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Abstract

The pain index is a risk measure defined as the sum of the drawdowns divided by the length of

the time period under consideration. In this paper, we study its properties as well a method of

constructing portfolios which minimizes it. This method is based on linear programming. We

argue that the pain index is attractive for two main reasons: it focuses on downward risk, which

matters to most investors, and can be optimized easily. We demonstrate the optimization using a

small sample and make analogies to mean-variance optimization.

Keywords— pain index, pain ratio, iVaR, linear programming, portfolio optimization
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1 INTRODUCTION 1

1 Introduction

Investors need to distribute their wealth over the set of available assets, and want to do so optimally.

This is called the problem of portfolio optimization. What they consider optimal depends on their

personal objectives and the measures used. We consider a framework in which the investor wants to

minimize risk and attain at least a certain level b of expected return. By modelling the preferences

of an investor in such a way, we implicitly assume (s)he is a rational investor, as proposed by

Markowitz (1952). In general, the problem can thus be written as:

minimize
w

f(w),

subject to g(w) ≥ b,
(1.1)

where f is an expression of the risk in function of the vector of weights w, and g denotes the

function of expected return.

We study a method the use of the pain index as a measure of risk. The pain index was introduced

in 2006 by Zephyr Associates and defined as follows:

pain index =
T∑
t=1

dt
T
, (1.2)

where dt is the drawdown at time t and T is the length of the time period under consideration.

It did not receive much attention in research, but has recently been picked up and popularized by

Investsuite, a Belgian fintech start-up, under the name iVaR, short for Investsuite Value-at-Risk.

In this article, we contribute to the current body of research in two ways. Firstly, we cover

properties of the pain index which may not be evident at first sight and are not covered by previous

research. Secondly, we study in detail the use of a linear program to minimize the pain index. We

base our analysis on Markowitz’ original framework and try to take an analogue approach.

This paper proceeds as follows. We start by describing current literature in section 2. In section

3, we study the pain index in more detail. We examine it both mathematically as well as visually,

try to decompose the risk in multivariate cases, and show why it does (not) fit in different risk

classification frameworks. We study how the measure can be minimized by using a simple linear

program in section 4, which has interesting and useful properties. Finally, section 5 concludes.
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2 Literature overview

2.1 Modern Portfolio Theory

Before diving in the details of optimization, we need to introduce the reader to our framework that

was covered briefly in the introduction. We start from the very basics by building our framework

from the ground up.

2.1.1 Model development

Throughout this paper, we consider a universe of N assets (or securities) to invest in. Assets can

theoretically be almost anything, but it is common practice to mainly consider financial assets

under the form of stocks or shares. An investor has a certain amount (s)he wants to invest and will

allocate a proportion of his or her available capital to each of the N assets. This proportion is what

we call the weight assigned to each asset and we refer to this as wi, where i is an index referring to

one of those assets: i = {1, . . . , N}. Naturally, these weights should sum up to one as we assume

the investor completely uses his or her capital:
∑N

i=1wi = 1. In most research, this weight is

allowed to vary between 0 and 1: 0 ≤ wi ≤ 1, but as of 2021 even the most financially illiterate

know that there is a thing called shorting. This allows weights to be smaller than 0, and thus also

larger than 1. Assuming whether shorting is possible does not significantly influence most analyses,

thus we keep it simple, make abstraction of its existence and assume a traditional long-only investor.

Every asset has a certain price at each point in time. The points in time under consideration

are defined by the past time horizon we choose to examine. We refer to a certain point in time as

t and our time period under consideration is of length T : t = {1, . . . , T}. We consider each point

in time to be a certain day, but theoretically these could also be minutes or even months. We

try to make predictions of the future by looking at the past, thus this period should have ended

somewhere in the past, preferably as recent as possible, i.e. yesterday. We denote the price of asset

i at time t as pt,i. As a consequence, this can range from p1,1, denoting the price of our ’first’ asset

on the first moment in time, to pT,N , which is the price of our ’last’ asset N at time T .

Let us now assume our investor has an amount of 100 (euro, dollar...) to invest in four available

stocks. The investor has heard the paradigm to ’never put all your eggs in one basket’ and decides

to split his/her capital equally among the four assets, i.e. 25 in each. If the four assets are by

chance all worth 5 at the time of investment, the investor can buy 5 shares of each, but this will

probably not be the case. To solve this issue, we will assume that assets are infinitely divisible,
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which means one can buy any fraction of a share. For example, if one of the assets were worth 50,

we are able to buy 0.5 of it.

An investor invests money with the goal of making more money. To quantify this reward, we

define the return of asset i from time t− 1 to time t as

rt,i =
pt,i − pt−1,i
pt−1,i

. (2.1)

We now have the building blocks to introduce the problem of portfolio optimization, as men-

tioned in the introduction and formulated by Markowitz (1952): we want to invest our money in

an optimal way. As the economic paradigm goes, we assume that investors like return and dislike

risk, which is the ever-present trade-off in investing. We know what return is, but we are still faced

with the question of is exactly represented by the concept of risk.

According to the dictionary, risk is the possibility of something bad happening, yet this abstract

definition can take many forms in a financial world. One can make an analogy to eating cookies

and being unhealthy. We assume that everyone likes eating cookies (return): the more cookies, the

better. However, we do not like being unhealthy (risk), but what does that in fact entail? The

abstract concept can be quantified by blood pressure, fat percentage, or simply your weight. Using

either of those has its advantages and disadvantages, just like different measures of risk measures do.

We cannot with full certainty predict how the prices of the securities will develop in the future,

we can only make educated guesses based on the past. Therefore we should normally state that

we maximize expected return and minimize expected risk, but we will often omit the adjective, as

we assume that the past performance is indicative for the future. It is common practice to denote

the expected return of asset i as µi. This ’past’ is the time period we introduced before and the

investor invests all of his capital at time T + 1, defined by a vector of weights w = {w1, . . . , wN}.

Notice how we denote vectors in bold. This problem thus considers a single period of investment.

Simply said, an investor allocates his or her capital among different securities by assigning a weight

to each, based on the past performance. Every security generates a random return during the single

period, which leads to a change in the total portfolio value.

The duality in the trade-off should be clear now. We can either minimize a certain measure of

risk f while attaining at least a level b of return g (as shown in the introduction):
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minimize
w

f(w)

subject to g(w) ≥ b,
(2.2)

or maximize the return while attaining no more than a certain level a of risk. This second possibility

in fact equal to the former from a theoretical perspective on optimization:

maximize
w

g(w)

subject to f(w) ≤ a.
(2.3)

An alphabetical overview of the notation which will be used throughout this paper is provided

in table 1. Vectors are always indicated in bold and so are matrices, but additionally, those will

be in capital letters. Note that when no time index t is added to the price or return variable, it

refers the past average (e.g. ri = average return of asset i) and that the generic f for risk will

often be denoted by ρ, as is common in research. The subscript ptf is used when referring to the

portfolio instead of to an individual asset i, and lastly, it is also assumed that there is a risk-free

asset available, returning a (constant) risk-free rate.

Notation Meaning

i Index referring to one of the assets, i = {1, . . . , N}
N Number of assets
pt,i Price of asset i at time t
rt,i Return of asset i from t− 1 to t
rf Risk-free return
t Index referring to point in time, t = {1, . . . , T}
T Length of time period = moment of most recent observation
wi Weight of asset i

Table 1: Overview notation

2.1.2 Mean-variance optimization

Markowitz (1952) not only introduced the framework of portfolio optimization, but even more

so suggested using the standard deviation of the portfolio as a measure of risk, denoted σptf , or

equivalently, the variance: σ2ptf . Doing so leads to very elegant and mathematically attractive

results. In order to express the portfolio variance, we need to introduce the covariance between the

returns of asset i and j (where j also represent an index in the set {1, . . . , N}) as σij . This is equal

to the the multiplication of the standard deviations of the two assets and their Pearson correlation

coefficient ρij : σij = σiσjρij . The covariance between an asset and itself is equal to its variance, as
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the correlation coefficient is then equal to one: σii = σ2i . All of the aforementioned values can be

summarized in a matrix called the covariance matrix. The variance of a complete portfolio is then

the objective function of the following optimization:

minimize
w

N∑
i=1

N∑
j=1

σijwiwj ,

subject to
N∑
i=1

wiµi ≥ b,

N∑
i=1

wi = 1.

(2.4)

This is a quadratic programming (QP) problem, as the decision variables in w are multiplied by

each other. The minimal return constraint is expressed as the overall return of the portfolio, which

can be found by multiplying the weight wi of each asset by its expected return, which has to

be smaller than the minimal yield required by the investor b. This is thus one of the possible

configurations of model 2.2. This is however not the real Markowitz model, as it simply mini-

mizes variance, while Markowitz optimisation entails a real trade-off between risk and reward. In

this paper the focus is on this minimization, as it is in line with the covered model for the pain index.

Markowitz’ framework is often called mean-variance optimization (MV-optimization), but even

more so Modern Portfolio Theory (MPT), which technically speaking is the combination of the

former with ideas of Sharpe (1964), who developed the Capital Asset Pricing Model based on the

work of Markowitz. For further analysis of applications and a complete overview of Markowitz

theory, please refer to Guerard (2009), an extensive reference book which has been approved by

Markowitz himself in a later publication (Markowitz, 2010).

2.1.3 Efficient frontier

In the aforementioned framework, the set of all possible portfolios can be graphically represented

on a graph where the x-axis normally depicts risk under the form of standard deviation, while the

y-axis shows the return. The representation in figure 1 is borrowed from Lintner (1965). All of

the possible portfolios lay in the area bounded by the large curve. As investors are rational, they

will prefer those portfolios that, for a given level of risk, provide the highest return. Those can be

found on the upper part of the curve. We call that segment the efficient frontier.

Under some assumptions, the optimal portfolio on that frontier is then that with the highest

Sharpe ratio (Sharpe, 1966), denoted by the letter M on the figure (here with risk σr and return
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Figure 1: Efficient frontier

r). The assumptions include the fact that there is a risk-free asset, returning the risk-free rate

(here denoted rM ), and that investors can borrow and lend at that risk-free rate. The two-fund

seperation theorem of Tobin (1958) then states that a rational investor should take a position with

a certain weight assigned to the optimal portfolio and one minus that weight assigned the risk-free

asset, depending on his or her personal risk tolerance. These combinations all lay on the straight

line that starts at the risk-free asset, goes through the optimal risky asset and thus touches the

efficient frontier. Note that the weight w on the figure - rather unintuitively - refers to the amount

that is being borrowed at the risk-free rate.

Investors then have to decide which point on that straight line they prefer and that is were

utility functions come into play. This concept stems from the microeconomic indifference curve,

which shows combinations of quantities of two goods to which a consumer is indifferent, i.e. (s)he

does not prefer one above the other. A utility curve works similarly, but will explicitly put a

number to it. In our current case of portfolio optimization, it would thus assign a number to a

certain combination of risk and reward and will also be dependant on the consumer’s risk aversion.
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Analytically, one could thus argue the following for a utility function U :

U = f(risk, return, risk aversion). (2.5)

There are two sets of utility curves on figure 1: Ui and Uj . The second index shows the ranking

within each set, e.g. Ui2 has a higher utility than Ui1. The investor with set Ui is clearly more

risk-averse than the other: the former will assign some capital to the risk-free asset, while the

latter will borrow at the risk-free rate. Using this concept, the goal of portfolio optimization can

be rephrased to being the maximization of one’s personal utility.

2.1.4 MPT criticism

Markowitz’ theory is omnipresent in research but fueled by its success, it has also received an ex-

tensive amount of criticism. People have countered and adapted the model numerous times. The

most prominent drawbacks include the following:

Computational difficulty: Generating the needed inputs as well as solving the QP problem

is computationally demanding, especially for large-scale portfolios (i.e. high-dimensional problem:

thousands of assets over a long period of time), which is what investors are being faced with in

real-life.

Variance: By using variance as a risk measure one implicitly assumes that returns are nor-

mally distributed, which is in general not the case (see Richardson and Smith (1993) and references

therein, including the work of Fama (1965)). Even if it were so, it is claimed not to reflect an

investor’s view on risk. Firstly, it ignores higher moments and thus assumes mean and variance

fully describe return distributions. Markowitz (1952, p.90) himself already argued that ’the third

moment of the probability distribution of returns from the portfolio may be connected with a propen-

sity to gamble’, even though his MPT does not take notice of it. On top of that, even if returns were

distributed normally and they could be described by their first two moments (if by some magic force

all assets would have the same higher moments), there is nothing that guarantees that investors

view risk as being standard deviation. After all, why would investors dislike an asset’s value going

up? Markowitz (1959) acknowledges this fact himself and proposes the use of the semi-variance,

which only penalizes returns that fall below the mean.

