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FOREWORD

Describe own contributions, data, and confidentiality of data.
The data used is either simulated or completely public. For the image datasets the sources
are quoted in the relevant section, and the creation of the simulated datasets in appendix
E and section 3.3 is also described there or in the corresponding appendix. Regarding what
contributions are my own, the first chapter is by large based on or at least inspired by the
literature. Section 1.1 arose from an attempt to come up with a unified definition of the
uncertainties, in terms of tangible quantities, namely observed and predicted targets, that
can be compared between very different models irrespective of the parameters they use or
don’t use. Certainly if we want to arrive at a decomposition into two non negative and non-
overlapping complementary parts, it seems necessary that both contributions share the
same ’units’ i.e. live in a same space and can be added and compared to each other, which
seemed impossible when epistemic uncertainty is defined in terms of model parameters.

I should mention in particular [1], [2] ,[3], [4] (and [5], [6] for the section on BNN) as sources
for the theoretical chapter, and [4] and [2] as sources of inspiration for the experiments in
appendix E. For the results in chapter 3 we wanted to combine methods from [7] and [8].

Notation

I’ve tried to favor readability by not pursuing utter consistency in notation throughout
the thesis. Vector arrows are written only when we want to stress the vectorial nature
or when necessary to avoid ambiguity. For example, we use ~p() in appendix E to col-
lect the conditional probability p(|) of each class  = 1, . . . K at that point in feature
space in a single vector . Here  is not always written out explicitly as a vector, but ~p
is so we don’t confuse it with the marginal probability p() at that same point, which is
p() =

∑

 p(, ) =
∑

 p()p(|) =
∑

 p()( ~p())

In general, capital letters will denote random (scalar) variables, small letters (with an arrow
only when necessary to avoid confusion and when the distinction is relevant) vectors. For
example, the -th observation for the random variable Y is often one hot encoded into y,
where the  still denotes the observation number, and has components y,j which are 0 or
1 depending on whether the category of Y is class j or not, y,j = δY,j. (We sometimes use
the Kronecker symbol δ,j as a shorthand for 1=j).

Parameters are usually denoted by greek letters, and their vectorial nature is implicit unless
stated otherwise. We will often denote predicted values by hats, and averages by overbars.
For matrices/tensors I use doublestroke (or mathbbol) font, and for lists of parameters (like
neural network weights), or datasets consisting of a set of points each with a feature vector
and scalar outcome) I use mathcal, ie somewhat cursive.



Abbreviations

• GMM: Gaussian Mixture Model

• (B)NN: (Bayesian) Neural Network

• ID/OOD: In/Out of Domain

• D.E.: density estimation

• RV: Random Variable

• PDF : probability distribution function: probability density. (not the cumulative distri-
bution!)

• KL: Kullback-Leibler divergence : an asymmetric ’distance’ measure (the quotes be-
cause symmetry is required to speak of proper distance) between two probability dis-
tributions, defined as KL(p()||q()) =

∫

∈X dp() log
p()
q() where the integral can also

be replaced by a sum for a discrete state space X .

• JSD: Jenssen Shannon Divergence: Symmetrized version of the Kullback Leibler diver-
gence that takes an arbitrary number of probability vectors, and computes their KL
divergences wrt to the average probability vector. Note that this can be rewritten as
the average entropy minus the entropy of the average distribution.

iii



ABSTRACT

The initial objective of this work was to use the method of conformal cautious classification
to eliminate points of high epistemic uncertainty (on the edges of each class) in order to
improve overall classification performance on the remaining points. However, we soon
found that this approach is limited, as it neglects other sources of uncertainty (aleatoric,
model variance, and also bias for restrictive models) by assuming that points at the edges
of each class are those with highest uncertainty, while this needn’t be the case. This
approach can be very useful (as we try to illustrate in section 3.3) in situations where
distributional uncertainty is dominant, and other components of epistemic uncertainty such
as bias and model variance are less important. But one of the main problems is that a larger
uncertainty, if it is epistemic in nature, needn’t translate to a lower accuracy. Especially for
artificial problems where the test data is not fundamentally different from training data,
this approach will typically not be rewarded at all in terms of accuracy, as it will typically
be the spatial inhomogeneities in aleatoric uncertainty that will determine what happens to
accuracy when we reject the peripheral points. But that by no means implies that we were
any less uncertain about our extrapolations a priori. In more realistic situations, where the
test set can only be approximated by a training set collected under different circumstances,
it may be crucial to avoid overconfident predictions.

Because of this limitation to distributional uncertainty on the one hand, and because the
method above assesses only overall performances (while predictive uncertainty can depend
strongly on the location in feature space where we find an instance) on the other, afterwards
we also tried to visualise the different components of uncertainty in each point of feature
space, be it for a low dimensional toy example. We will draw ensembles of training sets
and study the variability in predictions for different methods of density estimation. I will try
to briefly present and comment some of the results from each part.
The outline of the thesis is then as follows: In chapter 2, we introduce some of the
tools used from the literature. The following chapter (which has been transferred eventually
to appendix E) presents some of those visualisations we tried after the results from the
conformal classification turned out to be of limited use. Namely, for a simulated data set
in two dimensions where each class consists of a Gaussian mixture, we create maps of
what could be candidate indicators of epistemic, aleatoric and total uncertainty. Finally, the
last chapter is concerned mainly with the application of the method of cautious conformal
classification to a few publicly available image datasets. At the end of that chapter we also
experiment with the exclusion of points of high aleatoric uncertainty.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In this thesis we will take a closer look at different components of predictive uncertainty.
This distinction is important because the best way to reduce such uncertainty depends on
its nature. A use case could be for example, a biologist that intends to identify bacteria
using MALDI-TOF mass spectroscopy. He would like to know whether the main source of
uncertainty is due to doubt between very similar subtypes of a same genus (aleatoric),
due to the limited number of examples of a certain subtype (epistemic), or because the
bacterium is simply unlike any other seen before (distributional). When we find uncertainty
to be dominated by the so-called aleatoric component, there is no point in collecting more
training instances to learn from. Also widening the hypothesis space and training models
with more parameters is completely useless in this case, as we can be sure that we cannot
do better with the data at hand unless we add new, independent, more predictive features.

Another important source of uncertainty, though harder to quantify, is that that comes with
the extrapolation of distributional assumptions beyond the original domain of the training
data. The danger of basing conclusions on p(y|) in such a situation is that we are do-
ing classification ’by elimination’, classifying an instance (sometimes with very high confi-
dence) into the least unlikely class, however unlikely that class may be. Especially in certain
safety critical applications, it can be preferable to flag an instance as ’unlike anything we’ve
seen before’ (eg. to be analysed in more detail, or manually) rather than classifying it into
the least unlikely class without any further verification. For the same reasons, it can also be
valuable to know when several classes have a large probability, rather than choosing the
most likely of them and ignoring how likely this actually was.

Conformal prediction offers a way out of this by determining for each class individually
how safe it is to exclude a certain class for a given instance, allowing one to attain a
predefined confidence level. In [7] a method is put forward to achieve this confidence level
in a distribution free and finite sample fashion, and we will apply this method to a few
publicly available image data sets. To do so we have to pre-process the data to convert it
from pixel-wise RGB values into a more manageable number of more meaningful features,
for which we then need to perform a density estimation in many dimensions. We will try
several parametric and non-parametric methods for this, and compare the results.

By building a simple generative classifier and studying the evolution of a series of per-
formance measures with this confidence level, we hope to find out when exclusion of the
most anomalous points can be beneficial to overall performance. Because we will find
this method especially suited for so-called distributional uncertainty and less for situations
where other contributions are also important, we also add some experiments focusing more
on the quantification of those other contributions in each point of predictor space.



CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

In the first chapter (2), we will discuss how the different contributions of uncertainty are
defined in the literature, and try to find some common ground between them in order to
work towards a more general definition. We see that it is not so easy to do this in a sense
that is free of all context, and propose to use the bias-variance-noise decomposition as a
blueprint. However that definition is only of theoretical interest, as it requires the true pop-
ulation parameters and predictive distributions of Ŷ. A more pragmatical definition comes
from the Bayesian literature, and can be used if we can generate a sample of parameter
values.

We will also argue there and in the next chapters why we think it is hard to avoid translation
of uncertainties about parameters to corresponding uncertainties about predicted targets,
if one is to compare models with very different parametrisations, or epistemic to aleatoric
uncertainty in each point. This chapter furthermore draws some attention to the context
of Bayesian Neural networks where most of the literature on this topic comes from, and
finally we devote a section to the definition and interpretation of the conformal prediction
framework in the context of cautious classification in section 2.3.

Then we had a chapter (eventually transferred to Appendix E) that was not part of the
original assignment, but originated as a result of some experiments focusing on the quan-
tification of the impact of sample variance in the training set on our predictions throughout
feature space for generative models using different types of density estimation. We think
these fill a void that would otherwise be left by using the method of cautious classifica-
tion, because the latter is especially useful in settings where we can expect a significant
dataset shift (difference between training and test data), that we unfortunately rarely had
in our rather pedagogic datasets. In this App. E we also try to quantify uncertainties on an
instance-by-instance basis, i.e. at a given location in feature space. Because the method
we apply in the last chapter produces only overall performances, it seemed like an inter-
esting addition to visualise also the variation of uncertainties throughout feature space (for
a low dimensional toy dataset) in this separate experiment. By looking at the evolution as
the training set grows, we can focus in particular on the effect of model variance.

The last chapter contains the results of the main topic, namely how the rejection of points of
high distributional uncertainty could influence classification performance. We also add an
additional experiment to compare with the effect of rejecting also points of high aleatoric
uncertainty, which appears to be much more beneficial for accuracy (as can be expected,
since only aleatoric uncertainty has a direct link to accuracy).

Finally, a note about the appendices: In the applications we obtain a lot of figures, and it
would be impossible to include these in the main text given the space constraints1. More
details on some of the other sections (eg. the VGG network, and the Mclust package) can
also be found each in a separate appendix.

1Even for the appendix, it would be too much to include all figures, so I have uploaded three zipped folders: one
with all maps, organised by dataset, by density estimation method, by uncertainty measure and for each size of
the training set, and another with all performance measures for each of the image datasets in different settings.
A third folder contains some figures related to detection of new classes in the presence of bias and overlap that
were left out of Appendix B.

2



CHAPTER 2

THEORETICAL CONTEXT

2.1 Epistemic and Aleatoric uncertainty

2.1.1 Introduction

Although I certainly hope to clarify this distinction more precisely over the coming pages,
it is difficult to give a quantitative definition of these concepts that is really independent
of the descriptive model we choose. For example, whether it is Bayesian or non-Bayesian,
(non-)parametric, regression/classification, generative/discriminative, and so on.

Informally speaking, we could say that epistemic uncertainty (=uncertainty about the
model) is uncertainty that could in principle be reduced by sampling infinitely densely the
entire feature space.
In contrast, there’s also uncertainty that can only be removed, if it can removed, by collect-
ing additional features. That is intrinsic or aleatoric (=uncertainty about the data).

Figure 2.1: From left to right: In the first figure, in spite of knowing the optimal class
boundary, we have aleatoric uncertainty about the actual label at the point marked ’?’
because classes overlap in that region. In the second figure, we are also unsure about that
optimal boundary, and this epistemic uncertainty could be reduced if we had more data in
that boundary region.
In the third and fourth figure we see how adding features can reduce aleatoric uncertainty,
because the class overlap could disappear. Figures taken from [1].

The figures 2.1 (taken from [1]), illustrate the two types of uncertainty. In the first figure
from the left we see how, even knowing the optimal decision boundary (=the Bayes classi-
fier), there still remains aleatoric uncertainty about the labels because the classes overlap.
In the second figure we see how epistemic uncertainty on the other hand arises due to
uncertainty about the location of that optimal boundary itself.

The 3rd and 4th figure on the right illustrate how the aleatoric uncertainty (overlap) de-
pends on the predictors that are used. In general, adding features can convert part of the
aleatoric uncertainty into epistemic uncertainty, as adding dimensions means new param-
eters are to be learnt.
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In regression, and for squared loss, a similar distinction would be that between the epis-
temic uncertainty as expressed in the confidence band, and a prediction band which repre-
sents the total uncertainty. The latter is then the combination of this epistemic uncertainty
about the true line and an additional aleatoric uncertainty (noise) due to the spread of out-
comes around the true line.
There, aleatoric and epistemic uncertainty can easily be expressed on the same scale as
the target y, because an uncertainty in parameters θ is readily translated to a correspond-
ing uncertainty in outcome using ŷ = ƒ (θ̂, ) (where the hats denote predictions).

But for classification we don’t always model ŷ directly as a function of the parameters,
and it can be more ambiguous to translate the uncertainty about parameter values into a
corresponding uncertainty about target values1. This is however necessary if one hopes to
obtain a decomposition of the total uncertainty as a sum of these two components, or to
compare one component to another in a given point of feature space .

Perhaps it’s best to start with the very familiar shape these concepts take in some particular
situations. We will first discuss the bias-variance-noise decomposition for squared loss in
univariate regression in a frequentist setting, which can be probably be seen as the simplest
decomposition of uncertainties, where additivity is guaranteed by the law of total variance.
Next we briefly point out some complications that arise in the classification context, to
arrive at a unified description in terms of an arbitrary loss function. This also reveals how
the parallel with bias-variance-loss is not limited to the particular case discussed before, but
might serve as a blueprint to define the uncertainties in a more general fashion. Finally, we
also point out some differences between the frequentist and Bayesian description.

2.1.2 Frequentists uncertainty decomposition

Regression

Considering for a moment the very simplest situation of univariate regression of Y on X

with squared loss, we will immediately arrive at the decomposition of the mean squared

error MSE2 = E
�

(ŷ − y)2
�

in terms of bias, variance, and noise. While it’s natural to think
of epistemic and aleatoric uncertainties in this context, it is important to stress that this is
already a specific case, and interesting to note that bias, variance and noise can also be
defined in a much more general setting, be it without the simple additivity that we have
grown accustomed to for the squared loss. More on that in a moment. First let’s consider
in more detail the case of squared loss. In the Bias-Variance decomposition the respective
contributions then correspond to squared errors or variances themselves2:

We leave the conditioning on X as implicit for notational convenience, keeping in mind that
these quantities have a local meaning in each point of feature space X. The LHS involves a
double expectation, a different one of which remains in each term on the RHS (cfr comments

1For example in logistic regression, we model the logit p(y=)
1−p(y=) as a linear function of predictors, and then

predict ŷ() = rgmxy p(y|).
2If we bring the bias to the LHS we have 3 variances: total-bias=Vr(Y − Ŷ |X), epi=Vr(Ŷ |X) alea=Vr(Y |X).

But for unbiased models we can consider this a decomposition of total variance into model variance and noise.

4
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below).

MSE2 = E
h

�

Ŷ − Y
�2
i

=
�

E(Ŷ) − E(Y)
�2

︸ ︷︷ ︸

Bs2

+ E
h

�

Ŷ − E(Ŷ)
�2
i

︸ ︷︷ ︸

Vrnce

+ E
�

(Y − E(Y))2
�

︸ ︷︷ ︸

Nose

(2.1)

= Bis2 + Vr(Ŷ)
︸ ︷︷ ︸

Epi

+ Vr(Y)
︸ ︷︷ ︸

Alea

Each term on the RHS stems from a different kind of error/limitation:

1. First, the bias stems from having too limited a hypothesis space: Given certain fea-
tures, our hypothesis space does not accommodate models that are flexible enough
for the expected prediction E(Ŷ) to coincide perfectly with the expected outcome E(Y)
in all points X 3.
Here the former expectation, E(Ŷ), is over all possible training data sets D of size N

while the latter expectation (E(Y)) is over the true distribution of Y at that X.

2. Second, the variance stems from the finite size of our training data set. Sample vari-
ance causes differences in the optimal model parameters that are selected, which
leads in turn to variance in the predictions by the model4. In general adding more pa-
rameters will require also more data to keep the variance in the predictions Ŷ in check,
and a tradeoff between flexibility and robustness has to be found that minimizes the
total prediction error.

3. Finally, the intrinsic noise stems from not having the right features (if such even exist)
to discriminate between different outcomes Y at an exact same input value X. It is
the degree of variation in Y that is left unexplained when using only these features,
even with unlimited sample size and the wildest of hypothesis spaces, because no
deterministic function of two equal X can explain why different Y’s are observed. This
component has expectation zero, because any nonzero expectation would be part of
the bias and could be adressed by a more complicated function of X.

Only the third and last contribution is what we consider aleatoric uncertainty, and the first
two fall under the nomer epistemic uncertainty. If we restrict ourselves to unbiased models,
we can conclude that epistemic uncertainty is the component that shrinks when the sample
size increases, while aleatoric uncertainty is what remains in that limit5.

Note that, in contrast to the situation for a Bayesian model (cfr. next section), the
uncertainties here are not conditional on an already observed dataset D. Rather,
an expectation over all datasets of a given size N (sampled from the joint distribution for
some fixed true value of the model parameters θ) was required to arrive at the expression
for bias [EP(Y |X)(Y) − EP(D)(Ŷ)]2 and model variance VrP(D)(Ŷ) = VrP(θ̂)[ƒ (θ̂, X)].

3think of approximating a parabola by a straight line: the sign of the bias changes twice.
4In case of non parametric models this may get a local meaning as well, otherwise it is still possible that a given

uncertainty in parameters has a very different impact on predictions in one point of feature space than in another.
Uncertainty about a slope would have a larger impact far away from the center of the data cloud; for example.

5Note how this defines aleatoric uncertainty as a constant, and means total approaches this constant from
above as epistemic shrinks. While we are used to having such a constant aleatoric component σ2 as a lower
bound for the total predictive uncertainty, we will see that this view becomes untenable in situations where the
conditional variance Vr(Y |X, θ) depends also on θ, as for classification. While we can still write down a law of total
variance, none of the terms will be constant, and this definition of aleatoric uncertainty loses its familiar meaning
when also epistemic uncertainty is present.

5
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Because in frequentist statistics the observed dataset D uniquely determines the
fitted model parameters θ̂MLE and predictions Ŷ ≡ ƒ (θ̂MLE, X), the variability here
only comes from differences in the finite dataset D that is drawn. In the next
section, we turn things around and model the reduction of prior uncertainty about model
parameters by the observation of one particular dataset D. The uncertainty about these
model parameters that still remains after observation, is then epistemic.

Classification

Another example of the distinction between epistemic and aleatoric uncertainty, in classi-
fication, could be how performing thousands of coin tosses to establish that the coin must
be very close to fair (θ ≈ 0.500 to great precision) wouldn’t help you one bit in predicting
the next outcome. The fact that it would have helped you quite a lot when you’d found
θ ≤ 0.001 because the variance in Y for known θ is θ(1 − θ) shows how the value of θ
determines the aleatoric uncertainty in Y. There is thus a kind of hierarchy where we need
epistemic uncertainty to be low, θ̂ ≈ θ0 before even being able to quantify the amount
of aleatoric uncertainty. Whether the latter is also low then depends not on the precision
with which we know θ but on its actual value. This is however perhaps a feature that is to
some extent typical of classification with a bi- (or multi)nomial likelihood, where the vari-
ance p(1− p) depends directly on the parameter p that also determines the expected value
E(Y), thereby tying mean and (co)variance to one another.

Namely, in the previous (regression) example, we were lucky that the noise level did not
depend on the model parameters, as we had Y ∼ N(β.X, ε2) with ε independent of X and
Y. We could consider heteroscedastic scenarios for regression as well, but I think it is an
important point that this is not something optional for classification: it will never be possible
to think in terms of ’confidence band’ plus independent noise, because the uncertainty in
the mean implies uncertainty about the noise by itsself, as the noise depends on the mean.
Already for this very simple classification example, both epistemic and aleatoric uncertainty
depend on the true value θ0 of θ. In light of the above discussion, it feels more appropriate
to discuss this in the next section in a Bayesian context, where we will derive a PDF p(θ|D)
for the true parameter value θ given the observed data and a prior probability p0(θ).

For now it is only important to mention that we will typically not express the uncertainty
about a variable with a discrete state space in terms of a variance, but rather in terms
of the Shannon/Gibbs entropy H(Y) := −

∑

y∈Y py logpy := H(p(Y))6. In information the-
ory − logp is a measure of surprise upon observing state  (unprobable means large sur-
prise), that arises from the demands that it be positive and additive for independent events
(p(, y) = p()p(y) ⇒ logp(, y) = logp() + logp(y) ). We can then see H(p(Y)) is the
expected amount of information we’ll obtain when making an observation and learning the
state, or alternatively, the uncertainty we had before we made the observation. This is the
uncertainty associated with the true distribution of Y, without any model being involved.

6Here (in exception to our notation conventions) the lowercase letters y denote a particular value of the random
variable (RV) Y, and run over its state space Y. With a slight abuse of notation for the sake of clarity, we will use
here the same symbol H to denote entropy explicitly as a function of the probability distribution p(Y) of a discrete
random variable Y, as to denote it as function of that random variable Y, because we will usually tend to write out
explicitly the probability distribution as an argument for H instead of the random variable.
A second notational shortcut we will use sometimes, in the case of a random variable Y with a discrete state space
 = 1, . . . , K, is to collect the probabilities p(y) for each state y of Y in a vector ~p, where the -th component then
contains p(Y = ). That way, we abbreviate the entropy of Y to H[ ~p] .
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Training a model consists in specifying a loss function L(y, ŷ) which depends on the model
parameters through the predictions ŷ = ƒ (θ, ), and then minimizing the summed loss
L(θ) :=

∑

 L(y, ŷ(θ)) between predictions ŷ and observations y. For a classification model
with mutually exclusive classes, we typically use cross entropy loss, which corresponds to
the (negative) multinomial loglikelihood, log L(y, ŷ) =

∑

,j y,j log ŷ,j, where the class y has
been one-hot-encoded7 and ŷ is the prediction for that one hot encoded vector, i.e. the
vector of predicted class probabilities in the point .

Here we recognize the cross-entropy S( ~p, ~q) = − ~p. log ~q, (logarithm applied element-wise)
between two discrete probability vectors ~p and ~q. Up to a term H(p), this is just the relative
entropy −

∑

 p log
q
p

which is a discrete-space analogon of the so-called Kullback-Leibler
divergence, an often used ’distance’ measure between two probability distributions. That
means that the parameters θ that minimize this loss function, in the absence of bias, would
be the ones for which we predict in each point  of the training set the true class probability
p() = E(Y() at that point of the training set.

To end this section, we first attempt at a more general definition of epistemic and aleatoric
uncertainty that unifies the classification and regression cases in terms of a general loss
function, to point out why this is more complicated.

General setting

Defining overall uncertainty may be done in different ways. In general we will want to know
how much the observed (y) and predicted (ŷ) outcomes could typically differ. We’ll need
to choose some metric on Rn (where y, ŷ ∈ Rn) to express how big a deal we consider each
possible discrepancy between y and ŷ to be. This metric is called a loss function, L(ŷ, y),
and we usually use a different one for classification, where y, ŷ are discrete and bounded,
than for regression, where y, ŷ are continuous and unbounded. If we have a distribution
over y, ŷ, we could then quantify uncertainty in terms of expected loss between y and ŷ8.

Domingos et al. review in [9] the attempts to generalize the well-known bias-variance
decomposition (with its important implications for model building) to other loss functions.
They find that attempts starting from additivity of bias,variance and noise often end up with
these notionas having a different meaning, while starting from a consistent definition im-
plies non-additivity in general. Loosely speaking: if we replace the variances (MSE loss be-
tween observed resp. predicted quantities and their expectation) in (2.1) by a different loss
function, we will no longer have an equality. The paper discusses some (loss-dependent)
weights that can be used for each term so that the equality is restored (for particular loss
functions) while each term maintains its meaning.

The reason we mention this paper here, is because it shows us how a decomposition into
two positive, non-overlapping contributions is not possible without changing the meaning
of those concepts when the loss used is not MSE (eg for classification). But that also means
that simply defining epistemic uncertainty as the difference of total and aleatoric in such

7(~y)j = 1 if y is of class j and 0 for other j
8We need to distinguish here already the Bayesian framework where we are decomposing the uncertainty of the

prediction in a new point given a training set D, not the expected loss between observed y and predicted ŷ. We
will come back to this in subsection 2.1.3, after introducing very briefly the main concepts of Bayesian statistics.
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a case will in general not result in the generalised model variance (as defined here below)
that resulted from this difference in the squared loss case.

Even if we can not expect both contributions to add up to the total uncertainty in general,
this definition would at least allow us to compare their size in a given point, which was not
so obvious if the epistemic uncertainty were defined in terms of uncertainty about θ. Such
a comparison can be important to decide on the measures best taken to further reduce the
uncertainty in a given region, as these depend on the nature of the dominant contribution.

First we define the following quantities (conditioning on  left implicit everywhere):

• the (Bayes)-optimal prediction yo = rgmint Ep(y|)[L(y, t)] is the one that would min-
imize the expected loss with respect to the observed outcomes y. It is the ’central’
outcome, where central reduces to mean, median and mode for squared, absolute
and 0/1 loss respectively.

• the main prediction (cfr. [9]) ym = rgmint Ep(D)[L(y′, t)] is the one that would mini-
mize the expected loss with respect to the predictions ŷ produced by different datasets
D of fixed size. This is the ’central’ prediction in the same sense as before.

