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Abstract

The tribological performance improvement achieved by surface texturing applied on a linear
slider bearing is investigated in detail in a numerical study. Multiple optimization algorithms
are investigated in depth and compared to each other in order to select the best suited method
for the optimization of the dimple geometry. The local Nelder-Mead algorithm is found to be
the best performing one for cases with a low number of degrees of freedom. The bottom profile
of a three-dimensional dimple is optimized with this method and the physics behind the best
performing parameters are investigated to deduce the cause of the tribological improvement. It
is shown that the load-carrying capacity can increase by at least 15% if a sloped bottom profile
is used instead of a traditional flat bottom.
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the best performing one for cases with a low number of degrees of 

freedom. The bottom profile of a three-dimensional dimple is 

optimized with this method and the physics behind the best 

performing parameters are investigated to deduce the cause of the 

tribological improvement. It is shown that the load-carrying 

capacity can increase by at least 15% if a sloped bottom profile is 

used instead of a traditional flat bottom. 
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I. INTRODUCTION 

Surface texturing is used to increase the performance of 

tribological applications such as bearings, cylinder liners, seals, 

etc. The effect can be an increase in load-carrying capacity or a 

reduction in friction, which is beneficial because it increases 

the energy efficiency and thus it protects the environment. 

Numerous studies exist on the topic. A dimple geometry 

consists of two different parts: the shape of the boundary of the 

dimple and the bottom profile. The main focus in the existing 

articles is put on optimizing a predefined dimple geometry, 

although this is often a trial and error process of changing 

parameters and seeing what the effect on the performance is. 

The obtained configuration can be further improved by varying 

the bottom profile. A second approach is to start from an 

arbitrary dimple geometry where the shape is defined by a 

number of points, and to find the best performing geometry by 

applying a numerical optimization algorithm. Then, the 

resulting shape is effectively the optimal one, however, the 

focus is put on either the shape or the bottom profile 

optimization. Therefore, also these geometries can still be 

improved further for the bottom profile or shape respectively. 

The bottom profile is not very often subject of research and 

especially an optimization of both shape and bottom profile is 

lacking in literature. The goal of this thesis is thus to improve 

the performance of a dimple by optimizing the bottom profile. 

II. CFD  MODEL VALIDATION 

A. Modelling approach 

The Computational Fluid Dynamics software used is 

OpenFOAM. Therefore, the flow, which is assumed to be 

Newtonian and isothermal, is modelled with the Navier-Stokes 

equations [1] 

                                       
𝜕𝑝

𝜕𝑡
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Cavitation will occur in the dimples and thus it is important to 

model this in an appropriate way. The chosen cavitation model 

is a mixture model combined with a barotropic compressibility 

model, which ignores the effect of temperature on density. In 

the mixture model, one set of equations is solved for the 

complete mixture. The barotropic equation of state is defined 

as [2], [3] 

                                          
𝐷𝜌𝑚

𝐷𝑡
= 𝜓

𝐷𝑝

𝐷𝑡
,                                   (3) 

where ψ is the compressibility of the mixture, which is related 

to the speed of sound a via 

                                                 𝜓 =
1

𝑎²
.                                        (4) 

A linear compressibility model is chosen and therefore the 

speed of sound is defined as 

      𝑎 =
1

√𝛾𝜓𝑣 + (1 − 𝛾)𝜓𝑙

 with 𝛾 =
𝜌𝑚 −  𝜌𝑙,𝑠𝑎𝑡

𝜌𝑣,𝑠𝑎𝑡  −  𝜌𝑙,𝑠𝑎𝑡  
,      (5) 

  
where 𝜓𝑙  and 𝜓𝑣 are the compressibility of the liquid and 

vapour phase, and γ is the mass fraction of the vapour phase.  

The main performance parameter in this research is the load-

carrying capacity (LCC or W), which is the integral of the 

pressure over the wall. This LCC is made dimensionless to 

enable comparison of different configurations. For the two-

dimensional cases, this LCC is defined as 

                            𝑊 = ∫ 𝑝𝑑𝑥
𝐿

0

 , 𝑊̅ = 𝑊 ∙
ℎ0²

𝜇𝑈𝐿²
 ,                (6) 

and for three-dimensional cases 

𝑊̅ = ∫ ∫ (𝑝̅ − 1)𝑑𝑥̅𝑑𝑦̅
1

0

1

0

 with  𝑝 ̅ =
𝑝

𝑝0

, 𝑥̅ =
𝑥

𝐿
 , 𝑦̅ =

𝑦

𝐿
 . (7)   

B. CFD model for cases without cavitation 

Three simple 2D configurations are simulated, namely a 

converging wedge, a Rayleigh step and a tapered land pad. For 

these cases, the boundary conditions are defined as in Table 1. 

Since for incompressible cases the kinematic pressure is used 

in OpenFOAM, the absolute value is of no importance. The 



simpleFoam solver and a linear discretization scheme are used. 

The geometrical parameters are varied to find the configuration 

that results in the highest load-carrying capacity. For these 

three cases, this value is known as they are often investigated 

in literature. Here, the Rayleigh step case (Figure 1) will be 

discussed more in depth. The simulation properties are the ones 

used in the research of Shen et al. [4]. The results are depicted 

in Figure 2. The optimal height and length ratio found with 

interpolation are respectively 0.535 and 0.718, giving an 

optimal dimensionless LCC of 0.206. These values are in 

accordance with the results of Shen et al. [4] for the same 

configuration. 

Table 1: Boundary conditions for cases without cavitation 

Boundary 

Conditions 

Pressure Velocity 

Inlet/Outlet 0 Pa 𝜕𝑈

𝜕𝑛
= 0 

Moving Wall 𝜕𝑝

𝜕𝑛
= 0 

0.05-1 m/s 

Fixed Wall 𝜕𝑝

𝜕𝑛
= 0 

No-slip 

 

 

Figure 1: Geometry of a Rayleigh step 

 

 

Figure 2: Optimization of the geometrical parameters of Rayleigh step 

C. CFD model for cases with cavitation 

For a case with cavitation, the simplest configuration found 

in literature is a 2D groove texture. Jiang et al. [5] derived for 

this configuration the analytical expression of the pressure as 

function of the geometrical parameters, namely the groove 

width and depth. Hence, they were able to calculate the 

parameters leading to the highest LCC. After this, they 

simulated this optimal texture. Their cavitation model, Zwart-

Gerber-Belamri, is not identical to the one in this research, but 

both start from a mixture model hence they are rather similar. 

The boundary conditions for this case are given in Table 2. The 

simulation properties are identical to the ones used in Jiang et 

al.’s research. The cavitatingFoam solver and a QUICK 

discretization scheme are used. The simulation results are 

depicted in Figure 3. The overall pressure profile looks very 

similar to the one from the article, and the small deviation is 

explained by the different cavitation models. 

 

Table 2: Boundary conditions for case with cavitation 

Boundary 

Conditions 

Pressure Velocity 

Inlet 0.5 MPa 𝜕𝑈

𝜕𝑛
= 0 

Outlet 0.1 MPa 𝜕𝑈

𝜕𝑛
= 0 

Moving Wall 𝜕𝑝

𝜕𝑛
= 0 

10 m/s 

Fixed Wall 𝜕𝑝

𝜕𝑛
= 0 

No-slip 

 

 

Figure 3: Pressure profile over a groove texture with current model 

and the model from the research of Jiang et al. [5] 

III. OPTIMIZATION ALGORITHMS 

A. Selection of algorithms 

The goal is to perform an optimization to get the optimal 

geometry of a dimple. Therefore, an investigation of some 

common optimization algorithms implemented in the pygmo 

package [6] is carried out. A distinction is made between local 

and global algorithms. A local algorithm will try to find a local 

optimum in the search space, whilst a global algorithm will try 

to find the global optimum. Some of the algorithms are 

stochastic, which means that they possess a random factor in 

the process and that their final result will depend on the initial 

set of chosen individuals. Therefore, these algorithms do not 

guarantee to find the global optimum, but they will come close 

if enough generations are performed.  

For the local algorithms, a simplex method is chosen, namely 

Nelder-Mead, and two gradient-based algorithms, SLSQP and 

LBFGS. For the global algorithms, two evolutionary methods, 

namely the Genetic Algorithm and the Differential Evolution 

algorithm, and two swarm intelligence methods, namely the 

Particle Swarm Optimization and the Artificial Bee Colony 

algorithm, are selected.  If it would be necessary, a hybrid 

combination of a local and global algorithm can be used. In 

literature, often a local SQP algorithm, a global Genetic 

Algorithm, or a combination of both is chosen [7]–[9]. The 

choice of the researchers is based on general properties or on 

what is used in previous papers. 

B. Test case 

The 2D Rayleigh Step is chosen as the test case because it is 

already investigated in literature and in this research (see II.B), 

and therefore it is possible to deduce the optimal parameters in 

order to use them as reference optima. The optimization 

problem is then defined as maximizing the dimensionless load-

carrying capacity for the height and length ratio as design 

parameters. 



C. Optimal geometrical parameters and load-carrying 

capacity 

As the analytical formula for the calculation of the LCC is 

known for this simple case, the first step is to use this equation 

in an optimization to deduce the optimal geometrical 

parameters. Once they are found, these parameters are put in a 

simulation and the resulting value will be used as the optimal 

LCC for the numerical methods. The results of this study are 

given in Table 3. For all algorithms, this exact optimum will be 

compared with the newly found LCC via the formula 

𝜀𝐿𝐶𝐶 = 100
𝐿𝐶𝐶𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐿𝐶𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝐿𝐶𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙
.     (8) 

With this, the accuracy of the different algorithms will be 

compared, and also the computational time will be tracked and 

compared. 

D. Method for comparing algorithms 

1) Local algorithms 

To compare the performance of the local algorithms, it is 

sufficient to make sure that the initial starting point is identical 

for these algorithms. These optimization processes only need 

to be performed once as they will follow the same trajectory 

every time. Therefore, it is possible to compare the final 

optimal LCC and the necessary time for these algorithms. 

 

2) Global algorithms 

As already explained, for each global algorithm the final 

result will depend on the initial set of chosen individuals. Since 

the aim is to compare different global algorithms, this random 

factor needs to be reduced as much as possible. Therefore, a 

specific procedure is followed to make sure that the sensitivity 

for the initial population is not affecting the performance 

measurements.  

Populations of five to ten individuals are investigated and 

each optimization will stop at ten generations. The choice for 

this limited population size and number of generations is based 

on the knowledge that, for the final optimization of a 3D 

dimple, each simulation will take a long time, such that it is 

impossible to allow for more generations or higher population 

sizes. 

The comparison of the computational time is possible because 

there are sufficient runs per algorithm to average out the 

variations. 

E. Results 

A visual representation of the results is depicted in Figure 4. 

For each algorithm, the results for the best performing 

population sizes are used.  

 

From these results, it becomes clear that the local algorithms 

are outperforming the global ones in accuracy. This is 

explained by the fact that this Rayleigh case only has two 

geometrical parameters, and that it only has a global optimum 

and therefore these algorithms do not get trapped in local 

optima. As it can be seen in the figure, Nelder-Mead is the 

algorithm with the highest computational speed and also one of 

the methods with the highest accuracy. The performance of 

SLSQP is sensitive to the gradient settings, therefore it will not 

be used in this research. 

If the global algorithms are compared to each other, it can be 

seen that the Artificial Bee Colony algorithm outperforms the 

others. However, it is still not near the performance of the 

Nelder-Mead algorithm. If one knows that the search space has 

multiple local optima, a combination of using ABC and NM 

could be considered to explore the search space with the global 

method and avoid getting stuck in these local optima.  

It can thus be concluded that for a case with a low number of 

degrees of freedom, Nelder-Mead will perform significantly 

better than the other options.  

IV. MESHING AND SIMULATING A 3D DIMPLE 

A 3D dimple is described with a parametric equation 

{

𝑥(𝑡) = 𝑠1𝑠𝑖𝑛(𝑡) + 𝑠2𝑠𝑖𝑛²(𝑡) + 𝑠3𝑠𝑖𝑛3(𝑡) + 𝑠4𝑠𝑖𝑛4(𝑡)

𝑦(𝑡) = 𝑐1𝑐𝑜𝑠(𝑡) + 𝑐2𝑐𝑜𝑠3(𝑡)

𝑧(𝑡) = 𝑓(𝑥(𝑡) − 𝑥𝑚𝑖𝑛)

  (9) 

where f can be any function.  

   The input parameters for the creation of the mesh are s1, s2, 

s3, s4, c1 and c2 for the shape, and the specific parameters for the 

bottom profile. The tool used to make the mesh is blockMesh. 

    First, the mesh quality is checked for different shapes. It is 

clearly noticed that if the shape has sharp edges, the mesh 

quality is bad. Therefore, the shapes need to be restricted to 

smooth edges. Then, the bottom profiles are investigated. It 

appears that the curved bottom profile gives rise to too much 

non-orthogonal cells, which causes a pressure rise in certain 

cells from the beginning of the simulations. Therefore, the 

bottom profile will be limited to a first order function, meaning 

that a flat bottom and sloped profiles are possible. If the dimples 

are too shallow, skewness problems arise. Therefore, the depth 

of the dimple needs to be at least 0.3 times the film thickness. 

A dimple in a square unit cell is simulated with cyclic 

boundary conditions for the inlet and outlet. The boundary 

conditions are given in Table 4. The simulation properties are 

based on commonly used ones in literature and are given in 

Figure 5. The linear solvers and discretization schemes are set 

based on trial and error. As cavitation will be present, the 

cavitatingFoam solver is used.  

Table 3: Optimal geometrical parameters and LCC for 2D Rayleigh 

Step 

Figure 4: Performance results local and global optimization 

algorithms 



Table 4: Boundary conditions for three-dimensional dimple 

 

 

 

 

 

 

 

 

The average computation time for one simulation is eighth 

hours on 18 cores. As an optimization process needs numerous 

simulations, it is preferred to further limit the optimization 

problem. Therefore, the shape of the dimple is fixed and the 

focus is put on the bottom profile optimization. The choice fell 

on a shape that is elongated in the x-direction (Figure 6).  

Figure 6: Shape of the dimple 

V. BOTTOM SHAPE OPTIMIZATION 

A. Influence of the dimple depth ratio 

It is assumed that a dimple has an optimal dimple depth ratio. 

This ratio is defined as 

                                             𝑑𝑔 =
𝑑

ℎ0

                                    (10) 

with h0 the film thickness. It is important to know this optimal 

dimple depth for a flat bottom to compare it with the 

performance of first order bottom profiles. To have a 

reasonable computational time, a real optimization for this 

problem is not performed. Separate configurations are 

simulated and the results are depicted in Figure 7. It is clear that 

there is an optimal dimple depth, which is near the film 

thickness height.  

Figure 7: Simulation results for different dimple depth ratios 

The physics behind the different configurations are 

investigated. Figure 8 shows the vapour volume fraction, which 

means that the region which is not coloured dark blue 

represents the cavitation region. The streamlines are depicted 

as well. It is clear that these streamlines in (a) stay ordered over  

the whole channel length, whilst in (c) a large vortex region is 

present. In (b), representing the optimal dimple depth, the 

vortex just occurs. The physical explanation of a vortex is as 

follows; due to the velocity of the upper wall, viscous forces 

are exerted on the flow. The lubricant at the bottom feels less 

of these forces, and if the dimple depth becomes too large, then 

the lubricant flowing in the dimple can no longer escape the 

dimple. Hence, a vortex is created. The cavitation region and 

the vortex region co-exist. The optimal flat configuration is 

thus found near the depth that is just large enough for the vortex 

to be created. This optimal configuration has a dimensionless 

LCC of 0.001849 and this value will be taken as the reference 

value in the study of the first order bottom profile.  

Figure 8: Vapour volume fraction and streamlines for different dimple 

depth ratios a) 0.7 b) 1 c) 1.3 

B. Influence of the slope 

The optimization will be limited to first order bottom 

profiles. These profiles are described with the following dimple 

depth ratios 

                           𝑑𝑙 =
𝑑left

ℎ0

  , 𝑑𝑟 =
𝑑right

ℎ0

 ,                    (11) 

 

with dleft and dright the depth on the left and right side of the 

dimple (Figure 9).  

Figure 9: Parameters for first order bottom profile 

   First a wide range of different configurations are simulated to 

get an idea of what to expect for the different slope 

configurations. A first thing that is noticed, is that the 

decreasing-slope configurations (dleft<dright) perform 

consistently worse than the flat bottom profiles. The increasing-

slope configurations (dleft>dright), on the other hand, have lower, 

equally or higher LCC values. Again the physics are studied 

(Figure 10). It appears that for the decreasing-slope 

configurations, a vortex is generated on the deepest side, 

leading to a worse pressure build-up compared to the flat 

Boundary 

Conditions 

Pressure Velocity 

Inlet/Outlet Cyclic Cyclic 

Front/Back 0.1 MPa 𝜕𝑈

𝜕𝑛
= 0 

Moving Wall 𝜕𝑝

𝜕𝑛
= 0 

1 m/s 

Fixed Wall 𝜕𝑝

𝜕𝑛
= 0 

No-slip 

Figure 5: Simulation properties for the 3D dimple 



bottom. A flat bottom looks similar to a Rayleigh step which is 

known to perform very well in situations without cavitation, 

meaning that the pressure build-up is the highest in these 

configurations. However, due to the cavitation happening here, 

the flat bottom results in a larger cavitation zone compared to 

the increasing-slope configurations, and although the pressure 

is higher for the best performing flat bottom,  the larger 

cavitation zone results in a lower LCC than the increasing 

profile. 

 

Figure 10: Vapour volume fraction and streamlines for a) decreasing 

slope b) flat bottom c) increasing slope 

   A second observation found in the results of these 

preliminary simulations, is that there clearly is a region with 

higher LCC values and a region with relatively low values for 

the increasing-slope configurations. The high values are found 

for dimples with a right dimple depth which is lower than 

1.2∙h0, whilst the low values are found for depths higher than 

1.2∙h0. A parametric study is conducted for the region with 

highest LCC values to better understand the influence of the 

parameters. The ratio dl will therefore be varied between 1.4 

and 2.8 in steps of 0.2, whilst dr will be varied between 0.4 and 

1.2 in steps of 0.2. The results of these simulations are given in 

Figure 11.  

Figure 11: Visual representation of the results of the parametric study 

The bright yellow area indicates the simulation with the 

highest dimensionless LCC. If this value, 0.002077, is 

compared to the highest value from the flat bottom 

configurations, 0.001849, an increase in performance with 12% 

is observed. This thus proves that the flat bottom is not the best 

performing profile. The physics are again studied. In Figure 12 

the depth on the right side is kept constant. It is noticed that if 

the depth on the left side increases, the vortex region starts to 

expand. As there is a balance between the vortex region and the 

cavitation region, the growing vortex region reduces the 

cavitation region. Configuration (a) has a higher pressure than 

(b), but due to the larger cavitation zone, its LCC is lower. 

