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Abstract 
 

In the past years, many researchers have been investigating how to predict the stock market as 

accurately as possible. Obviously, this is one of the most challenging tasks in the financial world 

and ensembles are promising in this context. The objective of this paper is to benchmark a broad 

range of published ensembles based on a selected set of performance metrics. Ballings et al. 

already published in 2015 a benchmarking study showing that ensembles perform better than 

single classifiers by gathering data from 5767 publicly listed European companies (Ballings et al., 

2015). Since then, several new ensemble models have emerged. This study will include eighteen 

models containing twelve ensembles in an updated benchmark, using the same dataset and 

considering six carefully selected performance metrics. This research confirms the superiority of 

ensembles compared to single classifiers and shows that heterogeneous ensembles work well in 

stock prediction. However, these heterogeneous ensembles do not statistically outperform all 

homogeneous models like for example random forest. Accordingly, we recommend random forest 

for stock price direction considering its ease of use and interpretability.  This study contributes to 

the existing theory and practices by benchmarking a substantial amount of ensemble methods 

concerning stock price prediction. In addition, this paper considers multiple important performance 

metrics. To the best of our knowledge this has never been done so comprehensively in the stock 

market domain. 
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1. Introduction 
 

In the past decades, stock price prediction has been extensively studied in literature. By minimizing 

the forecasting error, the investment risk is minimized which results in a financial gain (Manish & 

Thnmozhi, 2011). Even a slight improvement in forecasting performance could potentially result in 

high profits (Ballings et al., 2015; Halbleib & Pohlmeier, 2012). However, predicting the stock 

market is very difficult, even impossible according to two well-known theories. Firstly, the random 

walk theory (formulated from the martingale model), stipulates that stock prices take a random and 

unpredictable path that makes all methods of predicting stock prices ineffective in the long run 

(Umoru et al., 2020). In addition, the theory explicitly points out that historical prices and present 

stock performance (technical analysis) cannot be used to predict the future performance of stock 

prices. This supports Gujarati & Porter (2009) assertation that stock prices are fundamentally 

random. This means that a fundamental analysis, which makes use of financial ratios to predict the 

stock market, does not outperform a random model. It is therefore difficult to benefit from 

speculation in stock trading. Secondly, according to the Efficient Market Hypothesis (EMH) it is 

impossible to outperform the overall market by means of expert stock selection or market timing. 

The proponents of the EMH explain that the intrinsic value of a stock is always equal to its current 

price (Qian & Rasheed, 2007). Nevertheless, after more than half of a century of research, no 

consensus has been reached on the presence nor the absence of the validity of this hypothesis 

(Leković, 2019). 

 

Models based on machine learning are most promising in showing evidence against the Market 

Hypothesis. Advancements in computing power, as well as the availability of large datasets, did 

lead to the introduction of techniques such as decision trees and neural networks being used in 

stock price prediction (Albanis & Batchelor, 2007; Nti et al., 2020). Some studies have already 

attempted to predict the relationship between the available information and the stock returns using 

simple linear models, although with little success (Butler et al., 2014). This is in line with the 

assumption that the relationship between the stock returns and the available information is non-

linear (Tsai et al., 2011; Umoru et al., 2020). Non-linear machine learning algorithms like decision 

trees and neural networks solve this issue. One of the most performant and popular techniques to 

come up with predictions of nonlinear relationships are ensembles (Tsai et al., 2011). These 

ensembles are constructed by combining machine learning algorithms which compensate each 

other for individual weaknesses (Gomez & Rojas, 2018). In the financial world, the vast majority of 



 

3 
 

articles supports the performance superiority of ensembles over single classifiers (Ampomah, Qin, 

Nyame, et al., 2020; Ballings et al., 2015; Basak et al., 2019; Tsai et al., 2011). If the combined 

single classifiers are diverse and independent, the prediction error of the ensemble decreases 

significantly. 

 

Despite the superior performance of ensembles in stock price prediction, there are only a few 

thorough benchmarking studies available using fundamental analysis (Albanis & Batchelor, 2007; 

Ballings et al., 2015; Tsai et al., 2011). However, these studies only benchmark a limited number 

of ensembles. In comparison to other, larger scale benchmark studies (e.g., Lessmann et al., 2015), 

these studies lack three dimensions: (i) the inclusion of novel classification algorithms from other 

financial domains like credit scoring and bankruptcy prediction, (ii) the benchmarking of both 

heterogeneous and homogeneous ensembles and (iii) the use of a broad range of different 

performance metrics. Hence, this paper contributes to literature by providing an extensive 

benchmarking of 18 classifiers, by checking their performance in terms of Area Under the Curve 

(AUC), H-measure (H), Brier Score (BS), Mean Cross Entropy (MCE), Precision (Prec) and 

Accuracy (Acc). 

 

The remainder of this paper is structured as follows. Section 2 reviews the literature concerning 

ensembles in stock price prediction. Next, section 3 explains the methodology used to benchmark 

all 18 classifiers and explains them briefly. In addition, the selected performance metrics and 

calibration methodology are explained into more depth at the end of the section. Section 4 

examines the results after which section 5 concludes the dissertation and explains the practical 

implications. Lastly, section 6 defines the limitations and equips the reader with ideas for further 

research. 
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2. Literature review 
 

2.1 Ensembles 
 

Ensembles have been applied for the first time at the end of the 1980s. Over the following years 

various names have been used in literature, all meaning exactly the same: ‘‘Ensemble Classifier”, 

‘‘Classifier Fusion”, ‘‘Combined classifier”, ‘‘Multiple-classifier systems (MCS)”, ‘‘Ensemble 

Learning”, and ‘‘Hybrid classifiers” (Graña & Corchado, 2014). The technique of combining multiple 

classifiers has proven to be an excellent predictor in a broad range of different contexts (e.g., 

pattern recognition (Jan & Verma, 2020), predicting natural phenomena (Kaloop et al., 2020) and 

medical diagnosis (J. Zhang & Chen, 2019)). Similar to these fields, the financial sector saw great 

opportunities in using ensembles, for example in credit scoring to support decision making in the 

retail credit business (Lessmann et al., 2015). Given its immense popularity, ensembles have also 

been used extensively for stock price prediction. Most efforts have been devoted to predicting the 

most likely direction of a stock rather than its price level, because it has often resulted in more 

accurate trading results (Reza et al., 2020). Consequently, in this paper we won’t try to predict the 

exact stock price level but rather the most likely direction. 

 

 

Figure 1 Ensemble framework 

 

To structure the different ensemble methods, Figure 1 was constructed above. Firstly, ensembles 

can be homogeneous or heterogeneous. Every ensemble is built onto multiple base classifiers. For 
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homogeneous ensembles, the base classifiers all belong to the same algorithm. On the contrary, 

for heterogeneous ensembles, the learning algorithms of the base classifiers are different (van Rijn 

et al., 2018). Secondly, ensembles can consist of two or three steps (selective ensembles). For two 

step ensembles, these steps are called base model development and forecast combination. 

Selective ensembles add a third step: after the development of the base models a selection 

procedure is used to select a suitable subset of models to enter the ensemble (Lessmann et al., 

2015). Thirdly, these selective ensembles can be static or dynamic. For static ensembles the 

selection procedure is executed once in contrast to dynamic ensembles (Oliveira et al., 2018) 

where the selection is executed multiple times. Finally, the static and dynamic selection procedures 

can be based on maximizing the predictive accuracy, which is called the direct approach, or on 

maximizing the diversity among the base models (Lessmann et al., 2015), which is called the 

indirect approach. An example of such selective dynamic direct approach is given in Feng et al. 

(2018). In this specific case, the selection procedure takes the relative costs of type I and type II 

error into account while selecting classifiers.  

 

2.2 Stock price prediction 
 

This study focusses on the prediction of stock price direction using fundamental analysis. When 

using fundamental analysis, the intrinsic value of a stock is considered (Albanis & Batchelor, 2007). 

