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ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met be-

trekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van

resultaten uit de masterproef.

The author and the promotor give permission to use this thesis for consultation and

to copy parts of it for personal use. Every other use is subject to the copyright laws,

more specifically the source must be extensively specified when using results from this

thesis.

i





1 Acknowledgement

This thesis was written as a part of my master’s degree in bio-science engineering. With

this thesis, I tried to contribute to the understanding of the dynamics of the African

tropical forests. I was very happy when I got the chance to work on this subject, which

brought many of my interests together. The writing of this thesis has been a great

learning experience for me. Not only did I learn a lot about tropical forests and climate

change, I also gained a lot of experience with geospatial data and programming.

I would like to thank Prof. Hans Verbeeck and Prof. Willem Waegeman for giving me

the opportunity to work on this subject and guide me during the process. Being able to

work with two research groups has been a very interesting experience. I would also like

to thank Dr. Marc Paucelle for supervising this thesis. Without his input, feedback and

help, this thesis would not have been possible.

I would like to thank Falk, who helped me with learning Python and always made time

to listen to my struggles and to support me. I really appreciate everything you have done

for me. I’m also very grateful for my parents, Flor and Trui, and my brother, Zjef, who

revised the manuscript and were always there for me with encouraging words. Last but

not least I would like to thank Nancy, Herty and Eva, with whom I live together and

became really good friends with. Their support has meant a lot for me this year.

I’m really glad with how this thesis turned out and what I have learned while writing it.

I look forward to the next steps that will be taken in this research area.

Eva Lorrez

Gent, 4/06/2021

iii



2 List of abbreviations

BLUE Reflectance of blue light

CRU Climatic Research Unit

GOME-2 Global Ozone Monitoring Experiment-2

GOSIF Global ‘OCO-2’ SIF data set

GPCC Global Precipitation Climatology Centre

GPP Gross Primary Production

ERA5 CERA project information for ECMWF Reanalysis 5th Generation

ESA European Space Agency

EVI Enhanced Vegetation index

Mg Megagram

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation index

NIR Near-Infrared

OCO-2 Orbiting Carbon Observatory-2

Pg Petagram

RED Reflectance of red light

SEVIRI Spinning Enhanced Visible and InfraRed Imager

SIF Solar Induced Chlorophyll fluorescence

VAR Vector Autoregression

VI Vegetation Index

VPD Vapour Pressure Deficit

iv



3 Abstract English

The African tropical forests are of global importance due to their biodiversity, carbon sink

capacity and climate regulation. To be able to predict how the African tropical forests

will evolve under the changing climate, it is important to understand the dynamics of the

forests and its drivers. So far, the knowledge about these forests is limited. Local political

and logistic circumstances make the acquirement of data in these regions challenging.

The growing amount of remote sensing observations of African tropical forests gives new

opportunities for the monitoring. New emerging techniques and data driven models allow

to model these systems without knowledge of underlying mechanisms. The issue of finding

the drivers of the vegetation dynamics of the African tropical forests can be seen as a

problem of finding causality in time series. Granger causality is an approach that has

been proven to be fit for this purpose. Combined with a non-linear predictor it should

be able to predict in which regions climate is a driver for vegetation dynamics.

This study aims to test this approach on African tropical forest dynamics. The approach

was applied on anomalies of the Enhanced vegetation index (EVI) on a regional scale in

Central Africa for the period of 2000 till 2020. The results show that in East Central

Africa, vegetation dynamics are to an extent driven by precipitation, temperature and

solar radiation. In the rainforest of Central Africa this could not be concluded. The EVI

time series in these regions show little variation aside from the seasonal cycle and the

long term trend. Some possible reasons were explored: 1) the data used contains a lot

of uncertainty and is not capable of describing the vegetation of the African rainforest,

or 2) the data characterizes the vegetation dynamics of the African rainforest well and

the vegetation anomalies do not show a lot of variation over time. More data needs to

be explored to find out whether this Granger causality framework is suitable to find the

drivers of the African tropical forest dynamics.

v



4 Samenvatting Nederlands

De Afrikaanse tropische wouden zijn van globaal belang door hun biodiversiteit, hun

capaciteit om koolstof op te slaan en hun klimaat-regulerende invloed. Om te kunnen

voorspellen hoe de Afrikaanse tropische wouden zullen evolueren onder het veranderende

klimaat, is het belangrijk hun dynamiek te begrijpen. Tot nu toe is de kennis over deze

wouden beperkt. Lokale politieke en logistieke omstandigheden maken het verzamelen

van data moeilijk. Nieuwe opportuniteiten voor het monitoren van deze bossen doen

zich voor door de groeiende hoeveelheid remote sensing data. Nieuwe technieken en

data gedreven modellen maken het mogelijk om deze systemen te beschrijven zonder

kennis van de onderliggende mechanismen. Het vinden van de drijvende factoren van

de vegetatiedynamiek van de Afrikaanse tropische wouden, kan herleid worden tot een

kwestie van het vinden van causale verbanden tussen tijdsreeksen. Granger causality

is een methode die hiervoor geschikt is. Gecombineerd met een niet-lineaire predictor

kan Granger causality achterhalen in welke regio’s klimaat een drijvende factor is van

vegetatiedynamiek.

In deze studie wordt deze methode getest op de vegetatiedynamiek van de Afrikaanse

tropische bossen. De methode werd toegepast op anomaliën van de Enhanced vegetation

index (EVI) op een regionale schaal in Centraal-Afrika voor de periode tussen 2000 en

2020. De resultaten tonen aan dat in het oosten van Centraal-Afrika vegetatiedynamiek

voor een deel veroorzaakt wordt door neerslag, temperatuur en zonnestraling. In het

regenwoud van Centraal-Afrika leiden de resultaten niet tot deze conclusie. De EVI ti-

jdsreeksen in deze regio tonen maar weinig variatie buiten de seizoensgebonden cyclus

en de trend op lange termijn. Deze bevinding leidde tot volgende hypothesen: 1) de ge-

bruikte data bevat veel onzekerheid en is niet in staat om de vegetatie van het Afrikaanse

regenwoud goed te beschrijven, of 2) de data is wel in staat om de vegetatie goed te

beschrijven en de vegetatie anomaliën vertonen weinig variatie doorheen de tijd. Om te

weten te komen of dit Granger causality framework in staat is om de drijvende factoren

van de dynamiek van de Afrikaanse tropische wouden te achterhalen, moet meer data

onderzocht worden.
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5 Introduction

5.1 The African rainforest: a unique ecosystem

The African rainforest is the second largest rainforest in the world after the Amazon.