Configuration (c) has a smaller cavitation zone, but here the 

pressure build-up is lower than in (b), which also results in a 

lower LCC.  

Figure 12: Vapour volume fraction combined with streamlines for 

fixed dr=0.6 and dl equal to a) 1.8 b) 2.4 (highest LCC) c) 2.6 

In Figure 13 the depth on the left side is kept constant. Now 

the vortex region has an almost constant size, but the location 

of this vortex is pushed to the left, which reduces the cavitation 

zone. Again, an optimal balance between the cavitation and 

vortex region exists for which the LCC is highest.  An 

additional observation from these simulations is that for each 

left dimple depth, an optimal slope exists. If the left side 

becomes deeper, the optimal slope increases. This is again 

related to the optimal balance between these regions.  

 

Figure 13: Vapour volume fraction combined with streamlines for 

fixed dl=2.4 and dr equal to a) 0.4 b) 0.6 (highest LCC) c) 1 



C. Nelder-Mead Optimization 

The final step is to perform a numerical optimization. 

Because of the thorough parametric study, it is possible to scale 

down the design space of the optimization problem. The 

parameters to be optimized are dl and dr and the bounds are set 

to [1.8,2.7] and [0.4,0.9] respectively. A flow chart for this 

process is given in Figure 14. 

The intermediate results after 27 iterations of the 

optimization indicate that the optimum will have a dl ratio 

between 2.1 and 2.2, and a dr ratio between 0.5 and 0.6. This 

region also performs well in the parametric study. The slope of 

the configurations on these boundaries is calculated, and from 

this, it is deduced that the optimal slope will have a value 

between 3.75 and 4.25. The best performing configuration of 

the intermediate results of the optimization has a load-carrying 

capacity of 0.002127. This is an increase by 15% for the sloped 

configuration, compared to the best value from the flat bottom 

configurations, 0.001849. The actual result from the 

optimization will presumably result in an even higher load-

carrying capacity.  

 

Figure 14: Flow chart for optimization with Nelder-Mead method 

VI. CONCLUSIONS 

The improvement in load-carrying capacity by using a first 

order bottom profile in the dimples of a linear slider bearing is 

investigated in a numerical study. Multiple optimization 

algorithms are investigated and the local Nelder-Mead method 

is proven to be adequate for cases with a low number of degrees 

of freedom. Adding an increasing slope to a dimple can 

increase the load-carrying capacity of this dimple with at least 

15% compared to a regular flat bottom. The main mechanism 

behind this is the balance between the cavitation region and the 

vortex region. A change in operating conditions will impact this 

performance, however, this is neglected in this preliminary 

study. This work can thus be seen as a starting point for further 

optimizations of dimple shapes.  
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Chapter 1

Introduction

There is more than ever a need for energy efficient and durable machine design. The associated
benefits, which include cutting down costs and protecting the environment, are straightforward
and worth the effort for every company in this industry. Bearing in mind this evolution, re-
searchers have shown more and more interest in the effects of surface texturing of machine
components over the past few years since it has the potential to increase the load-carrying
capacity or reduce friction, meaning it is possible to lengthen the lifetime of components and
increase the energy efficiency.

A surface texture is an intentional dimple, protrusion or groove that is applied to a surface
by for example laser surface texturing or etching. A texture design is defined by its shape,
dimensions and position. All these parameters have an influence on the tribological performance
of a texture. Moreover, optimal texturing parameters depend on the type of contact and on the
operating conditions like the velocity of the moving component or the temperature, which makes
it necessary to tailor these parameters to each specific application. Designing and manufacturing
the textured surfaces involves a large cost since it needs to be applied with high precision on
micro-scale surfaces, which is a motivation for performing numerical simulations beforehand,
determining the optimal design parameters depending on the individual conditions.

In this thesis, the focus is put on linear slider bearings and the design of an optimal dimple
geometry. A textured isothermal hydrodynamic slider bearing will be modelled in the CFD
software OpenFOAM [1] and the selected design parameters will be optimized to maximize the
load-carrying capacity. In literature, two distinct methods for optimizing a geometry exist.
The first one starts from a fixed shape and bottom profile of the dimple, where in most cases
one of these two shapes is optimized by changing the parameters one by one and observing
the influence on the performance. This is thus based on trial and error and it often does not
lead to the optimal shape. Only few studies use an optimization algorithm for these predefined
dimples. A more recent approach starts from an arbitrary shape or bottom profile of the dimple
where one of these shapes is defined by a number of points and the optimal design is found with
an optimization algorithm. None of these approaches focuses on optimizing the texture shape
and bottom profile together. First, a model from OpenFOAM is selected for three simple two-
dimensional cases, namely a converging wedge, a Rayleigh step and a tapered land pad, where
the lubricant is modelled as an incompressible fluid, and validated against literature. The same
is done for a simple two-dimensional case with cavitation, where the lubricant is modelled as a
compressible fluid. A reference paper is used as a benchmark problem to validate the selected
model. Next, the optimization algorithms from the pygmo python package [2] are investigated
and tested on two of the aforementioned cases. Then, in a final stage, a three-dimensional dimple
is described with parametric equations of which the variables will be optimized. The focus of
this optimization is on the bottom profile with the aim to prove that this has a significant
effect on the optimal design of dimples. A sensitivity study will be performed to discover which
parameters have the most important influence on the performance.
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Chapter 2

Literature review

2.1 Introduction

As discussed in chapter 1, surface texturing is a way to enhance the tribological performance of
mechanical components such as bearings, cylinder liners and seals, in terms of reducing friction,
increasing load-carrying capacity or both. The idea originated in the sixties from Hamilton
and his research group [3]. They observed in experimental tests that micro-irregularities on
a surface could increase the load-carrying capacity of seals. However, only in the last few
decades texturing received more attention after Etsion and his research group [4] were able
to predict mathematically the increase in load-carrying capacity in mechanical seals textured
with spherical dimples in 1996. From then on, motivated by the promising results, many
researchers started to have interest in this phenomenon, resulting in a significant amount of
papers investigating and optimizing the effect of surface texturing.

This literature review will focus on bearing applications and in particular on the optimization
of the geometrical parameters of a surface texture. First, some papers of researches performing
experimental tests are investigated to verify the possibility of making the theoretical textures in
real life. Then, since the major part of the studied literature deals with numerical simulations
in CFD software, it is important to go deeper into the theoretical modelling. The flow of the
lubricant is modelled with either Navier-Stokes equations or with a simplified Reynolds equation.
Cavitation plays an important role on the effect of texturing and therefore it deserves specific
attention in the modelling process. After this, the performance measurement and parameters
affecting it are discussed. Finally, the optimization is examined in detail. Two main approaches
in numerical optimization are distinguished; a more standard approach which starts from a
fixed shape of a dimple and a more recent approach which starts from a more arbitrary shape
where the optimization involves using optimization algorithms. Therefore local and global
optimization algorithms are reviewed at the end of this literature review.

2.2 Tribology of bearings

Bearings are mechanical components which reduce the friction and transfer loads between rotat-
ing or oscillating machine elements including piston rings, cylinder liners and automotive com-
ponents. Between those components, a lubricant is applied which makes the motion smooth.
This lubricant film ensures hydrodynamic pressure which separates the surfaces. The motion of
the mating components sliding relative to each other will generate heat. The lubricant between
them will degrade and its viscosity will decrease, resulting in a lower hydrodynamic pressure.
Eventually, the asperities will come into contact, resulting in wear by ploughing, abrasion and
other phenomena [5, 6]. This demonstrates that it is of utter importance to study the possibility
of increasing the hydrodynamic pressure by surface texturing.
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2.3 Surface texturing

Surface texturing can be applied in two ways, namely with dimples or protrusions as shown in
figure 2.1. Dimples are the preferred method as they have some advantages over protrusions.
The first one is that a dimple has a larger real contact area which results in a lower average
contact pressure and as a consequence less wear can occur. A second advantage is that, if wear
does occur, the wear debris can be collected in the dimple volume, hence the debris can do less
harm. This is not possible with protrusions. Because of these clear advantages, all researchers
in the investigated papers used dimples.

Figure 2.1: Types of surface texture [7]

2.3.1 Techniques

The growing interest in texturing over the past decades established a need for fast and accurate
manufacturing. Hence, various techniques were developed to create surface textures. Laser
surface texturing appears to be the favored method as is reflected in the amount of papers
performing experimental tests with this technique [8, 9, 10, 11, 12, 13, 14]. This is because
laser texturing gives the possibility of an excellent control in shape and size for a wide range
of materials, whilst having short processing times according to Ibatan et al. [6]. However, by
observing figure 2.2, it is revealed that laser texturing does not necessarily result in accurate
shapes. From the figure it is clear that there is a round corner instead of the intended sharp
edge and some ’individual steps’ are visible instead of a smooth bottom surface. Zhang et al.
have manufactured some more advanced shapes like a fish shape (fig 2.3) [13, 14]. As a result
of the laser ablation technique, blurs around the edges arose which have a higher hardness and
therefore they are hard to remove with polishing or lapping. Those blurs reduce the real contact
area and as such increase the local contact stress, resulting in an uneven stress distribution which
can have a negative effect on the performance.

Figure 2.2: Dimple topography by laser texturing [11]
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Figure 2.3: Dimple topography by laser texturing [14]

Another technique found in the studied literature is the use of a circuit board engraver
for manufacturing spherical dimples [15]. This method results in a relatively accurate dimple
shape. In almost all experimental tests performed in literature, a finishing treatment like lapping
or polishing is applied. Another technique executed by Yan et al. [16] is electrochemical
micromachining. Here, a ductile cast iron plate is coated with a chromium layer, after which
a process combining photolithography and electrolytic etching is conducted. There is no heat
affected layer, it is a fast process and no finishing final step needs to be applied, making it a
very suitable technique according to the authors. A dimple produced with this method can be
seen in figure 2.4.

Figure 2.4: Dimple topography by electrochemical micromachining [16]

Lasagni et al. [17] made an overview of the possible surface texturing techniques and their
surface fabrication speed and structure size (fig 2.5). A maximum precision of 0.1 µm is achiev-
able in multiple-step processes, whilst the maximum precision for a one-step process is 0.5 µm.
Surface roughness is another factor to take into account. The ground surfaces in bearings have
a Root Mean Square roughness of around 0.9 µm , which can have a limited positive influence
on the load-carrying capacity [18]. The dimple itself also has a roughness on the inside, which
is for example a typical sinusoidal roughness if the dimple is made with laser surface texturing.
According to Qiu et al. [19] the wavelength and amplitude of the roughness determine the
effect on the load-carrying capacity, as can be seen in figure 2.6. For large wavelengths and
large roughness heights, the load-carrying capacity can even increase by 10%.
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Figure 2.5: Achievable surface fabrication speed and structure size for different manufacturing
techniques [17]

Figure 2.6: Influence of the sinusoidal roughness inside a dimple on the load-carrying capacity
[19]

It can be concluded that although literature claims that a manufacturing technique has
excellent shape control, it is always important to take the limitations mentioned in the previous
paragraphs into account.

2.3.2 Effect of texturing

Adding dimples to a surface can have a positive effect observed as an increase in load-carrying
capacity or a decrease of the friction coefficient, however it can also be detrimental. Therefore,
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it is of utter importance to understand how texturing affects the performance and how it is
affected by the texture geometry itself and other parameters like operating conditions and
material properties. This will be discussed further on in this review.

The main effect of texturing depends on the lubrication regime. On the one hand, with
boundary lubrication the load is carried by the mechanical contact of asperities. If the harder
material comes in contact with the softer material, it will break off the peaks of the asperities
of the softer material, resulting in scratches and grooves on this softer surface. This is called
two-body abrasion. Three-body abrasion occurs when foreign debris enters the space between
the surfaces. A dimple can trap this wear debris and thence reduces the abrasion wear rate
[6]. If there is full or mixed lubrication, the load is respectively partially or fully carried by
the hydrodynamic pressure build-up. If then the load is kept constant, the film thickness
between the surfaces can increase. If the film thickness is kept constant, then the converging
film generates hydrodynamic pressure which ensures an additional lift. Most researchers are
interested in these latter conditions and thus this is the condition in the followings of the thesis.

2.4 Modelling approach

2.4.1 Flow modelling

The motion of a viscous fluid can be described by the Navier-Stokes equations. This set of
partial differential equations governs the conservation of momentum and the conservation of
mass. For a Newtonian fluid, the continuity equation can be written as [20]

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

and the momentum equations are

ρ
Du

Dt
=
∂(−p+ τxx)

∂x
+
∂τyx
∂y

+
∂τzx
∂z

ρ
Dv

Dt
=
∂τxy
∂x

+
∂(−p+ τyy)

∂y
+
∂τzy
∂z

ρ
Dw

Dt
=
∂τxz
∂x

+
∂τyz
∂y

+
∂(−p+ τzz)

∂z
− ρg.

(2.2)

In the continuity equation, the first term denotes the mass accumulation, whilst the sec-
ond term denotes the mass flux. The terms in the momentum equations are respectively the
momentum change and the inertial contribution on the left hand side, and the body force, the
surface force due to the pressure gradient, and the surface force due to the viscous stresses on
the right hand side. [21]

The Navier-Stokes equations require a large computational effort and as a consequence a
large computational time. It is possible to solve them in an acceptable time limit with recent
developments in computational capabilities, however, many researchers make assumptions about
the state of the flow to simplify the set of equations which should be solved. A thin film geometry
can be assumed if the flow is laminar, the inertia and body forces are negligible, as well as the
film curvature. If one can assume no-slip boundary conditions besides this thin film geometry,
the resulting Reynolds equation is

∂ρh

∂t
− ∂

∂x
(
ρh3

12µ

∂p

∂x
)− ∂

∂y
(
ρh3

12µ

∂p

∂y
) = − ∂

∂x
(ρh

u1 + u2

2
)− ∂

∂y
(ρh

v1 + v2

2
)+ρu2

∂h

∂x
+ρv2

∂h

∂y
. (2.3)

Additional assumptions are made in most papers. The first term represents the accumulation
of the lubricant, which can be set equal to zero in steady state. The lubricant is assumed to
be incompressible. As only one surface moves relative to the other, u1 is constant and different
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from zero and u2 is set equal to zero. No side-flow is assumed, such that v1 and v2 are zero.
Finally, the Navier-Stokes equations can be simplified to the Reynolds equation which is solved
in most papers (see table 2.1)

∂

∂x
(
h3

12µ

∂p

∂x
) +

∂

∂y
(
h3

12µ

∂p

∂y
) =

u

2

∂h

∂x
, (2.4)

where h is the film thickness, µ stands for the dynamic viscosity of the lubricant, p for the
pressure and u for the sliding velocity of the moving surface.

Since a lot of assumptions were made to come to this simplified equation, its validity should
be checked before one can use it. The research of Li and Chen [22] showed that the simplified
Reynolds equation can only be used when the texture depth is smaller than 10% of the mini-
mum film thickness. Dobrica and Fillon [23] focused on a rectangular two-dimensional groove
and calculated two indicators ∆1 and ∆2, representing the average absolute variation in local
pressure for Reynolds and Navier-Stokes and the average variation in load-capacity for Reynolds
and Navier-Stokes respectively. If those indicators have a value below 10, then the error when
using the simplified Reynolds equation is acceptable (fig 2.7). They concluded from these ob-
servations that the Reynolds equation is accurate enough if the dimple aspect ratio λ, which is
the ratio of dimple length over dimple depth, is sufficiently large and the Reynolds number is
smaller than ±8, which indicates that the inertia force is much smaller than the viscous force.
These criteria are of course not fixed values but guidelines and they should always be checked.
Gherca et al. [24] verified if they could use the Reynolds equation based on these values and
therefore they made sure that the Re number was below 0.1 and λ had a minimum value of 400.
Multiple researchers developed criteria for other simple shapes like the spherical dimple [25],
and these criteria are used for validation before using the simplified Reynolds equation [26].

Figure 2.7: Validity of the Reynolds equation [23]

Some researchers persisted to use the Reynolds equation because of its simplicity whilst
their configuration and operating conditions included inertia. This is possible if the Reynolds
equation is adjusted accordingly. Dobrica and Fillon [23] showed that this gives an accurate
result by comparing the result of the adjusted equation, which takes inertia into account, with
the Navier-Stokes simulation (fig 2.8).
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Figure 2.8: Extension of the validity of the Reynolds equation [23]

If one wants to take the temperature effects into account, the energy equation should be
implemented into the simulations. Kumar et al. [27] studied the combined effect of temperature
generation and deformation in convergent slider bearing applications. If the pressure is large,
deformation of the surface happens, which results in a decrease in pressure. As the temperature
of the lubricant rises due to shear, the viscosity decreases which lowers the pressure even more
and therefore the load-carrying capacity decreases. It is concluded that the temperature effect on
pressure is important if the elastic deformation effects are considered as well. Papadopoulos et
al. [28] compared isothermal and non-isothermal flow in a parallel thrust bearing and concluded
that thermal effects play an important role when a combination of high load and high speed is
present.

The energy equation is expressed as [20]

ρ
DE

Dt
= −∇ · (ρu) + [

∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z

+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z
] +∇ · (k∇T ) + SE .

(2.5)

The left hand side denotes the rate of increase of the energy and the terms on the right hand
side are the energy flux due to the surface forces, heat conduction and body forces.

2.4.2 Cavitation

The phenomenon of cavitation is widely investigated. It occurs when the pressure of the flow
becomes lower than the ambient pressure due to the diverging parts of a texture. Air and other
gases which were dissolved in the lubricant will be released. There are two different approaches
to model this film rupture. The first one being a mathematical approach, the second one a
physics based approach.

Mathematical approach

In literature a clear preference for the mathematical approach, which is using boundary condi-
tions for the boundary between the full film and the ruptured film, is observed when the flow
is modelled with the Reynolds equation (table 2.1). From the research of Ausas et al. [29]
it is concluded that only mass-conserving models predict correctly the cavitation region and
therefore they should be used when modelling dimples. A mass-conserving model is defined by
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Braun et al. [30] as a model that deals correctly with the moving boundary between the vapour
and liquid phase of a bubble, and the mass needs to be conserved in the cavitation region and
on its boundary. Figure 2.9 gives an overview of the most commonly used models in literature.
In the Half-Sommerfeld boundary condition, also called the Gumbel boundary condition, the
film rupture starts around the minimum clearance of the film and in the divergent region the
pressure of the flow is limited by the cavitation pressure [30]. This however results in a discon-
tinuity and it is not a mass-conserving model. As a result, only some researchers decided to
use this boundary condition. Amongst them are Wang et al. [31], who recognize the fact that
this model is not as accurate as others, nevertheless they persist to use it with as arguments
that it is a simple model, relatively fast and it can meet certain qualifications in a particular
error range. The Reynolds or Swift-Stieber boundary condition resolves the discontinuity issue
by assuming a zero pressure gradient at the origin of the divergent region, but this boundary
condition is still not mass-conserving and it underestimates the cavitation area [30, 32]. Both
the above solutions do not consider the possibility of pressures below cavitation pressure or a
variation in pressure in the cavitation region. There is no clear preference in literature for one of
these two boundary conditions as can be seen in table 2.1. A more accurate representation is the
Jakobsson-Floberg-Olsson or JFO boundary condition which is mass-conserving. It describes
the film rupture and reformation more accurately than Half-Sommerfeld and Reynolds as it
allows for pressures below cavitation pressure and the pressure is not constant in the divergent
region. Qiu et al. [33] state that the different models are quite close for small dimples, but as
the dimple size increases, the accuracy differs a lot.

