not indicative of MBA or non-MBA segments. After this transformation, we are left with
the frequencies as shown in Figure 6.7. We can clearly distinguish feature differences between
MBA and unobfuscated segments. As an example, and-sub and and-imul are clear indications
of MBA obfuscations. The differences between the frequencies indicate that our features are
able to capture differences between the two types of segments.



6.3. FEATURE ANALYSIS 61

Figure 6.7: Bar plots of the total frequency of every token compared to the amount of tokens in
the dataset, with shortcuts instead of raw data dependencies and without push/pop dependency
chains.

6.3.3 Dataset comparison

With the resulting featureset, we are now interested in the differences between the datasets. For
this, we plot the average of the token frequency per function. The resulting bar plots for each
dataset are visualised in Appendix A. The following paragraphs summarise the main conclusions.

On an instruction-level (Figure A.1) the Syntia and Qsynth dataset are similar. The frequency
of each instruction is lower for the Qsynth dataset, as its functions are more complex. In both
cases, the average of the boolean and arithmetic instructions are different for original and MBA
code. The Algo dataset has a different frequency distribution. There are noticeably more
control transfer instructions. Again, this is likely due to the ‘impureness’ of the data: the Algo
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functions contain more than just an obfuscated expression.

When looking at the bigrams (Figure A.2), we notice that the unobfuscated Syntia functions
contain almost no bigrams. They are too short and simple. This gives a clear contrast with
the obfuscated functions. On the other hand, the unobfuscated Qsynth functions are long
enough to also contain bigrams. There are noticeable differences in the frequency of the bigrams
between the original and the MBA functions. However, these frequencies are not coherent with
the findings of the Algo dataset. This reaffirms the differences between the two sets. The same
reasoning is applicable for the trigrams (Figure A.3).

In conclusion, the features for the Syntia and the Qsynth data are quite similar. The differ-
ences are attributed to the slight increase in complexity for the Qsynth functions. However, the
Algo dataset is vastly different. We will thus test out model performance on 1) the combination
of the Syntia and Qsynth dataset, 2) the Algo dataset and 3) the entire dataset.

6.4 Model

After the feature analysis and the resulting data cleanup, we attempt to build a classifier that
can distinguish between original and MBA-obfuscated segments. The final goal is to use this
classifier in a varying sliding window approach to detect obfuscated segments in a program binary.
First, the classifier will be trained and evaluated on the function datasets that are devised in
Section 6.2. The evaluation of the classifier performance for any segment in a program binary
is investigated in Chapter 7.

6.4.1 Train-test split

To train the classifier, the data must first be split into a train set and a test set. For this process,
it is crucial to ensure that there is no data leakage between both sets. Otherwise, the model
evaluations would be invalid, as they are not indicative of the performance on unseen data. To
prevent data leakage, we first remove any functions with identical featuresets to prevent data
samples from appearing in both sets. We also ensure that an obfuscated function is always in
the same set as his original counterpart.

Now, every dataset is divided according to an 80%-20% train-test ratio. This ratio strikes a
balance between keeping enough data for meaningful training and having enough test data for
a representative evaluation. The resulting class distribution per set is shown in Table 6.1. The
Syntia and Qsynth dataset are relatively balanced. The Algo datasets only have around
10-15% MBA functions. Not every function in the Algo dataset contains arithmetic that can
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be obfuscated. This explains the gap between the two class distributions. This class imbalance
needs to be kept in mind when evaluating the performance of different models.

Dataset Set #MBA Functions #Original Functions % MBA
Syntia + Qsynth train 1170 874 57%

test 113 92 55%
Algo static train 294 1607 15%

test 73 387 16%
Algo dynamic train 140 1134 11%

test 13 112 10%
Total static train 1464 2481 37%

test 186 479 28%
Total dynamic train 1310 2008 39%

test 126 204 38%

Table 6.1: Overview of the class distribution for the different datasets after removing duplicates
and keeping original and obfuscated functions in the same set.

