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Preface

The theory of distributions has shown over time its importance and has numerous applications in science
and engineering. Specifically the fields of partial differential equations, quantum mechanics and signal
processing benifit heavily from distribution theory. Core concepts like the distributional derivative and
the Fourier transform for tempered distributions make it a very powerful theory. One of the major
weaknesses of distribution theory however is the lack of a universal multplication of distributions. A
lot of proposals to define a multiplication of distributions have been presented in the literature, some
results even begin mutually contradictory. Over time the most most comprehensive approaches were
further developed. In the first part of this thesis we study some of these well-behaved multiplications of
distributions. We follow the first chapters of the book ’Multiplication of distributions and applications
to partial differential equations’ by Oberguggenberger [30]. Another way to multiply distributions is to
extend the space of distributions to a larger space of generalised functions. The most succesful extension
are the Colombeau algebras [10]. The product of Colombeau generalised functions is well-defined and
the space of distributions can be embedded into the Colombeau algebras. Colombeau algebras have seen
strong applications to partial differential equations with singular coefficients. The recently introduced
concept of very weak solutions which orginated from the paper [19] by Garetto and Ruzhansky, is a new
way to solve PDEs with singular coefficients. We present the very weak solution concept to the reader
and in the second part of this thesis we apply the very weak solution concept to Euler-Bernoulli beam
equation with discontinuous cross-section and singular coefficients. We also numerically investigate the
solutions of the Euler-Bernoulli equation.

This masters thesis consists of three chapters. The first introductory chapter discusses standard
concepts and useful results in distribution theory, functional analysis, partial differential equations and
numerical analysis. This allows us to discuss the multplication problem and the very weak solution in a
more straightforward manner.

Chapter two discusses the multiplication problem of distributions. It is known that some products,
however defined, cannot be a distribution. The main focus of the chapter is on intrinsic multiplication
for which the product is again distribution. Since some products are impossible, we can only define the
multiplication partially. The more general the multiplication, the weaker the continuity properties are.
The Schwartz product defines the product of a distribution and a smooth function. Through localisation
it is extended to a product of distributions with disjoint singular support. Next we discuss the duality
method. The duality method generalises the Schwartz product. If a subspace of distributios X is
normal, then we obtain a product for distributions in the multiplier spaces Xloc and X ′loc. The Fourier
product is based on the S ′-convolution and exists whenever the S ′-convolution of the Fourier transforms
of the factors exists. Lastly we discuss the strict product and the model product. These products are
most general and are defined through regularisation of the factors. The regularisations are achieved by
convolution with strict and model delta nets respectively. For each of the products we prove properties
and discuss examples. Now we discuss extrinsic multplication. Schwartz’s famous impossibility result [33]
says that the space of distributions cannot be extended to an associative differential algebra for which
multiplication of continuous functions coincides with the pointwise multiplication. We shortly discuss the
special Colombeau algebras for which pointwise multiplication coincides for smooth functions. Finally
we explain the very weak solution concept through a simple example.

The third chapter concerns a very weak solution of the Euler-Bernoulli equation with distrubutional
coefficients and numerical analysis of the beam solutions. The Euler-Bernoulli equation is a partial
differential equation that describes the bending of a beam under several forces. It is commonly used
in engineering to verify the stability of a beam as part of a construction. We consider the dynamic
Euler-Bernoulli equation, which describes the movement of the beam over time and we will consider only
vertical and axial forces. First we describe the physical modelling of the beam. Then we present a weak
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solution to the Euler-Bernoulli equation with L∞ coefficients following [21]. This will be used to solve
the regularised equation in our very weak solution method. We continue by defining a very weak solu-
tion to the Euler-Bernoulli equation with distributional coefficients. We prove existence and uniqueness
theorems for the very weak solution. Lastly we use numerical analysis to investigate the solutions of the
Euler-Bernoulli equation with distributional forces.

This master thesis wouldn’t have come to a good end without the exellent guidance and advice of my
promotor, dr. Ljubica Oparnica, to whom this acknowledgement is only a small expression of gratitude.
I’d also like to extend my gratitude to Sdran Lazendic, who helped me with the numerical analysis in
this thesis. The average student is seldom aware of all the support at home. Therefore I would like to
thank my father, Marc Blommaert, who made sure I worked diligently every day. I’m also grateful to my
sister, Laura Blommaert, and to my mother, Lieve Verbeke, for their support.
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Chapter 1

Mathematical preliminaries

In this chapter we introduce and define well-known concepts in functional analysis, distributin theory,
partial differential equations and numerical analysis. Our goal is to cover the standard theory of these
subjects to the extent we need them. We will also include lesser-known theorems we need later in some
proofs and examples. This chapter is mostly based on graduate-level textbooks about distribution theory
[18, 22], functional analysis [35], partial differential equations [11] and the finite element method [9, 25].

1.1 Foundational definitions and notation

In the framework of functional analysis functions and distributions are described as part of topological
vector spaces (TVS).

Definition 1.1.1 (Vectorspace, Topological vectorspace). Let K be a field. A vector space X over K is
a system of three objects (X,A,M) consisting of a set X and of two mappings:

A : X ×X → X, (x, y) 7→ x+ y,

M : K×X → X, (λ, x) 7→ λx.

The map A called vector addition and is associative, commutative. There is a neutral element 0 for which
A(0, x) = 0. For every x ∈ X there is a negative element −x for which A(x,−x) = 0. The map M is
called scalar multiplication and satisfies:

λ(µx) = µ(λx),

(λ+ µ)x = λx+ µx,

λ(x+ y) = λx+ λy,

1x = x,

0x = 0.

A topological vectorspace X is a topological space and a vector space such that the maps A and M are
continuous maps with respect the the topology of X.

Examples of topological vector spaces are normed vector spaces, Banach spaces and Fréchet spaces.
Spaces of continuous linear functionals on a TVS can be endowed with topology to form a TVS structure
as well.

We choose to characterize the topologies of function spaces using (semi-)norms and convergence of
nets. We begin with normed spaces since they are considerably simpler.

Definition 1.1.2. � Let X be a vector space. A norm on X is a map || · || : X → R such that

||λx|| = |λ|||x||, (1.1)

||x+ y|| ≤ ||x||+ ||y||, (1.2)

||x|| = 0 ⇐⇒ x = 0, (1.3)

for any x, y ∈ X.
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� A seminorm | · | is a map X → R which is satisfies (1.1) and (1.2).

� A TVS X is a normed space if there exists a norm || · ||X on X such that any sequence {vn}n∈N ⊂ X
converges to v ∈ X in the topology of X if and only if

||vn − v||X → 0, as n→∞.

� Let X be a normed space. A sequence {vn}n∈N) in X is a Cauchy sequence if and only if

∀ε, ∃N ∈ N, ∀m,n > N : ||vn − vm||X ≤ ε.

� A normed space is complete if every Cauchy sequence converges.

� A Banach space is a complete, normed vector space.

Example 1.1.3. Let C([a, b]) be the vectorspace of continuous functions [a, b] → C. It is a normed
vectorspace with respect to the norm

||f ||C([a,b]) = max
x∈[a,b]

|f(x)|.

4

Definition 1.1.4 (Upwards directed set). Let I be a set and ≤ a pre-order on I. We call I upwards
directed set if every pair of elements a and b of I have an upper bound c in I.

A pre-order is a relation that is transitive and reflexive, but not necessarily anti-symmetric. In that
case we have a partial order.

Example 1.1.5. a) Simple examples are ordered sets like the natural numbers N, the real numbers
R and intervals (a, b) in R.

b) Essential for us are directed sets of neighborhoods. Let X be a topological space and x ∈ X. Let
Nx be the collection of all neighborhoods of x. This is the set of all open sets U which contain x.
The intersection W of two neighborhoods of x, U and V is again a neighborhood of x. This means
that V and W have the upper bound W = U ∩ V with respect to the reverse inclusion ⊇. We
conclude that Nx is a directed set with pre-order ⊇.

4

Definition 1.1.6 (Net). Let X be a set and I an upward directed set. A net in X is a map I → X. We
write {xi}i∈I . When the index set I is a connected subset of R, then a net {xλ}λ∈I is a parametrization.

Definition 1.1.7 (Limits of nets). Let X be a topological space and Nx the set of neighborhoods of
x ∈ X. A net {xλ}λ∈I converges to x if

∀U ∈ Nx, ∃λ0 ∈ I, ∀λ ≥ λ0 : xλ ∈ U.

We write x = lim
λ∈I

xi.

Example 1.1.8 (complex-valued limits). Let {aλ}λ∈I ⊂ C be a net of complex numbers. The number
a ∈ C is the limit of the net {aλ}λ∈I if

∀ε > 0, ∃λ0 ∈ I, ∀λ ≥ λ0 : |a− aε| ≤ ε.

4

We will also use nets for the index set I = (0, 1] with the reverse order ≥. This means we consider
small ε as large in I and we have the limit lim

ε∈I
xε = lim

ε→0
xε.

Nets suffice to characterise continuity of mappings.

Proposition 1.1.9. Let X,Y be topological spaces. A map f : X → Y is continuous if for very net
{xλ}λ∈I converging to some x in X, the net of images {f(xλ)}λ∈I converges to f(x) in Y .
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Instead of the usual topological approach, we will use nets, seminorms and norms to define the
topologies of function spaces.

Definition 1.1.10 (Fréchet space). A Fréchet space is a locally convex, complete and metrizable TVS.

The topology of a Fréchet space is characterized by countably many seminorms.

Theorem 1.1.11. Let X be Fréchet space, then there exists a countable set of seminorms {| · |n, n ∈ N}
such that any net {xλ}λ∈I converges to x ∈ X if and only if

|xλ − x|n → 0, for every n ∈ N.

This characterisation allows us to treat Fréchet spaces by their seminorms.

1.2 Function spaces

One of the most important classes of TVS are the function spaces. These are mappings Rn → C with
additional properties. In all of the definitions below we will consider the domain Rn. Similar definitions
can be given on an open set Ω ⊆ Rn. First we introduce some notation.

Definition 1.2.1 (Multi-index). A multi-index α is a tuple (α1, . . . , αn) ∈ Nn. The length of the multi-
index α is |α| = α1 + · · ·+ αn. We write xα for the monomial xα1

1 . . . xαnn . Let ϕ be a function Rn → C.
We denote the α-th partial derivative of ϕ by

∂αϕ = ∂α1
x1
. . . ∂αnxn ϕ,

if the righthandside exists.

When using multi-index notation for derivatives, we should make sure that the result is independent
of the order of derivation.

Definition 1.2.2 (Lp-space). For 1 ≤ p <∞ the p-norms are

||f ||pp =

∫
Rn
|f |p,

and for p =∞

||f ||∞ = essupx∈Rn |f | = inf{C ≥ 0 : |f | ≤ C, almost everywhere}.

The space Lp is the normed space of (equivalence classes) of functions with bounded p-norm.

Theorem 1.2.3. Let Ω ⊂ Rn be open and bounded. Let 1 ≤ p ≤ ∞ and f ∈ Lp(Ω), then

f ∈ Lq(Ω), for p ≤ q ≤ ∞.