Figure 2.9: Mathematical cavitation models [30]

Physics based approach

The second, physics based approach of representing the cavitation, is not widely used in litera-
ture (see table 2.1). Three main models exist to deal with multiple phases, namely the volume
of fluid model, the mixture multiphase model and the Eulerian multiphase model. In the two
multiphase models, the vapour and liquid phases are treated as interpenetrating continua. The
mixture model solves one momentum equation for the whole mixture, whilst the Eulerian model
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solves n momentum equation for each phase [34]. The mixture model is the one used in the
investigated literature. The Navier-Stokes equations are modified as follows [35]
Continuity equation

∂ui
∂xi

=

(
1

ρl
− 1

ρv

)
ṁ. (2.6)

Momentum equations
∂(ρmui)

∂t
+
∂(ρmuiuj)

∂xj
=
∂τij
∂xj

+ ρmgi, (2.7)

with 
τij = −pδij + µm

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
ρm = αρl + (1− α)ρv

µm = αµl + (1− α)µv.

(2.8)

where α is the relative amount of liquid. This quantity is found by solving a scalar transport
equation

∂α

∂t
+
∂(αui)

∂xi
=
ṁ

ρl
. (2.9)

The set of equations is completed with a numerical model to estimate the mass transfer rate
ṁ. The Zwart-Gerber-Belamri model is used most often for finding the mass rate in recent
articles that use the Navier-Stokes equations. The ZGB model assumes that all the bubbles
have the same size and calculates with this the mass transfer rate. The reasons for using this
model are not often explained, but Jamari et al. [36] mention that ZGB is less sensitive to the
mesh density, it is robust and leads to quick convergence. It appears that the investigations
using this model [36, 37, 38] all use Ansys FLUENT, where according to the user guide [34]
three cavitation models are available and Zwart-Gerber-Belamri is recommended for the reasons
mentioned earlier.

2.5 Performance of a texture

2.5.1 Performance measurement

The performance of a certain texture can be measured by multiple indicators. From literature
review it appears that the most commonly used one is the load-carrying capacity and to a lesser
extent the friction coefficient (table 2.2). Few researchers measure the performance of a texture
by the maximum pressure or film thickness.
The load-carrying capacity is obtained by the integration of the pressure over the entire contact
area. For a two-dimensional case, this is

W =

∫ L

0
pdx. (2.10)

The non-dimensional LCC can be expressed as

W =
h2

0

µUL2
W. (2.11)

For a three-dimensional case, the load-carrying capacity is calculated with the following surface
integral

W =

∫ L

0

∫ L

0
(p− p0) dx dy. (2.12)
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To make it dimensionless, it is better to use non-dimensional parameters in the equation itself

W =

∫ 1

0

∫ 1

0
(p− 1) dx dy (2.13)

where p = p
p0

, x = x
L and y = y

L .
The friction coefficient is the ratio of the friction force over the load. The friction force for

two-dimensional cases is calculated as follows

F =

∫ L

0

(
µ
U

h
+
h

2

∂p

∂x

)
∂x. (2.14)

The non-dimensional friction force is calculated as

F =
h0

µUL
F. (2.15)

The non-dimensional friction coefficient can thus be written as

Fc =
F

W
. (2.16)

The optimal parameters resulting in the maximal load-carrying capacity are often different
from the optimal parameters that minimize the friction force. Most papers that focus on both
performance measurements therefore choose to optimize them separately (single-objective) and
try to find a compromise for the optimal design parameters. Another possibility is multi-
objective optimization as performed by Shinde et al. [39]. Here, Grey Relational Analysis
is used to combine the maximization of load carrying-capacity and minimization of frictional
torque.

2.5.2 Parameters influencing performance

As already mentioned in paragraph 2.3.2, the performance of an added surface texture depends
not only on the geometrical characteristics of the texture itself, but also on the operating con-
ditions and other parameters. The following paragraphs give more details on these influencing
factors.

Geometrical parameters

Figure 2.10 illustrates some geometrical parameters that describe a dimple. Such a dimple is
characterized by the shape of the boundary of the dimple, and its bottom profile. Common
shapes are rectangles, circles and triangles. The bottom profile can be flat as in most investiga-
tions, it can be inclined or it can have roughness which is characterized by the wavelength and
amplitude (fig 2.6). The roughness due to the finishing steps on the surfaces is present too and
this can have a small positive influence on the load-carrying capacity, as already explained in
paragraph 2.3.1.
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Figure 2.10: Geometrical parameters of a texture [40]

Often used parameters in optimization researches are related to the dimple depth or the
dimple area. Two parameters dealing with the dimple depth are the dimple aspect ratio,
defined as the ratio of the maximum depth of the dimple d over the length of the dimple in the
sliding direction l, and the relative dimple depth, defined as the maximum depth d over the film
thickness h0.

λ =
d

l
(2.17)

S =
d

h0
(2.18)

A common parameter describing the area of the dimple is the area ratio, which is defined
depending on the type of study: if a single dimple is studied, the area ratio is the area of the
dimple over the area of the control unit around this dimple. If a whole texture is subject of
study, then this ratio is the complete textured area over the area of the control unit. The
parameters in the following formulas are represented in figure 2.10.

ARdimple =
Atexture
Acell

(2.19)

ARtexture =
Atextured
Ac

(2.20)

Other definitions do exist and it is important to check the specific definition per research. The
texture density is related to this parameter, as it is the ratio of the area of a dimple over the
total textured area.

ρtexture =
Atexture
Atextured

(2.21)

Most papers focus on finding the optimal values for the relative dimple depth S, the dimple
diameter and the texture density ρtexture (table 2.3). From figure 2.11 it is clear that the relative
dimple depth S and area density Sp have a considerable influence on the performance. However,
from the research of Zhang et al. [41] it is shown that the effect depends on the shape of the
dimple too (fig 2.12). Increasing the area density has a negligible effect for the circular and
square shape, whereas for the triangular shape, and even more pronounced for the rectangular
shape, this can have a negative influence on the performance.
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Figure 2.11: Influence of the geometrical parameters on the performance of a dimple. σ repre-
sents the roughness of the non-textured moving surface [42]

Figure 2.12: Effect of the dimple shape on the performance [41]

Yan et al.[16] studied the significance of geometrical parameters for spherical dimples on
friction reduction in slider applications by performing range analysis and analysis of variance
tests. Under the specific operating conditions of this study, the most important parameter
appears to be the dimple area ratio, followed by the dimple depth and the diameter. They clearly
mention that other load and speed conditions can result in a different order of significance. These
two studies already show that finding an optimal dimple shape is not straightforward. This will
be discussed in detail in the following parts of this review.

When multiple dimples are considered, the distribution of these dimples over the surface
should be considered as well. There are multiple choices to be made, among which using full
or partial texturing with inlet or outlet texturing are the most important ones. Full texturing
means that the dimples are distributed over the whole channel area, whilst for partial texturing
only a part of this channel area is textured. The position of the textured part can be at the
inlet or at the outlet of the channel. The main influencing factor which defines the performance
in these different configurations is cavitation. An important first distinction is made between a
parallel and a convergent bearing. Adding textures on a configuration with a small convergence
ratio can have an influence on the performance of the texture. On the other hand, the effect
of texturing for surfaces with a large convergence ratio is small compared to the effect of the
convergence itself. Therefore, the focus is put on parallel bearing configurations. Dobrica et al.
[43] discuss the influence of the texture extent, the texture position and the cavitation pressure
on the performance in parallel slider bearings. If the cavitation pressure equals the supply
pressure, then no additional lift effect will occur. This is easily explained by the fact that the
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region where the two surfaces are parallel, will not create this lift because there is no squeeze
effect like in a convergent configuration. The dimples do not get enough lubricant because
of the cavitation and therefore the full lubrication regime, necessary to achieve an additional
lift, is not reached. So there are two options to get the desired hydrodynamic lift effect. The
first one is changing the supply pressure to a higher value than the cavitation pressure. If
then the slider is fully textured, the performance even decreases in this research, compared
to an increase for partially textured sliders. The performance depends on how many dimples
experience cavitation. The second option is placing dimples at the inlet, which ensures full
lubrication in these dimples. Again fully textured sliders perform worse than partially textured
sliders. This research thus clearly shows that texture parameters are important to investigate
if the aim is to get the optimally performing texture. Noutary et al. [44] studied the effect of
inlet texturing, outlet texturing or combining them both. They found that, in their particular
case, inlet texturing was the preferred way as this maximized the load-carrying capacity (fig
2.13). However, texturing the inlet as well as the outlet could be beneficial for reciprocating
applications. The effect depends on many factors, hence it is not possible to generalize the
outcome of one study.

Most researchers assume a rectangular shape of the textured area of the dimples, nevertheless
it is something that can be optimized too. This was the subject of the research by Zhang et al.
[45]. Their optimal shape of the textured area is depicted on the right image of figure 2.14.

Figure 2.13: Dimensionless pressure for: inlet texturing - full texturing - outlet texturing [44]

Figure 2.14: Optimization of the shape of the textured area [45]

Operating conditions and material properties

As already mentioned in paragraph 2.3.2, the lubrication regime is of importance in determining
the performance of a texture. The lubrication regime depends on the speed of the moving
surface and on the applied load. If the speed is high and the load is low, the lubricant is in
a hydrodynamic regime which can result in an additional lift as previously explained. On the
other hand, if the speed is low and the load is high, boundary lubrication will occur and a large
portion of the load will be carried by the asperity contacts. Wear debris can then be trapped
in the dimples if abrasion occurs. If both the load and the velocity are high, temperature
and elastic deformation effects will be more pronounced, as was already discussed in paragraph
2.4.1. Materials with a high modulus of elasticity will not suffer significantly from elastic
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deformations. In conformal contacts, elastic deformation can be ignored as the pressure is not
large. On the other hand, in non-conformal contacts, elastic deformation should be accounted
for as the increase in pressure is larger. For thin film thicknesses in convergent slider bearings,
the deformations can even become proportional to these film thicknesses. [27]

It should be clear now that the effect of dimple and texture parameters cannot be described
by a general rule. Operating conditions and the presence of cavitation play an important role
and need to be taken into account.

2.6 Optimization

Optimization of a texture is crucial as it can have a significant influence on the performance.
Two approaches are used in literature, namely an analytical and a numerical one. Both will be
discussed below. To validate the obtained results three possible ways are found in literature.
The first one is performing an experimental test to check the analytical or numerical results.
If this is not possible, the results of the numerical simulations are sometimes checked with
results from other articles in literature. The third option is to verify the numerical results with
analytical ones, however this is only possible for not too complex problems.

2.6.1 Analytical approach

Analytical optimization of a texture is possible for relatively simple shapes, not for complex
ones. A complex geometry is first of all difficult to describe. A next challenge is defining
the performance parameters as function of the geometrical parameters. The importance of an
analytical approach lies in the fact that one can easily deduct the influence of design parameters
on the performance. It is also much less time consuming compared to numerical simulations.
However, as the complex shapes are not possible to be analyzed, not a lot of researchers are
interested in investigating the texture performance analytically. Rahmani et al. [46] have found
an analytical solution for a partially textured rectangular and triangular bearing surface, where
the performance parameters load-carrying capacity and friction force are written as functions of
the number of pockets, the texture length ratio, the textured length ratio and the texture depth
ratio. This made it possible to optimize these textures rather easily. Jiang et al. [37] did the
same for the grooved parallel bearing with the groove depth and groove width as parameters.

2.6.2 Numerical approach

The second approach is performing a numerical analysis to study the fluid flow. In most papers,
a numerical exhaustive parameter study is performed (table 2.3). This is a method where
some geometrical parameters are changed and the effect on the performance parameters is then
studied. This is a very time consuming method, nevertheless it is preferred by a multitude of
researchers because of the simplicity of implementation. Another method found in literature, is
using an optimization algorithm in which, in an iterative way, multiple solutions are compared
until a sufficiently good one is achieved.

The design parameters in these numerical studies can be defined in two ways. The first option
is to start from a predefined geometry of the shape and bottom profile of the dimple. Both the
discussed methods, performing an exhaustive search and using an optimization algorithm, are
used here. The former method is the preferred one. The second option to define the design
parameters, is to start from an arbitrary shape for which only optimization algorithms are used.

In the next paragraphs, some examples from past studies are investigated to get a better
understanding of the possibilities and limitations. It is important to mention that many re-
searchers made assumptions, such as assuming an isothermal fluid or neglecting the presence of
cavitation. Therefore, the results are not widely applicable.
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Predefined geometry

A lot of studies start from a fixed geometry for the shape and bottom profile of a dimple. An
overview is given in table 2.3. The most commonly investigated dimple geometries have a circu-
lar, rectangular or triangular shape combined with either a flat or curved bottom. The reason
for using those simple geometries is that they are easier to manufacture compared to complex
shapes. The majority of the researches focus on three-dimensional dimples. If two-dimensional
dimples are chosen, often a grooved geometry is the subject of study. The main optimized
parameters are the texture extend, texture depth and area ratio. The obvious disadvantage of
using a fixed dimple shape is that the resulting best performing shape will in most cases not be
the overall optimal shape.

Hereafter, some studied investigations will be discussed to show what has been studied
already in literature, what kind of conclusions are possible and how important it is to not
generalize results to other applications without reflection.

Yu et al. [47] compare different shapes for a single dimple, namely a circular, triangular
and elliptical shape in both sliding directions for conformal contacting surfaces. These shapes
have the same area, area ratio and dimple depth to be able to compare them to each other. A
clear orientation effect is observed as the elliptical texture parallel to the direction of sliding
results in a lower load-carrying capacity compared to the elliptical texture perpendicular to the
sliding direction. The elliptical shape also performs better than the other shapes. However,
the authors remark that, as many parameters were fixed, these results are not necessarily the
optimal ones.

In another research, Yu et al. [10] perform a similar comparison. They compare circular,
square and elliptical shapes. With the condition of having the same area, area ratio and dimple
depth, it is likewise concluded that the elliptical dimple results in the highest pressures. The
authors also vary the dimple area ratio and the dimple depth in order to optimize these shapes
for a fixed dimple area. The optimal dimple area ratio appears to be different for the various
shapes. This indicates that in the previous study, where they used the same area ratio for every
shape, the results were in all probability not optimal.

Fowell et al. [48] perform an optimization for a convergent slider bearing with a certain
number of rectangular pockets. For each possible number of pockets they found that there is
an optimal texture extent. The researchers remark that this optimal configuration is influenced
by multiple parameters, like the operating conditions and the presence of cavitation. The
conclusion of this research states that there is an interdependency of multiple geometrical and
operational parameters which makes it a difficult task to perform an optimization. All studies
mentioned in this literature review can give guidelines to improve textures but they should be
used with care, as one should be aware that a slight change in conditions could possibly result
in drastic changes in performance.

Uddin et al. [49] base themselves on past studies which indicate that the triangular shape
is the best shape among the simple shapes in reducing friction in parallel slider bearings. They
investigate a star-shape consisting of multiple triangular shapes as the points of the star. The
expectation is that the converging wedge effect of multiple triangles, which is the main effect
determining the good performance of a triangular shape, will increase the performance further.
This is no longer a real fixed shape as they change the number of points in the star, but also
not an arbitrary shape as will be discussed in the next section. They found that the optimum
star-like shape, which reduces the friction the most, has 6 points and a texture density of 0.4
(fig 2.15). Compared to the simple shapes, it outperforms them by 16% for the circular to even
80% for the elliptical shape.
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Figure 2.15: Friction coefficient for different configurations of a star-like shape [49]

Wang et al. [50] are one of the few researchers going into detail of the bottom profile of
a dimple. They focus on investigating the effect of cavitation and the vortex phenomenon in
order to deduce some more general rules about the influence of the depth of a dimple and
the inclination of the bottom on the performance (fig. 2.16). For a two-dimensional groove
texture in a thrust bearing, they have found that there is an optimal dimple depth ratio, close
to one which means the dimple depth is in the order of the film thickness. According to their
simulations, a balance exists between the cavitation region and the vortex region. These regions
are influenced by multiple parameters like the Re number and the dimple area ratio.

Figure 2.16: Inner flow field investigation for multiple bottom profiles in a groove texture [50]

Arbitrary geometry

Fewer studies focus on finding the optimal texture shape by starting from an arbitrary dimple
geometry defined by a few variable parameters. An overview is given in table 2.4. In the
studied literature, four papers focus on optimizing the shape whilst having a fixed flat bottom
and only one optimizes the bottom profile. However, an optimization study which combines
both the shape and the bottom profile was not found in the studied literature, neither one which
optimizes the dimple shape with a bottom profile different from a flat bottom.
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Shen et al. [51] and Fesanghary et al. [9] both perform an optimization of the load-
carrying capacity for the shape with parameters as the lengths Li and the centres Xi of multiple
points in the texture (fig. 2.17a and 2.18a), by a sequential quadratic programming algorithm.
Fesanghary et al. found that for unidirectional sliding of a parallel thrust bearing the optimum
grooves have a heart-like (fig. 2.17b) or a spiral shape (fig. 2.17c) depending on the radius ratio
of the dimples. Shen et al. used a similar approach for parallel surfaces and found that for
unidirectional sliding a shape that looks like a chevron with a flat front (fig. 2.18b) gives the
optimal performance, whilst for bidirectional sliding trapezoidal shapes (fig. 2.18c) are better.
The reason for the difference in the unidirectional sliding optimum of these two researches is
found in the different modelling of the surfaces. The increase in performance compared to
the simple shapes like circles or squares depends heavily on the operating conditions and the
optimized shape can even perform worse than these simple shapes under certain conditions.