In terms of these quantities, we can then express the bias, variance and noise as follows:

• The expected loss of a prediction wrt the main prediction E[L(ŷ, ym)], then
measures the uncertainty in the prediction. This is what we’ll call the model vari-
ance and is part of epistemic uncertainty. It shrinks as the number of (independent)
training instances grows9.

• The expected loss of the outcome wrt to the optimal prediction E[L(yo, y)] on
the other hand, measures the noise or intrinsic variance present in the observed
outcome at fixed ~. This is what we’ll refer to by aleatoric uncertainty10.

• Finally, the loss between optimal and main prediction, L(yo, ym) measures the
bias. (Note that this is often called squared bias, but here we have not yet explicited
the loss function to be squared loss and we prefer to give bias the same dimensions
of a loss.) This also pertains to the epistemic uncertainty11.

Only for squared loss do the above 3 contributions nicely add up to the expected12 total
loss between true and predicted value L(y, ŷ).

We think the above definitions of noise and model variance would be good candidates for a
model-independent definition of aleatoric resp. epistemic uncertainty. But that means we
have to give up the additivity, and furthermore the definition is only of theoretical interest,
as we don’t usually know the distribution of observations and predictions. In practice we will
have to use a more pragmatical, ensemble-based and additive definition from the Bayesian

9Note that the expectation here is with respect to the distribution of all datasets of fixed size that could be
drawn from the true joint distribution PN(D) =

∏N
=1 P(~, Y).

10Here the expectation is with respect to the conditional distribution P(Y |~)
11And here the expectations (one of each) are inside the loss function
12with respect to both distributions this time
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literature, but we want to stress that those are different from the familiar notions of noise
and model variance given above.

Finally, there is also an out of domain (OOD) or distributional component in epistemic
uncertainty (’dataset shift’), which is probably the hardest one to quantify, as it arises
because we can’t be sure that the model learnt on in-domain (ID) data extends arbitrarily
far outside of that domain (OOD). This is most obvious when we use a parametric model,
and all observations, however far away they may be, are used in determining the best
parameter values. When these parameter values are then used to predict the behaviour
also in very different regions, this entails the assumption that the same values remain valid
everywhere, and that is a big assumption. That is, this distributional uncertainty arises
only when we assume a description (or elements thereof, like the values of certain
parameters etc.) learnt in one region can also be applied in regions where it is yet
to be confirmed.

Here we see how for flexible (unbiased) models distributional uncertainty could also be
seen as a more local extension of the model variance component: When we consider
each region to have its own local parameter values, evolving smoothly over space, then a
sufficient training data density will be required to have a reasonably precise idea of the
values in that region, i.e. to limit local model variance13. A model that is to be free of
distributional uncertainty should base its prediction on enough local training data and the
lack of that also implies the lack of certainty about the parameters in that region.

This brings us quite naturally to considering non parametric descriptions (Gaussian Pro-
cesses, Kernel Density Estimation, k-Nearest Neigbours,..) as a way to mitigate this form
of uncertainty14. For these models with locally learnt ’effective’ parameters, (an increased)
model variance appears to replace the distributional uncertainty that came with the (now
relaxed) distributional assumptions. We will come back to this in Appendix E.

While these models have smoothness parameters (which may still imply some degree of
distributional uncertainty or bias), they don’t assume a single distribution has global valid-
ity, and that was just the cause of distributional uncertainty15.

2.1.3 Bayesian uncertainty decomposition

13When bias and noise are defined in each point ~ and can be expressed in terms of observation y and prediction
ŷ only, without appeal to θ and its PDF, then why should we not attempt the same with model variance? It seems
preferable over a quantification in the entirely unobservable θ space, as a reparametrization might still give
the same predictions but correspond to a very different (hypervolume in/dimension of) parameter space. For
example in a high dimensional setting, or in the presence of strong collinearity, uncertainty about θ needn’t imply
uncertainty about ŷ, prediction <> inference. Therefore I think uncertainty in ŷ rather than in θ̂ would be the least
ambiguous way to define model variance. Cfr also introduction Appendix E. If we want to add up epistemic and
aleatoric to total uncertainty, they have to have to live in the same space: y and ŷ have the same units, whereas
y and θ do not (necessarily).

14For example, Gaussian processes incorporate the local data density into the uncertainty in their predictions
and the model will properly account for the uncertainty out of domain because the mean is a local parameter that
is influenced only by its correlation with neighbouring points.

15While using non parametric methods allows us to give more importance to nearby data, for non Bayesian
models we still have to allow the model not to to predict anything in certain points, in order to really avoid far away
points from being able to influence predictions. We will discuss such a method, cautious conformal classification,
later in this chapter. Otherwise, the model could still base it’s prediction on far away points when no closer ones
are available (eg kNN classif.). Bayesian models resort to prior information when no nearby data is available.
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Bayesian Models

The Bayesian paradigm is intertwined with the definition of conditional probability

P(A|B) =
P(A,B)

P(B)
=
P(B|A)P(A)

P(B)
=

P(B|A)P(A)
∑

∈A P(B|A = )P(A = )
∼ P(B|A)P(A) = LB(A).P(A) (2.2)

where the sum runs over the entire state space A of the random variable A, and LB is the
likelihood of parametervalues B after having observed A.
While frequentists do not deny the validity of this expression per se, they operate under the
assumption that certain quantities (the underlying unobservable parameters that describe
the distribution of the data, like a true population mean etc.) can only appear on the
right hand side of the conditioning bar |. They use the word ’likelihood’ to stress how this
conditional probability is no longer a probability when seen as a function of the variable
being conditioned upon.

A Bayesian on the other hand, will not hesitate to use (2.2) to move just about any piece
of information he/she pleases to the left hand side of that conditioning bar, and can assign
a probability to just about anything, but needs to specify the a priori probability of the true
parameter values p(A) to do so. This is the object that the frequentist cannot deal with.
The Bayesian, while agreeing that a prior can be somewhat awkward to decide on, insists
that this a problem of luxury, because at least now we are able to specify our prior (lack
of) knowledge, rather than assuming all parameter values to be a priori equally likely, as a
(non-penalised) MLE estimate does.

On top of that, in the frequentist case, once we determine the most likely values of the
parameter, the likelyhood of the data will become very small when we have more and
more data, because hardly any assumption is ever exactly true. When you have an initial
distribution over parameter values, and update this as data keeps coming in, you will not
necessarily end up discrediting your original hypothesis as not being true to arbitrary pre-
cision. So working with a distribution is also a convenient way of keeping track of a range
of viable alternatives.

Say we have decided upon a model hypothesis M1, which states that data is distributed
according to some (unknown) member of a parametric family ƒθ indexed by a parameter
vector16 θ and also decided upon a prior p0(θ). Then we use (2.2) to obtain

p(θ|D) =
p(D|θ)p0(θ)

p(D)
=

p(D|θ)p0(θ)
∫

dθ p(D|θ)p0(θ)
(2.3)

Here the denominator is at times an irrelevant normalisation constant, but not always so!
Under this model assumption, the likelihood p(D|θ) takes a certain form, and the quantity
p(D) =

∫

dθp(D|θ)p0(θ) in the denominator, called the evidence, will have a particular
value. Had we chosen another model hypothesis, the likelihood would have been different,
and we would have a different p(D). That is because this is in fact not p(D), but really
p(D|M1) resp p(D|M2), and for one model it is more likely to observe the data than for
another. This means we can use the ratio p(D|M1)

p(D|M2) to answer the question which model (M1

16we will drop the vector arrow for notational convenience here, but unless stated otherwise θ represents an
arbitrary number of parameters in what follows
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or M2) gives the best description of the data, as the likelhood D(M1) = p(D|M1) will be
larger accordingly. Again, we could specify a priori probabilities for M1 and M2 to decide
which model is more credible after seeing the data, i.e. which has the larger p(M|D). The
factor p(D|M1)

p(D|M2) by which the a priori ratio p(M1)
p(M2)

is multiplied to get

p(D,M1)
p(D,M2)

=
p(M1|D)p(D)
p(M2|D)p(D)

=
p(M1|D)
p(M2|D)

is called the Bayes factor, and it is the amount by which observing D changes our opinion
about the plausibility of M1 and M2, respectively. But this is just the ratio of the denomina-
tors in (2.3) for the different models M1 and M2.

Now, once the posterior distribution (2.3) is known, we can predict any quantity that de-
pended on the true value of θ by weighing all viable alternatives each with their respective
probabilities and integrating out θ. For example, the probability of observing a value y′ at
a new point ′ is given by the predictive posterior

p(y′|′,D) =
∫

dθ p(y′|′, θ)p(θ|D)dθ (2.4)

Uncertainty Decomposition

In Bayesian statistics, by considering the predictive posterior as the mixture (2.4) of
components of fixed θ (each having only aleatoric uncertainty), we can decompose the
variance as the average variance ’within’ each component (aleatoric), plus the variance
stemming from the mixing ’between’ these components (epistemic). Observing data is
then supposed to ’thin’ the mix of components, while the aleatoric variance in the surviving
components remains. Starting again from a law of total variance for the predictive posterior
(2.4) and using the subscript p(θ|D) to denote expectations / variances over the model
posterior, we have

Vr(y′|′,D) = Ep(θ|D)[Vr(y′|′, θ)] + Vrp(θ|D)[E(y′|′, θ)] (2.5)

Here we see how the variance in the outcome y′ at a new point ′ can be decomposed
into a sum of unexplainable variance (variance that remains in spite of θ being known:
aleatoric), and explainable variance (variance in y that would disappear if only we would
know the exact value of θ: epistemic). In terms of information, say we knew the slope and
intercept of a line (i.e. θ), we still don’t know the residual in each observation. So part of
the info in the data y was not in the parameters θ, and that part is aleatoric.

So the aleatoric component is defined here as the variance remaining if we assume that
the right parameters are used (the expectation of a conditional variance in the first term of
the RHS of 2.5), and the epistemic is the variance of the posterior mean (the second term
in the RHS of 2.5)17.
Note how this is different from the situation we had before, because the uncertainty now
no longer refers to an expected discrepancy between what’s to be observed and what will

17In section 2.2.3 we mention in more detail how this can be estimated in practice in Bayesian Neural Networks.
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be predicted18, but to the spread of predicted values19. What used to be a distribution of
predictions (one for each training set) is now a single predicted distribution for one dataset.
The aleatoric component now also changes as our knowledge p(θ|D) does.20.

In the above we were able to use the law of total variance because we considered variances
as a measure of spread. However, when we consider entropy instead, we do not have such
an additive ’law of total entropy’. In the BNN literature, the total and aleatoric uncertainties
are then still defined in analogy with the above (i.e. marginal and conditional entropy), but
the epistemic component is then defined simply as the difference between them. While
this no longer allows us to interpret the epistemic uncertainty as an entropy by itself, it
becomes the mutual information between the outcome and the parameters. (cfr. for
example [2] and [10]). Leaving out the conditioning on :

H(Y) = Eθ[H(Y |θ))] + (H(Y) − Eθ[H(Y |θ)]) := H(Y |Θ) + [H(Y) − H(Y |Θ)] (2.6)

where we have now also written Θ to denote that this is a random variable and that an
averaging Eθ over its distribution is implicit. To see that this still has some meaning apart
from just the difference between total and aleatoric uncertainties, keep in mind how H(Y)
expresses the amount of information we expect to learn from observing Y, and likewise for
the joint information H(Y,Θ). Using the definitions (and writing integrals over all values θ

of Θ as unspecified sums for readability), we will write the information in Y that was not
already in Θ as the difference H(Y,Θ) − H(Θ):

H(Y,Θ) − H(Θ) = −
∑

θ,y

p(y;θ) logp(y;θ) +
∑

θ

p(θ) logp(θ))

= −
∑

θ,y

p(y;θ) log
p(y;θ)

p(θ)
= −

∑

y,θ

p(θ)
�

p(y|θ) logp(y|θ)
�

= Eθ
�

H(Y |θ)
�

= H(Y |Θ) := Ae = H(Y; Θ) − H(Θ) (2.7)

Since this is just how we defined the aleatoric uncertainty (information in the labels that
wasn’t already in the model parameters), and because we identify the total uncertainty
in the outcome Y with H(Y), the remainder H(Y) − H(Y |Θ) in (2.6) must be epistemic (by
definition for now). Because of (2.7) we now see that this can also be written as

Ep ≡ Tot−Ae = H(Y)− EθH(Y |θ)) = H(Y)−H(Y |Θ) = H(Y)−H(Y,Θ)+H(Θ) := (Y; Θ) (2.8)

or the part that we counted double by adding the information in Y and that in Θ, ie their
overlap in information. This is called the mutual information between Y and Θ. The last
expression shows us how this definition means more than simply total minus aleatoric:
The epistemic uncertainty is the part of information in the parameters that was not

18before we decomposed that expected discrepancy between observed and predicted into an expected discrep-
ancy between observed and central observation, and another between prediction and central prediction, where
central observation would coincide with central prediction for an unbiased model.

19which here results from the expected spread of the likelihood on top of the spread in the model posterior.
20Previously, for the frequentist case, the aleatoric uncertainty was constant, depending only on the true param-

eter value θ0 (namely Vr(Y |θ0) for some unknown θ0). However, we should add that the frequentist definition is
not very useful because we don’t know the value of θ0. If we did know it, there would be no epistemic uncertainty,
and the expression conditional on an unknown θ0 is therefore more of a total uncertainty than an aleatoric). In
practice, when we estimate θ0 eg. through a sample of θ values obtained by sampling methods, a conditional
average has to be taken, and we will eventually end up in a situation quite similar to the one decribed here for a
sample from a model posterior.
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yet contained in the observed data, i.e. still to be revealed. This is exactly what we
were after, as it expresses what still remains to be learnt about θ after our observations.

Finally, to allow a ’loss’-function21 independent characterization of how epistemic uncer-
tainty is defined in Bayesian statistics, we can also rewrite (2.8) as follows:

Ep ≡ Tot − Ae = H(Y) − EθH(Y |θ) = H[Eθ(Y |θ)] − Eθ[H(Y |θ)] = [H,Eθ](Y |θ) (2.9)

In the last step I just wrote this as a commutator [X, Y] := X ◦ Y − Y ◦ X of two operators be-
cause this is in a sense also what we find from the law of total variance when we decompose
the predictive variance in an epistemic and aleatoric term:

Ep = Tot − Ae = Vr(Y) − Eθ[Vr(Y |θ)]

= Vr[Eθ(Y |θ)] − Eθ[Vr(Y |θ)]

⇒ Ep =[Vr, Eθ](Y |θ) (2.10)

In both cases it means the epistemic uncertainty is found as a commutator of our measure
of spread and an expectation over model parameters working on the conditional distribu-
tion. This is of course because of the way Bayesians obtain the predictive posterior from
the model posterior and likelihood. But that means for any concave spread measure of
the class probability (like differential entropy or variance), Jenssen’s inequality guarantees
us a decomposition in two mutually exclusive and nonnegative terms, and the epistemic
uncertainty becomes the amount by which the expected spread, involved in the
aleatoric term, underestimates the spread of the expected distribution (involved
in the total uncertainty). Note how this implies both aleatoric and epistemic uncertainty
now depend on our acquired knowledge p(θ|D), which is very different from the situation
for the regression with MSE example.

Let’s make this more concrete for our earlier single parameter example of a Bernouilli trial
where the true proportion θ0 is unknown but a dataset is available to estimate it, with Y

heads found in n coin flips. We will use Haldane’s prior, the limε→0 Bet(ε, ε) distribution,
p0(θ) ∼ B(θ; 0,0). This is the most noninformative prior distribution for the binomial pro-
portion, in the sense that its posterior mean always coincides with the MLE estimate (even
for small n) and its posterior variance is larger than for any other (conjugate) prior. Note
that it corresponds to a flat uniform prior on the log-odds scale22. While this is an improper
prior by itself, it yields a proper posterior B(Y, n− Y) provided at least one success and one
failure have been observed, 0 < Y < n.

Keeping in mind the expression for the expectation and variance of the beta distribution23,
we find for the variance of this posterior B(Y, n − Y)

Vr(θ) =
Y(n − Y)

n2.(n + 1)
=
θ̂(1 − θ̂)

n + 1
21’uncertainty measure’ would be more appropriate, a measure of the spread in a distribution like entropy,

variance, 1-maxprob, or any other concave measure vanishing on the edges of the simplex. This concave function
will be referred to as spread’ from now on

22For a comparison of Jeffreys, Haldane and uniform prior in this context, see for example ref. Mu Zhu & Arthur Y.
Lu (2004) The Counter-intuitive Non-informative Prior for the Bernoulli Family, Journal of Statistics Education, 12:2,
, DOI:10.1080/10691898.2004.11910734

23Namely, B(, b) has a variance .b
(+b)2(+b+1)

and expectation 
+b
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with θ̂ ≡ Y
n the expected value of θ under the posterior, which (for this prior) is also the MLE

estimate, i.e. the observed binomial proportion in our dataset. We see that the epistemic
uncertainty comes very close to the ’classical’ plug-in estimate for the variance on the
binomial proportion based on n observations, θ̂(1−θ̂)

n , as it is also obtained from the MLE
and curvature of the likelihood (which is not so surprising as we took such a minimal prior).

What’s more, when we combine the aleatoric uncertainty with the epistemic to find a total
uncertainty, this turns out to be equal to the most naïve estimate we could have made,
plugging the estimated parameter in the expression p.(1− p) for the variance of a Bernouili
variable with chance of succes p, i.e. θ̂(1 − θ̂). Namely for the prediction of the next toss
(n = 1) we have:

Vr(Y) = Eθ[Vr(Y |θ)] + Vrθ[E(Y |θ)] = Eθ[θ(1 − θ)] + Vrθ[θ]

= E(θ) − E(θ2) + Vr(θ) = E(θ) − (Vr(θ) + [E(θ)]2) + Vr(θ)

= E(θ).[1 − E(θ)] := θ̂.(1 − θ̂) (2.11)

Here the hat refers to the posterior expectation, which for this prior coïncides with the sam-
ple estimate (or the MLE). Note that whatever prior we choose, because of the cancellation
of Vr(θ) in the above RHS, the total variance will always be θ̂(1− θ̂) with θ̂ the expectation
of the posterior over θ. (But only for this prior does that coïncide with the sample mean).

Because we found the variance of this posterior to be θ̂(1−θ̂)
n+1 , we find the epistemic un-

certainty to take up 1
n+1 (and the aleatoric n

n+1 -ths) of total uncertainty in this example.
Aleatoric uncertainty (being n times epistemic) immediately dominates as n increases.24.

In classification, variances are bounded and entropies are more commonly used as uncer-
tainty measure, but in either case the epistemic part is defined as the amount by which
the expected conditional uncertainty underestimates the uncertainty of the expected con-
ditional (which is also the marginal) distribution. At first sight, looking at 2.11 it seems very
odd that the total uncertainty is just given by what appears to be the aleatoric uncertainty
for one particular θ̂ that is our best guess for the true population value θ0. But because
aleatoric and total uncertainty must by definition coïncide as we get more and more data
and the posterior narrows around the true θ0, this must actually always be the case. Since
entropy is also concave, we visualise this for both cases as in Figure 2.2:

While Jenssens inequality guarantees us that our estimate for aleatoric uncertainty from
this sample, ƒ (θ) (with ƒ concave), will not be larger than our estimate of total uncertainty
from this sample (ƒ (θ̄), with θ̄ = 1

N

∑N
=1 θ), this estimate for total uncertainty ƒ (θ̄) can both

over- or underestimate the true population value ƒ (θ0)25.

There are in fact two distributions at play: that of of our posterior mean, and that of the
individual θj drawn from our posterior. Increasing the size N of the ensemble narrows the
distribution of the ensemble average θ around the posterior mean θ̂ = E(θ). But this does
not narrow the distribution of θ around θ, i.e. does not decrease epistemic uncertainty. For

24Note the similarity with the example mid p.66 in Gelman [11] for the variance of the predictive posterior for a
normal distribution with noninformative prior. This is nothing exceptional, even for our prediction and confidence

intervals in linear MSE regression, we have σ2ŷ = σ2 + σ2

n [1 +
(′−̄)2

σ2
], i.e. apart from an  dependent factor,

epistemic is also n times smaller than aleatoric.
25It will be larger or smaller depending on whether our sample average lies closer or further from uniform

probability than the true value θ0 respectively.
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Figure 2.2: The epistemic uncertainty about the true parameter value θ0 on the abscissa
implies an underestimation of the total uncertainty ƒ (θ0) on the y axis: When we have
a sample of θj or a distribution over parameter values p(θ), then Jenssen’s inequality for
concave functions (like ƒ () = (1 − ) or − log) guarantees us that the average of the
function values underestimates the function of the average value: ƒ (θ) <= ƒ (θ), where
ƒ (θ) = 1

N

∑N
j=1 ƒ (θj) (or

∫

dθ p(θ)ƒ (θ)) and θ = 1
N

∑N
j=1 θj. But in 2.8 and 2.9 we see that

the average of the function values estimates the aleatoric uncertainty, and the function
of the average estimates the total uncertainty. The estimate for the epistemic uncertainty
defined as their difference is then the amount by which the sample of green y-values un-
derestimates the y-value of the sample average (Black arrow). Cfr also main text.

the latter we have to increase the size of our training set, so both the distribution p(θ) of
the individual θ and that of their average θ narrow around E(θ)26. Our estimate of aleatoric
uncertainty then approaches that of total uncertainty, which in turn also approaches ƒ (θ0).

This example27 which should be the simplest possible decomposition for classification, il-
lustrates the complications that are typical for classification, where (co-)variance and mean
cannot be modelled independently and where variances are bounded.

Traditionally we might have expected aleatoric uncertainty to be constant, depending only
on the true distribution at X, and the total uncertainty to approach it from above as the

26which is also θ0 when the sampling/posterior mean is unbiased
27is a bit special because here the feature space collapsed to a single point, and there is only a single parameter

θ0 to be learnt, so we can now compare global epistemic and aleatoric uncertainty as if we would have done locally
in a problem where relevant features did exist. But the same situation would persist in models with predictors,
with the single parameter θ0 resp. θ replaced by the true resp. predicted class probability in that point. (For
example Soƒ tm(ƒ (θ0, X)) resp. Soƒ tm(ƒ (θ,X) in the case where θ represents weights in a neural network
ending in a softmax layer.)
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epistemic uncertainty decreases. But at least in the frequentist setting28 , the total uncer-
tainty has the constant expectation ƒ (θ0), and can be brought arbitrarily close to it when
we use large enough ensembles of training sets. The reason is probably that the θ in the
estimation of total uncertainty draws from all the training sets in the ensemble simultane-
ously, while aleatoric uncertainty and its complement use only data from one training set
at a time, and therefore estimate uncertainties for a dataset of given size. The result is that
total uncertainty has constant expectation (namely the limit of aleatoric for θ → θ0), and
defining epistemic uncertainty as the complement of aleatoric implies that decreasing epis-
temic uncertainty by narrowing down the plausible range of θ, converts it into increased
aleatoric uncertainty. This is also what we find in Appendix E when we draw maps, and
suggests that this definition is useful to get an indication of epistemic uncertainty,
but the aleatoric and thus also total uncertainties it implies for finite datasets
should probably be taken with a grain of salt.29. The epistemic uncertainty expresses
the granularity by which the other two can be quantified, and probably only their (equal)
limiting value has meaning.

2.2 Bayesian Neural Networks

In the past couple of years, many interesting PhD theses ([5],[6],[12]) have been written
on this topic, along with some older theses in BNN’s (eg. [13]). It would be impossible to
attempt the same level of detail as one can find in the combined body of these works, given
the limited time span, and my limited knowledge of this topic and ML in general, and I will
only try to present in this section some of the ideas presented there.

2.2.1 Introduction

To get the epistemic component, we ideally require a probability distribution over the pa-
rameter values. Therefore, it is perhaps not too surprising that Bayesian Neural Networks
(BNN’s) have attracted a lot of attention in the context of uncertainty quantification. Using
this approach, point estimates for parameter values are replaced by posterior probabil-
ity distributions conditional on the observed data, which is of course very convenient to
express our uncertainty about those parameters given the data.

We introduce very briefly first what a neural network is, before coming back to BNNs. This
is done in the following subsection.

2.2.2 Neural Networks

A neural net consists of a set of inputs (the 0-th layer, if you like), a series of hidden layers
(the actual layers 1, . . . , L), and an output layer L+1. Each layer consists of identical nodes,

28When we draw ensembles of training sets from the correct likelihood, I think we’ll have E(θ̂) = θ0. However,
for a Bayesian posterior based on a single small dataset and a non-informative prior, I don’t think we can assume
that the posterior mean E(θ) necessarily coincides with the population value θ0. An informative prior correctly
incorporating model variance might fix this, but this seems like information we don’t usually have a priori.

29i.e. they differ from the familiar notions introduced in section 2.1.2
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and each node applies a nonlinear activation function (common to that layer at least) to a
linear combination of the outputs of the previous layer.
That nonlinear function could be the logistic function (sigmoid, tnh,..), it could be a recti-
fier, ( → mx(0, )), or simply the identity in some layers. Of course, adding more nodes
gets us a linear combination of these nonlinearities, and especially adding more layers
quickly increases flexibility. Even a single layer is sufficient to arbitrarily approach any con-
tinuous function provided the number of nodes is allowed to be arbitrarily large30. But that
complexity can be expressed more efficiently in a few layers of much smaller size.