Theorem 1.2.4 (Hölder’s inequality). Let 1 ≤ p, q, r ≤ ∞ satisfy
1

p
+

1

q
=

1

r
. For every f ∈ Lp and

g ∈ Lq we have
||fg||Lr ≤ |f ||Lp ||g||Lq . (1.4)

Definition 1.2.5 (Smooth functions). Define the seminorms

|ϕ|j,K := sup
x∈K,

α∈Nn,|α|≤j

|∂αϕ(x)|, j ∈ N,K ⊂ Rn compact. (1.5)

We consider the space of infinitely differentiable functions C∞(Rn) as a Fréchet space with the topology
induced by the seminorms (1.5). We will call it the space of smooth functions and use the alternative
notation E(Rn).

We elaborate a bit on the convergence in E(Rn). By the definition a net of smooth functions {ϕλ}λ∈I
converges in E(Rn) to the function ϕ ∈ E(Rn) when

|ϕλ − ϕ|j,K → 0,

for all j ∈ N and K ⊂ Rn compact. But Theorem 1.1.11 says that the number of seminorms should be
countable. The set of seminorms can be made countable by picking only compacts K of the form [−j, j]n.
The resulting topology is the same.
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Definition 1.2.6 (Support). Let ϕ be a function Rn → C. The support suppϕ of ϕ, is the smallest
closed set such that ϕ = 0 outside of suppϕ. That is

suppϕ =
⋂

Ω⊆Rn open,
ϕ=0 on Ω

Ωc.

Definition 1.2.7 (Smooth functions of compact support). The space of smooth functions of compact
support, denoted C∞c (Rn) or D(Rn), is

{ϕ ∈ C∞(Rn) : suppϕ is compact}.

We topologise D(Rn) with the LF-topology of smooth convergence on compacts. This means the net
{ϕλ}λ∈I , ϕλ ∈ D(Rn) converges in D(Rn) to ϕ when there is a compact K ⊂ Rn with suppϕλ ⊆ K (for
λ ≥ λ0) and |ϕλ − ϕ|j,K → 0 for all j ∈ N as λ→∞.

Definition 1.2.8 (Schwartz space). We define the family of seminorms by

|ϕ|k := max
|α|≤k

sup
x∈Rn

(1 + |x|)k|∂αϕ(x)|, (1.6)

for any k ∈ N. The space of Schwartz functions S(Rn) is the Fréchet space of smooth functions induced
by seminorms (1.6).

It is clear that every test function is a Schwartz functions (D(Rn) ⊂ S(Rn)). Additionally, the
topologies of S(Rn) are such that the inclusion mapping is continuous. This means that if the net
{ϕλ}λ∈I converges to ϕ in D(Rn), then ||ϕλ − ϕ||k → 0 for all seminorms | · |k defined by (1.6). Every
Schwartz function is smooth, S(Rn) ⊂ E(Rn), and the inclusion mapping is continuous. The property

sup
x∈Rn

(1 + |x|)kϕ(x) <∞ for all k ∈ N,

is called ’rapidly decreasing’. All derivatives of a Schwartz function are thus rapidly decreasing. Now we
are ready to define distributions.

1.3 Distributions

Distributions are spaces or continuous linear mappings on function spaces.

Definition 1.3.1 (Linear mapping). Let K be a field. Let X and Y be vector spaces over K. A map
φ : X → Y is K-linear if

∀x, y ∈ X, ∀λ, µ ∈ K : f(λx+ µy) = λf(x) + µf(y).

For us we will always condider either the case K = R or the case K = C. So further let K represent
R or C.

Definition 1.3.2 (Continuous dual space). Let X be a topological vectorspace. The continuous dual X ′

of X is
{f : X → K : f is a continuous linear mapping}.

We write the image of a test function ϕ ∈ X under the functional f as 〈f, ϕ〉, or when we need to specify
the test- and functional space as X′〈f, ϕ〉X .

We will refer to elements of D′(Rn) as distributions. Elements of S ′(Rn) are called tempered distri-
butions. Elements of E ′(Rn) are the distributions of compact support, see Definition 1.3.10 and Theorem
1.3.11. As spaces of linear mappings, these dual spaces are closed under addition and scalar multipli-
cation. We have the reverse of of test space inclusions E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn). Let’s describe the
topolgy of these spaces.

Definition 1.3.3. Let X be a TVS. A set B ⊆ X is bounded if

∀V ∈ N0, ∃r > 0 : B ⊆ rV.
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Definition 1.3.4 (Strong dual topology). Let X be a TVS and put

B = {B ⊆ X, B is bounded} .

We then define the seminorms for u ∈ X ′

|u|B = sup
x∈B

∣∣
X′〈u, x〉X

∣∣ ,
for any bounded set B of X. The strong topology is induced by the convergence of nets in the seminorms
| · |B as B ranges in B.

We mention another common topology on dual spaces

Definition 1.3.5 (Weak dual topology). Let X be a TVS and let X ′ be its dual. A net {uλ}λ∈I ⊂ X ′

converges weakly to u ∈ X ′ if
〈uλ, ϕ〉 → 〈f, ϕ〉, as λ→∞,

for all ϕ ∈ X.

The next theorem connects the weak and strong topology.

Theorem 1.3.6. Let X be D(Rn), S(Rn) or E(Rn), then a sequence {un}n∈N ⊂ X ′ converges strongly
in X ′ if and only if it converges weakly in X ′.

We consider the distibution spaces E ′(Rn), S ′(Rn) and D′(Rn) with the strong topology. On normed
spaces, the strong topology reduces to the usual dual norm.

Definition 1.3.7. Let X be a normed space. It’s dual X ′ has the norm

||x′||X′ := sup
x∈X,
||x||X=1

∣∣〈x′, x〉∣∣ , x′ ∈ X ′.

There are some useful inclusions of functions into these distributional spaces.

Example 1.3.8. 1) Let f ∈ L1
loc(Rn) be locally absolutely integrable, then the linear functional

defined by

〈f, ϕ〉 =

∫
Rn
fϕdx,

is a distribution. A distribution which can be represented by a L1
loc(Rn) function is called a regular

distribution.

2) Let µ be a measure of locally bounded variation, then similarly

〈µ, ϕ〉 =

∫
Rn
ϕdµ,

defines a distribution.

3) Let f ∈ Lp(Rn), then f ∈ D′(Rn) is a regular distribution and additionally f ∈ S ′(Rn).

4

A regular distribution can be uniquely represented by a distribution in the following sense.

Theorem 1.3.9 (Fundamental lemma of calculus of variations). Let f, g ∈ L1
loc(Rn). If∫

Rn
fϕ =

∫
Rn
gϕ, ∀ϕ ∈ D(Rn),

then f = g almost everywhere.

We define the suppport of a distribution by duality as follows.

Definition 1.3.10 (Support of distributions). The support of u ∈ D′(Rn) is

suppu =
⋂

Ω⊆Rn open,
〈u,ϕ〉=0, ∀ϕ∈D(Ω).

Ωc.
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Theorem 1.3.11. Let u ∈ D′(Rn) ∩ E ′(Rn), then the support suppu of u is compact.

A useful representation for distributions of compact support is as distributional derivatives of contin-
uous functions, [16, Theorem 9.14, p297].

Theorem 1.3.12. Let Ω ⊂ Rn be open and bounded and let u ∈ E ′(Ω). Then there exists a neighborhood
Ω′ of Ω with f ∈ C0(Ω′) such that

u =
∑
α≤r

cα∂
αf, in E ′(Ω),

for r ∈ N and cα ∈ C.

Example 1.3.13. We give several basic examples of distributions.

a) The Dirac delta distribution is the map which evaluates the test function at x = 0

〈δ, ϕ〉 = ϕ(0).

We have δ ∈ E ′(Rn).

b) The Heaviside distribution is

〈H,ϕ〉 =

∫ ∞
0

ϕ(x)dx.

The Heaviside distribution is a regular distribution represented by the Heaviside function

H(x) =

{
0, if x < 0,

1, if x ≥ 0.

c) Similar to the Heaviside is the sign function

sign(x) = H(x) +H(−x).

d) The function f(x) =
1

x
is not L1

loc(Rn). Nonetheless we can associate a distribution by exploiting

the symmetry of the pole at x = 0

〈v.p. 1
x
, ϕ〉 =

∫ ∞
0

ϕ(x)− ϕ(−x)

x
dx.

e) Define the distributions
1

x+ i0
,

1

x− i0
∈ D(R) by

〈 1

x± i0
, ϕ〉 = lim

ε→0±
〈 1

x+ iε
, ϕ〉.

The limit exists and is given by
1

x± i0
= v.p.

1

x
∓ iπδ(x),

which follows by the residue theorem as the limit complex contour integrals.

4

Operations on distributions

A lot of common linear operations on functions can be extended to distributions. Some of these operations
like the Fourier transform gain more strength in framework of distribution theory.

Definition 1.3.14. Let u, v ∈ D′(Rn). The tensor product w = u⊗ v ∈ D′(R2n) is defined as

〈w(x, y), ϕ(x, y)〉 = 〈u(y), 〈v(x), ϕ(x, y)〉〉,
= 〈v(x), 〈u(y), ϕ(x, y)〉〉,

for ϕ ∈ D(R2n).
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Example 1.3.15. Dirac delta tensor Heaviside:

〈δ ⊗H,ϕ〉 = 〈H(y), 〈δ(x), ϕ(x, y)〉〉,
= 〈H(y), ϕ(0, y)〉,

=

∫ ∞
0

ϕ(0, y)dy.

4

A large class of operations on distributions are defined by transposition. The simplest example is the
derivative.

Definition 1.3.16 (Distributional derivative). The distributional partial derivative ∂xiu for u ∈ D′(Rn)
is defined by

〈∂xiu, ϕ〉 := −〈u, ∂xiϕ〉,

which coincides with the integration by parts formula for u ∈ D(Rn).

In general for a linear continuous operator A : D(Rn) → D(Rn) we seek a transpose operator A∗ :
D(Rn)→ D(Rn), linear and continuous, such that 〈Aψ,ϕ〉 = 〈ψ,A∗ϕ〉, ∀ϕ,ψ ∈ D. Since D(Rn) is dense
in D′(Rn), the operator A extends to a unique linear, continuous operator Ã : D′(Rn)→ D′(Rn) by the
formula

〈Ãu, ψ〉 := 〈u,A∗ψ〉, ∀ψ ∈ D.

The approaches for E ′(Rn) and S ′(Rn) are analogous.

Example 1.3.17. a) The Dirac delta is the derivative of the Heaviside.

∂xH(x) = δ(x).

b) The principle value v.p.
1

x
is the derivative of the regular distibution log |x|

∂x log |x| = v.p.
1

x
.

c) Let α ∈ Nn be a multi-index. We define δ(α)(x) as the α-th distributional derivative of δ,

E′(R)〈δ(α), ϕ〉E(R) := (−1)|α|∂αxϕ(0),

4

In [34], Schwartz defined the multiplication of smooth function and a distribution.

Definition 1.3.18 (Schwartz product). Let f ∈ C∞(Rn) and u ∈ D′(Rn) then we define their Schwartz
product fu by

〈fu, ϕ〉 = 〈u, fϕ〉.

This well-known product is the starting point in our investigation of a product of distributions. For
tempered distributions there is an analogous product. Instead of C∞(Rn) we can multiply by OM (Rn).

Definition 1.3.19. Write R[x] for the set of polynomials with real coefficients. The functions of slow
growth OM (Rn) consists of the smooth functions f that satisfy

∀α ∈ Nn, ∃p(x) ∈ R[x], ∃A ∈ R : sup
x∈Rn,
|x|≥A

|∂αx f(x)| ≤ p(x).

That means all derivatives are polynomially bounded for large |x|.