In 1995, Fama & French (1995) already suggested that company fundamentals are correlated with 

excess returns. A fundamental analysis is obtained by analyzing the historical financial statements 

of a firm. From these statements financial ratios are derived, like debt, cashflow and current ratio 

(Tsai et al., 2011). Focusing on the data used in literature, it follows that only several studies 

(Albanis & Batchelor, 2007; Ballings et al., 2015; Tsai et al., 2014) use purely financial ratios to 

predict the stock market. This might be due to the sensitive data (e.g., revenue of companies) and 

due to procedures defined to guarantee privacy, protection and not disclosure of the data (Carta et 

al., 2019). On the contrary, note that studies using time series data (technical indicators) for stock 

direction prediction are abundant (Ampomah, Qin, & Nyame, 2020; Atsalakis & Valavanis, 2009; 

Basak et al., 2019; Carta et al., 2019; Moon et al., 2018; Nti et al., 2020; Zhou et al., 2019). In this 

case the prediction data is derived from past trading activities such as past stock prices and 

volumes. Consequently, this analysis does not focus on the intrinsic value of a stock, but rather on 

extrapolations from historical price patterns (Tsai et al., 2011). However, when the time series data 

is converted into input variables (e.g. relative strength index, price rate of change, Williams 

percentage rate, …) like in Basak et al. (2019), the classification task is very similar to a 
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classification using financial ratios. In this regard, classification algorithms based on technical 

indicators are included in Table 1 below. 

 

2.3 Ensembles in stock price prediction 
 

Table 1 provides an extensive overview of the available literature, categorized on the kind and 

number of ensembles used, as well as the performance metrics and the statistical tests used. All 

studies listed in this table elaborate on one or multiple classification ensembles to predict the stock 

price direction. On average, 3.5 ensembles are discussed in each paper. The number of ensembles 

is counted as per following example, a study with 4 homogeneous boosting methods using different 

single classifiers is counted as 1 ensemble.  

 

Table 1 Ensembles in stock price prediction 

Study 

Ensembles Performance metrics 

Stat. 
tests Homo - 

geneous 
Hetero - 
geneous 

Stacking # AUC ACC Other 

Albanis & Batchelor (2007) x x   5   x   x 

Ampomah, Qin, & Nyame (2020) x     6 x x 
Prec, Sens, 

Spec, F 
x 

Ballings et al. (2015) x     3 x     x 

Basak et al. (2019) x     2 x x 
Prec, Sens, 
Spec, BS, F 

  

Carta et al. (2019) x     5   x FinPM   

Chen et al. (2017) x     1   x Sens   

Jiang et al. (2020) x x  x 8 x x Prec, Sens, F   

Khaidem et al. (2016) x     1 x x 
Prec, Sens, 

Spec  
  

Khan et al. (2020) x     4 x   Prec, Sens, F   

Manish & Thnmozhi (2011) x     1     Sens   

Mokoteli-Mokoteli et al. (2019)       5 x x     

Moon et al. (2018)   x   1 x       

Nti et al. (2020) x    2 x x     

Ocak & Seker (2012)   x   1   x     

Patel et al. (2015) x     1   x F   

Qian & Rasheed (2007)   x x 3   x     

Rodriguez & Rodriguez (2004) x     4 x       

Tsai et al. (2011) x x   8   x FinPM   

This study x x x  12 x x 
 Prec, MCE, 

BS, H  
x 
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2.3.1 Ensembles 
 

The ensembles are divided into two major categories: homogeneous and heterogeneous 

ensembles. In addition, a column ‘stacking’, which is a subcategory of the heterogeneous 

ensembles, is added to underline the absence of stacking frameworks in literature. While 

heterogeneous ensembles contribute to algorithm induced diversity, homogeneous ensembles add 

to the literature of data induced diversity. Three main data induced variations can be derived: 

bagging, boosting and random subspace. Firstly, bagging which generates multiple predictions 

formed by making bootstrap replicates of the learning set (Breiman, 1996). The most common way 

to aggregate these predictions is majority voting. Secondly, in contrast to bagging, boosting doesn’t 

train multiple predictions in parallel but applies a sequential method. A base learner is trained from 

an initial bootstrapped training cluster. Consequently, the distribution of the training samples is 

adjusted based on the performance of the base learner, meaning that the wrongly classified training 

samples get more attention in the future. Next, the second base learner is trained based on the 

adjusted sample distribution. This process repeats itself until several base learners are applied (Du 

et al., 2020). Finally, the predictions are usually combined using majority voting. Thirdly, random 

subspace generates multiple predictions by training on randomly sampled predictors with 

replacement. 

While simple heterogeneous ensembles combine multiple different base learners, stacking adds a 

new dimension. Stacking, also called stacked generalization, combines the knowledge from a batch 

of base learners by implementing in a second step another single classifier with the first base 

learners’ prediction results as input (Jiang et al., 2020). This second step single classifier is also 

called the meta-learner. Meta-learners try to combine the predictions of the base-learners by 

learning their biases and correlations (Qian & Rasheed, 2007). In summary, bagging tries to reduce 

variance, boosting tries to reduce deviance and stacking tries to improve the overall prediction 

result (Du et al., 2020). 

 

From Table 1 it is visible that only six studies implement heterogeneous ensembles and two discuss 

stacking. While literature states that heterogeneous classifier ensembles offer a slightly better 

performance (not significant) than the homogeneous ones (Tsai et al., 2011). In this study three 

different classifiers are combined using both bagging and majority voting. There are a lot of ways 

to combine different classifiers of which some are benchmarked in Albanis & Batchelor (2007). 

According to this study, by combining 5 classification techniques, the unanimity principle performs 

best as combining technique. This principle only classifies an instance as positive, if each individual 
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classifier does this separately as well. In addition, the absence of stacking frameworks in stock 

price direction is confirmed in Jiang et al. (2020). This study successfully implements ensemble 

learning algorithms and deep learning techniques into a stacking method in the prediction of stock 

price direction. The study shows that a stacking framework with machine learning techniques 

significantly improves the prediction performance. The proposed stacking framework is identified 

as top performer obtaining a higher level of accuracy, F-score and AUC value than several deep 

learning algorithms. A lasso based meta classifier was perfectly able to automatically weight and 

select the optimal base learners for the stock price direction problem. 

 

2.3.2 Performance metrics and statistical tests 
 

Table 1 also indicates that there is a large variety in performance metrics. The vast majority are 

directly or indirectly derived from four base measures. These base measures can be found in the 

four quadrants of the so-called confusion matrix. It is important to stress that the numbers in these 

four quadrants are measures and not metrics. There is some confusion about this terminology as 

explained in Sagiroglu et al. (2017). According to Table 1, Accuracy and Area Under the Curve are 

applied the most, respectively 10 and 13 times out of 18 papers. Unfortunately, due to the popularity 

of these metrics, a substantial amount of studies limits themselves to only one of these, including 

(Ballings et al., 2015). Focusing only on Area Under the Curve can lead to misleading results. 

According to Hand (2009) the AUC uses different misclassification cost distributions for different 

classifiers. For example, misclassifying the positive class is punished more severely by one 

classifier compared to another. To solve these problems multiple performance metrics can be used 

(Basak et al., 2019; Feng et al., 2018) or even combined (Caruana & Niculescu-Mizil, 2006; Jiang 

et al., 2020; Lessmann et al., 2015; T. Zhang & Chi, 2020) to score the ensemble methods. 

However, combining for example the AUC with the partial Gini coefficient could result in a less 

robust metric due to the apparent linear relationship between both (Schechtman & Schechtman, 

2016). Prudence is required because this partial Gini index should not be confused with the Gini 

impurity measure for decision trees. Besides the standard performance evaluation metrics, such 

as accuracy or precision, some studies like (Tsai et al., 2011) test the decision making capacity of 

their model in monetary terms. In this way, they mimic a real investor by making a quarterly hold or 

sell decision based on the used machine learning model. The results in terms of ROI are than 

compared to a simple buy and hold strategy. 
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In the last column of Table 1 the use of statistical tests to rank the benchmarked algorithms is 

indicated. Different ranking methods are applied: chi-squared (Albanis & Batchelor, 2007), 

Friedman (Ballings et al., 2015) and Kendall’s coefficient of concordance which is  simply the 

normalization of Friedman (Ampomah, Qin, & Nyame, 2020). This in contrast to e.g. (Khan et al., 

2020) where the ensembles are ranked based on accuracy without the use of any statistical test. 

 

2.4 Gaps in literature  
 

To investigate whether these issues are only related to stock price prediction, Table 5 is included 

in Appendix A. where the ensemble methods are summarized per financial domain (Financial 

distress, bankruptcy and credit scoring). Apart from the credit scoring domain, we can identify 4 

major gaps in literature. Firstly, the number of articles benchmarking heterogenous ensembles in 

stock price prediction, is very limited. Secondly, these benchmarking studies don’t include selective 

ensembles, in contrast to other financial domains like credit scoring (Feng et al., 2018; Lessmann 

et al., 2015). Thirdly, there is a gap concerning the limited number of different performance metrics. 