The number of nodes in each layer can be different, and because the number of connec-
tions becomes quickly very large for deeper networks, often specific architectures limiting
the number of connections (eg. Convolutional networks, CNNs) are considered. But for
the purpose of clarity, lets consider a fully-connected simple feed-forward network, where
each node receives an incoming connection from all nodes of the preceding layer, and the
strength for the connection coming from the node  in layer − 1 into node j in the -th layer
is represented by a weight ()j, . Each node also has a bias (b()j for the j-th node in layer
), which can be thought of as the strength of an incoming connection from an imaginatory
node in the previous layer that is always outputting the constant value +1. That way we
don’t have to distinguish between weights and biases.
Lets use n to represent the number of nodes in layer . Each node receives an input that
is a sum of all incoming (weighted) inputs (including the bias), z()j =

∑n−1

=1 
()
j, 

(−1)
 + bj,

applies a certain activation function 
()
j = ƒ

()(z()j ) to it, and then sends the result on to the
nodes in the next layer in a similar fashion.

Needless to say that these models are very flexible (will have vanishing bias), but tend to
overfit (i.e. have very large variance) if not properly monitored (early stopping) or regular-
ized (dropout, bayesian nets,weight decay,..).

Dropout consists of randomly deactivating each node with a given probability. This forces
the network not to ’put all its eggs in one basket’, and will tend to lead to more stable
predictions, and thus less overfitting. We learn the weights to do their job without relying
too much on the presence of any single other node. Note that the weights obtained in this
fashion have to be multiplied by the dropout probability at test time in order not to ’over-
predict’ when no units are dropped.The dropout mentioned here is not to be confused with
so called Monte Carlo dropout, to which we come back later, and occurs at test time.

Weight decay simply adds a regularizing term to the loss function, balancing accuracy with
small weight size, where we can choose between L2 or L1 penalties as in ridge or lasso
regression.

As for any other model, training consists in specifying a loss function suitable to our pri-
orities, ie our performance metric, and finding the values for the model parameters that
minimize this loss. A typical component of the loss function would be the log-likelihood of
the observed outcome (given the parameters take certain values), perhaps balanced with
some penalty to reward certain smoothness or sparsity properties.

30for a visual explanation, see for example Michael Nielsen’s introduction
http://neuralnetworksanddeeplearning.com/chap4.html
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A standard way to ensure we predict a normalised probability vector over the K classes is to
’squash’ the last layer through a softmax function, ~̂y = Softmx(~z), which is nothing more
than a normalised exponential ŷj =

exp zj
∑K
j=1 exp zj

.

While this is an obvious generalization of a sigmoid/expit function, it’s worth stressing that
this transforms a whole vector of K inputs into K outputs, i.e. does not fit the
picture I gave before, of a scalar activation function that works inside a single node
and transforms 1 (linear combination) input into 1 output. This is an important difference
because it does not allow us to calculate the output in a single node without knowing the
others. That being said, if we wish our classes to be mutually exclusive, we will need
some kind of interaction between the different outputs, and this is a pretty standard way of
transforming K independent ’logit’ outputs into K components of a single probability vector.

2.2.3 Bayesian Neural networks

The loss function we wish to optimize in a classical network typically consists of two parts.
The first part, the likelyhood, has to assure our model explains the observed training out-
puts as good as possible. Then there is usually a second, regularizing term, that is important
for neural networks especially, and has to keep them from overfitting.

The addition of such a penalty term in the loss function is equivalent to placing a prior over
the weights and maximizing the log posterior (=log-likelihood+log prior + C ) instead of
choosing the MLE estimate that maximizes the log likelyhood alone. Indeed, the extra log
prior term for a normal prior takes precisely the quadratic form of an L2-penalty (’weight
decay’). This is just like doing ridge regression is in fact a MAP approximation to a Bayesian
linear regression model (cfr for example final part of section 6.2.2 in [14]).

So, while the Bayesian approach will also provide us with regularization, it is not just limited
to the MAP point estimate, rather we can use it to obtain a full posterior distribution
over the weights given the data. Since this quantifies the uncertainty we still have
left about the true parameter value given some data, and that is just what epistemic un-
certainty is about31 (whether you translate it into a corresponding predictive uncertainty
in y or not), this is the true reason for our interest in this approach in this context of this
uncertainty quantification.

For the Bayesian network, we would like to find posterior distributions over weights W
rather than point estimates. Remember we can obtain the posterior probability for W using
p(W |D) = P(D|W)p(W)

p(D) , and then the predictive posterior distribution at a new input ~′ is
given by

p(Y′|~′,D) =
∫

dWp(Y′|~′,W)p(W |D)

31well, that depends: we used to capture sample variance as well, while now we are working with uncertainty
for 1 particular data set.. So unless we manage to incorporate the uncertainty due to the different training sets
that might have been drawn in our prior, we will not be taking it into account! But capturing the range of possible
parameter values a priori in the prior requires prior knowledge: when we simply use a completely noninformative
prior, that will get overwhelmed by even the smallest amount of data. As the weight prior and data each get in
the posterior is proportional to their respective precision (inverse variance), the effect of the noninformative prior
is negligible compared to that of the likelihood even for small datasets. That means we are not taking into account
model variance in such a situation. Cfr also footnote 25 on p. E-22.
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.
With the enormous number of weights to be determined in a neural network, the integral
p(D) =

∫

dW p(D|W) in that denominator is taken in a space of enormous dimension, so
evaluating it’s integrand on a fine enough grid of points to do the normalization by brute
force is also out of the question. Then we will really need to know the actual value of
the normalization constant in the denominator whenever we want to get more than just
a maximum a posteriori (MAP) point estimate for W. For a very simple model where the
likelihood is conjugate to the prior we can calculate this analytically, but in general this
will be a very complicated multimodal landscape in a huge number of dimensions, so that
even sampling the posterior is not without its challenges. This is the field of Markov Chain
Monte Carlo (MCMC) methods, which is a subject in its own but beyond our scope here.32

Once one has a sample of the posterior on W, we can use that sample to replace the
integrals over the posterior by sample averages from that ensemble.

Another approximative method consists of approximating the true posterior by selecting
the closest member33 from a preselected family using variational inference. This turns
the integration into a minimization of an objective function.
Say we index our family of functions qθ(W) by the parameter(s) θ34, we find that member
qθ∗(W) of the family that minimizes the Kullback Leibler divergence35 to the true posterior.
We can then use (samples from) q(θ∗) instead of the true posterior to calculate (or sample
from) the predictive posterior for Y′. For that we need to find the solution to

θ∗ = rgmin
θ

KL[qθ(W)||p(W |D)] (2.12)

with the ’exterior’ KL divergence

KL[qθ(W)||p(W |D)] ≡
∫

dWqθ(W) log
�

qθ(W)
p(W |D)

�

(2.13)

This is called the ’exterior’ divergence because KL(q||p) diverges if q isn’t absolutely contin-
uous wrt the true posterior, i.e. if q wouldn’t vanish at some point where p does. Since the
support of q has to at least include the support of p, the approximation will envelop the true
distribution. In the same fashion we can see why KL(p||q) would have the true distribution
enveloping the approximation. For a more detailled discussion of the (dis-)advantages of
the more general α-divergence, which simply combines interior resp. exterior with weights
α and 1 − α respectively, and of the effect the choice of α implies on the approximation
made, we refer to for example the Ph.D. thesis of Stefan Depeweg, [6]

Now it turns out (e.g. [5]) that minimizing KL is equivalent to maximizing a lower bound for
the log denominator of (2.3), which is referred to in the literature as the ’ELBO’ (Evidence

32Basically a Markov chain is constructed where the transition probability satisfies detailed balance wrt to the
distribution we want to sample from. Because this implies that the stationary distribution for this system will be
the sought-for pdf, after a sufficient ’burn-in’ period, the process will be visiting the state space with probabilities
proportional to the equilibrium probabilities of this chain, i.e. the sought for probabilities. Key assumption is
ergodicity so it does not get ’stuck’ in a subspace: There shoudnt be any isolated islands in the state space that
are not connected to each other.

33But how close that closest member actually is, and how good the approximation is a whole other matter..
34typically a list of many parameters, but we will drop arrows/cursive for readability
35an (asymmetric) ’distance’ measure between two continuous pdf’s.
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lower bound), that means we want to find the θ∗ for which qθ∗(W) maximizes

Eqθ(W logP(Y′|′,W) − KL(qθ(W)||p(W)) ≤ logP(Y′|′) (2.14)

Notice that the KL term is now wrt to the prior, and this acts as a regularizer: while the first
term rewards explaining well the data (it is the expected log-likelihood), the second tries to
keep q as close to the prior as possible.

A few years ago it was realized by Y.Gal & co that variational inference for a particular family
of multimodal posteriors could be approximated by using an extremely simple ad hoc trick,
that they call MC dropout. The particular family of multinomial distributions is obtained by
replacing the optimal weights vector for a node by a mixture of two Gaussian components
with near-zero variance: one with mean at the previous optimal location for the weight,
the other in zero.36 With a product of such a mixture for each node, one can approximate
complicate multimodal posteriors, and the sample from the posterior is simply obtained by
performing drop out when predicting outputs, i.e. at test time.

In contrast, traditional dropout, consists in bagging predictions from an ensemble of decor-
related nets obtained by randomly eliminating different nodes during training time. During
test time, weights are not dropped37.

Papers

Here we mention a few more key results from papers that were recommended and refer-
ences therein that seemed relevant.

• Kendall and Gal [3] apply MC dropout to tasks in computer vision, but this paper was
less interesting for us because it actually focuses more on regression. There is also a
brief section discussing options to apply this to classification, but there they discuss
segmentation, ie pixel-by-pixel classification, which is actually not our main concern
here. (We want to assign a class to an image as a whole instead).

• Furthermore, according to paper by Kwon et al that followed it [4], they did not ap-
proach the case of classification in a very good way, as they modelled the mean and
variance of outcomes in the logit space (i.e. on the pre-softmax outcomes) to trans-
late this into a regression problem which they adressed in more detail before. But this
means they model mean and covariance independently, using separate output nodes,
while the mean and covariance of a multinomial are inseparably linked to each other.

Kwon et al. address this concern by producing an ensemble ~pt , t = 1, . . . , T from the
(post-) softmax predictive posterior (using MC-dropout), i.e. the predicted class proba-
bilities. The aleatoric uncertainty we had in equation 2.5 can then be estimated as the
ensemble average of the covariance of a multinomial with probability vector pt, that is

36They had to use Gaussians of variance of the order of machine precision because a Bernouilli, being a discrete
distribution, has diverging KL divergence wrt to any continuous distribution. But in practice this just amounts to
setting the weights from that node zero with given probability, ie MC dropout.

37only rescaled by multiplying all weights obtained during training with the 1-dropout probability that was used
during training. (e.g. [15] section on dropout, or [16] p11 for linear activations). This is to compensate for the fact
that now all nodes are present simultaneously.
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1
T

∑

t[dig( ~pt)− ~pt⊗ ~pt]. The epistemic uncertainty is the MC sample variance of the pt,
1
T

∑

t E[( ~pt − E( ~pt))
⊗2], where ⊗ denotes the Kronecker product, ie if A and Bj denote

component  resp. j of vectors A and B, the matrix with components (A ⊗ B)j = ABj.
This also means we only need K nodes and no additional steps in this approach.

• Then there is a paper [2] that describes the state of epistemic and aleatoric uncer-
tainty in any point of feature space by means of a Dirichlet distribution. This Dirichlet
has a (K − 1)-dimensional simplex

∑K
=1 p = 1 as domain, where each point corre-

sponds to exactly 1 possible softmax outcome (a vector of K class probabilities). So it
can serve as a distribution over multinomials, and in fact it is the multinomial gener-
alization of the beta prior/posterior for the binomial. Just like for the beta, the relative
proportions of the components of its parameter vector (α1 : α2 : . . . : αK) determine
the expected value of the multinomial’s class probabilities ~p, while the overall scale
of the parameters (

∑

 α) determines its precision (inverse variance). And just like for
the beta prior, the observed numbers of instances of each class can simply be added
to the parameters ~α of a Dirichlet prior, to obtain those of the resulting posterior ~α.

So, the parameter vector of this posterior distribution can characterize the complete
state of uncertainty by its expected value and precision, which are represented by
the location on (alea), and spread over (epi) the simplex respectively (cfr fig 2.3). (To
describe distributional uncertainty, in [2] the distinction is made in between the distri-
bution of the train data (described by parameters θ) and that of test data (described
by parameters μ), so they can ask μ to be determined by θ for in-domain data but
rather completely flat for OOD data.

What is somewhat special, to accomplish this, they explicitly train the network, not to
simply maximize the likelyhood of the observed training data, but rather to minimize
the KL distance simultaneousy to a flat posterior over the whole simplex for OOD in-
puts, and to a sharp distribution (centered on the point that would maximize likelihood)
for I.D. inputs.

While it is a bit subjective to choose the data that should produce a completely flat
prior (noise, datasets differing completely or only slightly,..), their approach is guaran-
teed not to make any overconfident predictions out of domain. But this is perhaps a
bit too harsh38.

Figure 2.3: Visualisation of epistemic and aleatoric uncertainty from [2]

38One gets the impression that the OOD samples that are used might have a large effect, and can’t help but
wonder what the model will predict for a noisy specimen of an existing class. It is after all impossible to train the
network on everything that is not an existing class, and the danger exists that the model will learn to tell ID and
OOD apart based on irrelevant artefacts that differ from dataset to dataset but have no relation to the objects
represented. Whether data is OOD is to some extent relative, dependent on the smoothness we assume, as no
dataset is ever dense in space, there are always voids/lacunas. For data still showing some resemblance to the
original data, a larger spread around the prediction seems more reasonable than a completely flat posterior.
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They arrive at this from a Bayesian viewpoint, but because the uncertainty is quanti-
fied in terms of the observed pattern of predicted class probabilities, it seems of sec-
ondary importance whether this pattern arises due to uncertainties in prior and given
the data (ie in a Bayesian setting), or due to variation in the data used for training (fre-
quentist). Therefore I think we could quantify the epistemic uncertainty in p(Y |~) in a
frequentist setting in a similar fashion, for example by bootstrapping the training data
to produce an ensemble of predicted class probabilities at each point, and looking at
the parameters of the Dirichlet distribution that best describes the observed ensemble
at each point. This is what I tried to do eventually, and an onset of this approach is
presented in the next chapter.

2.3 Cautious classification

2.3.1 Motivation

When doing classification, one typically only takes into account the relative chance that an
instance at a given point X comes from class , as compared to that for the other class(es)
j 6= . But that way, we ignore the knowledge we have about the marginal p(X), which is a
common denominator for all classes  in P(y = |X) = P(X|y = ).P(y = )/P(X). Up to some
potential weighting factors P(Y = ), this means we simply select the class with the highest
(weighted) conditional PDF P(X|Y = ), however small that may be.

This makes sense when we have confidence that our model assumptions, such as the
classes known to exist, hold throughout the region of feature space in which we wish to
classify. As probabilities are normalized, all other classes being even much more unlikely
implies that it is likely to be of class  by elimination. But in a setting where one can’t
exclude the existence of a so far undetected class, such conclusion would no longer be
justified39. Worse yet, provided the other classes are orders of magnitude less likely to be
found there, we would arrive at this conclusion with very high confidence. Furthermore, the
classification in regions where there is no data will be highly unstable for flexible models,
as adding a single point can lead to very different predictions far from the training data.

Likewise, on the other end of the spectrum, we may have regions where multiple classes are
very plausible, and simply classifying each point into its most likely class obscures the fact
that this is only the model’s best single guess. Even if the fitted model perfectly describes
the truth, if K >> 1 our best guess will typically still likely be wrong.

As illustrated in Figure 2.4, both of the above points imply that there is a very large uncer-
tainty outside of the training data domain, or in regions of overlap, but this uncertainty is
often not at all apparent from a traditional classifier. Certainly in safety-critical applications,
we need our classifier to tell us which predictions we can trust and which are little more
than a wild guess.

39Even without the possibility of other classes, it is often imprudent to assume that the functional relationships
observed in a limited region of feature space are applicable throughout the whole space. So even without invoking
the potential existence of other classes, we can’t be sure our estimated probabilities far from the original domain
are correct.

22



CHAPTER 2. METHODS

Figure 2.4: Classification boundaries for different methods for the Iris dataset. For the
conformal prediction method (c) (with α = 0.05) the overlapping areas are classified as
multiple classes and white areas are classified as the null set. For the standard methods
(a-b), the decision boundaries can change significantly with small changes in some of the
data points and the prediction cannot be justified in most of the space. (Figure and caption
taken from [7].)

So, it could be useful if we could somehow take into account that the prediction made in
some regions is only one of several plausible classes, or that none of the known classes are
actually plausible at a certain location.40.

A way to accomplish this is by allowing the prediction of a set of labels. By having the
liberty to decide for each class individually whether it is in or out of the predicted set, the
reasoning ’by elimination’ disappears, as the interdependence between the prediction for
each class vanishes.

Now, we can model the shape of the region in which class c is amongst the predictions
independent of data points for other classes, using only the data from class c in the esti-
mation of P(X|Y = c). Because of this independence, we are now able to guarantee a
confidence level: for each class , the chance of excluding a point that truly belonged to
that class is at most a given value α, the conformal confidence level.

A more practical advantage of this independence is also that class densities can be es-
timated in parallel, and when new class(es) are added at some point, one only has to
estimate the density for the new classes to update the classifier, the old classes remain
unaffected. Note however that when the number of classes is large and the amount of data
per class small, sharing certain parameters between classes is a common way of reducing
the variance on the estimates of those parameters (eg. in LDA we have a shared covariance
matrix). In this situation the above remark about independently estimating only the new
class no longer holds41.

2.3.2 Conformal Prediction

Here we will use a distribution free approach that constructs prediction sets to guarantee
having the right class amongst the predicted set with a predetermined confidence level

40For a discussion on some of the literature on these so called possibility sets, see the tutorial [1]
41In that sense using GMM density estimation differs from [7] which mentions only non-parametric methods

for density estimation. There each class can always be trained independently, but they will have a much larger
variance when the number of instances per class becomes small. It should also be added that the proof of the
finite sample conformal guarantee they refer to, in [17], also assumes a KDE density estimator.
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1 − α. Guaranteeing this level is possible because we can have as many classes in the
prediction as needed to achieve that level, even all known classes if necessary.

Say the chance of falsely excluding a point from its true class  is α, potentially differing
from class to class. Even when we don’t know the true class  of a point, we can still safely
say the chance α of falsely excluding it is bounded by the largest of the individual chances:
α = mx

∈{1...K}
α.42.

That means we can now focus on making sure that the chance of rejecting a point given

that it really comes from class  is at most α. For that we will use the method of conformal

prediction, which I outline briefly now.

Firstly, we require the choice of a conformal score. This is a function ψ(z,D) of an arbitrary
point z = (, y) and an (unordered) data set D = {(, y),  = 1 . . . N} that reflects in a way
the dissimilarity of the new point w.r.t. a dataset D, as will become clear from the examples
below.

For each of the points (, y) in the extended set D′ = {D, z} , the number R ≡ ψ[(, y),D′]
should express in some way how bad that point fits in with the group (residuals, distances,
dissimilarity indices, etc), the actual value not being as important as the relative ordering.
Here the N+1-th point z = (N+1, yN+1) is an arbitrary one in the space (X, Y), ie this defines
the score with respect to that dataset D everywhere.

The fraction of N+ 1 points in this extended set having a score at least as extreme43 as the
new point is then used as an empirical p-value for the hypothesis that the point is just like
any of the others (in some application dependent sense), π(, y) = 1

N+1

∑N+1
=1 (R ≥ RN+1).

This definition assures that a dataset of N points only allows us to draw conclusions at a
significance of π ≥ 1/(N + 1).

That means, all points in space that are ’odder than the oddest point in the dataset’ (in
terms of having a higher conformal score), would receive this p value 1/(N + 1).
Provided our dataset is large enough however, α.(N+1) >> 1 (with α the desired confidence
level), we can then select from the N + 1 scores the lowest one that still keeps at least a
fraction 1-α of the conformal scores below it44. Depending on the context, many choices
are possible for ψ, and the examples will best clarify the meaning of this procedure.
Consider for example detecting outliers in linear regression? Well, the residuals of each
point wrt to the linear relation fitted to ALL N+ 1 points are a sensible indicator on the basis
of which we might flag a point as anomalous. Therefore, such a residual could be a good
choice of conformal score in that situation45. In our density estimation context on the other
hand, it makes sense to consider the PDF fitted to all points of one class, evaluate it in

42This is not an instance of multiple testing as the classes are mutually exclusive, we can make 1 error at most.
When the point pertains to some other, yet unknown, class, we can’t even make any errors, even if we fail to
reject it from the known classes. Remember that failing to reject a wrong class is not punished here.

43depending on how scores evolve as points become more dissimilar, without loss of generality we’ll suppose
they become larger here, but for cases where that isn’t the case we can adapt our score so it is. For example in
case of a density they decrease as they become further apart and we could, instead of using the density as score,
use − log density to change this around.

44This is the j-th highest score, where j is defined by j < α.(N + 1) < j + 1, i.e. j = bα.(N + 1)c.
45Even though in practice we typically use a more sophisticated method that also takes into account the leverage

due to the location of X values and leaves out the point under scrutiny in linear regression outlier analysis. But
that’s because there we also need to know how much a point affects the resulting line in order to decide whether
to exclude it or not. Here we only need an ordering, and this simpler order statistic would do fine.
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these same points, and use that empirical distribution of PDF values to flag some points as
more outlying than others.

Because z has to be included in the extended dataset D′ used to calculate all scores, the
first N scores R1, . . . , RN also have to be recalculated each time the new point z changes,
which is computationally prohibitive in many situations. We can use the original dataset to
fit the density D instead of D′, but then the confidence level is guaranteed only asymptot-
ically as the number of points in each class approaches infinity, and under the additional
assumption that our density estimator is consistent. However, an alternative way to re-
cover our finite sample confidence level, is to use a separate data set for determining the
threshold than for learning the density. This is what we will do here.

So we use as cutoff the α quantile of the empirical distribution of the fitted training density
evaluated at validation points. That is, the largest validation density that still keeps
at most a fraction α of densities in validation points below or equal to it:

t̂ ≡ sp
t

�

t |

∑

j∈V|Yj=
(p̂(~j|Yj = ) ≤ t)

nV,
≤ α

�

where in the sum j runs over validation points with class , of which there are nV,, and the
hats refer to a PDF estimated only on training points with class .

Note that this ’right’ quantile definition p → sp{|F() ≤ p} is different from any of the
9 choices available in R’s ’quantile’ function, for which a quantile is never smaller than
the minimum of the set. Here however, once α drops below the inverse of the number of
validation points in that class, we will accept the whole feature space in that class, because
there are no points we can safely exclude at the requested confidence level with a validation
set of that size.46 That is why on plots versus α, in regions where either α.n, or (1−α).n,
are not much larger than 1, the results will be based on the behavior of a few validation
points only, and we should be careful not to overinterpret any trends in those regions.

It is because of this conservative definition of the quantile that we can keep our (distribution
free) conformal guarantee even for finite sample sizes, and not just as some large sample
approximation! The price we pay for this guarantee, however, is that the accepted regions
for each class may become too wide to be useful. (This is probably why the approach does
not give good results when the model assumptions are not satisfied, because the classes
become too wide when there is too much bias.)

Now, we will need to estimate the density to be used in this conformal score. It turns out
that the classifier depends only on the ordering of the predicted densities, not on their
actual values. As the validation points are fixed, the ones that have the lowest densities
and are rejected will stay the same if the ordering does, and so will the class boundary.

In conclusion: the PDF is fitted on a training set (for that class), then that density
is evaluated in all validation points (of that class), and the α-th empirical quantile
of the validation PDF values will be used as the threshold. All test points with a
predicted density below this threshold are then rejected from this class.

46Since the fraction of validation points for which the density isn’t larger than the smallest validation density is
already 1/nV,, there are no validation points for which this fraction is even smaller. Then the supremum is over an
empty set ( −∞), and all points in feature space have a PDF larger than that.
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Figure 2.5: Extreme where the difference between validation and training data is gravely
exaggerated to show how the region that is eventually accepted is more cautious thanks
to the splitting, also in other directions than the original discrepancy between train and
validation.

Because train and validation data come from a simple (stratified) random split,any differ-
ence in distribution between them is due to model variance. Any difference between the
fitted training density and the training data on the other hand, is due to model bias. So
the difference between validation data and fitted training density contains both contribu-
tions, and evaluating the latter at the former will in fact create a ’buffer’ against epistemic
uncertainty of both types. Namely, as we can see in Figure 2.5, the validation cloud will
be trimmed by a fraction alpha by some training contour, yielding an asymetric region of
accepted validation data. For a new (test) point, the region of acceptance would then be
that whole same ellipse. So, the acceptance region has the symmetry of the trained distri-
bution, but its scale is increased47by any discrepancy between trained PDF and actual data
cloud due to bias or model variance:

• Finite sample size will cause the centers of training and validation PDF to be spread
around a common true center, and the distance between them will make the average
Mahalanobis distance from validation points to the training center typically larger (and
PDF values lower). The α-th quantile will then also be lower, and the accepted region
wider, not only in the direction of the difference between train and validation centers,
but in all directions where the trained PDF decreases. The shape of the accepted
region is already fixed by the symmetry of the training density contours, only
it’s scale will be increased by any discrepancy between train and validation
sets, as shown in Figure 2.5.