For ϕ ∈ S(Rn) and f ∈ OM (Rn), the derivatives of any order of fϕ are again rapidly decreasing. It
remains to define

〈fu, ϕ〉 = 〈u, fϕ〉,

for u ∈ S ′ and f ∈ OM .
We start first by defining the Fourier transform of an L1 function.
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Definition 1.3.20 (Fourier transform). For f ∈ L1(Rn) we define its Fourier transform F(f) as

F(f)(ξ) =

∫
Rn
e−2πix·ξf(x)dx,

where x ·ξ = x1ξ1 + · · ·+xnξn is the dot product of the vectors x and ξ. Alternatively we use the notation
f̂ = Ff .

We will also use the notation F(f) = f̂ . It is important to note that there exist multiple conventions
for the definition of the Fourier transform. Definition (1.3.20) is the unitary Fourier transform with
ordinary frequency.

Theorem 1.3.21 (Riemann-Lebesgue lemma). If f ∈ L1(Rn), then F(f) is continuous and

lim
|ξ|→∞

F(f)(ξ) = 0.

Definition 1.3.22. The inverse Fourier transform F−1 is

F−1(f)(ξ) =

∫
Rn
e2πix·ξf(x)dx, for f ∈ L1.

The inverse Fourier transform satisfies F−1(f)(ξ) = F(f)(−ξ).

Theorem 1.3.23 (Fourier inversion theorem). If f ∈ L1(Rn) and F(f) ∈ L1(Rn), then F−1(F(f))(x) =
f(x).

We work towards extending the Fourier transform to tempered distributions.

Theorem 1.3.24. If f ∈ S(Rn), then F(f) ∈ S(Rn) and the map F : S(Rn)→ S(Rn) is continuous.

Theorem 1.3.25. The Fourier transform has an extension to the the space L2(Rn) (also denoted F). If
f ∈ L2(Rn), then F(f) ∈ L2(Rn) and the map F : L2(Rn)→ L2(Rn) is continuous.

Theorem 1.3.26 (Parseval’s theorem). Let f, g ∈ L2(Rn), then∫
Rn
F(f)(x)g(x)dx =

∫
Rn
f(x)F(g)(x)dx.

Notably, Parseval’s theorem holds for Schwartz functions. Thus the Fourier transform on S(Rn) is its
own transpose. We use this to extend the Fourier transform to tempered distributions.

Definition 1.3.27. Let f ∈ S ′(Rn), then the Fourier transform F(f) is defined by

〈F(f), ϕ〉 = 〈f,F(ϕ)〉, for ϕ ∈ S(Rn).

Due to continuity of the Fourier transform S(Rn) → S(Rn), composition with the continuous linear
functional f : S(Rn)→ C gives again continuous linear functional F(f) : S(Rn)→ C : g 7→ f(F(g)).

Example 1.3.28. We calculate some Fourier transforms.

a) The Fourier transform of the Dirac delta is 1, i.e.

Fδ = 1.

To see this, we just need to apply the definition. We can then calculate

〈Fδ, ϕ〉 = 〈δ,Fϕ〉,
= Fϕ(0)

=

∫
Rn
e−2πix·0ϕ(x)dx,

=

∫
Rn
ϕ(x)dx,

= 〈1, ϕ〉.

12



b) The Fourier transform of the Heaviside is given by

FH(x) =
1

2πi(x− i0)
.

To see this we write the Heaviside as the limit of exponentials on [0,+∞)

S′(R)〈Ĥ, ϕ〉S(R) = S′(R)〈H, ϕ̂〉S(R)

=

∫ +∞

0

ϕ̂(x)dx

= lim
ε→0+

∫ +∞

0

e−2πεϕ̂(x)dx.

This limit is valid because the integral of ϕ̂ on (R,+∞) goes to zero as R→ 0 and e−2πε converges
uniformly to 1 on the compacts [0, R]. Thus we have

〈Ĥ, ϕ 〉 = lim
ε→0+

∫ +∞

0

e−2πε

∫ +∞

−∞
e−2πixξϕ(ξ)dξdx

= lim
ε→0+

∫ +∞

−∞
ϕ(ξ)

e−2πixξ−2πε

−2πiξ − 2πε

∣∣∣∣∣
x=+∞

x=0

dξ

= lim
ε→0+

∫ +∞

−∞

ϕ(ξ)

2πi(ξ − iε)
dξ

=
1

2πi
〈 1

x− i0
, ϕ(x)〉.

4

Definition 1.3.29 (Convolution). Let u, v ∈ D′(Rn). The convolution w = u ∗ v ∈ D′(Rn) is defined as

〈w,ϕ〉 := D′(R2n)〈u(x)v(y), ϕ(x+ y)〉E(R2n), for ϕ ∈ D(Rn),

if the righthandside is well-defined.

Since the convolution is only partially defined D′(Rn)×D′(Rn)→ D′(Rn), it is useful to consider the
restriction to a pair of subspaces A×B, where the convolution is now defined on the whole domain. For
a specific choice of subspaces we can then exploit stronger properties.

Proposition 1.3.30. a) Let u ∈ E ′(Rn) and v ∈ D′(Rn), then the convolution u ∗ v ∈ D′(Rn) exists.

b) If u ∈ S(Rn) and v ∈ OM (Rn), then u ∗ v ∈ OM (Rn).

c) If u ∈ S(Rn) and v ∈ E ′(Rn), then u ∗ v ∈ S(Rn).

d) If u ∈ E(Rn) and v ∈ E ′(Rn), then u ∗ v ∈ E(Rn).

Definition 1.3.31. The space of convolutors O′C(Rn) consists of the Schwartz distributions u ∈ S ′(Rn)
such that

F(u) ∈ OM (Rn).

Proposition 1.3.32. Let u ∈ S ′(Rn), v ∈ O′C(Rn), then u ∗ v is in S ′(Rn).

This includes the special case v ∈ E ′(Rn) ⊂ O′C(Rn). For rapidly decreasing functions, the Fourier
transform and the convolution interact.

Theorem 1.3.33 (Exchange formula). For all f, g ∈ S(Rn), we have

F(fg) = F(f) ∗ F(g). (1.7)

A generalised exchange formula is the basis of the Fourier product in section 2.5. The Dirac delta is
the unit element for the convolution.
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Example 1.3.34. Let u ∈ D′(Rn) then the convolution u ∗ δ always exists and equals

u ∗ δ = u.

The proof follows by a direct computation,

〈u ∗ δ, ψ〉 = 〈u(x)〈δ(y), ϕ(x+ y)〉〉,
= 〈u(x), ϕ(x)〉.

4

Regularisation and delta nets

Definition 1.3.35. Let u ∈ D′(Rn). The net {fλ}λ∈I ⊂ D′(Rn) of functions fλ : Rn → C is a
regularisation of u if

lim
λ∈I

fλ → u, in D′(Rn).

Regularisation is often used for nets of more regular functions, e.g. fλ ∈ C∞(Rn). With an abuse of
language, we will also call any element fλ of a fixed regularisation {fλ}λ∈I of u ∈ D′(Rn), a regularisation
of u. The element fλ is then to be interpreted as an approximation of u.

A regularisation of the Dirac delta distribution is called a delta net. There are different classes of
delta nets which deserve special attention. One of the more broad classes is the class of strict delta nets.

Definition 1.3.36 (Strict delta net). A strict delta net is a net of test functions (ρε)ε∈(0,1] ⊂ D(Rn)
with the properties

supp(ρε)→ {0}, when ε→ 0,∫
Rn
ρε(x)dx = 1, for all ε ∈ (0, 1],∫

Rn
|ρε(x)|dx is uniformly bounded for ε ∈ (0, 1].

Every strict delta net is indeed a delta net.

Theorem 1.3.37. Every strict delta net (ρε)ε∈(0,1] converges to δ(x) in D′(Rn) as ε→ 0.

Proof. For all ϕ ∈ D(Rn),

∣∣〈ρε(x)− δ(x), ϕ〉
∣∣ =

∣∣∣∣∫
Rn
ρε(x)(ϕ(x)− ϕ(0))dx

∣∣∣∣ , (1.8)

≤ sup
x∈supp ρε

∣∣ϕ(x)− ϕ(0)
∣∣ ∫

Rn

∣∣ρε(x)
∣∣ dx, (1.9)

≤ diam(supp(ρε))

n∑
i=1

sup
x∈Rn

∣∣∂xiϕ(x)
∣∣ ∫

Rn

∣∣ρε(x)
∣∣ dx, (1.10)

≤ diam(supp ρε)C|ϕ|1,K , (1.11)

with the constant C = n
∫
Rn

∣∣ρε(x)
∣∣ dx and the diameter of a metrizable set U :

diam(U) = sup
x,y∈U

d(x− y), with d the metric of U.

The estimate (1.11) is uniform on bounded sets of D(Rn). Therefore ρε → δ in D′(Rn).

As we will see along this thesis regularisation and passage to the limit is very useful to extend non-
linear operations from functions to distributions. It is one of the main ways to define a product of
distributions. The very weak solution concept also relies on regularisation.
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1.4 Sobolev spaces

Sobolev spaces and the weak formulation are used in the analysis of partial differential equations. Main
references are [1, 8, 11].

Sobolev spaces combine the concepts of Lp-spaces and of distributional derivatives. In this context
we ask that the distributional derivative is again a regular distribution. We call it the weak derivative.

Definition 1.4.1 (Weak derivative). Let f ∈ L1
loc(Rn). We call g ∈ L1

loc(Rn) the α-th weak derivative
of f if ∫

Rn
gϕ = (−1)α

∫
Rn
f∂αϕ,

for every ϕ ∈ D(Rn).

An equivalent formulation is: g ∈ D′(Rn) ∩ L1
loc(Rn) is the α-the distributional derivative of the

regular distribution f ∈ L1
loc(Rn).

Definition 1.4.2 (Sobolev space). For 1 ≤ p <∞ and m ∈ N, for f : Rn → C define the norm

||f ||Wm,p(Rn) :=
∑

α∈Nn,|α|≤m

||∂αf ||Lp(Rn).

For p =∞, m ∈ N we define

||f ||Wm,∞(Rn) := max
α∈Nn,|α|≤m

||∂αf ||L∞(Rn).

The Sobolev space Wm,p(Rn) is the normed space of functions Rn → C with finite Wm,p(Rn)-norm.

Sobolev spaces thus consist of Lp functions such that all derivatives up to order m are also in Lp.
When p = 2 we use the notation Wm,2(Rn) = Hm(Rn).

Definition 1.4.3. The space Wm,p
0 (Ω) is the closure of C∞0 (Ω) in Wm,p(Ω). That is, a function f ∈

Wm,p(Ω) is in Wm,p
0 (Ω) if there is a sequence {ϕi}i∈N ⊂ C∞0 (Ω) such that

lim
i→∞

||f − ϕi||Wm,p(Ω) = 0.

These spaces are interpreted as the functions f ∈Wm,p(Ω) such that

∂αf = 0, on the boundary ∂Ω for |α| ≤ m− 1,

Again we use the special notation Wm,2
0 (Ω) = Hm

0 (Ω).

Definition 1.4.4. For 1 ≤ p ≤ ∞ and ` ∈ R− we define negative order Sobolev spaces using weak
derivatives

W `,p(Rn) =

u ∈ D′(Rn) : u =
∑
|α|≤|`|

∂αuα, uα ∈ Lp(Rn)

 .