(a) Geometrical model (b) Optimal texture
shape for lower ra-
dius ratio

(c) Optimal texture
shape for higher ra-
dius ratio

Figure 2.17: Model and results for an arbitrary shape optimization [9]

(a) Geometrical model (b) Optimal texture shape for uni-
directional sliding

(c) Optimal texture shape for
bidirectional sliding

Figure 2.18: Model and results for an arbitrary shape optimization [51]

Zhang et al. [14] focus again on unidirectional sliding, but take into account the interaction
with neighbouring textures as is ignored by Shen et al. [51]. Another research by Zhang et al.
[45] focuses on reciprocating motion. Both these studies take the effect of contact stresses into
account which is neglected in previous studies. A smaller perimeter of the shape leads to less
blurs, which results in smaller contact stresses, as already explained in more detail in section
2.3.1. This made the authors decide to take the perimeter into account in the selection process
of the optimization algorithm. The optimization algorithms will be further elaborated in section
2.6.2. An improvement of up to 30% in the performance compared to simple shapes is noticed.

Wang et al. [31] optimize the internal shape of a texture by a hybrid Sequential Quadratic
Programming algorithm and Genetic Algorithm for finding the optimal hi (fig 2.19). It be-
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comes again very clear that the optimal bottom profile depends on the operating conditions.
In this study the limited interest in bottom profiles of dimples is explained by the fact that
manufacturing techniques were not advanced enough up till then. With the developments of
new techniques like 3D printing and micro-stereo-lithography, realising these textures becomes
a lot easier today.

Figure 2.19: Geometrical model for arbitrary internal shape [31]

Optimization algorithms

An optimization algorithm tries to find the global or a local optimum of an objective function
(fig. 2.20) in an iterative way. The mathematical expression for an optimization problem is
given by

minimize f(x)

subject to ci(x) ≤ 0, i = 1, ..,m

and to cj(x) = 0, j = 1, .., p

(2.22)

The aim is to find the value of x which minimizes the function f(x) and x needs to satisfy
the given constraints. The function f is called the objective function, x is the optimization
parameter and the functions ci are the inequality constraints and cj the equality constraints.

Figure 2.20: Illustration of the global optimum and local optima of a function [52]

A distinction should be made between global and local optimization algorithms. There
are many different techniques in these two categories and all have their own advantages and
disadvantages. Hence, a researcher should make the trade-off before deciding which one to use.

A local optimization algorithm tries to find a local optimum. It starts to explore the search
space from a certain starting point. This point can be chosen by the user or, if it is not defined,
the algorithm itself will choose one inside the parameter space. The choice of this point will
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have an influence on the final result. Then, the algorithm will try to find a better solution than
the previous one. An advantage is that local optimization algorithms in general will go faster
than the global algorithms as they only need to find a local optimum. However, if the goal
is to find the global optimum, a local algorithm may be not suited for this. Local algorithms
are often gradient-based, meaning that the search direction depends on the derivative of the
objective function. Therefore the gradient must be provided, or at least an estimate.

A global algorithm will try to find the global optimum of the objective function. In these
algorithms, a distinction can be made between deterministic and stochastic methods. Stochastic
algorithms have a random element, which means that the end result depends on the initial
choice of the population, and possibly also on random choices in the process. Therefore, it
is not guaranteed that these algorithms will find the exact global optimum but after enough
generations, it will come close. On the other hand, a deterministic method does guarantee that
the global optimum will be found. However, most of them are limited to small scale problems
as they will fail when used on a complex and larger problem .Therefore, these deterministic
methods are not used in literature. [53]

From the studied literature, Sequential Quadratic Programming [54] appears to be a pre-
ferred local optimization algorithm and the global Genetic Algorithm [55] is popular as well
(table 2.4). SQP is one of the most effective algorithms for non-linearly constrained optimiza-
tion problems which works well for small to medium sized problems. The researchers using this
algorithm, Shen et al. [51] and Fesanghary et al. [9], justify their choice for this algorithm
based on this property and on the successful previous usage in studies. The idea behind the
algorithm is as follows: the objective function, which is the function that should be minimized
in optimization problems, is replaced with a quadratic approximation and the constraints are
replaced by a linear approximation. Once the fitness is evaluated in the starting point, the
algorithm solves these one-dimensional sub-problems to find a search direction and updates the
starting point, after which this process is repeated over and over. [56]

Wang et al. [31] use a combination of a global and a local optimization algorithm to overcome
some disadvantages of both while combining advantages. The reason for using SQP as local
optimization algorithm was that it is capable of performing an effective local search and it
leads to fast convergence. On the other hand, the disadvantage of SQP which makes Wang
et al. prefer to combine it with a global algorithm, is that the end result depends heavily on
the initial starting point and that it gets trapped easily in a local optimum. The used global
optimization algorithm is the Genetic Algorithm. This one is not as sensitive to initial values,
but the resulting final solution is not accurate enough. Combining these two algorithms leads to
an increased accuracy. The global Genetic Algorithm is a preferred method in other researches
too [13, 14].

From this review it is clear that the researchers apply known optimization algorithms, which
are already used in a (successful) previous research. Therefore, there is barely any diversity in
the methods and none of the researchers in the studied articles investigated the possibilities of
other algorithms, neither did all of them test these algorithms on their accuracy in their specific
cases.

2.7 Conclusion

Multiple gaps in literature are observed. The first one is already denoted by many researchers
and is hard to overcome. There are so many factors influencing the performance of a texture,
ranging from operating conditions, to material properties, to roughness, etc. that it is impossible
to take everything into account. More often than not, the temperature and deformation effects
are neglected. Previously cavitation was often disregarded while it was clearly an influencing
factor, but in more recent researches, the cavitation is taken into account more regularly. Surface
roughness is another factor which affects the performance, mainly if it is present in the dimple
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itself, but it is almost never taken into account or studied. Moreover, it seems to be impossible
to find a general rule for the performance of a texture, as this depends on so many different
factors.

The focus in surface texturing literature nowadays is on finding the optimal texture shape
with a numerical approach. Despite the fact that the obtained dimple will not be the real
optimal dimple in all situations, the bulk of researches uses fixed dimple shapes. The other
more recent method starting from an arbitrary shape concentrates on the dimple shapes and
rarely on the bottom profile. It became clear that the bottom and internal shape of dimples
were not often subject of research. The texture shape is fixed in the few times that the bottom
profile is investigated. A combination of optimizing shape and bottom profile is not found in
the studied literature.

Another gap in the studied literature is the optimization process. If an optimization algo-
rithm is selected, it is done based on general properties of these algorithms or on the previous
usage in other articles. Sometimes a combination of local and global algorithms is made to
overcome disadvantages or to combine advantages, but the real possibilities of the available
algorithms are not explored.

It can be concluded that there is still a lot to discover and to investigate about surface
texturing and the effect on the tribological performance. More focus can be put on optimizing
the bottom profile of a texture, or the complete geometry of a dimple.
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Table 2.1: Modelling methods for the different parametrization approaches

Parametrization

Predefined shape Arbitrary shape
Predefined shape
and textured area

Parallel
surfaces

No cavitation [28]†,[41],[57],[58]
Half-Sommerfeld BC [9]*,[31],[51]*
Reynolds BC [10]*,[15]*,[19],[46],[47],[49] [13]*
JFO/Elrod BC [24],[32],[42],[43] [14]* [44]
Mixture model [37]**
Model not specified [8]†,[11],[16],[26]†

Convergent
surfaces

No cavitation [59]
Half-Sommerfeld BC
Reynolds BC [45],[60]
JFO/Elrod BC [27]†
Mixture model
Model not specified [48]

Convergent-
divergent
surfaces

No cavitation
Half-Sommerfeld BC
Reynolds BC [61],[62]
JFO/Elrod BC
Mixture model
Model not specified [39]

Legend

Green Reynolds equation

Red Navier-Stokes equation

Black Experimental approach

Blue Analytical approach

* Numerical validated experimentally

** Numerical validated analytically

† Temperature effects

Table 2.2: Performance parameters

Performance parameters Articles Amount

Load-carrying capacity
[9],[10],[12],[13],[14],[26],[28],[31],[37],[38],
[41],[42],[44],[48],[51],[57],[58],[59],[60],[61]

20

Friction coefficient [10],[15],[45],[49] 4

Load-carrying
capacity
and friction force

Single objective:
Either LCC or
Friction force

[19],[24],[27],[32] 4

Multi-objective:
Both LCC and
Friction force

[39] 1

Film thickness [43],[62] 2
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Table 2.3: Predefined shape optimization

Predefined
shape
optimization

Dimple shape Parameters
Optimization
method

2D/3D Cavitation

[15]
Shape: circle
Side: semi-circle
Spherical

Depth, diameter,
area ratio

Numerical
parametric
search

3D
Reynolds
BC

[10]
Shape: circle,square,ellipse
Bottom: flat

Shape (comparison with
same area, area ratio,
depth)

Numerical
parametric
search

3D
Reynolds
BC

[47]
Shape: circle,ellipse,triangle
Bottom: flat

Shape (comparison with
same area, area ratio,
depth)

Numerical
parametric
search

3D
Reynolds
BC

[42]
Shape: circle
Side: semi-circle
Spherical

Depth, density, roughness
ratio

Numerical
parametric
search

3D JFO BC

[41]
Shape: circle,rectangle,
square, triangle
Side: semi-circle

Area ratio, radius,
depth

Numerical
parametric
search

3D No cav

[32]

Shape: circle
Side: semi-circle
Spherical
&
Shape: rectangle
Bottom: flat

Height ratio, area ratio,
Texture extend

SQP 3D JFO BC

[24]
Shape: groove
Side: rectangle, triangle,
parabolic

Depth, area ratio, shape
Numerical
parametric
search

2D JFO BC

[43]
Shape: rectangle
Bottom: flat

Texture extend (rectangular,
trapezoidal, full, partial),
depth, length, width, density

Numerical
parametric
search

3D JFO BC

[19]
Shape: circle
Bottom: multiscale

roughness height,
roughness wavelength

Numerical
parametric
search

3D
Reynolds
BC

[49]
Shape: star
Bottom: flat

Number of apex points,
apex angle, orientation angle

Numerical
parametric
search

3D
Reynolds
BC

[58]
Shape: groove
Bottom: point

depth, angle, number of
grooves

Numerical
parametric
search

3D No cav

[37]
Shape: groove
Bottom: flat

Number of grooves, depth,
width

Numerical
parametric
search

2D
Mixture model
Zwart-Gerber
-Belamri

[57]
Shape: groove
Side: trapezoidal

Area ratio, number of
grooves, height

Hybrid global
GA + local
simplex

2D No cav

[28]
Shape: rectange
Bottom: flat

Texture extend, depth,
area ratio

Numerical
parametric
search

3D No cav

[48]
Shape: groove
Bottom: flat

Texture extend, number of
grooves, area ratio, height

Numerical
parametric
search

2D Not mentioned

[39]
Shape: groove
Bottom: flat

Location, height, number
of grooves, spacing, height

Grey
Relational
Analysis

3D Not mentioned

[59] Rayleigh step Height ratio, length ratio
Numerical
parametric
search

2D No cav
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Table 2.4: Arbitrary shape optimization

Arbitrary
shape
optimization

[51] [51] [9] [31] [13] [14]

Direction Unidirectional Bidirectional Unidirectional Unidirectional Bidirectional Unidirectional

Optimization
Algorithm

SQP SQP SQP Hybrid: SQP+GA GA GA

Optimization
of...

Shape Shape Shape Bottom profile Shape Shape

Optimization
Parameters

Li, Xi Li, Xi Li, θi hi Ri Ri

Optimal shape
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Chapter 3

Flow modelling

3.1 OpenFOAM

For all simulations, the open-source CFD software OpenFOAM is used. An advantage of this
specific software is that since it is open-source, there is a possibility to adjust the code if it
seems necessary. The downside of using this software is that it has no Graphical User Interface,
demanding thorough insight in geometries and cases. OpenFOAM has some postprocessing
functionalities like ParaFoam. ParaFoam uses the open-source application ParaView which
makes it possible to visualize the geometry of a case, and to check and analyze the obtained
data after a simulation.

The equations used to model the flow and cavitation in this thesis will be described in the
current chapter.

3.2 Flow modelling

The equations describing an isothermal fluid flow in OpenFOAM are the Navier-Stokes equa-
tions. These equations are already discussed in detail in section 2.4.1 and are thus presented
here without further explanation. The continuity and the momentum equations are given by

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

ρ
Du

Dt
=
∂(−p+ τxx)

∂x
+
∂τyx
∂y

+
∂τzx
∂z

ρ
Dv

Dt
=
∂τxy
∂x

+
∂(−p+ τyy)

∂y
+
∂τzy
∂z

ρ
Dw

Dt
=
∂τxz
∂x

+
∂τyz
∂y

+
∂(−p+ τzz)

∂z
− ρg

(3.2)

Since the flow is assumed to be isothermal in this thesis, the energy equation is not included.

3.3 Cavitation modelling

The cavitation throughout the simulations is modelled by a homogeneous mixture model. The
solver used for this is cavitatingFoam which is described in the cavitatingFoam.C code as ”This
is a transient cavitation solver based on the homogeneous equilibrium model from which the
compressibility of the liquid/vapour mixture is obtained” [1]. Hence, the mixture model is used

25



with a barotropic equation of state, which neglects the influence of temperature on density.
This equation is defined as

Dρm
Dt

= ψ
DP

Dt
. (3.3)

The compressibility of a mixture is the inverse of the squared speed of sound

ψ =
1

a2
. (3.4)

The linear compressibility model is selected, for which the speed of sound is then determined
as

a =
1√

γψv + (1− γ)ψl
(3.5)

where γ is the mass fraction of vapor in the mixture, ψv the compressibility of the vapour phase
and ψl the compressibility of the liquid phase.
The solver starts by solving the continuity equation for the mixture density

∂ρm
∂t

+∇ · (ρmU) = 0 (3.6)

with U the mixture velocity. This calculated value for the mixture density ρm is then used to
give a first estimation of the mass fraction of the vapor γ with the following relationship

γ =
ρm − ρl,sat
ρv,sat − ρl,sat

(3.7)

where ρl,sat and ρv,sat are respectively the density of the liquid and the vapor phase at saturation
pressure. Solving the momentum equation

∂ρmU

∂t
+∇ · (ρmUU) = −∇P +∇ · [µ(∇U + (∇U)T )], (3.8)

results in a first estimate for the velocity. An iterative PIMPLE algorithm is used to solve for
the pressure P and correct the velocity U until a converged solution is achieved [1, 63]. This
will be explained in more detail in section 4.2.

26



Chapter 4

Numerical Methods

The method used in CFD to solve a case is a sequence of three steps: integration, discretisation
and solving by an iterative method. For the first step, the finite volume method is chosen in
OpenFOAM and in almost all other CFD softwares. The domain is divided in control volumes
and the governing flow equations are integrated over all these control volumes. This thus
indicates that the general flow variables are conserved in each finite size cell. The second step
consists of converting the integral equations to a system of algebraic equations, which are then
solved in the final step by an iterative method [20]. The numerical methods will be explained
in more detail in the following sections, however for a more complete explanation the reader is
referred to other researches (e.g.[20]).

4.1 Numerical schemes

In OpenFoam, the terms that need to be defined with a numerical scheme are divided into six
sets, namely schemes for time, gradients, laplacians, divergences, surface normal gradients and
interpolations. Most of these schemes have a default input which normally does not need to
be adjusted. For example, the time scheme is set to an Euler method. For the gradients, a
Gauss linear scheme is recommended, which means that there is Gaussian integration with a
central differencing approach for the interpolation. However, the divergence schemes need to
be provided for some quite different terms like advection and diffusion. For the diffusive terms
commonly a Gauss linear scheme is used, whilst the advective terms are very important and
it is a bigger challenge to define them correctly. Gauss integration is standard for those, but
for the interpolation scheme there are many options, ranging from linear to upwind, to linear
upwind, to QUICK, etc. These most common schemes and their properties are listed in table
4.1. A higher order scheme can reduce numerical errors, however a trade-off is made with the
computational effort.

Discretization
schemes:

Properties
linear upwind linearUpwind QUICK

Conservative X X X X

Boundedness
Pe>2 can lead to

physically impossible
solutions

X X X

Transportiveness
Does not recognize

direction of flow
X X X

Accuracy 2nd order 1st order 2nd order 3rd order

Remarks False diffusion
Only conditionally

stable
(over/undershoot)

Table 4.1: Properties of different discretization schemes available in OpenFOAM [1]
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4.2 Solution algorithms

The pressure and velocity are coupled in the Navier-Stokes equations and therefore an iterative
solution strategy needs to be used. For a single-phase incompressible flow, multiple options, of
which some common ones are given in table 4.2, are available in OpenFOAM. The simpleFoam
solver is preferred in this thesis as it is the only steady-state solver. The algorithm used in
this solver is SIMPLE which is short for ’Semi-Implicit Method for Pressure-Linked Equations’.
This algorithm starts from an initial guess for the pressure and velocity fields, after which the
discretized momentum equations are solved for the velocity. Then, the pressure is corrected
by solving the pressure correction equation. In a next step, this corrected pressure is used to
correct for both the velocity and the pressure. If convergence is achieved, the algorithm will
stop. If not, the calculated pressure and velocity will be used as a starting point for a new
iteration. [20]

For compressible flows, the pressure is a function of the density and temperature of the flow
and thus it can be calculated by solving the discretized equations for these fields. For the cases
with cavitation in this thesis, the cavitatingFoam solver is used. The homogeneous mixture
model and a part of this solver are already explained in section 3.3. As mentioned there, the
initial estimate for the velocity is calculated with this model, after which the PIMPLE algorithm
is used to solve further for the pressure and to correct the velocity. PIMPLE is a combination
of the PISO and SIMPLE algorithms. PISO on itself can be seen as a SIMPLE algorithm with
an additional corrector step.

Solvers icoFoam pimpleFoam pisoFoam simpleFoam

State Transient Transient Transient Steady-state

Flow Laminar Turbulent Turbulent Turbulent

Algorithm PISO PIMPLE PISO SIMPLE

Table 4.2: Properties of different solution strategies available in OpenFOAM [1]

4.3 Solution of discretized equations

For each equation that needs to be solved, a linear solver has to be specified. In case of simpler
cases without cavitation, this means setting a solver for the velocity and pressure equations,
whilst for cases with cavitation, there is an additional solver for the vapour fraction calculation
and for the density equation. There are many options for choosing a specific solver, and de-
pending on the type of solver (smooth solver, preconditioned solver, ...) extra options need to
be defined. The choices in this thesis are made based on trial and error by running simulations.
Tolerances put the solver to a stop if the residuals reach one of the defined values.