47at least wrt to the most compact of train and validation cloud separately
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Figure 2.6: Example with data for each class being drawn from a 2 component mixture (a
single class is shown) , while a single Gaussian component PDF was fitted for that class.
Due to model bias, the lower part of the ellipse is also accepted in the class, in spite of not
having any training data there. Due to model variance, the ellipse chosen eventually is still
wider than it would have been for the training data alone. So for the training data, even
less then a fraction α will be rejected.

• On the other hand model bias would also cause the fitted center of the training distri-
bution to move away from that of the true PDF, but in some particular direction, to try
and make up for the distorted shape of training density contours. (Think of a Gaussian
placing itsself at the center of what is in reality a 2 component gaussian mixture).
In that case, the validation data, which will be distributed according to the more com-
plicated shape, will contain an underrepresentation of high PDF values (at the esti-
mated center between the components) and an overrepresentation of lower ones (in
the two actual centers). Again that will make for a lower threshold and wider class
boundaries. The deviation will be in a certain direction, but the accepted regions al-
ways have the symmetry of the models from the hypothesis space we use.

• As a third potential contribution to epistemic uncertainty, one sometimes studies cases
where test distributions are explicitly different from train and validation data because
they are collected in different circumstances. Our cautious approach would simply
reject these regions, but only provided our density estimate works well. As we
can see on Figure 2.6, using a parametric approach in the presence of bias can lead to
large regions where p() is estimated to be larger than the threshold, although they
are clearly OOD. Therefore I think we cannot rely on this feature unless we use an
unbiased distribution free density estimation method.

The bottom line is that any other distribution than the true distribution will result
in lower thresholds than if the dataset had also been the most dense where the
predicted density was highest. The fact that this extra data splitting guarantees the
confidence level for finite samples is proven more formally in the references in [7]48.

48eg. [17] for the finite sample, distribution free guarantee, but there it is assumed KDE is used (with some
conditions on sufficiently small bandwidth), so I’m not sure this applies for GMM.
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Finally, it is important to stress that this method of conformal classification is completely
independent from the focus we lay here on p(|y) (and to which we refer as ’cautious’).
Namely, before that, existing conformal methods focussed on the more traditional p(y|)
instead. The great advantage of using p(|y) however, is that it allows us to tell apart these
very different regions of uncertainty: those where the null set should be predicted (epi) and
those where multiple classes are to be predicted due to strong overlaps (alea).

For, when we use p(y|) in a conformal scheme, the idea is to exclude instead a class y = 
for a point  when its probability p(y = |) is smaller than a given threshold. But in the
context with potentially hundreds or thousands of classes (K >>) for which this method
is primarily devised, that would mean predicting also the null set in regions of maximal
aleatoric uncertainty, p(y = |) ∼ 1/K << ∀ = 1 . . . K, even when p() (to which p(y|) is
oblivious) is very high in that region!49 So we see how using p(|y) to build our conformal
score instead allows us to distinguish regions where all classes are equally likely and we
predict the full level set, from those where no class is plausible and we predict the null set,
because nothing sensible can be said with certainty.

We remind that the method is distribution free at finite sample, and it manages to do
so because it cannot make errors on test points that do not truly belong to the class in
question. That allows us to assume a new test and nV, (known) validation points are IID,
and in that case the chance to find the new point ’odder than the oddest of nV, validation
points’, is simply 1 out of nV,+1.

2.3.3 Using cautious classification to exclude points of high
epistemic uncertainty

We hope to see that excluding points with very low p() will increase our performance (the
precise form of which is to be defined further on). The hope is that perhaps these points
were not accurately described by the model fitting the majority of the data, and abstaining
from prediction for them is the right way to signal that we are seeing something unfamiliar
to the model there. Note that this remains true even if it does not improve performance:
Even if the data behaves the same way out of domain as it did in domain, we have no means
of checking this, and in safety critical applications it can be preferable not to predict than
to make uncertain predictions. So even though a cautious approach will only be rewarded
when the real relationship is more complex than what the model suggests at the border of
the domain, in some applications it can still remain a necessity regardless.50.

The original objective set out for the thesis was to visualise the dependency of the tradi-
tional accuracy and some custom performance measures for set valued prediction on this
confidence level α for different datasets, using normal densities/mixtures with varying de-
grees of complexity for each class. It was not the intention to select an optimal α, as no cost
of rejection of a data point relative to missclassification was specified. Because the method

49In my own personal opinion, this is a rather artifical argument: how likely is it that thousands of classes
would all be predicted to be equally likely? As K becomes large, the fraction the K-dim. simplex that is near the
edges/corners will approach 1. So the chance that not any of K classes has a significantly larger than average
probability becomes virtually zero. On the other hand, the fact that p(y|) is oblivious to p(), and we don’t want
our method to be, seems more than convincing enough.

50unless we manage to encode the larger cost of missclassification properly in the perfomance measure in those
applications as well.
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appeared to be fit mostly for distributional uncertainty, I also used it to test in some simple
situations whether this method was able to reject unknown classes (cfr. section 3.3). To end
this chapter, we review here the three types of epistemic uncertainty and how the cautious
method could or could not detect them:

• First, there is the possibility that test and train data stem from different populations.
The method of cautious classification is well suited to address this form of epistemic
uncertainty especially. A large rejection rate on the test set could be an indica-
tion of this. We will look a little more into this in section 3.3.

• Second, it is possible that the density we learnt from the training points doesn’t prop-
erly represent their true distribution. This could happen for instance when we select
our density from a parametric family not flexible enough to represent the training data.
The ’difference’ between the prediction of the best51 member of that family, and that
of this true model, is the model bias. Here notably, our bias could stem from the fact
that we assumed the density was a Gaussian or a mixture of Gaussians (the latter hav-
ing less bias than the former). This component does not depend on the training set D
nor on the test set (as these are averaged out), but only on the choice of hypothesis
space. For flexible enough models, it will vanish, but then we will typically have larger
variance (see below), so a trade-off is to be found there.
Since this must show up in the discrepancy between the training points’ distribution
and the fitted training density, it’s presence could probably be revealed be using dis-
tributional tests. Using non-parametric density estimation (or more flexible parametric
models) could also strongly reduce this component (at the cost of an increased vari-
ance).
We will ignore this component most of the time, because there isn’t really any
immediate link with the methods we consider, but it should be noted that it may be
very significant when we use normal classes with only 1 component.

• Finally, even if the model inferred from our training data will on average (over all
possible training sets D) be correct, there will still be deviations due to the particular
realisation of training set D we based our inference on, and this is called model vari-
ance. A large difference between the rejection rate on the training set (if we
were to score that afterwards) and the nominal rejection α (on the validation
set) could be an indication of this.

Because the cautious method appears a little less suited for the last two contributions, I
have done some separate experiments in Appendix E,where we turn off model bias and
distributional uncertainty by drawing data from classes that are truly mixtures of gaussians
and estimate densities using a mixture with the right number of components. We can
then focus on the model variance uncertainty component as a function of sample size
specifically.

51ie expected, over all training/test sets
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RESULTS

3.1 Density Estimation

In this chapter we present the results from what was originally the topic, trying to increase
performance by eliminating the most anomalous points of each class. Because there are
many more technical points we couldn’t treat in detail in the previous chapters, we will
try to cover them here from a more practical angle in the first sections. This includes for
example the density estimation, and the feature extraction method we used to convert the
image data into more traditional data. We also have to decide on the performance criteria
we will consider.

For an unbiased model, the epistemic uncertainty is due to what we called model variance
(sample variability due to a finite amount of training data) and distributional uncertainty
(O.O.D. generalization of a model learnt I.D.). But this distinction between ID and OOD is
rather fuzzy, as even non-parametric approaches have a characteristic length scale over
which we reasonably assume the behaviour not to change dramatically, like a bandwidth
(KDE), or length scale (GP). Without such assumptions of smoothness, the domain would
be limited to those exact points where we have made training observations. Therefore, it
is clear that the domain boundary is not something sharp, but rather a gradual decrease
in data density, and it would seem that p(|y) can be a good proxy for distributional un-
certainty at , and that the method of cautious classification (which completely rejects
points when p(|y) is low for all y) is well suited to exclude points where such uncertainty
is largest. This is what we will try in this chapter.

Although we have neglected it most of the time, we should stress the importance of the un-
biasedness in this reasoning: for the points where the predicted density is lowest to actually
be the most anomalous ones, we need our model to be unbiased. When the training density
does not properly match the underlying distribution, the effects can be dramatic, and the
danger of this happening is larger for parametric models that make stronger distributional
assumptions. For non-parametric models, with enough data we can at least expect to find
the right training density, and this method would correctly identify all anomalous points.
But we will need a lot of data to counter the increased model variance (that comes with
the increased flexibility and hence lower bias of such models), and because they base their
predictions only on nearby data, this can again be translated to having a sufficient training
data density p(|y) for each class.
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Therefore, while the scope of the uncertainties captured by this method may differ some-
what1, it seems that rejecting regions where the observed training density was too low
could be a useful way to increase the confidence in our predictions. This is what is pro-
posed in [7], where they favor KDE for theoretical considerations and kNN for practical
implementations. Ironically, while these methods are the ones that should allow a better
assessment of total epistemic uncertainty (i.e. including distributional) in each point of
feature space, they will typically have much higher uncertainties because of the increased
model variance.

Because that lower model variance is expected to be important in higher dimensions (and
a number of other reasons discussed in the following section), we started with Gaussian
Mixture Models for density estimation. Later we added also kNN and KDE and experimented
with a method called Projection Pursuit Gaussian Mixture Models Genetic Algorithms [18]
(PPGMMGA from now on). We now discuss this density estimation in a bit more detail.

3.1.1 Mclust For Gaussian Mixtures

Because high-dimensional density estimation is far from a trivial topic, and the quality of
our density estimation is key2 to the remainder of our results, there is an important choice
to make here. On the one hand, we argued that using the PDF as a proxy for epistemic
uncertainty means we preferably use a DE method that is sensitive to the local data density,
like KDE, kNN,.. On the other hand, we know we need a generative model. Some models
work very well in high dimensions but simply classify, and these were not useful, since we
require not only p(y|) but also an explicit form of p(|y). Of course working with a regular
grid is not feasible in dozens of dimensions, so the most attractive is a PDF for which we
have a parametric form, allowing a swift and precise evaluation of both p(|y) and p(y|)
in any point of feature space.

Gaussian Mixture Models (GMM) (e.g. [19]) are also useful for anomaly detection, as demon-
strated in [8] where they use a neural network with radial basis functions to learn the pa-
rameters (~μ,�),  = 1, . . . , K of a mixture of K multivariate (diagonal) normals, imposing a
penalty on the total volume (apart from a typical weight decay penalty). They can then flag
points with low density as anomalous.

Because of the similarity with our situation, the idea was that I could start with a Gaus-
sian mixture or even normal distributions (LDA/QDA) to estimate the density of each of
our classes separately. Because of the potential for generalisation towards multiple com-
ponents, the option to fully control the covariance structure, and the selection of model
complexity based on B.I.C., I arrived at the Mclust package for R. The features of this
package that are relevant to us are introduced very biefly in Appendix A.

1i.e. for parametric models, we would be neglecting bias and model variance this way. Because of that I also
tried some experiments that focus more on model variance, but in much lower dimension, in Appendix E.

2Actually when we look at the results, these turn out remarkably stable throughout different DE methods. The
authors of [7] already remarked that only the ordering is important, but it still seems surprising that this does not
differ much more between methods. Perhaps the fact that we have only a global picture of the performance on
the dataset as a whole also hides more regional differences.
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3.1.2 Non-parametric approaches (KDE , kNN) , and PPGGMGA

The assumption of normality in high dimensions is very restrictive, much more restrictive
than marginal normality of all those predictors. In spite of that restrictiveness, even LDA
can have a large number of parameters when D becomes large (cfr. Table A.1). Even
more problematic in my opinion is the extreme non-robustness of fitting a single Gaus-
sian: there will always be outliers, and because these large deviations will dominate the
(quadratic) loglikelihood, they will have a large effect on the result. Ironically enough, we
intend to discard just those points in a later stage that are now going to determine our
result! Because of these, and arguments mentioned before, we also tried non-parametric
density estimation.

k Nearest Neigbour Density Estimation (kNNDE)

Was the method recommended in [7]. The method estimates the density based on the
number of neighbours it finds within a given (Euclidean) distance. While results in low
dimensions sometimes stay somewhat below other methods, this method appeared to be
more robust to increasing the number of features.

KDE

The paper on cautious classifications [7] also applies KDE in 2048 dimensions, but unfor-
tunately does not specify which method they use for this in practice. There are many
packages for kernel density estimation in R. The most commonly used one (also used in
ggplot) is ’ks’, but the manual there states it should be used only up to 6 dimensions. Al-
though it appeared to work fine in 8 and 10 dimensions as well, it wasn’t clear if we could
rely on the results given that warning.

Eventually3 we ended up with the function ’kepdf’ from package pdfCluster, which could
be used in arbitrary dimensions, and this seemed to give comparable results to mixtures.
This package also allows us to choose an ’adaptive’4 bandwidth (which becomes larger in
regions where the density is lower), with a parameter α that controls the flexibility with
which this happens (α = 0 corresponds to fixed bandwidth). We tried the default value
α = 0.5 as well as 0.2 and 0.8, and compare this to a fixed bandwidth (which still use
different values in different dimensions, but the same for each observation). We tried both
the Gaussian and t7 kernel but differences were small and only Gaussian kernels are shown
on the figures.

Because it seemed impossible to start tuning over all possible fixed bandwidth matrices in
10 dimensions (even if only diagonal ones), to look at the effect of bandwidth, we eventually
extracted the optimal fixed bandwidth, and multiplied it by constant scale factors, to make
also curves for 0.2, 0.8, 0.9, 1.1, 1.2 and 5 times this value. (For 0.9 and 1.1 results are
usually comparable, but for 0.2 and 5 times the optimal bandwidth, the results are far worse
than for all other models (KDE and non KDE) considered. In the 2D maps from Appendix E

3I considered a few other packages specifically for KDE in high dimensions but they were either difficult to
understand or produced disappointing results.

4cfr. [20], sec 5.3.
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we also tried using some extremely small and large fixed values (0.1,0.1) and (1,1) , to see
the effect of the bandwidth, and there we can see how much this affects the results.

Projection Pursuit Gaussian Mixture Models Genetic Algorithm

Projection Pursuit (originally proposed by Kruskal [21] and succesfully implemented by
Tukey and Friedman in [22] 5) is an unsupervised dimension reduction method, which finds
the most ’interesting’ directions, in a sense that can be problem dependent, by maximizing
some objective function (the index) that is calculated for each possible direction to project
on. Without making use of the labels, this method often manages to achieve impressive
class separation in only 2 dimensions, where techniques like PCA or LDA (which even uses
labels) fail to do so.

The author of the Mclust package developed a version of this algorithm called Projected
Pursuit Gaussian Mixture Models Genetic Algorithms (PPGMMGA) [18], which fits a GMM
and finds those directions in which the largest deviations between the projected GMM (still
a GMM) and a Gaussian is observed. The reasoning is that directions in which the projected
clusters are normal are to be expected, and that those where this is not the case are
therefore those that contain the most information6.

The negentropy is used as a measure to quantify the departure from normality, and because
this projection index remains equal for a Gaussian of given dimension in any basis, it can
be used for a fair comparison of the deviations from normality between all subspaces of a
same dimension. By maximizing this index we can find directions in which the departure is
largest, to use them for visualisation.

Originally I had assumed that this method would then fit a GMM model in the projected
space7, which should be less sensitive to outliers and to overfitting8. However it turns out
the densities returned by this method are fit in the original space before projection. In that
sense it is just a version of GMM that does trimming, and class-wise standardisation of the
data first9 10.

5A very transparent 2-page introduction may also be found for example at https://sites.stat.washington.
edu/wxs/Visualization-papers/projection-pursuit.png.

6A normal distribution is after all the shape white noise takes (by definition of course, but there is a reason we
define it like that), and the normal distribution maximizes entropy (or minimizes information) for a given variance.

7What is a bit confusing is that it stores an object ’call’ which explicitly shows a densityMclust call using ’Z’ (the
scores, which are 2D only) as data, so it appeared as if the model was fit there.

8While the projection of the GMM in the original high dimensional space will also be a GMM in the low dimen-
sional space, I think it will be a different one from the one we would have obtained by first projecting and then
fitting, as outlying values in directions with projection zero would vanish, and a 10dimensional outlier that had a
tremendous effect on the likelihood might have much less of an effect in 2D.

9Sphering (ie also decorrelating the data so it also has zero correlations is customary for PP but but NOT done
in the ppgmmga package as explained in the documentation

10Still, I think we could perfectly extract the low dimensional features, and do the density estimation ourselves
over there. We could then project any test point onto the (different) subspace of each class to determine low
dimensional densities for each class. While we wont be able to get the marginal density at that point (which we
need for p(y|)) because we can’t add up p(|y) that live in different subspaces, this would still allow us to reject
points that are unlike any known class, as we do in the cautious approach. Due to time constraints I have not tried
this anymore.
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3.2 Performance measures

We would like to use the method of cautious classification introduced in Section 2.3 to
exclude the most anomalous points, where distributional uncertainty is larger. One might
hope that we will see the accuracy on the remaining (Non-Rejected, NR) points increase
initially with increasing conformal confidence level α11 and then reach a plateau when
all the ’abnormal’ points are excluded, so that this would allow us to choose a good α

value that discards the ’difficult’ points and keeps the rest12. Not only would this require
the ’consumption’ of our test set, it also hides the assumption that the hardest points to
classify are always the peripheral ones, while I’m not sure this is always appropriate, for
the following reasons mainly:

• The identification of (un)certainty with (in)accuracy is based on an aleatoric view of
uncertainties. For these, being less certain really means that there is more chance our
prediction is wrong, because they are based on p(y|).

For epistemic uncertainty however, we can not really make this link, as this concerns
how sure we are of our model, but another model doesn’t necessarily make wrong pre-
dictions. That is why we tried to express these uncertainties in terms of variability in
predictions, either due to the different parameter values learnt from different training
sets for a same model (model variance), either from different models (distributional
uncertainty).

So the fact that distributional uncertainty is large in the periphery does not guarantee
us that these points will necessarily be misclassified more often, it merely means we
shouldn’t trust the extrapolation blindly. Whether this will also be rewarded in terms
of accuracy will depend on the complexity of that particular true distribution13. Not
seeing the accuracy increase when we reject peripheral points, doesn’t mean that we
were any less uncertain a priori.

• Even if we consider it a given that our density estimation is unbiased and robust to
the outliers it is supposed to detect, and that epistemic uncertainty is higher in the
peripheral regions, then this would still only give us an ordering, without any clue
about how large the uncertainty actually is.

• Last, this assumes aleatoric uncertainty isn’t larger at the center than at the periph-
ery. This is immediately confirmed using a toy ’+’ shaped dataset where both classes
consist of a narrow elongated ellipse with common center but with perpendicular long
axis, a template case for QDA (cfr. fig 3.1).

11The fraction of data trimmed (from the validation set)
12That such an approach can be indeed useful to detect large distributional uncertainty (new classes etc.) is

discussed in section 3.3.
13As this uncertainty expresses the chance of our model assumptions remaining accurate, to quantify this a

Bayesian could perhaps also specify a prior over all such possible distributions in and out-of domain, and calculate
a posterior probability that the actual data distribution continues the same behavior also O.O.D. But that would
probably involve shifting the problem to a whole new set of higher level assumptions. An alternative, that we have
tried, is to absorb this uncertainty in the model variance component by using a more flexible class of models and
letting the training data decide, so it becomes part of model variance. (cfr also discussion App. E.)
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Figure 3.1: Effect of increasing the conformal confidence α on a toy dataset. In black dots
we have points rejected from all classes, and hollow circle(s) represent predictions. If the
true label is not amongst the set, we plotted a ’+’ in the true color inside the circle with
predicted color(s).
This illustrates how we should not expect this method to always yield a higher accuracy
when the most anomalous points are excluded. The assumption that the points in the
highest density region of each class are the easiest ones to classify requires, for starters,
that the aleatoric uncertainty is homogeneous.

As the conformal confidence level α increases, a larger fraction of remaining points
comes from the difficult-to-classify center, and performance will decrease. This is of
course because of the overlapping highest density region (HDR) of both classes.

While this is an extreme example, it does show that merely using overall accuracy cannot
reveal whether the excluded points were those with highest epistemic uncertainty, because
we still have the aleatoric uncertainty as well. Therefore, we would ideally like to ’switch
off’ the aleatoric uncertainty by allowing set-valued predictions. We then consider
a prediction as accurate when the true label is among the predicted set. First we will have
to introduce some notation, so we can define our performance measures.

Notation and Definitions

• Tr, V and T are train, validation and test sets respectively.

• NT the number of points in the whole test set.

• K the number of classes (in the training set).

• D The number of features, i.e. the dimension in which we have to do D.E.

• Y is the true label of observation . Its feature vector is ~.

• We reserve the notation Ŷ for the classical (single valued) prediction, i.e. the class
with largest conditional probability which for balanced classes is the also the one with
largest density:

Ŷ = rgmx
c=1...K

p(c|~) = rgmx
c=1...K

p(~|c)

• S refers to the set of labels that were accepted for an observation , ie the set valued
prediction at point ~. Therefore |S| is the cardinality of that set, ie the number of
classes the point belongs to (which depends implicitly on the confidence level α).
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• NR stand for the collection of non-rejected points, { ∈ T | |S| > 0}, ie the points
accepted in at least 1 class. When this is used as a subscript, for performance mea-
sures, it means that only points with nonempty prediction set are considered in the
numerator and denominator.
We use |NR| as a shorthand to denote the number of non rejected points (which is just
NT .(1 − RR)), as we can then write such averages over NR as 1

|NR|
∑

∈NR (. . .)

Then, we’ll usually consider the evolution of the following quantities as a function of the
confidence level α or rejection rate RR:

• RR: The Rejection Rate i.e. the fraction of points belonging to no class at all.

RR =
1

NT

∑

∈T
1{|S |=0}

• Prec: The precision, defined as the total fraction of all used labels that is correct. Writ-
ing Predj for the set where j is (amongst) the prediction(s), and PPVj for the positive
predictive value of class j14:

Prec =
∑

j=1...K

|Predj|
∑

k=1...K |Predk |
PPVj =

∑

∈NR 1{Y∈S}
∑

k=1...K |Predk |

=
# correct bes

# bes
= Frcton oƒ correct bes

where we used the fact that only 1 label can be correct per observation to replace
∑

j

∑

∈Predj 1{Y=j} by
∑

∈NR 1{Y∈S}.

• AccNR: The (set-valued) accuracy amongst non-rejected points:

AccNR =
1

|NR|

∑

∈NR
1{Y∈S}

Observations with only wrong labels contribute a zero, and points without labels (i.e.
rejected) are discarded from the average in numerator AND denominator.

• AccTradNR: This is the traditional accuracy, but only amongst non-rejected points: the
prediction Ŷ at point ~ is the class c = rgmxc p(c|~), and we compare that to the
true label. The fraction of points where these are equal is AccTradNR. This depends on
the α because the set NR over which the average is taken does.

AccTrdNR =
1

|NR|

∑

∈NR
1{Ŷ=Y}

Caveats We mentioned AccNR, the set-valued accuracy (is the true label among the set?)
on all non-rejected points, as a way to neutralize aleatoric uncertainty. However in practice,
because this quantity starts out in 1 at α = 0 by definition15, it necessarily decreases
initially.

14i.e. the fraction of Predj that is truly class j, so PPVj =
∑

∈Predj
1{y=j}

|Predj |
15as we include the whole feature space in each class at α < α− = 1/nV, with nV, the number of validation

points in that class. This is because of the conservative definition of the quantile that is needed to guarantee
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For a dataset where we have little or no class overlap (or outliers in the validation set) and
the density estimation goes well, we can expect this quantity to take a sharp drop within
the first few elementary ’steps’ Δα = α− =

1
nV,

, towards the value of AccTradNR at that
point, and then follow the evolution of AccTradNR closely. When there is more aleatoric
uncertainty however, AccNR will not fall as deep as AccTradNR (predicting several labels
remains advantageous), or when there are more outliers the drop will be spread to higher
α. Therefore AccNR can remain significantly larger all the way up to α = 1. The Cifar
dataset shows a clear example of this, cfr last section. (Note that this is not necessarily due
to aleatoric uncertainty alone, if the density estimation is really off, we might probably see
something similar.)

In other set-valued prediction problems (eg [23]), scaling the accuracy of each prediction
by the set size used provides a useful measure that combines accuracy with precision. But
in contrast to the situation there, where we can predict one or several labels and rejection
consists in predicting all K labels, here we can also reject by predicting the null set, and
that will happen for more and more points as α → 1. Because this measure always starts
out at 1/K (since initially each class spans the whole space), and we will typically doubt
between a few classes at most and not all K of them, the increase in the inverse set size
always overpowers the decrease in accuracy as we reject more and more labels. This is
essentially because there is no cost for completely rejecting (i.e. predicting the empty set)
an observation, and both accuracy and precision can be made high by rejecting all but a
few easy points. If we require a trade-off between precision and accuracy to select an α

value, we can use an F(β)measure using set-valued-accuracy and -precision (FracCorLabs),

Fβ = (1 + β2)(
1

Prec
+

β2

AccNR
)−1

typically with β > 1 in this setting where accuracy is favored over precision. This should
allow us to make a good choice for α (but requires ’burning’ a separate part of the test set
in the process). I have excluded these figures from the final report due to space constraints,
but they are available in the uploaded folders16.