Negative order Sobolev spaces are the dual spaces of the positive order Sobolev spaces. That is

W−m,q(Ω) is dual to Wm,p(Ω) if 1 ≤ p <∞, m ∈ N and
1

p
+

1

q
= 1. Let v ∈Wm,p(Ω) and u ∈W−m,q(Ω)

(m ∈ N, 1 ≤ p, q ≤ ∞, 1

p
+

1

q
= 1). The duality is explicitly described by applying distributional

derivatives formally, then using Lp − Lq duality. Writing u as

u =
∑
|α|≤|m|

∂αuα, with uα ∈ Lq(Ω).

gives

W−m,q(Ω)〈u, v〉Wm,p(Ω) =
∑
|α|≤|m|

W−m,q(Ω)〈∂αuα, v〉Wm,q(Ω) =
∑
|α|≤|m|

Lq(Ω)〈uα, ∂αv〉Lp(Ω).

As Sobolev functions are differentiable (in the weak sense), one would expect for the Leibniz rule to
hold. However only in certain cases we can guarantee this. The next theorem is from [8, Theorem 9.4].
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Theorem 1.4.5 (Derivative of a Sobolev product). Let Ω ⊂ Rn be an open set. Let u, v ∈ W 1, p(Ω) ∩
L∞(Ω) with 1 ≤ p ≤ ∞. Then uv ∈W 1, p(Ω) ∩ L∞(Ω) and,

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, i = 1, 2, . . . , n.

Proof. There exist sequences {un}n∈N, {vn}n∈N in C∞c (Rn) such that,

un|Ω → u, vn|Ω → v in Lp(Ω) and a.e. on Ω, (1.12)

∇un|ω → ∇u|ω, ∇vn|ω → ∇v|ω in Lp(ω)n for all ω ⊂ Ω compact. (1.13)

Additionally we can ask that

‖un‖L∞(Rn) ≤ ‖u‖L∞(Ω) and ‖vn‖L∞(Rn) ≤ ‖v‖L∞(Ω). (1.14)

The construction of the sequences {un}n∈N is done via convolution with a sequence of mollifiers ρn. Then
we set un = ρn ∗ u. The convergence (1.12) and the bounds (1.14) follow from Young’s convolution
inequality ||ρn ∗ u||Lp ≤ ||ρn||L∞ ||u||Lp On the other hand,∫

Ω

unvn∂∂xiϕ = −
∫

Ω

(∂xiunvn + un∂xivn)ϕ ∀ϕ ∈ C1
c (Ω).

Passing to the limit, by dominated convergence, this becomes,∫
Ω

uv∂xiv = −
∫

Ω

(
∂xi(u)v + u∂xiv

)
ϕ ∀ϕ ∈ C1

c (Ω).

For the analysis of time-dependent PDEs we need definitions for vector valued functions.

Vector valued functions

For weak solutions of time-dependent problems vector valued functions are often used. We refer to
Dautray [11, chapter 18 p496]. Consider a Banach space X with norm || · ||X . Vector valued function
spaces are again normed.

Definition 1.4.6. For 1 ≤ p <∞ we define the space Lp((0, T ), X) of functions u : [0, T ]→ X such that

||u||Lp((0,T ),X) =

(∫ T

0

||u(t)||pXdt

)1

p
<∞.

The space C([0, T ], X) of continuous functions u : [0, T ]→ X such that

||u||C([0,T ],X) = max
t∈[0,T ]

||u(t)||X <∞.

The space L∞((0, T ), X) of functions u : [0, T ]→ X such that

||u||L∞((0,T ),X) = inf{B : ||u(t)||X ≤ B for almost all t ∈ [0, T ]} <∞.

Additionally we have Sobolev type spaces.

Definition 1.4.7. Let 1 ≤ p <∞ and m ∈ N and X a Banach space. The space Wm,p((0, T ), X) is the
normed space of functions u : [0, T ]→ X such that

||u||Wm,p((0,T ),X) =

∫ T

0

∑
α∈N,α≤m

||∂αt u(t)||pXdt


1

p
<∞.

Again we will use the notation Hm((0, T ), X) for the case m = 2.

16



1.5 Weak formulation and finite element method

Like the weak derivative, Definition 1.4.1, the weak formulation interprets the PDE in a variational
sense, Theorem 1.3.9. Standard works on partial differential equations with discussion of variational
formulations are Evans [15] and Dautray-Lions [11]. We introduce the weak solution concept by an
example of a one-dimensional differential equation. Consider the following boundary value problem for
f ∈ C((0, 1)): {

u(x)− u′′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(1.15)

There exists a unique u ∈ C2((0, 1)) that solves (1.15). The function u is called a classical solution since
the derivatives occuring in equation (1.15) exist in the classical sense and are continuous. Interpreting
(1.15) as equality of regular distributions gives∫ 1

0

u(x)ϕ(x)dx−
∫ 1

0

u′′(x)ϕ(x)dx =

∫ 1

0

f(x)ϕ(x)dx, ∀ϕ ∈ D((0, 1)).

Further, integration by parts gives∫ 1

0

u(x)ϕ(x)dx− u′(1)ϕ(1) + u′(0)ϕ(0) +

∫ 1

0

u′(x)ϕ′(x)dx =

∫ 1

0

f(x)ϕ(x)dx, ∀ϕ ∈ D((0, 1)). (1.16)

We weak formulation extends the classical formultation by allowing u to be in a larger class of functions
than C2((0, 1)). Equation (1.16) is well-defined for u, ϕ ∈ H1((0, 1)). By the boundary conditions of
(1.15) we restrict ourselves further to V = H1

0 ((0, 1)). This has the side effect that the terms −u′(1)ϕ(1)+
u′(0)ϕ(0) vanish. The result is the weak formulation of the boundary value problem (1.15). For f ∈
L2((0, 1)), find u ∈ H1

0 ((0, 1)) such that∫ 1

0

u(x)ϕ(x)dx+

∫ 1

0

u′(x)ϕ′(x)dx =

∫ 1

0

f(x)ϕ(x)dx, ∀ϕ ∈ H1
0 ((0, 1)).

It is useful to write the weak formulation in terms of a bilinear form and a linear functional. Define
the bilinear form a : H1

0 ((0, 1))×H1
0 ((0, 1))→ C by

a(u, v) =

∫ 1

0

u(x)v(x)dx+

∫ 1

0

u′(x)v′(x)dx, u, v ∈ H1
0 ((0, 1)),

and the linear functional f : H1
0 ((0, 1))→ C by

f(v) =

∫ 1

0

f(x)ϕ(x)dx, v ∈ H1
0 ((0, 1)).

Then we can write the weak formulation as a(u, ϕ) = f(ϕ). An existence theorem then depends solely on
the properties of a and f . Most famous is the Lax-Milgram theorem [9, Theorem 1.1.13] which provides
conditions under which the solution exists and is unique.

Theorem 1.5.1 (Lax-Milgram). Let V be a Hilbert space and a(·, ·) a bilinear form on V . Suppose that
a is bounded

|a(u, v)| ≤ C||u||V ||v||V ,

and V -elliptic
a(u, u) ≥ c||u||2V .

Then for any f ∈ V ′, there is a unique solution u ∈ V to

a(u, v) = f(v), ∀v ∈ V.

Additionaly we have the energy estimate

||u||V ≤
1

c
||f ||V ′ . (1.17)
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Finite element method

The finite element method (FEM) is a method for solving differential equations numerically. The FEM is
unique among numerical methods since it interprets the boundary value problem by the weak formulation.
For a time-dependent weak formulation we will later introduce use a semi-discretisation scheme.

Consider the weak formulation of a boundary value problem. Find u ∈ V such that

a(u, v) = f(v), ∀v ∈ V, (1.18)

for some bilinear form a and linear form f . We approximate equation (1.18) to a subspace Vh of V . Let
uh ∈ Vh satisfy

a(uh, v) = f(v), ∀v ∈ Vh. (1.19)

We call uh the Galerkin approximation of u for the space Vh.

Theorem 1.5.2 (Céa’s lemma). Let V be a normed space with norm || · ||V and let Vh ≤ V a normed
subspace. Let a : V × V → C be a continuous and V-elliptic bilinear form and f : V → C a continuous
linear form. Suppose that u ∈ V satisfies (1.18) and that uh ∈ Vh satisfies (1.19), then

||u− uh||V ≤ C inf
v∈Vh

||u− v||V .

To improve the quality of the Galerkin approximation we thus need to choose better and larger
subspaces Vh. In the finite element method the spaces Vh are given by finite element spaces.

Definition 1.5.3. Let n ∈ N be the number of midpoints and put h =
1

n+ 1
the distance between

midpoints. Split the interval [a, b] into n+ 1 intervals of equal length Ij = [jh, (j + 1)h], j = 0 . . . n. The
finite element space V m,k subject to the intervals I1, . . . In is defined by

V k,mh = {f ∈ Cm([a, b]) : f |Ij is a polynomial of degree k, j = 0, . . . , n}.

The spaces V m,kh are finite-dimensional. This means problem (1.19) reduces to a matrix equation.
Implementations of the finite element method exploits a good choice of basis functions to efficiently solve
these matrix equations.
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Chapter 2

Multiplication of distributions

The main part of this chapter concerns a theoretical discussion of intrinsic multiplication of distributions
as presented in Oberguggenberger’s ’Multiplication of distributions and applications to partial differen-
tial equations’ [29, Chapter I, II]. Near the end of the chapter we discuss extrinsic multplication with
Schwartz’s impossibility result and Colombeau’s algebra. Lastly we present the very weak solution con-
cept for partial differential equations.

2.1 Introduction

Before we discuss what products of distributions are possible, let us investigate through examples how a
multplication of distributions should work.

The multiplication problem for functions

Consider the case of the product of two functions u, v : R → C. We can easely define a pointwise
multiplication w(x) = u(x)v(x). The map w is again a function R→ C, which is in the class of functions
we started with.

Now consider two continuous functions f, g : R→ C. Using the pointwise multiplication, the product
h is continuous. Similarly the product h of f, g ∈ Ck(R) or f, g ∈ C∞(R) is again Ck(R) or C∞(R)
respectively.

Let f, g ∈ L∞(R), then the product (pointwise almost everywhere) h = fg is in L∞(R) since we have
the bound ||h||L∞(R) ≤ ||f ||L∞(R)||g||L∞(R).

The above products are regular and intrisic. This means every product fg, for f, g ∈ X, is defined, in
this case as a map R→ C, and the product is in the original function space X. It is clear that pointwise
multiplication of functions Rn → C is always regular, but on some important functions spaces, it is not
intrinsic.

Let X = L1(R). Then the pointwise product is not intrinsic. For example take f, g ∈ L1(R)

f(x) = g(x) =


1√
x
, if |x| ≤ 1,

1

x2
, if |x| ≥ 1,

then the product (pointwise almost everywhere) h = fg is

h(x) = f(x)g(x) =


1

x
, if |x| ≤ 1,

1

x4
, if |x| ≥ 1.

The product h is not in L1(R) as the pole at x = 0 is not absolutely integrable. The same phenomenon
happens for f, g ∈ Lp(R), (1 ≤ p <∞). The pointwise multiplication does not respect the L1-requirement
of absolute integrability.