4.4 Under-relaxation

Under-relaxation factors are necessary to improve stability in steady-state problems. A relax-
ation factor determines how much a variable is allowed to change from one iteration to the next.
A value between 0 and 1 is possible, 0 meaning the variable is not allowed to change, and 1
meaning it is allowed to change. A trade-off is made between stability and computational time.
In the more complex cases in this thesis, these factors are set by trial and error to very low
values, in the order of 0.01 or even 0.001.
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Chapter 5

Model validation for isothermal
incompressible cases with simple
geometry

Three isothermal, incompressible cases with a simple geometry are modelled, after which these
are validated with results from literature. The specific cases are chosen based on the fact that
they have been researched thoroughly in literature and therefore have geometrical parameters
known to optimize the performance. Consequently, those cases can be reproduced in Open-
FOAM and if the optimal parameters match with the ones in literature, it can be confirmed
that the model is appropriate. The simple cases which will be discussed are the converging
wedge, the Rayleigh step and a variant of the step, the tapered land pad. The different geome-
tries are represented in figures 5.1, 5.3 and 5.5.

5.1 Converging wedge

A converging wedge is one of the simplest configurations known. It is used in bearings to
generate hydrodynamic pressure. The mating components consist of a straight, horizontal plate
and a plate under an angle, together producing a converging wedge (fig. 5.1). The space in
between those components is, in the case of bearings, called the film thickness. The smallest
film thickness or minimum film thickness is h0, while the largest film thickness is denoted as h1.
The convergence ratio n is defined as the ratio of h0 over h1 (Note: in some literature this ratio
is reversed. In this thesis this specific ratio is chosen as the values lie between [0,1]). Another
parameter is the length of the plates L.

Figure 5.1: Geometry of a converging wedge

The horizontal plate moves relative to the angled plate with velocity U [m/s]. Therefore,
the lubricant which adheres to the surface will be drawn into the space between the plates. Due
to the squeezing effect of the converging wedge, hydrodynamic pressure will be generated. The
velocity profile is a combination of a Couette flow and a Poiseuille flow, related to the linear
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shear and parabolic pressure driven flow respectively. If no pressure would be generated, only
the linear shear term would be present. As the clearance h is decreasing and the velocity is a
constant value, the mass conservation (ṁ = ρ · U/2 · h) can not be fulfilled. A constant mass
flow can be achieved if both the film thickness as well as the velocity vary along the flow path.
This is possible if pressure is generated, which makes the velocity profile a combination of the
Couette flow and the Poiseuille flow. Peak pressure is reached where the Poiseuille flow reverses
its direction. [64]

There is a unique optimal convergence ratio n for each configuration. The explanation for
this is quite straightforward. If the ratio is too large, the plates are approaching a parallel
configuration and not producing hydrodynamic pressure as there is almost no squeeze effect. If
the ratio is too small, the film thickness at the inlet is too large compared to the film thickness at
the outlet, such that the mechanism can not generate pressure effectively [64]. From analytical
derivations of the Navier-Stokes equations, the load-carrying capacity and friction force can be
written as function of one parameter, n. Differentiating these equations leads to the optimal
values for n, namely 0.4568 for an optimal dimensionless load-carrying capacity of 0.16 and
0.3953 for an optimal dimensionless friction force of 0.73 [65].

5.1.1 Simulation properties

Simulations are carried out with the parameters as defined in table 5.1. Those are realistic values
based on the properties used in the paper of Kumar et al. [27]. The pressure in OpenFOAM
for incompressible cases is the kinematic pressure. Therefore, the absolute value is not relevant
and the inlet and outlet pressures are set to a uniform 0 m2/s2. For the moving wall and the
fixed wall, the gradient of the pressure is set to 0. For the velocity field, the moving surface has
a fixed value, expressed in m/s. A no-slip boundary condition is imposed on the fixed surface,
whilst the gradient of the velocity for the inlet and outlet is zero. The mesh for this geometry
is made out of hexahedral cells. For this simple case 1000 cells in the channel direction and 50
cells in the perpendicular direction are more than sufficient. The simpleFoam solver is used and
the discretization scheme for the divergence terms is set to be linear.

Parameter Symbol Dimension Value

Length of slider L mm 100
Largest film thickness h1 mm 0.0011
Viscosity of lubricant µ Pa·s 0.01
Density of lubricant ρ kg/m3 846
Sliding velocity U m/s 0.05

Table 5.1: Parameters used for the converging wedge simulation

5.1.2 Simulation results

The convergence ratio n is varied over a range of 0.2 to 0.9, in steps of 0.1. This means
the optimum is found with interpolation instead of with numerical optimization. The load-
carrying capacity is calculated as explained in paragraph 2.5.1, and made dimensionless by

multiplying it with
h20

µUL2 . The results are depicted in figure 5.2. The maximum load-carrying
capacity is reached for a convergence ratio between 0.4 and 0.5. Further simulations reveal a
maximum dimensionless load-carrying capacity of 0.16 for the convergence ratio 0.457. This is
in accordance with the known optimal value in literature.

30



(a) Pressure distribution for the optimal and a sub-
optimal configuration

(b) Dimensionless load-carrying capacity for different con-
vergence ratios

Figure 5.2: Results from simulations for different convergence ratios

5.2 Rayleigh step

A two dimensional infinite Rayleigh step configuration consists of a straight plate and a plate
with a step in it, reducing the clearance between the two surfaces (fig. 5.3). The largest
clearance is called h1 and the smallest clearance h0. The length up till the step is introduced is
L1, the total length of the slider is L. The parameters defining the specific configuration of the
Rayleigh step are the length ratio, defined as L1/L, and the height ratio, defined as h0/h1.

Figure 5.3: Geometry of a Rayleigh step

There are again optimal parameters giving the highest load-carrying capacity possible for
this configuration. It is deduced from analytical calculations that the optimal height ratio is
0.536 and the optimal length ratio is 0.718. The physical explanation for these optimal ratios
is given by Shen et al. [59]. If the height ratio is smaller than the optimum, a reversed flow
is observed near the step. As soon as the optimal height ratio is achieved, a vortex is present,
whereas this vortex becomes smaller again by increasing this ratio. When the length ratio is
small, reversed flow is observed near the step, and by increasing this ratio, the reversed flow
is moving closer towards the step, going over into vortices when the optimal ratio is achieved.
The vortices which are present in the optimal configuration influence the pressure and velocity
field significantly.
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5.2.1 Simulation properties

The parameters used in the simulations are given in table 5.2. The values are based on the
ones applied in the research of Shen et al. [59]. The boundary conditions are identical to the
ones used for the converging wedge. The mesh has around 34000 hexahedral cells. Again the
simpleFOAM solver and linear discretization scheme are used.

Parameter Symbol Dimension Value

Length of slider L mm 12.5
Largest film thickness h1 mm 0.25
Viscosity of lubricant µ Pa·s 0.188
Density of lubricant ρ kg/m3 850
Sliding velocity U m/s 1

Table 5.2: Parameters used for the Rayleigh step simulation

5.2.2 Simulation results

The height ratio and length ratio are varied over a range of 0.1 to 0.9, in steps of 0.1. The results
are interpolated and given in figure 5.4. An optimal dimensionless load-carrying capacity close
to 0.206 is observed for a height ratio 0.536 and length ratio 0.718. Those results match with
the known values from literature.

Figure 5.4: Load carrying capacity for different Rayleigh step configurations

5.3 Tapered land pad

A tapered land pad can be seen as a converging wedge that stops converging at a certain point
and becomes parallel from then on (fig. 5.5). The parameters defining this configuration are
identical to the parameters of the Rayleigh step, namely a height ratio and a length ratio.

The optimal parameters for this configuration are a height ratio of 0.44 and a length ratio
of 0.8, giving a maximal dimensionless load-carrying capacity of 0.192 [65].
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Figure 5.5: Geometry of a tapered land pad

5.3.1 Simulation properties

The simulations for the tapered land pad configuration are carried out with the exact same
parameter values, boundary conditions, mesh parameters and numerical methods as for the
Rayleigh step bearing.

5.3.2 Simulation results

The height and length ratio are again varied from 0.1 to 0.9 in steps of 0.1, and interpolated
to give the results in figure 5.6. The optimal parameters for the tapered land pad are 0.44 and
0.8 for the height and length ratio respectively, giving a dimensionless load-carrying capacity
of 0.192. Once more, these values are in accordance with the known values from literature and
therefore, this case set-up is validated as well.

Figure 5.6: Load carrying capacity for a tapered land pad
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Chapter 6

Optimization algorithms

An optimization algorithm is necessary to find the best performing one from the possible tex-
tures. First, a thorough investigation of the most commonly used algorithms is performed to
better understand their possibilities and limitations. The optimization package pygmo [2] is
chosen because it is an optimization library in python which has a lot of algorithms available
and it allows for parallelization. The OpenFOAM simulations are carried out in python with
the pyFoam library, which gives a good coupling between the simulations and optimization.
Different local algorithms will be compared to each other, as well as global algorithms and
eventually hybrid methods combining the two different approaches.

A small introduction is given on how optimization algorithms work. The mathematical
expression for an optimization problem can be found in section 2.6.2. The aim is to find the
design parameters x, which minimize a certain objective function f(x), also called the fitness
function. These design parameters are bounded to a user-defined range, and the algorithm
iteratively chooses the parameter values from within this range and evaluates the objective
function. An additional option is available to limit the design parameters to certain values by
using equality or inequality constraints. However, not all methods can handle these constrained
optimization problems.

As already introduced in section 2.6.2, a distinction can be made between local and global
algorithms. A local algorithm will try to find a local optimum of the fitness function, while
a global algorithm will try to find the global one. Therefore, it is best practice to use a local
algorithm only if one knows that there only is one optimum or if it is known in what area of the
domain the global optimum can be found. A global method has the disadvantage that it does
not necessarily find the exact optimum. Many methods are developed over time, and each of
these has its own advantages and disadvantages. Therefore it is very important to check what
is possible with each of them, and if it could be necessary to use a hybrid algorithm.

6.1 Comparison of algorithms

A specific case, the Rayleigh step, is chosen to investigate the distinct algorithms. The reason
for choosing this case is that it is already investigated in depth in literature and in this thesis,
therefore the optimal set of parameters is known and can be used to assess the performance
of the different algorithms. The optimization problem is defined as follows; the dimensionless
load-carrying capacity is chosen as the fitness function to be maximized with the length and
height ratio as design parameters. These parameters are bounded to a minimum of 0.2 and a
maximum of 0.8. No other constraints are necessary.

In a first step, an optimization will be performed on the analytical solution of this case. As
it is a simple geometry, this is easy to derive. The result from a derivation in literature [65]
is given here. The dimensionless load-carrying capacity of a Rayleigh step as a function of its
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design parameters, the height ratio H and the length ratio L, is calculated as

LCC =
3L(L− 1)(h− 1)

−h3 + h3L− L
, (6.1)

where h the inverse of the height ratio H. The resulting optimal parameters will then be used
in a numerical simulation, performed with all the selected algorithms, to determine the optimal
load-carrying capacity. The results are represented in figure 6.1. The ’best vector’ in this table
is the vector representing the design parameters [height ratio, length ratio].

Figure 6.1: Optimal geometrical parameters and LCC for the Rayleigh case

The next step is then to do an optimization where the objective function is calculated
from the simulation results obtained with OpenFOAM, for all the different algorithms. The
performance is afterwards analyzed with the results from the table, after which the algorithms
are compared. Comparing algorithms is not straightforward and if necessary, an explanation is
given on how this is done.

6.2 Local algorithms

The local algorithms that will be investigated here can be divided in two types, namely a
gradient-based algorithm, where the search direction is selected based on gradient information,
and a simplex method. For the gradient-based type the Sequential Least-Squares Quadratic
Programming and Limited Broyden-Fletcher-Goldfarb-Shanno algorithms are selected. For the
simplex method, Nelder-Mead is chosen.

First, an explanation of the different algorithms will be given and after that, the results will
be assessed.

6.2.1 Nelder-Mead

The Nelder-Mead algorithm [66] is a method that uses simplexes. A simplex is a convex hull of
n+ 1 independent points in an n-dimensional space, e.g. for a problem with two dimensions, a
triangular geometry is used. The method searches the minimum of a function with n variables
by comparing the fitness of the n+1 corners of the simplex to each other. The corner with
the highest function value is replaced with a new point. The different steps in the process are
described in a little more detail now. The initial n+1 points Pi have a fitness denoted as yi.
The point with the highest fitness is Ph, the one with the lowest is Pl and the centre of gravity
of the simplex without the point Ph is P . The first step is the reflection step. A new point P ∗

is defined as
P ∗ = (1− α)P − αPh. (6.2)
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Three scenarios are possible.
1) If the fitness of this new point is in between yh and yl, then Ph is replaced by P ∗.
2) However, if the new fitness is lower than yl, a new minimum is found. Then the next step,
expansion, is performed. A second new point is calculated

P ∗∗ = (1− γ)P − γP ∗ . (6.3)

If the new function value is below yl, Ph is replaced with P ∗∗. If not, then Ph is replaced with
P ∗.
3) If the function value of P ∗ is higher than all function values except yh, then Ph is replaced
with P ∗. If it is also higher than yh, then the contraction step is performed. A new point P ∗∗

is defined as
P ∗∗ = (1− β)P − βPh. (6.4)

If then this new fitness is below yh, Ph is replaced with P ∗∗. If not, then all points are replaced
with

Pi,new =
Pi,old + Pl

2
, (6.5)

and the algorithm is repeated until the stopping criterion is met. [66]

6.2.2 SLSQP

SLSQP is a sequential quadratic programming algorithm, which stands for Sequential Least-
Squares Quadratic Programming [54]. The general problem which needs to be minimized can
be written as: ’Minimize f(x), with constraints h(x) = 0 and g(x) 6 0’. The objective function
is replaced with a quadratic approximation, whilst the constraints are replaced with a linear
approximation. The new problem definition is then: ’Minimize fk(x) + ∇f(xk)

T p + 1
2p
T∇2

xx

Lkp, with constraints ∇hkp+ hk = 0 and ∇gkp+ gk = 0’, where p represents the improvement
direction. [56]

This one variable problem can be solved much easier than the parent problem. The steps in
the process are chosen based on the steepest gradient. Therefore the gradient of the function
must be provided by the user, or an estimate of the gradient can calculated by the algorithm.
An advantage of this algorithm is that it handles non-linearity well. On the other hand, SLSQP
requires multiple derivatives and therefore this algorithm is not well suited for problems with a
large number of variables or constraints. [56]

6.2.3 LBFGS

The LBFGS algorithm [67] is a limited-memory version of the BFGS algorithm, short for
Broyden-Fletcher-Goldfarb-Shanno algorithm. A short introduction to this algorithm will be
given here, without going into the details of the mathematics. An initial guess x0 of the op-
timum of the function f(x) is made, and an approximated Hessian matrix B0 is calculated.
New possible solutions xk are calculated iteratively until the stopping criterion is met. First, a
search direction Pk is derived from solving the equation

BkPk = −∇f(xk) (6.6)

where ∇f(xk) is the gradient of the function. An acceptable step size αk in the direction of Pk
can be found by carrying out a search. Multiple approaches for this search are possible, and the
specific approach can be found in the algorithm implementation in the optimization package
[2]. The new solution is found by

xk+1 = αkPk + xk. (6.7)
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The fitness value is evaluated for this new solution with

yk = ∇f(xk+1)−∇f(xk). (6.8)

Then in the final step the approximated Hessian matrix is updated. A quasi-Newton condition
is imposed on this update. A property of LBFGS is that it is suited for problems with a
large number of parameters, because of its memory-limiting approach. More details on the
mathematical approach and properties can be found in the research of Byrd et al. [67].

6.2.4 Results and discussion

A first set of simulations is performed with the gradient calculation as specified in the tutorials
in the pygmo documentation. The results for these simulations are depicted in figure 6.2. The
measure of performance is the relative difference in percentage for the LCC, the height and
length ratio. This relative difference is calculated as

Relative difference in LCC = 100
|LCCsimulation − LCCfig6.1|

LCCfig6.1
. (6.9)

The Nelder-Mead method seems to give a very good estimate of the optimal parameters in a
low computational time. Furthermore, it can be noticed that the computational time for the
gradient-based algorithms is exceeding the expectations, despite them both giving an almost
equally as good estimate of the optimal parameters and load-carrying capacity as the Nelder-
Mead method.

Figure 6.2: Results for local algorithms optimization: computational time and accuracy

Figure 6.3: Height and length ratio as parameters for all simulations in an SLSQP optimization.
The points making up the cross around one point are for the gradient calculation.
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When taking a closer look at the simulations during an optimization with SLSQP (fig.
6.3), it becomes clear that the method for determining the gradient is not very effective. A
’cross’ with a multitude of simulation points is made around a selected point before moving on,
contributing to the large computational time. The reason for LBFGS taking even longer is not
very clear. It seems like the stopping criterion of the algorithm is not implemented correctly.
Therefore, this algorithm will not be considered further on. The gradient is calculated with the
following formula

df

dx
≈ 3

2
m1 −

3

5
m2 +

1

10
m3 +O(dx6) (6.10)

with

mi =
f(x+ idx)− f(x− idx)

2idx
. (6.11)

As each dimension needs six calculations for determining the gradient, the computation cost
increases significantly. Pygmo contains another gradient calculation, which is defined as follows

df

dx
≈ f(x+ dx)− f(x− dx)

2dx
+O(dx2). (6.12)

This approximation only needs two extra calculations for each dimension. It is however im-
portant to set dx to an appropriate value such that the gradient is accurate. The SLSQP
optimization is performed again with different values for dx and the results are shown in figure
6.4. The optimum is indicated with a red circle. The top left image is the optimization with
the default dx value and it is clear that this optimization gets stuck in the initial guess, which
means it does not find the optimum. When dx is equal to 1e-04, the optimum is not reached
either, whilst for dx equal to 1e-03 it does. These results indicate thus that it is important to
choose dx wisely and some investigation by trial and error can be necessary. The optimization
with dx equal to 1e-03 takes around 90 minutes, whilst the Nelder-Mead optimization only takes
around 60 minutes. Combining this knowledge on the computational speed and the ease of use
of the Nelder-Mead algorithm compared to the SLSQP algorithm, Nelder-Mead is preferred.
This concludes the investigation of the local algorithms.

Figure 6.4: SLSQP optimization with second gradient method for different step sizes. The red
circle indicates the result from the optimization.
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6.3 Global algorithms

Four global algorithms are selected to be compared, based on their appearance in scientific
papers. The Genetic Algorithm is used often in literature and is thus selected. The Differential
Evolution algorithm belongs to the same category as the Genetic Algorithm, namely the evolu-
tionary algorithms. Another type of algorithms is based on a swarm intelligence strategy, one
widely used method of this type is Particle Swarm Optimization. The swarm intelligence based
Artificial Bee Colony algorithm is a more recently developed algorithm compared to the other
three and it is expected to be stronger [68], therefore, it is selected as well.

Two important terms, which will be used in the following discussion, are the population and
the generations. The population is the initial guess of the design parameters. One set of design
parameters is called an individual. These global algorithms all start from multiple individuals
in the population. Solving an algorithm is described as evolving a population. Depending on
the stopping criteria of the algorithm, the population will evolve a number of times, which is
called the number of generations. [2]

First, the methodology for comparing the different algorithm performances will be explained,
after which each algorithm is discussed separately, together with the results.