Because of these problems with the set valued measures, we eventually focused most on
the evolution of AccTrdNR as more and more points get rejected. This is the accuracy of
the traditional classifier ŷ = rgmx p(y = |) for those points that do not get rejected by
the set valued classifier. Here, as α increases, only the set NR changes, and we can see
whether we’re doing good by rejecting. While this measure suffers less from the artefacts
of predicting sets, it only tells us whether the rejected points were missclassified more often
than average, not whether this is due to aleatoric or epistemic uncertainty.

While the cautious classification approach turns out less suited for a quantification of the
uncertainty of each type in general, the rejection curve RR vs α we obtain from this method
can be a very useful tool for signalling large overall distributional uncertainty.

our confidence level. It is not guaranteed to end up in 1 as α → 1, but unless the very centers of each class still
overlap (or the estimated HDR are really off), it will also tend to 1 on that side. There the performance is based on
only a few remaining points and becomes very erratic.

16Without choosing an α measure, we can also use them to judge the merit of the cautious approach: when we
see a sharper peak at lower α for a fixed value of β in one set than in another, it means the first dataset probably
benefits more from the exclusion of a small fraction of anomalous points than the other. Often we see indeed a
very sharp maximum at the lowest α values.
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Figure 3.2: Rejection Rate vs α for different fractions of new points (fracnew), and different
degrees of overlap (sdval). A horizontal line indicates the fractions of new points. Left:
model correctly allows different covariances (’VVV’) ie QDA. Right: model (incorrectly) as-
sumes equal covariances (’EEE’) ie LDA. The simulated dataset used is shown in B.1.

3.3 Detecting distributional uncertainty from the

rejection curve.

By construction we reject at most a fraction α of validation points from each class. Then
the fraction of points that is rejected from all classes (the rejection rate RR) cannot be
more than α for the validation set. So, when in the test set we observe RR to increase
more steeply than α, we can suspect an important difference between the test set and
train/validation, like a new class, or a large distributional uncertainty (dataset shift). Note
that we do not need to use the labels of the test data for this.

On the other hand, we could also score our original training set, and because the validation
was obtained by a mere random split, we will have no such distributional uncertainty here.
Also, here we have the labels, so we can compare classwise rejection rates17 in the training
set to their nominal value α. While we expect them to be slightly lower in the training set,
a large difference would also point to large model variance18. That means when we have
RR ≈ α on the training set but RR >> α on the test set, we can almost be sure19 that this
has to be due to a difference in distribution between train and test.

When overlap is not too large we can see in Figures 3.2 and 3.3 for example, as one would
hope, that the Rejection Rate immediately jumps to the fraction of new points, at very
low thresholds. If we observe a graph of this type, it would be a strong indication that
we have unidentified classes. We did a few very simple simulations to see to what extent
this remains the case when there is some overlap or the distributional assumptions are not
satisfied. Because of space constraints (and because the results are not so surprising) we
place them in the Appendix B and present here only the conclusions.

17For the test set we don’t want to use labels, so we considered points rejected from all classes instead.
18Model bias will typically not induce such a difference as can be seen from figure 2.6, where the training contour

includes a lot of extra space due to model bias, but the difference in width between the train and validation
quantiles comes from model variance alone.

19unless the test set is really small so the rejection curve is very coarse
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Figure 3.3: Rejection Rate vs α for different fractions of new points (fracnew), and different
degrees of overlap (sdval). A horizontal line indicates the fractions of new points. On the
left we have the case where the known classes are fitted by 2 component mixtures (ie the
truth), on the right the case where they are described by a single component each, ie in
the presence of severe bias. The simulated dataset used is shown in B.1.

Conclusion The results suggest we could use RR(α− )
α−

as an indicator for the presence of

new classes or large dataset shift20. Here α− =
1

nc,V
21 stands for the smallest meaningful

α value for that class c, and corresponds to rejecting only points with a predicted density
smaller than the lowest density observed for a point of that class in the validation set.

We conclude from the experiment in the Appendix that reliably detecting which points
are anomalous and which aren’t becomes more difficult in situations where the
model is completely misspecified or aleatoric uncertainty is larger, but even then
we would typically still get a strong signal that something is wrong simply by
looking at the rejection curve. Therefore, this could be a useful first check to perform
before we can even try to extrapolate inference from the training set towards the test set.

Big caveat here, I think, is that we used a large number of points in each cluster, so the
smoothness of the curves is mostly thanks to that. If we have much smaller datasets,
curves will be much coarser, and RR increases by visible jumps. That makes it a lot harder
to recognize deviations from y <=  at low α, and the larger model variance will also disturb
this pattern for smaller datasets.

3.4 Application to Image Data

We first applied the method to a few simpler toy datasets, like the mfeat dataset from the
UCI ML repository, where the macroscopic properties of the images are already summarized
for us in features that can be used separately with eg. supervised feature selection. The
eventual goal however was to apply the method to datasets of images, with in the order
of 30x30 pixels with each 1(gray) or 3 (RGB) channels. So these have about 800 to 3200
numeric features (each containing an integer in the range [0,255]). Of course, these fea-
tures are not meant to be used directly, as they have only a very local meaning. To turn this

20It is best to look at low α values since we dont know how many points are from new classes or how strong
the dataset shift is. If we have large datasets (which is also necessary to get smooth rejection curves) it may be
better to use a multiple of this value, to protect against outliers in the validation set playing a too large role.. But
that would be at the cost of decreasing the sensitivity to small groups of anomalous points in the test set.

21with nc,V = nV /K the number of validation points in class c, nc,V =
∑

∈V 1Y=c.
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into a manageable number of more meaningful features, we had to do some preprocessing
typical for image data. This is discussed next.

3.4.1 Using existing state of the art pre-trained feature
extractors.

We intended to apply an off-the-shelf feature extractor (VGG), which was trained to recog-
nize low-level features like edges, shapes, colors on a much harder data set with thousands
of classes, to our image datasets. This convolutional neural network, and the adaptations
we made to apply this to our datasets, are discussed in Appendix C, and here we will present
only a few of the results.

3.4.2 Results for image data: MNIST , FashionMNIST and Cifar

Introduction

We tried 3 publicly available image datasets, Cifar-10, FashionMNIST and MNIST. They each
consist of 60.000 training (50.000 for FashionMnist) and 10.000 test images of 282 to 322

pixels, divided equally over 10 distinct classes. The main difference lies in what the classes
represent, the number of channels (gray/RGB), the amount of preprocessing required, and
the accuracy we can achieve. Fashion-MNIST is included in the keras library in R, Cifar-1022

and MNIST 23 can be downloaded online. We will briefly discuss results for all 3 datasets,
but except for FashionMNIST, we defer the figures to Appendix D due to space constraints.

The situation for each of the three datasets is quite different, and Fashion (with its baseline
accuracy of about 92%) keeps the middle ground in the sense that MNIST is too easy (ac-
curacy starts out at 98%, even with very simple classifiers and few features), while Cifar is
a lot harder (only 72.5% for the best of the simple architectures we considered.)24. Cifar
is also the only dataset for which we don’t really see any improvement when we use the
cautious method to exclude peripheral points25.

The interpretation of the evolution of accuracy with the conformal confidence level α is a
bit speculative when all those uncertainties are simultaneously at play, as we don’t even
know how well our density estimation went26, and aleatoric uncertainty is hard to grasp
while epistemic uncertainty remains significant.

We have defined several quantities in Section 3.2, some of them more a diagnostic tool
than an actual performance measure (think of mean inverse set size, and rejection rate),

22http://www.cs.toronto.edu/~kriz/cifar.html
23https://pjreddie.com/media/files/mnist_train.csv
24Comparing this to a random accuracy of 10%, that is not extremely bad either, but the problem is that we

need epistemic uncertainty to be really small before we can properly quantify aleatoric uncertainty, and for Cifar
it is probably a bit too high.

25There the aleatoric uncertainty is probably much higher, because that picture changed a lot when we also
exclude points of high (estimated) aleatoric uncertainty. Then we see the accuracy increase from 70% to about
90% when we remove less than half of the points.. This is discussed in the next subsection, and here we’ll focus
on rejecting only distributionally uncertain points.

26there could be bias, model variance, changes in accuracy upon increasing α will also be caused by spatial
inhomogenity in the aleatoric uncertainty.. The difficulty of quantifying each type of uncertainty from these figures
is the main reason we did a separate exercise focusing on quantification of uncertainties of each type in Appendix
E, because it seems hard to extract such information from the curves we have here.
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and we would now like to deduce as much as we can about the uncertainties of each type
using these probes. I have left out the curves for the Fβ measures in an attempt to reduce
the figure load a bit more, but they can be found in an online Appendix for several values of
β. Their use is probably limited to choosing a value for α27, or less drastically, to see how
beneficial application of this ’filter’ for distributional uncertainty can be for a given dataset
and a given ’cost’ of rejection (as determined by β): A sharp peak at low α value suggests
that rejecting a small fraction of points might really benefit performance, so in these cases I
would say that the method seems more promising than it does for datasets where we have
a broader peak smeared out towards higher α28.

Fashion

On this set we obtain about 94% accuracy when using the mini-VGG (more like 92.5% for
the 2 block architectures used eventually), and about 91% after substituting the dense
layers by our cautious framework. In Figures 3.4-3.5 we show results when we use the
cautious classification to exclude only the lowest density points.

Here we can make the following observations:

1. The fact that RR ≈ α very closely suggests that the test set is not very different from
the training data. This also seems to be confirmed by the fact that AccTradNR is so
high at α = 0.

2. The fact that AccNR doesn’t decrease29 very much when α is raised also suggests that
aleatoric uncertainty is quite low in this dataset: even when the mean inverse set size
becomes 0.95 (which would correspond to about 1 point in 10 with a second label,
(9.1+1.1/2)/10=0.95), we only lose about 4% in AccNR. That suggests we have only a
small fraction of points for which the ’primary’ label is not correct. Especially when we
compare AccNR here with what we see for Cifar, where it keeps on dropping steadily
as α increases, this suggests overlap for fashion is much smaller.

3. But because 1 − AccNR (after the initial drop from 1) is still only about half of 1 −
AccTrdNR (eg at α = 0.2) , there must be at at least some aleatoric uncertainty: the
set-valued prediction scores a bit better when a few extra labels are allowed. Once
α becomes larger than say 60%, the set-valued and traditional accuracy are virtually
identical, and it appears the aleatoric uncertainty has become very small for the points
that remain.

4. So in conclusion we could say that nearest neighbour models (NN9) and adaptive KDE
(for low confidence level α, but that is the region we care most about) are the best

27again, contaminating our test set in the process
28Of course we have to compare F(β) for the same β value..
29That decrease is inevitable, as it necessarily starts out at 1 by definition in α = 0.
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tom: Mean inverse setsize amongst NR points.
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models here in 8 dimensions30, and that there is a little aleatoric but not so much
epistemic uncertainty for this case31.

5. The fact that overlap is quite small (confirmed by precision measures mean inverse
setsize and Fraction of Correct labels that approach 1 already for low α values) appears
to indicate that the density estimation went well for this dataset. Otherwise, in case
of large bias there we usually accept way too large regions in each class, and overlap
tends to be bigger and stay until higher α values).

6. In conclusion we could say that cautious classification was not really needed here
because of the high baseline accuracy, but that it still has a beneficial effect to exclude
the most peripheral points, i.e. that these are somewhat harder to predict here. But
the increase is also slow and steady. if the errors were due to different behaviour on
the outskirts of the domain, we would see a sudden jump at small α values. Here the
improvement is quasi-linear over the whole range, which suggests that the exterior
points are somewhat harder but errors are also made in more central regions. But the
fact that AccNR eventually ends up in 1 again also means that the very centers are
corectly classified. (In contrast, for cifar, this is clearly much less the case.)

For Cifar and Mnist we refer for the same figures to the Appendix D.

Cifar

Here we have a very different situation than for FashionMNIST.

• We see a much lower baseline accuracy that does not improve at all when peripheral
points are dropped from each class.

• In combination with the fact that the set-valued accuracy drops quite fast as the num-
ber of labels is reduced, this is already quite suggestive of much higher aleatoric un-
certainty (or of large bias causing bad class centers).

• The fact that Figure D.3 in the Appendix shows how the situation clearly improves when
the most aleatorically uncertain points are also removed as α increases, confirms this.

• Precision measures like mean inverse set size show that the predicted sets are now
much larger even until α is very high.

• The fact that the fraction of correct labels increases even slower than the mean inverse
set size appears to indicate that, as we reject labels, we are also rejecting correct ones,
and the overlap is genuine, not just due to very biased density estimates.

30but I should add that this can change completely when we use a different number of hidden features. While the
accuracy of the VGG model does not change that much, and the best accuracy here also remains quite similar, the
precise order between the models does change a lot when we make different choice for the number of features.
Some methods (eg NN) will cope better with increasing number of dimensions, and for example the precision of
the LDA model was one of the worse in 32D, while it becomes one of the best here in 8D. (It would also be natural
that deviations from normality are much larger in 32D than in 8D.) But this is probably more a property of the DE
method than of this dataset.

31To support this we refer also to the next section where we reject also aleatorically uncertain points

44



CHAPTER 3. RESULTS

• Even the rejection rate (with RR < α at first) appears to indicate that some of the points
rejected from their true class are not entirely rejected yet because they remain in other
class(es) for a while. That would give a slightly slower RR (and strongly decreasing
AccNR) initially.

To what extent might a bad density estimate really be to blame for this? We have seen
in Section 3.3 how bias due to a too simplistic density model can also cause large (non-
genuine) overlaps (i.e. in predicted densities), which cause RR < α initially and a slight
upwards curl at larger α.

• From the fact that the fraction of correct labels in Figure D.2 reaches only .7 when α

becomes 1, whereas the inverse set size has reached 1 at that point, it appears that
the central points are often wrong, so we have at least for some classes overlap in the
predicted class center. The question is whether this is only the predicted center, or
also the center of the true distribution?

• But the fact that even the VGG had only about 72%, suggests we have more genuine
aleatoric uncertainty, at least with the features we have extracted here.

• I would also expect that the non-parametric density estimates would differ more from
that for the GMM if the density estimation was to blame entirely for this.

• Finally, again the fact that the picture improves so much when we reject also points
where the predicted aleatoric uncertainty is high (cfr. D.1.2), suggests that these were
often misclassified and the apparent overlap was genuine.

Recapitulating, we don’t really see that the accuracy for Cifar increases when the peripheral
points are left out, and this could mean that the points in the periphery of classes are not
the hardest ones, for example because the test set shows no unexpected behaviour while
the overlapping regions are more central to certain classes.

Mnist

This dataset is a bit too easy to be really interesting, so will not discuss the results here. A
few remarks are given in Appendix D where the figures can also be found.

3.4.3 Rejecting also points with high aleatoric uncertainty

Because of the lack in improvement when rejecting exterior points for Cifar, and because it
seemed obvious that the previous approach will only focus on a certain type of uncertainty,
we later tried to reject also the most aleatorically uncertain points, and the difference on
all datasets is spectacular. In part this is understandable as aleatoric uncertainty has the
advantage of using immediately the (predicted) class probabilities that are linked directly
to accuracy (in contrast to epistemically uncertain points)32.

32But, for those to be also the ones that are misclassified most often, and for their exclusion to benefit accuracy,
we still need our estimated densities and class probabilities to be more or less correct.
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For a fair comparison with the curves from the previous section it is also important to place
the rejection rate RR on the abscissa and no longer α (or at least to use the RR versus α

plot as a translation key, so we compare performances at a same RR), since we will now
reject more points at a same α.

All figures can be found in Appendix D, organised by dataset. Here we will only discuss how
we defined that aleatoric uncertainty. There are several options:

1. First option is to use the definition we already mentioned, of rescaled Bayes error
A = K

K−1 (1−mxy p(y|)). That ranges from 1 to 0 as the probability of the chosen class
(that which has the highest probability) ranges from a random 1/K to 1. In order to
combine this approach with the rejection of exterior points discussed before, we would
like a criterion where the fraction of points rejected due to aleatoric uncertainty also
starts from zero at α = 0 and gradually increases with α. That way we could compare
the figures with the previous ones to see the additional effect of these rejections.
We could either reject points with uncertainties above a certain absolute value, or a
certain fraction of points with highest uncertainties:

(a) One possibility was to re-use the α values used for the cautious method as cutoffs
for 1− A, rejecting points for which A > 1− α. But, that way, we don’t reject much
points, as we don’t usually doubt between all K classes but between 2 or 3 at
the most, and A is then much smaller than 1 for K = 10. We could try obtaining
a more even spread by using instead A ≥ 1 −

p
α, or even a higher root33, but

eventually we start getting a slight jump at α = α− due to the very few points
that did have higher aleatoric uncertainties now getting rejected even before we
start. It is therefore better to use the next option if we really insist on spreading
the aleatoric rejections more evenly over the α range34.

(b) A second option was to reject a fraction α of points, i.e. those with A above the
1− α quantile of A values. In analogy with the OOD rejections we could determine
the 1−α quantile of A values in the validation set, and use that as a cutoff for test
set A values. Or we could exclude directly the fraction α of those test points with
highest A values. We dismissed the last option as it does not seem reasonable to
have the rejection of a test point depend on the rest of the set being scored, we
might even score one test point at a time.

2. Second option, instead of using A is the entropy of p(y|) , i.e. H() = −
∑

y p(y|) logp(y|)
as a measure of aleatoric uncertainty. Because I had no idea of a sensible absolute
cutoff here, I immediately considered the 1−α quantile of the valdiation entropies, and

33When doubting between 2-3 classes at most we’ll rarely have pmx < 0.4, meaning A < (10/9).0.6 ≈ 65%
always. That would mean we reject no points at all until α > 0.35. Using the square root, this is shifted to about
α = 0.12, and using the 4th or 8th root even to 1.5% and 0.02% respectively.

34It is also questionable if that is at all desirable: It would seem preferable to have rejections based on an
absolute measure of aleatoric uncertainty rather than rejecting some fixed fraction irrespective of the actual
uncertainty at those points. The main reason for doing this is that, without resampling methods or posterior
distributions, we have to use rather arbitrary measures for these uncertainties that are not directly
comparable to one another, and we can only compare the importance of each uncertainty through
their effect on the accuracy. Because these measures and the way we threshold them as α runs through its
range have a large effect on the number of points being excluded at a given α, it seems necessary to have
a comparable number of points excluded due to each type in order to compare the the effects this
has on the performance. This is only in order to compare the ’strength’ of aleatoric and epistemic
uncertainty. A better effect on the accuracy could be obtained by excluding simply the same total fraction of
points with highest total uncertainties, and there would be no reason why these would consist for half of the worse
points from each group.
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rejected test points with an entropy above that. This is the definition that was eventu-
ally used to make the figures. The advantage of this measure is that it is sensitive to
the uncertainty about all classes, not just the most likely one, but the disadvantage is
that immediate link to accuracy we had with (the unscaled) A is now gone.

The points selected for rejection due to aleatoric uncertainty can slightly overlap with those
rejected due to OOD uncertainty, but this will not be much typically, as points in several
classes typically don’t get rejected from all of them that easily. Usually we will see a total
rejection of about 2α for small α (which is important to take into account when comparing
with figures from the previous section).

Cifar

This is the dataset where the effect is most spectacular, and this is probably because the
aleatoric uncertainty was highest here. (We need to be careful not to attribute a faster in-
crease to better rejections, when there are simply more at same α. But when the accuracies
increase not only faster but also reach higher values, we do have an improvement.)

Noting the difference between FracCorLabs and AP35 (for example at α = 0.2 we have
FracCorLab barely 0.45 but AP about 0.65), we can conclude that we are still using a lot
of labels for points that aren’t even correct. Those labels don’t make any difference in AP

(0/2=0/1) but they do in FracCorLab (where the denominator increases but the numerator
doesn’t). The fact that we have nearly RR = 0.4 at α = 0.2 shows how the most aleatorically
uncertain points are not OOD points, as we reject 2α points here, so there is hardly any
overlap between the α-fraction of most OOD and that of most aleatorically uncertain ones.

Fashion

Now we can achieve 98% set-valued accuracy by rejecting 20% of points (which occurs
just after α = 0.1 this time). But for the traditional accuracy, the effect is larger: rejecting
those 20% brings accuracy to almost 97%, and rejecting 40% to 98%. We can see here that
after that point, traditional and set-valued accuracy nearly coïncide, so we have properly
eliminated aleatorically uncertain points.

The fact that we have RR ≈ 35% at α = 0.2 while we used to have RR = α for the dis-
tributional rejections alone previously appears to indicate that the 20% most aleatorically
uncertain points now have at least some (about 25%) overlap with the 20% most OOD
points, so the most peripheral points are now at least as aleatorically uncertain as the more
central ones.

MNIST

We have left this dataset out of the analysis due to space constraints, but a few remarks
about the results are included in Appendix D where the figures are shown.

35This is a quantity we have dropped elsewhere because it rarely added something. This measure counts 0 for a
set that doesn’t contain the true label, and the inverse setsize for one that does, AP =

∑

∈NR
1y∈S
|S |

.
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CONCLUSIONS

From the last chapter (which gave the thesis its name) we conclude that the fact that
epistemic uncertainty has no immediate link to accuracy keeps us from being really able to
judge the merits of the cautious approach by its effect on performance. While we expect
the method to be most valuable in situations where we have a large dataset shift, i.e. a
large systematic difference between training and test data, we usually have no way of
knowing beforehand whether this will be the case, and this makes the rejection curve of
the cautious approach an important sanity check before we try to extrapolate our inference
from the training set to the test set.

When additionally the other forms of uncertainty are small so that the distributional uncer-
tainty is the dominant component, the cautious approach can be used to reject instances
on an individual basis, which can be very useful in certain safety-critical situations (think
self-driving cars, medical diagnosis, ...). In those cases, it may be much better to reject
certain instances so they can be classified manually or so the decision can be postponed
until more information is avalaible (eg. slowing down the car until the unknown object is
closer, or taking an additional MRI scan, etc). For such an individual instance-by-instance
rejection, it appears however necessary that bias and model variance are also small, be-
cause we really need our density estimation to be of high quality. But even when they are
not, a strong deviation of the rejection curve from the line RR = α of the cautious classifier
can still be an important indicator of dramatic overall distributional mismatch. This could
signal for example that there remain thus far unidentified classes, or that the distribution
of some of the known classes is more complicated (eg. mixture) than assumed so far.

We confirm also that the rejection of points with high aleatoric uncertainty typically has a
more beneficial effect on accuracy, and given the above this comes as no surprise: Aleatoric
uncertainty directly refers to uncertainty about the correctness of a particular prediction,
while epistemic uncertainty actually refers to the uncertainty we have about the correct-
ness of our model, either about the functional form of the model (=bias when in domain,
distributional when out-of-domain), or about the best values of the parameters for a given
functional form (=model variance). Because it is hard to quantify to what extent another
model would give different predictions, the effect of epistemic uncertainty on accuracy is
much harder to grasp.

From the theoretical chapter we conclude that one of the main obstacles complicating the
separation of epistemic and aleatoric uncertainties in classification is the fact that both the
covariance and mean of a multinomial are linked to the same class probability vector36 and
any attempt at studying these independently (eg by considering pre-softmax outcomes as
target as in [3]) will ignore important correlations between them. In this respect the criti-
cism made by Kwon et al in [4] on the work of [3] might be very important. However, the
hierarchy that results when we don’t ignore these correlations also brings certain difficul-
ties: We started out in terms of noise and model variance, with an aleatoric uncertainty

36i.e. E(~y) = ~p and covariance [Vr(~y| ~p)] ,j = p.1=j − ppj
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that only depends on the true distribution and not of our knowledge of it, and a total un-
certainty that approaches this constant from above as the epistemic component shrinks.
But the definition we had to use in practice (because the true and predictive distributions
are not usually known) turns out quite different, and has an aleatoric uncertainty that is
expected to increase as we narrow down the possible range p(θ) of model parameters so
the epistemic component decreases (which is also confirmed by the maps in Appendix E).

I think this discrepancy stems from one of the key differences between the regression with
constant noise context and classification: In the former case, the (aleatoric) noise σ2 is
actually a lower bound for the predictive variance, and therefore we can indeed expect
total variance to decrease towards this (constant) aleatoric component as the dataset be-
comes denser. For classification however, θ0.(1 − θ0) is by no means a lower bound for
the variance, and due to Jenssens inequality for concave functions (like (1 − ) ), we can
even expect the aleatoric uncertainty (not defined as θ0(1 − θ0) but as E[θ.(1 − θ)] <=
E(θ).[1 − E(θ)]) to increase as p(θ) concentrates in probability around θ0, while the total
uncertainty E(θ).[1 − E(θ)] could go either way37. This appears to indicate that only the
epistemic component retains its familiar meaning38, while the values of aleatoric and to-
tal uncertainty are ’hazy’, only measurable up to a certain precision, and this precision is
just that epistemic component. Once this vanishes, the haziness disappears and the lat-
ter two become equal. The definition we used assigns each of the three contributions a
well determined value also for finite datasets, but apart from ensuring the correct limiting
behaviour and the nonnegativity of the epistemic (model variance) component, these val-
ues for aleatoric and total uncertainty probably don’t have much meaning as long as the
epistemic component remains.