We see that the problem is local. One solution is to ask boundedness. So consider f, g ∈ L1(R) ∩
L∞(R). Then the product is again in L1(R) ∩ L∞(R). We lost functions that behave locally like xr

(r < −1), but we kept the global integrability requirement.
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Within L1(R), we can consider the case where f ∈ L1(R) and g ∈ L1(R) ∩ L∞(R). The pointwise
product fg is then in L1(R). This product cannot be extended to a multiplication map L1(R)×L1(R)→
L1(R). We call it a partial multiplication on L1(R).

We compare the situation of functions to that of distributions. Every continuous linear map between
TVS is bounded. For distributions this means: for each K ⊆ Rn compact there exist NK ∈ N,MK ∈ R
such that

|〈u, ϕ〉| ≤MK |ϕ|NK ,K , for all ϕ ∈ D(K).

Distributions thus satisfy a boundedness condition. The question is now whether a product of distribu-
tions will violate this boundedness condition. We review some examples where the product of distributions
fails.

Example 2.1.1 (The square of the Dirac delta). We consider a delta net (ϕε)ε∈(0,1], definition 1.3.36, as
a regularisation of the Dirac delta δ. Assume also that ϕε is real-valued. Now consider the square ϕ2

ε(x)
of such a regularisation. We hope that this net of squares converges to some element u ∈ D′(R), which
we can then call δ2. Choose some ψ ∈ D(R) with ψ(x) = 1 on [0, 1]. Then we have the valuations∫

R
ϕ2
ε(x)ψ(x)dx =

∫
R
ϕ2
ε(x)dx,

for ε small enough. If ϕ2
ε(x) converges to the distribution u, then∫

R
ϕ2
ε(x)dx→ 〈u, ψ〉.

More specifically ϕε is bounded in L2(R) and thus it has a convergent subsequence {ϕn}n∈N in L2(R).
But ϕε converges to δ in D′(R). This implies that ϕn → δ in L2(R), but δ is not in L2(R). We conclude
that the limit of ϕ2

ε does not exist in D′(R).
Multiplication trough some type of regularisation is one of the most general definitions of multiplica-

tion of distributions we have. The fact that taking any one strict delta net leads us to a contradication,
speaks of the true impossibility of δ2 being a distribution. 4

One of the most powerful methods for defining products is regularisation. However when applied
without caution, it can give rise to a wide range of contradictory results. We show how passing trough
the limit for arbitrary regularisations gives the product

H(x)δ(x) = cδ(x),

for different values of c ∈ R.

Example 2.1.2 (Heaviside times Dirac delta). We consider different ad hoc regularisations of the prod-
uct. Let (ϕε)ε∈(0,1] be a strict delta net. Let (Hε)ε∈(0,1] be a regularisation of the Heaviside function
H.

Assume that (Hε)ε∈(0,1] satisfies suppHε ⊆ (ε,+∞) and that (ϕε)ε∈(0,1] satisfies suppϕε ⊆ [−ε, ε].
Then the product ϕεHε is indentically zero and passing to the limit gives δH = 0.

Suppose differently that Hε is identically one on [−ε,+∞), then

ϕεHε = ϕε → δ.

Finally let’s take the regularisations δε = ϕε and Hε = H ∗ ϕε. Then we have

ϕεHε = ϕε(H ∗ ϕε) =
d

dx

1

2
(H ∗ ϕε)2 → d

dx

1

2
H =

1

2
δ.

This last result will be the one that is produced by the methods later in this chapter. However it is not

obvious that
1

2
is the right constant. For example when we solve the following differential equation

d

dt
y(t) = δ(t)y(t),

y(−∞) = 1.
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Using the ansatz y(t) = 1 + αH(t), α ∈ R, we get

αδ(t) = δ(t)(1 + αH(t)) = δ(t) + αδ(t)H(t).

Using the product δH =
1

2
δ this is

αδ(t) = (1 +
α

2
)δ(t),

and thus α = 2. Now we solve it in a different way. Let yε(t) be the solution to the regularised differential
equation

d

dt
yε(t) = ϕε(t)yε(t),

yε(−∞) = 1.

This equation is solved explicitly by yε(t) = exp
(∫ t
−∞ ϕε(s)ds

)
. Passing to the limit, we get

y(t) = lim
ε→0

exp

(∫ t

−∞
ϕε(s)ds

)
= exp(H(t)) = 1 + (e− 1)H(t).

Assuming a product of the form δ(t)H(t) = cδ(t), this would imply

c = 1− 1

e− 1
=
e− 2

e− 1
.

4

The previous example makes clear that we cannot arbitrarily regularise (partial) differential equa-
tions that contain products of distributions. We are in need of a rigorous theory of multiplication of
distributions which takes into account stability under (certain classes of) regularisations.

In general the Leibniz rule for the derivative of the product of distributions does not hold. We give
an example.

Example 2.1.3 (Breaking the Leibniz rule). Assume the product δ(x)H(x) =
1

2
δ(x). Taking the

derivative gives ∂x(δ(x)H(x)) =
1

2
δ′(x). If the Leibniz rule holds, this should be equal to

∂xδ(x)H(x) + δ(x)∂xH(x) = δ′(x)H(x) + (δ(x))2.

We showed in Example 2.1.1 that the delta squared term is ill-defined. The term δ′(x)H(x) is not
well-defined either. 4

Remark 2.1.4 (Sequential approach). One might still want an interpretation of the Leibniz rule

1

2
δ′(x) = δ′(x)H(x) + (δ(x))2.

This is possible with so-called sequential approach of Mikusinski [27]. We interpret both terms on the
righthandside together. First we regularise both terms, in a specific way dictated by the sequential
approach, and then take the limit. In the regularisations the Leibniz rule can be reversed and the limit

of the product corresponds to our original result
1

2
δ′(x). When manipulating expressions with several

terms, a symbolic use of the Leibniz rule under the formalism of the sequential approach can be useful.

2.2 The Schwartz product

In Definition 1.3.18 we defined the Schwartz product. Although the Schwartz product is part of standard
distribution theory, it does have its limitations. Most notably, the Schwartz product map is not jointly
continuous. This is proven in [24]. The Schwartz product sets expectations on what is possible for any
more general distributional product.
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Theorem 2.2.1. For f ∈ C∞ and u ∈ D′, the Schwartz product fu is in D′. The multiplication map
C∞ ×D′ → D′ is seperately continuous and jointly sequentially continuous.

Proof. The map ḟ : D → D : ϕ 7→ fϕ, is an endomorphism since if ϕλ → ϕ in D, then

|fϕλ − fϕ|j,K ≤ |f |j,K |ϕλ − ϕ|j,K → 0,

for all j ∈ N and K ⊂ Rn compact. Additionally there is a compact U such that

supp fϕλ ⊆ suppϕλ ⊆ U, for all λ ≥ λ0.

Thus ḟ is a continuous linear map D → D. Composition with the continuous functional u, implies
fu ∈ D′.

For seperate continuity take the net C∞ ⊃ fλ → f and fix u ∈ D′. We have

|fλϕ− fϕ|j,K ≤ |fλ − f |j,K |ϕ|j,K ,

which implies fλϕ→ fϕ since the net fλϕ has bounded support. Due to continuity of u, we get fλu→ fu.
Next let ⊃ uλ → u in the strong topology of D′. We need to verify

sup
ϕ∈B
|〈fuλ, ϕ〉 − 〈fu, ϕ〉| = sup

ϕ∈B
|〈uλ − u, fϕ〉| → 0, (2.1)

for all bounded sets B ⊂ D. But
|fϕ|j,K ≤ |f |j,K |ϕ|j,K

such that B̃ = {fϕ, ϕ ∈ B} is again bounded. Applying strong convergence of uλ to u on B̃ in (2.1) then
gives convergence of fuλ to fu.

Sequential continuity is without proof.

Fully analagously, one proves the same properties for the Schwartz product for tempered distributions

OM (Rn)× S ′(Rn)→ S ′(Rn).

The main idea in the Schwartz method is the use of the multiplier spaces C∞(Rn) and OM (Rn) respec-
tively. The approach can be generalised to the duality method of section 2.4. Changing the duality
D′(Rn)−D(Rn) to general X ′ −X leads to different multiplier spaces and therefore different products.

The Schwartz product also allows for the the Leibniz rule. Let u ∈ D′, f ∈ C∞ and ϕ ∈ D. We
compute the derivative of the product directly

〈∂xi(fu), ϕ〉 = −〈fu, ∂xiϕ〉
= 〈u, f∂xiϕ〉
= −〈u, ∂xi(fϕ)− ∂xi(f)ϕ〉
= 〈∂xiu, fϕ〉+ 〈∂xi(f)u, ϕ〉
= 〈f∂xiu+ ∂xi(f)u, ϕ〉.

Example 2.2.2. We have the Schwartz product

xkδ(j) =

{
0, if j < k,

(−1)kk!
(
j
k

)
δ(j−k)(x), if k ≤ j.

4

2.3 Localisation and product by disjoint singular support

Localisation exploits the local nature of the product of generalised functions. For the Schwartz product,
we have the support property

suppuv ⊆ suppu ∩ supp v, u ∈ C∞(Rn), v ∈ D′(Rn).

We naturally generalise this property to hold for all u, v ∈ D′(Rn).
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We define the local product. To work in full generality, let X be a function space and X ′ be its dual
space. Write X(Ω) for the functions in X with support in Ω ⊆ Rn and call X ′(Ω) its dual space.

Define the product of distributions u, v ∈ X around x ∈ Rn in a open neighborhood Ωx of x by

X(Ωx)′〈wx, ψ〉X(Ωx) := X′〈(fxu) · (fxv), ψ〉X ,

where fx ≡ 1 on Ωx is any multiplier of X. It is clear that the value at x is independent of fx and Ωx
because if f̃x ≡ 1 on Ω̃x, then the wx and w̃x agree on Ωx ∩ Ω̃x.

Additionally we have consistency in the following way. If y ∈ Ωx, then (fx,Ωx) is also a localization
around y. It remains to combine the locally defined products into one global product. If for all x the
products are well-defined locally in Ωx as above, then the sewing lemma guarantees a unique global
distribution. See Treves [35].

Theorem 2.3.1 (Sewing lemma). Let {Ui}i∈I be an open cover of Ω, that is, Ω =
⋃
i∈I Ui. Suppose

{fi}i∈I is a family such that

1. fi ∈ D′(Ui), for each i ∈ I.

2. If Ui ∩ Uj 6= ∅, then fi = fj on Ui ∩ Uj.

then there is a unique distribution f ∈ D′(Ω) such that f = fi on Ui.

The localization procedure lets us extend the definition of the Schwartz product.

Definition 2.3.2 (Singular support). For u, v ∈ D(Rn), we say u = v on Ω ⊆ Rn iff 〈u, ϕ〉 = 〈v, ϕ〉 for
all ϕ ∈ D(Ω). That is u = v in D′(Ω). Let Au be the collection of sets on which u is smooth

Au =
{

Ω ⊆ Rn open ; ∃f ∈ (Rn) : f = u on Ω
}
.

Then the singular support singsupp(u) of u is

singsupp(u)c =
⋃

Ω∈Au

Ω,

which is the smallest closed set on which u is not smooth.

This means we can find a ∈ D′(Rn) and g ∈ C∞(Rn) such that u = g+a and supp(a) ⊆ singsupp(u).
We can now define the product by disjoint singular support as the localization of the Schwartz product.

Definition 2.3.3 (Product by disjoint singular support). For u, v ∈ D with singsupp(u)∩ singsupp(v) =
∅, we define the product by disjoint singular support as

uv = fg + fb+ ga.

with u = f + a, v = g + b where f, g ∈, a, b ∈ D′, supp(a) ⊆ singsupp(u) and supp(b) ⊆ singsupp(v).