It stretches out both north and south of the equator and covers almost 2 million square

kilometers in Central Africa. The forest can be divided into four large regions: the central

forests of the Congo Basin, the West African rainforest that stretches to the Atlantic

Ocean, the forests to the east in the Rift Valley region and the South Congo forests.

The forests in the South and West tend to be more fragmented than in Central Africa

and form a mosaic with savanna (Figure 1). To the east, the forests tend to be cooler

and drier than in the center. The Guineo-Congolian forests of West- and Central-Africa

contain 95% of the African rainforest, the Congo-Ogooué Basin (short: Congo Basin)

encompasses 89% of the African rainforest, see Figure 2 (Malhi et al., 2013; Adams,

1998; Lewis et al., 2013; Mayaux et al., 2013).

Around the equator, the mean monthly temperature is rather constant around 25 °C and

only varies by ±1 °C throughout the year as can be seen in Figure 3. The occurrence

of rainforest is mostly constrained by the amount of precipitation. Evergreen forests can

only survive when there is around 2000 mm rainfall per year. With increasing latitude,

rainfall decreases, the length of the dry season increases and the rainforest gradually

turns into other vegetation like dry tropical forest (Guan et al., 2015; Malhi et al., 2013).

Precipitation in the Congo Basin seems to be dependent on moisture from the Indian

Ocean and from moisture recycling from the land itself (Dyer et al., 2017). The climate

in the African rainforest is also driven by large scale phenomena like the Intertropical

convergence zone and the Atlantic Multidecadal Oscillation. Over large periods of time

these phenomena can cause fluctuations in precipitation and temperature (Gray et al.,

2004; Balas et al., 2007).

These phenomena lead to a unique seasonal cycle. The African tropics have two dry and

wet periods in a year. June, July, August and December, January, February are the dry

periods, with June to August the driest months. The two rain seasons are September,

October, November and March, April, May. Most rain falls during September till October
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Figure 1: Map of the land cover of Africa combined with a layer of the intact forest cover

in Africa (Potapov et al., 2008). ©Contains modified Copernicus data (2015/2016) ©ESA

Climate Change Initiative - Land Cover project 2017.
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Figure 2: Map of Africa with the ecoregions of the Congo Basin (Verhegghen et al., 2012).

(Nicholson, 2018; Dyer et al., 2017; Washington et al., 2013).

This is in strong contrast to the climate of the Amazon rainforest. The Amazon only

has one dry-wet alternation per year, as can be seen in Figure 3. The Amazon also has

a higher annual rainfall (2300 mm per year) compared to the Congo Basin (1500 mm

per year) (Guan et al., 2015; Y. Jiang et al., 2019). Moreover, in the wettest part of the

Amazon rainforest the vegetation growth is limited by light due to cloud cover (Green et

al., 2020). Overall, the African rainforest has a drier climate than the Amazon rainforest.

Large parts of the Congo Basin rainforest receive a mean annual rainfall lower than the

2000 mm per year needed to sustain evergreen forest and as a result have semi-deciduous

vegetation (Y. Jiang et al., 2019).

The African rainforest is home to a very large number of species and therefore vital for

global biodiversity. It contains a minimum of 6000 tree species (Slik et al., 2015; Justice

et al., 2001). The African rainforest has a mean above-ground biomass of 395.7Mgha−1,
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Figure 3: The monthly temperature, precipitation and surface net solar radiation of the

Amazon compared to the Congo basin over the span of one year. ERA5 monthly data was used

and the average over twenty years was calculated (Muñoz Sabater, 2019).

the Congo Basin reaches 429Mgha−1 (Lewis et al., 2013). When compared with tropical

forests in other continents, the African tropical forests have a low stem density and a

high above ground biomass (Lewis et al., 2013). For example, the Amazon rainforest has

a mean above-ground biomass of 350Mg ha−1 (Cummings et al., 2002). The diversity of

species in rainforests around the world is positively correlated to the amount of rainfall

they receive. Since the African rainforest is drier than other rainforests around the world,

the species diversity is lower and the vegetation is semi-deciduous (Adams, 1998).

Just like the climate, the vegetation of the African rainforest shows a unique seasonal

pattern. Phenology is the study of these seasonal patterns in nature and their biotic and

abiotic causes (Lieth, 1974). The phenology of the African rainforest is complex, leaf

shedding and reproduction cycles are species dependent and can vary with the layer of

the canopy (Couralet et al., 2013; Schaik et al., 2003). Philippon et al. (2016) show that

the greenness of the African rainforest has two peaks throughout the year: in April-May

and September-October.
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The drivers of these patterns of greenness remain unclear. For example Philippon et

al. (2016), Guan et al., 2015 and Gond et al. (2013) show a strong correlation between

greenness and rainfall and a smaller influence of light, depending on the season. Philippon

et al. (2018) show that the the quality and quantity of light actually has a very big

impact on the vegetation, especially in the forests of Western Central-Africa. According

to Seddon et al. (2016), the vegetation of the African rainforest responds mainly to

cloudiness and temperature. The complexity of the phenology and the difficult conditions

for fieldwork in the region result in a rather limited knowledge about the vegetation and

its drivers (Malhi et al., 2013; Adole et al., 2016; Washington et al., 2013).

5.2 Forests of local and global importance

Besides the already demonstrated value for biodiversity, the African rainforest shows to

be an ecosystem with global importance in many other ways. The African rainforest has

a meaningful part in the global carbon cycle being both a sink and a source of carbon

(Baccini et al., 2017). It is estimated that the forest is a net sink of 0.5 Pg carbon per

year (Lewis et al., 2009). However, the changing climate and human interactions with

the forest might flip the switch and turn the forest into a net carbon source due to the

impact of higher temperatures and droughts. The long term tropical forest sink might be

already declining after a peak in the 1990’s. The African tropical forests seem to follow

the trend of uptake of carbon in the Amazon, which started to decline earlier (Malhi &

Grace, 2000; Lewis, 2006; Hubau et al., 2020).