Estimation error: In order to implement the optimal asset allocation, both expected returns

as well as the covariance matrix need to be estimated. This estimation will normally be based on
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the historical means and covariance matrix, i.e. an in-sample (IS) estimation period. Several pieces

of research have addressed the fact that there is no guarantee at all for the out-of-sample (OOS)

performance to be as good as the IS estimation and it even seems that the ’optimal’ portfolio

performs rather poorly OOS (Chopra & Ziemba, 1993; Michaud, 1989).

Several authors have suggested methods to reduce these estimation errors, or at least their

impact, ranging from Bayesian estimators to portfolio allocation rules that are forced to diversify

estimation risk. Others argue that the risk in terms of variance is quite predictable, but return is

not. Therefore they suggest making abstraction of return and only focus on the covariance matrix

and minimizing portfolio risk: these global minimum variance portfolios seem to perform quite well

OOS (Jagannathan & Ma, 2003). This argument is supported by research showing that the effects

of the mean in standard MV-optimization is significantly more influential: some even find that

errors in means are up to ten times as important as errors invariance (Chopra & Ziemba, 1993).

This is interesting for us as well, as we will in like manner ignore returns in the general pain index

optimization.

Sensitivity: Linked to the previous problem, optimal portfolios tend to be sensitive to input

changes. In other words, a small change to either the means or to the variances can result in

significant adjustments to the optimal portfolio. This instability becomes even more problematic

when one were to consider the effect of transaction costs. Not only changes to the seemingly correct

input variables are consequential, but also the errors in estimation. Related to this is the mocking

quote of GIGO: Garbage In, Garbage Out.

Diversification: MV-optimization seems to deliver rather concentrated positions, by assigning

large weights to those assets that have performed strongly in the past. This raises the question

whether or not these resulting portfolios can really be considered diversified (see i.a. Green and Hol-

lifield (1992) and references therein). On the contrary, others argue that MV-optimization results

in portfolios that are in fact ’too diversified’: ignoring transaction costs becomes really problem-

atic and investors do actually prefer to invest in a smaller number of assets (Blume & Friend, 1975).

2.1.5 Risk

Risk is inherently subjective. Most people are not keen on ever facing an aggressive bull, yet every

year some daredevils seem to enjoy the bull run in the streets of Pamplona (not to be confused
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with a financial bull run, which we assume everyone likes). As a matter of fact, even gender seems

to influence the way we consider risk (Harris & Jenkins, 2006). Traditional investment theory

incorporates this effect to some extent: a portfolio should consistent of a certain fraction invested

in the risk-free asset, depending on one’s personal level of risk aversion.

However, investors do not act in the way traditional thinking predicts: this is the crux of

the matter in the discipline of behavioural finance (of which the foundations were laid by Shiller,

for which he received a Nobel prize; a detailed overview of the subject can be found in Montier

(2009)). Simply said, traditional theory talks about what investors should do, while behavioural

finance looks at what they actually do. In other words, the former assumes an investor is rational

at all times, while the latter realises (s)he is not: humans are biased in different ways. For example,

when making decisions, totally irrelevant factors seem to have value as an input: this effect is known

as anchoring. The following example of Tversky and Kahneman (1974), as mentioned by Montier

(2009, p.25), demonstrates this form of intrinsic irrationality of humans:

They (Tversky and Kahneman) asked people to answer general knowledge questions,

such as what percentage of the United Nations is made up of African nations? A wheel

of fortune with the numbers 1 to 100 was spun in front of the participants before they

answered. Being psychologists, Tversky and Kahneman had rigged the wheel so that it

gave either 10 or 65 as the result of a spin. The subjects were then asked if the answer

was higher or lower than the number on the wheel, and also asked their actual answer.

The median response from the group that saw the wheel spot at 10 was 25, and the

median response from the group that saw 65 was 45! Effectively, people were grabbing

at irrelevant anchors when forming their opinions.

The world of irrational, behavioural finance is interesting, but will not be our focus. We will assume

that investors are rational at all times.

In order to optimize and use risk in calculations, we need our financial risk to be quantified

and we want this quantification to be of ratio scale. This means that we need a meaningful non-

arbitrary zero point, which is in our case the amount risk a risk-free asset possesses: none (although

some question whether a risk-free asset is really risk-free). By doing so, we can meaningfully state

that a certain asset is twice as risky as another if its level at risk is twice that of the latter.

Some critique the way the financial industry looks at risk. A perspective that has gained

popularity is to think of risk as being the small chance of something really bad happening, termed
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Black Swan events by Taleb (2008). According to Taleb, financial experts like to ignore their

existence while in fact those events have caused important repercussions that have shaped the

world to what is today. He even argues that J.P. Morgan jeopardized the entire world by exposing

their RiskMetrics system, which included Value-at-Risk, as it simply makes abstraction of what

is very unlikely. Researchers have attempted to incorporate Black Swan risk (e.g. Paté-Cornell

(2012)), but it has proven to be challenging and will probably take decades to be part of the

standard toolbox, as is argued by Taleb (2008, p.18):

Go ask your portfolio manager for his definition of ’risk’, and odds are that he will

supply you with a measure that excludes the possibility of the Black Swan—hence one

that has no better predictive value for assessing the total risks than astrology.

MPT assumes that asset returns are normally distributed, while research has shown numerous

times that this is not the case. Actual return distributions are said to be more leptokurtic (i.e.

having fatter tails) compared to normal distributions, thus the chance of extreme Black Swan events

actually taking place is vastly underestimated.

2.2 Drawdown

It is often argued that the variability of the rate of return above the mean should not be treated as its

counterpart (Mansini, Ogryczak, & Speranza, 2003): investors care more about underperformance

than they do about ’overperformance’ - if there is such a thing. Therefore research has suggested

the use of metrics that focus on downside risk, like the classical Value-at-Risk (VaR), Conditional

Value-at-Risk (CVaR), but also drawdowns. Drawdowns focus on downward risk like VaR and

CVaR do, yet take a multi-period perspective by considering a cumulative loss compared to a

previous peak, while (C)VaR is inherently one-period.

2.2.1 Simple drawdown measures

In mathematical terms, the drawdown of a security i with price pτ,i at time τ is often defined as

follows:

dτ,i = max

[(
max
t∈(0,τ)

pt,i

)
− pτ,i, 0

]
. (2.6)

The maximum inside the brackets defines what is called the running or rolling maximum (sometimes

also called maximum-to-date), while the outer one guarantees non-negativity, as a drawdown can

only be positive or otherwise zero. However, the price at τ cannot be any larger than the running

maximum as it would otherwise just be the running maximum, thus the formula can be simplified
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to the following:

dτ,i =

(
max
t∈(0,τ)

pt,i

)
− pτ,i. (2.7)

The first equation is used by some authors, but is not as elegant as it could be - please never trust

Wikipedia. One should normalize the prices at time 0 to 100 in order for a comparison between

different assets to make sense. This first definition is what will be referred to as an absolute draw-

down, as the drawdown represents or is defined as a monetary value. An interesting analogy is

found by plotting the magnitude of the drawdown at time t in function of its price at time t, as

it would resemble the payoff of being long a put option with a strike price equal to the running

maximum at t− 1.

A second possibility is to define the drawdown in relative terms compared to its running maxi-

mum:

drelτ,i =
dτ,i

maxt∈(0,τ) pt,i
. (2.8)

For example, if a portfolio has reached a maximum value of 5 million in the past and is now worth

4 million, the current drawdown is equal to 1 million (absolute) or 20% (relative). One could also

calculate what is called a rally or drawup: this positive counterpart of a drawdown is the difference

between the present value and the historical minimum, but is rarely used (Goldberg & Mahmoud,

2017).

Visually, the drawdown is conceptualized on figure 2. This graph and all of the subsequent

ones are own creations, generated using the ggplot2 package of Wickham (2011) in the program-

ming language R1. The area in black shows the development of the value of a certain security

or portfolio. The red area then visualizes the difference between the rolling maximum and the

current value and thus shows the magnitude of the drawdown at each point in time. The graph

shows a security’s price starting at 100, reaching a value of around 125, but it falls back to an

all time low, below its starting value. Then its price starts picking up again, but even during the

period of increasing prices there is still a drawdown as the price is still below its previous maximum.

By taking the drawdowns and putting those on a seperate graph, we have what is called the

underwater curve, shown on figure 3. Notice how the underwater curve basically shifted the red

area of figure 2 up (on a rescaled y-axis). The loss is shown in absolute figures (as this matches

our definition of the pain index), but you will often find this graph expressed in relative terms.

1https://www.r-project.org/R
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Figure 2: Sample path with drawdown visualized

Figure 3: Example of underwater curve

All of the building blocks that are used in subsequent measures have now been introduced. These

will be referred to as being simple drawdown measures, as they perform rather simple arithmetic

operations, as opposed to the tail risk measures in subsection 2.2.3. They are easy to calculate and

often used for ex-post comparisons of investment products. An overview of the different measures

is provided in panel A of figure 2.

The very first drawdown risk measure to appear in research concerning portfolio management

was the maximum drawdown (Garcia & Gould, 1987). We mention it specifically, because this

conservative measure for the potential loss a portfolio could face is the one with the most extensive

researched surrounding it. It has been applied numerous times, especially in studies concerning

hedge funds, for which we refer to the work by Hayes (2006) or Heidorn, Kaiser, and Roder (2009).
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According to Bacon (2008), drawdown measures in general are especially applicable in the hedge

fund industry. This obscure asset class is a type of fund where an active, sometimes even called

aggressive, style of management tries to earn alpha, i.e. beat the market. They differ most from

other due to the limited set of rules they have to obey, because of their quasi non-existent regu-

lation. Investors that allocate their capital to this type of fund are typically bound to a certain

lock-up period during which they are not allowed to withdraw their money. All of these elements

cause drawdowns to be a suitable measure of evaluation. For example, hedge funds are by design

more volatile and thus risky from a Markowitz point-of-view. It may be an exaggeration, but one

could argue that hedge funds will always have a high variance, both in the case they perform well

(be it caused by upside moves) as well as in the case where they perform below expectations. An

asymmetric measure is then appropriate to make a distinction between them.

The first occurrence of the pain index and pain ratio can be found in a 2006 publication by

Thomas Becker and Aaron Moore of Zephyr Associates, an American investment firm. As far as

our knowledge, the original report is not available anymore, but the work of Odo (2011, 2016,

2020), who is associated to the firm, is. It has also been picked up by Bacon (2008), who defines

the pain index as follows:

pain indexi =

T∑
t=1

dt,i
T
, (2.9)

where {1, . . . , T} are still the different points in time under consideration. The pain index is thus

equal to the average drawdown over a certain horizon, assuming an investment has taken place at

i = 0, scaled to 100. At t = 1, the value starts deviating from its initial magnitude and we could

start observing a drawdown. Although it is not clear in any of the publications or other research,

we believe it is important not to take into account the starting point (of 100), because if we would

do so, we would introduce a bias depending on the length T . Shorter periods would naturally have

a slight advantage over longer periods.

When referring to average drawdown, ambiguity exists in literature. Sometimes it is defined

equal to the pain index, but in other pieces of research it is divided by the number of drawdowns

δ (thus not taking into account periods of gain):

average drawdowni =
T∑
t=1

dt,i
δ
, (2.10)

where δ is the total number of drawdowns in the entire periods (i.e. when the drawdown is equal
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not equal to zero). This is a crucial difference between these two measures and we believe that

making the distinction is important, hence we follow the definition of Bacon (2008).

Theoretically, the drawdowns used could be defined either in an absolute way or a relative one.

Even though the difference seems subtle, it does have a significant influence. For example, the LP

which we will later present minimizes the former yet not the latter. Unless otherwise mentioned,

we will be talking about the absolute definition. Also note that the discrete definition could easily

be converted to a continuous form by replacing the summation by an integration, but this does not

change the rationale of the measure.

To our knowledge only an ex-post definition has been proposed. By defining a simple ex-ante

measure, the interpretation of the ex-post measure is also clarified: it can be seen as an expected

drawdown:

pain indexex−antei = E(di). (2.11)

For a visualisation of the pain index we again refer to figure 2. The pain index is equal to the

average of the red drawdown area over time and when minimizing it (cf. infra), we will basically be

minimizing this red area and thus pursue a monotonic growth. A monotonically increasing curve

(i.e. always increasing or remaining constant) has a pain index of zero.

We want to mention that the pain index is currently being popularized by the firm Investsuite

(2021) as part of one of their commercial applications. They refer to is the iVaR, short for Invest-

suite Value-at-Risk, which they employ in their Portfolio Optimizer product. In collaboration with

the firm, Lemahieu (2020) studies the concept of diversification in an iVaR framework. A summary

of some relevant aspects of his work is provided in appendix A.