In the second chapter, we found that our measure of epistemic uncertainty appears to rec-
ognize the domain only for very flexible models, which is probably because in those cases,
the model variance has absorbed most of what was originally distributional uncertainty.
While such an approach might capture the previously unquantifiable uncertainty on the
edge of the domain, it is almost certain to result also in a larger model variance within the
domain, and this may be very disadvantageous to model performance. It thus appears that
we are faced with a choice between a better model that ignores part of the uncertainty
OOD, and another that may do a better job at being aware of its uncertainty OOD, but
might perform much less in-domain and, in most situations good performance in-domain
will be even more important than reliable uncertainties for extrapolation OOD39. For smaller
datasets, it may then be preferable to keep in mind an unquantifiable uncertainty beyond
the domain in exchange for lower uncertainties in-domain. We also see that both measures
we used to quantify the aleatoric uncertainty agree very well with one another. But because
of the way they are defined, they also depend strongly on the density estimation used and
the epistemic uncertainty that comes with it, in line with what we wrote for the first chap-
ter. Finally, we also have to conclude that the measures we constructed based on Dirichlet
priors, in an attempt to recognize the distributional uncertainty beyond the domain also for
models with stronger distributional assumptions, don’t really give the hoped-for results.

37depending on whether E(θ))→ θ0 approaches from the side of the uniform θ = 1/K or from the edges θ = 0,1.
38which appears to be confirmed also by the equivalence of this definition with an often-used measure of spread

between the ensemble of class probabilities, the JSD.
39unless perhaps we can still act upon that uncertainty to reduce it.
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APPENDIX A

MCLUST FOR GAUSSIAN MIXTURE

MODELS

Mclust uses the EM algorithm (starting from some initial guess based on a hierarchical
procedure) for model based clustering, assuming that the data is composed of a mixture of
multivariate normal distributions (GMM, For Gaussian Mixture Model). We can then restrict
covariances at two levels: either between classes when there is 1 cluster per class, using
modeltype=’EDDA’ (for EigenValue Decomposition Discriminant Analysis, or within classes
when each class is a mixture by itself, using modeltype=’MclustDA’1.

Mclust offers 14 different possible restrictions that can be placed on cluster covariances, in
terms of common or independent cluster oriëntation, shape, and scale. These correspond
to D(D−1)

2 , D− 1 and 1 degrees of freedom respectively. These can either be eliminated (eg
diagonal covariances), shared between K classes, or fully independent. The ’EVI’ model
for example is then the model with common cluster volumes (’Equal’), independent shapes
(’Varying’), aligned with coördinate axes (’Identity’). The ’EDDA’ model with K components
and ’EEE’ structure for example then corresponds LDA, while ’EDDA’ with ’VVV’ produces
QDA. We can also assume a mixture for each class using the MclustDA option, and specify
for each class separately the maximal number of components and covariance restrictions
to apply to clusters within that class.

In figures (A.1) we provide a table of the properties and the corresponding degrees of free-
dom for each of these 14 options. There we see clearly how even the d.o.f. of an LDA model
with its common covariance can explode if D becomes too large, and that most can be won
by restricting the oriëntation, for which the number of parameters increases quadratically
with the dimension D. So it really depends on whether we have very large K, or D , or
both, what we can afford to fit. By default, Mclust tries a whole range of complexities and
selects the one from that set that optimizes some criterium balancing model parsimony
with likelihood. For that criterium one can choose between the beforementioned BIC and
the ICL (Integrated Completed Likelihood). According to the documentation, BIC tends to
favor models that approximate the data well but are a bit simpler than reality (stresses
parsimony), while ICL will not be as easily satisfied with a simpler approximation (stresses
likelihood). That would mean ICL is better for inference and BIC for prediction, so here we

1The MclustDA function is actually meant for producing also cluster/class membership probabilities p(y|), but in
the process it fits an independent density model in each class. We will only extract those densities and ignore the
classification-related outputs, so we can just use one call to MclustDA instead of K calls to Mclust.. The advantage
of this is that we can then also use their dimension reduction technique MclustDR on an MclustDA object to plot
all classes and density contours on a same low dimensional figure.
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will let Mclust select the model with the highest BIC (from those submodels considered that
converged).

Important to keep in mind however, is that Mclust will implicitly use a simpler submodel
if the more general one failed to converge. This convergence is in part stochastic2, and
although underdetermined models (with more parameters than observations) are seen to
converge much less frequently, they still can (even though there is no regularization by
default). This is probably because (unlike eg. least squares) the EM algorithm doesn’t have
to invert any matrices to find an exact and unique solution, it is an iterative procedure, that
remains dependent on the initial condition3.

Finally, this package also offers dimension reduction and visualisation methods (discussed
in the papers [24],[25]) For a single component per class, and a common covariance matrix
between classes, this dimension reduction would reduce to Fisher canonical (LDA) coordi-
nates, according to Proposition 1, p.5 in [24]). If we have different covariances, and/or
several clusters per class, it amounts to a generalisation thereof that also takes into ac-
count directions where the variances are very different between clusters. If I understand
correctly [24], it finds directions which maximize some combined variation in the cluster
means and in the cluster covariances. So, directions can be important either because they
separate well the cluster means, or because they have a significant difference in cluster
dispersion, or a little of both. One can set the relative importance to be given to the con-
tribution from differences in covariance and that from differences in mean respectively via
the parameter λ, which is 0.5 by default. We have set λ = 1 to focus on separating cluster
means when we produce these graphs4.

2For example, on occasions we saw the VVE model with 1 and 3 components converge, and that with 2 compo-
nents not, in the same run on the same data.

3While there may be an infinite number of solutions that describe the training set equally well in such situations,
it seems unlikely that they will all describe the test set equally well, so even if convergence is not always an issue,
overfitting is still likely to occur in such a situation. Therefore I think it is preferable that a unique global optimum at
least exists, even if we have no guarantee of finding it. (On that note: Mclust uses a procedure (called hierarchical
agglomerative clustering) to determine the initial condition for its EM algorithm that ought to improve its chances
of ending up near the global optimum.)

4I have not included such graphs in the final report, but they can be convenient to visualise the clusters iden-
tified by Mclust, and I think we could in principle also use the basis vectors of the reduced spaces to project the
results for non-GMM density estimation on.

A-2
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Figure A.1: Names and number parameters for each model as a function of the dimension
(named p here), the number of clusters K, and the model restrictions. For more information
and a comparison between EDDA and RDA, see for example [26] and [27], from which these
tables are taken.

A-3



APPENDIX B

DETECTING NEW CLASSES

(OR OTHER DISTRIBUTIONAL MISMATCH) IN THE

PRESENCE OF BIAS AND OVERLAP

Figures 3.2-3.3 showed how the RR immediately (α < 0.1%) jumps to the fraction of new
points, because the class is different enough to be rejected at very high confidence levels
(low α). This suggests using RR(α− )

α−
as an indicator for the presence of new classes. In the

remainder of this appendix we have some experiments intended to see to what extent this
remains true in the presence of more bias and overlap.

B.1 Simulated Gaussian data with varying fractions of

new points, and varying overlap.

We simulated data from 5 bivariate normals, of which the means where randomly drawn
integers in [−5,5]. The covariances of the 4 known (ie passed during training) classes were
fixed, and controlled by a common scale parameter σk = 2. The shapes were as follows: For
the first two known classes I fixed the covariance at dig(σ2

k
,0,0, σ2

k
/2) and for the other

two at dig(σ2
k
/2,0,0, σ2

k
).

For the unknown class we have a spherical covariance sd2.1, with increasing values for
sd = 1,2,3. The appropriate model was therefore QDA, and I compared the case where a
QDA model (’VVV’) was fit, and that where an LDA (’EEE’) was fit, to check if the picture
changed dramatically in the presence of bias. The number of points in the 4 known classes
was fixed (and large, to eliminate model variance), and that in the unknown class varies
from .1% to 25% of the test set. A horizontal line indicating that fraction of new points is
always shown in the RR vs α plots (eg fig. 3.2). The data is shown in fig. B.1 (right), only
there the known clusters are already combined two by two (as explained in the text further).
Here α− =

1
nc,V

1 stands for the smallest meaningful α value for that class c, and corresponds
to rejecting only points with a predicted density smaller than the lowest density observed
for a point of that class in the validation set2.

So, we see that when there is more overlap, the jump gets smeared out somewhat more, as
does it when there is bias due to incorrectly specified covariance, but this does not appear
to dramatically change the picture for RR vs α. In the graphs for the accuracies (in the

1with nc,V the number of validation points in that class c, nc,V =
∑

∈V 1Y=c.
2If extreme outliers in the validation set (eg. generated by errors of some kind) are possible, or if the validation

set is large enough, it would be preferable to choose a larger α that is based on more than a single validation
point. But that would be at the cost of decreasing sensitivity to small groups of anomalous points in the test set.



APPENDIX B. DETECTING DISTRIBUTIONAL MISMATCH

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Baseline: No new classes: different scenarios. for : Rejection Rate

α

R
ej

ec
tio

n 
R

at
e

NoNew_TrueData2GMM2s_sdK2_nGused1

NoNew_TrueData2GMM2s_sdK2_nGused2

NoNew_TrueData4class_sdK2.RData

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

−10 −5 0 5

−
10

−
5

0
5

10

X1

X
2

Figure B.1: Rejection Rate vs α for different baselines withouw new classes: the model with
4 classes estimated using QDA, the case of 2 GMM’s with 2 clusters each, estimated by a
GMM allowing 2 components, and the same estimated by QDA, ie allowing only 1 cluster
per class. We don’t see such a sudden jump in RR as we do for the figures with new classes.
On the right we show the data used in the previous figures, with largest overlap (sd=3) and
fracnew=25%. The figure on the left then corresponds to an absent green cluster.

online appendix) the effect is more pronounced, as could be expected. That seems to make
RR vs α the preferred tool for this task.

In a next stage, we assign the 4 ’known’ classes to two mixtures of 2 components each, and
compare the results when a 2 component mixture was fit to those when a single normal per
class was fit, i.e. in the presence of significant bias (incorrect number of components). The
main difference we see (fig. 3.3) in such a case is that the model is unable to reject some
of the points until the very last moment, causing the slight upward curl as α approaches 1.
That can also be understood from fig. 2.6 where the fact that the closest validation point is
quite far from the center of the trained PDF means a large region of space is never rejected.

Finally, we also make the figure B.1 (left) for the case where no new classes are present,
as a baseline, for comparison. Here again, we see the lower overall and final rejection rate
(because of bias) and upwards curl at the end (because of the increased overlap due to
bias) for the case with most severe bias. Apart from that though, behaviour is nicely 1:1.

Big caveat here, I think, is that we used a large number of points in each cluster here, so
the smoothness of the curves is mostly thanks to that. If we have much smaller datasets,
curves will be much coarser, and RR increases by visible jumps. That makes it a lot harder
to recognize an anomalous deviation from RR ≤ α at the lowest α.

On the right of fig. B.1, we also show the original data: 4 known clusters (and their at-
tribution to two times 2 mixtures in red and black dots), as well as the new class for the
particular case sd = 3,ƒ rcNe = 0.25 in green crosses.

While the jump for large fractions of points from another class was to be anticipated, it
seemed less obvious beforehand that even in the presence of significant bias, and for sig-
nificant overlap, the signature of new classes remains clearly present, provided the fraction
of new points is not extremely small. While this little experiment is too limited to draw any
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general conclusions, it suggests that this rejection curve can provide clues about bias on
the one hand and new components on the other.

What this method will not tell us however, is whether all rejected points have something in
common (eg form an unknown cluster), or whether they are scattered all over the place (as
might for example be the case when only the variance is much larger in the test set than
in training). It merely signals the fact that something is different in the test set, and this
difference could even still be due to model variance. But because that also plays between
train and validation set (which come from a random stratified split), we propose to look
also at the training rejection rates. These would typically be lower than nominal, (because
the density was tailored to the training set, the densities in training points would typically
be higher than in an independent validation set). But if the difference is small, we could
suspect that model variance is likely not large enough to account for a much larger rejection
rate in the test set3.

While all of this is probably rather obvious, this is probably the context where the method
of cautious classification could play its largest role. It would be fairly easy to implement a
filter removing abnormal points before going over to the actual model, but we have to be
careful not to do this when we are not completely sure how reliable our density estimate
is. In situations where we are less sure of that, the method could still be useful to flag for
an overall distributional mismatch, without trying to reject individual points. Finally, while
this method can help with the detection of distributional mismatch, we should also keep in
mind that not all distributional mismatch will show up using this method. So RR not being
dramatically larger than α by no means guarantees that the test set fits the distribution
learnt from the training data (as rejections are conservative).

B.2 Real datasets

The question remains to what extent this remains true for more realistic datasets that are
only approximately described by the density we use.
In that respect the following anecdote: to start in lower dimensions, I initially used the mfeat
dataset (from the ML repository at UCI), selected some 5-10 features, and left out the 10th
class during training. When I classified a test set with all 10 classes, each and every one of
the instances from the class left out, resulted in ’NaN’ density for all 9 known classes. The
reason is simple: R only used the default precision (16 digits) at that time, and to produce
p(y|), we have to normalize p(y, ) by dividing with p() =

∑

c p(c, ) =
∑

c exp logp(c, ).
Because of this sum, we have to translate logdensities to densities again.
But for high dimensional gaussians, the density decreases very fast for outliers, and in
practice this simply returns 0 for each p(, y) and thus for p(). Later I increased precision,
but this shows how the fact that densities decrease so fast in higher dimensions can in
fact be an advantage to flag any potential outlier. At the same time, it also means that
any outliers present during training will have a tremendous effect on the likelihood in high
dimensions, which is why a more robust density estimation method should probably be
considered.

3(provided train, validation and test have comparable and not too small sizes so deviations due to model
variance between any two sets would be of a same order)
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APPENDIX C

APPLICATION TO IMAGE DATA:

PREPROCESSING AND FEATURE

SELECTION

C.1 Transfer Learning and VGG16

The VGG16 convolutional neural network developed by the Visual Geometry Group at Ox-
ford [28] was one of the best performing models1 in the ImageNet 2014 challenge. What’s
more important, this architecture was shown to generalize also quite well to other settings
(’transfer learning’). Because of this, the whole network was made available by the cre-
ators, to serve as an off-the-shelf feature extractor in other problems.

The idea behind transfer learning is that the first layers of this architecture merely convert
information at the pixel level to slightly more macroscopic information. Especially for im-
ages, it is not unreasonable to assume that the conversion of pixelwise information to lines,
edges, shapes and so on, could remain useful for recognizing and distinguishing other types
of objects than the ones used for training.
The last, fully connected layers (which contain most of the parameters, over 108 weights
in the case of VGG16) and the softmax layer (which depends on the number of classes to
distinguish) then use these more meaningful features to do the classification. So, to take
advantage of this, we can take the pre-trained network, and chop off and retrain the fully
connected layers, with the last softmax layer now having the appropriate number of classes
for our new problem.

In its default form, it takes a picture of at least 32x32 pixels, and 3 color channels (RGB)
in each pixel, and produces 512 features for each subpatch of size 32x32 of the original
picture (fig. C.1). These are then usually fed to a few densely connected layers for the
actual classification. Those densely connected layers are also the more intensive part of
the training, with hundreds of millions of weights to be found. But we ’cut that off’, and
keep only the pretrained feature extractor, which we can then retrain for our situation, with
only 10 classes, and using much smaller dense layers so it can run in 5-30 minutes2 on a
typical laptop. We review here briefly what this architecture does3 before explaining how
we modified it in the next section.

11st for the localization and 2nd for the classifciation track.
2depending on the other settings/parameters
3see also for example the Stanford University online notes on convolutional networks at [15] , or for a hands on

introduction to using VGG16 for transfer learning [29] and [30]. For the R documentation see [31].
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Figure C.1: The architecture of the VGG16 convolutional network. As larger and larger
patches of the original image get summarized in each ’node’, the number of channels
increases, from 3 to 64 to 128 etc. The fully connected part is the hardest to train, but also
the one that is most application dependent.

VGG16 consists of 5 blocks, in each of which we have 2 convolutional layers, and a maxpool
layer. Those convolutional layers greatly reduce the number of parameters as opposed to
dense layers by allowing ’pixel’4 (i,j) in layer L+1 to receive input only from the pixels within
a small window of size NxN centered on that same pixel (i,j) in the previous layer L+1. For
example, when we use a window of size 3x3, then the pixel on position (x=4,y=5) in the
2nd layer will receive inputs only from pixels in the window (x=3..5,y=4..6) in the first layer.

There are some additional parameters like padding (which determines what we do when
the active window reaches passed the borders of the original image), and stride, (which
determines how fast the filtering window sweeps over the previous layer image). The latter
codetermines in how many windows each original pixel participates.

Here we focus on the situation where the stride is 1 and the outer layers are padded by
1 row and column so the convolutional layers do not change the width and height of the
image for a window size 3. As for the final dimension: in each input pixel we have 3 colors
(channels). As we go to the first block, each ’pixel’ or cell now has 64 channels that each
summarize the information in the channels on that and the adjacent pixels of the previous
layer in different ways.

That describes a single convolutional layer. Now, each block consists of 2 such layers
followed by a pooling layer. The latter shrinks the image’s width and height by a factor 2,
by summarizing each 2x2 block in a single ’pixel’. To avoid losing too much information
there, the number of channels is doubled subsequently for the next block, which will be
2x2 times smaller. There are different ways to ’pool’ , i.e. summarize such a 2x2 (here)
window in a single ’pixel’. VGG16 uses ’max’-pooling, which simply keeps the maximum of
the values observed over the 4 cells. It does this for each of the channels separately.

4’Pixel’ is a tempting word here because it corresponds to one fixed small region of the image, but its perhaps
not the best terminology as it no longer has 3 RGB values but 64 or more features, and in every next block it will
summarize the info in a 2x2 times larger subregion of the original image.
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Now that we have described a block, it suffices to say that VGG16 has 5 such blocks5. After
these 5 blocks, both VGG16 and VGG19 then add 3 dense layers to come to a total of 16
resp 19 layers (pooling not included as these dont have any parameters), to predict their
data. While that part of the model is less transferable to other datasets (and very expensive
to train), the 5 blocks we just described are known to be useful for feature extraction on
image datasets, as-is, ie with the weights publicly available.

It was therefore a natural step for the image datasets that we considered, which have about
a thousand pixels in RGB, to try to use this approach to get a more manageable number of
features, that are hopefully predictive enough to be able to replace those dense layers of
the network by a generative model. After all if the network is able to classify well based on
those inputs, these should contain the necessary information in one form or another.

C.2 Obstacles to using VGG16 as-is

• One of the limitations of the approach as is, is that it requires at least 32x32 images,
while we also had datasets with smaller images. We could cut off the last block and
use only 4, but then it might be better to retrain, as the current weights were obtained
for 5 blocks.

• Another problem seemed to be that standard, it produces 512 channels in the last
layer6. If the idea is to retrain the dense layers following these blocks, then starting
with 512 channels and adding only a single not too small dense layer before the soft-
max, would already result in more weights in that layer alone than we have training
instances in all classes combined. That is not supposed to be a problem in neural net-
works, thanks to regularization and data augmentation7, but we have none of these,
as the off the shelf-VGG didn’t include dropout 8.

Part of the point of transfer learning is just that we use the pretrained weights as-is so
we don’t overfit when using a network with many more weights on a small dataset. As
I originally intended to do that, I didn’t have an augmented data set, and I also feared a
bit that doing this might make the epistemic uncertainty (model variance component)
depend most of all on the amount and quality of data augmentation instead of on the
original data set, which seemed undesirable.

• Because density estimation in high dimensions is not an easy task, and we only have a
few thousands points in the training set of each class, any gain in predictive potential
by adding features could soon be overpowered by the unevitable decrease in D.E.
quality for a dataset of fixed size when the dimension increases. I also had a hard time

5As a minor detail, in the last 3 blocks it uses 3 consecutive convolutional layers, so the total is 2x2+3x3=13
convolutional layers. There are variants (VGG19 has 5 blocks with 2x2+3x4=16 convolutional layers), but the
pattern stays similar.

6per 32*32 patch the original image has, but that’s just 1 here
7increasing the number of training instances by creating many rotated, stretched,.. etc copies of each original

instance. Because these all get the same label, the net will learn to ignore such differences and focus on what
really matters in it’s prediction of the class.

8With most of the lecture coming from the Bayesian Neural Network corner, one tends to forget that VGG is
NOT such a net. We could perhaps have regularized by adding a quadratic weight decay term to the cross entropy
loss, which would have amounted to MAP with a Gaussian prior over the weights. But with the performance for
2 out of the 3 data sets above 90% right from the start, and a better VGG performance not necessarily equalling
a better result for our generative D.E. model, a small potential gain in (neural network) performance didn’t really
seem to justify considering more complicated architectures and/or higher dimensional feature spaces.
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at first finding a KDE method that worked in more than about 10 dimensions9, and the
GMM has to be extremely restricted as well in hundreds of dimensions. Therefore we
aim for a few dozen features at the most.

• Then there is the activation function of the last dense layer. The standard VGG method
uses activation functions like tanh or relu which produce strongly non-normal features.
That’s not really a problem when they are inputs to fully connected (FC) layers, but
more so if the goal is to fit a multivariate normal for each class. In that case a tanh/ relu
activation didn’t seem to be the best choice for the layer that produces the features10.

C.3 Adaptation of VGG16

We use tensorflow with Keras in R to train a model via cross-entropy on the validation
set, with Adam optimizer, an initial learning rate of .00111 (and twice that for dropout),
12 epochs but with early stopping when the performance did not improve more than 0.5%
during 5 epochs12. The code for this and some helper functions is included in the online
code folder. For the reasons discussed in more detail in the previous section, we then
adapted the VGG architecture in the following ways:

• We removed one block to be able to use it for smaller images, and because the per-
formance did not suffer at all, we kept removing as much blocks as possible without
hurting performance too much, and ended up with 2. That means we can use it for
smaller images and train faster.

• We experimented with the activation functions, as it was obvious that relu or tanh
activations in the last layer would not nearly produce normal features (cfr fig. C.2 on
the right). We ended up using tanh in the first and ReLu in the second layer of each
block, and linear in the last (and often only) dense layer before the softmax layer.

• The most important improvement consisted of greatly decreasing the number of chan-
nels used. As I didn’t do any data augmentation and have much less images, our situ-
ation is going to be more sensitive to overfitting. I think this could be why a ‘mini-VGG’
appeared to perform better.

Before changing the architecture, we tried simply reducing the number of features coming
out of the last dense layer before the softmax, but that was less succesfull:

9for example the ks package used often in R is limited to 6 dimensions according to the manual, probably
because they try to estimate a very flexible kernel (eg full-covariance Gaussian) or use a grid. To do this in very
high dimensions we probably need very restricted (eg coördinate aligned)) kernels.

10This became obvious from a few plots in arbitrary coordinate planes, showing for example most of the data
points smeared out against the positive X and Y axis for relu activation in the last layer (see right side of fig. C.2),
or in the 4 corners of the [−1,1]2 square (for tanh).

11We set a so-called callback ’reduce learning rate at plateau’ which reduces the learning rate when performance
levels off, but in retrospect this was never used because the default patience of 10 epochs was much larger than
the early stopping patience (cfr below).

12In retrospect, this early stopping tolerance is way too crude, especially for datasets with very high baseline
performance like Fashion and MNIST. These values were chosen initially when working with Cifar which had much
lower performance, because we were only after approximative performances, and have to compare many different
architectures so speed is an issue. In retrospect, this could be the reason why we don’t see much differences
between architectures: if the improvement for the best models is much slower from that point onwards, training
will stop too early and fail to recognize that these are better architectures.
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• One of the suggestions was PCA, and a screeplot and the cumulative variance for the
512 features produced originally are found in figure C.2 (left& middle), but there we
see that at the ’knee’ of the screeplot, at about 18 components, we still have only 45%
of (input!) variance, and it takes up to 24,117 and 221 components respectively to
get 50,80 or 90%. On top of that, this gives us no guarantee whatsoever about the
fraction of output variance this will capture.

• I also considered supervised feature selection (using JMIM and RF importance scores
again like for the toy datasets), but the results were rather disappointing, perhaps
because they were not meant to be used only partially.

• I also tried adding more dense layers to gradually decrease the number of features,
but results were much worse with 2 dense layers before the softmax than with 1. This
is almost certainly because the network had too many weights to be used without
regularization. Still, adding dropout did not seem to change this picture dramatically.

I think we can understand the above as follows: when we have 64,128, and eventually 512
channels, any trends that the network picks up are divided over (encoded in) those features,
and by selecting only a handful of them eventually we will throw away most of what the
network has learnt. So when the final goal is to represent all trends in only 10 features, it
is better to start with less channels right away, and train the network accordingly so it can
focus on the main trends only from the start and encode as much information as possible
in a number of features comparable to the number that we will eventually use.

One of the risks was that the architecture optimal for our VGG performance would produce
features that are much less optimal for our generative model. After all, we rely upon the
features having a normal, (or simple gaussian mixture) density, and certain choices (relu
activation etc) may perform better in a VGG but worse for the VGG with last layer replaced
by our discriminant-analysis-like model.. To protect us from this risk, we monitor aside
from the VGG performance also the test accuracy of the VGG with the last layer replaced
by an LDA model. While our model is not limited to LDA, we can reasonably hope that
models where both the VGG and LDA performed well on a test set, will also do well with our
generative model.