Another important aspect of the African rainforest is the feedback loop between climate

and vegetation. Not only does climate influence vegetation, vegetation also affects climate

in multiple ways. The land and the atmosphere exchange both water and energy. In the

direction of land to atmosphere this happens under the form of transpiration (moisture

from the soil) and evaporation of precipitation. Since a considerable part of the precipi-

tation in the Congo Basin comes from moisture recycling, removal of the vegetation can

lead to a decrease in precipitation. In addition, the canopy enhances turbulence and ab-

sorbs solar radiation. Therefore, deforestation might cause increasing temperatures and

extremes. In this way the rainforest has a cooling effect on the region (Betts, 2004; Dyer
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et al., 2017).

Not only is the water cycle of the Congo Basin important for the African rainforest, it also

has a crucial part in the water cycle of the surrounding regions (Betts, 2004). Spracklen

et al. (2012) show that air that passed over the rainforest will cause more rainfall in the

neighbouring regions. The change of vegetation in the African rainforest might even have

implications on the global water cycle by influencing atmospheric circulations (Betts,

2004).

Complex feedback loops make it difficult to predict the outcome of changing land use

and climate. This is partly due to the lagged response of vegetation and atmosphere to

climate (Betts et al., 2004). The influence of previous states of different climate variables

are visible for different periods. The influence of water lasts longest while temperature

and radiation have a more immediate effect (Papagiannopoulou et al., 2017b; Wu et al.,

2015).

Lastly, the African rainforest is an essential source of goods and services for local com-

munities. The majority of households in the region depend on the forest for food, fuel,

water, medicine and more. For example, in the Democratic Republic of Congo, around

95% of the wood removal from the forests is for the use of woodfuel. The communities

living here are therefore very vulnerable to the changing climate and deforestation (Sonwa

et al., 2012; MacDicken, 2015; Swingland et al., 2002).

5.3 Increasing pressure on the African rainforest

The African rainforest is subjected to a long term drying trend according to amongst

others Zhou et al. (2014), Malhi & Wright (2004), Asefi-Najafabady & Saatchi (2013),

Fauset et al. (2012), Justice et al. (2001). Zhou et al. (2014) reported a long term decline

in precipitation, canopy water content and greenness. Z. Jiang et al. (2008) state that

since the 1980’s the length of the dry season of June-August has increased with an average

of 8 days per decade. This long term drying influences the rainforest in a different way

than short term droughts. The composition of the forest will alter to more drought resis-

tant species (Asefi-Najafabady & Saatchi, 2013; Fauset et al., 2012), eventually maybe

to grass and savanna (Willis et al., 2013). This trend will probably continue in the future
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and will influence the rainforest’s biodiversity, carbon cycle and water cycle (Justice et

al., 2001). Also global warming will affect the African tropical rainforest through the re-

arrangement of zonal circulation (James et al., 2013) and increasing temperatures (Malhi

et al., 2013).

It is not just climate that has an influence on the vegetation in the rainforest, humans and

their activities play a big part in the state and the future of the forests too. The tropical

forests in Africa show signs of long term human presence and disturbance. Currently,

human activities like agriculture and logging lead to deforestation in all parts of the

tropical forests in Africa (Adams, 1998; Justice et al., 2001; Malhi et al., 2013). According

to MacDicken (2015), the Congo Basin lost up to 25 000 square kilometers of forest in

the period between 2005 and 2010.

5.4 The African rainforest is important but understudied

The global and local importance of the Congo Basin forest for biodiversity, carbon seques-

tration, climate and local communities is undeniable. Increasing pressure on the forest

will impact biodiversity and communities both locally and globally (Washington et al.,

2013; Abernethy et al., 2016). To understand the impact climate change will have on the

African rainforest, it’s crucial to understand the functioning of the vegetation, its seasonal

cycle and its dynamics. Furthermore, knowledge of the interactions between vegetation

and climate variables is essential (Adole et al., 2016). To uncover these complex processes

and interactions, long-term monitoring is necessary (Malhi & Wright, 2004). However,

factors like unstable local politics and logistics make research in the region challenging.

Because of these reasons the availability of data is low (Malhi et al., 2013; Adole et al.,

2016; Washington et al., 2013). The African rainforest shows many differences with other

rainforests in both climate conditions and vegetation, so despite the fact that the Ama-

zon forest has been studied intensively on these subjects, knowledge about the Amazon

cannot be extended to the African rainforest. Because of all these reasons, the vegetation

dynamics of the African rainforest and their drivers remain mostly unknown.
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6 Studying the African tropical forest

Over the past decades, the African tropical forests started being researched. Since then,

less than twenty phenology studies have been done in Central Africa. This includes both

ground based studies and remote sensing studies (Adole et al., 2016).

6.1 Ground based studies

The phenology of the African rainforest used to be studied mainly through ground-based

field work up until the 1990’s (Adole et al., 2016). However, due to the conditions in

Central African countries, the amount of ground-based phenology studies is low (Malhi

et al., 2013). Adole et al. (2016) show that before 2010 only about five ground-based

studies were done in this region (e.g. De Mil et al., 2019). The benefit of ground-based

studies is that they can give detailed information about the forest. On the downside they

have limited spatial and temporal coverage.

6.2 Remote sensing

Since the beginning of 2000, remote sensing has become increasingly important for study-

ing the rainforest and more phenology studies were done. Remote sensing can be used to

measure Land surface phenology. This is the seasonal variation in canopy greenness over

a vegetated land surface, which can show patterns in vegetation on a large scale (Zhang

et al., 2003). Verhegghen et al. (2012), Gond et al. (2013) and Viennois et al. (2013) are

examples of studies that mapped the Land surface phenology of the African rainforest

through various methods.

Remote sensing allows for a larger spatial coverage, but data is dependent on the temporal

and spatial resolution and temporal coverage of the satellite (Adole et al., 2016). A

specific issue that arises for remote sensing of rainforest is the constant cloud cover over

the forest, which makes it challenging to assemble long term time series. On top of that,

the phenological cycle in the rainforest is complex and difficult to detect (Zhang et al.,

2014). Another problem is that low availability of ground-based observations leads to

limited validation of remote sensing data (Chambers et al., 2007).
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A widely used satellite sensor for studying the phenology of the African rainforest is the

Moderate-resolution Imaging Spectroradiometer (MODIS). With a spatial resolution of

250 m, 500 m and 1 km its observations are practical for regional studies (Adole et al.,

2016). It uses techniques for noise reduction from clouds, atmospheric haze, aerosols and

negligible water vapour impacts (Huete et al., 2002).