A recent framework is that of the weighted drawdown (wDD), which is intuitively simple, yet

less powerful in algebraic applications (Korn, Möller, & Schwehm, 2019):

wDDi =

T∑
t=1

ωtdt,i, 0 ≤ ωt ≤ 1,

T∑
t=1

ωt = 1. (2.12)

The drawdown at each point in time thus receives a weight ωt, not to be confused with wi. By

varying the weights, one can form several possible measures such as the maximum drawdown (wt = 1

where dt is maximal, wt = 0 for the others) or a linearly weighted drawdown (i.e. assigning a higher

weight to more recent drawdowns). This measure is to our interest because it also encompasses the
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pain index by setting ωt = 1
T , but the authors do not acknowledge this.

2.2.2 Performance measures

The drawdown risk measures defined above can now be used to form performance measures, which

are all based around the original Sharpe ratio (Sharpe, 1966), which on its turn stems from

Markowitz’ theory. Treynor (1965) also deserves some credit, as his paper on the Treynor ratio

actually appeared one year earlier. By including both risk as well as return, these ratios are able

to capture the intrinsic trade-off in one single metric. The ratios all have an excess return (those

presented compare to the risk-free rate, but there are others that juxtapose a market benchmark) in

the numerator, divided by a measure of risk in the denominator. An overview of drawdown-related

performance measures is provided in panel B of table 2, including the two initial measures.

In a similar fashion, Odo (2011) levered the pain index in a performance measure called the

pain ratio:

pain ratioi =
ri − rf

pain indexi
. (2.13)

He frames both the pain index and ratio in the context of the aftermath of the Great Financial

Crisis. Contrary to before, lots of financial products started appearing which were designed not to

track the market. Performance measures before were often based on performance relative to some

benchmark (such as the market), but doing so did not make sense anymore. Therefore Odo refers

to them as ’post-MPT metrics’.

We believe that it is important to outline the current spectrum of performance measures for

two main reasons: it demonstrates how the pain ratio complements them and how this existing gap

in research is filled, as well as to provide the interested reader a basis to further discover related

research.

The space of available risk and performance measures is already very broad (Bacon, 2008), and

more problematically, several pieces of research have shown that the difference in explanatory power

between them is limited, as correlations are rather high (see Auer (2015), Auer and Schuhmacher

(2013), Caporin and Lisi (2011), Eling (2008), Eling and Schuhmacher (2007), Ornelas, Silva Junior,

and Fernandes (2012), and Schuhmacher and Eling (2011) to name a few).
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Source Formula Comments

Panel A: Simple drawdown measures

Maximum drawdown Garcia and Gould (1987) maxt∈[0,T ]dt Denoted dmax

Ulcer index Martin and McCann (1989)

√∑T
t=1

d2t
T Punishes large losses

Average drawdown Bacon (2008)
∑T

t=1
dt
δ δ representing the number of drawdowns

End-of-period drawdown (eopDD) Möller (2018) dT Psychologically important aspect

Weighted drawdown (wDD) Korn, Möller, and Schwehm (2019)
∑T

t=1 ωtdt Less powerful in algebraic applications

Panel B: Performance measures

Treynor ratio Treynor (1965)
ri−rf
βi

Sharpe ratio Sharpe (1966)
ri−rf
σi

Martin ratio Martin and McCann (1989)
ri−rf

ulcer indexi

Calmar ratio Young (1991)
ri−rf
dmax Sensitive to outliers

Burke ratio Burke (1994)
ri−rf√∑

d2t
Penalizes larger losses

Sterling ratio Kestner (1996)
ri−rf
AAMDi

AAMD = Average Annual Maximum Drawdown

Table 2: Overview risk measures



2 LITERATURE OVERVIEW 17

2.2.3 Tail risk measures

Related to the aforementioned simple measures, several more general and broader measures have

been developed. These are similar to each other as they are all based on a certain probability

distribution for which a cut-off value is determined based on a confidence level often denoted α.

Therefore we refer to them as tail risk measures. These measures and their accompanying research

are to our interest for two main reasons. Firstly, they include more rigorous mathematics regarding

drawdowns and statistical properties which will me used to make statements about the pain index

in section 3.5. Secondly, there is often related research available which provides linear programming

procedures for optimization of the measures, which served as the basis for the optimization of the

pain index.

The first measure mentioned here is the Conditional Value-at-Risk (CVaR), also referred to

as the Expected Shortfall (ES), mean excess loss, mean shortfall or tail VaR (although techni-

cally speaking, the original definition of the ES was not exactly the same as the current CVaR,

but in fact only was identical for most continuous distributions), introduced by Artzner, Delbaen,

Eber, and Heath (1997). Although not directly related to drawdowns, its concept and intuition

are applied in the subsequent measures. It is based on the original Value-at-Risk (VaR), which is

defined as the lowest amount such that with a certain probability α, the loss of a portfolio will

not exceed that amount. The CVaR is then the conditional expectation of losses above that amount.

The CVaR has gained popularity due to its advantages over the regular VaR. By definition,

the CVaR is able to quantify risks beyond the VaR and estimations of the former are also more

robust compared to those of the latter. CVaR is intrinsically more useful since it is considered a

coherent risk measure (Acerbi & Tasche, 2002), which will be explained in more detail later, while

the regular VaR is not. The interested reader is referred to Embrechts (2000) for a full overview of

VaR criticism.

A succeeding measure that has become common in research is the Conditional Drawdown-

at-Risk or CDaR (Chekhlov, Uryasev, & Zabarankin, 2004), which is conceptually quite close to

CVaR. It has been referred to as the Conditional Drawdown or CDD in their subsequent publication

(Chekhlov, Uryasev, & Zabarankin, 2005). It is defined as the mean of the worst (1−α)×100% draw-

downs, which is deducted from the empirical distribution that is formed by ranking all drawdowns

over a certain period from smallest to largest. By definition this drawdown measure encompasses

several others: the limiting cases are the maximum drawdown (for α = 1) and average drawdown
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(for α = 0, although we would argue that this is in fact the pain index).

It seems that only later the simpler idea of drawdown-at-risk or DaR was proposed by Steiner

(2011). The DaR at a α%-confidence level is equal to the α%-quantile on the drawdown distribu-

tion. For example, the 95% DaR is only exceeded in 5% of all cases. The maximum drawdown is

the DaR at a 100% confidence level while the median drawdown is located at 50%. It is clear that

this idea encompasses both the concept of drawdowns as well as value-at-risk, hence its name: DaR

is to CDaR what VaR is to CVaR. Steiner summarizes it by stating that the DaR is a quantile on

the distribution of drawdowns, while the VaR is one on the distribution of returns.

The most recent tail risk measure that received a significant amount of attention is the con-

ditional expected drawdown or CED (Goldberg & Mahmoud, 2017). The authors claim that the

CED is in fact the first formalization of ex-ante drawdown risk. It is defined as the tail mean of

the maximum drawdown distribution, again with a parameter α ∈ [0, 1]. In other words, it is ’the

expected maximum drawdown, given that some maximum drawdown threshold (the α-quantile of the

maximum drawdown distribution) is breached’ (Goldberg & Mahmoud, 2017, p.2). It is thus again

similar to CVaR and CDD, but instead of employing the distribution of returns or drawdowns, it

uses the distribution of maximum drawdowns. It is obvious that one thus needs to define a certain

interval to be able to construct this distribution, after which it advances on a rolling window basis.

The CED measure has two interesting properties. Firstly, it is a degree one positive homo-

geneous function, which allows for linear attribution to its factors (using Euler decomposition).

Secondly, it meets the condition of convexity (Foellmer & Schied, 2002). This convexity is crucial

because it entails the notion of diversification. All of these properties will be defined later when

their application to the pain index is considered. Overall, this measure is related to drawdowns

but is also associated to other generalized deviation measures (Rockafellar, Uryasev, & Zabarankin,

2006), which have properties more similar to standard deviation. Molyboga and L’Ahelec (2016)

have adapted the CED to a modified conditional expected drawdown or MCED. By demeaning the

components (i.e. subtracting the mean), the measure becomes i.a. less sensitive to sample errors.

2.3 Portfolio optimization

The framework of Markowitz (equation 2.4) is a QP problem. However, the portfolio optimization

problem can also be concretized to an linear programming (LP) problem, either in the form of

equation 2.2 or 2.3.
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Research mostly mentions two main advantages of LP. Firstly, the classical Markowitz model,

using variance as a risk measure, leads to a computationally difficult quadratic optimization prob-

lem, especially for large-scale portfolios. LP problems on the other hand can be solved using efficient

solving algorithms that require little computational power. Sharpe (1971a, p.1264) already argued

that ’if the essence of a portfolio analysis problem could be adequately captured in a form suitable

for linear programming methods, the prospects for practical application would be greatly enhanced’.

There have been many attempts in research to linearize the problem at hand. Sharpe approxi-

mated variance with a piecewise linear function and adapted the covariance matrix, such that the

inter-asset correlations are all equal to zero (this is called diagonalization).

LP models are also important because of their ability to loosen certain assumptions, which do

not hold in real life and lead to additional constraints, yet are not considered in MPT. Examples

include transaction costs, limiting the lower and upper bounds of the fractions held (quantity con-

straints), restricting the number of different assets (cardinality constraints). . . In practice, it may

be suboptimal to hold a portfolio consisting of a large number of small holdings due to transaction

costs and potential minimum lot sizes, and in some cases institutional factors might simply prohibit

it. These real features are thus certainly useful, yet yield mixed-integer linear programming models

(MILP). These are computationally significantly more complex compared to ordinary LP models

in which the decision variables can take any real value. The use of heuristic algorithms to then

solve these problems is considered in research and are found to compress the computational time

required (Kellerer, Mansini, & Speranza, 2000). For more details regarding the general mechanics

of LP we refer to the work of Luenberger and Ye (2016). For more insights into the use of additional

constraints on MV-optimization, we refer to Cesarone, Scozzari, and Tardella (2009) and references

therein, especially those on the increase in computational difficulty. They refer to this adaptation

as the Limited Assets Markowitz model.

We will first consider LP in portfolio optimization for general risk measures, and afterwards

look at applications with drawdown measures. In order to keep these descriptions concise we will

not elaborate on each model, nor show the explicit calculations for each measure. Doing so would

not enhance the core of our research. This overview is simply provided to properly set the scene.

2.3.1 General applications

What seems to be the earliest use of an LP model in portfolio optimization is one involving Gini’s

mean difference (Yitzhaki, 1982). This risk measure quantifies dispersion and is intuitively close to
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a standard deviation, but it does fit inside an LP framework. However, one needs several possible

future paths in order to calculate and optimize it, which restricts its usefulness. Nevertheless, the

approach of using a finite number of possible future scenarios is convenient because it eliminates

the need for assumptions on the distribution of returns. Overall this risk measure is not as common

in the context of portfolio optimization.

The mean-absolute deviation as a risk measure (Sharpe, 1971b) led to the MAD model (Konno

& Yamazaki, 1991), which received more attention. Their main strength was the performance com-

pared to Markowitz’s model: their resulting portfolios were quite similar, but the computational

time required was minimal compared to the latter. Additionally, they did not need the normal-

ity assumption that Markowitz included. However, Simaan (1997) argued that the computational

savings do not compensate for the loss of information by not considering the covariance matrix.

Konno had already proposed the use of piecewise linear risk functions in portfolio optimization in

one of his earlier publications (Konno, 1990).

The minimax portfolio selection rule proposed by Young (1998) minimizes the maximum loss

or thus maximizes the minimum gain (therefore also called maximin). This is therefore intuitively

close to minimizing the maximum drawdown, but is in fact simply a minimization of the biggest

one-period loss.

The omega ratio (Keating & Shadwick, 2002) can also be optimized linearly (Kapsos, Zymler,

Christofides, & Rustem, 2014). It was introduced as a response to the Sharpe ratio, which does

not consider higher moments of the return distribution. The omega ratio on the other hand does

in fact capture the distribution as a whole, by using the cumulative density distribution. The main

downsides of this measure are the lack of convexity, which causes the possibility of local optima, as

empirical results in earlier research had already shown (Kane, Bartholomew-Biggs, Cross, & Dewar,

2009), combined with the fact that is does not take into account the existence of serial correlation.

For other examples of the usage of LP in portfolio optimization and a complete overview, we refer

to publications by Mansini et al. (2003, 2014) and references therein.