Different types of indicators are needed to reflect different notions of classifier performance 

(Lessmann et al., 2015). Only a few studies, e.g. (Basak et al., 2019; Feng et al., 2018) use a 

comprehensive set of evaluation metrics. Lastly, statistical tests to rank the benchmarking results 

are lacking in many studies. Taking these considerations into account, it is clear that 6 years after 

the publication of (Ballings et al., 2015) a lot has changed and an update is needed. Hence this 

study, (i) includes both homogeneous and heterogenous ensemble techniques, (ii) compares a 

much broader range of ensembles with some brand-new ensemble techniques from other financial 

domains, (iii) takes into account several different evaluation metrics, (iv) tests statistically the 

outcomes for each evaluation metric in a scientific way. 
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3. Methodology 
 

3.1 Data 
 

In this dissertation the same dataset is used as in Ballings et al. (2015). This dataset contains 5716 

publicly listed European companies covering a wide range of different industries. Each observation 

consists of 80 financial indicators and a binary encoded variable which equals one for a stock price 

going up by at least 15% within the next year and which equals zero otherwise. To give a better 

insight in the imbalance of the dataset three possible cut-offs are depicted in Table 2. 

 
Table 2 Class imbalance 

 Negative class (0) Positive class (1) 

Threshold 15% 3394 (59%) 2322 (41%) 

Threshold 25% 3865 (68%) 1851 (32%) 

Threshold 35% 4252 (74%) 1464 (26%) 

 

 

While the class imbalance of this dataset is tackled by oversampling the positive class in Ballings 

et al. (2015), this is skipped in this study because of four reasons. Firstly, metrics are used that 

decouple classifier performance from class skewness and error costs (Fawcett, 2006). Good 

examples include the AUC and H-measure. Secondly, by calibrating predictions prior to assessing 

them, it is possible to compare different classifiers based on the same ground. This calibration 

sanitizes a classifier’s score distribution and prevents imbalance from indirectly affecting the BS or 

KS (Lessmann et al., 2015). Thirdly, the imbalance depicted in Table 2 is low for the 15% threshold, 

which is the threshold focus of this study. Lastly, the ability of different algorithms to be sensitive to 

class imbalance should not be discarded as it contributes to the real-life implementation. 

 

3.2 Experimental set up 
 

While the data is already preprocessed, scaling has not been done yet. The different features do 

not have the same range which could result in serious issues for algorithms like k-nearest 

neighbors, support vector machines or neural networks. For example, the k-nearest neighbors 

algorithm computes Euclidean distances which are difficult to compare if different features have 

different magnitudes. To transform the data, min max normalization and standardization are 

commonly used, however these two approaches are confused a lot in literature. To make the 
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distinction clear, both formulas are denoted below, where μ is the mean and σ the standard 

deviation.  

 

Min max normalization: 𝑥′ =  
𝑥−𝜇

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  Standardization: 𝑥′ = 

𝑥−𝜇

𝜎
 

 

In this study standardization is only applied to the SVM, KNN and the ANN algorithm because these 

algorithms do not assume any distribution of the data and are affected by absolute values. This is 

also empirically tested on the train and validation set of the first fold, only these three algorithms 

resulted in a higher AUC. 

 

To avoid data leakage, the data is split up into a training and a test set. This splitting percentage is 

not agreed upon in literature, e.g. 70/30 train test split is used in (Ampomah, Qin, Nyame, et al., 

2020) and 80/20 train test split in (Rodriguez & Rodriguez, 2004). While using these fixed splits is 

simple and clear, it tends to be less robust in comparison to cross validation. Picking a different 

split could result in a different performance, to cancel this effect, cross validation executes the train 

test split multiple times. In this study, taking the recommendation of Dietterich (1998) into account, 

a 5x2 cross validation will be computed to minimize the influence of the variability of the training 

set. While this method produces train and test sets, a validation set is still needed to tune the 

hyperparameters of the classification algorithms. In Lessmann et al. (2015) a second 5x2 cross 

validation is computed to obtain the validation set. However, the gain in robustness does not 

necessarily outweigh the extra computation cost. Consequently, in this study an 60/40 split is 

computed on each training fold.  

While splitting the dataset into multiple folds, class imbalance could become worse. In the worst-

case scenario, the test set may not contain any instance of the minority class at all (Raschka, 2018). 

This can be prevented by stratification, according to Kohavi (1995) this is generally a better set up, 

both in terms of bias and variance, compared to regular cross-validation. Following this 

recommendation, the 5x2 cross validation is stratified by maintaining the original class proportion 

in the resulting folds. Accordingly, the stratification is also done for the inner train and validation 

split. This was implemented with the rsample r-package by Silge et al. (2021). 

 

For some designs the combination of a large hyperparameter grid and a 5x2 cross validation results 

in substantial computation times. For example, for algorithms like support vector machines, four 

parameters are tuned which increases the grid size exponentially. To make this tuning more 
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effective, this study will implement a random search for each multi-dimensional hyperparameter 

tuning. A lot of studies implement a grid search to tune the hyperparameters, however this is not 

the optimal way. Bergstra & Bengio (2012) show empirically as well as theoretically that randomly 

chosen trials are more efficient for hyper-parameter optimization in comparison to trials on a grid. 

To clarify this further, two hyperparameters used to tune a rotational forest in this study are depicted 

below in a grid search and compared with a random search. 

 

Figure 2 Comparison search procedure rotational forest 

If we would project all possible outcomes of one parameter on its axis, random grid search would 

clearly investigate a broader set of values. This favors the random search because for most data 

sets, only a few data specific hyper-parameters really matter (Bergstra & Bengio, 2012). While 

these important hyper-parameters are tuned more in depth, the others receive less attention. 

 

To increase computation speed further, the future_map function from the furrr r-package 

(Vaughan & Dancho, 2021) is used as much as possible. This iterative function makes use of 

parallel processing through all cores of the processor which leads to a substantial increase in 

speed. All supervised learning algorithms are computed using R (version 4.0.4). These 

computations were executed locally on an Intel Core i7-8565U 1.80Ghz CPU. 

  



 

13 
 

3.3 Classification algorithms 
 

To clarify this section, Table 6 has been added in Appendix B.. This table summarizes for all 18 

classification algorithms the classifier family, abbreviation and the set of hyperparameters used. 

 

3.3.1 Single classifiers 
 

While single classifiers are not directly the focus of this benchmark study, they form the basis of 

ensembles. All four single classifiers trained in Ballings et al. (2015) are implemented and will be 

very briefly discussed.  

Firstly, a logistic regression is trained using a lasso regularization to avoid overfitting. The glmnet 

r-package (Friedman et al., 2010) was used, setting the elastic net mixing parameter to one 

indicating a lasso regularization which is the default setting. In addition the lambda parameter is 

tuned based on the values used in (Moon et al., 2018). 

Secondly, a k-nearest neighbor model is programmed, deploying the FNN r-package (Beygelzimer 

et al., 2019). The most important parameter K indicates the number of closest neighbors which is 

tuned for a broad range of values. Important to mention is that all features have been standardized 

before entering the machine learning model. 

Thirdly, a support vector machines model is created. This model was developed first by Vapnik 

(1999). The main idea is that the points closest to the separating hyperplane, called the support 

vectors, are more important than the others and receive a non-zero weight in the algorithm (Weng 

et al., 2018). For this algorithm, four hyperparameters: a cost (regularization term), gamma (not for 

linear kernels), kernel and degree can be tuned. The regularization, or cost parameter can be set, 

to account for misclassifications resulting from the trade-of between the separating margin and the 

misclassification of the classes. For example, for a lower cost, a larger margin will be accepted, 

reducing the training accuracy, and preventing overfitting. Both the cost and gamma 

hyperparameter are tuned based on Caruana & Niculescu-Mizil (2006). The kernel function can 

also be further specialized, each of these kernels differ in the way distinctions between classes are 

made (Mokoteli-Mokoteli et al., 2019). Actually, any function that satisfies Mercer’s condition can 

be used as kernel function (Huang et al., 2005). The most frequently implemented kernels 

according to Ballings et al. (2015): linear, radial, polynomial and sigmoid are used in this study. The 

linear kernel only requires variations in the regularization parameter, the gamma parameter is set 

to 
1

𝑑𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛
  by default. On the other hand, the polynomial kernel needs an additional 



 

14 
 

parameter, namely a degree which was tuned together with the cost, gamma and kernel function 

in a random search. The SVM function from the e1071 r-package (Hornik et al., 2021) was used to 

program this algorithm. Note that the SVM algorithm doesn’t produce probability predictions. 

