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Abstract 

Major depressive disorder is a severe mental health issue affecting many people. 

Previous research found evidence for changes in functional and structural connectivity 

as well as changes in neurotransmitters in the brain of depressed patients. However, the 

literature on these changes is often contradictory. In the current study we make use of a 

modelling approach to study the changes in depressed brains and the effects of non-

invasive brain simulation interventions using The Virtual Brain (TVB). TVB is a 

neuroinformatics platform that builds a personal virtual brain for each individual subject 

based on individual tractographic data and general neural mass models. Based on this 

individual virtual brain, output in the form of functional imaging data can be produced. 

Due to the lack of real patient data, we simulated 100 healthy brains based on the 

default connectivity matrix included in TVB using the Wilson-Cowan model. Next, we 

simulated 100 depressed brains by adjusting local inhibition in crucial regions. Finally, 

we simulated low-frequency rTMS (LF-rTMS) treatment (n=100) and high-frequency 

rTMS (HF-rTMS) treatment (n=100) applied to the baseline depressed brains. We then 

compared alpha power, frontal alpha asymmetry and coherence between the four groups 

of brain types in order to investigate 1) whether the differences between the depressed 

and healthy virtual brain are in line with literature, 2) whether the rTMS protocols could 

cause treatment-like effects and 3) if so, whether one treatment protocol would be 

superior compared to the other. Results were ambiguous and not completely in line with 

expectations based on literature. Specifically, we could not always find the predicted 

differences between healthy and depressed brains and treatment-like effects caused by 

HF-rTMS and/or LF-rTMS were scarce. Moreover, we did not find evidence pointing 

towards one treatment as being superior to the other. We argue that our model for the 

depressed brain might be too simplistic and encourage the use of real patient data in 

TVB for future research. Finally, we highlight some issues of inconsistencies across 

studies which might underly the diverse conclusions in literature.  
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The brain as a network  

With its ~1011 neurons and ~1015 connections (Ritter et al., 2013) our brain is our 

most complex organ of which many mechanisms are not yet understood. With the 

emergence of new non-invasive neuro-imaging techniques and their resulting large 

datasets, a great way of studying the brain is by making use of complex network analysis. 

Complex network analysis is derived from graph theory, which was first used in 

mathematics and sociology but later found application in a wide range of domains, such 

as neurology (Mulders et al., 2016). Graph theory describes networks as consisting of 

nodes and edges (links). When applied to neuroscience, nodes can represent single 

neurons or even entire brain-regions whereas the edges represent the connectivity 

between these regions. Such connections could be structural (white matter fibers, 

synapses) or functional (correlation between time series) (Dwyer et al., 2016). In 

contrast to classical graph theory, complex network analysis describes real-life networks 

that are large and complex (Rubinov & Sporns, 2010). 

When applied to brain data, an important distinction between structural and 

functional networks is made. Structural networks reflect anatomical connections in the 

brain (Sporns, 2014;  Sporns & Betzel, 2016) which can be retrieved using DTI (i.e. 

diffusion tensor imaging). These white-matter connections are fixed on a short time 

scale, but can change over longer periods of time due to neuronal growth or learning 

(Stam et al., 2016). On the other hand, functional networks are based on correlations 

among time series of neural activity (Friston 2011; Park & Friston, 2013; Sporns, 2014; 

Sporns & Betzel, 2016) and are most commonly retrieved using resting state fMRI 

(rsfMRI). Individual differences in both structural networks (Klein et al., 2016; Li et al., 

2009; Matejko et al., 2013; Willmes et al., 2016) and functional networks (Ferguson et 

al., 2017; Hearne et al., 2016; Song et al., 2008; Van Den Heuvel et al., 2009) have been 

associated with a variety of cognitive functions. Moreover, alterations in these networks 

have been found in a range of neurological and affective disorders (Baggio et al., 2014; 

Jacobs et al., 2012; Lo et al., 2010; Filippi & Agosta, 2011; Rotarska-Jagiela et al., 

2010; Wu et al., 2017). For example, both alterations in structural (Ajilore et al., 2014; 

Lim et al., 2013; Long et al., 2015) and functional (Greicius et al., 2007; Kaiser et al., 

2016; Peng et al., 2012; Sheline et al., 2010; Wu et al., 2017) connectivity have been 

reported in people suffering from depressive disorders. 
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To really understand the functional networks (Honey et al., 2010; Marrelec et 

al., 2016) and ultimately to understand cognition and behaviour (Sporns, 2011), the 

structural network is of great importance. For instance, it has been demonstrated that the 

structural network places constraints on the possible functional interactions in a network 

(Bullmore & Sporns, 2009; Park & Friston, 2013;  Sporns, 2011). However, the exact 

link between structural and functional brain connectivity is not yet completely 

understood. The Virtual Brain (TVB; Jirsa et al., 2010), a neuroinformatics platform, 

can be of great help in studying both structural and functional connectivity as well as 

the relation between them. 

 

The virtual brain  

Given the gap between the microscale (describing individual neurons and their 

action potentials) and the macroscopic data (obtained through neuroimaging), a neural 

model aiming to describe the activity of single neurons has far too many degrees of 

freedom to be capable of finding a good fit with macroscopic data. However, a concept 

from physics pointed out that macroscopic physical systems follow laws that are 

independent of the specific underlying microscopic elements on which the systems were 

build (Haken, 1975; Ritter et al., 2013). This gave rise to the introduction of a 

mesoscale in neuroscience, describing the activity of populations of neurons and thus 

forming a bridge between the micro- and macroscale.  

Neural mass models, which model the activity of groups of neurons, can thus be 

situated at this mesoscale. These models assume that for the analysis of complex neural 

dynamics at the mesoscale it is not necessary to look at the specific underlying 

structural and functional elements at the microscale (Ritter et al., 2013). Following this 

assumption, these models postulate that behaviour and cognition only partly depend on 

the specific underlying individual neuronal activity (Breakspear & Jirsa, 2007; Ritter et 

al., 2013).  

The Virtual Brain uses such neural mass models to describe the dynamics of 

each node or  region of interest (i.e. ROI) in a biologically plausible way (Ritter et al., 

2013). Furthermore, TVB uses individual tractographic data, retrieved with diffusion 

tensor imaging (i.e. DTI). Based on the tractographic data, a connectivity matrix is 

created containing the connection strengths and time delays between all network nodes 
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(Leon et al., 2013b). By combining neural mass models with the personal connectivity 

matrix, TVB can create an individual virtual brain for each subject (Solodkin et al., 

2018). Furthermore, it can be used to simulate realistic Local Field Potentials (LFP) and 

brain imaging data such as electroencephalography (EEG) data, functional magnetic 

resonance imaging (fMRI) data and magnetoencephalography (MEG) data (figure 1). 

Because TVB is based on personal tractographic data, it is possible to create 

personal virtual brains for each subject. It is thereby feasible to study how certain model 

parameters correlate with clinical phenotypes (Solodkin et al., 2018). For example, 

Zimmermann and colleagues (2018) found that their modelled local (excitation, 

inhibition) and global (long-range coupling, conduction velocity) brain dynamics 

correlated well with individual cognition in Alzheimer’s disease.  

Another great advantage of TVB is that it allows manipulation to whole-brain 

dynamics, for example through stimulation.  There are two kinds of stimulations in 

TVB: surface-based and region-based stimulation. In surface-based stimulation, each 

vertex on the surface is described as a node whereas in region-based stimulation each 

node represents a specific brain region (Leon et al., 2013a). The user can apply such 

stimulations and subsequently assess the consequences of the stimulation on the 

personalised virtual brain.  

Finally, TVB is open-source and, being based on Python, easy to use. 
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Figure 1 

Overview of the functioning of TVB 

 

Note. Retrieved from Solodkin et al. (2018). Individual Brain anatomy is acquired and 

used to create an individual connectivity matrix. Afterwards, local neural mass models 

are chosen and combined with the individual connectivity matrix to create an individual 

Virtual Brain. If wanted, there is an option to add stimulation to specific brain nodes. 

Using a forward model, the simulated output can be obtained in the form of LFP, EEG, 

MEG or BOLD signals.  

 

 

Dynamical systems theory  

Such neural mass models as used in TVB rely on the dynamical systems theory. 

Dynamical systems theory is a mathematical theory that describes complex dynamical 

systems, usually by means of differential equations (in which case we speak of 

continuous dynamical systems)(e.g., Landa, 2013, Strogatz, 2018). A dynamical system, 

defined by m state variables, has a state that can be described by a point in an m-

dimensional space: the state space or phase plane. The evolution of the dynamical 

system is determined through a fixed rule, namely a set of differential equations where 

each equation represents one of the system variables. This set of equations then 
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describes the future state the system will evolve to depending on the current state. The 

evolution of the system over time is called the trajectory. 

The system, which applied to neuroscience could represent a neuron or a group 

of neurons, is excitable because it is near a transition (i.e., bifurcation): from resting to 

sustained spiking activity (Izhikevich, 2007). A system at rest is defined as a system 

where no changes in state variables occur (Izhikevich, 2007). Such a system is located 

in an equilibrium. When the system remains at rest despite of small disturbances, we 

speak of a stable equilibrium (figure 2). However, when such small disturbances are 

enough to cause changes in the system, the equilibrium was unstable (figure 2) 

(Izhikevich, 2007).  

Trajectories are attracted by such stable equilibria (i.e., attractors) and move 

away from so-called repellers. An attractor can either be a single fixed point or a limit 

cycle. In the case of a fixed point attractor, trajectories are attracted to one specific point 

in which the system is stable. Such an attractor gives rise to dampened oscillations. 

Specifically, while the system is moving toward the attractor oscillations occur whereas 

these oscillations stop after the system arrived in the fixed point attractor. On the other 

hand the trajectory can also be attracted to a limit cycle. In this case, the trajectory 

forms a closed loop instead of moving towards a fixed point (Izhikevich, 2007). Since 

the trajectory keeps moving in the loop and doesn’t ‘stop’ in a fixed point, the resulting 

oscillations are self-sustained.  

When modelling neural models it is important to obtain realistic oscillations. 

Since there are always oscillations going on in the brain it is thus important to adjust the 

model parameters in such a way that they result in self-sustained oscillations. 

Specifically, it is thus important that the model parameters give rise to a limit cycle in 

the phase plane. 
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Figure 2 

Equilibria in the state space 

 

Note. Retrieved from Chadefaux (2010). A) represents a stable equilibrium whereas B) 

represents an unstable equilibrium.   