2.3.2 Drawdown applications

We can now explore the union of the preceding subsections and examine research regarding op-

timization of drawdown measures. Note that most of these models rely on the use of auxiliary

variables and other methods (e.g. greedy substitutions) to be modelled as an LP problem.
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Grossman and Zhou (1993) were one of the first to study drawdown optimization. They for-

mulate a framework for an investor who ’wants to lose no more than a fixed percentage of the

maximum value’ (p.1), which is in fact a constraint on the maximum drawdown. By assuming a

one-dimensional case (i.e. allocating between only one risky and the risk-free asset) and a geometric

Brownian motion with constant coefficients (i.e. log-normal returns), they are able to derive an

exact analytical solution. The model has later been generalized to multiple risky assets by Cvitanic

and Karatzas (1997). Both of these models have gained traction, but are not LP problems.

The CVaR can be optimized using a linear program by considering a finite number of possible

scenarios, as introduced by Rockafellar and Uryasev (2000). VaR also plays a role in their tech-

nique as it is calculated simultaneously. It was initially only defined for continuous distributions

but later generalized to other distributions (Rockafellar & Uryasev, 2002). CVaR has also been

used as a constraint and its implications were considered and compared to the usage of regular

VaR constraints in optimization (Alexander & Baptista, 2004, 2006).

The first occurence of the use of drawdown measures in portfolio optimization using LP can be

found in Chekhlov et al. (2004), in which they also propose the use of the CDD. They maximize

the average return, subject to constraints on CDD, maximum and average drawdown respectively.

They claim the problems can be reduced to linear programs by making use of auxiliary variables.

Davidsson (2012) also uses simple linear drawdown constraints which allow for LP. He com-

pares the performance of four different methods, i.e. two QP (minimizing portfolio variance and

maximizing risk-adjusted return) and two LP problems (maximizing return and maximizing a risk-

adjusted return which uses maximum drawdowns). An important weakness mentioned is the fact

that a percentage drawdown constraint is not linear and does not allow the usage of LP methods.
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3 Properties of the pain index

In the following subsections the pain index is covered in more detail. There is currently no research

available studying the characteristics to their full extent. We believe that this is important, as the

true underlying mechanics of the risk measure may not be evident at first sight.

3.1 Markowitz comparison

In order to demonstrate the power of the pain index, a comparison between two paths is made,

shown in figure 4. Axis labels are deliberately excluded for the sake of simplicity in this illustration.

These two paths do not look similar in terms of risk, but do have the same risk from a Markowitz

point-of-view: the standard deviation of their returns is equal. However, when calculating their

pain indices or by simply looking at the different areas, it is clear that they are very different from

a drawdown perspective. The pain index of the leftmost graph is about half of that of the path on

the right.

We can still go one step further. The aforementioned paths are not fully equal yet in a Markowitz

framework: their (cumulative) returns clearly differ and the leftmost path would be preferable, as

it provides a higher cumulative return for the same level of risk (i.e. same standard deviation of

returns). Now consider figure 5, where both paths end in the same point. On top of that, the

standard deviations of their returns are identical as well. In a Markowitz framework, an investor

would thus not prefer any of the two above the other. When computing their pain indices, we find

that the path on the right has a pain index of almost double the one on the left and an investor

would thus clearly prefer the one on the left. One can also observe that the area under the rolling

maximum is smaller on the leftmost graph.

Figure 4: Two paths: same standard deviation, different pain index
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Figure 5: Two paths: identical in Markowitz framework, different pain index

What causes this behaviour is the path dependency of drawdowns (Goldberg & Mahmoud,

2017). Let us demonstrate this with a small numerical example. Consider a portfolio with a value

of 100 and the following two series of returns:

[+50%, +0%, −50%] ,

[−50%, +0%, +50%] .
(3.1)

By assuming both start at 100, their resulting price paths are the following:

[150, 150, 75] ,

[50, 50, 75] .
(3.2)

As the constituents of the return sets correspond, they are identical in a Markowitz framework. It

is however clear that their drawdowns did not simply change positions but differ significantly.

3.2 Important remarks

There are some more pitfalls to consider when using a pain index. We mention these because the

effects of the seemingly simple definition will probably not be clear at first sight to the reader and

help to understand what the pain index really measures. The first involves normalization. Let

us consider two securities with the following evolution, with an initial investment of 100 and 10

respectively:

pA∗ = [90, 90, 90, 90] ,

pB∗ = [7.5, 7.5, 7.5, 7.5] .
(3.3)

When calculating the pain indices in absolute terms we find 10 and 2.5 respectively. It does not

make sense however to say that security A∗ is more risky from a pain index point-of-view. A remedy
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to this problem is to scale the securities to some common ground, like for example to 100:

pA = [90, 90, 90, 90] ,

pB = [75, 75, 75, 75] .
(3.4)

The index has become 25 for the latter example and a comparison does now make sense.

Secondly, we want to bring some clarity to the reader concerning the way the index is defined.

Let us again consider two securities, both with initial investment of 100:

pC = [200, 100, 100, 100] ,

pD = [80, 80, 80, 80] .
(3.5)

The two securities are already scaled correctly and their pain indices are 75 and 20 respectively.

The significant outlier in the evolution of security C causes the index to be influenced heavily. Yet

this is simply the way the pain index is designed: holding security C throughout its changes will

probably cause feelings of regret considering the missed selling opportunity.

A last remark is related to the distinction between an absolute and relative definition. The

difference is only subtle but very important. If we again look at securities A and B, we can argue

that security A is down 10 compared to its rolling maximum on average, while security B is down

25 on average. They are both scaled to 100 and we can, in this specific case, also say they are down

10% and 25% on average. This is case because neither of the two securities has hit a new rolling

maximum compared to its initial value.

Securities C and D are down 75 and 20 on average and have both been scaled to 100. We can

however not argue that security C is down 75% on average, due to its increased maximum over the

time frame. By expressing the drawdowns on a relative base, their evolution looks like this:

dC = [0%, 50%, 50%, 50%] ,

dD = [20%, 20%, 20%, 20%] .
(3.6)

The former is thus down 37.5% on average, while the later is down 20% on average. Expressing the

drawdowns and the index as a percentage leads to a more intuitive result and can be interpreted

more easily, e.g. a pain index of 8% means the portfolio is down 8% compared to its maximum

on average. However, the LP we will introduce minimizes the absolute pain index as relative

minimization does not fit inside any LP framework. Minimizing the absolute pain index will
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naturally also lower the relative magnitude, but performance starts to differ significantly when

large outliers are present. This effect also manifests when comparing security E and F :

pE = [150, 130, 130] ,

pF = [100, 80, 80] .
(3.7)

With both securities starting at a price of 100, they have an equal pain index of 0+20+20
3 = 13.33 and

our LP framework will in fact consider them as equal. This demonstrates the necessity of always

considering risk combined with return, possibly by comparing performance instead of simple risk

measures.

3.3 Why would one use the pain index?

As mentioned before, there are already lots of different measures and ratios with subtle differences,

with often high correlations and little additional explanatory power, yet we believe there is a place

for the pain index and ratio. When evaluating drawdown measures in general and comparing them

to other risk measures, the main advantage is the fact that they only penalize downward risk, thus

under-performance. There are however some drawbacks to consider, which all apply to the pain

index as well:

• Drawdown-related measures are path dependent, in contrast to measures such as volatility,

skewness, and factor exposures often used in academia. Their path dependency logically leads

to a significant sensitivity to serial correlation (Goldberg & Mahmoud, 2017).

• There still seems to be very little research regarding to what extent drawdown characteristics

are intrinsic to a certain security. In other words, it might not be correct to bluntly assume

that a certain pattern will continue in the future. We implicitly assume a pure backward-

looking, myopic investor and the corresponding behavior may not be robust in different

samples. There is a significant body of research which looks at the properties of drawdowns

under the assumption of Brownian Motion (see i.a. the work of Meilijson (2003) or Magdon-

Ismail, Atiya, Pratap, and Abu-Mostafa (2004)), but these analytical derivations are of little

use in portfolio optimzation. On the contrary, there seems to be a consensus that different

types of assets do have an inherent level of risk in terms of variance or standard deviation.

Nevertheless, it is a stylized fact that return distributions are subject to serial correlation,

which confirms the value of drawdowns.

If we look at the pain index, we believe there are some clear advantages, compared to both

other drawdown measures as well general risk measures:
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• The concept of the pain index is simple to grasp and easy to visualize. Ideas such as punishing

larger drawdowns (like in an ulcer index) are certainly useful, but might overcomplicate

things and make interpretation less intuitive. In this regard, also the value of MPT has been

questioned. Horvitz and Wilcox (2007) argue that Markowitz optimization for individuals is

simply to hard to explain, implement, and maintain for individual investor in the long run,

while Goldstein and Taleb (2007) have shown that even finance professionals barely know

what standard deviation really is.

• The pain index covers attributes of losses investors care about: the depth, duration and

frequency (Odo, 2011). By doing so, it accurately reflects the goals of fund investors and

managers. This is also the idea behind the name of the related ulcer index (ulcer - an

internal or external sore), which refers to the painful stress investors feel during bear periods.

• It can be optimized using linear programming (cf. infra).

3.4 Multivariate analysis

In order to get a better understanding of the definition of the pain index, we will show some of

its more technical properties in the current and subsequent subsection (3.5 Risk frameworks). We

start by looking at the pain index in a multivariate case, which means there is more than one risky

asset.

Firstly, one should notice that the pain index of a portfolio consisting of two securities X and

Y is not equal to the sum of the individual pain indices:

PIptf 6= PIX + PIY =

N∑
i=1

PIi (3.8)

This equation only holds in some very specific cases (e.g. X and Y both monotonically in- or

decreasing). The total risk of a portfolio is also not equal to the weighted sum of source risks:

PIptf 6=
N∑
i=1

wi PIi (3.9)

Notice how this is a more general form of equation 3.8, as there we implicitly assume that the

weights are equal. Because of the method by which the pain index is computed, we can in fact not

give a closed-form expression for its calculation in a multivariate case. There is thus no obvious or

straightforward method to analyse the sources of risk in a portfolio and attribute to total risk to
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individual components of that portfolio.

What we can do is use Euler decomposition, also referred to as Euler’s homogeneous function

theorem, to assign the total risk to its constituents. The following argumentation is based on

the work by Goldberg and Mahmoud (2017), who decompose the CED measure, and on references

therein. We consider the case in which the independent variable pi represents a vector of prices, but

it may also be used in other contexts. In general, a function f is considered a positive homogeneous

function of degree k ∈ R if it satisfies the following condition for a constant C ∈ R:

f(C · pi) = Ckf(pi). (3.10)

What is most interesting is the case where k = 1. This means that, if f were a measure of

risk, when multiplying a portfolio by a certain constant, the magnitude of risk is simply multiplied

by that value. This is in fact equivalent to saying that no diversification takes place by adding

identical components as the ones present. We argue that the pain index is a positive homogeneous

function of degree one. It is quite clear that in its absolute definition, multiplying the value of the

underlying by a certain factor would also multiply the pain index by that same factor. Note how

the relative definition does not satisfy this property, as it would remain the same percentage.

As the pain index is a positive degree-one homogeneous function, it is characterized by Euler’s

homogeneous function theorem and the total risk of a portfolio can be attributed linearly along its

factors. The theorem says that we can quantify the marginal risk contribution (MRC) of asset i as:

MRCρi =
∂ρptf
∂wi

. (3.11)

It is thus the approximate change in overall portfolio risk when increasing the exposure to i by a

small amount, ceteris paribus (i.e. keeping other exposures fixed). The risk contribution (RC) of

component i is then equal to its weight multiplied by its marginal risk contribution:

N∑
i=1

wiMRCρi =

N∑
i=1

RCρi = ρptf (3.12)

We can also define fractional risk contributions (FRC) to denote the contribution a component

delivers as a percentage:

FRCρi =
RCρi
ρptf

=
RCρi∑N
i=1RC

ρ
i

(3.13)

However, as there is no closed form formula for the pain index, we believe we cannot derive an
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analytical partial derivation. One would thus need to employ numerical differentiation in order to

derive the contributions (for which we refer to Burden (2011)). We simply state the possibility of

risk attribution using Euler’s theorem, application is beyond the scope of this paper.

3.5 Risk frameworks

In research, a broad set of definitions has been developed to classify and structure risk measures

- and by extension functions in general. These might be most interesting, as Rockafellar et al.

(2006) state, to formally consider the advantages of substituting the classical standard deviation

for another measure. We cover the most prominent ones and demonstrate whether or not the pain

index satisfies their conditions, although no rigorous mathematical proofs will be given.