6.3 Vegetation indices

Vegetation can be studied from space through the use of vegetation indices. These indices

have been calculated based on the reflectance spectra of the land surface. Vegetation

indices are important proxies for many biochemical and biophysical variables and allow

to monitor the green-leaf dynamics (Z. Jiang et al., 2008; Tucker et al., 1985).

6.3.1 Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is based on the difference between

the reflectance in near-infrared and red wavelengths. In the scattering spectrum of a

green leaf, the absorption in the red band is much higher than in the near-red band. High

NDVI values indicate dense vegetation, low values indicate bare land or dead vegetation

(Myneni et al., 1995; Lillesand et al., 2004).

NDV I =
(NIR−RED)

(NIR + RED)
(1)

Most remote sensing studies of Africa used NDVI as a vegetation index (despite the

advantages of EVI) because of its long time series availability (Adole et al., 2016).

6.3.2 Enhanced vegetation index

NDVI values can give a misrepresentation of the vegetation in certain condition due

to interaction of the atmosphere and soil. The Enhanced vegetation index (EVI) is

a modification of the NDVI with a factor to minimize soil background influence and

atmospheric scattering (Lillesand et al., 2004). In addition NDVI shows asymptotic

behaviour in regions with high biomass where EVI is still sensitive in these regions as

9



(a) (b)

Figure 4: The response of (a) NDVI and (b) EVI to the NIR reflectance. The different types

of vegetation are indicated with different symbols. NDVI shows saturation for increasing NIR

reflectance values, which indicate high biomass situations like broadleaf forests. © 1998, IEEE

shown in figure 4b. (Huete et al., 2002; Justice et al., 1998).

EV I = G ∗ (NIR−RED)

(NIR + C1 ∗RED + C2 ∗BLUE + L)
(2)

With NIR, RED and BLUE the reflectances of respectively the near-infrared, the red and

the blue wavelength. G is the grain factor, L is the soil adjustment factor and C1 and

C2 are the coefficients of the aerosol resistance term (Z. Jiang et al., 2008; Justice et al.,

1998).

EVI has been used a lot in studies to characterize the vegetation greenness of the Amazon

( e.g. Huete et al., 2006; Saleska et al., 2007; Samanta et al., 2010; Morton et al., 2014)

and to a lesser extent the greenness of the African rainforest (e.g. Zhou et al., 2014).

6.3.3 Solar-induced chlorophyll fluorescence

Solar-induced chlorophyll fluorescence (SIF) is a good proxy for photosynthesis and can

be used to characterize gross primary production (GPP) (Doughty et al., 2019). SIF also
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shows to be good at defining droughts in vegetation (Sun et al., 2015). Multiple methods

are available for the calculation of SIF, based on the reflectance spectra of the canopy

(Miao et al., 2018; Mohammed et al., 2019).

The emergence of SIF products is a promising advancement for vegetation monitoring,

since other vegetation indices can only estimate chlorophyll content at a large scale. SIF

has already been used to study vegetation dynamics in the Amazon rainforest by, for

example, Green et al. (2020). In the African tropics, Robinson et al. (2019) used SIF to

characterize drought. SIF has not yet been used to study the vegetation dynamics of the

African rainforest.

A problem that arises with the use of SIF is the limited length of remote sensing time

series available. The longest available time series spans from 2007 until 2018 and is

derived from observations of the Global Ozone Monitoring Experiment-2 (GOME-2).

Other sources provide longer data sets of modelled SIF data, for example, the GOSIF

data set from Li & Xiao (2019).

6.4 Modelling vegetation dynamics

Vegetation dynamics are the long-term and short-term changes in greenness and pro-

ductivity of vegetation. They reflect changes in climate, the abiotic environment, biotic

interactions, and past disturbances (van der Maarel, 1988). To describe vegetation, these

dynamics and their drivers need to be understood. Over the years many different meth-

ods have been developed to describe the vegetation dynamics of the African tropical

forests.

6.4.1 Process based models

Process based models are a mathematical representation of the functioning of, in this

context, ecological systems (Buck-Sorlin, 2013). These models generally need a thor-

ough understanding of the inputs, outputs and mechanisms of a system. For example,

De Weirdt et al. (2012), Dury et al. (2018) and Poulter et al. (2009) use process based

models to describe and predict vegetation dynamics. However, compared to other pro-

cesses like photosynthesis, the phenology of rainforests, its drivers and mechanisms are
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still quite unknown. This leads to a lot of uncertainty and models describing rainforest

phenology use many assumptions and are still fairly simple. Because of this, they don’t

succeed in simulating the phenology of the rainforest (Verbeeck et al., 2011; H. Yan et al.,

2017).

Another problem of process based models is revealed by Minaya et al. (2018). They show

that these models can become very complex and lead to high computational time.

6.4.2 Data driven models

In their study, Minaya et al. (2018) compared a process-based model with a data driven

model and showed that data driven models can characterize vegetation well while needing

less computational time. Data driven models learn based only on the input data without

making assumptions about the processes. For example, Gond et al. (2013) used an

unsupervised classification method to distinguish different vegetation types in the Congo

Basin. The pixels of the forest were classified based on their greenness. Philippon et al.

(2018) used a clustering algorithm to distinguish different light regimes in the Congo

Basin. It is still important to have good knowledge of physical and biological processes

to be able to interpret the results.

6.4.3 Statistical methods

Another way to describe vegetation dynamics is through statistical analysis. For example

Ndehedehe et al. (2019), Nzabarinda et al. (2021) and Zhou et al. (2014) used statistical

metrics to study the relationships between vegetation (NDVI and EVI) and climate vari-

ables (precipitation, water availability and temperature) in the African rainforest. These

studies all show correlation between precipitation and vegetation greenness in the African

rainforest, but correlation does not imply a causal relationship.

6.4.4 Time series analysis and causation

Since large controlled experiments are impossible in climate science, finding causation in

time series is challenging (Runge et al., 2019). However, many methods are being devel-

oped to deal with this issue. For example Sugihara et al. (2012) developed a nonlinear
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state space reconstruction method to detect causation in complex ecosystems. A popular

method is Granger causality (Granger, 1969). This method does not use correlation but

predictability to identify causation. According to McGraw & Barnes (2018), this method

is appropriate for modelling vegetation dynamics and their lagged response to climate

since it takes into account lagged variables. More details on Granger Causality will be

given in the methodology section.