 

Lastly a neural network was trained. This algorithm is in essence a linear combination of 

explanatory variables adjusted to a transfer function (Rodriguez & Rodriguez, 2004). Before 

computing the algorithm, all features are normalized. In this paper a feedforward artificial neural 

network is used with four layers: an input layer with the 80 numeric input features, a first hidden 

layer, a second hidden layer, and an output layer with two output nodes (one for each class). These 

are generally the most common neural nets in use (Dongare et al., 2012). Both hidden layers use 

a relu (rectified linear function) activation function and the output layer uses a sigmoid function, 

ideal for the classification task. The model is compiled using the binary cross-entropy loss function, 

which is known to work well for a binary classification, and the Adam optimizer.  

 

 

Figure 3 NN on first fold no regularization 

 

 

Figure 4 NN on second fold with regularization 
and dropout 

In Figure 3, a neural net is trained, without regularization on the first fold of the 5x2 cross validation 

set. It is clearly visible that after 100 epochs the training data keeps on increasing in performance, 

however the validation set follows a contradictory pattern. This indicates that the model has become 

too specific and will perform bad on new, unseen data samples.  

Just like in almost every machine learning algorithm, a regularization term is needed to prevent 

overfitting. In this study a L2 regularization parameter is added to combat overfitting. In addition, to 

further combat overfitting, dropout is implemented. The main idea is to randomly drop units from a 

neural network during training. This prevents the units from co-adapting too much (Strivastava, 

2013). According to Strivastava (2013) it can be observed that the performance is insensitive for 

dropout percentages p if 0.4 ≤ p ≤ 0.8. While the dataset is relatively small for deep learning, this 
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study will take a 0.4 dropout rate. Figure 4 shows that due to the dropout technique and L2 

regularization, the validation is performing better than the training data. According to the minimum 

of the loss curve in Figure 4, 100 epochs are allowed with a batch size of 64 instances. To find the 

best model hyperparameters the nodes in the two hidden layers and the regularization lambda are 

tuned. Conceptually, nodes in successively higher layers abstract successively higher-level 

features from preceding layers (Dongare et al., 2012). Accordingly, the tuned number of nodes in 

the second layer are always set smaller than the number of nodes in the first hidden layer. To 

program the NN, the deep learning library of Keras is used, which runs on top of Tensorflow. 

 

In addition, two extra single classifiers are added. A decision tree, which classifies an instance by 

filtering it down a tree from the root node to a leaf node (Qian & Rasheed, 2007). The tree is 

determined by: a function to measure the quality of the split, the stopping criterium, a method to 

assign a class or probability distribution at the leaf nodes and a posterior pruning process to simplify 

the tree structure (Abellán & Mantas, 2014). Reciprocally this study implements the Gini coefficient 

as splitting criterium, a maximum tree dept of 30 (default), a probability distribution from the leaf 

nodes and a complexity parameter which is tuned based on the different complexity parameters 

used in Kattan et al. (2012). The decision tree is implemented by making use of the rpart r-

package (Therneau et al., 2019). 

The last single classifier is a naïve bayes, which makes the strong assumption that features are 

independent given the class. While this is a strong assumption, naïve bayes often competes well 

with more sophisticated classifiers (Rish, 2001). The naïve bayes classifier is implemented with the 

e1071 r-package of Hornik et al. (2021). The Laplacian smoothing parameter is tuned empirically 

where the null value indicates that no smoothing is applied. 

 

3.3.2 Homogeneous ensembles 

 

3.3.2.1 Bagging. Bagging, also called bootstrap aggregation is the first and most basic ensemble 

method of this study. By making bootstrap replicates, groups of observations are selected on which 

base classifiers are trained in parallel. This process makes the training dataset of every base 

classifier by default independent of the others (Ampomah, Qin, & Nyame, 2020). The outputs of 

each base classifier are combined by majority voting. For instable prediction methods, this 

procedure can give substantial gains in accuracy (Breiman, 1996). An example of such prediction 

method is the decision tree which builds very different models when applied to different training 
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sets (Abellán & Mantas, 2014). Consequently, in this study, a homogeneous bagging model, with 

decision trees as base classifiers, is trained. The training process is computed with the ranger r-

package (Wright et al., 2020). This package is a very fast implementation of a random forest, 

however by setting the try-parameter (number of features selected) to 80 (total amount of features) 

the model boils down to bagging. As recommended by Breiman (2001) a large number of trees 

(500) is used in our model. 

 

3.3.2.2 Random forest. Clearly random forest is very similar to bagging based on decision trees. 

However, to increase randomness, “the random subspace” method is applied, which does a 

random selection of a subset of all features to grow each tree (Breiman, 2001). Again, the ranger 

r-package is used, now tuned for the mtry parameter. The standard number of features used to 

obtain good results is the half of the total number of features (40) (Abellán & Castellano, 2017), 

however according to Ballings et al. (2015) this mtry parameter should be set to the square root of 

the number of features (9). So, to be certain, the selected number of features is tuned to 40, 10 

and some additional values. 

 

3.3.2.3 Rotational forest. Rotational forest proposed by Rodríguez et al. (2006) further increases 

diversity among the base classifiers by combining bagging with feature extraction. The features are 

divided into K non-overlapping subsets of equal size. A principal component analysis (PCA) is 

applied to each K subset of features (Abellán & Castellano, 2017).  All principal components are 

retained to preserve the variability information in the data. Thus, K axis rotations take place to form 

the new features for a base classifier (Rodríguez et al., 2006). Two main parameters will be tuned: 

K and the number of base classifiers or bagging iterations (L). By using the rotationForest r-

package of Rodríguez et al. (2006) K and L are tuned based on du Jardin (2019) and Lessmann et 

al. (2015). 

 

3.3.2.4 Extremely randomized trees. Extremely randomized trees by Geurts et al. (2006) still 

implements random feature selection, however it differs from a random forest in two ways. The 

observations to build a tree are not resampled (bootstrapped) and a random split is used. Instead 

of seeking for the most discriminative thresholds, random cut-points are chosen and thus regarded 

as the splitting rules for the decision trees. This kind of algorithm usually allows to decrease the 

model’s variance a bit more, at the cost of a slight increase in bias (Jiang et al., 2020). Besides the 

reduction in variance, a main advantage of the resulting algorithm is computational efficiency 

(Geurts et al., 2006). The selected number of features is tuned for the same values as random 
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forest and the number of random cuts for each predictor is varied. The ERT algorithm is 

implemented by the extraTrees r-package (Simm & de Abril, 2015). 

 

Boosting, in contrast to bagging, trains the models in a sequential way. Accordingly, each model 

run, dictates what features the next model focuses on, by using weights. Just like bagging, boosted 

trees decrease the variance of the single estimate as they combine several estimates from different 

models (Mokoteli-Mokoteli et al., 2019).  

 

3.3.2.5 Stochastic adaboost. The first boosting algorithm considered is Stochastic adaboost. In 

this sequential algorithm, the weights of the training samples, which are correctly classified by the 

current classifier will decrease, while the weights of the samples which are misclassified will 

increase (X. Zhang et al., 2016). Subsequent base learners are tweaked in favor of those instances 

misclassified by preceding classifiers (Ampomah, Qin, Nyame, et al., 2020). After training, the final 

output is constructed by a weighted vote of the base classifiers. A classifier with a small error will 

receive a larger weight in this voting process. This boosting method is implemented by the ada r-

package developed by Culp et al. (2016). To prevent overfitting, the base classifier trees are 

constructed with a maximum of 8 nodes and depth of 3 following Friedman (2001). Tuning is done 

on the amount of iterations. 

 

3.3.2.6 Extreme gradient boosting. Extreme gradient boosting is another tree-based ensemble 

which has been winning in several data contests (Jiang et al., 2020). This algorithm is based on a 

gradient boosting technique introduced by Friedman (1999). While Adaboost reweights each 

observation after each boosting step, gradient boosting learns to predict the error. This is done by 

trying to better classify the residuals, or the misclassified samples of the previous iteration in the 

next iteration (Basak et al., 2019). In comparison to gradient boosting, extreme gradient boosting 

applies the second order Taylor expression for the objective function. Therefore, it can process 

both the first and second order derivatives in parallel to accelerate the convergence process while 

training. Furthermore, a regularization term, which can smooth the contributions of each decision 

tree, is added to prevent overfitting (Jiang et al., 2020). The objective function which XGB tries to 

minimize is given below. 