The discussed frameworks are designed to fit one-period risk measures. Additionally, some also

have multi-period alternatives. However, we do not believe that the multi-period definitions change

the needed underlying rationale. We will show the reasoning why we believe statements do (not)

hold mostly based on the research of Mahmoud (2017), who explored properties of the simple (ab-

solute) drawdown process. We show her original proofs in appendix B. Another source that covers

these properties quite extensively is the work of Chekhlov et al. (2005) on the CDD. Previously,

we have already argued that this measure in fact includes what they call the average drawdown,

equal to our pain index. Even though our statements will thus be similar to theirs for some proper-

ties, they do not cover the underlying reasoning but simply show some short mathematical proofs.

Therefore we believe our interpretations are still valuable.

3.5.1 Coherent risk measures

The idea of coherency has been introduced in a short research note (Artzner et al., 1997), formal-

ized in a subsequent paper (Artzner, Delbaen, Eber, & Heath, 1999) and later even generalized

to a multi-period version (Artzner, Delbaen, Eber, Heath, & Ku, 2007). Ever since, it has been

prominent in research, especially in the context of regulation. Its most notable application is on

the CVaR (Acerbi & Tasche, 2002). We assume here that X and Y represent two future (thus ex-

pected) portfolios’ P/L (profit or loss), where profit is mentioned first as it should have a positive

sign in this framework. They are part of the feasible set of portfolios G.

If a risk measure ρ(X) satisfies all of the conditions, then it may be interpreted as ’the riskiness

of a portfolio or the amount of capital that should be added to a portfolio X, so that the portfolio can

then be deemed acceptable from a risk point of view’ (Haugh, 2010, p.1). In other words, a negative
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value means that a position can be considered ’safe’ and the magnitude of its absolute value refers

to the amount of cash that can be withdrawn while still keeping the position safe. This makes sense,

as Artzner et al. (1997) defined what is called an acceptance set as the set of portfolios for which

the measure has a value smaller than or equal to zero. Notice how this acceptance point-of-view is

most intuitively applied in a regulatory setting, but could also be applicable in the case of e.g. a

fund manager overlooking individual traders. It is evident that the aforementioned interpretation

does not hold in case of the pain index, thus at least one of the conditions should not hold.

Definition 3.5.1 (Coherent risk measures). A risk measure has to satisfy the following four axioms

in order to be considered coherent:

1. Subadditivity: for all X and Y ∈ G, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

2. Monotonicity: for all X and Y ∈ G, with X ≤ Y , we have ρ(Y ) ≤ ρ(X).

3. Positive homogeneity (of first degree): for all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X)

4. Translation invariance: for all X ∈ G and all real numbers α, we have ρ(X+α·r) = ρ(X)−α.

Subadditivity encapsulates the idea of diversification and is actually quite a natural prerequisite

for a risk measure to have. If two ’merged’ portfolios would have more risk than the two separate,

an investor could just keep them separate. Others also refer to this as being some sort of economy of

scale. The main criticism of VaR is in fact it not being subadditive, as described clearly in the book

on market risk of Dowd (2007, p.34)2. In other words, VaR actually discourages diversification in

some cases. This is the case because the underlying distribution could be discontinuous, therefore

small changes in the confidence level (even by some basis points) can have significant influence on

the VaR.

The pain index does satisfy the condition of subadditivity. It makes sense that the simple

drawdown measure is subadditive (see attachment B): when adding an asset to a portfolio, the

total drawdown could be equal to the sum of the individual ones (i.e. the case when both go

down), but if an additional positive evolution compensates for other losses, the total drawdown can

become lower. As subadditivity holds for the drawdown process at each point in time, we can sum

over the different points in time and the following then still holds:

2The following example is copied from Dowd’s book: We have two identical bonds, A and B. Each defaults with
probability 4%, and we get a loss of 100 if default occurs, and a loss of 0 if no default occurs. The 95% VaR of each
bond is therefore 0, so V aR(A) = V aR(B) = V aR(A) + V aR(B) = 0. Now suppose that defaults are independent.
Elementary calculations then establish that we get a loss of 0 with probability 0.962 = 0.9216, a loss of 200 with
probability 0.042 = 0.0016, and a loss of 100 with probability 1−0.9216−0.0016 = 0.0768. Hence V aR(A+B) = 100.
Thus, V aR(A + B) = 100 > 0 = V aR(A) + V aR(B), and the VaR violates subadditivity. Hence, the VaR is not
subadditive.
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T∑
t=1

dt,X+Y ≤
T∑
t=1

dt,X +
T∑
t=1

dt,Y . (3.14)

The pain index thus satisfies, as after division by T :

PIX+Y ≤ PIX + PIY . (3.15)

We believe that this line of reasoning (if it holds for the drawdown functional at one point in time,

it also does for the sum over a period of time and thus for the pain index) could also be used for

other conditions, but we will not show it explicitly.

Monotonicity simply says that if Y is in all possible cases bigger then X, then Y cannot be be

riskier than X. Notice that, as this is the only requirement that uses the portfolio values X and Y

as such, it is the only property where returns are taken into account. It is often considered quite

confusing, as this ex-ante statement seems inconsistent with the classic adage of high risk, high

reward. It is evident that the pain index does not fulfill this property, as it is argued by Mahmoud

(2017, p.9) that ’processes that can be ordered according to their magnitudes do not necessarily

imply the same or opposite ordering on the drawdown magnitudes’.

We have already shown that the pain index is positive homogeneous of degree one - if and only

if defined on an absolute basis. More generally, the drawdown function is as well: risk should

be proportional to the size of the position. Some argue that this condition does not always hold

because of the liquidity risk that relatively large position possess (Dowd, 2007).

Translation invariance says that when a risk-free amount α is added to a portfolio, the amount

that should be added for the risk to be acceptable decreases by that amount α. This therefore

means that the risk measure simply decreases by that amount. Within the risk functional we see

X +α · r, as the future value would not only be the portfolio’s, but also the added amount times a

cumulative risk-free return r (which is often assumed equal to 1 and thus omitted). This condition

forces the risk measure to be in monetary units. The name of this property is quite odd as a

measure is not invariant to the change but rather variant. It is obvious that the pain index does

not meet this requirement: adding a sure amount does in fact not change its value.

Overall, the pain index can thus not be considered a coherent measure of risk, as it does not

meet the conditions of monotonicity and translation invariance.
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We do want to mention the fact that there are two contradictory versions of this framework.

The first being the one as just presented, the second being mentioned in e.g. Haugh (2010). In

the alternative version, X does not represent a future P/L, but a future L/P: losses are defined

positively. This does not change the property of subadditivity nor the positive homogeneity, yet

does alter the remaining ones. For monotonicity, the sign should change: X ≤ Y would then imply

ρ(X) ≤ ρ(Y ) and translation invariance would be influenced in a similar way: ρ(X−α·r) = ρ(X)−α.

These alternative versions are the source of plenty of confusion and it seems that some authors mix

up the two versions (e.g. Wilmott (2007)).

3.5.2 Generalized deviation measure

Another influential framework has been that of deviation measures (Rockafellar et al., 2006). The

symbols X and Y may be interpreted in the same way as in the framework of coherency.

Definition 3.5.2 (Generalized deviation measures). By a deviation measure will be meant any

functional ρ satisfying:

1. ρ(X + C) = ρ(X) for all X and constants C,

2. ρ(0) = 0, and ρ(λX) = λρ(X) for all X and all λ > 0,

3. ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X and Y,

4. ρ(X) > 0 for all nonconstant X, whereas ρ(X) = 0 for constant X.

We recognize the properties of subadditivity (3) and positive homogeneity (2, here combined

with the normalization condition which was implicitly assumed in the coherency framework). The

authors emphasize the fact that the combination of condition 2 and 3 is called sublinearity, which

implies that ρ is a convex function. The joint property is therefore also known as convexity (see

subsection 3.5.3). We have already shown that the pain index satisfies both.

The first condition is the counterpart of translation invariance: notice how the two conditions

are mutually exclusive. In this case, the addition of a constant (think of it as an amount of cash,

i.e. risk-free) should not change the magnitude of the measure. As mentioned before, this is the

case for the pain index.

However, the pain index does not comply with the first component of the fourth condition. The

pain index of a nonconstant X is not necessarily strictly larger than zero, as it could be strictly

increasing and have a pain index equal to zero. It can thus not be considered a generalized deviation

measure.
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3.5.3 Generalized path-dependent deviation measure

Finally, the pain index can be considered a generalized path-dependent deviation measure, a vari-

ation defined by Goldberg and Mahmoud (2017) with the intent to formalize drawdown-related

measures.

Definition 3.5.3 (Generalized Path-Dependent Deviation Measure). A generalized path-dependent

deviation measure is a path-dependent risk measure ρ : R∞ → R satisfying the following axioms:

• Normalization: for all constant deterministic C ∈ R∞, ρ(C) = 0.

• Positivity: for all X ∈ R∞, ρ(X) ≥ 0

• Shift invariance: for all X ∈ R∞ and all constant deterministic C ∈ R∞, ρ(X +C) = ρ(X).

• Convexity: for all X,Y ∈ R∞ and λ ∈ [0, 1], ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

• Positive degree-one homogeneity: for all X ∈ R∞ and λ > 0, ρ(λX) = λρ(X).

Most of the conditions are picked up from previous frameworks, but convexity needs some

further explanation. Introduced by Foellmer and Schied (2002), it basically is a generalization and

thus a stronger form of subadditivity. In fact, it is the combination of the properties of the latter

and positive homogeneity of the first degree. It is a key condition particularly in optimization as

it ensures that a local minimum also is a global minimum. For more details on convex analysis,

we refer to Rockafellar (1970). As the drawdown function is a convex one (Goldberg & Mahmoud,

2017), the sum of drawdowns also is and thus the pain index is as well:

PI(λX + (1− λ)Y ) ≤ λPI(X) + (1− λ)PI(Y ). (3.16)

Lastly, we have seen that the homogeneity also holds and we can thus argue that the pain index is

a generalized path-dependent deviation measure.

Overall, there are already tens of frameworks designed with conditions that risk measures could

and in fact should adhere to. Their main purpose is to systematically study and classify measures.

From a pragmatic point-of-view three of them are of utmost importance: convexity, because it

is a prerequisite for mathematical optimization, sub-additivity, to correctly include diversification

effects, and positive homogeneity of the first degree, in order for a measure to be attributable to

its components.
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4 Methodology to minimize the pain index

In this section we will show how one can minimize the pain index using linear programming. We

start by showing the formulation of the LP, apply it to a real-life sample and show some of its

properties later.

4.1 Minimizing the pain index

4.1.1 Erst wägen, dann wagen

Even though the model as mentioned in the beginning is seemingly simple, one must carefully

consider the meaning of the weights. It might appeal as if these weights represent some kind of

constant asset allocation, like it is the case in the framework of strategic asset allocation (SAA).

Both our model as well as SAA claim have a weight that is constant through time: our weights wi

are not time-dependent (as they are not a function of t) and neither are the weights in the world

of asset allocation. Nonetheless, they do represent something different.

The weights in our model represent an initial investment as a fraction of our capital, but it is

easier to think of them as simply being the amount of each asset that is bought at the beginning,

provided that they are normalized. Therefore, the value of the portfolio pt,ptf at a given moment t

can be calculated as:

pt,ptf =

N∑
i=1

pt,iwi. (4.1)

On the other hand, if SAA states that 60% should be invested in a certain asset and 40% in another

at all times, this would imply that rebalancing is needed in order for this ratio to remain constant.

Our model on the other hand assumes an ’invest and let go’-approach. This makes the inclusion

of transaction costs insignificant.

4.1.2 Optimization problem

We start by repeating some notation. Let {1, . . . , N} denote a set of possible assets considered for

an investment and {1, . . . , T} be the set of points in our time horizon (thus of length T ). If the sub-

script of a matrix has only one value, it is a square one with that amount of rows and columns. Let:
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weights w = [w1, w2 . . . wN ] 0 ≤ wi ≤ 1,

prices P =


p1,1 ... p1,N

...
. . .

...

pT,1 ... pT,N

 pt,i ≥ 0,

drawdowns d = [d1, d2 . . . dT ] dt ≥ 0,

rolling maxes m = [m1,m2 . . .mT ] mt ≥ 0.

(4.2)

The prices should have been divided by their price at time 0 (not included in the matrix under

consideration) in order for the optimization to make sense. A portfolio is thus completely charac-

terized by the vector w ∈ RN , whose components should sum up to one.

Now the decision variables are defined using the vector x = [w m d]T (superscript T, not in

italics, denotes the transpose of a matrix), which is of dimension (N + 2T )× 1. This vector is used

in the goal function of the optimization, the sum of the drawdowns, which needs to be minimized.