6.4.2 Evaluation Metric

Due to the imbalances in the data, we opt to use Matthews Correlation Coefficient (MCC)
[69] as a metric instead next to accuracy. Accuracy alone can mislead the observer when class
imbalances are present, as overpredicting the bigger class can still yield good accuracy. The
MCC metric is more robust in this scenario. The MCC formula is shown in equation 6.1. MCC
takes all the elements of the confusion matrix into account, compared to only the true positives
and the true negatives in the case of accuracy. It yields a value between -1 and 1, where a higher
score is indicative of a better model. For the evaluation of our model, we also show the accuracy
for completeness. However, our analysis will be based on the MCC.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6.1)

accuracy =
TP + TN

TP + FP + TN + FN
(6.2)
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6.4.3 Naive Bayes

We try to build a classifier by using a Multinomial Naive Bayes model. This type of model is
often used in the NLP field for bag-of-words models. The classifier works by choosing the class
with the maximum probability of that class given the input features:

y = argmaxy P (y|x1, x2, . . . , xn) (6.3)

By applying Bayes’ theorem and naively assuming that the features are not dependent on each
other given a certain class, this equation can be rewritten as:

y = argmaxy P (y | x1, . . . , xn)

= argmaxy
P (x1, x2, . . . , xn | y)P (y)

P (x1, x2, . . . , xn)

= argmaxy
P (y)

∏n
i=1 P (xi | y)

P (x1)P (x2) . . . P (xn)

= argmaxy P (y)

n∏
i=1

P (xi | y)

(6.4)

The prior P (y) and the posteriors P (xi|y) can now be inferred from the training data. The
features for this model are the raw counts of the different tokens. To every token, a constant
count is also added to prevent multiplications with posteriors of value 0. This process is called
Laplace Smoothing [70].

The Naive Bayes model is based on the naive assumption that features are not dependent on
each other, give a certain class. While this assumption does not hold for our data, this model
has empirically been shown to work even when the assumption is not valid [71].

For the implementation of this model, we use our Scikit Learn compatible featuresets (see
Section 6.2.4) together with the Scikit Learn Multinomial Naive Bayes Classifier. Table 6.2
and Table 6.3 summarize the results. The bag-of-instructions model is the most performant,
especially for the Algo dataset. The biggest factor is the difference in the amount of data
available: the bag-of-instructions featureset only needs the static program binaries while the
N-gram features require the dynamic instrumentation through PIN.
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Dataset Instructions Bigrams Trigrams
Syntia + Qsynth 0.65 0.70 0.51
Algo 0.96 0.90 0.87
All 0.69 0.49 0.42

Table 6.2: MCC scores for the multinomial naive bayes classifier using the token count as
features. The rows indicate the dataset on which the model was trained and tested.

Dataset Instructions Bigrams Trigrams
Syntia + Qsynth 0.82 0.85 0.75
Algo 0.98 0.97 0.97
All 0.84 0.75 0.75

Table 6.3: Accuracy scores for the multinomial naive bayes classifier using the token count as
features. The rows indicate the dataset on which the model was trained and tested.

The performance of the model trained on all the data is considerably worse than the model
trained on the individual datasets. This reaffirms the differences between the type of data we
are dealing with, as described before.

The reason for the bad performance when working with trigrams is likely caused by the sparseness
of the featureset. One obfuscated function often only contains a few trigrams, especially in the
case of the Syntia and Qsynth dataset. The Algo dataset does not suffer as hard because
the functions are bigger and contain more trigrams. When combining these two datasets, the
small class probabilities of the Syntia+Qsynth dataset are in stark contrast with the bigger
class probabilities of the Algo dataset, resulting in even worse performance when combined.
However, in the case of instruction features, the combination of the two sets should result in a
model that generalizes better on unseen data due to the added variance.
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7
Evaluation

After the data processing and the creation and training of the classifier, we are interested in
its performance for the problem at hand: enhancing the program synthesis workflow by only
synthesising the segments flagged by the classifier. The method to assess this performance is
explained in Section 7.1. The result of our work is then analysed in Section 7.2. Subsequently,
we compare our approach to the existing approach in Section 7.3.