 

Wilson-Cowan model  

One of the neural mass models implemented in TVB is the Wilson-Cowan 

model (Wilson & Cowan, 1972; Wilson & Cowan, 1973). This model consists of two 

neural masses, one of which represents an excitatory population whereas the other one 

represents an inhibitory population. The activity of these excitatory and inhibitory 

populations are described by the state variables E and I respectively, which can be 

formulated as a dynamical unit at a node k in a neural mass model with l  nodes as 

follows: 

  

 In these equations, Γ(Εk, Εj, ukj) is the long-range coupling term capturing the 

input activity of the connected nodes in the network (Sanz Leon et al., 2015). 

Wς ⋅ Ej and Wς ⋅ Ij represent the activity of inhibitory and excitatory units in the local 

neighbourhood. E represents the excitatory mass through which the models at each node 

are linked. re and ri  are the refractory periods which are set to zero and ka , the 

corresponding activation function, is set to 1 for both populations (Sanz Leon et al., 

2015).  
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Importantly, the Wilson-Cowan model contains parameters which allow us to 

alter the amount of inhibition and/or excitation in the model. Besides coupling strength 

variables binding to the same (Cii, Cee) or the other (Cie, Cei) population (figure 2, 

appendix A), we can also alter the variables representing the external inputs to the 

neural groups. A first one of such variables is P, which represents the external inputs to 

the excitatory group. Secondly, the Q variable represents the external inputs to the 

inhibitory group where a reduction in Q thus leads to a reduction in inhibition in the 

model. The Wilson-Cowan model has already proven to be successful in building 

biophysically realistic models (Liley et al., 1999, Steyn-Ross et al., 1999, Steyn-Ross et 

al., 2003, Daffertshofer and van Wijk, 2011; Duchet et al., 2019). For example, Li et al. 

(2019) were able to observe the typically observed imbalance in excitation/inhibition 

within the DLPFC by applying the Wilson-Cowan model to rs-fMRI data from 

depressed patients. 

 

Figure 3 

Representation of the Wilson-Cowan model  

 

Note. Retrieved from Maruyama et al. (2014). The Wilson-Cowan model consists of an 

excitatory population (E) and an inhibitory population (I). C1 and C4 are self-coupling 

variables whereas C2 and C3 are cross-population coupling parameters. The excitatory 

and inhibitory population receive external input in the form of P and Q respectively. 

The Depressed Brain  

Major Depressive Disorder (MDD) is a common, severe mental health problem. 

In addition to a depressive mood, MDD is also characterised by cognitive and somatic 

symptoms that hinder normal functioning of the patient in his or her daily life (Otte et 

al., 2016). In the USA, the National Survey on Drug Use and Health, revealed that the 

life time prevalence of major depressive episode among adults in 2017 was 7.1% (The 

https://link.springer.com/article/10.1007/s00422-014-0604-8/figures/1
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National Institute of Mental Health Information Resource Center, 2019). In that same 

year, depressive disorders had a worldwide prevalence of 3.4% (Ritchie & Roser, 2018) 

and were the third leading cause of Years Lived with Disability (YLD) across genders 

(James et al., 2018).  

With the advancements in neuroscience, multiple alterations have been 

discovered in the depressed brain compared to the brains of healthy controls. A first set 

of findings highlighting differences between healthy and depressed brains can be found 

in the literature of structural and functional connectivity. For example, reviews and 

meta-analyses consistently report altered functional connectivity within the default 

mode network (Mulders et al., 2015; Tozzi et al., 2021), amygdala-centered connections 

(Tang et al., 2018), and within frontoparietal control systems and neural systems 

supporting salience or emotion processing (Kaiser et al., 2015). Moreover, a meta-

analysis from Liao et al. (2013) describes the consistent finding of decreased fractional 

anisotropy in the white matter connecting the prefrontal cortex with cortical and 

subcortical areas.  

Furthermore, the depressed brain is also characterised by altered signal analyses. 

Information on the neural oscillations in the cerebral cortex can be obtained in a non-

invasive way, for example through EEG. Using quantitative techniques, such as a fast 

Fourier Transform (i.e. FFT), the power of the main frequency bands can be obtained 

(Dumermuth & Molinari, 1987). Typically, 5 main frequency bands are distinguished: 

delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (30-100Hz). 

Multiple studies reported alterations in the power spectrum of depressed patients 

compared to healthy controls (Olbrich & Arns, 2013; Mahato & Paul, 2019). An often 

recurring finding is that depressed patients show elevated absolute (Roemer et al., 1992; 

von Knorring, 1983; Grin-Yatsenko et al., 2009; Jaworska et al., 2012) and relative 

(John et al., 1988; Prichep & John, 1992) alpha power. In general, an elevated alpha 

rhythm is associated with reduced cortical activity (Goldman et al., 2002; Laufs et al., 

2003). For example, Pfurtscheller et al. (1996) demonstrated elevated alpha rhythms 

whenever participants were not engaged in a task. Even though some studies were 

unable to replicate the finding of elevated alpha in depression (Knott & Lapierre, 1987) 

or even report reduced alpha in depression (Price et al., 2008), the observation of 

elevated alpha rhythms in depression appears to be quite consistent (Mahato & Paul, 
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2019; Olbrich & Arns, 2013). Some studies even reported a reduction in alpha power 

after applying antidepressants (Itil, 1983; Leuchter et al., 2017) or non-invasive brain 

stimulation (Alexander et al., 2019) to depressed patients. Moreover, the importance of 

alpha power in the depressed brain has also been proven by machine learning studies in 

which alpha power provided the highest classification accuracy when trying to 

discriminate between healthy and depressed patients (Hosseinifarda et al., 2013; 

Mohammedi et al., 2015; Mahato & Paul, 2019; Mahato & Paul, 2020). 

On top of general increases in alpha power, also the asymmetry between alpha 

power in the left versus right hemisphere is typically related to depression. A large 

number of studies confirm an asymmetry where the left frontal hemisphere exhibits 

more alpha power than the right hemisphere, resulting in a hypoactive left and an 

hyperactive right hemisphere (Henriques & Davidson, 1991; Smit et al., 2007; Kemp et 

al., 2010; Jaworska et al., 2012; Cantisani et al., 2015)(But see: Gold et al., 2013; 

Segrave et al., 2011). Henriques and Davidson (1991) attributed this asymmetry to 

approach and withdrawal motivation. According to the approach-withdrawal model, the 

left frontal regions are mostly involved in approach-related, positive affect (Depue & 

Iacono, 1989; Harmon-Jones, 2003; Coan & Allen, 2004) whereas the right frontal 

regions are more associated with behavioural inhibition and negative affective states 

(Davidson & Irwin, 1999; Coan & Allen, 2004). Individual differences in frontal 

asymmetry would thus be underlying the affective style and by consequence the 

sensitivity to depression (Davidson, 1992; Davidson, 1998). 

Within the frontal regions, the dorsolateral prefrontal cortex (DLPFC) plays an 

important role in emotion regulation through reappraisal of negative emotions 

(Lévesque et al., 2003; Grimm et al., 2008; Golkar et al., 2012). For example, Lévesque 

et al. (2003) found in their fMRI study that DLPFC showed higher activation when 

participants were asked to suppress their emotional response to sad stimuli than when 

they were allowed to react normally. Moreover, Golkar et al. (2012) found that this 

activity in DLPFC during reappraisal was independent of the valence of the emotional 

stimulus. These findings suggest an important role of DLPFC in depression, where 

emotion regulation is known to be dysfunctional (Gross & Muñoz, 1995; Joormann & 

Gotlib, 2010). Indeed, in line with the asymmetry in alpha power in the frontal regions 

of depressed patients, such an asymmetry in activity in the DLPFC has also been 
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demonstrated using fMRI (Baxter et al., 1989; Bench et al., 1993; Grimm et al., 2008). 

For example, Grimm et al. (2008) found with their fMRI study that MDD patients 

showed hypoactivity in the left DLPFC during emotional judgement. Moreover, in 

contrast to the left DLPFC, the right DLPFC has been found to be hyperactive during 

emotional judgement (Grimm et al., 2008) which is consistent with the finding of 

increased increased alpha asymmetry in depressed patients.  

Despite their popularity, findings with regard to the alpha band have to be 

interpreted with some caution. Specifically, since the borders of the most commonly 

used frequency bands are artificial, averaging across such an entire band for all subjects 

might filter out more subtle inter-individual differences (Haegens et al., 2014). For 

instance, it has been shown that the alpha rhythm operates across a wider frequency 

range than the usually adopted range of 8-12Hz (Haegens et al., 2014). Therefore, it has 

been argued that a more optimal way to study alpha modulation is to obtain the 

individual alpha frequency (IAF) for each subject (Doppelmayr et al., 1998; Klimesch, 

1999). The IAF has been studied in a wide range of contexts and has been found to 

correlate significantly with memory performance (Klimesch et al., 1990; Lebedev, 

1994), reaction times (Surwillo, 1961; Surwillo, 1964), general intelligence (Mundy-

Castle & Nelson, 1960, Grandy et al., 2013a), verbal abilities (Anokhin & Vogel, 1996) 

and working memory (Clark et al., 2004). Although IAF is found to be a stable 

neurophysiological trait marker in healthy adults (Grandy et al., 2013b), it has also been 

found to decrease following the manifestation of neurological disorders (Mosmans et 

al., 1983; Van der Worp et al., 1991; Klimesch, 1999; Luijtelaar et al., 2010; Sarnthein 

et al., 2006) whereas treatments can result in an increase of the IAF again (Vriens et al., 

2000; Sarnthein et al., 2006). Research looking at the IAF in MDD is scarce and the 

conclusions are not uniform. For instance, Tement and colleagues (2016) reported a 

significant correlation between IAF and depression scale scores whereas Jiang and 

colleagues (2016) did not find a significant difference between IAF in healthy versus 

depressed participants. 

Besides looking at the power spectrum of neural oscillations, researchers can 

also make use of mathematical values in the frequency domain to analyse functional 

connectivity. An example of such a measure is coherence (Bowyer, 2016). Coherence 

represents the degree of similarity between neural patterns from oscillating brain 
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activity, taking both frequency and amplitude into account (Shaw, 1981;  Hughes & 

John, 1999; Srinivasan et al., 2007; Bowyer, 2016; Youh et al., 2017; Basharpoor et al., 

2019). It reflects the consistency of the relative phase and amplitude between the 

signals, detected through electrodes, within a given frequency band (Bowyer, 2016). 

Coherence can take values from 0 to 1, where a value of 1 indicates that the compared 

signals are identical (Boywer, 2016; Srinivasan et al., 2007). In reality however, 

coherence is very sensitive to the distortions in the brain signals obtained through EEG 

or MEG because of a conduction problem (Srinivasan et al., 2007). Therefore, 

alternative measures can also be used to mathematically measure functional 

connectivity between two neural signals. One example is the phase-locking value 

(PLV), which only describes the difference in phase between two signals and is thus not 

influenced by fluctuations in amplitudes (Lachaux et al., 1999; Mormann et al., 2000; 

Aydore et al., 2013). Another alternative measure is the phase lag index (PLI), which 

quantifies the asymmetry of the relative phase distribution around zero and thus only 

reports high values when the relative phase exhibits a peak away from zero (Aydore et 

al., 2013). 