By doing so also the pain index is minimized, as it is the sum divided by the fixed number T :

min
w

T∑
t=1

dt
T

= min
w

cx, (4.3)

because the (N + 2T )-dimensional row vector c is designed to pair with the drawdowns in the

vector x:

c = [0 · · · 0︸ ︷︷ ︸
N+T

1 · · · 1︸ ︷︷ ︸
T

]. (4.4)

The goal function is subject to several constraints. These are designed to coordinate well with

x. They all must be expressed as a matrix with N+2T columns to be able to undergo the operation

of matrix multiplication with x on the left-hand side, with a column vector on the right-hand side

with as many rows as the former matrix.

1) Definition of the drawdowns

The first set of constraints will define the drawdowns. The drawdown at each point in time

t is equal to rolling maximum minus the total portfolio value:

dt = mt −
N∑
i=1

pt,iwi. (4.5)

The subtraction is thus equal to zero if the portfolio value is a new maximum (or if equal)

and takes a positive value otherwise. In order to express this as a constraint that can be used
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in combination with our expression of x, we rewrite it to
∑N

i=1 pt,iwi − mt + dt = 0. This

should hold for each time period t ∈ {1, . . . , T}. In matrix notation this becomes:

Pw − ITm + ITd = 0T×1, (4.6)

with IT being an identity matrix of dimension T ×T and 0T×1 a matrix of zeros of dimension

T × 1. As x = [w m d]T, this can also be written as:

[P −IT IT ] x = 0T×1. (4.7)

The matrix on the left-hand side (that is being multiplied by x) is now of dimension T ×

(N + 2T ). It is important to stress that this thus defines the relation between portfolio value,

rolling maximum and drawdown for each point in time.

2) Rolling maxima

Next, the rolling maxima need to be defined. A rolling maximum can by definition not get

smaller over time and thus mt ≤ mt+1 holds for all t. We define an auxiliary matrix R as:

RT×T =


−1 1 0 · · · 0
...

...

0 · · · 0 −1 1

0 0 · · · 0 0

 . (4.8)

If we then force RT×Tm ≥ 0 , we get −mt + mt+1 ≥ 0, which is the specification we are

trying to achieve. One should pay attention to the last row of the matrix being redundant

(because the last rolling maximum does not have a succeeding value to compare against), but

it is included to keep things simple and elegant. In order to fit this in our existing framework,

we define the following set of constraints by adding zeros left and right of R to form a matrix

of dimension T × (N + 2T ):

[0T×N RT×T 0T ] x ≥ 0T×1. (4.9)

3) Full investment

We want the weights allocated to each of the assets to sum up to one. If we would not include

this, the optimal solution would just be to assign a weight of zero to each asset. In order to
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assure this, we only need a matrix of dimension 1× (N + 2T ):

[1 · · · 1︸ ︷︷ ︸
N

0 · · · 0︸ ︷︷ ︸
2T

] x = 1. (4.10)

The preceding constraints theoretically suffice, but assuming a traditional long-only investor,

we will explicitly add some additional constraints.

4) No short sales

We do not want our model to give negative weights to any of the assets. Shorting is often

considered too expensive for retail investors, while most institutional ones are not allowed to.

We need a matrix of dimension N × (N + 2T ) to cover all of the assets:

[IN 0N×2T ] x ≥ 0N×1. (4.11)

5) Non-negativity

Most optimization packages will assume this by standard for all variables, but we show it

explicitly:

pt,i, dt, mt ≥ 0. (4.12)

These sets of constraints define the full linear program for minimizing the sum of the drawdowns

and therefore also the pain index. Notice how the LP does not consider the return of the portfolios.

4.1.3 General LP

It is interesting for the reader to understand how our LP fits inside a standard LP framework, e.g.

as defined by Luenberger and Ye (2016):

minimize cx,

subject to Ax ≥ b, (4.13)

x ≥ 0.

We have covered the definition of the goal function before. A has become a large matrix with

2T +N + 1 rows (or thus individual constraints) and 2T +N columns (matching the length of x),

while b is a column vector with 2T +N + 1 elements. These numbers exclude the non-negativity

constraints.
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4.2 Example

In order to demonstrate the linear program it is applied it to a real-life example, using the Gurobi

software3 in R to solve the optimization. Part of the used code is available in attachment C for the

interested reader.

4.2.1 In-sample estimation

To estimate our model, we take a sample of ten stocks traded on Euronext Brussels over the four

year time period from 01/01/2009 until 31/12/2012. Data was downloaded from Yahoo Finance

(daily closing prices) using the quantmod package of Ryan and Ulrich (2020) and visualisation

are still made using ggplot2. The normalized paths (i.e. all starting at 100 after division by their

initial value) of the securities are shown in figure 6 with their respective ticker symbols. When

examining the data, we see a wide range of different paths, with some having more of a steady

growth and others being more volatile.

Figure 6: Normalized paths of the securities in the sample, 01/01/2009 - 31/12/2012

Next, we run our LP to minimize the pain index: the resulting weights are shown in table 3,

denoted as MPI (minimal pain index). The outcome shows what can be the downside of running

an unconstrained optimization: we get quite concentrated positions, with only a weight assigned

to four out of ten securities. What would have been the resulting path of the optimal portfolio is

shown in figure 7a. We see that even in our optimal portfolio there seems to be a dip at around

the middle of our time horizon which cannot be fully ’solved’.

3https://www.gurobi.com/products/gurobi-optimizer/
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(a) MPI

(b) EW

(c) GMV

Figure 7: IS performance of the different portfolios
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ABI ACKB AGS BAR BEKB COLR KBC TNET UCB UMI

MPI 0.3144 0.0000 0.0000 0.0000 0.0000 0.3173 0.0000 0.0647 0.3036 0.0000

EW 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

GMV 0.1427 0.0465 0.0000 0.0098 0.0000 0.4295 0.0000 0.1963 0.1752 0.0000

Table 3: Weights different portfolios

Next, a comparison is made to the performance other weighting schemes. A simple approach

would be to form an equally-weighted portfolio (EW), also referred to as naive diversification, in

which each security receives the same weight. The path generated by this portfolio (figure 7b)

clearly suffers from more pain compared to our optimized portfolio and additionally, it reaches a

lower end value and thus has a lower average return.

We also want to compare to the use of variance or standard deviation as a measure of risk.

By for example choosing the global minimum variance (GMV) portfolio, we get the path on figure

7c. The result is quite close to our proposed minimal pain index portfolio (also similar in terms

of weights), but this is not necessarily a problem: the disadvantages of using variance have been

covered before (i.e. QP is needed to find this portfolio). Notice how neither of the three methods

presented here takes into account past return, as the comparison makes most sense doing so and

does not bias against any of the methods.

An overview of the IS performance of the different portfolios is presented in table 4, which

includes the geometric average return, daily standard deviation and pain index for each portfolio.

The numbers make sense: the MPI portfolio has the lowest pain index, but the GMV outperforms

it if we would consider standard deviation to be the measure of risk.

Average return (%) Daily standard deviation (%) Pain index

MPI 22.67 1.11 5.61

EW 20.79 1.62 23.98

GMV 18.96 1.00 6.67

Table 4: IS performance

4.2.2 Out-of-sample backtest

Using the results of the different optimal portfolios determined over an estimation period, we can

also consider their performance in an out-of-sample (OOS) experiment. The subsequent time pe-

riod of four years is displayed in figure 8 and the resulting paths for the different portfolios in figure

9. The paths seem quite similar, but what is most noticeable is the fact that the portfolio which

was designed to have the lowest pain index now has the highest pain index. This is a (very) limited
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sample, yet it may hint that pain indices, or drawdowns in general, are not inherent to assets. At

the end of the day, past performance is not indicative of future results.

Figure 8: OOS normalized paths of the securities in the sample, 01/01/2013 - 31/12/2016

4.3 Risk-return space

4.3.1 An analogy to Markowitz

Another interesting analogy to classical portfolio theory is to plot a graph with all possible port-

folios, with the x-axis representing the pain index, thus risk, and the y-axis corresponding to

the return. As mentioned before, the x-axis would represent a standard deviation or variance in

a Markowitz framework. We can show the feasible ’cloud’ of portfolios (although an expert in

nephology would argue that clouds are not to be found in (a) space) by plotting a large amount of

random ones.

When 5000 portfolios consisting of random weights from a universe of securities are generated

(basically performing some sort of Monte Carlo simulation), we get the graphical results as shown

in figure 10. The graph includes a color scale with the pain ratio. By assuming a risk-free rate of

zero, the pain ratio simplifies and becomes return divided by pain index: this relationship is also

noticeable visually. The sample under examination seems to be a rather bull period, with most of

the portfolios having an average return of more than 10% per year.

In this example, we see a clear pattern with an optimal portfolio in terms of minimum pain

index on the left, similar to the bullet-like shape in MPT risk-return graphs. Deviating from this
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(a) MPI

(b) EW

(c) GMV

Figure 9: OOS performance of the different portfolios
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point to a point of either a higher or lower return leads to a higher pain index. The area ’in’ this

curve contains all of the feasible portfolios. Other samples sometimes give more extreme (i.e. a less

symmetrical shape) results, but this intrinsic trade-off in risk and return from the point of minimal

pain index is persistent. Fully random portfolios deliver the expected results: the portfolios seem

to be distributed with higher concentrations in the middle, yet we can observe some ’clustering’ in

the area of where the efficient frontier will be drawn next.

Figure 10: Risk-return space with pain ratios

Figure 11: Risk-return space with efficient frontier
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4.3.2 Efficient frontier

In the figure shown in the previous subsection, better portfolios can be found in the upper-left

quadrant, as those corresponds to a high return and a low pain index concurrently. The ’best’

portfolios are then located on a curve starting from our minimal pain index (MPI) portfolio, mov-

ing along our field of possible portfolios. These portfolios are called efficient and the resulting curve

is then called the efficient frontier. These portfolios thus offer the highest return for a certain pain

index or, vice versa, the lowest pain index for a certain return.

These portfolios can be found numerically, by adding a constraint to the original linear program

which forces the return to be at least equal to a certain value: mT −dT ≥ goal. This forces the end

value (i.e. at time T ) to be at least equal to the goal. The added constraint can thus be formulated

as follows:

[0 · · · 0︸ ︷︷ ︸
N+T−1

1 0 · · · 0︸ ︷︷ ︸
T−1

−1] x ≥ goal. (4.14)

The 1 at position (N +T ) is multiplied by the last rolling maximum, while the −1 is multiplied by

the last drawdown. Repeating this process for different values of the return then creates the fron-

tier. The resulting frontier can be shown in the risk-return space, see figure 11. The leftmost/lowest

point on the efficient frontier thus represents the MPI portfolio.

There is also an alternative approach, as mentioned by Chang, Meade, Beasley, and Sharaiha

(2000) for the framework of Markowitz. In order to determine the efficient frontier, they introduce

a weighting parameter λ (0 ≤ λ ≤ 1) and subsequently solve an optimization with the following

objective function:

min
w

λ

 N∑
i=1

N∑
j=1

wiwjσij

− (1− λ)

[
N∑
i=1

wiµi

]
. (4.15)

By doing so, the case of λ = 0 corresponds to maximizing return (and will result in a portfolio

consisting of a weight of 100% assigned to the security with the highest return), while λ = 1

corresponds to minimizing risk under the form of variance of the portfolio. Values between these

two thresholds include a trade-off between risk and return and thus generate the efficient frontier.

An analogue approach in our framework would be to optimize the following function:

min
w

λ [PIptf ]− (1− λ)

[
N∑
i=1

wiµi

]
. (4.16)
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4.3.3 Two-fund separation theorem

To complete the analogy to the Markowitz framework, we can employ an approach based on the

two-fund separation theorem (Tobin, 1958), as covered in subsection 2.1.3. The optimal portfolio

was initially defined as having the maximal Sharpe ratio (Sharpe, 1964) and thus becomes the

maximal pain ratio in our framework. The equilibrium price states of the initial two-fund theory

have later led to the Capital Asset Pricing Model (Lintner, 1965). In order to visualize the possible

optimal portfolios, we thus need a line connecting the risk-free asset and our optimal portfolio.

This line is then called the Capital Allocation Line (CAL), as it shows how an investor should

distribute his or her capital between the risk-free and optimal risky asset. The asset allocation

problem has become a two-step process: start by finding the portfolio with the highest pain ratio

and then decide on your personal optimal mix of that portfolio and the risk-free asset.

Figure 12 uses a risk-free rate of 0%, while figure 13 assumes a rate of 5%. This causes a change

in the pain ratios (notice the change in the legend) and shifts the CAL (i.e. moving upwards as

well as changing slope). The risk-free asset is assumed to have a pain index equal to zero: it should

never lose value.