7.1 Evaluation Method

In Section 5.2, we set forward two criteria for a better automatic synthesis approach. To test
these requirements, we first create an evaluation set of program binaries. Within these binaries,
we manually label every segment that contains an MBA-obfuscated expression. We then generate
every possible segment and look at the outcome of the classifier. Finally, flagged segments can
be fed to a program synthesiser, like Syntia.

67
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7.1.1 Evaluation Set

The constructed evaluation set consists of the following 30 program binaries:

1. Five program binaries that contain an obfuscated function similar to those found in the
Syntia or Qsynth dataset.

2. Five program binaries that contain an obfuscated function similar to those found in the
Syntia or Qsynth dataset, but compiled in a way that they are inlined in the main
function.

3. Five program binaries from the Algo dataset that each contain an obfuscated function.

4. Fifteen program binaries, consisting of the unobfuscated counterparts of the fifteen pro-
gram binaries listed above.

We ensure that this evaluation set is not present in the training datasets used in Chapter 6.
Otherwise, we would be dealing with data leakage and have nonmeaningful results.

For every program binary, we manually label the segments that correspond to an MBA-obfuscated
expression with the help of debug information from the compilation. Contrarily to the datasets
of Chapter 6, these segments do not necessarily correspond to entire functions. One function
can contain multiple MBA-obfuscated expressions. Those need to be separately located in order
to be simplified by program synthesis.

7.1.2 Segment labeling

To test the classifier’s performance, we generate all the possible segments of the evaluation
program binaries. Just like before, this is done with a varying sliding window approach, now
with a minimum window size of 5 and a maximum window size of 100. We categorise every
segment depending on what kind of instructions they contain:

1. Segments that correspond exactly to an MBA expression.

2. Segments that only contain part of an MBA expression.

3. Segments that are bigger than, but completely contain an MBA expression.

4. Segments that contain part of an MBA expression, along with some unobfuscated code.

5. Segments that contain no MBA expressions.
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Figure 7.1 clarifies the type of segments mentioned above.

Figure 7.1: Visualisation of the different type of segments. The MBA-obfuscated segment starts
at obf1 and ends at obf4. The green blocks show one segment.

Table 7.1 shows the amount of each category for the evaluation dataset. The inline dataset
contains five inline MBA expressions, but the separate functions are also present in the program
binary. When executing these binaries dynamically, these separate functions will never be called.
We keep this in mind when evaluating our model with dynamic features. For the bigrams and
the trigrams, we skip these segments.

Noticeably, one obfuscated Algo functions contained, on average, seven MBA expressions. This
confirms our hypothesis about the functions of the Algo dataset in Section 6.1.3. We can now
label every segment using our trained Naive Bayes classifier and look at the results for every
category. This is done in Section 7.2

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 5 272 12649 7870 65114 85910
Syntia+Qsynth Inline 5 (+5) 348 11111 8310 74584 94358
Algo 31 1012 14763 7883 117245 140934
Total 41 1632 38523 24063 256943 321202

Table 7.1: Amount of segments for each category, split by the different type of program binaries
in the evaluation set.

7.1.3 Program Synthesis

The final step would be to try and synthesize the segments that are labelled as MBA by the
classifier. In our motivating example, we did this by using Syntia. However, Syntia is only
a prototype implementation. During our tests, we ran into many issues like failed random
sampling and unexpected program failures. Because of these complications, we can not derive
meaningful results. Fortunately, T. Blazytko and M. Schloegel released an updated framework
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at the end of July 2021, called msynth [72]. However, due to the recency of the framework, we
did not have the time to integrate it into our research.

Instead of performing the synthesis, we use the results from our motivating example to estimate
the time it would take to synthesise the segments. We will further assume that the synthesis
of MBA-obfuscated expressions is always successful when the segment is exactly one MBA-
obfuscated expression. The actual results of the program synthesis are related to the program
synthesiser and thus outside of the scope of this thesis.

7.2 Performance

To attest the performance of our classifier for the localisations of segments, we look at the
percentage of MBA predictions for each segment category, outlined in Section 7.1.