Although the literature on coherence in depression is not very extensive and 

some studies report reduced coherence in depressed patients versus healthy controls 

(Knott et al., 2001; Suhhova et al., 2009), others demonstrated increases in coherence 

within the alpha band in depressed patients (Leuchter et al., 2012; Petchkovsky et al., 

2013; Li et al., 2016; Markovska-Simoska et al., 2018). Moreover, Petchkovsky et al. 

(2013) reported a decrease in this hypercoherence after administration of choir therapy 

to patients with depression. In addition, studies using other measures of phase 

synchronization also reported increased functional connectivity within the alpha band in 

depressed patients (Olbrich et al., 2014; Hasanzadeh et al., 2018; Zhang et al., 2020). 

A final distinction between healthy and depressed brains can be described in 

terms of the excitatory/inhibitory (E/I) balance in the brain. Specifically, the depressed 

brain is characterised by inhibitory deficits (Croarkin et al., 2011). The balance between 

excitation and inhibition in neural circuits is essential to maintain normal brain 

functioning (He & Cline, 2019). When the E/I-balance is impaired, this can give rise to 

brain dysfunctions which can be found in certain neurological disorders (He & Cline, 

2019), such as MDD (Levinson et al., 2010). Numerous studies reported a reduction in 
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GABA neurons, which are responsible for inhibitory transmission (Levinson et al., 

2010; Croarkin et al., 2011). Specifically, Rajkowska et al. (2017) demonstrated a 

reduction in both size and density of GABA neurons in the DLPFC of patients suffering 

from MDD. Moreover, Sibell et al. (2011) and Schür et al. (2016) provided evidence for 

a reduction of GABA in this same region. In addition, a trend towards reduced GABA 

was also demonstrated in the dorsolateral prefrontal cortex (Rajkowska et al., 2017). 

Finally, multiple authors noted decreased GABA in the occipital cortex of depressed 

patients (Maciag et al., 2010; Schür et al., 2016; Sanacora et al., 2002; Sanacora et al., 

2004; Hughes et al., 2011). Importantly, this reduction in GABA in the occipital cortex 

is no longer found in patients in remission (Schür et al., 2016) and the amount of GABA 

in this region has been found to increase after treating patients with serotonin reuptake 

inhibitors (Sanacora et al., 2002) or electroconvulsive therapy (Sanacora et al., 2003). 

Non-invasive brain stimulation  

Despite advancements in pharmacology, 20-30% of patients cannot be treated 

with medication or psychotherapy and thus belong to the category of treatment-resistant 

depression (TRD). When these treatments fail to improve the patients symptoms, one 

can turn to the use of neuromodulation techniques. These techniques can be divided in 

three different categories. There are (1) seizure therapies, such as electroconvulsive 

therapy (ECT) and magnetic seizure therapy (MST), (2) neurosurgical therapies such as 

vagus nerve stimulation (VNS), electroconvulsive therapy (ECS) and deep brain 

stimulation (DBS) and (3) noninvasive therapies like transcranial magnetic stimulation 

(TMS), transcranial direct current stimulation (TDCS) and cranial electrotherapy 

stimulation (CES)(Al-Harbi & Qureshi, 2012). In their meta-analysis, Al-Harbi and 

Qureshi (2012) found that 30-93% of TRD patients experienced significant 

improvements after treatments with one of these techniques. One big advantage of these 

techniques is that, in contrast to pharmacological treatments, these techniques only 

affect a small part of the body, thus possibly reducing general side-effects. However, 

not all side-effects can be excluded. For example, ECT is known to be an efficient 

treatment for TRD (Kellner et al., 2012) but is also associated with relatively many 

cognitive side effects (Rami-Gonzalez et al., 2001). Although neurosurgical therapies 

have proven to be very efficient, the downside of these techniques is that they are very 

invasive. Therefore, a lot of researchers currently focus on the third group, namely the 
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noninvasive neuromodulation techniques, which also show a good efficiency, are not as 

invasive as the neurosurgical therapies and are associated with far less side-effects than 

seizure therapies (Al-Harbi & Qureshi, 2012).  

These noninvasive neurostimulation techniques make use of magnetic fields ore 

electric currents to stimulate specific brain areas (Carpenter, 2006; Cusin & Peyda, 

2019). Some of them have already shown promising results for diminishing the 

symptoms of patients with TRD (Al-Harbi & Qureshi, 2012).  One commonly used non-

invasive neurostimulation technique is TMS (transcranial magnetic stimulation). This 

technique uses a coil in which electric pulses are generated which in turn induce a 

magnetic field under the coil (Barker et al., 1985).  When the coil is placed on the skull, 

this magnetic field causes an electric field that is capable of depolarizing local neurons 

to a depth of 2cm under the skull (Barker et al., 1985; Lefaucheur et al., 2014). When 

such TMS pulses are sent repetitively (i.e., repetitive TMS [rTMS]), the effects of the 

stimulation persist longer (Lefaucher et al., 2014). A wide range of studies using rTMS 

to target the left dorsolateral prefrontal cortex (DLPFC) have already shown significant 

reductions in depressive symptoms in MDD (Brunelin, et al.,  2007; Fitzgerald et al., 

2006;  Holtzheimer et al., 2001; Martin et al., 2003; Teng et al., 2017).  

As mentioned before, a region which plays a significant role in MDD is the 

DLPFC. This functional region is located in the prefrontal cortex in the middle frontal 

gyrus and consists of Brodmann’s areas 9 and 46 (Brodmann, 1909). Because it is not a 

deep structure, it can be targeted using non-invasive neuromodulation techniques. 

Different types of rTMS protocols aim at either increasing activity in the hypoactive left 

DLPFC or decreasing activity in the hyperactive right DLPFC (Yadollahpour et al., 

2016). Low frequency rTMS (LF-rTMS), with a frequency < 1Hz, is generally applied 

to the hyperactive DLPFC because of its inhibitory effects (Hoffman & Cavus., 2002; 

Yadollahpour et al., 2016).On the other hand, high frequency rTMS (HF-rTMS), often 

with a frequency > 10Hz (Yadollahpour et al., 2016), is known to induce excitatory 

effects and therefore often targeted to the hypoactive left DLPFC (Maeda et al., 2000; 

Yadollahpour et al., 2016). By such applications of rTMS, researchers aim to restore the 

imbalance between the left and right DLPFC in depressed patients (Fitzgerald et al., 

2003; Isenberg et al., 2005; Leuchter et al., 2013). Although both protocols have been 

proven successful in treating symptoms of MDD (Isenberg et al., 2005; Fitzgerald et al., 
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2009; Cao et al., 2018), Valiulis and colleagues (2012) demonstrated that both rTMS 

protocols strongly differ in their electrophysiological mechanisms. Specifically, Valiulis 

and colleagues (2012) reported an effect of LF-rTMS on the alpha band whereas the 

HF-rTMS protocol was found to induce wider electrophysiological changes in the brain. 

One way to inspect the effect of rTMS on brain signals, is by virtually simulating it 

through TVB. 

 

Current study  

In the current study we made use of the Wilson-Cowan model implemented in 

TVB to simulate four groups of brain types: 1) healthy brain, 2) depressed brain, 3) 

depressed brain with HF-rTMS and 4) depressed brain with LF-rTMS. For each of the 

types 100 unique virtual brain signals were obtained by altering the noise seed for each 

simulation. Based on the literature reporting reduced inhibition in the DLPFC, 

orbitofrontal and occipital cortex of depressed patients, the Q-parameter in the Wilson-

Cowan model was reduced in the depressed brains compared to the healthy brains in the 

aforementioned regions. HF-rTMS was applied with a frequency of 10Hz to the left 

DLPFC whereas a frequency of 1Hz targeting the right DLFPC was used to simulate the 

depressed brain with LF-rTMS. Next, the brain activity of the four brain types was 

compared in terms of power spectrum and functional connectivity. Given the fact that 

we worked with simulations and thus had no issues with conduction, we used coherence 

as a measure for functional connectivity. Moreover, because looking at an entire power 

band with its fixed artificial boundaries might filter out more subtle differences, we 

decided to also look at the individual alpha peak (IAF) of each simulated brain. In 

addition, measures of power spectrum and coherence were each repeated five times: 

across the entire alpha band (8-12Hz) and across four subbands (8-9Hz, 9-10Hz, 10-

11Hz, 11-12Hz) since, although not very common practice, looking at subranges of the 

alpha band can also be done to avoid averaging out more subtle differences (Klimesch 

et al., 1998). Specifically, we wanted to see whether a) healthy and depressed brains 

show the expected differences in alpha power, IAF and coherence,  b) stimulation of the 

depressed brains can cause the resulting brain activity to shift more towards a healthy 

activity, and c) if so, which stimulation type results in the best improvements. Given the 

literature, we expected to find an increased alpha power as well as an increased frontal 
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alpha asymmetry and increased coherence in the baseline depressed brain (without 

stimulation) compared to the healthy brain. Moreover, we expected these differences in 

the depressed brain to return to ‘normal’ after both HF-rTMS and LF-rTMS. Specially: 

we thus expected that the depressed brain with HF-TMS or LF-rTMS would no longer 

significantly differ from the healthy brain in terms of power spectrum and functional 

connectivity.  

 

Method 

Materials  

All simulations were performed on the default connectivity matrix using the tvb-

library (version 2.2; Sanz-Leon et al., 2013) in Jupyter notebooks running on Python 

2.7.9 (Kluyver et al., 2016).  After extracting the resulting local field potentials, 

analyses of the power spectrum and coherence were performed with help of the 

following Python packages: numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), 

FOOOF (Haller et al., 2018), matplotlib (Hunter, 2007) and pandas (McKinney, 2010). 

Analyses on the peak in alpha power were conducted using R studio (R Core Team, 

2019) with lme4 (Bates et al., 2015), emmeans (Length, 2020) and car (Fox and 

Weisberg, 2019). The significance level was set at p = 0.05 (two-tailed) for all analyses. 

All simulations and analyses were performed on a HP Pavilion (Intel core i7, 8 GB 

RAM) 

Simulating virtual brains 

In total, we simulated four different brain types using the Wilson-Cowan model: 

1) healthy virtual brains, 2) depressed virtual brains, 3) depressed brains with HF-rTMS 

and 4) depressed brains with LF-rTMS. For each brain type, 2.5s of local field 

potentials for 100 unique subjects were simulated by adjusting the noise seed for each 

simulation. Thus, in total 400 brains were simulated using Jupyter notebooks.  