It may seem short-sighted to bluntly consider the portfolio with the highest pain ratio as being

optimal. After all, the underlying assumption then seems to be that an investor values the trade-off

of pain and return proportionally. The trade-off might not be linear and investors could require less

(or more) than proportional compensation for additional risk. Consider for example the following

comparison of two pain ratios:
5%− 0%

20
≤ 3%− 0%

10
. (4.17)

Although theoretically, some investors could prefer the former option, this is not a problem. Under

the assumption that the investor can borrow and lend at the risk-free rate, the portfolios on the

CAL outrank the whole space of feasible portfolios. This is why the portfolio with the maximal

pain index (or originally the maximal Sharpe ratio (Lintner, 1965)) can be considered the optimal

portfolio.
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Figure 12: Optimal portfolio connected to risk-free portfolio (rf = 0%)

Figure 13: Optimal portfolio connected to risk-free portfolio (rf = 5%)
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5 Conclusions

We believe our contribution to the literature has been twofold. Firstly, we are the first to thor-

oughly analyze the pain index and its properties and secondly, we have studied how the pain index

can be optimized using a linear program and presented its possibilities and properties. Overall, we

believe in its usefulness in portfolio management, mainly by virtue of its linear optimization, but

also acknowledge its limitations.

We started by considering the current body of research, focusing on the inception of variance

in the MPT and other risk measures that countered its disadvantages. There was also a section

dedicated to LP, to understand its benefits over QP, but also to provide the reader a basis to

discover other applications of it in portfolio optimization.

We then covered the pain index in more detail, focusing on both intuitive properties as well as

its application to more formal risk frameworks. We did so with the intention to help the reader

understand the effects of the definition of the pain index, as well as to situate it in the current

spectrum as being a path-dependent deviation measure.

The essence of this paper was then covered in the section on the methodology to minimize in

pain index. We showed its functioning in a short sample, which had small dimensions but served an

illustrative purpose. Lastly, we tried to draw parallels between MPT and the pain index framework

by exploring the latter’s risk-return space.

Further research could look deeper into the linear programming performance in an out-of-sample

experiment and compare it to other portfolio optimization methods. One could also consider how

the pain index performs under certain assumptions, e.g. log-normal returns. We did not make any

assumptions on the distribution of returns but instead employed a more empirical view by basing

our optimal portfolio on the historical paths. Another idea would be to explore which values of

the pain index and/or ratio are common or ’normal’ for different types of assets during different

time periods, i.e. explore whether or at least to which degree a pain index is inherent to a certain

security. We also believe that the pain index can be used in the broad spectrum of optimization

schemes designed for variance like naive pain parity or equal pain contribution portfolios, by lever-

aging the Euler decomposition.
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Similarly, it may be interesting to research to what extent minimal pain index and minimal vari-

ance portfolios are alike. If it were the case, it would not be a problem but rather an advantage,

considering the properties of LP and QP. We also believe that the linear program proposed may

be valuable for applications outside of portfolio optimization, or could be modified to e.g. maxi-

mizing rallies instead of minimizing drawdowns. By adapting the objective function, one can also

easily minimize the end-of-period drawdown, a linearly-weighted drawdown or any other weighting

scheme.

We do want to end this paper with a warning note. Markowitz and the ideological offspring he

provoked (including what we presented) are both built on a common assumption. The underlying

idea is that the lines on a graph on past performance (or numbers in a spreadsheet - whatever you

prefer) will be representative of the future, by the magic of some sort of invisible hand. In the

real world, this underlying assumption rarely holds: there is absolutely nothing that guarantees

this behavior. They are interesting to study, but should mainly serve an ex-post analysis function.

MPT has apparently gained popularity because of the fact that quantitative portfolio managers

liked it, and therefore it became part of the standard investing toolbox. This institutional factor

now forces investment professionals to adhere to it because not doing so would not be appreciated

by their managers. An investor should never solely rely on these frameworks, but should in the long

run probably also consider the quality of the underlying asset in more of a value investing approach.

As an final reminder, we would like the reader to remember the following words by Odo (2011,

p. 18), on the idea of a one-size-fits-all risk measure:

Just as no rational investor would place all of their money in a single investment, no

analyst should put all of his or her faith in a single risk measure or ratio.
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A Diversification in an iVaR framework

Lemahieu (2020) researched diversification properties of the iVaR risk measure (Investsuite, 2021),

which is equal to the pain index. In this attachment, we show some of the concepts he introduced.

First, the coiVaR is defined, a measure of pairwise association (like the Pearson correlation

coefficient is), as the ratio of the risk of an equally weighted portfolio of asset X and Y over the

sum of the risk of holding X and Y separately:

coiV aR(X,Y ) =
iV aR(X + Y )

iV aR(X) + iV aR(Y )
. (A.1)

As the iVaR is subadditive and non-negative, it has to lay between the following thresholds:

0 ≤ coiV aR(X,Y ) ≤ 1. (A.2)

If two assets have a coiVaR close to 0 it thus means their combined path is close to monotonic growth

(low iVaR in the numerator), while their individuals paths are not (high iVaR’s in the denominator).

By calculating all possible combinations in a certain space of N assets, one can then form a

coiVaR matrix:

C =


1 coiV aR1,2 · · · coiV aR1,N

coiV aR2,1 1

· · · · · ·

coiV aRN,1 · · · 1

 . (A.3)

The iVaR diversification ratio is another possible measure of diversification:

DiV aR(w) =

∑N
i wi iV aRi
iV aRp(w)

. (A.4)

Next, the problem of portfolio optimization is considered, starting with an inverse iVaR portfolio

(IIP):

w = (
1/iV aR1∑N
i (1/iV aRi)

, · · · , 1/iV aRN∑N
i (1/iV aRi)

). (A.5)

The author acknowledges the fact that this approach is very naive as it ignores the mechanics by

which portfolio iVaR is formed, yet could be useful to serve as e.g. a transparent benchmark. On

the contrary, maximizing the iVaR diversification ratio results in the most-diversified iVaR portfolio

(MDIP):
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max
w

(DiV aR(w)), (A.6)

which does account for real diversification benefits in portfolios. To penalize the concentrations

of assets in terms of iVaR, one can minimize penalized iVaR portfolios (PiVaR). By defining a

correction factor C(w) as:

C(w) =
N∑
i

N∑
j

wiwjcoiV aR(i, j), (A.7)

the PiVaR can be minimized:

min
w

(iV aR(w) + λC(w)). (A.8)

Lastly, the MVMIP minimizes iVaR while maximizing variance:

max
w

(

∑N
i wiσi

iV aRp(w)
). (A.9)

B Drawdown properties

In this attachment we show drawdown properties proven by Mahmoud (2017). We use these

concepts to deduct properties of the pain index, as the needed transformations of summing and

dividing rarely changes the attributes. By looking at the drawdown process (which refers to a vector

of drawdowns over an extended period of time, instead of the single-period drawdown measure), we

are able to make propositions on the pain index. Mahmoud uses a bit of a variation in the notation

(retained in this attachment) by defining the drawdown as follows:

Definition B.0.1 (Drawdown process). For a horizon T ∈ (0,∞), the drawdown process D(X) =

{D(X)
t }t∈[0,T ] corresponding to a stochastic process X ∈ R∞ is defined by

D
(X)
t = Xt −Xt,

where

Xt = sup
u∈[0,t]

Xu

is the running maximum of X up to time t.

Using this notation, we can now define the attributes next. Proofs for properties 1 through 3

were omitted in the final version of the paper but are retrieved from an earlier working paper.

Definition B.0.2 (Properties of drawdowns). Given the stochastic process X ∈ R∞, let D(X) be
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the corresponding drawdown process for a fixed time horizon T . Then:

1. For all constant deterministic processes C ∈ R∞, D(C) = 0.

2. For constant deterministic C ∈ R∞, D(X+C) = D(X).

3. For λ > 0, D(λX) = λD(X).

4. For Y ∈ R∞ and λ ∈ [0, 1], D(λX+(1−λ)Y ) ≤ λD(X) + (1− λ)D(Y ).

Proof. 1. Since M (C) = C, we immediately get D(C) = M (C) − C = 0.

2. Since for t ∈ [0, t], M
(X+C)
t = supu∈[0,t](X + C)u = supu∈[0,t](X)u + C = M

(X)
t + C, we have

D(X+C) = M (X+C) −X − C = M (X) + C −X − C = M (X) −X = D(X).

3. For λ > 0, we have for t ∈ [0, T ], M
(λX)
t = supu∈[0,t](λX)u = λsupu∈[0,t](X)u = λM

(X)
t , and

therefore D(λX) = λM (X) − λX = λD(X).

4. For λ ∈ [0, 1], we clearly have λX + (1− λ)Y ≤ λX+(1−λ)Y by properties of the supremum,

and therefore D(λX+(1−λ)Y ) = λX + (1− λ)Y − λX − (1 + λ)Y ≤ λX + (1 − λ)Y − λX −

(1 + λ)Y = λD(X) + (1− λ)D(Y ).

C R code: optimization

In this attachment we show the R code that is used when optimizing our sample of assets. As

mentioned in the text, we use the Gurobi optimizer software. The code should be self-explanatory.

In case it is not or one would be interested in any of the other code (used to e.g. generate the

figures or to test the OOS performance), feel free to get in touch.

1 # Load the needed packages

2 l i b r a r y ( gurobi )

3 l i b r a r y ( quantmod )

4 l i b r a r y ( ggp lot2 )

5 # Fol lowing packages are used f o r the GMV po r t f o l i o

6 l i b r a r y (ROI)

7 l i b r a r y (ROI . p lug in . quadprog )

8 l i b r a r y (ROI . p lug in . g lpk )

9 l i b r a r y ( Po r t f o l i oAna l y t i c s )

10

11

12 # Function that r e tu rn s vec to r o f running maxima

IX



13 c a l c u l a t e running max <− f unc t i on ( p r i c e s ) {

14 running max <− rep (0 , l ength ( p r i c e s ) )

15 p r i c e s <− coredata ( p r i c e s )

16 drawdowns <− rep (0 , l ength ( p r i c e s ) )

17 running max [ 1 ] = p r i c e s [ 1 ]

18 f o r ( j in 2 : l ength ( p r i c e s ) ) {

19 i f ( p r i c e s [ j ] >= running max [ j −1]){

20 running max [ j ] = p r i c e s [ j ]

21 drawdowns [ j ] = 0

22 }

23 e l s e i f ( p r i c e s [ j ] < running max [ j −1]){

24 drawdowns [ j ] = running max [ j −1]− p r i c e s [ j ]

25 running max [ j ] = running max [ j −1]

26 }

27 }

28 re turn ( running max)

29 }

30

31

32 # Function that r e tu rn s pain index . Assumes that s t a r t i n g po int i s given , but should

not be taken in to account .

33 c a l c u l a t e PI <− f unc t i on ( p r i c e s ) {

34 running max <− 0

35 p r i c e s <− coredata ( p r i c e s )

36 drawdowns <− rep (0 , l ength ( p r i c e s ) )

37 f o r ( j in 1 : l ength ( p r i c e s ) ) {

38 i f ( p r i c e s [ j ] >= running max) {

39 running max = p r i c e s [ j ]

40 drawdowns [ j ] = 0

41 }

42 e l s e i f ( p r i c e s [ j ] < running max)

43 drawdowns [ j ] = running max−p r i c e s [ j ]

44 }

45 re turn (sum(drawdowns [ 2 : l ength ( drawdowns ) ] ) /( l ength ( drawdowns )−1) )

46 # Not tak ing s t a r t i n g po int in to account . Could s t a r t at 1 in s t ead o f 2 , but

should always be d iv ided by ( l ength − 1)

47 }

48

49

50 ##########################################################

51

52 # Load data
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53 getSymbols ( ’ACKB.BR’ , s r c=’ yahoo ’ )

54 getSymbols ( ’ABI .BR’ , s r c=’ yahoo ’ )

55 getSymbols ( ’AGS.BR’ , s r c=’ yahoo ’ )

56 getSymbols ( ’BAR.BR’ , s r c=’ yahoo ’ )

57 getSymbols ( ’BEKB.BR’ , s r c=’ yahoo ’ )

58 getSymbols ( ’COLR.BR’ , s r c=’ yahoo ’ )

59 getSymbols ( ’KBC.BR’ , s r c=’ yahoo ’ )

60 getSymbols ( ’TNET.BR’ , s r c=’ yahoo ’ )

61 getSymbols ( ’UCB.BR’ , s r c=’ yahoo ’ )

62 getSymbols ( ’UMI.BR’ , s r c=’ yahoo ’ )