Ideally we would cross validate the performance of the cautious classifier (for some choice(s)
of α) for several types of density estimation methods on the features produced by each pos-
sible VGG architecture, to choose the architecure, i.e. proper model tuning. But this would
be very time consuming, and at the time, because of the satisfactory performance (+90%
on test set for 2 out of the 3 datasets), we considered the question of the best architecture
more or less closed, and focused on the remainder of the method. Much later we came
back to do an a posteriori sensitivity check to see if we could justify our initial choice,and
because both the performance of the VGG and of the VGG with last layer replaced by LDA
remained comparable for (some) of the much simpler architectures13, I eventually used the
following parameters:

13We ran the VGG and VGG+LDA for an extensive grid of combinations of numbers of channels in blocks 1
and 2, number of nodes in the last (pre-softmax) layer, activation functions, with and without a thrid block with
several possible # channels, with/without extra dense layer(s), and with different dropout rates in the dense
and/or convolutional layers, for all three datasets, to compare performances VGGval,VGGtest, LDAval, LDAtest in
a large table. However, we later found that the variation between different repetitions for the exact same settings
(±0.5%) was quite large in comparison to the differences between different settings (perhaps in part due to the
crude tolerance for early stopping). Namely we find a continuum of performances with dozens of settings within

C-5



APPENDIX C. APPLICATION TO IMAGE DATA: PREPROCESSING AND FEATURE SELECTION

• Cifar: 64 channels both in blocks 1 and 2, and 16 neurons in the last layer.

• Fashion: 64 resp. 128 channels, and 8 neurons in the last layer.

• Mnist: 32 and 64, and only 6 neurons.

In conclusion, rather than modifying the VGG and assuming weights trained in one archi-
tecture are still usefull in a different one, or augmenting the dataset itself (and changing
model variance that way), or retraining such a large network without proper regularization,
it seemed safer to retrain a network that was similar in spirit but much simpler: less blocks,
less channels and smaller dense layers, so it would not overfit when used with only 3000
training points per class.

C.4 Data Splitting

Recapitulating from beginning to end we have:

• We split the training data a first time in train(I)+valid(I), and monitor the performance
on valid(I) of the model trained on train(I) to avoid overfitting. After the model is
determined, we feed all instances of train, validation and test to the network and
replace the original features  by the outputs ′ of the last layer before the VGG’s
softmax.

• We then apply cautious classification to this new dataset: instances of train(I) and
valid(I) are recombined, shuffled, and resplit in train(II)+valid(II). The density p(′|j)
in the space of new features is learnt on train(II), and the density thresholds tj (the α

quantile of the set {p(′|j)}|′ ∈ Vj}) for each class are determined from valid(II).

• The test set is now scored by evaluating the training density p(′|j) (learnt on train(II))
for all j = 1 . . . K classes in the test point, and comparing it to the threshold tj for the
same class learnt from valid(II). We retain in the predicted set for a test point at  only
those classes for which p(′|j) > tj.

Because the class-wise density estimation in the space of features produced by the VGG’s
last layer is an unsupervised task, we did not think it required a completely independent
validation set14. The test set is kept apart at all times however.

only 0.5% of each other, while the variation between runs for a same setting is also of that order. The tables can
therefore not be used to determine the ’best’ architecure, and were left out. On top of that, the ’best’ VGG/LDA
choice may not even correspond to the best choice for our VGG+cautious classification based on GMM/KDE/NN/..
model. We therefore selected eventually the simplest model that still had comparable (ie within .5%) VGG and
VGG+LDA performances.

The only thing we can conclude from the comparison, is that results are remarkably stable over architectures.
Apart from the crude early stopping criteria, this may in part be due to the conformal classification, which could
hide large differences in precision behind more or less comparable accuracies!

The authors of [7] stress how results depend only on the correct ordering of predicted probability densities.
While the differences in VGG/VGG+LDA accuracy are surprisingly small, there are probably larger regional differ-
ences, and we should also stress that the best D.E. method for the features produced by one architecture may
differ a lot more from that produced by another, and any conclusion about the best DE method for a certain
dataset can change completely when another architecture is chosen.

14However, once we start making decisions based on these test performances, like the number of components
to use in the GMM, or the type of density estimation to use, we would need another separate set to get unbiased
performance estimates. We can still assume that the decisions we make are the best ones, but the actual value
of the performance of the ’winning’ option will then be biased upwards, as we selected the one having maximal
performance.
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C.5 PCA for the 512 standard-VGG channels
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Figure C.2: Left: Screeplot. Middle: cumulative variance versus ncomponents. Right: Exam-
ple of outputs for relu activation, even at very high thresholds we can hardly reject points
when we assume normal classes with such a dataset. (Colors denote points accepted in
different classes).
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APPENDIX D

FIGURES OTHER IMAGE

DATASETS.

D.1 Cifar

D.1.1 Cifar: Cautious classification only

First results leaving out only peripheral points of each class: Figures D.1-D.2, discussed in
section 3.4.2.

D.1.2 Cifar: Rejecting also points with aleatoric uncertainty

Figures D.3-D.4, are discussed in section 3.4.3.

D.2 Mnist

D.2.1 MNIST:Cautious classification only

First results leaving out only peripheral points of each class: Figures D.5-D.6. We see that
rejecting about 20% of points (RR and α are quasi interchangeable) brings accuracy from
97.5% to about 99.75%, or decreases by 10 fold the error rate. After that improvement
is much slower, so in some situations, it could be interesting to exclude a small fraction
of points to achieve much higher accuracies. We also see how the precision reaches very
high values (98-99%) as soon as 1-2% of points are rejected. So the classes appear well
separated.
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Figure D.1: Results Cifar, Part1. Top row: traditional accuracy. 2nd row: accuracy of set
valued classifier. Third Row: Rejection Rate RR (from all classes).
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Figure D.2: Results Cifar , part 3. Top Row: ’Traditional’ precision, i.e. fraction of labels used
that is correct. Bottom: Mean inverse set size among NR.
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Figure D.3: Results Cifar, Part1. Top row: traditional accuracy. 2nd row: accuracy of set
valued classifier. Third Row: Rejection Rate RR (from all classes).
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Figure D.4: Results Cifar , part 3. Top Row: ’Traditional’ precision, i.e. fraction of labels used
that is correct. Second Row: Set valued ’precision-accuracy’ AP (cfr footnote 35 on 47).
Bottom: Mean inverse set size among NR.
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Figure D.5: Results Mnist, part1. Top row: traditional accuracy. Second row: accuracy of set
valued classifier. Third Row: Rejection Rate (fraction of test points rejected from all classes)D-6
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D.2.2 MNIST:Rejecting also points with aleatoric uncertainty

Figures D.7-D.8. Here, rejecting only a few percent of points now brings the traditional
accuracy to about 99.7%, so it appears we are correctly identifying the hardest points,
which leads us to believe that the density estimation models (nearly all of them) do a good
job. Probably that means the true distribution is quite simple, otherwise I would expect the
differences between GMM’s and non parametric methods to be larger.
The fact that we have RR clearly less than 2α right from the start (about 25-30% at α = 0.2
whereas it used to be 0.2 when we rejected only OOD points), suggests the most overlap
now occurs more in the periphery than in the center. That appears to be confirmed by the
very sharp increase of accuracy and precision after rejecting the most exterior points.

D.3 Fashion (with Aleatoric)

The results for the standard cautious classifier are in the main text (section 3.4.2), and here
in figures D.9-D.10 we add those when aleatorically uncertain points are rejected as well.
These are briefly discussed in section 3.4.3.

D.3.1 Fashion: Rejecting Also Points with Aleatoric uncertainty.

D-7
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Figure D.6: Results Mnist, part3. Top Row: ’Traditional’ precision AP (fraction of all labels
used that is correct). Bottom: Mean inverse setsize amongst NR points.
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Figure D.7: Results Mnist, part1. Top row: traditional accuracy. Second row: accuracy of set
valued classifier. Third Row: Rejection Rate (fraction of test points rejected from all classes).
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Figure D.8: Results Mnist, part3. Top Row: ’Traditional’ precision AP (fraction of all labels
used that is correct). Bottom: Mean inverse setsize amongst NR points.
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Figure D.9: Fashion: Top row: traditional accuracy. Second Row: accuracy of set valued
classifier. Bottom: Rejection Rate (from all classes).
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correct). Bottom: Mean inverse setsize amongst NR points.



APPENDIX E

QUANTIFICATION OF EPISTEMIC

AND ALEATORIC UNCERTAINTY

E.1 Introduction

The method proposed in section 2.3 and to be applied in chapter 3 can be a useful way
to reduce distributional uncertainty, but it unfortunately does not allow one to quantify the
uncertainty of different types in a given test point. It is also limited in the sense that it
heavily relies on our density estimates (at least on the ordering between densities at dif-
ferent locations), and this can be problematic when there is a large bias or model variance.
Ideally, we would like to know what the predominant nature of uncertainty is at each point,
so we can take the appropriate action (collect more data, reject a point, manual classifi-
cation, get additional features etc..). It is also obvious from what preceded that aleatoric
and distributional uncertainty vary strongly between points, and this is no different for the
effect of model variance on our prediction1.

Traditionally, however, epistemic uncertainty is seen as uncertainty about parameter val-
ues, and it can indeed not be seen independently from the model that is chosen. In an
inference context, the uncertainty about those parameters is a crucial datum. But when
we are doing prediction, I would think that the uncertainty about parameters only matters
through the variability in predictions it implies. Without this ’translation’ of uncertainty into
what is actually observable, it would also be impossible to compare uncertainties between
models with different parametric shape, or even between epistemic and aleatoric uncer-
tainty, for predictions live in the same space as the targets, but not so for the parameters.
Unlike in inference, in prediction these parameters are mostly an approximate hypothetical
construct of ours, and a simple reparametrisation of the model (eg embedded in a more
general one with extra parameters, which might then be irrelevant, underdetermined or
correlated) would completely change the dimension and volume of the region of parameter
space where the solution lives, while it might have little to no effect on our predictive uncer-
tainty. Therefore the volume occupied by plausible solutions in that parameter space seems
of little use as a practical predictive uncertainty, and we have chosen here to see epistemic
uncertainty as the variability in predictions produced by either different parameter values
in a same model (model variance), or by different models (distributional uncertainty)2.

1Think for example of the different effect of a same uncertainty about a slope in linear regression (or about a
covariance matrix in density estimation) for predictions further away from the center of the training data.

2Capturing the latter without a posterior over all plausible distributions seems hard, but we can transfer this
distributional uncertainty largely to the model variance component by considering non parametric models which
hardly make any distributional assumptions. The increased variability of these models under different training
sets will then capture part of the uncertainty we used to have about the validity of our parametric model on the
edge of the domain.
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By sampling several training sets of given size from a distribution (or bootstrapping from
a ’mother’ dataset), and fitting the model for each of them, we can in each point get an
ensemble of predicted conditional densities p(|), marginal densities p(), and ultimately
also predicted class probability vectors ~p() ≡ p(|)=1,...,K3.
That way we hope to quantify how variable the quantity that determines our decision, ~p(),
actually is in each point of feature space, regardless of model parameters, and compare
this between a parametric and a non-parametric model. We will then look at different ways
to extract the uncertainty of each type from these ensembles, and visualise how these
measures evolve as the training set size increases.

By looking at ~p() as the output of a first ’phase’ of the model, we are hierarchically splitting
the uncertainties: The model that has ~p as output contains only what was our epistemic
uncertainty about Y4. Aleatoric uncertainty on Y has now been detached, to a second
’phase’ of the model, which takes a particular realization ~pj() as input and predicts the
class label Y(). The variability of the prediction is now zero, as the predicted label Y =
rgmx ~pj() follows deterministically from the class probability, and only the outcome Y

varies: this is pure aleatoric indeed. Because aleatoric uncertainty is what remains in spite
of knowing the correct class probability, we can for each realization j separately treat the
~pj() received by this second ’phase’ as correct, and calculate the variance/entropy/Bayes
error/.. of Y accordingly. A simple ensemble average over j = 1 . . . K then gives us our
aleatoric uncertainty at .

Remember we are not minimizing the cross entropy to a series of observed outcomes, but
estimating class densities, and the distribution of predicted ~p() will inherit its variability
from the method of density estimation we use: a flexible non-parametric model that is
unbiased will typically have more variable predictions for the class probability vector than
one that makes strong distributional assumptions. But in the latter the uncertainty about
the validity of our distributional assumptions goes uncaptured5.

Now we can focus on the first part of the model, which produces the ensemble of densities.
We have two possibilities: we could do as suggested above, and model the effects of sample
variance through the distribution of MLE estimates it induces for ~p at each . Or, we could
explicitly learn a distribution of class probability vectors at each , starting from a prior
distribution over class probability vectors (eg Dirichlet) at , and updating it using the
previously-mentioned set of MLE estimates for ~p as ’observations’ of our target (which is
now ~p). Such a model no longer makes definite predictions for y(), but explicitly tries to
describe the epistemic uncertainty due to model variance at each point. This is also what is
done in [2] to reduce the model’s confidence in regions where not much training data was
observed, and we have tried to use something similar here, by assigning more weight to
’observations’ where the data density is higher. We will come back to this in a moment.

In light of what we discussed for the cautious classification however, let’s keep in mind that
although p(y|) seems more interesting because it’s what we use to make decisions, we are

3the vector arrow will hopefully prevent confusion with the marginal density p(): the vector ~p() has for its
-th component the probability of finding class  at location .

4indeed, by letting the training set size become infinite, ~p will have a well determined value in each point of its
domain, so there is none of the original aleatoric uncertainty here.

5That weakness is also the strength of the parametric model: its distributional assumptions will yield more
stable predictions where there isn’t much data, so if we are really sure our distributional assumptions continue to
hold in those regions, we will be able to do a lot more with less data.
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already using certain model assumptions (such as the non-existence of other classes) when
we convert K density estimates p(|) into ~p ≡ p(|). If we are interested in the cautious
classification alone, the purest thing to do might be to study the variability of the estimated
density p(|), That way we would disentangle the uncertainty in the density estimation of
each class from that of the others6.

For that quantity it could also be feasible to obtain an analytical expression in the case of
a single normal component per class, and we first want to outline a potential approach for
this in the next paragraph, because an analytical result for the distribution of logp(|) in
any fixed point  (not part of the sample) could be very useful in higher dimensions where
working on a grid is prohibitive7.

Outline of an analytical approach for Gaussian classes

Since we know the sample mean ~̂μ and sample precision �̂−1 of a set of n points drawn from
a normal with given population mean ~μ0 and precision �−10 to be normal-inverse Wishart
distributed8, we should be able to get9 also the distribution of the estimated Mahalanobis
distance m(X) = − 12 (X − μ̂).�̂

−1.(X − μ̂)T to any fixed grid point X from that of �̂−1 and μ̂.
That would allow us to immediately draw from a distribution of logdensities (=Mahalanobis
distances) for each class at X (rather than having to draw an ensemble of datasets and
refitting those densities each time).

However, it turns out that sampling from such a Wishart distribution is done in practice by
drawing normal vectors and getting their scatter matrix. Also, because we are interested
in eventually obtaining also the distribution of p(y|) (which depends on that of all K class
densities and of their sum), it seems better to proceed by sampling right from the start.
In that case the reason to restrict ourselves to a single normal component per class also
disappears, and we will therefore draw datasets from a gaussian mixture for each class.
This is recapitulated schematically in Algorithm (1). Now we describe the particular mixture
data set we created for this experiment.

Experimental setup

We consider 3 classes in two dimensions. In a first scenario they all consist of a single
normal distribution with equal covariance matrices and the 3 class centers equidistantly
along one of their principal axes (chosen as x axis). There we know more or less what
would like to find for the uncertainties, and this serves mostly as a ’calibration’ exercise.

In the second, more interesting situation, 3 classes consist of respectively 6, 3 and 1 normal
components. The former has 6 randomly-drawn centers in the region [-5,5] *[0,10], the

6In that case, a relevant uncertainty might be extracted from an ensemble of densities p(|), and a given α.
The number of times the point is rejected from the class could be considered as binomial with probability r, and
for example H(r) or r(1− r) might then express some uncertainty about whether to accept the point in that class.

7Although we could limit the number of points where we produce ensembles of predictions to those in the
test set if necessary, we worked on a grid here mostly because we are also interested in visualising the spatial
dependence of uncertainty measures.

8It helps to think of the one dimensional equivalent: the distribution of a sample variance s2 estimated from n
observations given the true population variance σ20 is scaled χ2. The Wishart is the multivariate generalization
of the χ2, and likewise it describes the sampling distribution of the observed covariance matrix given some true
population covariance.

9perhaps through a matrix version of the deltamethod, or via the distribution of the eigenvalues and vectors of
�̂−1, in the worst case through numerical integration.
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Algorithm 1: Producing an ensemble of predictions to visualise uncertainty.

for n in trainingset sizes do
for j in 1:Nsm do

Draw training set Dj of n independent samples from the distribution (or bootstrap
from the mother dataset).

for  in 1:K classes do
Estimate density (from sufficiëntly flexible hypothesis space) for class .
for  in testgrid/-set do

Evaluate that density in each test point and store this as the density for
class  in testpoint  during the j-th realisation for total training set size n.

end

end
for  in testgrid/-set do

Add up the values of p(|) to p(). Use the marginal proportions p() of each
class in Dj to obtain ~p() ≡ p(|) =

p(|).p()
p()

end

end
-In each test point we now have ensembles of p(|), p() and p(|) ≡ ~p().
-Calculate from those our uncertainty measures at  for training set size n.
-Produce contour plot of these measures (or their logarithm) at set size n.
- In a classification setting: reject  where the uncertainty is too high.

end
Animate the evolution of uncertainty measures with n.

second has it’s 3 cluster centers in (-3,0), (0,0) and (0,3), and the third a single cluster with
center in (-4,-2). For the 6 component mixture, we have 3 very different subgroups of two
clusters each with equal covariance. The 3 groups differ in orientation of principal axes and
their aspect ratio long to short axis. The second class has the identity matrix as covariance
in all 3 clusters, and the third class diag(0.2,0.8).

The dataset is shown on the left in Figure E.1. For the details on the methods of density
estimation, we refer to chapter 3. We have determined densities here with unrestricted
Gaussian Mixtures (’VVV’ with 6-3-1 components respectively) and KDE (both with fixed and
adaptive bandwidth). Before proceeding with the results and their discussion, we discuss a
series of candidate-measures for different contributions to the uncertainty.

E.2 Uncertainty Measures

Aleatoric uncertainty Because the aleatoric uncertainty is determined by the value of
the class probability (rather than its distribution), and we now have a whole ensemble of
those, we will always have to take ensemble averages to come up with a single value. It is
also this averaging that assures us we end up below the total uncertainty.
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1 - maxprob: If we take the error rate 1 −mxy p(y|) at  as a measure of uncertainty,
and average that over our ensemble, this will be smaller than the error rate of the average
p(y|), because maximum and average do not commute10.

In the multiclass setting, we could also ask the question if a model with a Bayes probability
mxy p(y|) of say 0.5 is any less uncertain when we have 100 classes then when we have
2 classes. The obvious answer seems ’yes because it is a mere random guess in the last
case, while it is one class that has as much probability as all other 99 combined in the
first’11. That could lead us to scale this quantity by its maximal value 1 − 1/K and use

A() ≡
1

Nsm

∑

k

K

K − 1
(1 −mx

y
p(y|))

as definition for aleatoric uncertainty in the maps (and in section 3.4.3). The advantage
is that it has a clear interpretation, ranging from 0 for pure random to 1 for totally sure.
Disadvantages are that it doesn’t distinguish how the remaining probability is divided over
the other classes, and that it does not readily compare to epistemic uncertainty.

Expected Variance or Expected Entropy A quantity that takes into account all compo-
nents of the class probability vector, is the discrete entropy. We could then consider

EH() = H[ ~p()] :=
1

Nsm

Nsm
∑

j=1

H[ ~pj()]

the ensemble average of discrete entropies of the ~pj() in our ensemble12.

Note how for both max probability and entropy, the ensemble averaging apparently done
only to get a single value is in fact crucial to guarantee that aleatoric uncertainty will not
be larger than total uncertainty, and that epistemic uncertainty remains positive (cfr dis-
cussion preceding fig 2.2).

Epistemic Uncertainty For the epistemic uncertainty, it seemed reasonable to use a
form of average difference between any two draws in the ensemble. Because the ’distance’
between 2 class probabilities is often expressed in terms of their relative entropy (or KL
divergence), to capture this spread I initially considered an average of all pairwise relative
entropies between any 2 realisations in the ensemble. After a suggestion from my tutor, it
turned out much more efficiënt to consider the relative entropy between the members of
the ensemble ~pk and their average ~̄p, called the Jenssen Shannon Divergence (JSD). This
JSD takes the whole set of Nsm vectors at once and calculates a symmetrized version of the
Kullback-Leibler divergence, with the huge advantage that the support of the components
p needn’t coincide for all realisations, since pj  > 0 for at least one realisation j already

10Taking the average of the maximal components will be larger than the maximal component of the average,
so the aleatoric uncertainty will be smaller than the total uncertainty obtained as the error rate of the ensemble
averaged prediction.

11But in terms of error probability, there is really no difference, so if we want a clear link between uncertainty
and accuracy, it is better not to scale.

12At first sight a decomposition of total uncertainty into two parts using variances also seems interesting, but
keep in mind that y is a one hot encoded vector, and its components are completely correlated (cfr. also remark
later on the covariance matrix of the distribution of ~p).
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implies p > 0 as the components are nonnegative13.

JSD() =
1

Nsm

Nsm
∑

k=1

KL( ~pk()|| ~̄p()) =
1

Nsm

Nsm
∑

k=1

K
∑

=1

pk() log
pk()

p̄()

= H[
1

Nsm

Nsm
∑

k=1

~pk()] −
1

Nsm

Nsm
∑

k=1

H( ~pk()) = H( ~̄p) − H(p) (E.1)

where ~̄p = 1
Nsm

∑Nsm
k=1 ~pk() is the sample mean of the realisations and KL( ~p||~q) =

∑

 p log
q
p

.
Note how this intuitive definition can be rewritten as a commutator of entropy and ensemble
averaging, which makes it actually coincide perfectly with the one used in the Bayesian
setting, (entropy expected distribution minus expected entropy of the distribution.)

Distributional Uncertainty Finally we also wanted an indication for OOD, because the
above forms of epistemic uncertainty do not appear to capture this always well (depending
on how flexible the DE method is I think).
For that, there are also several possibilities. For a start, in some cases (eg when we use
KDE with very small bandwidth), large fractions of the grid where we evaluate densities
have density zero up to very large precision. There is always one step where we have to
exponentiate the logdensities to get the marginal density, and in those cases, far away from
the class centers one can get p(y|) = NN because

∑

 p(|) = p() = 0. So that means
that in some cases, the OOD part of the grid is already rejected by numerical difficulties.

• One option consisted in plotting only points where this didn’t happen, so the corners
of the domain are sometimes gone. This is one way of dropping OOD points , but is
quite arbitrary since it depends on the number of digits we use in our calculations.

• An alternative would be setting a threshold for the marginal p() (eg .1% quantile of
the validation points’ marginal densities). Similar for mxy p(|y).p(y). Still, that isn’t
perfect either, because densities don’t take into account how much points we had,
or how flexible the model was (correlation lengths etc), and I would think these will
play a role in how far we can safely extrapolate our model. I would think we have
more information about the tails when we have more points to learn from, but again
this will be so dependent on whether we’re working with (non)-parametric models,
and the smoothness we assume etc, that it is out of scope here. I finally settled for
mx ntr(, ) := mx p(|).Ntr, = mx p(, ).Ntr , the expected number of training
points per unit volume of the dominant class in that region. If that is low, it means we
are really out of domain for all classes. I’ve experimented a bit with other quantities
based on the relative variance of density estimates as well, but I think the above one
is probably a more convincing choice.

~p() as target

When we explicitly model the distribution of ~p(), and treat that as our target, for which our
ensemble of class probability vectors is a sample of ’observations’, our original epistemic

13When comparing between all realisations, the relative entropy would be undefined in each point  where one
of the realisations ~pj() has a zero component pj() = 0.
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uncertainty on Y will be captured by the total uncertainty in this distribution. Here we will
use a Bayesian approach.

Due to lack of prior information, we start for each point in feature space from the most non
informative conjugate prior over class probabilities

P0( ~p()) ∼ lim
→0

Dir(.~1)

Now, remember that the parameter of the posterior Dirichlet distribution is obtained from
that of the prior by simply adding up the vector of class counts observed in the dataset 14.
Since each point of feature space had its own Dirichlet distribution, we need to add up the
counts that occurred exactly at that point . It then seems reasonable to smoothen out
our observed training data so we observe at each point  the local density

ntr(, ) ≡ Ntrp(, ) ≡ lim
dD→0

Ntr, ∈ [,  + dD]

dD

of training points of each class. If we use that as pseudocounts, we can simply add
up the vector ntr(, y) of joint training data densities15 to the prior parameter α = ~0 and
conclude that Ntr .p(). ~p() is actually the parameter vector of a posterior Dirichlet in the
point . That will also make the originally independent distributions at each  now smoothly
correlated to that of neighbouring . That way, we obtain for each realisation ~pj() in our
original ensemble a Dirichlet distribution with parameter ~αj() := Ntr .pj(). ~pj().