Granger causality can also be used to find relations between variables in non-linear sys-

tems (Sugihara et al., 2012; Papagiannopoulou et al., 2017a). Many of the previously

discussed studies use linear methods, but since dynamics between climate and vegeta-

tion are very complex (e.g. Foley et al., 1998; Green et al., 2017), these interactions

can better be described through non-linear models (Zeng et al., 2002; Papagiannopoulou

et al., 2017a). Papagiannopoulou et al. (2017a) developed a method that uses a com-

bination of Granger causality and a non-linear algorithm to model vegetation dynamics

on a global scale. This method proved to be successful in predicting if climate drives

vegetation dynamics in many regions of the world. However, for tropical forests the re-

sults were indecisive. This can, according to Papagiannopoulou et al. (2017a), indicate

that 1) climate does not cause vegetation dynamics in tropical forests but other factors

like human activities do, 2) NDVI shows saturation in high biomass environments and is

not a suitable vegetation index in these regions, 3) the data used is not reliable in these

regions.
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7 Objectives of the study

Many studies have been able to show correlation between climate variables and vegetation

dynamics in the African rainforest. On a global scale, models are being developed to

find causal relationships in climate time series. The purpose of this study is to bring

these two domains together and find out whether the vegetation dynamics of the African

tropical forests are caused by the climate variables temperature, precipitation and solar

radiation.

The Granger causality framework as developed by Papagiannopoulou et al. (2017a) will

be applied on a regional scale, but instead of using NDVI, vegetation will be characterized

by both EVI and SIF. This way this study aims to address the unanswered questions in

Papagiannopoulou et al. (2017a): 1) whether the use of EVI over NDVI will deal with

the high biomass saturation issue and improve the results, 2) if SIF is a good option to

characterize vegetation in this approach. To conclude, it will allow to determine 3) if the

data in this region is reliable enough for this approach.
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8 Methodology

The method used in this thesis was developed by Papagiannopoulou et al. (2017a) and

combines a Granger causality framework with a random forest predictor. The framework

was used for the prediction of two different vegetation indices: EVI and SIF. For the

analysis Python 3 was used (Van Rossum & Drake, 2009).

Two different data sets were constructed for the two vegetation indices. Both data sets

consist of a number of features and one label. The features are the time series of the

climate variables and their lagged and cumulative values. The label is the time series of

the vegetation anomalies.

8.1 Data sets

The climate data sets come from CERA project information for ECMWF Reanalysis

5th Generation (ERA5), see Table 1 (Muñoz Sabater, 2019). These are reanalysis data

sets based on remote sensing and in situ data. The temperature product was calculated

two meters above the surface. The precipitation data was calculated as the accumulated

water that falls on the surface within one month. To characterize solar radiation, the

surface net solar radiation was used. This data is calculated as the difference between

the amount of solar radiation that reaches the Earth’s surface and the amount that is

reflected by the Earth’s surface, accumulated over a month.

Variable Product Spatial resolution Temporal resolution

Temperature T2m (ERA5) 0,5° Monthly

Precipitation tP (ERA5) 0.5° Monthly

Radiation SSR (ERA5) 0.5° Monthly

Greenness EVI (MODIS) 1 km Monthly

Photosynthesis GOSIF 0.05° Monthly

Table 1: The different data sets that were used and their spatial and temporal resolution.

The choice for reanalysis data sets was made after closely examining different data sets.

For example, in situ temperature and precipitation data from CRU (Harris et al., 2020)
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and GPCC (Schneider et al., 2020) were considered. The time series turned out to be

incomplete due to the decrease of observatory stations in West and Central Africa (Harris

et al., 2020).

Soil moisture was not included as a variable because the quality of remote sensing data

of soil moisture is low in high biomass situations. Research has shown that the rela-

tion between vegetation greenness and soil moisture is insignificant (Ndehedehe et al.,

2019).

The first vegetation index that was used is the Enhanced vegetation index (EVI) derived

from data of the Moderate Resolution Imaging Spectroradiometer (MODIS). This instru-

ment on NASA’s Terra satellite provides long-term time-series of vegetation indices and

is used to monitor land, atmosphere and oceans (Justice et al., 1998). The EVI data set

has a monthly interval and a spatial resolution of one kilometer (Didan, 2015).

The second vegetation index that was used is the Solar-induced chlorophyll fluorescence

(SIF). Since the time-series of remotely sensed SIF products are still short, a modelled

SIF product, GOSIF was used. This product has been constructed from OCO-2 data,

remote sensing data from MODIS and meteorological reanalysis data using a data-driven

approach (Li & Xiao, 2019). The implications of using GOSIF for this study are discussed

in section 10.4.

8.2 Preprocessing of the data

The region between 10 and -10 degrees latitude and 0 and 40 degrees longitude was

selected as study area, as shown in Figure 5. This area contains parts of Nigeria,

Benin, Togo, Cameroon, Chad, Central African Republic, South-Sudan, Ethiopia, Ke-

nia, Uganda, Rwanda, Burundi, Tanzania, Democratic Republic of the Congo, Congo,

Angola, Gabon and Equatorial Guinee. The focus is on the Congo Basin, which stretches

across Cameroon, Central African Republic, Democratic Republic of the Congo, Republic

of the Congo, Equatorial Guinea and Gabon.

After downloading, the data sets were resampled to the spatial resolution of 1°. All data

sets already had the desired monthly temporal resolution. The time frame of the study
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Figure 5: A map of Africa with the study area marked in green.

depends on the availability of data and spans from 2000 until 2020. For the EVI data, a

quality control was performed on each pixel based on the quality, usefulness, clouds and

aerosols. This information was stored in the ”VI quality” layer of the vegetation index

product. Pixels with low quality were left out.

For every pixel, the time series of each variable was created over the twenty-one year time

frame. Next, for each time step, the anomaly was calculated from the raw data. This is

a necessary step to make sure the time series are as stationary as possible, since Granger

causality cannot be applied for non-stationary time series. The vegetation index has a

clear seasonal cycle, which can very easily predict itself (Papagiannopoulou et al., 2017a).

In a first step the long-term trend was removed by subtracting a linear trend from the

data. This way, the mean of the time series does not change over time and the time

series becomes more stationary. In the second step, the seasonal cycle was subtracted.