63

64 # Remove NAs

65 ACKB.BR$ACKB.BR. Close <− na . l o c f (ACKB.BR$ACKB.BR. Close )

66 ABI .BR$ABI .BR. Close <− na . l o c f (ABI .BR$ABI .BR. Close )

67 AGS.BR$AGS.BR. Close <− na . l o c f (AGS.BR$AGS.BR. Close )

68 BAR.BR$BAR.BR. Close <− na . l o c f (BAR.BR$BAR.BR. Close )

69 BEKB.BR$BEKB.BR. Close <− na . l o c f (BEKB.BR$BEKB.BR. Close )

70 COLR.BR$COLR.BR. Close <− na . l o c f (COLR.BR$COLR.BR. Close )

71 KBC.BR$KBC.BR. Close <− na . l o c f (KBC.BR$KBC.BR. Close )

72 TNET.BR$TNET.BR. Close <− na . l o c f (TNET.BR$TNET.BR. Close )

73 UCB.BR$UCB.BR. Close <− na . l o c f (UCB.BR$UCB.BR. Close )

74 UMI.BR$UMI.BR. Close <− na . l o c f (UMI.BR$UMI.BR. Close )

75

76

77 # Def ine matr i ce s

78 p temp <− merge (ABI .BR$ABI .BR. Close ,ACKB.BR$ACKB.BR. Close ,AGS.BR$AGS.BR. Close ,BAR.BR

$BAR.BR. Close ,BEKB.BR$BEKB.BR. Close ,

79 COLR.BR$COLR.BR. Close ,KBC.BR$KBC.BR. Close ,TNET.BR$TNET.BR. Close ,UCB.

BR$UCB.BR. Close ,UMI.BR$UMI.BR. Close )

80 # Using only a subset o f the f u l l datase t

81 p <− p temp [ index (p temp) >”2009−01−01” & index (p temp) < ”2013−01−01” ]

82 colnames (p) <− c ( ”ABI” , ”ACKB” , ”AGS” , ”BAR” , ”BEKB” , ”COLR” , ”KBC” , ”TNET” , ”UCB” , ”UMI” )

83

84 # Sca l e the p r i c e s to a l l s t a r t at ” s c a l e ”

85 s c a l e <− 100

86 p <−sweep ( s c a l e ∗p , 2 , p [ 1 ] , ”/” )

87

88 # Plo t t i ng the sample per iod

89 autop lo t (p , f a c e t = NULL) +

90 theme ( text = element text ( s i z e =20) , l egend . t i t l e = element blank ( ) , ax i s . t ex t . x =

element blank ( ) ) + ylab ( ”” ) + xlab ( ”” ) +

91 s c a l e c o l o r manual ( va lue s=c ( ’#a6cee3 ’ , ’#1f78b4 ’ , ’#b2df8a ’ , ’#33a02c ’ , ’#fb9a99 ’ , ’#
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e31a1c ’ , ’#f db f 6 f ’ , ’#f f 7 f 0 0 ’ , ’#cab2d6 ’ , ’#6a3d9a ’ ) )+

92 gu ides ( co l ou r = guide legend ( ove r r i d e . aes = l i s t ( s i z e =5) ) )

93

94 # Def in ing the v a r i a b l e s

95 # Note that these are r epre s ented by c ap i t a l l e t t e r s in text ,

96 # but ’T’ a l r eady r ep r e s en t s the boolean ’TRUE’ , thus we s t i c k to ’ t ’ and ’n ’

97 t <− l ength (p$ACKB)

98 n <− nco l (p)

99

100 ##########################################################

101 ### CONSTRAINTS

102 ### We de f i n e the matr i ce s on the l e f t −hand s i d e f i r s t , denoted a1 to a5

103 ##########################################################

104

105 # Def in ing the drawdowns : a1

106 a1 <− cbind ( as . data . frame (p) ,

107 −diag ( t ) ,

108 diag ( t ) )

109 a1 <− matrix ( u n l i s t ( a1 ) , nco l = nco l ( a1 ) , byrow = FALSE)

110 dim( a1 ) # Should be t x (n + 2 t )

111

112 # Rol l i ng maxes : a2

113 a2 <− cbind ( matrix (0L , nrow = t , nco l = n) ,

114 rbind ( cbind (0 , d iag ( t−1) )−cbind ( diag ( t−1) ,0 ) ,0 ) , # Aux i l i a ry matrix

formed with some rbind and cbind c r e a t i v i t y

115 matrix (0L , nrow = t , nco l = t ) )

116 dim( a2 ) # Should be t x (n + 2 t )

117

118 # Ful l investment c on s t r a i n t : a3

119 a3 <− cbind ( matrix (1L , nrow = 1 , nco l = n) ,

120 matrix (0L , nrow = 1 , nco l = 2∗ t ) )

121 dim( a3 ) # Should be 1 x (n + 2 t )

122

123 # No shor t s a l e s : a4

124 a4 <− cbind ( diag (n) ,

125 matrix (0L , nrow=n , nco l=2∗t ) )

126 dim( a4 ) # Should be n x (n + 2 t )

127

128

129 ##########################################################

130 ### GUROBI MODEL

131 ##########################################################
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132

133 model <− l i s t ( )

134 # We have to prov ide the l e f t −hand s i d e as one l a r g e matrix ( s ee standard LP

formulat ion )

135 model$A <− rbind ( a1 , a2 , a3 , a4 )

136 # Object ive func t i on

137 model$ obj <− cbind ( matrix (0 , 1 , n+t ) , matrix (1 , 1 , t ) )

138 # Minimizat ion problem

139 model$modelsense <− ’min ’

140 # Right−hand s i d e s o f c on s t r a i n t s

141 # Drawdown d e f i n i t i o n and r o l l i n g maxes need 0 , f u l l investment : 1 , no sho r t i ng : 0

142 model$ rhs <− cbind ( matrix (0 ,1 ,2∗ t ) ,

143 1 ,

144 matrix (0 , 1 , n ) )

145 # Re la t i ona l ope ra to r s

146 model$ s ense <− cbind ( t ( rep ( ’=’ , t ) ) ,

147 t ( rep ( ’>=’ , t ) ) ,

148 ’= ’ ,

149 t ( rep ( ’>=’ ,n) ) )

150 # Run LP

151 r e s u l t <− gurobi (model )

152

153 ##########################################################

154 ### Resu l t s

155 ##########################################################

156

157 # Weights

158 r e s u l t weights <− data . frame (name = names (p) , weight = r e s u l t $x [ 1 : n ] )

159 ggp lot ( r e s u l t weights , aes ( x=”Weights” , y = weight , f i l l =name) ) + geom co l ( ) +

160 theme ( text = element text ( s i z e =20) , l egend . t i t l e = element blank ( ) , ax i s . t ex t . x =

element blank ( ) ) + ylab ( ”” ) + xlab ( ”” )

161 r e s u l t weights

162

163 # Graph

164 value <− xts (p [ 1 : t ] %∗% r e s u l t $x [ 1 : n ] , time (p) )

165 r e s u l t max <− data . frame ( date=index (p) , rolmax=r e s u l t $x [ ( n+1) : ( n+t ) ] )

166 ggp lot ( r e s u l t max , aes ( x=date , y=rolmax ) ) +

167 geom ribbon ( aes ( ymin=value , ymax=rolmax ) , c o l o r=”NA” , f i l l =” l i g h t c o r a l ” , alpha =0.8)

+

168 geom ribbon ( aes ( ymin=80,ymax=value ) , c o l o r=”NA” , f i l l =” black ” ) + ylab ( ”Value” ) +

xlab ( ( ”” ) ) + gu ides ( x = ”none” )+

169 theme ( text = element text ( s i z e =30) , l egend . t i t l e = element blank ( ) , ax i s . t ex t . x =
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element blank ( ) ) + ylab ( ”” ) + xlab ( ”” ) +

170 s c a l e y cont inuous ( l im i t s=c (80 ,250) )

171

172 c a l c u l a t e PI ( va lue )

173

174 # Standard dev i a t i on . F i r s t element i s NA because o f c a l c u l a t i o n o f r e tu rn s

175 sd ( as . numeric ( Calcu lateReturns ( va lue ) [ 2 : l ength ( va lue ) ] ) )

176 # Average re turn

177 ( as . numeric ( va lue [ l ength ( va lue ) ] ) /100) ˆ(1/4)−1

178

179 # Simple check : the sum of the drawdowns . . .

180 c a l c u l a t e PI ( va lue ) ∗( t−1)

181 # . . . i s equal to the ob j e c t i v e func t i on o f our opt imiza t i on

182 r e s u l t $ ob jva l

183

184 ##########################################################

185 ### Equal ly weighted p o r t f o l i o

186 ##########################################################

187 eq w <− rep ( 0 . 1 , 1 0 )

188 pt f eq w <− xts (p %∗% eq w, time (p) )

189 r e s u l t max <− data . frame ( date=index (p) , rolmax= ca l c u l a t e running max( p t f eq w) )

190 value <− pt f eq w # To be ab le to simply copy the code

191 ggp lot ( r e s u l t max , aes ( x=date , y=rolmax ) ) +

192 geom ribbon ( aes ( ymin=value , ymax=rolmax ) , c o l o r=”NA” , f i l l =” l i g h t c o r a l ” , alpha =0.8)

+

193 geom ribbon ( aes ( ymin=80,ymax=value ) , c o l o r=”NA” , f i l l =” black ” ) + ylab ( ”Value” ) +

xlab ( ( ”” ) ) + gu ides ( x = ”none” )+

194 theme ( text = element text ( s i z e =30) , l egend . t i t l e = element blank ( ) , ax i s . t ex t . x =

element blank ( ) ) + ylab ( ”” ) + xlab ( ”” ) +

195 s c a l e y cont inuous ( l im i t s=c (80 ,250) )

196

197

198 c a l c u l a t e PI ( va lue )

199 sd ( as . numeric ( Calcu lateReturns ( va lue ) [ 2 : l ength ( va lue ) ] ) )

200 ( as . numeric ( va lue [ l ength ( va lue ) ] ) /100) ˆ(1/4)−1

201

202 ##########################################################

203 ### Global min var iance (GMV) p o r t f o l i o

204 ##########################################################

205 r e tu rn s temp <− Calcu lateReturns (p)

206 r e tu rn s <− na . omit ( r e tu rn s temp)

207 colnames ( r e tu rn s ) <− c ( ”ABI” , ”ACKB” , ”AGS” , ”BAR” , ”BEKB” , ”COLR” , ”KBC” , ”TNET” , ”UCB” , ”
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UMI” )

208

209 # Get a charac t e r vec to r o f the fund names

210 funds <− colnames ( r e tu rn s )

211 # Create p o r t f o l i o ob j e c t

212 po r t f minvar <− p o r t f o l i o . spec ( a s s e t s=funds )

213 # Add f u l l investment + no shor t c on s t r a i n t to the p o r t f o l i o ob j e c t

214 po r t f minvar <− add . c on s t r a i n t ( p o r t f o l i o=po r t f minvar , type=” f u l l investment ” )

215 po r t f minvar <− add . c on s t r a i n t ( p o r t f o l i o=po r t f minvar , type=”box” ,

216 min=rep (0 ,10 ) ,

217 max=rep (1 ,10 ) )

218 # Add ob j e c t i v e to minimize var iance

219 po r t f minvar <− add . ob j e c t i v e ( p o r t f o l i o=po r t f minvar , type=” r i s k ” , name=”var ” )

220 opt gmv <− opt imize . p o r t f o l i o (R=returns , p o r t f o l i o=po r t f minvar , opt imize method=”ROI

” , t r a c e=TRUE)

221 pt f min var <− xts ( rowSums(p %∗% unname( opt gmv$weights ) ) , time (p) )

222 r e s u l t max <− data . frame ( date=index (p) , rolmax= ca l c u l a t e running max( p t f min var ) )

223 value <− pt f min var

224 ggp lot ( r e s u l t max , aes ( x=date , y=rolmax ) ) +

225 geom ribbon ( aes ( ymin=value , ymax=rolmax ) , c o l o r=”NA” , f i l l =” l i g h t c o r a l ” , alpha =0.8)

+

226 geom ribbon ( aes ( ymin=80,ymax=value ) , c o l o r=”NA” , f i l l =” black ” ) + ylab ( ”Value” ) +

xlab ( ( ”” ) ) + gu ides ( x = ”none” )+

227 theme ( text = element text ( s i z e =30) , l egend . t i t l e = element blank ( ) , ax i s . t ex t . x =

element blank ( ) ) + ylab ( ”” ) + xlab ( ”” ) +

228 s c a l e y cont inuous ( l im i t s=c (80 ,250) )

229 round ( opt gmv$weights , 4 )

230

231 c a l c u l a t e PI ( va lue )

232 sd ( as . numeric ( Calcu lateReturns ( va lue ) [ 2 : l ength ( va lue ) ] ) )

233 ( as . numeric ( va lue [ l ength ( va lue ) ] ) /100) ˆ(1/4)−1

Optimization.R
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