The tables in this section display the performance of the Multinomial Naive Bayes Classifier
on the Evaluation set. The rows show the segment categories. The columns show the different
parts of the evaluation set. Every table corresponds to one dataset on which the classifier was
trained and the type of features used. The percentage indicates the number of segments that
were classified as MBA expressions.

The values should be interpreted as follows: for the exact MBA category, we want the percentage
to be as high as possible in order to correctly label as many MBA expressions as possible.
The no MBA values should be as low as possible: these segments offer nothing interesting
when synthesised. The mix values are preferably also low; while they can indicate to the
reverse engineer that an MBA segment is nearby, the synthesis result will not be meaningful.
The same reasoning holds for the In MBA category. However, this category will be highly
correlated with the Exact MBA category. The results of the Over MBA category are hardest to
understand. Some of these segments will still produce a meaningful synthesis result (e.g. when
they contain one more instruction than an exact MBA segment), but most of them will not
reveal the semantics of the obfuscated segments.

7.2.1 Syntia and Qsynth dataset

Table 7.2, Table 7.3 and Table 7.4 show the evaluation results of the classifier trained on the
Syntia and Qsynth dataset with instructions, bigrams and trigrams respectively. The bigram
and trigram versions heavily overpredict the MBA class. This is likely due to the sparseness
of these features for this dataset. The unobfuscated segments contain almost no bigrams, so
whenever a bigram occurs, it is almost instantly assumed to be MBA. The instruction featureset
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does not suffer from this problem.

For the instruction features (Table 7.2), the results are good for the Syntia+Qsynth part of
the data. For the inline functions, the performance is close to the performance of the normal
dataset. The prediction of inline segments is more arduous because inline segments can also
contain instructions of other parts of the main that are present because of restructuring by the
compiler. These instructions do not interfere with the semantics of the segment, but they do
complicate the detection.

For the Algo dataset, the performance is much lower. This is to be expected due to the different
nature of the dataset. Nevertheless, a sizeable amount of MBA expressions are still identified.
This is likely due to our prior hypothesis that the “clean” functions of the Qsynth and Syntia
data are meaningful for identifying MBA expressions in real-life functions.

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 98 % 0 % 2 % 0 % 1 %
Syntia+Qsynth Inline 90 % 21 % 0 % 2 % 1 % 1 %
Algo 45 % 56 % 11 % 12 % 1 % 3 %
Total 61 % 34 % 4 % 4 % 1 % 2 %

Table 7.2: Evaluation results of Naive Bayes classifier trained on the Syntia and Qsynth
dataset, using instructions as features.

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 99 % 100 % 95 % 87 % 89 %
Syntia+Qsynth Inline 100 % 100 % 100 % 97 % 90 % 91 %
Algo 81 % 84 % 73 % 74 % 97 % 93 %
Total 85 % 90 % 89 % 88 % 92 % 92 %

Table 7.3: Evaluation results of Naive Bayes classifier trained on the Syntia and Qsynth
dataset, using bigrams as features.
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dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 80 % 91 % 81 % 91 % 91 % 89 %
Syntia+Qsynth Inline 100 % 98 % 100 % 94 % 96 % 96 %
Algo 77 % 85 % 75 % 78 % 98 % 94 %
Total 80 % 89 % 84 % 88 % 95 % 93 %

Table 7.4: Evaluation results of Naive Bayes classifier trained on the Syntia and Qsynth
dataset, using trigrams as features.

7.2.2 Algo dataset

Table 7.5, Table 7.6 and Table 7.7 show the evaluation results of the classifier trained on the
Algo dataset with instructions, bigrams and trigrams respectively. Again, the model with
instructions as features performs the best. In this case, this is due to the larger amount of
training data for this problem. The other two models have far less training data due to their
need for dynamic execution. Even with this small dataset, the bigram and trigram models are
already better because the Algo dataset suffers less from the sparseness issue: the data samples
contain more trigram and bigrams in general.