By assuming that the seasonal cycle stays constant over time and is repeated every year,

it can be calculated as the monthly mean over the twenty years. This monthly mean

was then subtracted from each corresponding month. The different components of the

anomaly decomposition of EVI for one pixel are visualized in Figure 6.
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A following step was to add lagged features of the climate variables, since the state of the

vegetation at a given point can reflect the climate of the past. Also cumulative features

were calculated, because vegetation could reflect the average climate of the last couple of

months. The lagged and cumulative variables were added for the previous twelve months,

since longer windows did not show improvements according to Papagiannopoulou et al.

(2017a).

Figure 6: Visualisation of the anomaly decomposition of a time series of EVI. Subtracting the

long-term trend and the seasonal cycle from the raw data leads to the anomalies.

8.3 Granger Causality

Granger causality (Granger, 1969) is a form of causality between time series based on

predictability. One could say that time series A causes time series B if the auto regression

of B improves when information of A is added as predictor. The evaluation of the model

happens in a quantitative way since existing statistical tests require stationary time series

and linear relationships, which are two demands the data in this thesis do not meet.

Instead, the coefficient of determination (R2) is used. This coefficient shows how much
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variance of the vegetation index is explained by the prediction. The value increases if

the performance of the model increases and reaches a theoretical optimum of one. If the

value is negative, the prediction performs worse than the mean of the observations.

This leads to a definition of Granger causality, using R2: Time series x Granger causes

y if R2(y, ŷ) increases when xt−1, xt−2, ..., xt−P are included in the prediction of yt, in

contrast to considering yt−1, yt−2, ..., yt−P , where P is the lag-time moving window (Pa-

pagiannopoulou et al., 2017a).

In practice, this means that two models are compared: a baseline auto-regression model

to predict the target time series and a full model, which also includes other time series

as predictors. The predictor time series Granger causes the target time series if the

performance of the full model is better than that of the baseline model. In this study, the

target is the time series of the vegetation anomalies (EVI and SIF) and the predictors

are the time series of the climate variables.

8.4 Analysis

Papagiannopoulou et al. (2017a) demonstrated that a non-linear model was more suc-

cessful at predicting vegetation dynamics in this setting than a linear model. Therefore,

a non-linear predictor, random forest from the Scikit-learn library, was used (Pedregosa

et al., 2011). A random forest combines the outcomes of a number of decision trees, in

this case 100. To avoid over fitting of the model, 5-fold cross validation was applied. In

this technique the data set is divided in 5 intervals. Each in turn acts as a test set while

the other data is used for training (Papagiannopoulou et al., 2017a).

In the first analysis the non-linear random forest approach was used to find out if climate

causes vegetation dynamics. Every pixel was considered a different problem, for which

the baseline and full models were trained. For both baseline and full model, the R2 value

was calculated based on 5-fold cross validation. Afterwards, the difference between the

R2 values of the full model and the baseline model was calculated to quantify whether

the full model performs better than the baseline model. This analysis was performed for

both vegetation indices, EVI and SIF.
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In the second analysis the framework was used with a linear vector autoregressive (VAR)

method to find out whether the non-linear method did perform better. A ridge regression

was used with a regularization term to avoid over-fitting. For more information, see

Papagiannopoulou et al. (2017a).

In a last analysis, anomaly time series of vegetation and climate variables were plotted for

four pixels in the study area to examine both the spatial and temporal variation between

values. The four pixels were selected based on the results of the first analysis. Two pixels,

where the model was able to predict the vegetation index, were compared with two pixels

where the R2 value was zero or less.

20



9 Results

9.1 Enhanced vegetation index

After running the analysis, three outputs were generated for every pixel: the R2 values

of the baseline model, the R2 values of the full model and the difference between both.

These values were plotted as maps for the entire study area and will be discussed in the

following sections.

9.1.1 Full model

The results of the full model for EVI are shown in Figure 7. At first sight, the center of

the study area, between latitude -5 and 5 and longitude 10 and 30, stands out. In this

area, the R2 values of the pixels are almost all equal to zero. This means that in these

pixels, the full model performed poorly and that the full predictor set could not predict

the vegetation anomalies. In the east, north and south of the study area the R2 values

of the pixels are higher, with maximum values of around 0.5 in the east. In these pixels,

the full model was able to predict the vegetation anomalies.

Figure 7: Results of the non-linear full model for EVI. The darker the red, the higher the R2

value. All values lower than zero are visualized as zero.
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9.1.2 Baseline vs full model

To find out if the prediction of EVI anomalies improves by adding climate variables to

the predictor set, the full model was compared to the baseline model. Figure ?? shows

the results of the difference between the R2 values of the full model and the baseline

model. In the pixels for which the values are higher than zero, the climate anomalies

improve the prediction of the EVI anomalies. Therefore, according to the definition of

Granger causality, climate partly causes vegetation anomalies in these pixels. In the east

of the study area, a group of pixels stands out, where the full model performed slightly

better than the baseline model, with a maximum difference of R2 value of around 0.3.

In these pixels climate partly causes changes in vegetation. In most pixels, however, the

values of the difference are equal or smaller to zero (Figure ??. In these pixels the climate

anomalies do not add to the prediction and thus, causation of EVI anomalies.

(a) (b)

Figure 8: Difference between the full model and the baseline model for EVI with all values

smaller than zero visualized as zero (a) and a histogram of the R2 values (b).

9.1.3 Baseline model

The results of the baseline model can be found in Figure 9a. This figure shows the same

pattern as the plot of the results of the full model. In the center of the study area pixels

show R2 values of zero. In the north and south, the pixels have R2 values around 0.2

and in the east the pixels show the highest values with maximum values of 0.5. Since the
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baseline model is an auto regressive model and demonstrates how well EVI can predict

itself based on previous values, these results should be examined more closely.

(a) (b)

Figure 9: The results of the non-linear baseline model for EVI (a). Four pixels were selected

to compare the time series of EVI (b).

To do this, four pixels were selected in the study area: two in the center where the

model performance was low (R2 values equal to zero) and two in the east where the

model performed better (R2 values around 0.4), see Figure 9b. For these four pixels the

anomaly time series of EVI were plotted over the twenty year period. Figure 10a shows

that for the pixels with coordinates (5.5, 15.5) and (-5.5, 15.5), for which EVI could not

predict itself, the anomaly values mostly stay between the interval [−0.5, 0.5] and show

far less variation than for the pixels with coordinates (5.5, 37.5) and (-5.5, 37.5), which

anomaly values go up to −2 and 2.