𝑜𝑏𝑗(𝜃) =  ∑𝐿(𝑦𝑖 , 𝑦 𝑖

𝑛

𝑖=1

) +∑𝛾𝑇 + 
1

2
𝜆‖𝑤‖2

𝑘

𝑘=1
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In this equation, the first summation contains the loss function and the second summation the 

complexity to prevent overfitting, with γ the complexity parameter, T the number of leaf nodes, λ a 

fixed coefficient and ‖𝑤‖2 the ℓ2-norm of leaf weight. To train the model the XGBoost r-package of 

He et al. (2021) is used. The XGB algorithm contains numerous tuning parameters which require 

careful selection. By default, the learning rate is defined automatically based on the dataset 

properties and the number of iterations (He et al., 2021). This automatically defined value should 

be close to the optimal one, so we do not tune this parameter explicitly. The maximum tree depth 

is set to 7 to limit tree complexity based on du Jardin (2019). The number of iterations and the 

subsample hyperparameter are tuned. If the subsample parameter equals to 0.5, half of the data 

is used to grow trees, which improves speed of training and generalization. However, a higher 

number of boosting iterations increases computation time and is more prone to overfitting, 

consequently a tradeoff must be made. 

 

3.3.2.7 Light gradient boosting. In addition, a light gradient boosting model is trained, developed 

by a team from Microsoft to reduce the implementation time of XGB (Y. Zhang & Haghani, 2015). 

LGB supports efficient parallel training just like XGB however, the main difference comes from the 

way in which the three is grown. As depicted in Figure 5, an XGB grows trees level wise, while 

Light gradient boosting forms decision trees leaf wise (Jiang et al., 2020).  

 

Figure 5 Decision tree splitting process 

By growing leaf wise, the algorithm can reduce loss faster compared to a level wise structure. Note 

that because of this structure, extra carefulness is required in terms of overfitting. Following the 

reasoning of XGB, the same tuning is applied. According to Jiang et al. (2020) the algorithm could 

also be tuned for the regularization parameter alpha and lambda however, the fixed maximum tree 

depth, subsampling and the automated learning rate should be enough to prevent overfitting. 
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3.3.2.8 Catboost. The last and most recent developed homogeneous ensemble of this study is 

catboost. This open-sourced algorithm was developed by Dorogush et al. (2018) in 2018. Catboost 

stands for categorical boosting indicating that it smartly transforms categorical features to numeric. 

While our dataset does not contain categorical values, it is still an interesting technique for our 

benchmark because the algorithm uses a different schema compared to LGB and XGB for 

calculating leaf values when selecting the tee structure. In addition Dorogush et al. (2018) argue 

that catboost outperforms the existing state-of-the-art implementations of gradient boosted decision 

trees. Catboost grows a level-wise balanced tree. The feature-split pair that brings the lowest loss 

for each level is selected. This split is then used for all the nodes on the same level which is a new 

approach called minimum variance sampling. This approach decreases both the number of 

samples needed for each iteration of boosting and increases the model quality significantly 

(Ibragimov & Gusev, 2019). Just like XGB and LGB the max depth is fixed to 7 to prevent overfitting 

and the learning rate, sample and rounds are tuned. The algorithm is implemented with the 

catboost r-package (Dorogush et al., 2018). 

 

3.3.3 Heterogeneous ensembles 

 

The heterogeneous ensembles discussed in this section make use of all previously discussed 

classifiers of which the predictions were stored. These different base classifiers have different views 

on the data which has been proven to help develop more reliable, robust and generalized classifier 

models (Sesmero et al., 2015). For these algorithms no additional r-packages were used because 

they have too little customization. 

 

3.3.3.1 Simple average. The first heterogeneous ensemble technique averages the results of 

multiple base classifiers. In this study we trained and tuned 6 single classifiers and 8 homogeneous 

classifiers. For all 6 performance metrics, 10 folds, 2 validation splits and 14 classifier the best 

predictions were stored resulting in 1680 lists of predictions. This first heterogeneous ensemble is 

constructed by simply averaging over the predictions of all 14 base classifiers. 

 

3.3.3.2 Weighted average. This technique is very similar to simple average only the different 

predictions from the base classifiers are combined whilst using a weighting factor. The weights (𝑊𝑖) 

are calculated based on the performance of the base models on the validation data: 
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𝑊𝑖 = 
𝑋(𝐶𝑖, 𝐷𝑣)

∑ 𝑋(𝐶𝑖, 𝐷𝑣)
𝐼
𝑖=1

 

Where 𝑋(𝐶𝑖, 𝐷𝑣) denotes the performance metric of classifier (𝐶𝑖) on the validation set (𝐷𝑣). 

According to the setup this weighting is done for each separate performance metric. When these 

weights are computed they can be used to combine the predictions on the test data. 

 

3.3.3.3 Stacking. Stacking, short for stacked generalization, is probably one of the most frequently 

discussed heterogeneous ensembles. This machine learning method has not one but two layers, 

where the first layer consists of the binary predictions of all base models that enter the ensemble. 

The second layer conducts a weighting by training a second classifier (the meta classifier) with the 

binary predictions as input. Naively applying a second-stage model to base learners that are trained 

on the full training set is dangerous because it rewards overfit learners (Sharabiani, 2016). 

Therefore, the best training predictions stored for each classifier are used to make binary 

predictions. These predictions are combined and used as input to train a meta classifier. This meta 

classifier should be robust to multicollinearity because each classifier is predicting the same 

phenomenon. Accordingly, in this study, a lasso logarithmic regression is used as meta classifier 

with L2 regularization to handle multicollinearity. The regularization parameter is tuned on a 40/60 

train/validation split of the binary inputs. Next, the stored test predictions are set to binary. By 

applying the trained and tuned logarithmic classifier on these binary predictions, the final 

probabilities for each stock are computed. 

 

3.3.3.5 Hill-climbing ensemble selection. The last heterogeneous ensemble of this study is a 

static direct model. Just like the previously mentioned heterogeneous ensembles, a selection 

procedure is applied to get a good combination of base learners. To get the optimal one, every 

combination should be tested on a validation set. This quickly becomes iteratively heavy, even for 

14 classifiers. To tackle this, hill climbing (or forward selection) is applied. In the initialization phase, 

the best performing model on the validation set enters the ensemble subset. Next, this ensemble 

subset is updated by iteratively looking for the best second base classifier to add. This is repeated 

until the performance does not increase anymore. Note that after adding a classifier, it can still be 

picked a second time. Therefore, the ensemble prediction can effectively be either a simple or 

weighted average depending on whether all selected base models are unique (Caruana et al., 

2014). When the subset is selected, it can be applied on the test predictions, resulting in the final 

performance. Note that the ensemble subset obtained could be a local instead of a global optimum. 
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3.4 Model evaluation criteria 

 

To start this section, it is important to mention is that some metrics focus on type 1 errors while 

others on type 2 errors. These errors are derived from the confusion matrix depicted in Table 3. 

Type 1 errors are located in the upper right quadrant, indicating a negative sample wrongly 

classified as positive. In the opposite quadrant, in the lower left, type 2 errors indicate a positive 

sample wrongly classified as negative. 
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Table 3 Confusion matrix 

 

The question arises which error is worst in the stock classification domain. This depends on your 

strategy: if you buy only the stocks that are classified as 1 (rise) than false positives (type 1) could 

really hurt your profit. False negatives (type 2) are an opportunity loss, they do not directly result 

into costs for the investor. Another strategy could be that the investor shorts the stocks classified 

as 0.  However, this study implements a 15% rise cut off, so the stocks classified as 0 still contain 

rising stocks which would hurt the investor’s portfolio. This study assumes the prediction results 

will be used to buy the stocks classified as increasing more than 15%. Following this reasoning a 

type 1 error is considered as more severe which we will consider while selecting the evaluation 

criteria. 

 

In contrast to Ballings et al. (2015) this study evaluates the classification algorithms with multiple 

performance metrics. This study will take six performance metrics into account: AUC, H, BS, MCE, 

ACC and Prec. While the AUC is a very good cut-off independent metric, it has some limitations, 

as described in the literature review. Every metric has some advantages and disadvantages, 

consequently combining a set of metrics, thus evaluating different aspects of performance is done 

(Jiang et al., 2020; Lessmann et al., 2015; T. Zhang & Chi, 2020) or proposed (Caruana & 

Niculescu-Mizil, 2006). The deployed metrics mix contains two metrics of each of the three classes 
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defined in Lessmann et al. (2015): (i) assessing the accuracy of the scorecard (e.g. Area under the 

curve), (ii) assessing the accuracy of the scorecard’s predictions (e.g. Brier score), (iii) assessing 

the correctness of the scorecard’s categorical prediction (e.g. Accuracy). In (Caruana & Niculescu-

Mizil, 2006) the same groups are identified which are respectively called: (i) ordering/rank metrics, 

(ii) probability metrics and (iii) threshold metrics. 