Why this detour? Since the ~pj() in the ensemble are normalised probability vectors,
∑

( ~pj()) = 1 ∀j,∀, without this reweighting the ensemble averaged ~α() would
have had exactly the same concentration parameter16 at each point . That is of
course not what we want, since we do not have the same amount of data at each of these
. If we would like to rely mostly on nearby data, it makes sense to attach more belief to
predictions in regions where more data was observed17. Apart from that, we need counts
to update our Dirichlet’s parameters, and not class probabilities.

We should also stress that the resulting α() is only determined up to a multiplicative
constant because we can choose the unit of volume in feature space. The absolute value
of the uncertainty thus obtained will be without meaning, but we are mainly interested in
how it varies between different 18.

Now all that remains is to quantify the epistemic uncertainty about p in terms of the param-
eters of this Dirichlet distribution. We could again look at ensemble averaged conditional
uncertainties and the uncertainty of the ensemble averaged distribution but here we will

14Just like for the beta distribution of which the Dirichlet is a generalisation to more than two classes, we have
~α′ = ~α + ~n:

P( ~p|~n) ∼ P(~n| ~p)P0( ~p|~α) ∼
∏



(p)np
(α−1)
 = D(~α + ~n)

where we have used the Dirichlet density for the prior D(~|α) =
∏

 
α−1
 . Here we chose ~α→ ~0, so ~α′ → ~n

15i.e. count densities, not probability densities
16α0 :=

∑K
=1 α which determines the spread of a Dirichlet (when the relative proportions α̃ :=

α
α0

are kept fixed)
17Of course, we need our density estimate to describe the training density well for this to work, but that should

be the case without bias. This could help our parametric model be more cautious with its class probability output
where it predicts low densities. Additional assumption is that there are indeed only K classes.

18Perhaps we could find a way to choose also this overall constant by some calibration, but we have not pursued
this any further.
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focus immediately on the latter, i.e. the total uncertainty about ~p, because all of it still
corresponds to epistemic uncertainty on our original target Y19.

(co-)variance (determinant) We could look at the variance of the Dirichlet distribution
with ensemble averaged α, but a complication here is that this is really a covariance
matrix, because this is a distribution over vectors, and we should then consider
determinants if we want to extract a single measure of the spread in all classes combined.
But, the probability vector being normalised, the K-th component of ~p is completely
determined by the first K − 1. We therefore tried excluding this last component and
considering the covariance determinant of the remaining K − 1 as uncertainty measure.
However, even then the resulting measure has the unwanted feature that it becomes quasi
zero in all  where at least one class can be excluded (or has constant probability)20.

Therefore we have eventually considered the differential entropy as an alternative.

Differential Entropy As mentioned above, we eventually consider the differential en-
tropy of the Dirichlet distribution with the ensemble averaged parameter:

Ep() = H(D( ~̄α()) = H(D[
1

Nsm

Nsm
∑

j=1

~αj])

with ~α the ensembled averaged parameter ᾱ = 1
Nsm

∑Nsm
j=1 ~αj.

Results

Because of the vast amount of graphs involved, I will upload them in a folder with the
thesis, and include in the appendix only the maps for one small, one intermediate and one
large training set size for a selection of a few choices of density estimation methods and
for some of the potential uncertainty measures that were discussed previously.

We show the result for small, intermediate and large training set size. We made figures for
logN = log30, . . . , log2000 in 12 equidistant steps, and N = 5000, for a variety of KDE and
GMM models. The ones we show here are Ntr = 30,250 and 5000 points in the whole
training set. Going much further than a few thousands points becomes slower and less
interesting, and in general the transients play out in this region. Of course in 10D a dataset
of 5000 points is not large, but in 2D having a few hundreds points per cluster should be
more than enough.

First we have the figures for the ’calibration’ data set (in the online appendices) to confirm
whether these quantities express more or less what we expect, and then in section E.3
those for the actual dataset. We will zoom out because of our particular interest in what

19Remember how we had split off the aleatoric uncertainty on Y as the part that works conditional on a particular
~pj(), and are focussing here on describing the epistemic uncertainty about Y as total uncertainty about ~p.

20For example, in a 100 class problem, even if the first 98 classes’ probabilities are extremely variable between
realisations, it suffices that the 99th probability always has the same value (eg 0) to make the covariance deter-
minant vanish. That seems suboptimal, because we think such a situation should receive a large uncertainty, but
a 98th dimensional object can never have nonzero volume in 99dimensions.
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happens when we are further away from the training data. We end by discussing the results
in section E.4.

E.3 Results Mixture data

First we’ll show a picture E.1 of the full dataset, from which subsets of increasing size are
drawn many times, and of contours of the ’true’ Bayes error, based on the probability
distribution from which we have drawn the data.
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Map of Aleatoric Uncertainty using TRUE Bayesprob

Figure E.1: Left: ’Mother’ dataset drawn from a known distribution, with 6000 points in the
blue cluster, and 3000 in each of the 3 green and 6 red clusters. Note that one of the
red clusters is completely hidden between the green ones. That means the high aleatoric
uncertainty regions should not just be a filament along the class boundaries, but feature
an additional massive spot in that region of strong overlap. Right: Because we know the
true densities, we can draw the true contours of constant p(y|), and here we show (on
a logscale) the contours of constant rescaled bayeserror A. First of all, note the different
scales on the axes: we will always consider this larger region so we can see what happens
away from the data as well. We stress again the contours shown are not the densities
p(|y), but those of mxy p(y|). For example the single cluster class in the left lower
corner occurs a bit to the right of the center of the ellipse at that place. Because that
class has such a small standarddeviation, it is overrun by the central clusters again at the
extreme left of the domain. Therefore the lower left corner would be a region of very large
distributional uncertainty, as the dominant class is predicted solely based on the observed
distribution elsewhere.

E.3.1 Aleatoric Uncertainty

Using rescaled 1-max probability

We start with aleatoric uncertainty, defined as ensemble-averaged rescaled classification
error A = 1

Nsm

∑

k
K

K−1 (1−mxy p(y|)) . Because we have the true class probabilities in this
simulation, we can also plot the true Bayes error for comparison (see earlier fig. E.1). Only
for GMM and a model with reasonably large fixed bandwidth does this appear to coincide
well:
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Figure E.2: Aleatoric uncertainty (as rescaled 1-maxprob), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is GMM, with 6-3-1 clusters.

GMM model: VVV631 : fig. E.2

Figure E.3: Aleatoric uncertainty (as rescaled 1-maxprob), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, with adaptive bandwidth, α = 0.5 (default).

With KDE model adaptive bandwidth, default α = 0.5 : figure E.3

With KDE model adaptive bandwidth, α = 0.8: fig. E.4 Notice how the uncertainty
really recognizes the domain here:
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Figure E.4: Aleatoric uncertainty (as rescaled 1-maxprob), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, with adaptive bandwidth, α = 0.8.

Figure E.5: Aleatoric uncertainty (as rescaled 1-maxprob), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, with fixed bandwidth, h = (0.5,0.5).

Using KDE with fixed large bandwidth (0.5,0.5) : fig. E.5

KDE with fixed very small bandwidth h=(0.1,0.1) : fig. E.6 Even though the band-
width doesnt seem extremely small, it is obviously too small, because this is the only setting
where we get nonsense for figures. Also, it is the setting where large part of the grid (OOD)
simply returns numerical errors, due to all densities being 0 up to very high precision.
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Figure E.6: Aleatoric uncertainty (as rescaled 1-maxprob), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, with fixed bandwidth, h = (0.1,0.1).

Using ensemble averaged entropy of the class probabilities

And now the same for the aleatoric, defined as ensemble-averaged discrete entropy of the
categorical distribution in each point.

Figure E.7: Aleatoric uncertainty (as ensemble averaged entropy), based on Nsm = 25
draws of a dataset of given size Ntr from a very large set of 33.000 points that plays the
role of the actual distribution. Model used is GMM, VVV with 6-3-1 clusters.

With QDA model (EDDA VVV1) : fig E.7
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Figure E.8: Aleatoric uncertainty (as as ensemble averaged entropy), based on Nsm = 25
draws of a dataset of given size Ntr from a very large set of 33.000 points that plays the role
of the actual distribution. Model used is KDE, with adaptive bandwidth, α = 0.5 (default).

With KDE model adaptive bandwidth, default α = 0.5 : fig E.8

Figure E.9: Aleatoric uncertainty (as as ensemble averaged entropy), based on Nsm = 25
draws of a dataset of given size Ntr from a very large set of 33.000 points that plays the
role of the actual distribution. Model used is KDE, with adaptive bandwidth, α = 0.8. Note
how the white region is slightly of scale, but I wanted to keep same scale as in the other
two graphs to facilitate comparison.

With KDE model adaptive bandwidth, α = 0.8 : fig. E.9
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Figure E.10: Aleatoric uncertainty (as as ensemble averaged entropy), based on Nsm = 25
draws of a dataset of given size Ntr from a very large set of 33.000 points that plays the
role of the actual distribution. Model used is KDE, with fixed bandwidth, h = (0.5,0.5).

Using KDE with fixed large bandwidth (0.5,0.5) : fig. E.10

Figure E.11: Aleatoric uncertainty (as as ensemble averaged entropy), based on Nsm = 25
draws of a dataset of given size Ntr from a very large set of 33.000 points that plays the
role of the actual distribution. Model used is KDE, with fixed bandwidth, h = (0.1,0.1).

KDE with fixed very small bandwidth h=(0.1,0.1) : fig. E.11

E.3.2 Epistemic Uncertainty

This quantity is most sensitive to the model of density estimation (eg KDE with small band-
width vs GMM etc), which seems quite natural given the large differences in model variance
between them.
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Epistemic Uncertainty Using JSD

Figure E.12: Log Epistemic uncertainty (based on JSD), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is GMM, VVV with 6-3-1components. Here the white zones
with blue edges go below scale. The contours show are those of mxy Ntr .p(, y), i.e.
the count density of the dominant class (for 10−3,10−1,10), in between two contours this
increases by a factor 100.

QDA model : fig E.12

Figure E.13: Log Epistemic uncertainty (based on JSD), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, adaptive bandwidth, gaussian kernel, and α = 0.5
(the default).

KDE adaptive bandwidth, default (α = 0.5) : E.13
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Figure E.14: Log Epistemic uncertainty (based on JSD), based on Nsm = 25 draws of a
dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, adaptive bandwidth, gaussian kernel, and α = 0.8.

KDE adaptive, α = 0.8 : E.14

KDE fixed large bandwidth, h=(0.5,0.5) : E.15 Here we go below scale on the blue
edge. (I kept the scales equal in different figures for comparison).

Figure E.15: Log Epistemic uncertainty (based on JSD), from Nsm = 25 draws of a dataset
of given size Ntr from a very large set of 33.000 points that plays the role of the actual
distribution. Model used is KDE, with fixed bandwidth, h = (0.5,0.5).

KDE with fixed very small bandwidth h=(0.1,0.1) : E.16 Remember here large part
of the grid (OOD) simply returns numerical errors, due to all densities being 0 up to very
high precision. Inside the domain, on the blue edge we go below scale.
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Figure E.16: Log Epistemic uncertainty (based on JSD), from on Nsm = 25 draws of a dataset
of given size Ntr from a very large set of 33.000 points that plays the role of the actual
distribution. Model used is KDE, with fixed bandwidth, h = (0.1,0.1).

Epistemic uncertainty using differential entropy of the Dirichlet for p

Figure E.17: Log Epistemic Uncertainty (based on differential entropy of the Dirichlet with
ensemble averaged parameters, based on Nsm = 25 draws of a dataset of given size Ntr
from a very large set of 33.000 points that plays the role of the actual distribution. Model
used is GMM, with 6-3-1 complelety unrestricted clusters.

GMM model: VVV631 : E.17
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Figure E.18: Log Epistemic Uncertainty (based on diff entropy of the Dirichlet of the Dirichlet
with ensemble averaged parameters, based on Nsm = 25 draws of a dataset of given size
Ntr from a very large set of 33.000 points that plays the role of the actual distribution.
Model used is KDE, adaptive bandwidth, gaussian kernel, and α = 0.8.

KDE, α = 0.8 : E.18

Epistemic uncertainty based on Covariance determinant of the expected
Dirichlet distribution

Note that here we are now considering total uncertainty about p as a target. I think that
should then match the epistemic uncertainty about Y as a target.

Figure E.19: Log Epistemic Uncertainty (based on Dirichlet), based on Nsm = 25 draws of
a dataset of given size Ntr from a very large set of 30.000 points that plays the role of the
actual distribution. Model used is GMM, one cluster per class, VVV, that is QDA simply.

For QDA model : figure E.19
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Figure E.20: Log Epistemic Uncertainty (based on Dirichlet), based on Nsm = 25 draws of
a dataset of given size Ntr from a very large set of 33.000 points that plays the role of the
actual distribution. Model used is KDE, adaptive bandwidth, gaussian kernel, and α = 0.5
(the default).

For KDE adaptive (default α = 0.5) : figure E.20

Figure E.21: Log Epistemic Uncertainty (based on variance of the expected Dirichlet), based
on Nsm = 25 draws of a dataset of given size Ntr from a very large set of 33.000 points that
plays the role of the actual distribution. Model used is KDE, adaptive bandwidth, gaussian
kernel, and α = 0.8.

KDE adaptive, α = 0.8 : E.21

E-19



APPENDIX E. QUANTIFICATION OF EPISTEMIC AND ALEATORIC UNCERTAINTY

Figure E.22: Log Epistemic Uncertainty (based on variance of the expected Dirichlet), from
Nsm = 25 draws of a dataset of given size Ntr from a very large set of 33.000 points that
plays the role of the actual distribution. Model used is KDE, fixed large bandwidth h = (1,1),
gaussian kernel

KDE fixed bandwidth, large h = (1,1) : figure E.22

Figure E.23: Log Epistemic Uncertainty (based on variance of the expected Dirichlet), from
Nsm = 25 draws of a dataset of given size Ntr from a very large set of 33.000 points
that plays the role of the actual distribution. Model used is KDE, fixed large bandwidth
h = (0.1,0.1), gaussian kernel

Using KDE: fixed bandwidth (small) : figure E.23

E.4 Discussion

E.4.1 Simpler (LDA-like) dataset

What we can see clearly (in the online appendices for the LDA folders in maps/LDA/...)
already for the simpler dataset, is how estimates are more variable for KDE then for GMM
(but less so for the fixed bandwidth version). As we expect, the aleatoric uncertainty is
quite similar (at least for the LDA-like data), but it becomes a bit hazy if the dataset size
becomes small. After all it is also estimated from an average over the ensembles. The
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epistemic uncertainty is more dependent on the DE method, which should not surprise us
that much either.

We also get the impression that the adaptive KDE with high α succeeds best in learning the
domain. That is also what we’ll find for the mixture dataset and seems reasonable as it is
also the most variable model, and its larger variance in OOD regions is because we have
made less assumptions (which bring along that distributional uncertainty). But that means
we face the choice between a model with higher model variance that does a better
job being aware of its uncertainty OOD, or a model with lower model variance
that can have large distributional uncertainty without even being aware of it?21.

The GMM (=QDA for the simpler dataset) models on the other hand are very confident
everywhere except for regions of large aleatoric uncertainty, although they properly appear
to recognize the large epistemic uncertainty when there isn’t enough data to determine the
parameters of each cluster. Once we have enough data to learn the covariance of each
cluster, they are very confident away from the domain.

It is also clear that the fixed small and large bandwidth that we tried there as well (which
were completely arbitrary, just one very small and one very large) give the worse results,
but one should take into account that using the optimal choice for the fixed bandwidth
selected by kepdf produces much better results (cfr online appendix).

E.4.2 Actual (mixture) dataset

Aleatoric

Only for the aleatoric uncertainty do we have the option to compare to the result for the
true distribution, and for the other measures it appears hard to know what we should find.
We know the epistemic component should depend on the D.E. used, as that co-determines
our uncertainty (eg. for more flexible models, model variance will increase and the chances
of having wrong distributional assumptions OOD will decrease). But it was surprising to see
that also for aleatoric uncertainty results are so different between different D.E., because
this was much less the case for the simple ’LDA-like’ dataset.

Presumably, the larger model variance component for some D.E. methods causes more vari-
ation in each ensemble, thereby causing the ensemble averaged conditional uncertainty to
underestimate the total uncertainty more (cfr figure 2.2 and remarks there). When we use
an ensemble of many small training sets, the average probability ~p draws from all those
sets, and will approach its correct population value, and the total uncertainty its constant
limiting value22. It then seems as if, by insisting on additivity even when one of both quan-

21The answer probably depends on the context in which we are working: When there exist possibilities to in-
tervene manually (eg collect extra data, manual decision,..) for regions of large uncertainty, we might prefer to
know when we are very unsure because we can still do something about it. But in situations where we can not
do anything about the uncertainty, the model predicting well in-domain is likely to be even more important than
knowing how well it generalizes beyond the domain. It would then seem preferable to reduce variance using
distributional assumptions, bearing into mind that any OOD extrapolation ignores the distributional uncertainty.

22provided the expectation over all training sets gives us the right result, E(θ) = θ0, but I think that should be the
case when training sets are sampled from the correct likelihood (or approximately so when they are bootstrapped
from a large enough ’mother sample’). For the Bayesian scenario where samples are drawn from a single model
posterior conditional on one small dataset on the other hand...
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tities becomes ambiguous as long as the other is nonzero, a larger epistemic uncertainty
can imply a lower aleatoric uncertainty23, and the two are no longer independent.

While the aleatoric uncertainty depends strongly on the D.E. method chosen (and thus on
epistemic uncertainty), we have a very good agreement over all D.E. methods between
aleatoric uncertainty based on max probability and that based on ensemble averaged en-
tropy. Compare figures E.3 with E.8 for example.

Epistemic

Because the definition in terms of a commutator of expectation and entropy arose in a
Bayesian context, where one works conditionally on a single dataset, there were some
doubts as to whether it was really justified to use this in this different (sampling) setting.
Even if bootstrap is considered ’poor mans Bayesian’ in the Elements of Statistical Learn-
ing [32] (which dedicates section 8.4 to this connection24)25, it appears strange to apply
those formulas in a context where the dataset is not fixed but being sampled. It was also
not clear what we should expect of our epistemic uncertainty, apart from being positive
and decreasing in expectation everywhere. Those properties were guaranteed here by the
definition, but it seems reassuring that an attempt at a more intuitive definition, in terms of
average KL distance between realisations (JSD), turns out to be entirely equivalent to the
criterion used there, and we therefore think that we can use this JSD criterion to measure
the spread of a set of class probabilities regardless of the setting in which they arose.

The advantage of this quantity (as to compared for example that based on a Dirichlet
distribution), is that it is really the complement of one our of criteria for aleatoric uncertainty
(the ensemble averaged conditional entropy), so that we can compare them to each other
and as a fraction of total uncertainty. That is, not only relative differences by location or
training set size, but also its absolute value is meaningfull, which was not always the case
for other measures.

23Note that the definition used for epistemic uncertainty here, as the mutual information (total-alea), turned out
completely equivalent to an independent ’distance’ measure (JSD) between members of an ensemble of predicted
class probabilities. When we had defined aleatoric uncertainty in terms of noise however, this interdependence
of epistemic and aleatoric would probably not have arisen. But such a definition is only useful when we have the
true distribution of P(y|) and if that were the case, the epistemic uncertainty has already vanished.

24as follows: " Hence we might think of the bootstrap distribution as a “poor man’s” Bayes poste-
rior. By perturbing the data, the bootstrap approximates the Bayesian effect of perturbing the param-
eters, and is typically much simpler to carry out. " For a slightly more detailed discussion and a
link between the two in terms of the Bayesian bootstrap, see http://www.sumsar.net/blog/2015/04/
the-non-parametric-bootstrap-as-a-bayesian-model/ and references therein, e.g. [33].

25 I found this correspondence less evident because the expected posterior probability of θ when estimated
from an unknown dataset generated by θ0 in the Bayesian approach appears to be quite different: the uncondi-
tional probability assigned to θ (averaging out all possible data sets we might have conditioned on in a Bayesian
analysis), given that the true parameter is θ0 should be given by:

p(θ|θ0) =
∫

p(θ|D|)p(D|θ0)dD ∼
∫

p(D|θ)p(D|θ0)dD =
∫

LD(θ))LD(θ0)dD

where chose a flat prior so the model posterior and the likelihood are proportional. This says that those parame-
ter values that share a large likelihood with θ0 on many datasets, will be most likely. On the contrary,
when we follow our sampling approach, we will find that p(θ|θ0) only has support for parameter values
θ that are actually the exact MLE of a dataset that could reasonably be generated by θ0. That makes
me think that there must at least be some differences, and the Bayesian approach should result in a smoother
and broader range of a posteriori likely θ’s because it also allows values of θ that are not the MLE of any dataset
that could be drawn from the likelihood at θ0,
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The question remains whether the JSD really represents model variance or also distribu-
tional uncertainty. The fact that it remains low for less flexible models suggests it contains
only model variance, but it should be noted that we can convert distributional uncertainty
into model variance by using a more flexible family of distributions. Distribution-free mod-
els would have much larger model variances at the edge of the domain, and this would
show up in the JSD. They have also greatly reduced the risk of making wrong assumptions
beyond the domain, so they appear to have incorporated the uncertainty that used to be
distributional into their model variance. Effectively, for the more flexible adaptive KDE
models, we see a large uncertainty in all directions away from the domain, which gives the
impression that we needed to convert our uncertainty into a model variance (variance in
predicted distribution given certain distributional assumptions) in order to pick it up using
the JSD. This also appears to be confirmed by the fact that a less flexible KDE model, with
fixed, large bandwidth, maintains much lower JSD beyond the domain in regions where it is
confident about its predictions.

We should also keep in mind that we are not training using cross entropy to observed labels
here, but merely using the variation in predictions that follow from our density estimation.
Therefore, if we make strong distributional assumptions, the predicted densities will not be
very variable where one class dominates, and the JSD is low. That means it ignores the fact
that we don’t know if our assumptions still hold in that region.

Because it appears that the JSD only takes into account the variability of our predictions,
and not the validity of the assumptions we made, we will underestimate the uncertainty
for models with strong distributional assumptions. Therefore we wanted to see if we can
resolve this issue of overconfident predictions far away from the data by modelling the
distribution of p(y|) explicitly and imposing a flat prior on the predicted class probabilities.
That way the model should predict all classes to be equally likely unless there is really
enough evidence to the contrary.

Dirichlet based uncertainties

covariance determinant We first studied the covariance determininant, but even after
dropping one completely collinear component, that quantity remains very small unless the
probability of all classes varies substantially between realisations, which seems to make it
less interesting as a measure of uncertainty.
From a practical point of view, because the third class (single cluster) has very low probabil-
ity in all realisations on most of the grid (due to its small variance), this quantity becomes
very small in those grid points, and calculating determinants with extra precision, for many
realizations and over a whole grid simply becomes too slow26.

When we look at those maps, we see indeed that for the GMM’s this quantity only becomes
high around the single cluster class, in the only region where the probability of the third
(single cluster) class changes fast. On the boundaries between two classes it becomes
slightly larger than minimal, but for all the rest of the domain, and especially beyond the
domain in regions where one class is dominant, it is very small.

26Eventually we calculated these with standard precision, but this gives some small artefacts on the graph
(figures E.19 ,E.18), probably due to working with very small numbers that cause this strictly positive quantity to
become negative.
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For adaptive KDE models on the other hand we again appear to learn the domain quite well
and have very large uncertainty everywhere else, but that was already the case for our JSD
measure. Therefore, this quantity is not the tool for distributional uncertainty one might
have hoped it to be.

Differential Entropy Here we used the differential entropy of the Dirichlet distribution
with ensemble averaged parameter. It is again somewhat disappointing to see that also
this quantity increases in all directions beyond the domain only for the flexible KDE mod-
els, while it remains small in certain directions far away from the domain for GMM. Again
it appears this quantity will not protect us from the overconfidence of models with strong
distributional assumptions beyond the domain. In [2] they used this differential entropy
to detect distributional uncertainty, be it in a very different setting where they explicitly
trained a network to result in a flat posterior for a series of ’non-training’ datasets. Here
we only want to attenuate the predictions of our model when those predictions were not
backed up by sufficiently dense training set at that point, but we see the uncertainties re-
main low for the less flexible models in regions beyond the domain where only one class is
considered possible.
It’s not completely clear what could be the reason for this. Perhaps an increase of the con-
centration parameter α0 =

∑

 α for Dirichlet distributions with parameter vectors ~α where
a single component is many orders of magnitude larger than the others does not cause a
comparable increase in entropy as it does for a more balanced parameter vector27. While
the JSD seemed to do quite well in capturing the model variance component, this addi-
tional attempt of incorporating also the distributional uncertainty for models with strong
distributional assumptions by means of this Dirichlet posterior therefore seems less of a
success.

27the analytical expression for the differential entropy of a Dirichlet is not so transparent: It is clear that the
entropy of the Dirichlet with ~α ∼ α0

K
~1 increases with decreasing α0, but I’m not sure whether this is also the

case when ~α has many near zero components, after all such a distribution has a much more limited spread as it
constrains ~p to an edge or corner.
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