Healthy brain. First, the interactive phase plane in the GUI of TVB was 

explored to obtain the optimal parameters of the Wilson-Cowan model to generate 

realistic oscillatory behaviour (figure 4A). An overview of the used parameters can be 

found in appendix A. Once the optimal parameters were obtained, additive noise was 

implemented in the model using a stochastic integrator. Default values were used for all 
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additional simulation parameters. These parameters were then used to simulate the set 

of healthy brains and were later used as the basis for the other simulated brain types.  

Depressed brain. In the following step, we created the set of depressed brains 

by adapting the amount of inhibition in the DLPFC, orbitofrontal and occipital cortex in 

both hemispheres. This was achieved by reducing the Q parameter to its minimum value 

(0).  As can be seen in figure 4B, this resulted in less inhibition while still showing 

realistic oscillations. In all the other regions of the depressed brain, the same set of 

parameter values as in the healthy brain simulation was used.  

 

Figure 4 

Phase plane of the Wilson-Cowan model  

 

Note. Phase planes based on state variables I and E of the Wilson-Cowan model with 

our chosen parameters, obtained through the GUI of TVB. In both figures a limit cycle 

is reached. A) Represents the healthy parameters. Used to model the entire healthy brain 

and the regions of the depressed brain where the inhibition parameter was not reduced. 

B) Represents the model with less inhbiition (reduced Q). Used in the DLPFC, 

orbitofrontal cortex and occipital cortex in the depressed brain.   

 

Depressed brain with HF-rTMS. Next, a region stimulus was created to mimic 

HF-rTMS. We used a pulsetrain with an immediate onset and a 100ms inter-stimulus-
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interval, resulting in a 10Hz  stimulation (figure 5). The amplitude was kept similar to 

the amplitude of the healthy and depressed brain signals to make sure the stimulation 

would not completely dominate the resulting brain signals. To model the effects of HF-

rTMS, new simulations were made with the same model parameters as the baseline 

depressed brain but this time with addition of the high frequency stimuli to the left 

DLPFC, with a scaling factor of 5. 

Depressed brain with LF-rTMS. To simulate the effects of LF-rTMS, new 

simulations were again created with the same parameter values as the baseline 

depressed brain. This time, low frequency stimuli were applied to the right DLPFC with 

a scaling factor of 5. The only difference with the high frequency stimulation was that in 

the low frequency stimulation a 1000ms inter-stimulus interval was used, resulting in 

1Hz stimulation (figure 5). 

 

Figure 5 

rTMS stimuli  

 

 

Note. Images created in the GUI of TVB. Both images show stimuli applied within a 

time window of 1.2 seconds. Time in ms is displayed on the x-axis whereas the y-axis 

High frequency 

Low frequency 
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represents the amplitude of the stimuli. Top figure: High frequency rTMS with a 

frequency of 10Hz. Bottom figure:  Low frequency rTMS with a frequency of 1Hz.  

 

Data analyses  

The first step before any of the analyses was to delete the first 500ms of the local 

field potentials from each brain simulation. This was done because the system needs 

time to reach a steady state (i.e., limit cycle in the phase plane) which can induce 

artefacts in the data.  

For all outcome measures, 6 comparisons were made: 1) Healthy versus 

Depressed, 2) Healthy versus LF-rTMS, 3) Healthy versus HF-rTMS, 4) Depressed 

versus LF-rTMS, 5) Depressed versus HF-rTMS, 6) LF-rTMS versus HF-rTMS. 

Comparisons 4 and 5 can be seen as pre- versus post-treatment results where the 

depressed brain serves as the baseline depressed brain before treatment and the LF-

rTMS and HF-rTMS brains are that same brain after receiving treatment in the form of 

rTMS. Making all of these comparisons allows us to see whether there are baseline 

differences between the healthy and the depressed brain and which changes both 

protocols of rTMS induce compared to these baseline brains. Moreover, comparison 6 

allows for comparison between the two treatment protocols.  

Given the importance of frontal, temporal, occipital and parietal cortical regions 

in literature regarding coherence (Leuchter et al., 2012; Li et al., 2016), 28 ROIs (i.e. 

regions of interest) were included in our study. Specifically, frontal eye fields (FEF), 

inferior parietal cortex (PCI), medial parietal cortex (PCM), superior parietal cortex 

(PCS), centrolateral prefrontal cortex (PFCCL), dorsolateral prefrontal cortex (PFCDL), 

dorsomedial prefrontal cortex (PFCDM), medial prefrontal cortex (PFCM), 

orbitofrontal cortex (PFCORB), central temporal cortex (TCC), superior temporal 

cortex (TCS), inferior temporal cortex (TCI), primary visual cortex (V1) and secondary 

visual cortex (V2) were included bilaterally in our analyses of coherence as well as in 

the analyses of the peak in alpha power.  

Alpha power. Analyses on alpha power were focused on the DLPFC, given its 

importance in depression. Alpha power (8-12Hz) was measured by first obtaining the 

power spectrum of each individual simulation (n = 400) using Welch’s method (Welch, 

1967), which consisted of a fast Fourier Transform (FFT) with a Hann window. This 
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yielded alpha power in µV²/Hz. Absolute alpha power in both left and right DLPFC was 

then computed by approximating the area under the curve across the entire alpha band 

(8-12Hz) and across four subbands (8-9Hz, 9-10Hz, 10-11Hz, 11-12Hz). In a next step, 

frontal alpha asymmetry was obtained as left frontal alpha power (lDLPFC) divided by 

right frontal alpha power (rDLPFC). Positive outcomes thus represented higher alpha 

power in the left compared to the right DLPFC. T-tests were performed in Python to 

compare alpha power across all groups and the Holm-Bonferroni method was used to 

correct for multiple comparisons (Holm, 1979). Moreover, Cohen’s d was calculated as 

a measure of effect sizes. 

Alpha peak. Because fixed pre-defined frequency ranges are artificial and might 

miss out on more subtle changes, we decided to also extract the peak within the alpha 

frequency (8-12Hz) from each simulated brain. To do so, the FOOOF package was used 

(Haller et al., 2018). The advantage of this package is that it allows users to obtain the 

center frequency of the peak as well as the power while also controlling for the 

aperiodic component. In our analyses, we used power² as a proxy for amplitude. For 

each of the 400 simulated brains, the peak in alpha power was extracted for each of the 

28 included ROIs, resulting in 11200 extracted peaks. In 0.5% of the fittings, the model 

was unable to find a fit and thus no information on the peak could be extracted. 

Specifically, model fitting was unsuccessful for 16 simulations in the rV1, 32 

simulations in the lPFCDL and 16 simulations in the rV2. Analyses of the peaks were 

performed in R (R Core Team, 2019) using the linear mixed effects model framework. 

In separate analyses, center frequency of the peak and amplitude of the peak were used 

as outcome measures. For both analyses, Group (healthy, depressed, HF-rTMS, LF-

rTMS) and ROI (28 included ROIs) were included as predictors. A random intercept 

across subjects (each individual simulated brain) was included in all models. In the 

post-hoc analyses, the Tukey method was used to correct for multiple comparisons.  

Coherence. Coherence was calculated across the entire alpha band between all 

28 included ROIs, resulting in 378 region comparisons for each of the 400 simulated 

brains. These calculations were repeated for each of the four alpha subbands. T-tests 

were used to test the differences between the four brain types in terms of coherence. 

Again, the Holm-Bonferroni correction was applied to correct for multiple comparisons 

(Holm, 1979).  Finally, Cohen’s d was obtained as an indication for the effect sizes.  
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Code accessibility  

 All code used for this paper is freely available on 

https://github.com/CelienI/TVB_project  

 

Results  

Frontal alpha power  

Differences in alpha power were examined across the entire alpha band (8-12Hz) 

and within four subbands (8-9Hz, 9-10Hz, 10-11Hz, 11-12Hz) for both right and left 

DLPFC. 

Left frontal alpha (lDLPFC). When looking across the entire alpha band (8-

12Hz) we found evidence for a significantly increased alpha power in the depressed 

versus the healthy brains in the left DLPFC, in line with our expectations (t(199) = 

161.52, p < 0.001, d = 22.84)(figure 6; appendix B). However, no evidence was found 

for treatment effects of either of the rTMS protocols. Specifically, differences in left 

frontal alpha power between healthy brains and the depressed brains after both HF-

rTMS and LF-rTMS remained significant (all t’s >2.67, all p’s < 0.02, all d’s > 0.38). 

Moreover, HF-rTMS induced an even higher increase in alpha power compared to the 

baseline depressed brain (t(199) = 29.48, p < 0.001, d’s = 4.17). The same pattern of 

increased left frontal alpha power in depressed versus healthy brains (all t’s > 7.55, all 

p’s < 0.001, all d’s > 1.07), increased alpha in both rTMS protocols compared to healthy 

brains (all t’s > 6.33, all p’s < 0.001, all d’s > 0.89) and increased alpha in HF-rTMS as 

compared to baseline depressed brains (all t’s > 11.08, all p’s < 0.001, all d’s > 1.57) 

was found in the two lowest alpha subbands (8-9Hz, 9-10Hz). In contrast, in the 10-

11Hz subband alpha power was higher in the healthy brains compared to the depressed 

brains (t(199) = 18.13, p < 0.001, d = 2.56). With the exception of the unsignificant 

differences in alpha power within this subband between the depressed and LF-rTMS 

groups (t(199) = 0.03, p = 1.00, d = 0.00), all other group comparisons within this 

subband were significant (all t’s > 2.98, all p’s < 0.001, all d’s > 0.28) with alpha power 

being highest in healthy brains and lowest in depressed and LF-rTMS brains. Finally, no 

significant difference between the healthy and depressed group were found in terms of 

left frontal alpha power in the highest subband (t(199) = 0.42, p = 0.67, d = 0.06). 

Within this subband, the only significant group comparisons were those of each group 

https://github.com/CelienI/TVB_project
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compared to the HF-rTMS group (all t’s > 5.64, all p’s < 0.001, all d’s > 0.80) where 

the HF-rTMS resulted in the highest alpha power.  

Right frontal alpha (rDLPFC). Across the entire alpha band and the two 

lowest subbands, alpha power was again significantly higher in the depressed group as 

compared to the healthy group (all t’s > 9.44, all p’s < 0.001, all d’s > 1.34)(appendix 

C). In the two remaining subbands alpha power was significantly lower in the depressed 

group compared to the healthy group (all t’s > 4.35, all p’s < 0.001, all d’s > 0.62). HF-

rTMS did not induce any significant differences in right frontal alpha power compared 

to the baseline depressed group in any of the subbands nor across the entire band (all t’s 

< 0.06, all p’s = 1.00, all d’s < 0.01). Both the HF-rTMS group and the LF-rTMS group 

significantly differed from the healthy group across all (sub)bands (all t’s > 4.38, all p’s 

< 0.001, all d’s > 0.62) where the healthy group had a significantly higher alpha power 

in the two highest subbands whereas alpha power was significantly lower in the healthy 

brain in the two lowest subbands and across the entire alpha band. Finally, LF-rTMS 

resulted in significantly higher right frontal alpha power compared to baseline depressed 

and HF-rTMS brains in all frequency (sub)bands (all t’s >21.02, all p’s < 0.001, all d’s 

> 0.74) except for the 9-10Hz band (all t’s < 12.37, all p’s > 0.23, all d’s < 0.17).   