 

3.4.1 Rank metrics 
 

From the first group the AUC and H-measure are selected. The extensively applied AUC measures 

the probability that a randomly chosen positive case receives a higher score than a randomly 

chosen negative one. Considering the limitations of the AUC, the H-measure is reported as well, 

which overcomes the problem of different misclassification costs for different classifiers (Hand, 

2009). A severity ratio controls the severity effect of misclassifying a class 0 instance in comparison 

to misclassifying a class 1 instance. Per example a severity ratio of 2 implies that false positives 

cost twice as much as false negatives. This ratio seems adequate for this study considering a type 

1 error is considered as more severe. In addition, (C. Anagnostopoulos et al., 2012) argues that it 

would be strange to treat both classes symmetrically in case of unbalance. Accordingly, the 

misclassifications of the smaller class are considered more serious. The AUC is computed by the 

AUC r-package of (Ballings & Van den Poel, 2013) and the H-measure is calculated by using the 

hmeasure r-package of Christoforos Anagnostopoulos (2019). The calculation on which both 

packages are based are depicted below. 

Area under the curve = ∫
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 𝑑 

𝐹𝑃

(𝐹𝑃+𝑇𝑁)
= ∫

𝑇𝑃

𝑃
𝑑
𝐹𝑃

𝑁

1

0

1

0
 

 

The parameters used for the AUC calculations are all derived from a confusion matrix which is 

depicted in Table 3.   

𝑇𝑐 = argmin
𝑡

2(𝑐 ∗ 𝜋0 ∗
𝐹𝑃

𝑁
(𝑡) + (1 − 𝑐) ∗ 𝜋1(1 −

𝑇𝑃

𝑃
(𝑡)) 

 

𝐿𝑤 = ∫ 𝐿(𝑐; 𝑇𝑐) ∗ 𝑤(𝑐)𝑑𝑐
 

𝑐
 

 

H-measure = 1 − 
𝐿𝑤

𝐿𝑤
𝑚𝑎𝑥 
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To calculate the H-measure three crucial equations are needed. The second part of the first 

equation denotes the total cost. Where c is chosen based on the severity ratio 
𝑐

1−𝑐
 . In this study 

the SR is set to two to penalize type 2 errors more severely.  The class priors 𝜋0 , 𝜋1 are respectively 

equal to 
𝑇𝑁+𝐹𝑃

𝑛
, 
𝑇𝑃+𝐹𝑁

𝑛
. In the second equation the averaged minimum cost-weighted loss is given. 

In this equation 𝐿(𝑐; 𝑇) is the minimum weighted loss, where the right threshold is chosen by 

minimizing the total cost 𝐿(𝑐; 𝑡) for each value of c. In the last step, the third equation is normalized 

with the maximum value 𝐿𝑤 can take. The result is subtracted from 1 so a higher H-measure 

indicates better performance. For a more detailed description Anagnostopoulos et al. (2012) is 

referred to. 

 

3.4.2 Probability metrics 
 

From the second group the BS is selected which is the mean squared error between the 

probabilities and the zero/one responses. The exact calculation is as follows: 

 

Brier score = 
1

𝑁
 ∑ (𝑦𝑖 − 𝑝(𝑦𝑖))

2𝑁
𝑡=1  

 

Where N is the number of observations, 𝑝(𝑦𝑖) the forecasted probabilities and 𝑦𝑖 the actual 

outcomes. In addition, the mean cross entropy is selected also called the log loss. This log loss 

function is used in several classifiers and used in the probabilistic setting when interested in 

predicting the probability that an example is positive (Caruana & Niculescu-Mizil, 2004). Just like 

the brier score, this performance metric needs the classifier to produce probabilities for all the 

samples. According to the formula below the mean cross entropy is calculated. The parameters 

are the same as used in the Brier score calculation. 

 

Mean Cross Entropy = − 
1

𝑁
 ∑ 𝑦𝑖 ∗ ln(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∗  ln(1 − 𝑝(𝑦𝑖)) 

 

If we take for example one observation for which 𝑦𝑖 = 1 and 𝑝(𝑦𝑖) = 0.9 than the MCE would result 

in 0.1 which is very good. The smaller both Brier score and Mean Cross Entropy the better the 

prediction. 
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3.4.3 Threshold metrics 
 

Lastly, the accuracy and precision are selected from the threshold metrics. Threshold metrics make 

use of a fixed threshold which is usually 0.5, as followed in this study. Consequently, these metrics 

don’t consider closeness to the threshold, only whether it is below or above a threshold.  Optimizing 

the accuracy considers both type 1 and 2 errors equally, while precision specifically checks the 

classifiers ability to identify stocks that increase 15% by minimizing type 1 errors. Mathematically 

the accuracy and precision metrics are calculated as follows: 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

 

3.5 Calibration 
 

For metrics who require probability predictions like the brier score and mean cross entropy a 

problem arises. Not all machine learning algorithms predict probabilities that are probabilistically 

meaningful (= calibrated probabilities). Probabilistically meaningful means that a probability of e.g. 

0.4 indicates that in the long run 40% of the events will occur. For example, uncalibrated 

probabilities are produced by maximum margin methods like SVM and boosted trees which tend to 

push predicted probabilities away from 0 and 1 forming sigmoid shaped curves. On the other hand, 

naïve bayes tend to do the opposite and push the predicted probabilities to 0 and 1, forming 

uncalibrated probabilities. This phenomena is caused by the unrealistic independence assumption 

(Caruana & Niculescu-Mizil, 2006). The calibration or reliability diagrams in Figure 6 divide the 

predicted probabilities into 10 bins, depicted on the x-axis, the y-axis shows the fraction of samples 

that are classified as one. Below each calibration diagram the amount of observations per bin are 

shown. As some bins contain a very small amount of observations, it is hard to interpret the 

reliability diagram for these. The diagrams are based on the first fold of the stock dataset and clearly 

visualize the deviation of the naïve bayes probabilities to 0 and 1. If the probabilities are calibrated, 

they should closely follow the dashed line through the origin, which is illustrated by the logarithmic 

regression probabilities. As expected, the support vector machines calibration plot shows a sigmoid 
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shaped curve, however it is surprisingly well calibrated. This is because the used svm r-package 

already implements calibration by default when returning probabilities. 

   

 

Figure 6 Reliability and observation plot of LogR, SVM and NB before Platt scaling 

 

To tackle calibration issues Platt scaling is applied to all classifiers (Platt, 1999). While being fully 

aware that some classifiers like a logarithmic regression are calibrated by default, we want to treat 

every classifier in the same way. In essence plat scaling runs a logistic regression model on the 

output of a validation dataset. This trained logistic regression is afterwards used to calibrate the 

test probabilities. While the logistic regression implies linearity, someone could argue that using a 

nonlinear calibration technique like Isotonic regression would perform better. However, according 

to Bequé et al., (2017) Platt scaling consistently outperforms Isotonic regression on data set sizes 

similar the stock data under consideration. After applying the method of Platt the calibration plots 

improve as depicted in Figure 7 below. 
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Figure 7 Reliability and observation plot of LogR, SVM and NB after Platt scaling 

 

Lastly, the question arises how the other performance metrics under consideration are influenced 

by this calibration method. Because of the monotonic nature of the sigmoid function, the rank of 

the calibrated probabilities is preserved. Therefore, the two rank measures, AUC and H-metric 

should almost not change due to calibration. To check this statement and to see to which extent 

the other metrics changed a sensitivity analysis is conducted in Appendix C.. In this sensitivity 

analysis the results with calibration are compared to the results before calibration. 