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 97 % 27 % 27 % 0 % 7 %
Syntia+Qsynth Inline 90 % 23 % 50 % 39 % 9 % 24 %
Algo 90 % 92 % 89 % 56 % 1 % 14 %
Total 91 % 43 % 56 % 40 % 3 % 15 %

Table 7.5: Evaluation results of Naive Bayes classifier trained on the Algo dataset, using
instructions as features.

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 95 % 98 % 66 % 18 % 34 %
Syntia+Qsynth Inline 100 % 84 % 100 % 68 % 5 % 22 %
Algo 74 % 84 % 89 % 65 % 1 % 15 %
Total 80 % 86 % 95 % 66 % 7 % 22 %

Table 7.6: Evaluation results of Naive Bayes classifier trained on the Algo dataset, using
bigrams as features.
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dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 40 % 56 % 39 % 29 % 5 % 12 %
Syntia+Qsynth Inline 60 % 56 % 56 % 41 % 0 % 10 %
Algo 74 % 59 % 85 % 55 % 1 % 14 %
Total 68 % 58 % 62 % 42 % 2 % 12 %

Table 7.7: Evaluation results of Naive Bayes classifier trained on the Algo dataset, using
trigrams as features.

7.2.3 Entire dataset

Table 7.8, Table 7.9 and Table 7.10 show the evaluation results of the classifier trained on the
entire dataset with instructions, bigrams and trigrams respectively. All three models manage to
almost completely exclude No MBA segments. Their performance for Exact MBA is between 80%
and 89%. It would manage to synthesise almost all MBA expressions. The trigram models and
bigram models are considerably better than models trained on only certain parts of the dataset.
This shows that a combination of these datasets works quite well despite their differences.

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 97 % 8 % 14 % 0 % 3 %
Syntia+Qsynth Inline 90 % 21 % 21 % 22 % 2 % 10 %
Algo 87 % 86 % 83 % 47 % 1 % 12 %
Total 89 % 41 % 36 % 26 % 1 % 9 %

Table 7.8: Evaluation results of Naive Bayes classifier trained on all datasets, using instructions
as features.

dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 97 % 96 % 67 % 16 % 33 %
Syntia+Qsynth Inline 100 % 92 % 100 % 69 % 0 % 18 %
Algo 74 % 86 % 89 % 64 % 1 % 15 %
Total 80 % 89 % 94 % 66 % 5 % 21 %

Table 7.9: Evaluation results of Naive Bayes classifier trained on all datasets, using bigrams as
features.
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dataset Exact MBA In MBA Over MBA Mix No MBA Total

Syntia+Qsynth 100 % 81 % 95 % 49 % 5 % 23 %
Syntia+Qsynth Inline 100 % 68 % 100 % 61 % 0 % 17 %
Algo 74 % 62 % 87 % 57 % 2 % 14 %
Total 80 % 66 % 93 % 56 % 2 % 17 %

Table 7.10: Evaluation results of Naive Bayes classifier trained on all datasets, using trigrams
as features.

7.3 Comparison with initial approach

In this section, we investigate if our approach is better than the initial workflow described in
Section 5.1. To this end, we set forward two requirements for an improved design:

1. Limit the number of times that Syntia is invoked in order to cut down on computation
time and noise due to uninteresting results.

2. Be accurate enough in the identification of MBA windows in order to be able to recover
the wanted semantics.

Section 7.2 shows that the second requirement is partially met: our classifier approach is able
to correctly locate between 89% of the MBA expressions, depending on the featureset. For the
first requirement, we see that Syntia is invoked 9% of the time. This is considerably better than
synthesising every segment. The reverse engineer also knows that a flagged segment indicates
that the MBA segment is nearby, as almost all the No MBA segments are correctly ignored. So
the noise of unmeaningful synthesis results is reduced and can still indicate the nearby presence
of an MBA obfuscation.