Frontal asymmetry. Frontal asymmetry was measured as the ratio of alpha 

power in the left compared to the right DLPFC where a positive ratio thus indicates a 

higher level of alpha power in the left DLPFC.  In contrast to our expectations, we 

found evidence for a significantly higher left frontal asymmetry in the healthy group 

compared to the depressed group across the entire alpha band (t(199) = 3.69, p = 0.001, 

d = 0.52) and within the 9-10Hz subband (t(199) = 3.30, p = 0.003, d = 0.47)(appendix 

D). Across the entire alpha band and the 9-10Hz subband all other group comparisons 

were significant as well (all t’s > 6.72, all p’s < 0.001, all d’s > 0.95) with the LF-rTMS 

group exhibiting the highest left frontal asymmetry, followed by lower asymmetry in 

the healthy and depressed brains and the lowest asymmetry in the HF-rTMS group. 

Furthermore, within the 10-11Hz subband we found evidence for a significantly 

increased frontal alpha asymmetry in the depressed versus healthy group (t(199) = 4.22, 

p = 0.003, d = 0.47). Except for the non-significant comparison between the baseline 

depressed and the LF-rTMS group (t(199) = 1.69, p = 0.093, d = 0.24), all other 

comparisons within this subband were significant (all t’s > 3.28, all p’s < 0.001, all d’s 
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> 0.46) with the highest asymmetry being found in the HF-rTMS group and the lowest 

in the healthy group. Within the remaining subbands, no baseline difference in frontal 

asymmetry was revealed between the healthy and depressed groups (all t’s < 0.32, all 

p’s = 1.00, all d’s < 0.05). However, all other group comparisons within these subbands 

were significant (all t’s > 3.15, all p’s < 0.006, all d’s > 0.48) with highest asymmetry in 

the HF-rTMS group and lowest asymmetry in the LF-rTMS group.  

 

Figure 6 

Alpha power in DLPFC   

 

Note. Power across the entire alpha band (8-12Hz). Frequencies are shown on the x-axis 

whereas power spectral density is represented by the y-axis. The left figure plots the 

alpha power in the left DLPFC (on average per group) whereas the right figure plots this 

same information for the right DLPFC. 

Alpha peak  

Peak frequency. Analyses of the peak frequency revealed a significant 

interaction between Group and ROI (χ2(81, 2784 ) = 2279.33, p < 0.001). When further 

examining this interaction, it was found that there were no significant group differences 

in peak frequency within the following regions: lFEF, lPCI, lPCM, lPCS, lPFCCL, 

lPFCDM, lPFCM, lTCI, lTCS, rFEF, rPCI, rPCM, rPCS, rPFCCl, rPFCDM, rPFCM, 

rTCC, rTCS (all z’s <  1.86, all p’s > 0.245). However, in both hemispheres the peak 

frequency in the depressed brains significantly differed from the peak frequency in the 

healthy brains in PFCDL, PFCORB, V1 and V2 (all z’s > 3.14, all p’s < 0.009) where 
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the peak in the depressed brain happened at a lower frequency compared to the healthy 

peak (figure 7). In lPFCDL, LF-rTMS did not result in a significant shift in peak 

compared to the baseline depressed peak (z = 0.038, p = 1.00). All other group 

comparisons in this region were found to be significant (all z’s > 3.142, all p’s < 0.009). 

Specifically, the peak happened at the lowest frequency for the depressed and LF-rTMS 

brain, at a significantly higher frequency in the healthy brain and again at a significantly 

higher frequency in the HF-rTMS group.  In the right counterpart of this region 

(rPFCDL) as well as in left and right PFCORB, V1 and V2,  none of the rTMS 

protocols led to a significant shift in peak frequency compared to the baseline depressed 

brain (all z’s < 0.74, all p’s > 0.880). Indeed, in none of these regions a significant shift 

in peak was found in the HF-rTMS brains compared to the LF-rTMS brains (all z’s < 

0.74, all p’s > 0.880). All other comparisons in these regions were significant (all z’s > 

14.72, all p’s < 0.001), where the peak in the healthy brains was consistently found at a 

higher frequency compared to the other groups. 

Peak amplitude. For the amplitude of the peak in alpha power, another 

significant interaction was found between Group and ROI (χ2(81, 2784) = 291.33, p < 

0.001). Further analyses revealed no significant differences between any of the groups 

in the following regions: lFEF, lPCI, lPCM, lPCS, lPFCCL, lPFCDM, lPFCM, lTCC, 

lTCI, lTCS, lV1, lV2, rFEF, rPCI, rPCM, rPCS, rPFCCL, rPFCDM, rPFCM, rTCC, 

rTCI, rTCS, rV1, rV2 (all z’s < 0.98, all p’s > 0.670)(figure 7). In the lPFCDL, no 

significant difference was found between healthy, depressed and LF-rTMS (all z’s < 

0.69, all p’s > 0.901) whereas the remaining comparisons were significant (all z’s > 

8.39, all p’s < 0.001). Specifically, the peak amplitude was significantly lower in the 

HF-rTMS brains compared to the other groups. In both left and right PFCORB, a 

significant difference was revealed between the depressed and the healthy brains as well 

as between the HF-rTMS and the healthy brains (all z’s > 3.20, all p’s < 0.008). 

Specifically, the healthy brains were found to have the lowest peak amplitude. In the left 

PFCORB, the comparison between LF-rTMS and healthy brains also revealed a 

significant difference in peak amplitude where the amplitude of the healthy brains still 

remained the lowest. Other comparisons in the left and right PFCORB were not 

significant (all z’s < 2.48, all p’s > 0.064). Finally, in rPFCDL the LF-rTMS brains 

showed a significantly lower peak amplitude compared to the other groups (all z’s > 



 

28 
 

7.51, all p’s < 0.001) whereas the other comparisons revealed no significant differences 

(all z’s < 0.53,  all p’s > 0.952). 

 

Figure 7 

Frequency and power of the peak in alpha power 
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Note. Top figure shows the centre frequency of the extracted peak in alpha power for 

each of the included ROIs. Bottom figure shows the amplitude of the extracted peak in 

alpha power for each of the included ROIs. Error bars are based on a 95% confidence 

interval.  

 

Coherence 

Coherence between all included regions was calculated in each of the alpha 

subbands (8-9Hz, 9-10Hz, 10-11Hz, 11-12Hz) and across the entire alpha band at once 

(8-12Hz).  

Across the entire alpha band, coherence in the healthy group was significantly 

lower compared to the three other groups between rPCS and lV1 (all t > 4.75, all p’s < 

0.001, d’s > 0.20), between rV22 and lPFCM (all t’s > 4.46, all p’s < 0.003, d’s > 0.19) 

and between rTCS and lV1 (all t’s > 4.35, all p’s < 0.003, all d’s > 0.19). Within these 

regions, no significant differences were found between the depressed, HF-rTMS and 

LF-rTMS groups (all t’s < 0.43, all p’s = 1.00, all d’s < 0.02) (figure 8). Furthermore, 

when comparing rFEF with rPFCDL, no significant differences were found (all t’s < 

2.90, all p’s = 1.00, all d’s < 0.12) except between the healthy and LF-rTMS groups 

(t(199) = 5.07, p < 0.001, d = 0.22), where LF-rTMS resulted in a significantly higher 

coherence (figure 8). Next, a significantly lower coherence between rPFCDL and 

lPFCM was found in the LF-rTMS group compared to the depressed and the HF-rTMS 

groups (all t’s > 4.02, all p’s < 0.022, all d’s > 0.17). Other comparisons between these 

regions were not significant (all t’s < 2.69, all p’s  = 1.00, all d’s < 0.11). Lastly, a 

significantly higher coherence between lPFC and lPFCDL and between lFEF and 

lPFCDL in the HF-rTMS group compared to the depressed group (all t’s > 4.36, all p’s 

< 0.004, all d’s > 0.19) whereas a significantly lower coherence between rPFCM and 

lPFCDL and between rFEF and lPFCDL in the HF-rTMS was found compared to the 

depressed group (all t’s > 3.85, all p’s < 0.045, all d’s > 0.16). All other comparisons 

were not significant (all t’s < 3.64, all p’s > 0.055, all d’s < 0.15).  

Within the lowest alpha band (8-9Hz), the coherence of the healthy group was 

significantly higher compared to the depressed group in the rPCS-lFEF, rPCS-lV1, 

rPCS-lPFCCL and the rPFCDM-rV2 (all t’s > 3.89, all p’s < 0.048, all d’s > 0.32). In 

contrast, coherence of the healthy group was significantly lower compared to the 
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depressed group within rPFCDL-lPFCM, rV1-lPCM, rTCS-lV1, rPFCORB-lV1, rV1-

lTCI and lTCC-lV2 (all t’s > 3.98, all p’s < 0.029, all d’s > 0.33). Furthermore, the 

healthy group was found to have a significantly higher coherence within rPCS-lFEF and 

rPCS-lV1 compared to the LF-rTMS group and the HF-rTMS group (all t’s > 4.40, all 

p’s < 0.005, all d’s > 0.36) whereas coherence of the healthy group was significantly 

lower compared to both rTMS groups within rTCS-lV1, rPFCORB-lV1 and rV1-lTCI 

(all t’s > 3.76, all p’s < 0.028 , all d’s > 0.29). When comparing the healthy group with 

the LF-rTMS group, significantly lower coherence in the healthy group was revealed 

within rV1-lPCM, rPCS-rTCS and lTCC-lV2 (all t’s > 3.98, all p’s < 0.029, all d’s > 

0.32) whereas coherence in the healthy group was significantly lower between rTCC-

rTCI (t(199) = 3.85, p = 0.048, d = 0.31). Furthermore, HF-rTMS resulted in 

significantly higher coherence compared to the healthy group in lPCS-lPFCDL, 

lPFCDL-lPFCM, rPFCDL-lPCM and rPFCORB-lTCC whereas this type of stimulation 

resulted in significantly lower coherence compared to the healthy group in lPCI-lV2, 

rTCC-lPFCORB and rPFCDM, rV2 (all t’s > 3.88, all p’s < 0.041 , all d’s > 0.32). 