To examine if the anomaly time series of the climate variables follow the same trend,

their values were also plotted for the four pixels in Figures 10b to 10d. The difference in

variation between the time series of pixels in the east and pixels in the center is not as

visible as in the EVI plots.

9.1.4 Non-linear vs linear model

In the second analysis, the non-linear predictor was replaced by a linear model. This

analysis was added to examine whether a non-linear method actually is more suitable to

describe vegetation dynamics in the African rainforest. Figure 11a shows the difference
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(a) (b)

(c) (d)

Figure 10: Anomaly time series of (a) EVI, (b) ERA5 temperature, (c) ERA5 precipitation

and (d) ERA5 solar radiation over twenty years for the pixels: (5.5, 15.5), (-5.5, 15.5), (5.5,

37.5), (-5.5, 37.5).

between the R2 values of the non-linear full model and the linear full model and thus,

for which pixels the non-linear model performed better than the linear model. In most

pixels, the R2 values are larger than zero (Figure 11b). In the pixels where the difference

is zero or smaller, the non-linear method did not show an improvement over the linear

method.
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(a) (b)

Figure 11: The difference between the non-linear full model and the linear full model for EVI.

The values were plotted for each pixel (a), all values lower than zero are visualized as zero. (b)

shows a histogram of the values.

9.2 Solar-induced chlorophyll fluorescence

The same analysis was applied to the SIF product. In this section the most important

results will be briefly discussed. All other figures can be found in the appendix. The

explanation for why the SIF is not analysed as in depth as the EVI will follow in section

10.4.

(a) (b)

Figure 12: The results of the non-linear analysis for SIF. (a) shows the results of the non-linear

full model, (b) shows the difference between the full model and the baseline model. All values

lower than zero are visualized as zero.
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The model performs good in most pixels (Figure 12a) with R2 values between 0.1 and

0.8. The pixels in the east of the study area show the highest R2 values. To find out

whether adding climate variables to the prediction improves the performance, the full

model is compared with the baseline model (Figure 12b). Three groups of pixels with

values higher than zero stand out: the east of the study area, the coastal region in the

west and the north part of the center. For these pixels climate partly causes changes in

vegetation.

26



10 Discussion

10.1 Results versus land cover

The results show that the model was not successful in predicting EVI anomalies, especially

not for the center of the study area. In the east of the study area both full and baseline

model performed better than in the center. The full model performed slightly better

than the baseline model in some pixels, from which can be concluded that in these pixels

climate (temperature, precipitation and solar radiation) does cause vegetation anomalies.

In the center, interpretation of the results is less straightforward. The full model and

the difference between the full model and the baseline model suggest that climate does

not cause vegetation anomalies in these pixels. The baseline model, however, shows that

the reason for this bad performance might be found in the EVI data itself. The plots of

EVI anomaly time series for four different pixels demonstrate that the variation of EVI

anomalies is lower in the center of the study area. When the results of the analysis are

compared with the land cover map of the region, the land cover type of the regions with

different results can be examined, see Figure 13.

The pixels in the east, north and south of the study area are mainly covered with grass-

land, shrubs and cropland. In the center of the study area the land is covered with forest,

or more specifically according to figure 2, with dense moist forest. Fayolle et al. (2014)

demonstrate that forests in Central Africa and East Africa are subjected to different

climate regimes and have different species composition. In the center, forests are wet

and moist, mostly evergreen. To the east, the forests are more dry and trees are mostly

deciduous.

It’s clear that the type of forest influences the results of the analysis. In the dry forests in

East Central Africa, climate partly causes vegetation anomalies. These deciduous forests

have more seasonality and, apparently, more anomalies. This variation in vegetation

made it possible for the baseline model to predict the EVI anomalies. In the Congo

Basin rainforest, time series of EVI anomalies seem to contain too little variation for the

model to perform well.
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Figure 13: Land cover of the study area. ©Contains modified Copernicus data (2015/2016)

©ESA Climate Change Initiative - Land Cover project 2017.

10.2 Low variation EVI data

The time series of climate anomalies do not seem to show less variation in the rainforest

than in the dry forests in East Africa. Therefore, the reason for this low variation of EVI

anomalies needs to be sought elsewhere. In this section, some possible explanations are

explored.

Some literature points in the direction of the quality of MODIS data. According to D.

Yan et al. (2016) and Hmimina et al. (2013), vegetation products of MODIS are not able

to capture vegetation dynamics of the African rainforest adequately. D. Yan et al. (2016)

compared EVI data of the African rainforest calculated from MODIS images with data

calculated from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) images.

The MODIS observations turned out much less likely to capture cloud free images of

the Congo Basin than the SEVIRI observations. This resulted in MODIS images not
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being able to capture the canopy greenness cycles of the rainforest. The difference in

performance is due to the types of satellite the two instruments are on. SEVIRI is attached

to a geostationary satellite, which allows to make multiple images a day on different times

for the same region. MODIS, in contrast, is attached to a polar orbiting satellite, which

leads to one image every one or two days. The Terra satellite crosses the equator each

day at 10:30 AM local time and around 10 AM local time, the cloud cover is at its

maximum above West Central Africa (Dommo et al., 2018). This set of circumstances

could lead to a low availability of cloud-free images of the African rainforest provided

by MODIS. The MODIS images have been controlled for pixel quality and cloud cover,

but persistent cloud cover could lead to high uncertainty of these observations. Also, the

methods used for removal of seasonal contamination from atmospheric conditions can

influence the analysis. So, to reduce uncertainty, it is crucial to compare with ground

based data (Poulter & Cramer, 2009).

That is what Hmimina et al. (2013) did. In this study, in situ NDVI measurements were

compared with a 16-day MODIS NDVI product for their ability to describe phenological

patterns of rainforests. According to this study, the patterns found in the 16-day MODIS

product are more likely due to noise than to phenological changes. This would make

MODIS NDVI data not suitable to monitor vegetation dynamics of rainforests. Of course,

this does not mean this would also be the case for EVI data.

These studies, in which vegetation products from MODIS were compared with other

sources, used data that still contained information about seasonality. This does not

necessarily mean that EVI data from these sources would contain more variation in

anomaly time series. That leads to the next possible explanation, which is that these low

EVI anomaly time series are a good representation of the state of the African rainforest.