This product directly inherits any local properties of the Schwartz product. If we fix two open disjoint
sets Ω1,Ω2, then the multiplication map (C∞+D′(Ω1))× (C∞+D′(Ω2)) has the same properties as the
Schwartz product.

The localisation can be used extend the definition any product map. We will therefore stay at a global
treatment of such products, knowing that a localisation is always possible. Next we discuss the duality
method, which extends the Schwartz product.

2.4 Duality method

The duality method is used to define a wide class of multiplication maps. Each map is for pairs of distri-
butions that are locally in a TVS X and its dual X ′. We ensure that such multiplication is interpretable
as a multiplication of distributions and that the multplication map has sufficient continuity properties.

Definition 2.4.1. We call a topological vectorspace X normal if

1. The inclusions D ⊆ X ⊆ D′ hold.

2. The space of testfunctions D is dense in X.
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3. The inclusion map D ↪→ X is continuous.

4. The inclusion map X ↪→ D′ is continuous.

We call X normal in the TVS Y if the above properties hold for Y instead of D.

The dual space X ′ of a normal space X is neccesarily normal. We define the space of multipliers Xloc

by
Xloc = {u ∈ D : uϕ ∈ X,∀ϕ ∈ D} .

The simplest example is Dloc = C∞. Another common example is X = Lp with Xloc = Lploc.

Definition 2.4.2 (Duality product). Let X be a normal space. We define the duality product of u ∈
(X ′)loc and v ∈ Xloc by

D〈uv, ϕ〉D = X′〈χu, vϕ〉X = X′〈χu, (χv)ϕ〉X .

where χ ∈ D with χ = 1 on supp(ϕ).

We will further write X ′loc for (X ′)loc and (Xloc)′ if we mean the other interpretation of the symbol.

Theorem 2.4.3. Definition 2.4.2 does not depend on the choice of χ. The resulting product is commu-
tative and partially associative and produces a separately continuous bilinear map X ′loc ×Xloc → D′.

Proof. Take χ, ϕ ∈ D be as in the definition of the duality product. Now let wε ∈ D converge to uχ in
D′ for ε→ 0 and take χ2 ∈ D like χ. Then

X′〈wε, ϕv〉X = X′〈ψwε, ϕv〉X → X′〈ψχu, ϕv〉X .

It follows that X′〈ψχu, ϕv〉X = X′〈ψu, ϕv〉X = X′〈χu, ϕv〉X .
For commutativity, take ψ ∈ D with ψ = 1 on supp(ϕ) so that

X′〈χu, ϕv〉X = X′〈χu, ϕψv〉X = X′〈ϕχu, ψv〉X = X′〈ϕu, χψv〉X ,

where χψ equals 1 on supp(ϕ). For associativity, let u, v, w ∈ D′. Suppose w ∈ Xloc and uv ∈ X ′loc, X
normal. Suppose vw ∈ Z ′loc, u ∈ Zloc, Z normal. Further suppose v ∈ Y ′loc, u ∈ Yloc, with Y normal in X
and in Z.

D′〈(uv)w,ϕ〉D = X′〈χ1uv, ϕw〉X = Y ′〈χ1χ2v, ϕuw〉Y
= Z′〈χ1vw, ϕu〉Z = D′〈u(vw), ϕ〉D.

The seperate continuity of the multiplication map follows by composition from the continuity of the
action in X and the continuity of the multiplication maps Xloc ×D → X and X ′loc ×D → X.

Example 2.4.4. The Schwartz product C∞ ×D′ → D′ follows by taking X = D. We have Dloc = C∞

and D′loc = D′. Taking X = S or X = E results in the same product. 4

Example 2.4.5. Let X = DN (Rn), the functions Rn → C of compact support that are N times
continuously differentiable. Its dual space is D′N (Rn), the distributions of order N . These are the
elements u ∈ D′(Rn) that satisfy

|D′〈u, ϕ〉D| ≤MK ||ϕ||N ,

for all ϕ ∈ D with suppϕ ⊆ K, for some positive constant MK . We have Xloc = CN , the N times con-
tinuously differentiable functions, and X ′loc = D′(m). The duality method thus defines the multiplication
CN ×D′N → D′. 4

Example 2.4.6. For 1 ≤ p, q ≤ ∞ the spaces Lp and Lq are dual when
1

p
+

1

q
= 1. Their multiplier spaces

are Lploc and Lqloc respectively. The duality method then defines the multiplication map Lploc×L
q
loc → D′.

By Hölder’s inquality the pointwise product Lploc × L
q
loc is in L1

loc ⊆ D′. 4

Example 2.4.7 (Sobolev product). For 1 < p, q < ∞ and 1
p + 1

q = 1, ` ≥ 0, the Sobolev space W `,p

is normal and we have the duality (W−`,p −W `,q), ` ≥ 0. We can thus apply the duality method to

X = W `,p resulting in a multiplication map W−`,ploc ×W `,q
loc → D′. 4

Theorem 2.4.8. Let `, m∈ Z, 1 ≤ p, q ≤ ∞ satisfying 1
p + 1

q = 1
r ≤ 1 and `+m ≥ 0. Let k = min(`,m),

then the duality method defines a multiplication map Wm,q
loc ×W

`,p
loc →W k,r

loc .
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Proof. We have Wm,q
loc ⊆ (W `,p)′loc. Then for u ∈ Wm,q

loc and v ∈ W `,p
loc the duality method produces the

multiplication map defined by
〈uv, ϕ〉 = Wm,q 〈χu, (χv)ϕ〉W `,p ,

where χ(x) = 1 on supp(ϕ). Given the parameters as in the statement of the theorem, we verify that

uv ∈ D′ coincides with an element of W k,r
loc . Working locally, we consider ϕ ∈ D(ω) with ω an open and

bounded subset of Rn.
In the case when `,m ≥ 0, we simply have

〈uv, ϕ〉 = Wm,q 〈χu, (χv)ϕ〉W `,p =

∫
ω

(χu)(χv)ϕ,

where the pointwise multiplication (χu)(χv) is in Lr(ω), such that the integrandum is integrable.
In the case when k ≥ 0, we notice that additionally that ∂α(χu) ∈ Lp(ω) resp. ∂α(χv) ∈ Lq(ω) for

any multi-index α ∈ Nn, |α| ≤ k. By the Leibniz rule for positive order Sobolev spaces

∂α(χu χv) =
∑
β≤α

(
α

β

)
∂α−β(χu)∂β(χv),

in which the righthandside is clearly Lr(ω) as each term is has factors in Lp(ω) and Lq(ω). Next we have
the case where k = m < 0 but ` + m ≥ 0. We have the representation u =

∑
|α|≤m ∂

αuα for uα ∈ Lqloc.
On ω we get

〈uv, ϕ〉 =
∑
|α|≤m

Wm,q 〈∂α(χuα), χvϕ〉W `,p

=
∑
|α|≤m

(−1)|α|
∫
ω

χuα∂
α(χvϕ)

=
∑
|α|≤m

(−1)|α|
∑
β≤α

(
α

β

)∫
ω

χuα∂
α−β(χv)∂βϕ.

This formula shows the action

〈uv, ϕ〉 = 〈
∑
|α|≤m

∑
β≤α

(−1)β
(
α

β

)
∂β
(
χuα∂

α−β(χv)
)
, ϕ〉.

The distribution on the righthandside is in W k,r since every product χuα∂
α−β(χv) belongs to Lr(ω).

Finally we consider the seperate continuity of the multiplication map. But this follows easily since one can
use convergence in the Sobolev norms and the fact that the Sobolev spaces are continuously embedded
into D′.

We give an elaborate example of multiplication by Sobolev spaces which shows the strenght of the
duality product.

Definition 2.4.9 (Pf rλ). For Re(λ) > −n, we have that |x|λ ∈ L1
loc(Rn) is a regular distribution of

polynomial growth as |x| → ∞, thus

〈Pf rλ, ϕ〉 = S′〈rλ, ϕ〉S =

∫
Rn
|x|λϕdx. (2.2)

For Re(λ) > −n− 2, λ 6= −n we define

〈Pf rλ, ϕ〉 =

∫ ∞
1

rλ+n−1

∫
Sn−1

ϕ(rω)dωdr

+

∫ 1

0

rλ+n−1

∫
Sn−1

(ϕ(rω)− ϕ(0))dωdr

+
1

λ+ n
|Sn−1|ϕ(0),

which coincides with (2.2) for Re(λ) > −n.
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To get to a general analytic extension we apply the Taylor appoximation

ϕ(x) =
∑
|α|≤j−1

(∂αϕ)(0)

α!
xα +

∑
|α|=j

Rα(x)xα,

for which we have the bounds

|Rα(x)| ≤ 1

α!
max
|β|=|α|

max
y∈Bn(0,1)

∣∣∣∂βϕ(y)
∣∣∣ = cα.

Setting x = rω we simplify the main terms∫
Sn−1

∂αϕ(0)

α!
r|α|ωαdω = dα

∂αϕ(0)

α!
r|α|,

with

dα =


0, if any αi is odd,

2

∏n
i=1 Γ

(
(αi + 1)/2

)
Γ

(
1

2
(|α|+ n)

) , if all αi are even.

The coefficients are the integrals of the monomials rα over the n− 1-sphere (see Folland [17]).
Starting from formula (2.2) and substracting the main terms with j = 2k gives for Re(λ) > −n− 2k,

λ /∈ {−n,−n− 2, . . . ,−n− 2k} the formula

〈Pf rλ+n−1, ϕ〉 =

∫ ∞
1

rλ+n−1

∫
Sn−1

ϕ(rω)dωdr (2.3)

+

∫ 1

0

rλ+n−1

∫
Sn−1

ϕ(rω)−
∑

|α|≤2k−1

dα
∂αϕ(0)

α!
r|α|

 dωdr (2.4)

+
∑

|α|≤2k−1

dα
∂αϕ(0)

α!(λ+ n+ |α|)
, (2.5)

where (2.4) is now integrable over r because∣∣∣∣∫
Sn−1

Rα(rω)r|α|ωαdω

∣∣∣∣ ≤ cαr|α| ∫
Sn−1

|ωα|dω = O(r|α|).

Notice that the terms with |α| odd vanish since dα = 0. The formulae agree with (2.2) and with eachother
for λ’s for which each are well-defined. These formulae together define a meromorphic extension C →
S ′(Rn) : λ 7→ Pf(rλ) of (2.2) with poles at λ = −n,−n− 2, . . . }. Additionally when λ = −n− 2j, j ∈ N,
we set

〈Pf r−n−2j , ϕ〉 =

∫ ∞
1

r−n−2j

∫
Sn−1

ϕ(rω)dωdr

+

∫ 1

0

r−n−2j

∫
Sn−1

ϕ(rω)−
∑
|α|≤j−1

dα
∂αϕ(0)

(α)!
r|α|

 dωdr

+
∑
|α|≤j−1

dα
∂αϕ(0)

α!(λ+ n+ |α|)
,

where we ignore the terms in (2.5) which make the pole at λ = −n − 2j. This is the so-called Hamard
finite part definition for pseudofunctions.