Within rPFCM-lPFCDL and rPCM-lPFCDL, a significantly lower coherence was found 

for the HF-rTMS group compared to the LF-rTMs and baseline depression group (all t’s 

> 4.92, all p’s < 0.001, all d’s > 0.40). Finally, LF-rTMS resulted in a significantly 

lower coherence between rPFCDL and rPFCORB compared to the depressed group and 

the HF-rTMS group (all t’s > 4.27, all p’s < 0.004, all d’s > 0.35). All other 

comparisons were not significant (all t’s < 3.61, all p’s > 0.10, all d’s < 0.29).  

Within the 9-10Hz subband, coherence between lPCI and lPFCORB as well as 

between rFEF and lV1 was significantly higher in the healthy compared to the 

depressed, LF-rTMS and HF-rTMS groups (all t’s > 4.11, all p’s < 0.002 , all d’s < 

0.41). Coherence between lPCS and lPFCDL was significantly higher in the healthy and 

the HF-rTMS groups compared to the depressed and LF-rTMS groups (all t’s > 5.20, all 

p’s < 0.001, all d’s > 0.52). Next, coherence in the healthy group between rTCI and lV1 

was significantly lower compared to the three other groups (all t’s > 4.60, all p’s < 

0.001, all d’s > 0.46) whereas it was significantly higher in the healthy group compared 

to the depressed and HF-rTMS group between rTCI and lV1 (all t’s > 3.96, all p’s < 

0.032, all d’s > 0.40). Between rV2 and lPFCM, coherence was significantly higher in 

the healthy group compared to the depressed and LF-rTMS groups (all t’s > 3.95, all p’s 
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< 0.035, al d’s > 0.39). Furthermore, a significant increase in coherence between lPCM 

and lPCS was found in the HF-rTMS compared to the heatlhy group (t(199) = 4.42, p = 

0.004, d = 0.44). Finally, HF-rTMS resulted in significantly increase coherence between 

rV2 and lPFCDL compared to the depressed and LF-rTMS groups (all t’s > 4.24; all p’s 

< 0.011; all d’s > 0.42). All other comparisons were not significant (all t’s < 3.84, all p’s 

> 0.053, all d’s < 0.38).  

In the 10-11Hz subband, coherence between lPFCDL and LPFCORB was 

significantly higher in the healthy and HF-rTMS groups compared to the depressed and 

LF-rTMS groups (all t’s > 6.49, all p’s < 0.001, all d’s > 0.53). Between rPFCORB and 

lPFCDM, coherence was significantly higher in the healthy group compared to the other 

groups (all t’s > 4.13, all p’s < 0.016, all d’s > 0.34). In contrast, coherence in the 

healthy group was lower compared to the depressed and HF-rTMS groups between rPCI 

and lV1 (all t’s > 4.02, all p’s < 0.025, all d’s > 0.33). Furthermore, HF-rTMS led to a 

significant increase in coherence compared to the other groups between lFEF and 

lPFCDL (all t’s > 4.19, all p’s < 0.012, all d’s > 0.34). Finally, HF-rTMS was found to 

have a significantly higher coherence compared to the LF-rTMS and depressed group 

between lPCS and lPFCDL (all t’s > 4.18, all p’s < 0.012, all d’s > 0.34). All other 

comparisons did not reach significance (all t’s < 4.04, all p’s > 0.077, all d’s < 0.31).  

Lastly, within the 11-12Hz subband, coherence between lPFCCl and lPFCDL 

was found to be significantly lower in the HF-rTMS group compared to the other 

groups (all t’s > 4.85, all p’s < 0.001, all d’s > 0.40). A significiantly lower coherence in 

the HF-rTMS group compared to the healthy group was also found between the lPCM 

and lPFCDL regions (t(199) = 4.20, p = 0.011, d = 0.34). Finally, coherence between 

lPFCDL and lTCC was significantly higher in the HF-rTMS group compared to the 

depressed and LF-rTMS groups (all t’s > 4.12, all p’s < 0.016, all d’s >0.34). No further 

significant comparisons were found (all t’s < 3.76, all p’s > 0.071, all d’s < 0.31). 
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Figure 8 

Coherence between included ROIs 
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Note. Each of the 28 included ROIs is represented in a circular network where 

connections between regions (full lines) represent significant coherence changes 

between groups. Each row of graphs represents a different frequency (sub)band. Graphs 

in the left column represent significant differences between healthy and depressed 

brains compared to LF-rTMS whereas the graphs in the right column represent the 

differences between healthy, depressed and HF-rTMS brains. In these graphs, blue lines 

indicate a significantly higher coherence in depressed versus healthy brains without 

normalization towards healthy values after stimulation. Red lines also indicate an 

increased coherence in depressed versus healthy brains where the coherence of the 

depressed brain after stimulation was no longer significantly different from the healthy 
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brain. Green lines show an increased coherence in healthy compared to depressed brains 

where coherence of the depressed brain after stimulation still remains significantly 

different compared to the healthy brains whereas in yellow lines, the depressed brain 

coherence was no longer significantly different from the healthy brain after stimulation. 

The middle column of graphs represents ‘unhealthy’ stimulation effects. Specifically, 

lines indicate region pairs where coherence was not significantly different between 

healthy and depressed brains but the depressed brain became significantly different 

from the healthy brain after HF-rTMS (black), LF-rTMS (purple) or both stimulation 

protocols (light blue).  

Discussion 

Frontal alpha power 

Our results regarding left frontal alpha power across the entire alpha band are in 

line with our expectations. Namely, we found evidence for a significant increase in 

alpha power in depressed versus healthy subjects. This same evidence was found for the 

two lowest subbands of alpha power. However, no treatment effects were revealed in 

these (sub)bands. Specifically, LF-rTMS did not induce any significant differences 

between the baseline depressed brain and the depressed brain after LF-rTMS. Moreover, 

instead of reducing the increased alpha power in depression, HF-rTMS resulted in an 

even bigger increase in alpha power. In addition, our results were not unambiguous. 

Specifically, no difference in left frontal alpha power between the healthy and depressed 

groups was found within the 11-12Hz subband whereas the difference between these 

groups pointed toward a significantly decreased left frontal alpha power in the 

depressed group within the 10-11Hz subband. Remarkably, within the 10-11Hz subband 

HF-rTMS seemed to again enlarge the already existing difference between the healthy 

and baseline depressed groups, this time by resulting in the lowest amount of frontal 

alpha power.  

Across the entire alpha band as well as in the two lowest subbands we found 

evidence for an increased right frontal alpha power in the depressed versus the healthy 

group. In the two highest subbands this effect was reversed. The HF-rTMS group did 

not significantly differ from the baseline depressed group in any of the (sub)bands. 

However, LF-rTMS did induce significant differences in the depressed brains in all 

(sub)bands except within the 9-10Hz subband.  
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In contrast to our expectations we found evidence for a significantly higher left 

frontal asymmetry in the healthy group as compared to the depressed group across the 

entire alpha band and within the 9-10Hz subband. Within these frequency bands LF-

rTMS resulted in the highest left frontal asymmetry whereas HF-rTMS resulted in a 

frontal asymmetry in which right alpha power was higher than left frontal alpha power. 

However, in the 10-11Hz subband we did find evidence for an increased asymmetry in 

depressed versus healthy subjects, which is in line with our expectations. In the last 

subband (11-12Hz), no significant differences between healthy and depressed brains 

were found. Finally,  no treatment-like effects were found for either LF-rTMS nor HF-

rTMS. 

Although our results in terms of increased frontal alpha power were in line with 

our expectations across the entire alpha band, we did find some inconsistencies across 

subbands. First of all, comparison to literature is not straightforward given the existing 

inconsistencies across studies. For example, though some reviews conclude that alpha 

power is indeed increased in depressed brains (Olbrich & Arns, 2013; Mahato & Paul, 

2019), others researchers reported a decrease in alpha power in depressed patients (Flor-

Henry, 1979; Price et al., 2008; Kan & Lee, 2015; Jiang et al., 2016). In addition, the 

review of de Aguiar Neta and Rosa (2019) concluded that the alpha band power is not a 

reliable diagnostic marker of depression. Possibly, the variability in methods used to 

assess alpha power in depression can be an explanation for the mixed results in 

literature. For instance, many studies only look at alpha power across the entire alpha 

band, which might miss out on more subtle differences in subbands of the alpha band. 

Due to the lack of studies using multiple subbands, we cannot directly compare our 

results from the subbands to literature. As for the entire alpha band, the range of 

frequencies is only artificial and not all researchers use the same frequency boundaries. 

The range is often chosen from 8Hz to 12Hz but multiple authors also used a lower 

boundary of 7.5Hz and/or an upper boundary of 13Hz (Kemp et al., 2010; Jaworska et 

al., 2012; Cantisani et al., 2015). The danger of these artificially fixed power bands is 

that too narrow bands might miss significant portions of alpha power that fall outside of 

the fixed window whereas too wide ranges might erroneously include neighbouring 

frequencies in the alpha window (Klimesch et al., 1996; Klimesch et al., 1998). 

Definitely given the fact that some researchers report significant changes in power in 
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these neighbouring theta and beta bands in depressed patients at frontal sites (Knott et 

al., 2001; Begić et al., 2011), including these frequencies in the alpha band could cause 

faulty conclusions on the amount of alpha power.  

With regard to left frontal asymmetry we only found evidence in line with our 

expectations within the 10-11Hz subband. In contrast, the results across the entire alpha 

band were at odds with our hypotheses. However, we are not the first failing to replicate 

the general finding of increased left frontal asymmetry in depressed patients (Segrave et 

al., 2011; Gold et al., 2013). Moreover, although most studies who reported an 

increased asymmetry in depressed patients did not look at subbands (e.g., Henriques & 

Davidson, 1991; Smit et al., 2007; Kemp et al., 2010), the findings of studies who did 

are inconsistent. For instance, both Jaworska et al. (2012) and Cantisani et al. (2015) 

looked at the entire alpha band, lower alpha band and higher alpha band. Remarkably, 

Cantisani et al. (2015) reported increased asymmetry across the entire alpha band and 

the two subbands whereas Jaworska et al. (2012) only found this asymmetry in the 

upper alpha band (10.5-13Hz). 

Again, some reviews and meta-analyses doubt the importance of alpha 

asymmetry as a diagnostic marker for depression (Van Der Vinne et al., 2017; de 

Aguiar Neto & Rosa, 2019). It is proposed that alpha asymmetry is more useful in 

predicting specific symptoms and treatment outcome (Van Der Vinne et al., 2017; 

Nelson et al., 2018) rather than as a diagnostic marker. The major reason for this 

proposal is the inconsistency in literature on frontal alpha asymmetry. Some authors 

propose these inconsistencies might be caused by an underlying impact of gender in 

alpha asymmetry (Bruder et al., 2017; de Aguiar Neto & Rosa, 2019). However, authors 

failing to find gender impact on alpha asymmetry (Smith et al., 2018) cause doubts 

about this idea.  