For time efficiency, we time the different components of our approach on the evaluation set.
The time to generate all possible components, together with the register dependencies, took 80
seconds per program binary on average. The time to generate the different bigrams and trigrams
from the 30 program binaries (321202 segments) takes 4 minutes in total. The classification of
all those segments takes 30 seconds. For one program binary, the resulting average time is 90
seconds. This time is negligible compared to the program synthesis time. As the amount of
program synthesis executions is reduced by 91%, the overall time is roughly reduced by 90%.
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Conclusion

In this thesis, we designed a method to automatically locate mixed boolean arithmetic inside a
program binary. We set forward a classification approach that attempts to label every possible
segment in a program binary, obtained with a varying sliding window algorithm, as either
unobfuscated or MBA-obfuscated.

We started by examining existing data sources, like the datasets of the Syntia [59] and Qsynth
[64] framework, and concluding with the need for an additional dataset. We devised this set of
program binaries based on a collection of C programs called The Algorithms [67]. Instead of
manually labelling every MBA-obfuscated segment inside each binary, we opted for an automatic
approach that labels entire functions as obfuscated or unobfuscated.

From the three mentioned datasets, we derived three types of features: a bag-of-instructions,
register dependency bigrams and register dependency trigrams. To obtain these features, the
instructions were derived from an objdump assembly reconstruction of the program binaries. We
used a custom pintool to derive the register dependencies for each binary dynamically. These
results were then translated into a graph construction to efficiently retrieve the bigrams and
trigrams.

With the constructed features, we trained a Multinomial Naive Bayes classifier to differentiate
between MBA-obfuscated functions and unobfuscated functions. We then evaluated the classi-
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fiers ability to label any segment in a program binary as either an MBA-obfuscated expression
or non-obfuscated code.

Our classifier can identify 89% of the MBA-obfuscated segments when using instructions as
features and 80% of the MBA-obfuscated segments when using register dependency bigrams
and trigrams. It also accurately identifies segments that contain no MBA expressions. For
segments that contain part of an MBA expression, the classifier labels around 30% as MBA.
While this is not necessarily desirable, these segments indicate to the reverse engineer that an
MBA expression is somewhere in this area of the program binary.

Future Work

Our approach is based on supervised machine learning classification. In the scope of this thesis,
a classifier was used to locate MBA-obfuscated segments. However, with the procured data and
constructed features, this classifier can be extended to the classification and locating of other
types of obfuscation. The featureset can also be expanded by taking a look at the memory
dependencies between instructions.

For this particular research, a next step could be the omission of the sliding window component.
Instead, the following segmentation approach can be researched: train a classifier to classify the
first and last instruction of an MBA-obfuscated expression. In this way, the MBA-obfuscated
segment can be located in the program binary. The bigrams and trigrams can serve as features
for each instruction. These dependency chains give a sense of previous and future context to
each instruction.

In general, machine learning processes requires meaningful data in order to be trained and
evaluated correctly. This is a bottleneck for the adaptation of machine learning in the field of
reverse engineering. This field could benefit from more data sources to drive this kind of research
forward.
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Appendix A - Visualisation of the distribution of each dataset

This appendix contains bar plots for the distribution of the instructions, the bigrams, and the
trigrams for each dataset. For every dataset, the frequency of a token inside a function is
averaged over the entire dataset. Each dataset is split into a set of unobfuscated functions, and
a set of obfuscated functions. For the sake of interpretability, the tokens are ordered according
to their total frequency for the entire dataset. In this way, the different bar plots can easily be
compared. Please note that the scale of the y-axis is not always the same.



4

(a) Average instruction frequency per Syntia function.

(b) Average instruction frequency per Qsynth function.

(c) Average instruction frequency per Algo function

Figure 1: Bar plots of the average instruction frequency per instruction for each dataset.
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(a) Average bigram frequency per Syntia function.

(b) Average bigram frequency per Qsynth function.

(c) Average bigram frequency per Algo function

Figure 2: Bar plots of the average bigram frequency per instruction for each dataset.
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(a) Average trigram frequency per Syntia function.

(b) Average trigram frequency per Qsynth function.

(c) Average trigram frequency per Algo function

Figure 3: Bar plots of the average trigram frequency per instruction for each dataset.
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