This would mean that the vegetation of the African rainforest does not change much over

time aside from the long term trend and the seasonal cycle.

10.3 Limitations of the Granger causality framework

The anomaly decomposition of the time series for both vegetation and climate variables

is a crucial part of this framework. The long-term trend needs to be subtracted from
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the raw data to make the time series more stationary and the seasonal cycle needs to

be removed because it can too easily predict itself (Papagiannopoulou et al., 2017a).

However, it seems that not a lot of variation is left in the EVI anomalies for pixels in the

African rainforest, which makes the whole approach pointless.

If the quality of the data is the cause of the low variation, it could be interesting to do

the approach with other data. If the vegetation of the African rainforest does not show

a lot of variation aside from the long term trend and seasonality, this Granger causality

approach is not suitable.

The comparison between the linear model and the non-linear model demonstrates that

the non-linear model did not perform better in all pixels. Since other studies have shown

that climate-vegetation dynamics are are mostly non-linear, we expected to see the non-

linear model perform better than the linear model. However, the uncertainty of the data

makes it impossible to conclude on the method.

10.4 Limitations of using SIF data

Although the results of the analysis of the SIF data showed promising results, they were

not used in this thesis. Time series of SIF from remote sensing are still very short. The

GOSIF product that was used here is modelled using a short SIF time series, vegetation

data (EVI from MODIS) and climate data with a data driven model. Because of this, the

SIF data is not independent and the results cannot be easily interpreted. The climate

variables used for the construction of the GOSIF product are the photosynthetically active

radiation, the vapor pressure deficit and the air temperature. It would be interesting to

apply an approach like the one developed by Papagiannopoulou et al. (2017b) to find out

whether precipitation also partly causes SIF.

10.5 Ideas for further research

After considering the results of this research, some new questions arose. The model was

not successful in the rainforest, but the reason for this has not been uncovered. In the next

section some options are listed for the next steps needed to solve these questions.
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First of all, it is important to consider the uncertainty of the used data. For example,

Sylla et al. (2013) show that remote sensing observations of precipitation in Africa show

uncertainty. Different results were obtained when they compared different sources of

data. To reduce this uncertainty, it would therefore be necessary to compare data from

different sources.

Secondly, it would be interesting to expand the set of climate variables. Precipitation,

temperature and solar radiation have been used frequently in studies up till now, but some

recent studies have shown that Vapour Pressure Deficit might be a good predictor for

rainforest vegetation dynamics. SIF shows strong sensitivity for Vapour Pressure Deficit

(VPD) according to Green et al. (2020). Adding VPD as a variable in their analysis

added to the predictive power. Chen et al. (2021) showed that VPD combined with solar

radiation was able to describe the phenology of the Amazon forest fairly well, especially

in the wettest parts of the forest.

To find the cause of the low variation in vegetation anomalies, more ground based valida-

tion of remote sensing data is needed. A next step would be to find out whether different

sources of EVI data also result in low anomaly variation. It would be interesting to take a

look at data from geostationary satellites and ground based data like for example D. Yan

et al. (2016) and Hmimina et al. (2013). EVI data from SEVIRI is not readily available

and was therefore not used in this study.

It would also be interesting to repeat this approach in a couple of years with a long time

series of independent SIF products if these time series and their anomalies show enough

variation for the African rainforest. This way, the use of the Granger causality approach

would be justified.

An approach using Artificial Neural Networks like Green et al. (2020) would allow to use

raw data without anomaly decomposition. Running multiple models with predictor sets

that leave out one variable at a time allows for examining the importance of individual

variables.

Besides Granger causality other methods exist to find causality in time-series (Runge et

al., 2019). Convergent cross mapping is another method used to find causal relations in
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time-series (Sugihara et al., 2012). Ye et al. (2015) expanded this approach to distinguish

time-delayed causal interactions. This method doesn’t need the time series anomalies and

has already been used in ecology (Sugihara et al., 2012) and climate science (van Nes

et al., 2015) to describe complex non-linear systems, therefore it could possibly be a good

option to use in this setup.
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11 Conclusion

To conclude we can say that we were partly successful in answering the research question.

In the forests of East Central Africa, our framework showed that vegetation dynamics are

to a certain extent driven by climate variables, i.e. temperature, precipitation and solar

radiation. To find out in what way these climate variables drive changes in vegetation

in these regions, further research should be done. For the African rainforest, however,

we were not successful in identifying the drivers of the vegetation dynamics. We tried to

improve the performance of the framework by using EVI instead of NDVI. In hindsight, it

seems that the issue is not the vegetation index itself, but the low variability of anomalies

of the vegetation index data in this region.

As for the cause of low variation in EVI anomalies over the African rainforest, two

hypotheses were introduced. It could be possible that use of MODIS data leads to

uncertainty about the capacity of the EVI data to accurately describe the vegetation

of the African rainforest. Alternatively, the data could be a good characterization of

the vegetation in the African rainforest, which would mean that the vegetation of the

African rainforest does not show much change apart from the seasonal cycle and the

long term trend. Whatever the reason of the low variation in EVI anomalies, since

using anomalies is crucial for the Granger causality framework, the combination of this

approach and data was not successful. A next step would be to examine whether different

sources of EVI data capture more variation in EVI anomalies. Validation of remote

sensing data with ground based data is crucial for this. If data of other sources show

more variation, the Granger causality framework might be an option for further research.

Another promising option would be to use independent SIF data when long-term time

series become available. If the vegetation anomalies of the African rainforest do not show

variation in data from other sources, this Granger causality framework is not suitable to

find the drivers of the vegetation dynamics of the African rainforest and other approaches

should be explored.
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climate data: Application in the Ecuadorian Andean region. Ecological Informat-

ics, 43, 222–230. https://doi.org/10.1016/j.ecoinf.2016.12.002

Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal,
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Appendices

A Results of the analysis for EVI

Figure A.1: Results of the linear baseline model for EVI.

Figure A.2: Results of the linear full model for EVI.
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Figure A.3: Results of the difference between the linear full model and the linear baseline

model for EVI.

B Results of the analysis for SIF

Figure B.1: Results of the non-linear baseline model for SIF.
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Figure B.2: Results of the linear baseline model for SIF.

Figure B.3: Results of the linear full model for SIF.
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Figure B.4: Results of the difference between the linear full model and the linear baseline

model for SIF.

Figure B.5: Results of the difference between the non-linear full model and the linear full

model for SIF.
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