Both of the stimulation protocols could not induce any treatment-like effects in 

our data. In general, results revealed strong effects of HF-rTMS in the left DLPFC 

where HF-rTMS enlarged the already existing differences between healthy and baseline 

depressed brains. In contrast, LF-rTMS had this same effect in the right DLPFC. Also in 

terms of frontal asymmetry, none of the stimulation protocols resulted in an amount of 

asymmetry that was closer to the healthy values than to the baseline depressed values. 
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Alpha peak  

For the individual alpha peak (IAF), no significant differences between the four 

brain types were found for most of the included ROIs. With regards to the peak 

frequency of the IAF, a significantly lower peak frequency was revealed in the 

depressed group compared to the healthy group within the bilateral PFCDL, PFCORB, 

V1 and V2. No differences between the peak frequencies in the depressed group were 

found compared to any of the stimulation groups in bilateral PFCORB, V1, V2 and 

right DLPFC. However, in left DLPFC HF-rTMS resulted in a significantly higher peak 

frequency as compared to the baseline depressed brain, thus inducing a treatment-like 

effect. Although shifting the peak frequency into the right direction, the effect of HF-

rTMS seems a bit too strong since the resulting peak frequency is also significantly 

higher than the healthy brain (figure 7). 

For the amplitude of the IAF, the amplitude of the peak was found to be 

significantly lower in the healthy brains whereas no significant differences were found 

between the amplitudes of the peaks in the depressed brains, HF-rTMS brains and LF-

rTMS brains. However, in right PFCORB, LF-rTMS resulted in a shift towards a lower 

amplitude which was no longer significantly different from the healthy brain (figure 7), 

thus causing a treatment-effect. In addition, in left DLPFC HF-rTMS resulted in a 

significantly lower peak amplitude as compared to the other groups whereas in right 

DLPFC LF-rTMS resulted in a significantly lower amplitude.  

Taken together, the IAF only revealed significant differences between the 

healthy and depressed brains in frontal and occipital regions in terms of peak frequency 

and only in frontal regions in terms of peak amplitude. Literature on IAF in depression 

is scarce and results are mixed. For instance, Tement and colleagues (2016) found a 

significant correlation between IAF and depression scores whereas Jiang and colleagues 

(2016) did not find a significant difference between IAF in healthy versus depressed 

patients. However, in both of these studies IAF was calculated based on the average 

power spectrum of a set of frontal EEG-electrodes which makes comparison to our 

results, calculated for individual regions, harder. Although scarce, we did find some 

evidence that HF-rTMS and LF-rTMS are able to cause treatment-like shifts in peak 

frequency and/or amplitude.   
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Coherence 

In line with existing literature, our results on coherence were diverse. We found 

evidence for both increased and decreased coherence in depression compared to healthy 

brains. Moreover, for many region comparisons, no significant differences were found. 

Our results differed across frequency (sub)bands (figure 8). For instance, the amount of 

significant region pairs in terms of differences in coherence between healthy and 

depressed brains differed across (sub)bands, where most significant pairs were found in 

the lowest subband (8-9Hz) whereas no significant pairs were revealed in the highest 

subband (11-12Hz). In addition, around half of the significant pairs in the lowest alpha 

band revealed a significantly higher coherence in depression as compared to healthy 

brains whereas the other half represented a significantly lower coherence in depression. 

In other (sub)bands, there was an overweight of significant pairs representing 

significantly lower coherence in depression. Finally, in the three lowest subbands, we 

found evidence of treatment effects of LF-rTMS or HF-rTMS in a little more than half 

of the region pairs showing a significantly different coherence between healthy and 

baseline depression brains (figure 8). In contrast, coherence values of depressed brains 

did not return to ‘healthy’ values after any type of stimulation when looking across the 

entire alpha band (8-12Hz).  

Remarkably, we did notice some region pairs for which there was no difference 

in coherence between the baseline depressed brains and the healthy brains but where 

either HF-rTMS or LF-rTMS induced shifts in coherence that became significantly 

different from the healthy brains (figure 8). The effects of both rTMS protocols were 

thus not limited to the regions showing an altered coherence in baseline depressed 

brains.  

Finally, in terms of effects on coherence we seem to have found evidence that 

the underlying mechanisms of HF-rTMS and LF-rTMS are not identical. Specifically, 

whereas coherence of some region pairs was significantly changed by one type of 

rTMS, none of the region pairs were significantly changed by both protocols.   

Again, comparison with literature is not an easy job given the scarcity of studies 

looking at coherence in depression. Moreover, some studies only compare a few region 

pairs (e.g., Knott et al., 2001; Suhhova et al., 2009; Markovska-Simoska et al., 2018) 

whereas others compare all possible regions acquired with EEG (Leuchter et al. 2012). 

In addition, in these studies the lower boundary of the measured alpha power ranges 
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from 7.5Hz to 8Hz whereas the upper boundary ranges from 12Hz to 13Hz across the 

aforementioned studies which could again lead to too many or too little frequencies 

included as ‘alpha’ across studies. Moreover, our inconsistent findings across subbands 

highlight the effects of choosing different frequency range boundaries on the results.  

 

General discussion  

In general, our results were not unambiguously in line with our predictions. 

Looking across the entire alpha band we found evidence for an increase in frontal alpha 

power in depressed versus healthy brains. However, within subbands there were 

inconsistent results. Moreover, we could not find evidence for an increased left frontal 

asymmetry in depressed brains versus healthy brains across the entire alpha band. 

Furthermore, depending on the region comparison we found both evidence for 

increased, decreased and unchanged coherence in depressed versus healthy brains. 

Finally, although we found some evidence for treatment-like effects in IAF and 

coherence of some region pairs, in general our indications of treatment effects of both 

rTMS protocols were scarce.  

One possible explanation for the lack of results in line with our predictions on 

differences in depressed versus healthy brains and the lack of treatment-like effects 

could be that our model was not successful at mimicking depressed brains. Based on 

literature, we lowered the Q parameter of the Wilson-Cowan model in specific regions 

in the depressed brains. However, alterations in depressed brains are widespread in both 

structural (e.g., Liao et al., 2013) and functional connectivity (e.g., Kaiser et al., 2015) 

as well as in neurotransmitters (e.g., Nutt, 2008; Pan et al., 2018). Therefore, altering 

the amount of inhibition alone might not be enough to mimic a typical depressed brain. 

In addition, we extracted local field potentials from virtual brains while they were being 

stimulated with either HF-rTMS or LF-rTMS. In real patient studies however, EEG 

and/or behavioural measures are collected after the rTMS treatment instead of during. 

Perhaps we missed out on more treatment-like effects because it takes some time before 

the effects of rTMS become clear.  

An alternative approach which might lead to more reliable results would be to 

use the individual data of real depressed and control subjects. A model could then be 

fitted for each brain individually and will probably capture the real differences between 
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the healthy and depressed brains in a more realistic way. Unfortunately, we did not have 

such data available which is why we chose to work with one default brain and alter the 

model parameters based on literature. 

Furthermore, we only simulated 2.5s of brain activity for each individual brain 

of which the first 500ms were deleted to prevent artefacts. This short simulation period 

was chosen due to the lack of great computational power. However, it might make 

comparison with results from real patient-studies more difficult since real patient-

studies record data over longer periods of time. On the other hand, the 2s of brain 

activity we simulated could be used entirely since, in contrast to real patient data, we 

did not have to delete artefacts caused by eyeblinks and movements.   

However, even with a perfect model for healthy and depressed brains and even 

with longer simulation times, comparing our results to literature is not a straightforward 

job given the inconsistencies. For instance, Thibodeau and colleagues (2016) report that 

part of the variability in effect sizes across studies regarding frontal asymmetry can be 

contributed to differences in depression operationalization and length of resting EEG 

data. Moreover, Van Der Vinne and colleagues (2017) did not find evidence for frontal 

asymmetry in depression with their meta-analysis. Moreover, they demonstrate that 

most studies regarding frontal asymmetry are severely underpowered.  Furthermore, 

researchers studying IAF and/or coherence in depression are scarce and ambiguous. In 

addition, most studies make use of fixed alpha bands with varying upper and lower 

boundaries which can result in capturing too much or too little data as alpha power 

(Klimesch et al., 1996; Klimesch et al., 1998). Indeed, our inconsistent results across 

frequency subbands expose the danger of missing out on more subtle differences when 

averaging across an entire frequency band. Specifically, we were able to replicate the 

increased frontal alpha power in depressed brains across the entire alpha band but also 

found evidence in the opposite direction when inspecting some of the subbands. These 

issues expose the need for more (uniform) research within the domain of depression.  

 

Conclusion  

 In conclusion, we replicated the finding of increased frontal alpha power in 

depressed brains but some inconsistent results were found within the frequency 

subbands. In addition, we did not find evidence for an increased frontal alpha 
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asymmetry in depression.  Moreover, we found evidence for both increased, decreased 

and equal coherence between healthy and depressed brains depending on the region 

pairs. Furthermore, differences in IAF between the healthy and depressed groups were 

only found in some frontal and occipital regions. Finally, treatment-like effects of both 

rTMS protocols were scarce and no evidence was found that would indicate that one of 

the protocols would be more superior compared to the other. Given the inconsistencies 

in literature, comparing our results to real patient-studies is not straightforward. 

Possibly, our model of the depressed brains was too simplistic. We thus argue that 

future research repeating our study with the data from real depressed patients instead of 

the default brain in TVB would yield more realistic results.  
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Appendix A 

Parameter Value Explanation  

c_ee 14.05 Excitatory to excitatory coupling coefficient 

c_ei 12.44 Inhibitory to excitatory coupling coefficient 

c_ie 16.76 Excitatory to inhibitory coupling coefficient. 

c_ii 2.0 Inhibitory to inhibitory coupling coefficient. 

tau_e 16.07 Excitatory population, membrane time-constant [ms] 

tau_i 33.71 Inhibitory population, membrane time-constant [ms] 

a_e  1.3 The slope parameter for the excitatory response function 

b_e  4.0 Position of the maximum slope of the excitatory sigmoid function 

c_e 1.0 The amplitude parameter for the excitatory response function 

a_i 1.95 The slope parameter for the inhibitory response function 

b_i 14.76 Position of the maximum slope of a sigmoid function [in 

threshold units] 

c_i 1.0 The amplitude parameter for the inhibitory response function 

r_e 1.0 Excitatory refractory period 

r_i 1.0 Inhibitory refractory period 

k_e 1.0 Maximum value of the excitatory response function 

k_i 1.0 Maximum value of the inhibitory response function 

P 2.22 External stimulus to the excitatory population. Constant 

intensity.Entry point for coupling. 