Theorem 2.4.10. For Re(λ + µ) > −n, there is k ∈ Z,
1

p
+

1

q
= 1 such that Pf(rλ) ∈ W−2k,q

loc and

Pf(rµ) ∈W 2k,q
loc . We then have the duality product formula

Pf rλ Pf rµ = Pf rλ+µ.
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Proof. For z ∈ C we have rz ∈W 2k,p
loc iff (Re z − 2k)p > −n iff Re z >

−n
p

+ 2k.

Case 1: Reλ < 0,Reµ > −n,Reλ /∈ {−n − 2j, j ∈ N}. We choose k ∈ N, minimal such that

Reλ + 2k > −n and let ε > 0 satisfie Re(λ + µ) = −n + ε. Next we find q > 1 with Reλ + 2k =
−n
q

.

Consequently Reµ− 2k =
n

q
− n+ ε = −n

p
+ ε with

1

p
+

1

q
= 1. For δ > 0 small enough and q̃ = q − δ

we get

Reλ+ 2k >
−n
q̃
, Reµ− 2k >

−n
p̃
.

Therefore Pf rλ ∈ W−2k,q̃
loc and Pf rµ ∈ W 2k,p̃

loc . We conclude that the duality product exists with values
in L1(Rn). For simplicity of notation we continue by writing p̃ = p and q̃ = q.

The value of this product follows from analytic continuation in µ. We first calculate its value in

the halfplane Reµ > 4k − n

p
. By the previous paragraph, the product Pf rλrµ−2k exists. By partial

associativity with r2k ∈ C∞ we get(
r2k Pf rλ

)
· rµ − 2k = Pf rλ ·

(
r2krµ−2k

)
= Pf rλ · rµ.

On the lefthandside we have r2k · Pf rλ = rλ+2k since the expression is analytic in λ and the formula
holds for Reλ > 0. The lefthandside then reads rλ+2k · rµ−2k = rλ+µ, with the multiplication in the
Lploc × L

q
loc sense. We conclude the formula

Pf(rλ)rµ = rλ+µ (2.6)

for Reµ > 4k − n

p
. Now for µ > 2k − n

p
, the map µ→ Pf rµ is analytic with values in W 2k,p

loc . For fixed

λ, the lefthandside of (2.6) is analytic in µ with values in S ′ due to the continuity of the duality product

W−2k,q
loc ×W 2k,p

loc which applies here. By the identity theorem for holomorphic functions, (2.6) holds for

µ > 2k − n

p
.

Case 2: Reλ ∈ {−n− 2j, j ∈ N}. We have the formulae

Pf r−n =
1

2− n
∆

(
r2−n log r − 1

2− n
r2−n

)
, n ≥ 3,

Pf r−2 =
1

2
∆ log2 r, n = 2,

and

δ =
1

(2− n)|Sn−1|
∆r2−n, n ≥ 3,

δ =
1

2π
∆ log r, n = 2.

For n ≥ 3 we have r2−n ∈ Lqloc when q >
n

n− 2
, so Pf r−n, δ ∈W−2,q

loc .

For n = 2, we have Pf r−2, δ ∈W−2,q
loc for 1 ≤ q <∞. Next, there are constants an,k, bn,k such that

Pf r−n−2k = ak,k∆k Pf r−n + bn,k∆kδ,

and thus Pf r−n−2k ∈W−2−2k,q
loc when q is as specified before.

Now let λ = −n− 2k, then neccesarily Reµ > 2k. We have rµ ∈W 2+2k,p
loc when

Reµ = 2k + ε1 >
−n
p

+ 2k + 2 ⇐⇒ n

p
> ε1 ⇐⇒ 1 ≤ p ≤ n

2
+ ε2.

This agrees with our choice of q, by
1

p
+

1

q
= 1. We conclude that the duality product Pf rλ ·Pf rµ exists

in case 2.
To compute the value of the product like in case 1 by considering partial associativity with r2k+2 ∈ C∞.(

r2k+2 Pf rλ
)
· rµ−2k−2 = Pf rλ ·

(
r2k+2rµ−2k+2

)
= Pf rλ · rµ.
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On the lefthandside we find r2k+2 · Pf rλ = F.p.r2k+2rλ = rλ+2k+2, since the finite part and the multi-
plication by r2k+2 can be interchanged.

Case 3: Reλ ∈ {−n,−n − 2, . . . }, Imλ 6= 0. By the same duality of case 2. The value is calculated
without need to consider finite parts.

The multiplication map for many choices of the normal space X can be extended.

2.5 Fourier product

The Fourier product exploits a generalisation of the exchange formula (1.7). To ensure good properties
of the resulting multplication, the definition of convolution needs to be restricted to the S ′-convolution.

For S, T ∈ L1(Rn) we have that S ∗ T ∈ L1 ⊆ S ′(Rn). Interpreting this as the convolution of two
regular tempered distributions allows the following manipulation:

S′(Rn)〈S ∗ T, ϕ〉S(Rn) =

∫
Rn

∫
Rn
S(y)T (x− y)ϕ(x)dydx

=

∫
Rn

∫
Rn
S(−y)ϕ(x− y)T (x)dydx

= L1(Rn)〈(ϕ ∗ Š)T, 1〉L∞(Rn),

where Š(x) = S(−x). The S ′-convolution changes the duality of this action, allowing only certain pairs
(S, T ) to have an interpretable convolution. We try to find a distribution space with low restrictions for
(ϕ ∗ Š)T with 1 in it’s dual, while maintaining properties of the convolution.

Definition 2.5.1. The space of integrable distributions is defined as

D′L1(Rn) =
⋃
m≥0

W−m,1(Rn),

and its dual space is the space of smooth functions with bounded derivatives

DL∞(Rn) =
⋂
m≥0

Wm,∞(Rn).

This duality allows the definition of the S ′-convolution.

Definition 2.5.2. Let S, T ∈ S ′(Rn). If for all ϕ ∈ S(Rn), we have that (ϕ ∗ Š)T ∈ D′L1(Rn), then
the S ′-convolution of S and T exists and is defined by

S′(Rn)〈S ∗ T, ϕ〉S(Rn) = D′
L1 (Rn)〈(ϕ ∗ Š)T, 1〉DL∞ (Rn).

To make this definition more practical, one can find pairs of subspaces (X,Y ) of S ′(Rn) such that the
convolution exists for all S ∈ X and T ∈ Y .

Theorem 2.5.3. Let S, T ∈ S ′(Rn) and suppose that (ϕ ∗ Š)T ∈ D′L1(Rn) for all ϕ ∈ S(Rn), then the
map

S(Rn)→ C : ϕ 7→ D′
L1 (Rn)〈(ϕ ∗ Š)T, 1〉DL∞ (Rn),

is continuous. Thus

S′(Rn)〈S ∗ T, ϕ〉S(Rn) = DL1 (Rn)〈(ϕ ∗ Š)T, 1〉DL∞ (Rn).

Proof. The topology on D′L1 is induced by the seminorms |·|W−m,1 , m ≥ 1. The map S → OM : ϕ 7→ ϕ∗Š
is continuous. The continuity of the multiplication OM · S ′ implies that S → S ′ : ϕ 7→ (ϕ ∗ Š)T is
continuous as well. Restricting this map to its range D′L1 keeps continuity. Then evaluating at 1 gives

the continuous linear functional S → C : ϕ 7→ 〈(ϕ ∗ Š)T, 1〉.

We are interested in the product on the lefthandside. Applying the inverse Fourier transform gives

fg = F−1(F(f) ∗ F(g)).

We can interpret this relation for general f, g ∈ S ′ provided that the righthandside makes sense. Formally
we define the Fourier product.
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Definition 2.5.4. Let S, T ∈ S ′ such that the S′-convolution U = FS ∗ FT exists. Then the Fourier
product of S and T is

ST = F−1(F(S) ∗ F(T )).

The Fourier product can be improved using localization. For x ∈ Rn let χx ∈ D(Rn) equal one on
a neighborhood Ωx ⊂ Rn of x. Suppose that the Fourier product of χxS and χxT in D′(Ωx) exists for
every x ∈ Rn, then the sewing lemma defines a global distribution.

The approach by a generalized exchange formula (1.7) is due to Vladimirov (see [36]). His method
was then localized by Oberguggenberger in the article ’Products of distributions’ [29]. Another product
of distributions based on the Fourier transform was given by Ambrose in [6]. Oberguggenberger proved
in [29] that the two definitions are equivalent.

Example 2.5.5. The Fourier product of S = 1/(x + i0) and T = 1/(x + i0) exists. First we have

FS = FT = F 1

x+ i0
= −2πiH(−x) by the reflection formula of the Fourier transform. The convolution

(−2πiȞ) ∗ (−2πiȞ)(x) is calculated by

Ȟ ∗ Ȟ(x) =

∫
R
H(−ξ)H(ξ − x)dξ

=

{∫ 0

x
dξ = −x, if x ≤ 0,

0, if x ≥ 0,

= −xH(−x).

For the well-definedness of S ′-convolution we check for ϕ ∈ S(R) that (ϕ ∗H)Ȟ ∈ D′L1(R). But we have

(ϕ ∗H)(x) =

∫
R
ϕ(ξ)H(x− ξ)dξ =

∫ x

−∞
ϕ(ξ)dξ,

and therefore

(ϕ ∗H)(x)Ȟ(x) = H(−x)

∫ x

−∞
ϕ(ξ)dξ ∈ L1(R) ⊂ D′L1(R).

It remains to calculate that

F−1(4π2xH(−x)) = Pf(
1

x2
) + πiδ′(x).

First we notice that

−2πiF(xf(x)) =
d

dx
F(f(x)),

for any f ∈ S ′(R). Thus

F−1(4π2xH(−x)) =
4π2

2πi

d

dx
FȞ = −2πi

d

dx

1

2πi

1

x− i0

= − d

dx

(
v.p.

1

x
+ πiδ(x)

)
= Pf

1

x2
− πiδ′(x).

4

Example 2.5.6. The Fourier product of S =
1

x+ i0
and T =

1

x− i0
does not exist. We have T (x) =

−S(−x), thus also
F(T )(x) = −F(S)(−x) = 2πiH(x)

. Now the S ′-convolution of FS and FT is not defined. For ϕ ∈ S(R) we have

Rϕ(x) = (ϕ ∗ Š)(x)T (x) = 4π2H(x)

∫ x

−∞
ϕ(ξ)dξ. (2.7)

It is clear that Rϕ is constant for x ≥ max(0, sup{x ∈ suppϕ}). This implies that Rϕ is not in any
W−m,1(R), for m ≥ 0. Therefore it is not a D′L1(R) distribution. We conclude that the S ′-convolution
of the Fourier transforms of S and T do not exist and therefore neither does the Fourier product. 4
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2.6 Strict product

The strict product is defined trough regularisation and passage to the limit. The strict product employs
the class of strict delta nets. We recall the definition of strict delta nets 1.3.36. A strict delta net is a
net of test functions (ρε)ε∈(0,1] ⊂ D(Rn) with the properties

supp(ρε)→ {0}, when ε→ 0,∫
Rn
ρε(x)dx = 1, for all ε ∈ (0, 1],∫

Rn
|ρε(x)|dx is uniformly bounded for ε ∈ (0, 1].

We want to define the product of u, v ∈ D′(Rn). The approach is as follows. Let (ρε)ε∈(0,1] be a strict
delta net. The regularisations uε = u ∗ ρε and vε = v ∗ ρε are smooth for each ε > 0. Using the Schwartz
product, we can approximate the product uv by any of the products uεv, uvε or uεvε. It remains to see
that the products have a limit as ε→ 0. To ensure nice properties of the resulting product, we ask that
the limit exists and is equal for all strict delta nets ρε. Formally we define strict products like this.