 

 

 

3.6 Algorithm comparison 
 

In this subsection all 18 different classifiers are compared by making use of six performance 

metrics. Firstly, we rank each classifier for each fold and each performance metric. The best 

performing classification algorithm of the first fold gets a rank of 1, the second-best performing rank 

2, etc. Afterwards, the ranks are averaged across all 10 folds of the 5x2 cross validation. Another 

approach could have been to first average the performance metric over all folds and then rank the 

classifiers. However, this results in slightly less accurate rankings. Next, the rankings are averaged 

over all performance metrics resulting in a final average rank. Because the classifiers are ranked 

for each performance metric separately, there is no need to scale the different performance metrics 

as explained in Caruana & Niculescu-Mizil (2006). 
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The average rankings over 10 folds per performance measure will be the bases of the non-

parametric Friedman test. The Friedman test statistic for each performance metric is calculated 

according to this formula: 

𝜒𝐹
2 = 

12𝑁

𝑘(𝑘+1)
(∑ 𝐴𝑣𝑔𝑅𝑗

2𝑘
𝑗=1 − 

𝑘(𝑘+1)2

4
) 

Where N is the number of folds (10) and k the number of classifiers (18). The average ranks 

computed over the 10 folds for each classifier j are denoted by AvgR𝑗
2 . The test statistic has as 

null hypothesis that all performance between classifiers is equal. If the calculated chi squared is 

greater than a critical value (27.59) derived from table A4 in Sheskin (2003) with alpha (0.05) and 

the degrees of freedom (k-1) the null hypothesis is rejected. In the last row of Table 4 each 

calculated chi squared Friedman test is clearly much larger than the critical value indicating that 

the classifiers are statistically different for each metric.  

 

Consequently, a post hoc test can be executed to know which classifiers are different from others. 

The null hypothesis states that a classifier is performing equal to the control classifier. As control 

classifier the best performing classifier is chosen for each performance metric. The z values are 

calculated following: 

𝑧 =
𝐴𝑣𝑔𝑅𝑖 − 𝐴𝑣𝑔𝑅𝑗

√𝑘(𝑘 + 1)
6𝑛

 

Where 𝐴𝑣𝑔𝑅𝑗 is the average rank over all k folds of the control classifier and  𝐴𝑣𝑔𝑅𝑖 the average 

rank of the compared classifier. To calculate the corresponding p value for each z value the pnorm 

r-function is applied. In addition, following the recommendation of García et al. (2010) the p values 

are adjusted taking into account that multiple tests are conducted which increases the chances on 

a type one error (data dredging). According to a post hoc benchmark study of García et al. (2010) 

the Hommel and Rom post hoc tests are identified as most powerful. Both are sequential methods 

implying several correction steps depending on the results of prior steps. This study implements 

the Hommel procedure, ordering the p-values from smallest to largest (step-up approach) and 

correct for the previous number of tests in each step. 
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4. Discussion of results 
 

Table 4 visualizes the final result after running the program for all classifiers and performance 

metrics. The code to reproduce these results can be consulted via the Github link in Appendix D. 

In the columns, each metric is depicted, which is an average over 10 folds, the rows depict all 

classifiers. The order of the rows corresponds to the buildup of this dissertation, with firstly the 

single classifiers, secondly the homogeneous classifiers and lastly the heterogeneous classifiers. 

For each classifier the adjusted p values are given between brackets, comparing the classifier with 

the best ranked classifier of the column indicated by empty brackets. Note that for the precision 

metric, this best ranked classifier is different from the absolute best classifier. The adjusted p value 

is underlined when significant, taking a 5% significance level into account. All these adjusted p 

values are based on rankings as explained in section 3.6. To give a rough indication of classifier 

performance the last column is added, which calculates the average across all columns and 

attributes the best average rank to one, the second-best to two until all classifiers are ranked. 

 

Table 4 Final result with 5x2 CV, tuning and calibration 

 
AUC   H   BS   MCE   Prec   Acc   Rank 

LogR .650 (.000) .085 (.000) .226 (.000) .642 (.000) .563 (.000) .622 (.000) 16 

KNN .678 (.000) .113 (.000) .218 (.000) .633 (.000) .592 (.002) .639 (.001) 13 

SVM .674 (.000) .111 (.000) .221 (.000) .632 (.000) .457 (.000) .641 (.002) 14 

NN .678 (.000) .111 (.000) .219 (.000) .628 (.000) .375 (.000) .629 (.000) 15 

DT .641 (.000) .077 (.000) .226 (.000) .644 (.000) .558 (.000) .630 (.000) 17 

NB .600 (.000) .063 (.000) .242 (.000) .677 (.000) .084 (.000) .583 (.000) 18 

RF .728 () .174 (.503) .205 () .595 () .626 (.064) .670 (.834) 2 

BagTree .725 (.675) .173 (.503) .205 (.671) .595 (.706) .632 (.196) .671 () 3 

RotF .700 (.002) .141 (.001) .214 (.000) .616 (.001) .612 (.031) .662 (.834) 11 

ERT .722 (.571) .168 (.297) .207 (.503) .599 (.706) .622 (.035) .665 (.819) 6 

Ada .723 (.675) .168 (.215) .208 (.256) .605 (.181) .631 (.122) .672 (.834) 5 

XGB .717 (.281) .167 (.358) .207 (.388) .603 (.297) .612 (.031) .662 (.333) 9 

LGB .713 (.040) .156 (.020) .210 (.027) .606 (.106) .618 (.037) .663 (628) 10 

CB .719 (.420) .166 (.108) .208 (.261) .600 (.673) .610 (.018) .666 (.834) 8 

SA .724 (.601) .172 (.476) .212 (.003) .613 (.003) .676 () .667 (.834) 7 

WA .725 (.675) .181 () .211 (.018) .610 (.040) .669 (.738) .668 (.834) 4 

Stack .683 (.000) .132 (.000) .219 (.000) .630 (.000) .659 (.449) .669 (.834) 12 

HCE .728 (.675) .174 (.503) .205 (.675) .595 (.706) .682 (.590) .671 (.834) 1 

𝜒17
2  149.383 148.421 156.653 156.653 113.656 125.467 
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From this table several conclusions emerge. Firstly, the HCE selection procedure often gets stuck 

in the initialization phase by just selecting the best classifier (mostly RF). Only for the Precision 

metric, multiple classifiers are selected, improving performance. Because the initialization 

procedure starts by selecting the best classifier and updates the selection only when performance 

is improved, HCE will always be superior or equal in performance to the selection subset. For the 

H-measure, we notice that a higher performance is found for the Weighted Average. Therefore, it 

becomes apparent that the HCE selection not always finds a global optimum but can get easily 

stuck in a local optimum. 

 

Secondly, based on the adjusted p values of the single classifiers, there is strong evidence against 

the hypothesis that single classifiers perform equal to the best ensemble method in this benchmark. 

Every pairwise comparison with a single classifier results in an adjusted p value, far below the five 

percent significance level. This finding is in line with previous studies (Ampomah, Qin, Nyame, et 

al., 2020; Ballings et al., 2015; Basak et al., 2019; Tsai et al., 2011). 

 

Thirdly, overall, the homogeneous ensembles do not perform very different compared to the 

heterogeneous ensembles. This in contrast to Lessmann et al. (2015) where most heterogeneous 

ensembles perform statistically better than homogeneous ensembles. A possible explanation for 

this discrepancy might be the difference in the nature of the problem. Where this study works with 

stock data, Lessmann et al. (2015) uses a credit scoring data set. Another explanation could be a 

lack of diversity in the pool of classifiers from which the ensembles were selected. However, this 

seems unlikely because for example a KNN, NN and RF implement very different techniques which 

should result in diverse predictions. In line with Lessmann et al. (2015) stacking seems to be 

implementing the worst selection method. 

 

Fourthly, from the three gradient boosted methods implemented in this study (XGB, LGB and CB) 

the LGB ensemble is for four out of six performance metrics statistically different from the best 

classifier. While the benchmarking study of Al Daoud (2019) concludes that LGB is the fastest and 

most accurate of the three, we can only confirm its superiority in speed. This disparity could be due 

to the application in different domains as well as to the difference in the size of the datasets. 

Whereas Al Daoud (2019) is situated in the credit scoring domain with data ranging from 50000 to 

307507 rows our study implements a stock dataset with only 5716 rows but with more features. 

Lastly, considering the homogeneous classifiers, the Rotational Forest algorithm slightly 

underperforms. 
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5. Conclusion and practical implications 
 

This study updates Ballings et al. (2015) by implementing a more elaborate benchmark. The main 

purpose remained to investigate which classifier performs optimally for the stock price prediction 

task. Therefore, 18 classifiers have been benchmarked, considering six performance metrics. Each 

algorithm is carefully tuned and an additional calibration step is computed. The results imply that 

the Hill climbing ensemble is very hard to outperform. However, in most cases the HCE simply 

selects the Random Forest ensemble. While RF is very easy to implement and is even able to give 

an indication of feature importance, HCE needs a large set of base models, is much harder to 

implement and is in essence a black box. Consequently, considering deployment effort and 

interpretability this study recommends the random forest algorithm as the way to tackle the stock 

price prediction task.  