6.3.1 Procedure for comparing global algorithms

Each global algorithm has an inherent random factor in its process to find the optimum. The
random factor is introduced by the fact that the process to get to the final result depends on the
initial population. As a result, the simulation time or necessary generations are influenced by
this initial population. To limit this effect and thus to be able to better compare the performance
of the different algorithms, a specific procedure is followed. Three runs per algorithm will be
performed, for each predefined population size, ranging from five to ten. This gives in total 18
optimizations per algorithm. The population size is limited to ten because for each individual
in the population, a simulation needs to be carried out. Since the simulations for which these
algorithms will be used further on in this thesis (see chapter 8), take a reasonable time, the
population size is limited. In the first run, a set of five individuals will be identical for each
population size. Population sizes which are larger than five will be completed with other random
individuals, chosen by the algorithm, until the population size is met. In a second run, the
same method is applied as in run one. This results thus in two runs with an identical set of
five individuals in all populations. In a third run, the populations are chosen to be completely
identical to the second run, which will still result in a different optimization process as all
algorithms have other random factors in their processes. The population initialization for the
different runs is visualized in figure 6.5. If a specific population size or run would outperform
others, an additional check with multiple random runs is performed to make sure that the
reason for this behaviour could be explained. Each run is limited to ten generations unless
stated otherwise, again to have a reasonable time frame.

Figure 6.5: Visual representation of the selection of the individuals for the three different runs
for a population size of seven
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6.3.2 Genetic Algorithm GA

Algorithm

The GA process is already explained in section 2.6.2, but it is repeated here for clarity [55, 69].

1. The Genetic Algorithm starts from an initial population of x individuals, also called the
parents. Each individual is defined by a chromosome, containing the genes that represent
the design parameters.

2. The first step is the selection. For each individual in the population two individuals are
selected randomly. The one with the minimum fitness becomes the partner of the parent
individual.

3. The next step is the crossover. Here, a random point in the chromosome of the parent is
selected and after this point the partners genes are inserted with a certain probability.

4. In the mutation step some genes are mutated, which means that some genes are randomly
changed to keep diversity in the population. The resulting chromosome is called the child.

5. The best x individuals from the parents and the children are reinserted in the population.
This algorithm stops when no new offsprings are better than in the previous generation
or when the stopping criterion is met.

Results and discussion

The GA is not ideal for small population sizes as in the selection step, there is a high probability
of selecting the parent itself as its partner, leading to less variation in the new offsprings. When
applying the GA on the specific case of a Rayleigh step, which has only two dimensions, the
crossover step does not result in much variation. There are only two genes, the height and
length ratio parameters, and therefore crossover has a higher probability of resulting in no new
offspring. Taking these two aspects into account, it is easy to imagine that this algorithm will
probably be not well suited for a case with a low number of degrees of freedom and that a
higher population size or a high number of generations are needed to create variation in the
population.

The results from the three different runs described in the method (paragraph 6.3.1) are
visible in figure 6.6. A remark should be made about the computational time represented in the
first graph; this time is dependent on multiple factors on which the person doing the simulations
has no influence, e.g. the computational power available on the workstation at the time the
simulations take place. This is illustrated for a population size of 10, where the first run is
taking much longer than the others, but an overall close to linearly increasing trend can be
distinguished. In the other three graphs, the results for the three different runs as a function
of the population size are represented. It is clear that the accuracy after 10 generations is still
very bad, regardless of the population size. The relative difference on the load-carrying capacity
ranges from 3 to even 16%. Taking a closer look at the evolution of the LCC over the number
of generations in figure 6.7, reveals that what was assumed at the beginning of this paragraph,
is correct. Almost no variation in the populations over the generations is observed. It can be
concluded that the Genetic Algorithm is not suited for a case with low number of degrees of
freedom if only a restricted number of generations is allowed. The population size has no clear
influence in this specific case.
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Figure 6.6: Results GA optimization: Computation time and influence of population size on
accuracy

Figure 6.7: Results GA optimization: Evolution LCC over the generations
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6.3.3 Differential Evolution DE

Algorithm

A step-by-step overview of the DE algorithm is given here [70, 71].

1. The initial population for the Differential Evolution algorithm consists of x individuals.

2. The first step is mutation. For every individual, three other individuals are selected to
create a new individual, called the trial vector. The mutation happens with the fol-
lowing formula: TrialV ector = RandomV ector1 + ScaleFactor · (RandomV ector2 −
RandomV ector3). If the new individual is located outside the search space, then it is put
on the boundary.

3. The final step is the crossover. A discrete recombination of the parent vector and the
new vector is performed. If the offspring from this crossover operation is better than the
parent vector, then the parent vector in the population is replaced with it.

4. The same stopping criteria is present as for the Genetic Algorithm: it ends when there
are no better offsprings or when another user-implemented stopping criterion is met.

Results and discussion

Based on the knowledge about the algorithm, the only thing that can be said about it initially, is
that the minimum population size should be at least four individuals, since the mutation needs
three vectors different from the parent vector. In this algorithm implementation of pygmo, there
is a possibility to fix the tolerance on the parameters or on the fitness function. This is however
not possible in the other global algorithms, and therefore also a study where the number of
generations is fixed to ten is performed as for the other algorithms. First this method with
the fixed number of generations is discussed. The computational time can be seen in figure 6.8
and again an almost linearly increasing trend is observed. Compared to the Genetic Algorithm,
a little more time is needed but not significantly more, such that this difference can also be
attributed to factors which are not influenced by the algorithm itself. The three other graphs in
the figure show the effect of the population size. Here, a clear influence can be denoted; a higher
population size of 8, 9 or 10 seems to improve the accuracy on the LCC compared to the lower
population sizes. A population size of 7 seems to be extremely bad in the three different runs,
and therefore this one is investigated a little more in depth. Three additional random runs are
performed and the result is shown in figure 6.9. Extra run 2 and 3 are not very good, whilst
run 1 is but the initial population was already very accurate. In figure 6.10 it is confirmed that
population sizes 5, 6 and 7 are not evolving enough during 10 generations. It can be concluded
that it is best to avoid population sizes below 8 in this algorithm for a case with a low number
of degrees of freedom.

42



Figure 6.8: Results DE optimization: Computation time and influence of population size on
accuracy

Figure 6.9: Results DE optimization: Additional simulations for population size equal to 7
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Figure 6.10: Results DE optimization: Evolution LCC over the generations

As mentioned earlier, an extra discussion for the fixed tolerance is given. It was decided to
fix the tolerance on the height and length ratio to 1E-2 since this could give an accurate LCC,
and the maximum number of generations is set to 25 to not let the algorithm run too long. The
resulting computational time and necessary number of generations are depicted in figure 6.11.
In the graph representing the computational time, it is remarkable that population size 7 is now
performing very well compared to the others, as it needed a much smaller computational time
to achieve a good tolerance. However as already demonstrated in previous paragraph, it is not
a consistently well-performing population size. In two out of the three runs, population sizes 5,
6 and 8 needed 25 or more generations which means they most likely did not achieve the pre-set
tolerance. This is also visible in figure 6.12. Population sizes 9 and 10 seem to perform better
and need less generations to achieve a good accuracy. To conclude, it is proven that higher
population sizes improve the performance of the Differential Evolution algorithm. Increasing
the population size a bit above 10 will most likely decrease the number of generations necessary
to end up with a good accuracy, but 9 and 10 seem to be sufficient in this specific case.

44



Figure 6.11: Results DE optimization: Computation time and necessary generations for fixed
ratio tolerance

Figure 6.12: Results DE optimization: Influence of population size on accuracy for fixed ratio
tolerance

6.3.4 Particle swarm optimization PSO

Algorithm

The optimization process of the PSO algorithm follows the scheme below [72, 73].

1. The Particle Swarm Optimization algorithm starts from a population with x individuals,
defined by their initial positions and initial velocities. The population is called the swarm
and the individuals the particles in this algorithm.

2. The first step is to update the best known position of the swarm.

3. For each parameter of each particle, also called the dimension, the particle’s velocity gets
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updated. This update is done with the following operation

vd,new = ωvd,old + φprp(pd − xd) + φgrg(pg − xd), (6.13)

where vd,new and vd,old are the new and old particle’s velocity for dimension d, pd and pg
the particle’s and swarm’s best known position, xd the particle’s current position, φp, φg
and ω algorithm parameters and rp and rg random numbers.

4. After the velocity is updated, the particle’s position can be updated too

xd,new = xd,old + lrvd,new (6.14)

where lr is the learning rate, which indicates how much the position is influenced by the
velocity. If the fitness of this new position is better than the best known position of the
particle, then its position is updated. If then this position is also better than the best
known position of the swarm, this is updated too.

5. As long as the stopping criteria are not met (a certain number of generations or other
criterion), the previous steps are repeated.

Results and discussion

Updating the velocity of the particle is a step with multiple variables which can be varied to
fine tune the algorithm. A first option is adjusting the swarm’s best known position which
can be improved by increasing the population size. A second option is playing around with
the algorithm parameters φp, φg and ω. In a first investigation, these parameters are kept at
their default value of 2.05, 2.05 and 0.7298 respectively. The results of these optimizations are
depicted in figures 6.13 and 6.14. The average computational time is a little higher than in the
previous two global algorithms, but not significantly more. The overall relative difference in
LCC is, at first sight, lower than for the Genetic Algorithm runs, but higher than the Differential
Evolution. It can be noticed that a population size of 6 performs bad and the population size of 7
performs well compared to larger sizes. This needs further investigation. The higher population
sizes are also not resulting in a good accuracy, so no trend is visible.
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Figure 6.13: Results PSO optimization: Computation time and influence of population size on
accuracy

Figure 6.14: Results PSO optimization: Evolution LCC over the generations
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Three extra runs are carried out for population sizes 6 and 7, and the results are shown
in figure 6.15. Population size 6 still does not perform well, whilst population size 7 is now
performing worse than in the previous runs so this was a coincidence. It could be concluded
that without adjusting the algorithm parameters, the accuracy is not good for population sizes
up to 10.

Figure 6.15: Results PSO optimization: Additional runs for population sizes equal to 6 and 7

A second investigation is carried out in which the algorithm parameters φp and φg are varied
between 1 and 3, whilst ω is kept at the default value. The results for population sizes 6, 8 and
10 are visible in figure 6.16. The dimensionless LCC is denoted on the graphs and the green dot
indicates the lowest value, whilst the red dot indicates the highest value of the LCC. From this
study it is clear that those parameters have a big influence on the achieved performance, but
an explicit rule can not be deduced from this preliminary study. A table from the research of
Pedersen [74] is shown in figure 6.17. A look at this table reveals that much higher population
sizes S are advised. Therefore, this algorithm is not suited for this thesis as such high population
sizes will increase the computational time too much, and other alternatives are available.
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Figure 6.16: Results PSO optimization: Influence of algorithm parameters on the LCC. Red
dot indicates highest LCC, green dot the lowest LCC

Figure 6.17: Guidelines for all PSO parameters to get best performance [74]
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6.3.5 Artificial Bee Colony ABC

Algorithm

The ABC algorithm is a method proposed by Karaboga [75]. The process follows the next steps.

1. The initialization of the Artificial Bee Colony is a little different from the other algorithms.
The n individuals in the population are called the food sources or solutions. The bee swarm
consists of n employed bees and n onlooker bees. An employed bee can become a scout
bee in the process. Each food source is assigned to an employed bee.

2. The first task is for the employed bees. They all search for new solutions, new food
sources, around their own food source. The position of a new solution for each bee is
created with the following formula

vi,k = xi,k + φi,k(xi,k − xj,k), (6.15)

where k is the dimension of the solution, xj,k is a random other solution and φi,k a random
number between [−1, 1]. If the fitness is better than the fitness of the initial solution, then
the food source is updated.

3. The second step is for the onlooker bees. The employed bees share their information on
the positions and fitness of the food sources with the onlooker bees, who will select a food
source based on a probability. This probability is based on the fitness: the solutions with
a higher fitness will have a higher probability of getting selected. If the fitness of the
selected solution can not be improved over a predefined number of cycles, called the limit,
then the food source is abandoned.

4. The final step is for the scout bees, which are the employed bees that no longer have a
food source due to the abandoning. They will discover randomly new food sources.

5. This process is repeated until a stopping criterion is met.

Results and discussion

The Artificial Bee Colony algorithm provides very few parameters to fine tune its performance.
The only options are to vary the swarm size and change the number of cycles or limit. First, the
limit is kept at its default value of one. The results are depicted in figures 6.18 and 6.19. The
computational time, except from the one clear outlier, is in line with the previous algorithms.
Taking a look at the values of the relative difference, one can immediately see that this algorithm
performs very well compared to the others. The maximum relative difference of LCC in these
three runs is around 4% compared to 10% for PSO, 12% for DE and 16% for the GA and the
average value is also much lower. Another significant observation is that the larger population
sizes do not outperform the smaller ones.
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Figure 6.18: Results ABC optimization: Computation time and influence of population size on
accuracy

Figure 6.19: Results ABC optimization: Evolution LCC over the generations
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Next, the effect of the limit parameter is investigated. As already explained, this parameter
determines how often the onlooker bees try to find a better solution before abandoning the
solution. In this study, limit values of 1, 5 and 10 are explored for population sizes 5, 8 and 9
with each two runs. The results are shown in figure 6.20. The accuracy of an optimization with
a population size of 5 is not clearly influenced by increasing the limit parameter, whilst three
out of the four other cases for the larger population sizes show a positive influence (decrease in
relative difference of LCC) of a higher limit. The computational time, shown in the last graph,
is not affected noticeably when increasing the limit. Therefore, it could be worth it to vary this
limit parameter if the accuracy should be improved.
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(a) Effect of limit parameter on the accuracy for different population sizes

(b) Effect of limit parameter on the compu-
tation time for different population sizes

Figure 6.20: Results ABC optimization
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6.4 Hybrid algorithms

It is a possibility to use a combination of a local and a global algorithm, a so called hybrid
algorithm. This is often used in literature where the researchers focus on the general known
properties and combine two algorithms to exploit the advantages or to overcome certain disad-
vantages. With the specific case of the Rayleigh step, it is shown that the local Nelder-Mead
method is faster than the most accurate investigated global algorithm, the Artificial Bee Colony.
Therefore, in this case, combining local and global algorithms will not improve the computa-
tional time. Two examples of the influence of adding a local algorithm after an initial search
with the global algorithm DE are given in figure 6.21. It is clear that the combination with the
Nelder-Mead method is beneficial and that the reduction in time is constant for all population
sizes. It can also help to first use a global search to make sure that the local algorithm does
not get trapped in a local optimum.

Figure 6.21: Results hybrid optimization: Effect on computation time if local algorithm is added
after a certain number of generations. Left: DE + Nelder-Mead. Right: DE + SLSQP

6.5 Note on accuracy

The desired accuracy of the optimal parameters depends on the specific case of course. In
the case of the Rayleigh step, the height ratio parameter defines the film thickness, which is
in the order of micrometers. A small deviation of this parameter, affects the optimum film
thickness then with less than a micrometer. As the manufacturability of a shape is limited by
0.5 µm in a one-step process, this deviation is not affecting the optimal shape. However, this
is different for the length ratio parameter. This one defines the length of the slider bearing,
which is in the order of 100 millimeters. A slight deviation of this parameter, will thus result in
a significant change in the design. The accuracy on the length ratio should thus be higher. So,
in the end, it is important to check the meaning of each parameter to determine how high their
accuracy should be. This desired accuracy can be converted back to how high the accuracy on
the load-carrying capacity should be.

6.6 Conclusion

A Rayleigh step is investigated, which is a case with a low number of degrees of freedom re-
garding the design parameters. A visual representation of the performance of all investigated
algorithms is given in figure 6.22. Only the best performing population sizes are used in this
overview for the global algorithms. For this case, it is clear that the local Nelder-Mead algorithm
is outperforming the other algorithms in computational time and accuracy of the optimum. As
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already mentioned, the LBFGS algorithm implementation in the pygmo package is presumably
not correct which results in this long computational time. The SLSQP method performs rather
well but it is very sensitive to the gradient settings. Therefore, Nelder-Mead is the best per-
forming algorithm amongst the local and global ones. This will be verified again on a cavitation
case with two design parameters in chapter 7. Nevertheless, it is not a general rule and only
applicable in cases with a relatively low number of design parameters, or where the algorithm
can not get trapped in a local optimum as there only is one global optimum, or in cases for which
one knows where in the search space the global optimum can be found. For other cases, it could
be beneficial to combine a global algorithm, e.g. the Artificial Bee Colony method because it is
the best performing one amongst the global ones, with a local Nelder-Mead algorithm.

Figure 6.22: Visualization of the performance of the different investigated algorithms
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Chapter 7

Model validation for isothermal
compressible case with cavitation

A second CFD model validation is performed for an isothermal, compressible case which allows
cavitation to happen. The cavitation phenomenon takes place because the dimple makes the
geometry diverging, allowing the pressure to go below cavitation pressure. There are two dif-
ferent objectives. The first one is to validate that the cavitation model used in the OpenFOAM
simulations, a homogeneous mixture model, is an appropriate model. The second objective is
to verify the statement that for cases with a low number of degrees of freedom the best per-
forming configuration can be found with a local optimization algorithm. A benchmark problem
is searched for and simulated. The paper which is used as a reference for this is from Jiang et
al. [37]. This paper is chosen because of two main reasons. For the first objective a numerical
simulation is preferred to be performed for a not too complex case with cavitation. The second
objective requires that an optimization is performed for a case with a low number of degrees of
freedom.

7.1 Benchmark problem

The benchmark problem used is the configuration from Jiang et al.[37], as represented in figure
7.1a. The geometry is a two-dimensional groove in a parallel slider bearing. In this paper, Jiang
et al. derived analytical formulas describing the pressure as a function of the groove depth and
groove width, with the aim to optimize these parameters to obtain the maximal load-carrying
capacity. The cavitation is modelled analytically based on the Fowell’s method (fig. 7.1b),
which includes the mass conservation equation and the Reynolds equation.

(a) Groove with cavitation (b) Fowell’s cavitation model

Figure 7.1: Benchmark problem with cavitation [37]
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The analytical calculation results in an optimal groove depth hg of 3.1 µm and an optimal
groove width b of 0.74 mm. Jiang et al. perform a numerical simulation with these geometrical
parameters in ANSYS with the Zwart-Gerber-Belamri cavitation model. Important to note
is that the researchers do not perform a numerical optimization with an algorithm, but only
vary the different parameters a little bit, noticing that these specific ones perform better and
therefore concluding that they are optimal. The results are depicted in figure 7.2.