Q 1.0 External stimulus to the inhibitory population. Constant 

intensity.Entry point for coupling. 

theta_e 0.0 Excitatory threshold 

theta_i 0.0 Inhibitory threshold 

alpha_e 1.0 External stimulus to the excitatory population. Constant 

intensity.Entry point for coupling. 

alpha_i 1.0 External stimulus to the inhibitory population. Constant 

intensity.Entry point for coupling. 

Appendix A. Overview of the used parameters for the Wilson-Cowan model for all 

regions in the healthy brain simulations and for all regions except bilateral DLPFC, 

orbitofrontal and occipital cortices in the other simulations. The excepted regions in 

the depressed, HF-rTMS and LF-rTMS were modelled with Q = 0, otherwise the 

parameters had the same values as the healthy model.   
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Appendix B 

Left frontal alpha  

Mean and standard deviations 
 

µHealth µDepr. µLF-

rTMS 

µHF-

rTMS 

sd 

Healthy 

sd Depr. sd LF-

rTMS 

sd HF-

rTMS 

8-9Hz 4.30E-

05 

1.39E-04 1.39E-04 6.97E-04 4.99E-05 1.17E-04 1.17E-04 4.87E-04 

9-10Hz 1.42E-

03 

5.90E-03 5.89E-03 8.89E-04 6.46E-04 7.40E-04 7.40E-04 5.28E-04 

10-11Hz 2.73E-

03 

1.08E-03 1.08E-03 2.50E-03 6.15E-04 6.66E-04 6.67E-04 9.66E-04 

11-12Hz 6.52E-

05 

6.12E-05 6.12E-05 1.28E-04 7.60E-05 5.28E-05 5.28E-05 8.01E-05 

8-12Hz 8.49E-

03 

1.43E-02 1.43E-02 7.91E-03 2.45E-04 2.61E-04 2.60E-04 2.14E-03 

 

Effect sizes 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz -1.07 -1.06 -1.88 0.00 1.57 1.57 

9-10Hz -6.42 -6.41 0.89 0.00 -7.75 -7.75 

10-11Hz 2.56 2.56 0.28 0.00 1.71 1.70 

11-12Hz 0.06 0.06 -0.80 0.00 0.98 0.98 

8-12Hz -22.84 -22.90 0.38 -0.01 -4.17 -4.17 

 

Adjusted p-values 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz 3.03E-12 3.87E-12 1.63E-28 1.00E+00 3.38E-22 3.12E-22 

9-10Hz 5.89E-106 6.58E-106 6.49E-09 1.00E+00 5.88E-121 6.52E-121 

10-11Hz 1.89E-43 2.55E-43 4.91E-02 1.00E+00 5.28E-25 6.40E-25 

11-12Hz 6.74E-01 6.71E-01 1.76E-07 1.00E+00 7.04E-11 6.87E-11 

8-12Hz 1.85E-211 1.18E-211 1.63E-02 1.00E+00 9.28E-74 9.57E-74 

 

T-statistic  
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz -7.55 -7.51 -13.29 -0.03 11.08 11.09 

9-10Hz -45.36 -45.33 6.33 -0.03 -54.83 -54.80 

10-11Hz 18.13 18.08 1.98 0.03 12.06 12.04 

11-12Hz 0.42 0.43 -5.64 -0.01 6.90 6.90 

8-12Hz -161.52 -161.90 2.67 -0.04 -29.48 -29.48 
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Appendix C 

Right frontal alpha 

Mean and standard deviation 
 

µHealthy µDepress

ed 

µLF-

rTMS 

µHF-

rTMS 

sd 

Healthy 

sd 

Depresse

d 

sd LF-

rTMS 

sd HF-

rTMS 

8-9Hz 4.19E-05 1.44E-04 3.26E-04 1.44E-04 3.08E-05 1.04E-04 2.66E-04 1.03E-04 

9-10Hz 1.23E-03 5.95E-03 5.51E-03 5.96E-03 7.00E-04 6.35E-04 5.66E-04 6.30E-04 

10-11Hz 2.88E-03 1.09E-03 9.78E-04 1.08E-03 6.21E-04 6.92E-04 5.38E-04 6.88E-04 

11-12Hz 6.70E-05 3.57E-05 1.33E-04 3.55E-05 6.70E-05 2.49E-05 7.46E-05 2.49E-05 

8-12Hz 8.41E-03 1.44E-03 1.37E-02 1.44E-02 2.76E-04 2.12E-04 2.60E-04 2.13E-04 

 

Effect sizes 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz -1.34 -1.49 -1.34 0.90 0.00 -0.90 

9-10Hz -7.03 -6.69 -7.06 -0.74 0.00 0.75 

10-11Hz 2.72 3.26 2.73 -0.17 0.00 0.17 

11-12Hz 0.62 -0.93 0.62 1.75 -0.01 -1.75 

8-12Hz -24.21 -19.59 -24.20 -2.97 0.00 2.97 

 

Adjusted p-values 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz 2.06E-17 1.14E-20 1.88E-17 4.73E-09 1.00E+00 4.55E-09 

9-10Hz 3.06E-113 3.21E-109 1.46E-113 9.32E-07 1.00E+00 7.10E-07 

10-11Hz 9.73E-47 1.54E-57 5.14E-47 2.27E-01 1.00E+00 2.36E-01 

11-12Hz 2.17E-05 4.33E-10 1.92E-05 1.01E-25 1.00E+00 8.38E-26 

8-12Hz 2.06E-216 2.37E-198 2.24E-216 1.23E-51 1.00E+00 1.17E-51 

 

T-statistic 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz -9.44 -10.56 -9.46 6.33 -0.01 -6.34 

9-10Hz -49.74 -47.28 -49.94 -5.21 0.03 5.27 

10-11Hz 19.24 23.07 19.34 -1.21 -0.02 1.19 

11-12Hz 4.35 -6.57 4.38 12.34 -0.06 -12.37 

8-12Hz -171.17 -138.50 -171.10 -21.02 0.02 21.03 
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Appendix D 

Frontal asymmetry  

Mean and standard deviation 
 

µHealthy µDepress

ed 

µLF-

rTMS 

µHF-

rTMS 

sd 

Healthy 

sd 

Depresse

d 

sd LF-

rTMS 

sd HF-

rTMS 

8-9Hz 2.54 2.35 0.82 8.92 3.77 4.66 1.28 11.39 

9-10Hz 1.77 1.00 1.09 0.15 1.79 0.18 0.20 0.10 

10-11Hz 1.04 2.33 1.62 5.00 0.51 3.86 1.60 7.15 

11-12Hz 3.56 3.55 0.75 7.06 6.65 6.16 1.03 7.75 

8-12Hz 1.01 0.99 1.04 0.55 0.04 0.03 0.03 0.15 

 

Effect sizes 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz 0.05 0.61 -0.75 -0.45 0.75 0.99 

9-10Hz 0.60 0.53 1.27 0.43 -5.96 -5.90 

10-11Hz -0.47 -0.49 -0.78 -0.24 0.46 0.65 

11-12Hz 0.00 0.59 -0.48 -0.63 0.50 1.13 

8-12Hz 0.52 -0.95 4.15 1.78 -4.06 -4.51 

 

Adjusted p-values 
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz 1.00E+00 1.05E-04 6.43E-07 5.61E-03 8.56E-07 6.37E-11 

9-10Hz 1.82E-04 4.33E-04 9.33E-16 5.61E-03 3.71E-100 2.38E-99 

10-11Hz 3.44E-03 6.93E-04 3.32E-07 9.35E-02 1.23E-03 7.59E-06 

11-12Hz 1.00E+00 1.46E-04 7.97E-04 5.42E-05 1.07E-03 2.69E-13 

8-12Hz 1.17E-03 9.22E-10 2.64E-73 2.06E-26 5.62E-72 2.57E-79 

 

T-statistic  
 

Health_Depr Health_LF Health_HF Depr_LF Depr_HF HF_LF 

8-9Hz 0.32 4.31 -5.29 -3.15 5.32 7.03 

9-10Hz 4.22 3.77 8.97 3.05 -42.16 -41.72 

10-11Hz -3.30 -3.45 -5.51 -1.69 3.28 4.60 

11-12Hz 0.01 4.15 -3.41 -4.46 3.52 8.02 

8-12Hz 3.69 -6.72 29.33 12.60 -28.74 -31.88 
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Dutch summary  

 

Een depressie is een ernstig mentaal probleem waar veel mensen aan lijden. Eerder 

onderzoek vond evidentie voor veranderingen in functionele en structurele 

connectiviteit en veranderingen in neurotransmitters in de hersenen van patiënten met 

depressie. De literatuur hieromtrent is echter niet eenduidig, mogelijks door het gebruik 

van kleine groepen, interindividuele verschillen en conductie-problemen bij het 

verzamelen van data. In de huidige studie maken we gebruik van modellen om de 

veranderingen in het depressieve brein en de effecten van niet-invasieve 

hersenstimulatie te onderzoeken doormiddel van The Virtual Brain (TVB). TVB is een 

neuro-informatica platform waarmee een persoonlijk virtueel brein kan worden 

gemodelleerd voor ieder individueel subject, gebaseerd op individueel tractografische 

data en neurale modellen. Omwille van het gebrek aan echte patiënten, maakten wij 

gebruik van de standaard connectiviteitsmatrix die in TVB beschikbaar is en 

modelleerden we hersenactiviteit met behulp van het Wilson-Cowan model. We 

simuleerden hersenactiviteit voor 4 groepen: 1) Gezond brein, 2) Depressief brein, 3) 

Depressief brein met high-frequency rTMS en 4) Depressief brein met low-frequency 

rTMS. Voor iedere groep werden 100 unieke simulaties gemaakt. Vervolgens 

vergeleken we de groepen in termen van alfa power, coherentie en individuele alfa piek 

om te onderzoeken 1) of gezonde en depressieve hersenen verschilden zoals verwacht 

op basis van literatuur, 2) of rTMS protocollen een behandelings-effect konden 

opleveren en 3) zo ja, of één type rTMS superieure resultaten opleverde vergeleken met 

het andere type. Onze resultaten waren ambigu en niet geheel in lijn met onze 

verwachtingen op basis van literatuur. We konden bijvoorbeeld niet altijd de voorspelde 

verschillen tussen gezonde en depressieve breinen terugvinden en behandelings-effecten 

waren zeldzaam. We argumenteren dat ons model voor het depressieve brein mogelijks 

te simplistisch was en moedigen het gebruik van data van echte patiënten in TVB aan 

voor toekomstig onderzoek. Als laatste benadrukken we enkele problemen en 

inconsistenties tussen studies die mogelijks de diverse conclusies in de literatuur kunnen 

verklaren.  

 