 

These results strongly confirm the potential of ensembles in stock price prediction with reported 

AUC’s reaching 73%, precisions reaching 68% and accuracies 67%. This constatation should raise 

some doubt on the efficient market hypothesis even amongst its biggest proponents. Nevertheless, 

when more and more investors would use random forest, it would suffer from alpha decay, implying 

that these financial players try to make the same predictions, however, the first one will take most 

of the profit. Therefore, it could be worthwhile to consider heterogeneous ensembles because of 

their higher difficulty to deploy, consequently having suffered less from alpha decay. 
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6. Limitations and further research 
 

In terms of generalization, it is hard to claim that the results of this study are valid for all stock 

datasets. Whilst our study focusses on European stocks, results could be different in other markets. 

In addition, although this study only focusses on one dataset, further research should be conducted 

considering multiple datasets to support generalization. In addition, while the focus of this study is 

only on fundamental data, it would be enriching to add a selection of technical, fundamental, 

economical and even sentiment variables. 

In terms of the time window of the prediction, various setups are possible. Considering a business 

perspective, the question arises which time window generates most profit. Further studies could 

even opt for a Spark streaming setup which continuously updates the prediction model. Finally, 

while this study does not report strong arguments in favor of heterogeneous ensembles, these 

could be investigated further. In particular by selecting base classifiers based on diversity measures 

like the Q statistic (Kuncheva et al., 2000) or by inventing more superior search procedures, the 

performance could increase even further. 
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Appendices 
 

Appendix A. 

Table 5 Ensembles in other financial domains 

Study Domain 

Ensembles Performance metrics 
Stat. 
tests 

used? 
Homo - 

geneous 
Hetero - 
geneous 

Stacking # AUC ACC Other 

A et al. (2020) 
Financial 
distress 

x     4 x   Sens, Prec, F   

Abellán & Castellano 
(2017)  

Credit scoring x     5 x x   x 

Abellán & Mantas (2014) Credit scoring x     2 x     x 

Du et al. (2020) 
Financial 
distress 

x x   5 x x Sens, Prec   

du Jardin (2018) Bankruptcy x x   6 x       

du Jardin (2019) Bankruptcy x x   6 x x     

Ekinci & Erdal (2017) Bankruptcy x     4 x x Sens, Spec   

Feng et al. (2018) Credit scoring x x   9 x x Prec,  x 

Finlay (2011) Credit scoring x x   10 x x Prec, PG x 

García et al. (2019) 
Credit scoring 
& bankruptcy 

x     7     Sens, Spec   

Lessmann et al. (2015) Credit scoring x x x 25 x x PG, H, BS x 

T. Zhang & Chi (2020) Credit scoring x x   2 x   

Sens, Prec, 
GM, F, MCC, 

BM 
x 

Tsai et al. (2014) Bankruptcy x     6   x   x 

This study Stocks x x x 12  x x 
Prec, MCE, 

BS, H  
x 

*Abbreviations have the following meaning: AUC = Area Under the Curve, Acc = Accuracy, Prec = Precision, Spec = Specificity, 
PG = Partial Gini, BS = Brier Score, H = H-measure, F = F-score, FinPM = Financial Performance Measures 
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Appendix B. 

Table 6 Overview classification techniques 

Classifier 
family 

Classifier Abbreviation Tuning parameters 
# in grid 
search 

Single 
classifiers 

Logistic Regression LogR lambda = [10−3, 10−2, …, 104] all 

K-Nearest Neighbor KNN k-neighbors = [1, 5, …, 150] all 

Support Vector 
Machines 

SVM 

cost = [10−7,  10−6, …, 102] 
gamma = [10−3, 10−2, …, 10] 

degree = [2,3]                          
kernal = linear, radial, poly, 

sigmoid 

25 

Artificial Neural 
Network 

ANN 
first_nodes = [20, 40, 50, 80] 

second_nodes = [10, 20, 25, 40] 
lambda = [10−3, 10−2, 104] 

25 

Decision Tree DT complexity = [0, 0.02, …, 0.3] all 

Naïve bayes NB laplace = [0.01, 0.1, …, 100] all 

Homogeneous 
ensembles 

Bagging (DT) BagDT   

Random Forest RF mtry = [20, 30, …, 60] all 

Rotational Forest RotF 
subsets (K) = [4, 5, …, 40]                                      

iterations (L) = [5, 6, …,50] 
25 

Extremely 
Randomized Trees 

ERT 
mtry = [20, 21, …, 60]                                           

cuts = [1, 2, 3] 
25 

Stochastic Adaboost SAda iterations = [50, 150, …, 350] all 

Extreme Gradient 
Boosting 

XGB 

max tree depth = 6               
learning rate = [0.1, 0.2, 0.6] 
subsample = [0.7, 0.8, …, 1]             

rounds = [50, 75, …, 150] 

25 

Light Gradient 
Boosting 

LGB 

max tree depth = 6               
learning rate = [0.1, 0.2, 0.6] 
subsample = [0.7, 0.8, …, 1]             

rounds = [50, 75, …, 150] 

25 

CatBoost CB 

max tree depth = 6               
learning rate = [0.1, 0.2, 0.6] 
subsample = [0.7, 0.8, …, 1]             
iterations = [50, 75, …, 150] 

25 

Heterogeneous 
ensembles 

Simple Averaging SA   

Weighted Averaging WA   

Stacking Stack lambda = [10−3, 10−2, …, 104] all 

Hill Climbing 
Ensemble 

HCE   
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Appendix C. 

From this sensitivity analysis it can be deducted that Platt scaling does have its advantages and 

disadvantages. As expected, the rank measures are not really affected by calibration. The 

probabilities of both the KNN and NB algorithm are clearly better calibrated, indicated by the huge 

drop in MCE. Unfortunately, because of the fixed threshold, both Prec and Acc metrics are affected 

differently, which is disadvantageous for our comparison. Note that this difference increases 

diversity among classifiers, which seems to improve the heterogeneous ensembles (SA, WA and 

HCE). 

 
Table 7 Calibration sensitivity analysis 

 no calibration calibration 

 AUC H BS MCE Prec Acc AUC H BS MCE Prec Acc 

LogR .650 .085 .226 .643 .561 .622 .650 .085 .226 .642 .563 .622 

KNN .682 .116 .218 Inf .567 .639 .678 .113 .218 .633 .592 .639 

SVM .675 .111 .221 .631 .542 .638 .674 .111 .221 .632 .457 .641 

NN .677 .112 .219 .629 .457 .634 .678 .111 .219 .628 .375 .629 

DT .635 .067 .227 .644 .558 .629 .641 .077 .226 .644 .558 .630 

NB .623 .063 .553 Inf .414 .438 .600 .063 .242 .677 .084 .583 

RF .727 .175 .205 .593 .626 .672 .728 .174 .205 .595 .626 .670 

BagTree .726 .174 .205 .594 .619 .670 .725 .173 .205 .595 .632 .671 

RotF .698 .144 .216 .620 .630 .657 .700 .141 .214 .616 .612 .662 

ERT .722 .169 .206 .598 .607 .667 .722 .168 .207 .599 .622 .665 

Ada .724 .171 .208 .600 .615 .666 .723 .168 .208 .605 .631 .672 

XGB .720 .165 .207 .599 .605 .665 .717 .167 .207 .603 .612 .662 

LGB .713 .156 .209 .605 .632 .657 .713 .156 .210 .606 .618 .663 

CB .721 .166 .206 .597 .613 .663 .719 .166 .208 .600 .610 .666 

SA .728 .177 .209 .606 .613 .674 .724 .172 .212 .613 .676 .667 

WA .728 .180 .207 .599 .615 .673 .725 .181 .211 .610 .669 .668 

Stack .689 .141 .217 .624 .663 .672 .683 .132 .219 .630 .659 .669 

HCE .727 .175 .205 .593 .638 .672 .728 .174 .205 .595 .682 .671 

 

 

Appendix D. 

Following link contains the data set used for this study, the r-code, all stored predictions and 

performance results: 

 

https://github.ugent.be/jjdpover/Ensembles-in-stock-price-prediction.git  

https://github.ugent.be/jjdpover/Ensembles-in-stock-price-prediction.git
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