Figure 7.2: Resulting pressure profiles a) hg=3.1 µm, b) b = 0.84 mm [37]

7.2 Model validation

The homogeneous mixture model is used to model the cavitation in this thesis. In the current
section it will be checked whether the aforementioned model is appropriate by comparing it to
a slightly different cavitation model used in Jiang et al.’s research.

7.2.1 Simulation properties

The simulation is performed with the exact same parameter values as used in the reference
paper [37], given in table 7.1. The optimal values from the paper, namely a dimple width b
of 0.74 mm and a dimple depth hg of 3.1 µm are used. The pressure for a compressible case
is given as the static pressure in Pascals in OpenFOAM. This is the only difference compared
to the pressure boundary conditions of the incompressible cases, meaning that the gradient is
again set to 0 for the moving wall and fixed wall, and the inlet and outlet get a fixed pressure
value. The initial velocity set-up is identical to the one in the simple cases. This means that the
velocity of the moving wall has a fixed value, the fixed wall has a no-slip boundary condition,
and the gradient of the velocity at the inlet and outlet is 0. The initial vapour fraction is set to
0 everywhere, as initially only the liquid phase is present. The density is set to a fixed value for
the inlet and outlet, whilst the gradient at the walls is set to 0. Hexahedral cells with all sides
equal to 0.5 µm are chosen for the mesh. In the optimal configuration, this results in a total of
48880 cells. The cavitatingFoam solver is used, combined with a QUICK discretization scheme
because this is the one used in the reference research.
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Parameter Symbol Dimension Value

Length of slider L mm 2
Film thickness h0 µm 5
Inlet length a mm 0.1
Viscosity of liquid µl Pa·s 0.025
Density of liquid ρl kg/m3 900
Viscosity of vapour µv µPa·s 7
Density of vapour ρv kg/m3 9.4
Sliding velocity U m/s 10
Cavitation pressure pcav MPa 0.02
Inlet pressure pin MPa 0.5
Outlet pressure pout MPa 0.1

Table 7.1: Parameters used for the simulation of the groove

7.2.2 Simulation results

The resulting pressure profile at the moving wall from this OpenFOAM simulation together
with the result from the paper (fig. 7.2) are represented in figure 7.3a. A visual representation
of the simulated pressure profile is given in figure 7.3b. A small difference is visible between the
graph from the paper and the OpenFOAM simulation, however this can be explained by the
different cavitation modelling approach. The barotropic compressibility model and the Zwart-
Gerber-Belamri model both use a mixture model which takes into account the influence of the
vapour volume. However, the mass transfer rate is calculated differently in the two models.
Despite this different approach the resulting pressure profiles are alike and therefore it can be
assumed that the barotropic compressibility model and the case set-up can be used in further
simulations.

(a) Comparison of pressure profiles for the op-
timal configuration

(b) Pressure distribution of the optimal configuration

Figure 7.3: Simulation results of the benchmark problem [37]

7.3 Optimization algorithm

In order to confirm the statement that for a case with low number of degrees of freedom, a local
algorithm is able to find the optimum, an optimization is performed with the local Nelder-Mead
method. All the simulation properties and parameters are identical to the ones from Jiang’s
paper. The values of the two optimization parameters can vary between [0.5, 1] mm for the width
b, and between [0.002, 0.004] mm for the depth hg. In the algorithm itself, the optimization
parameters are defined as the dimensionless parameters bratio = b/L and dratio = hg/h0 with the
reason that these values have the same order of magnitude, possibly making the computation
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easier for the algorithm.
Before starting the optimization, it is important to note that, in the paper, Jiang et al.

calculate an analytical optimum based on the idea that the largest load-carrying capacity is
achieved when the lowest pressure just hits the cavitation pressure. When looking at the results
from figure 7.3a, it can be seen that this is not exactly the case for the simulation in OpenFOAM.
The simulation reveals that the minimum pressure is 0.027 MPa whilst the cavitation pressure
is 0.02 MPa. If the statement from the paper is correct, the optimization algorithm will most
likely find a configuration different from the one in the paper for which the minimum pressure
hits the cavitation pressure and which thus has a higher load-carrying capacity.

The optimization with the Nelder-Mead method is performed and the iterations are depicted
in figure 7.4. The load-carrying capacity is written next to the simulation points from the steps
of the optimization process. The red dot is the configuration that gives the highest load-
carrying capacity and its pressure distribution is shown in figure 7.5b. The optimal parameters
are bratio = 0.4 and dratio = 0.625, giving an optimal width of 0.8 mm and optimal depth of
3.1 µm. Figure 7.5a shows the pressure profile compared to the result from the OpenFOAM
simulation of the optimal configuration in the paper. It is clear that the load-carrying capacity,
which is the area underneath the pressure profile, is higher in the newly found configuration.
The difference in load-carrying capacity is 5547 N/m for the newly found optimum, whilst it
is only 5264 N/m for the simulation of the optimal configuration of the paper. Taking a closer
look at the minimum pressure achieved for this new optimum, a value of 0.02 MPa is noticed,
meaning that the highest load-carrying capacity is achieved when the minimum pressure just
hits the cavitation pressure, which is exactly what was stated in the paper to be the optimal
configuration. Therefore, it can be assumed that the optimum found by the Nelder-Mead
method is the real optimum. The difference in the optimal configurations of the paper and this
research is because of the analytical approach with a mathematical cavitation model by Jiang
et al., compared to a numerical approach with a more physics based cavitation model in this
research.

Figure 7.4: Load-carrying capacity [N/m] for the different iterations of the optimization with
Nelder-Mead. Green dot shows optimum from Jiang et al.’s paper. Red dot shows optimum
from Nelder-Mead optimization. Blue dots have higher load-carrying capacity values than
orange dots.
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(a) Comparison of pressure profiles of optimal
configurations. Orange: with OpenFOAM
simulated optimum from Jiang et al. Blue:
Optimum from Nelder-Mead optimization.

(b) Pressure distribution of optimal configuration found by
Nelder-Mead method

Figure 7.5: Simulation results of the optimal configuration found by the Nelder-Mead optimiza-
tion
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Chapter 8

Optimization of a three-dimensional
dimple

The final goal of this thesis is to perform an optimization on a three-dimensional dimple. The
bottom profile of the dimple will be optimized, with the aim to prove that the resulting dimple
has a significantly higher load-carrying capacity compared to one with a traditional flat bottom.

8.1 Parametric description of a 3D dimple

The first step is to create a three-dimensional description of a dimple. The two-dimensional
shape is parameterized by Klára Bartha (Soete Laboratory, Tribology Group). The functions
used to describe this shape are{

x(t) = s1sin(t) + s2sin
2(t) + s3sin

3(t) + s4sin
4(t)

y(t) = c1cos(t) + c2cos
3(t)

(8.1)

with t going from 0 to 2π, and s1, s2, s3, s4, c1 and c2 being equal to a value between -1 and 1.
A wide variety of two-dimensional shapes are possible with this description. Not all parameter
combinations form a closed shape, so these are not discussed here. Some examples of closed
shapes are given in figure 8.1. Some of them do not seem to be realistic regarding the meshing
or even manufacturability, but this will be discussed in the next section.

In order to extend the two-dimensional description to a three-dimensional one, a definition
of the bottom profile needs to be added. The equation describing the dimension along the
dimple depth is

z(t) = f(x(t)− xmin), (8.2)

where f can be any function. Examples are first and second order polynomials, a sine or cosine
function, etc. The reason for using the xmin is in how these shapes are described and how the
bottom profile should then be added to the shape.

The three-dimensional dimple is now completely described with parametric equations which
give a wide variety of possible geometries.
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Figure 8.1: Examples of two-dimensional shapes

8.2 Mesh generation of a 3D dimple

The three-dimensional dimple needs to be meshed before a simulation can happen. Multiple
meshing tool options are investigated considering their ease of implementation and to see if they
are a possible candidate as a meshing tool in the first place. The tool should be able to be used
in an automated way, implying that commercial meshing programs which are best used with
the Graphical User Interface, like STAR-CCM+, are not the preferred tools for this goal.

As the mesh should work in OpenFOAM, the preferred option is using one of the tools of
OpenFOAM itself. The tool used in the previous cases, blockMesh, does not allow for a lot
of variety in possible shapes, therefore other options are considered first. foamyHexMesh has
compilation problems due to the dependencies in most OpenFOAM installations, which does
not make it a reliable option on all computational platforms. snappyHexMesh looks like a good
candidate, but it is not an appropriate tool for automation of a variety of geometries. Therefore,
meshing tools from outside OpenFOAM need to be considered.

The second option is to import the mesh from another software to OpenFOAM. One such
widely used software is Gmsh. It enables to create volume meshes for a wide variety of geome-
tries, however, it is not applicable for geometries with very high aspect ratios, which is needed
for the specific applications in this thesis. The film thickness and dimple depth are in the order
of micrometers, whilst the length of the channel is in the order of millimeters. Setting the size
of the cells in Gmsh is done by specifying the desired cell size around a point. As the film
thickness needs to have multiple cell layers, this method implies that the channel is divided in
equally small cells, leading to an excessive amount of cells. Therefore, Gmsh is not an option
for the desired geometries.

The next studied meshing tool is pygalmesh, which uses the algorithms of CGAL. First,
an .stl surface mesh is generated, after which a volume mesh can be made from it with some
functions in pygalmesh. Then it needs to be converted to a .vtk format, after which this can be
converted to an OpenFOAM format with the vtkUnstructuredToFoam command. Nevertheless,
the same problem as with Gmsh occurs. If the film thickness is divided in some layers, the total
number of cells explodes.

After this extensive research of possibilities, the choice falls on blockMesh again. Although
the geometries are limited, blockMesh can handle this large aspect ratio as is proven in the
previous cases.
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8.2.1 Script for automated meshing

The method followed for making an automated blockMesh script will be explained on a super-
ficial level here. The process is depicted in figure 8.2. For the shape, the input parameters are
the ones from equation 8.1. The shape itself is made out of splines as this allows to create any
desired geometry if sufficient points are given that describe the spline. The geometry has to be
split into blocks the way it is shown in figure 8.2. It is essential to define the position of the
rectangle in the middle and adapt its size according to the size and shape of the dimple in order
to obtain a correct mesh. Some examples of shapes which can be meshed this way are given on
the bottom left in this figure. In the next section, a discussion is held on the feasibility of these
shapes. The input parameters for the bottom profile depend on which function is used. This
profile is again defined with splines to allow for more complex geometries. A correction of the
points defining the cells is needed as these splines do not automatically connect well for curved
profiles, as shown with the area indicated in red on the bottom figure.

The number of cells in the mesh can easily be adjusted with the blockMesh utility. Grading
is present such that the mesh becomes more dense towards the locations where the largest
changes occur.

8.2.2 Possible geometries

Once that the script for making the geometries is finished, it is time to take a look at what
geometries are realistic and which geometries result in a good mesh quality. It is evident that the
shapes need to be limited to relatively smooth edges, as sharp edges will lead to problems with
the mesh quality. The sharp astroid geometry from figure 8.2 for example cannot be studied
with this meshing strategy. Besides, sharp corners are hard to manufacture precisely. In section
2.3.1, it was already discussed that the laser texturing technique used in the research of Lu et
al. [11] produced round corners instead of the desired sharp corners. Restricting the dimple
shapes to the ones with smooth edges still makes it possible to study a wide range of textures
e.g. circular, ellipse, bullet-shaped, etc. The bottom profiles are the next to be investigated.
When checking the mesh quality with the checkMesh utility, it appears that geometries with
a curved bottom profile have many non-orthogonal cells. Some amount of non-orthogonal
cells is acceptable as the discretization schemes can be adjusted accordingly, but having too
many causes computational problems. The pressure rises immediately in some cells despite the
modifications. Therefore, the bottom profiles will be limited to first order functions, meaning
they can be flat or have a slope. In addition to this limitation, the depth of the dimples needs to
be large enough. If they are too shallow, the quality of the mesh is bad due to the skewness. It
appears that the depth should be larger than 0.3 times the film thickness to avoid the problem.
The bottom profile in the middle in figure 8.2 is too shallow and has a curved profile, which
makes it not a suitable geometry.

When looking at the simulation times, it seems like one simulation takes way too long before
reaching convergence. A study on the speedup efficiency by parallel computing is performed (fig.
8.3), and based on these results, it was decided to use 18 cores. Hence, the average computation
time for one simulation is eighth hours on 18 cores. As numerous simulations will need to be
performed during the optimization process, it is preferred to further limit the simulation times
and the optimization problem. Therefore, the latter will be restricted to the bottom profile
optimization, meaning that the shape will not be varied.

Summarizing, the focus of the optimization will be put on first order bottom profiles with
a fixed shape, due to the mesh quality issues and in an attempt to reduce the computational
time.
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Figure 8.2: Process followed to make the mesh in blockMesh

Figure 8.3: Speedup efficiency for parallel computing
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8.3 Bottom profile optimization

8.3.1 Case set-up

For the bottom profile optimization, one dimple in a square unit cell is simulated. The simulation
properties, which are based on values that are commonly used in literature, can be found in
table 8.1. Cyclic boundary conditions are assigned to the inlet and outlet of the unit cell, which
thus mimic a texture row with multiple dimples. On the front and back sides of this unit cell,
atmospheric pressure is imposed. The gradient of the velocity is assumed to be zero on these
sides. The moving wall has a constant value for the velocity, whilst the other wall has a no-slip
boundary condition. A pressure gradient equal to 0 is imposed on both walls. A Gauss central
differencing discretization scheme is chosen. As there no longer is a problem with the non-
orthogonal cells because a first order bottom profile is used instead of the initial curved bottom
profile, default orthogonal schemes can be used. These schemes together with the linear solvers
are set based on trial and error. Since cavitation will be present, CavitatingFoam is used as a
solver.

Parameter Symbol Dimension Value

Film thickness h0 µm 10
Viscosity of liquid µl Pa·s 0.038
Density of liquid ρl kg/m3 900
Viscosity of vapour µv µPa·s 7
Density of vapour ρv kg/m3 9.4
Sliding velocity U m/s 1
Cavitation pressure pcav MPa 0.5
Ambient pressure p0 MPa 0.1
Area ratio AR % 13
Unit cell length L mm 1.3

Table 8.1: Simulation properties for bottom profile optimization

The goal is to perform an optimization of the bottom profile of a dimple. Therefore, the
shape of the dimple is fixed. The parameters for this shape (see equation 8.1) are chosen to be

[s1, s2, s3, s4, c1, c2] = [0.2, 0, 0.2, 0, 0.2, 0] (8.3)

With the simulation properties from table 8.1, the dimple has an area ratio of 13%. This is
chosen based on literature where the area ratio is mostly between 5 and 30%. The choice for
this particular shape is based on the performance of it compared to a circular shape. Ideally,
an optimized shape would be chosen as then the performance improvement compared to the
simplest dimple shape in literature (circular shape combined with flat bottom) could be illus-
trated nicely. However, this optimization could not be conducted because of time constraints.
Therefore, a parametric study with three shapes is conducted, namely a circular shape and an
elongated shape in the x- and y-direction. These shapes all have the same area ratio (13%)
and a flat bottom with the same dimple depth of 9 µm. The results from these simulations are
given in figure 8.4. It is clear that the shape which is elongated in the direction of the flow
(x-direction) has a significantly higher non-dimensional load-carrying capacity. Therefore, this
specific shape is chosen and it is depicted in figure 8.5.
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Figure 8.4: Evolution dimensionless load-carrying capacity over (pseudo-)time for different dim-
ple shapes with flat bottom

Figure 8.5: Shape for bottom profile optimization

8.3.2 Influence of dimple depth ratio

A preliminary study of the influence of the different parameters of a dimple bottom profile is
performed to understand what could be expected from the optimization itself.

It is assumed and proven in literature that a dimple has an optimal dimple depth. It is
important to know the load-carrying capacity of this optimal dimple depth configuration in
order to have a reference to compare the performance of the optimized bottom profile with it,
and therefore this is investigated further. An actual optimization would take too long, thus
multiple dimple depth configurations are simulated in parallel. A dimple depth ratio is defined
as the dimple depth over the film thickness. The dimensionless load-carrying capacity is tracked
over the pseudo-time and this evolution is depicted in figure 8.6 for some dimple depths ratios.
One should keep in mind that the time in the simulations is not a real time, but a pseudotime.
The term timesteps will be used in the following parts meaning the pseudotime at which the
intermediate results are written out. As can be seen in the figure, the load-carrying capacity
reaches an almost constant value around pseudotime 0.02. For the dimple depth ratio of 0.9,
some small fluctuations can be noticed. The explanation for this is found in the cavitatingFoam
solver. The cavitation zone expands and diminishes a bit, resulting in a lower and higher load-
carrying capacity respectively. Therefore, the load-carrying capacity for each dimple depth ratio
is calculated as the average over the final timesteps, namely between 0.014 and 0.02.
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Figure 8.6: Evolution dimensionless load-carrying capacity over (pseudo)time for different dim-
ple depth ratios

The results are given in table 8.2 and in figure 8.7. For the load-carrying capacity as a
function of the depth ratio, a cubic interpolation is used. It is clear now that there is indeed an
optimal dimple depth, which is, in this particular case, around the film thickness height.

Depth ratio LCC [\]
0.6 0.000714
0.7 0.00140
0.8 0.00162
0.9 0.00176
1 0.00185

1.2 0.00175
1.3 0.00156
1.4 0.00137
1.8 0.000463

Table 8.2: Dimensionless load-carrying capacity for different dimple depth ratios

Figure 8.7: Dimensionless load-carrying capacity for different dimple depth ratios
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To understand why there is an optimal dimple depth, the physics are studied. A dimple
ratio of 0.7, 1 and 1.3 are selected for this. The pressure distribution and vapour volume
fraction combined with the streamlines for these dimple depth ratios are given in figure 8.8. It
is clear from these streamlines that for the lowest depth ratio the streamlines stay ordered and
for the highest depth ratio a large recirculation zone, also called a vortex, appears. For the
close-to-optimal dimple depth ratio, this vortex just starts to form. The vortex originates near
the cavitation region, but these two regions do not overlap. The vortex phenomenon can be
explained as follows. The upper wall is moving with a certain velocity and exerts viscous forces
on the lubricant. The lubricant inside the dimple experiences a lower level of force compared
to the lubricant in the channel. If the dimple depth is too large, the lubricant can no longer
flow out of the dimple because the forces are too low, and then the positive pressure gradient
pushes the lubricant back, resulting in the vortex formation. From this study, it is clear that
the optimal dimple depth ratio is where the viscous forces are just high enough to pull the
lubricant back in the channel.

Figure 8.8: Vapour volume fraction and pressure distribution combined with streamlines for
dimple depth ratio a) 0.7 b) 1 c) 1.3

8.3.3 Influence of slope

As discussed before, the optimization will be limited to first order bottom profiles. Therefore,
equation 8.2 is adjusted as follows

z(t) = −dleft + slope · (x(t)− xmin), (8.4)

where dleft is the depth of the dimple on the left side and dright on the right side. This is shown
in figure 8.9. Two ratios, dl and dr, are defined as the respective depth over the film thickness

dl =
dleft

h0
, dr =

dright

h0
. (8.5)

The slope of a dimple is defined as

slope =
|dleft| − |dright|
|xmax|+ |xmin|

. (8.6)
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Figure 8.9: First order bottom shape

First, a parametric study is carried out to understand the influence of the different bottom
profile parameters and to check whether the load-carrying capacity will increase with this. The
shape is fixed to the same shape as in the dimple depth ratio optimization. This means it is
possible to compare the results to the case with the flat bottom. The resulting load-carrying
capacity for some different configurations are given in table 8.3. At first sight, it becomes clear
that the increasing-slope configurations have a higher load-carrying capacity compared to the
decreasing-slope configurations. The physics behind this will be studied in more depth.

Decreasing slope Increasing slope

dl dr Slope LCC [\] dl dr Slope LCC [\]
0.9 1.2 -0.75 0.001775 1.2 0.9 0.75 0.001898
0.4 0.9 -1.25 0.001619 0.9 0.4 1.25 0.000230
0.9 1.6 -1.75 0.001078 1.6 0.9 1.75 0.001865
0.9 1.8 -2.25 0.000859 1.8 0.9 2.25 0.001860
0.6 1.6 -2.5 0.001174 1.6 0.6 2.5 0.001877

Table 8.3: Arbitrary bottom shape configurations and their load-carrying capacity

The vapour volume fraction and pressure distribution combined with the streamlines for
a decreasing slope, a flat bottom and an increasing slope are given in figure 8.10. For the
decreasing slope it is clear that, due to the diverging region, a vortex is generated on the
deepest side of the dimple and, due to this, the pressure can not build up properly like in the
other configurations. A flat bottom resembles a Rayleigh step, from which it is known that
this configuration has the highest pressure build-up compared to other shapes. However, as
cavitation is present here, the load-carrying capacity is also influenced by this and not only by
the pressure. The flat bottom configuration has a higher pressure build-up compared to the
increasing slope, however the flat bottom also has a wider cavitation region. As a result, the
increasing slope has a slightly higher load-carrying capacity. Again, it is proven that the vortex
and cavitation region co-exist and do not overlap, and they influence the load-carrying capacity.
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Figure 8.10: Vapour volume fraction and pressure distribution combined with streamlines for
a) decreasing slope b) flat bottom c) increasing slope

No clear trend is yet noticed in these preliminary simulations regarding the slope. Therefore,
some additional simulations are carried out to better understand where the highest load-carrying
capacity could be found. These simulations are combined with the previous simulations and
their dimensionless load-carrying capacity is depicted in figure 8.11. The blue line shows the
cases with a flat bottom profile. The left side of this line is no longer investigated in more
detail because these are the decreasing-slope configurations with low load-carrying capacity
values. Some remarkable observations can be made for the increasing-slope configurations on
the right side of the blue line. The region marked in orange has relatively low values for the load-
carrying capacity, which means lower than 0.001849, the maximum for the flat bottom. The
region marked in light green has load-carrying capacity values higher than this maximum value
for the flat bottom. The observation that there is a clear region with these high load-carrying
capacity values, can be used to limit the region for performing a parametric study. In addition,
it is already clear that if the highest dimensionless load-carrying capacity for these increasing-
slope configurations, 0.002034, is compared to the highest dimensionless load-carrying capacity
from the flat bottom-configurations, 0.001849, that a sloped bottom profile can give an increase
in load-carrying capacity with 10% compared to a flat case. Therefore, it is proven that the
bottom profile has a significant influence on the load-carrying capacity.
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Figure 8.11: Dimensionless load-carrying capacity for different configurations

A parametric study will be carried out to understand the influence of the slope. Since the
highest value for the load-carrying capacity is found in the corner of the region marked in light
green, the search region will be expanded to the larger region indicated with dark green, to be
sure that the optimum can be found in this region. More concretely, the depth ratio on the left
side will be varied between 1.4 and 2.8 in steps of 0.2, and the right side will be varied between
0.4 and 1.2 in steps of 0.2. This means that the slope will have a value ranging from 0.5 to 6.
The results from the simulations are given in table 8.4. In the left side of this table, the depth
ratio on the left side of the dimple is held constant, whilst the depth ratio on the right side is
varied. In the right side of the table, the results are rearranged in a way that the right side of
the dimple is now kept at a constant value, while varying the left side of the dimple. The results
are visualized in the colored plot in figure 8.12. The first thing to notice is that there clearly is
an optimal region, close to dl=2.4 and dr=0.6. This configuration increases the load-carrying
capacity with 12% compared to the best performing flat bottom profile. The physics are again
studied to understand the influence of these parameters on the performance.

Figure 8.12: Visual representation of the results of the parametric study
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Fixed dl Fixed dr

dl dr Slope LCC [\] dl dr Slope LCC [\]
1.4 0.4 2.5 0.001166 1.4 0.4 2.5 0.001166
1.4 0.6 2 0.001606 1.6 0.4 3 0.001416
1.4 0.8 1.5 0.001879 1.8 0.4 3.5 0.001650
1.4 1 1 0.001820 2 0.4 4 0.001811
1.4 1.2 0.5 0.001604 2.2 0.4 4.5 0.001957
1.6 0.4 3 0.001416 2.4 0.4 5 0.001978
1.6 0.6 2.5 0.001877 2.6 0.4 5.5 0.001912
1.6 0.8 2 0.001895 2.8 0.4 6 0.001843
1.6 1 1.5 0.001791 1.4 0.6 2 0.001606
1.6 1.2 1 0.001502 1.6 0.6 2.5 0.001877
1.8 0.4 3.5 0.001650 1.8 0.6 3 0.001980
1.8 0.6 3 0.001980 2 0.6 3.5 0.002003
1.8 0.8 2.5 0.001970 2.2 0.6 4 0.002034
1.8 1 2 0.001790 2.4 0.6 4.5 0.002077
1.8 1.2 1.5 0.001484 2.6 0.6 5 0.001881
2 0.4 4 0.001811 2.8 0.6 5.5 0.001870
2 0.6 3.5 0.002003 1.4 0.8 1.5 0.001879
2 0.8 3 0.001986 1.6 0.8 2 0.001895
2 1 2.5 0.001736 1.8 0.8 2.5 0.001970
2 1.2 2 0.001345 2 0.8 3 0.001986

2.2 0.4 4.5 0.001957 2.2 0.8 3.5 0.001941
2.2 0.6 4 0.002034 2.4 0.8 4 0.001835
2.2 0.8 3.5 0.001941 2.6 0.8 4.5 0.001732
2.2 1 3 0.001811 2.8 0.8 5 0.001605
2.2 1.2 2.5 0.001294 1.4 1 1 0.001820
2.4 0.4 5 0.001978 1.6 1 1.5 0.001791
2.4 0.6 4.5 0.002077 1.8 1 2 0.001790
2.4 0.8 4 0.001835 2 1 2.5 0.001736
2.4 1 3.5 0.001544 2.2 1 3 0.001811
2.4 1.2 3 0.001218 2.4 1 3.5 0.001544
2.6 0.4 5.5 0.001912 2.6 1 4 0.001458
2.6 0.6 5 0.001881 2.8 1 4.5 0.001415
2.6 0.8 4.5 0.001732 1.4 1.2 0.5 0.001604
2.6 1 4 0.001458 1.6 1.2 1 0.001502
2.6 1.2 3.5 0.001159 1.8 1.2 1.5 0.001484
2.8 0.4 6 0.001843 2 1.2 2 0.001345
2.8 0.6 5.5 0.001870 2.2 1.2 2.5 0.001294
2.8 0.8 5 0.001605 2.4 1.2 3 0.001218
2.8 1 4.5 0.001415 2.6 1.2 3.5 0.001159
2.8 1.2 4 0.001255 2.8 1.2 4 0.001255

Table 8.4: Results simulations from parametric study

Constant depth on right side of the dimple

The depth on the right side is kept constant at 0.6·h0 and the one on the left side is varied. The
vapour volume fraction and pressure distribution together with the streamlines are depicted for
four configurations in figure 8.13. The first thing that catches the eye is the increase in size of the
vortex when dl increases. As already stated in the previous discussion of the dimple depth ratio,
a balance is present between the cavitation region and the vortex region. This means that if
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the vortex becomes larger, the cavitation zone becomes smaller. In configuration a) and b), this
cavitation zone is quite large, and although these configurations reach a slightly higher pressure
value than in c) or d), the decrease in load-carrying capacity due to the larger cavitation zone is
decisive such that these configurations are sub-optimal. Configuration d) on the other hand has
a very small cavitation zone, but the lower pressure compared to configuration c) is here critical
and results in a lower load-carrying capacity. Configuration c) has the highest load-carrying
capacity of the four configurations because of its better balance between the cavitation and
vortex region.

Figure 8.13: Vapour volume fraction and pressure distribution combined with streamlines for
following configurations: right dimple depth ratio fixed to 0.6, left dimple depth ratio equal to
a) 1.4 b) 1.8 c) 2.4 (highest LCC) d) 2.6

Constant depth on left side of the dimple

Now the depth on the left side is kept constant at 2.4·h0 and the one on the right side is
varied. The vapour volume fraction and pressure distribution together with the streamlines are
depicted for four configurations in figure 8.14. The size of the vortex region does not change
a lot for these different configurations. This indicates that, in case of the increasing-slope
configurations, the left side of the dimple is determinative for the shape and size of the vortex.
The main difference noticed in these configurations is the location of the vortex. As the dimple
becomes less steep (from a) to d)), the vortex is shifted to the left, meaning that the cavitation
region is smaller. Again, the balance between the vortex region and cavitation region determines
which configuration is optimal.
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Figure 8.14: Vapour volume fraction and pressure distribution combined with streamlines for
following configurations: left dimple depth ratio fixed to 2.4, right dimple depth ratio equal to
a) 0.4 b) 0.6 (highest LCC) c) 0.8 d) 1

Optimal slope

From the left side of table 8.4, that is, when the left side of the dimple is kept at a constant
depth value, it can be noticed that there is a value for the depth on the right side of the dimple
that gives the highest load-carrying capacity. This means an optimal slope exists. The best
configurations are listed in table 8.5. A trend is noticed in this optimal slope: if the left side
becomes deeper, the optimal slope increases. This means that the optimal right depth of the
dimple is rather small, close to 0.6·h0 for each configuration. From the configurations in figure
8.14, it is clear that there is an optimal slope for dl equal to 2.4. Four configurations for a dl

value of 1.8 are given in figure 8.15. Compared to dl equal to 2.4, the vortex is much smaller
for these configurations. Because of this, the decrease in the size of the cavitation region when
dr is increased is less pronounced, nevertheless it is happening. This indicates again that a
certain balance exists between the cavitation region and the vortex region which determines the
optimal configuration.
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dl dr Slope LCC [\]
1.4 0.8 1.5 0.001879
1.6 0.8 2 0.001895
1.8 0.6 3 0.00198
2 0.6 3.5 0.002003

2.2 0.6 4 0.002034
2.4 0.6 4.5 0.002077
2.6 0.4 5.5 0.001912
2.8 0.6 5.5 0.00187

Table 8.5: Configurations giving the best load-carrying capacity for each investigated dl value

Figure 8.15: Vapour volume fraction and pressure distribution combined with streamlines for
following configurations: left dimple depth ratio fixed to 1.8, right dimple depth ratio equal to
a) 0.4 b) 0.6 (highest LCC) c) 1 d) 1.2

To summarize, the depth on the left side has a significant influence on the size of the vortex
region and consequently on the size of the cavitation region. If this depth increases, the vortex
size increases. The depth on the right side does not influence the size of the vortex, but mainly
the location of the vortex, which then impacts the cavitation region size. The main conclusion is
that there exists a balance between the size and location of the vortex region and the cavitation
region, which establishes the geometrical parameters giving the best load-carrying capacity. The
actual size and location of these optimal vortex and cavitation regions can not be described with
a general rule and will depend on the actual application and operating conditions.
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8.3.4 Optimization

The final step is to perform an optimization on these first order bottom profiles for a fixed
dimple shape. A flow chart for the optimization process is given in figure 8.16. The parameters
that will be optimized are the dimple depth ratio on the left side and on the right side, dl and
dr. The bounds for these parameters are defined based on the results from the parametric study.
An area around the optimal value from this study is chosen, such that it is large enough to
have a safety margin, but also not too big, such that the computational time can be limited.
Therefore dl will be allowed to take values between 1.8 and 2.7, whilst dr will be restricted
to values between 0.4 and 0.9. The termination criterion is set for a relative tolerance on the
parameters itself of 1e-03, but the optimization process can be terminated beforehand if no
significant changes are noticed in the process. From the parametric study, an improvement of
at least 12% compared to a flat bottom is expected.

Figure 8.16: Flow chart for optimization with Nelder-Mead algorithm

The optimization was not completed by the time this research needed to be finished, and
therefore only the intermediate results after 27 iterations can be shown. Nevertheless, these
results are valuable. The intermediate result of the Nelder-Mead optimization is depicted in
figure 8.17a. The figure shows the parameters for the different iterations in the process on
the axes, and the dimensionless load-carrying capacity is represented on the figure itself. The
black dots have a relatively low value, the orange ones show the transition to higher values, and
the red dots represent these high values. The red cross is the highest value at that moment.
Although not all iterations are available yet, a region with rather high values starts to develop.
For clarity, this region is depicted in figure 8.17b. In the last step, the relative tolerance on the
parameters is 0.0344 for dl and 0.055 for dr, which is not yet close to the defined convergence
criterion of 0.001. However, the parameters in the iterations start to become concentrated in
this area marked in red, which indicates that the optimum can most likely be found there.

The first thing to notice when comparing these simulations to the ones in the parametric
study, is that the best performing configuration there, dl=2.4 and dr=0.6, had a load-carrying
capacity value of 0.002077 and here it is only 0.002036. A possible explanation for this differ-
ence can be found in the fact that the parametric study is performed on 18 cores, whilst this
optimization is performed on 16 cores. It is not certain that this causes the difference, further
investigations need to be carried out. However, if the results are compared qualitatively, the
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best performing region in the optimization is also one of the better performing ones in the
parametric study.

(a) Overview of simulations in the optimization

(b) Close-up of region with high load-carrying capacity
values

Figure 8.17: Results of the bottom profile optimization with the Nelder-Mead method

The optimum of the optimization will presumably be found in the region marked in red,
which means it will have a dl ratio between 2.1 and 2.2, and a dr ratio between 0.5 and 0.6.
The slopes for the configurations in these corners are calculated in table 8.6. If the optimum
is in this region, then the slope will have a value between 3.75 and 4.25, which is close to the
optimal slope from the parametric study.

dl dr slope

2.1 0.5 4
2.1 0.6 3.75
2.2 0.5 4.25
2.2 0.6 4

Table 8.6: Slopes for the corners of the region with highest load-carrying capacity values
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The vapour volume fraction and pressure distribution combined with the streamlines of the
best performing configuration for the intermediate results is given in figure 8.18. The streamlines
are similar to the best performing texture of the parametric study, and the cavitation zone is
a little larger, which is in agreement with the effect of the left dimple depth on the cavitation
zone. This configuration has a dimensionless load-carrying capacity of 0.002127. This is an
increase by 15% for the sloped configuration, compared to the best value from the flat bottom
configurations, 0.001849. Since this configuration is supposedly not the optimal one yet, it can
be concluded that the optimization with Nelder-Mead will possibly result in a configuration
which gives an increase by more than 15% compared to the best performing flat bottom.

Figure 8.18: Vapour volume fraction and pressure distribution combined with streamlines of
the best performing configuration for the intermediate result of the Nelder-Mead optimization
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Chapter 9

Concluding remarks

9.1 Reflection

In this section, a moment is taken to reflect on the process and results of this thesis. The results
are promising and indicate that not all possibilities regarding surface texturing are studied yet.
However, they stay on a rather superficial level and there is much more to be investigated related
to the optimization of a texture. This thesis is thus a good starting point for further research.
A small overview of what is considered to be worthy to study in future work is presented here.

Firstly, it would be very interesting to perform the optimization for a dimple’s shape and
bottom profile combined. Will the optimized bottom profile from this thesis increase the per-
formance as much when it is combined with other dimple shapes? Does each shape have a
different optimal bottom profile? Many research questions that can give us valuable insights
remain unanswered at the moment.

Secondly, the optimization of the bottom profile was restricted to first order shapes due
to simulation problems for meshes with too much non-orthogonal cells. Although the idea is
that the improvement by using a second order profile compared to a first order profile will be
less than the improvement of a fist order profile compared to a flat bottom, it is certainly still
valuable to know if this statement is correct and to how much improvement this could lead.
Also other functions can be considered, like sine or cosine functions.

Furthermore, an improvement of the mesh quality could make the results from this thesis
more accurate. The quality is not that good and can certainly be improved with other meshing
tools or CFD software.

Next, as friction reduction is a very important aspect of the tribological performance in
these times, it would be interesting to take this into account.

Finally, the influence of operating conditions is not studied in this research. Changes in
temperature are for example ignored in these isothermal cases. The velocity, viscosity as well
as the cavitation pressure are kept constant, but from literature it is already known that they
will influence the performance. So the question remains how they will influence the optimal
configuration.

This reflection clearly shows that future work is necessary. The best performing bottom
profile found in this study is just the beginning of optimizing a dimple or texture.

9.2 Conclusion

The improvement of the load-carrying capacity by applying surface texturing on a linear slider
bearing is investigated in a numerical study. After the model validation for simple cases without
and with cavitation, multiple optimization algorithms from the pygmo package are studied and
their performance is compared. It was demonstrated that the local Nelder-Mead algorithm is the
best option for small sized problems, if computational time and accuracy are both important.
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The global Artificial Bee Colony algorithm is the best global one from this study, yet Nelder-
Mead is outperforming it by far for the considered optimization problems.

First, a parametric study is performed which proved that adding a slope to the traditional
flat bottom profiles of dimples can improve the tribological performance significantly. The best
performing bottom profile has an increasing slope. The explanation is found in the size and
location of the cavitation region and the vortex region. Then, a numerical optimization with the
Nelder-Mead algorithm is performed to get the optimal dimple bottom profile. Although only
intermediate results were obtained, it is clear that the optimal dimple configuration supposedly
will be found in a certain region which corresponds to a good performing region in the parametric
study. The intermediate best performing dimple has an increasing slope of 3.95 and a left dimple
depth of 2.14 times the film thickness. Its load-carrying capacity is already 15% higher than
the best load-carrying capacity of the flat bottom configurations. It is thus concluded that it
is worth it to optimize the bottom profile because it will result in a significant improvement of
the performance.
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