Definition 2.6.1 (Strict product). We define four different strict products. Notation depends on which
term is mollified. Let u, v ∈ D′(Rn), then

u[v] = lim
ε→0

u(ρε ∗ v), (strict1)

[u]v = lim
ε→0

(ρε ∗ u)v, (strict2)

[u][v] = lim
ε→0

(ρε ∗ u)(σε ∗ v) (strict3)

[uv] = lim
ε→0

(ρε ∗ u)(ρε ∗ v), . (strict4)

The product exists when the limit exists in D′(Rn) and is the same for all strict delta nets ρε and σε.

Strict products (strict1) - (strict3) are equivalent, while (strict4) is more general. The first is proven
in Theorem 2.6.2, which also gives a characterisation of the products that is useful to the strict product.
A corresponding characterisation for product strict4 is given in Theorem 2.6.3.

Theorem 2.6.2. For any two of distributions u, v ∈ D(Rn), strict products (strict1), (strict2) and
(strict3) are equivalent to the condition:

For all ϕ ∈ D(Rn) there is a neighborhood U of zero

so that (ϕu) ∗ v̌ belongs to L∞(U) and is continuous at zero.
(strict5)

Strict products (strict1)-(strict3) then satisfy

〈u[v], ϕ〉 = 〈[u]v, ϕ〉 = 〈[u][v], ϕ〉 = (ϕu) ∗ v̌(0).

Proof. We first show that strict products (strict1)-(strict3) are equivalent.
(strict3) =⇒ (strict1) and (strict2). It’s sufficient to prove that the double limit lim

ε→0,η→0
(ρε∗u)(ση ∗v)

exists and equals [u][v], since one can freely take one of the variables to its limit.
The limit is equal to [u][v] if

lim
k→∞

(ρε(k) ∗ u)(ση(k) ∗ v) = [u][v], (2.8)

for all delta sequences ρε(k) and ση(k). So take sequences ρε(k) and ση(k) which satisfy definition 1.3.36
for ε(k)→ 0 resp. η(k)→ 0 when k →∞. We extend the delta sequences to delta nets by setting

ρ̃ε = ρε(k),

for 1
k+1 ≤ ε <

1
k , and σ̃η analagously. Condition strict3 then implies that

lim
ε→0,η→0

(ρ̃ε ∗ u)(σ̃η ∗ v),

equals [u][v]. It is then clear that 2.8 must hold, proving the assertion.
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(strict1) =⇒ (strict3). By localization, we can assume that u and v have compact support. With
some rescaling assume that supp(u), supp(v), supp(ϕ) ⊂ Q = [−π, π]n. This allows us to use the Fourier
series

ϕ(x) =
∑
m∈Z\

cme
im·x,

for coefficients cm ∈ C which satisfie ∑
m∈Z\

|cm|(1 + |m|)k∞.

Absolute convergence of the series expansion implies the convergence of the series to ϕ in C∞(Q). The
following change of variables will allow us to apply strict product (strict1).

〈(ρε ∗ u)(σε ∗ v), ϕ〉,

=
∑
m∈Zn

∫ ∫ ∫
u(x− y)ρε(y)v(z)σε(x− z)eim·xdzdydx,

=
∑
m∈Zn

∫ ∫ ∫
u(x)v(z)ρε(−y)σε(x− y − z)e−im·yeim·xdydzdx,

=
∑
m∈Zn

〈u(v ∗ (ρ̌εe−im·y ∗ σε)), eim·x〉,

where the integral notation is only formal as to show the explicit change of variables. Call τεm = ρ̌εe−im·y∗
σε. For fixed m, τεm is almost a strict delta net. We verify the properties.

supp(τεm)→ 0, as ε→ 0,

since supp(ρ̌εe−im·y)→ 0 and supp(σε)→ 0. Secondly,∫
|τεm| ≤

∫
|ρε(x)|dx

∫
|σε(y)|dy,

is bounded independently of ε. The last property is slightly different.∣∣∣∣∫ τεm(x)dx− 1

∣∣∣∣ ≤ ∣∣∣∣∫ ρε(−y)σε(x− y)(e−im·y − 1)

∣∣∣∣ , (2.9)

≤ C sup
y∈supp(ρε)

∣∣∣e−im·y − 1
∣∣∣ , (2.10)

where C =
∫
|σε(x)|dx. It is clear that (2.10) goes to zero such that

cτm(ε) =

∫
τεm(x)dx→ 1. (2.11)

We create a delta net by setting τ̃εm = τεm/cτm(ε). It is then clear that in D′(Rn)

lim
ε→0

u(v ∗ τεm) = lim
ε→0

u(v ∗ τ̃εm) = u[v].

Due to the compact support of u and v, we also have convergence in E ′(Rn). All that remains is changing
the sum and the limit. Since the net u(v ∗ τεm) is convergent in E ′(Rn), we get for ε small enough

〈u(v ∗ τεm), ψ〉 ≤ C sup
|α|≤k

sup
x∈Q
|Dαψ(x)|,

uniformly for ψ ∈ E for some C > 0 and k ∈ Z. Restricting to eim·x for m ∈ Zn, gives

〈u(v ∗ τεm), eim·x〉 ≤ C(1 + |m|)k.

Therefore we can switch series and limit

lim
ε→0
〈(ρε ∗ u)(σε ∗ v), ϕ〉

=
∑
m∈Z

cm lim
ε→0
〈u(v ∗ τεm), eim·x〉

=
∑
m∈Z

cm〈u[v], eim·x〉

= 〈u[v], ϕ〉.
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(strict5) =⇒ (strict1). The property follows directly from the simple observation that by definition
of the convolution

〈u(v ∗ ρε), ϕ〉 = 〈ϕu, v ∗ ρε〉 = 〈(ϕu) ∗ v̌, ρε〉.

Now suppose (strict5) holds, then

〈(ϕu) ∗ v̌, ρε〉 − (ϕu) ∗ v̌(0) =

∫
(((ϕu) ∗ v̌)(x)− ((ϕu) ∗ v̌)(0))ρε(x)dx

≤ sup
x∈supp(ρε)

|((ϕu) ∗ v̌)(x)− ((ϕu) ∗ v̌)(0)|
∫
|ρε(x)|dx→ 0.

(strict1) =⇒ ( strict5). Fix ϕ ∈ D(Rn) and assume by (strict1) that

c = lim
ε→0
〈(ϕu) ∗ v̌, ρε〉. (2.12)

The existence of (2.12) for all delta nets ρε draws us to interpret them as a duality, where ρε → δ. More
specifically we will find the duality L∞(U) − L1(U) on a small enough neighborhood U of zero, with
additional continuity at zero. First notice that equivalent to (strict5), is to show that g = (ϕu) ∗ v̌ − c is
bounded around zero and continuous at zero. To facilitate L1 test functions, define

Uε =
{
ψ ∈ D(Rn) : ‖ψ‖L1(Rn) ≤ 1, supp(ψ) ⊂ B(0, ε)

}
.

The bounds we want to prove are

∀µ > 0,∃ε > 0,∀ψ ∈ Uε : |〈g, ψ〉| ≤ µ. (2.13)

Suppose for a contradiction that (2.13) does not hold. Then we find µ > 0 and a sequence {εj}j∈N → 0
with ψj ∈ Uεj such that |〈g, ψj〉| > µ for all j. Sequential compactness of [0, 1] and 0 ≤ |

∫
ψ| ≤ 1

produces a subsequence {ε̃j}j∈N of {εj}j∈N with αj = |
∫
ψ̃j | → α as j → ∞ and ψ̃ ∈ Uε̃j . For ease of

notation, we drop the tilde. We have α ∈ C and |α| ≤ 1. If α 6= 0 then {ψjα }j∈N is almost a strict delta

sequence analagously to (2.11). By (2.12) it follows that 〈g, ψjα 〉 → 0 as j → ∞. This contradicts the
negation of (2.13). If α = 0, then consider

lim
j→∞
〈g, ψj〉 = lim

j→∞
〈g, ψj + σj〉 − lim

j→∞
〈g, σj〉,

for any delta sequence {σj}j∈N. By (2.12) both terms are zero wich contradicts (2.13).
Using (2.13) for µ = 1, we find some η > 0 such that

|〈g, ψ〉| ≤ 1, for all ψ ∈ Uη.

This means that g|Bη is a functional on D(Bη), when topologised with the L1-norm. Thus neccesarily
g ∈ L∞(Bη). This is the first property of (strict5). For continuity at zero we use (2.13) for succesively
smaller µ.

‖g‖L∞(Bε) = sup
ψ∈Uε

|〈g, ψ〉| → 0.

This implies that g is almost everywhere equal to a function continuous at zero.

Next we give a characterization for strict product (strict4).

Theorem 2.6.3. Let u, v ∈ D′(Rn). The following are equivalent

(i) The strict product [u · v] ∈ D′(Rn) exists.

(ii) The limit limε→0 u(v ∗ ρε) + (u ∗ ρε)v exists in D′(Rn) for every strict delta net (ρε)ε∈(0,1].

(iii) For all ϕ ∈ D(Rn), the function (ϕu) ∗ v̌ + ǔ ∗ (ϕv) is bounded in a neighborhood Ω ⊆ Rn of 0 and
is continuous at 0.

When these properties hold, we have

〈[u · v], ϕ〉 =
1

2
lim
ε→0
〈u(ρε ∗ v) + (u ∗ ρε)v, ϕ〉

=
1

2

(
(ϕu) ∗ v̌ + ǔ ∗ (ϕv)

)
(0)
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Proof. Assume that [uv] exists. For (ρε)ε∈(0,1] and (σε)ε∈(0,1] strict delta nets, (ρ
ε+σε

2 )ε∈(0,1] is a strict
delta net. A simple calculation reveals an equivalent form for strict product (strict4).

[uv] = lim
ε→0

(u ∗ (
ρε + σε

2
))(v ∗ (

ρε + σε

2
)) (2.14)

⇐⇒ 4[uv] = lim
ε→0

(u ∗ ρε)(v ∗ ρε) (2.15)

+ (u ∗ ρε)(v ∗ σε) + (u ∗ σε)(v ∗ ρε) + (u ∗ σε)(v ∗ σε) (2.16)

= [uv] + lim
ε→0

(u ∗ ρε)(v ∗ σε) + (u ∗ σε)(v ∗ ρε) + [uv] (2.17)

⇐⇒ [uv] =
1

2
lim
ε→0

(u ∗ ρε)(v ∗ σε) + (u ∗ σε)(v ∗ ρε), (2.18)

for all strict delta nets (ρε)ε∈(0,1] and (σε)ε∈(0,1]. On the other hand, if the limit (2.18) exists, we can
choose ρε = σε.

An argument fully analogous to Theorem 2.6.2 then reduces (2.18) to a double limit, which implies
(ii), and the converse is (iii) is proven by applying the proof of (strict5) to both terms simultaniously.

Example 2.6.4. The strict product

v.p.
1

x
[δ]

does not exist. Applying Theorem 2.6.2, we need

ϕ(x)v.p.
1

x
∗ δ̌ = ϕ(x)v.p.

1

x

to be continuous at zero and bounded around zero, but it is neither. When both factors are regularised,
we get the strict product

[v.p.
1

x
· δ] =

1

2
δ′(x). (2.19)

We employ the result of Theorem 2.6.3. For ϕ ∈ D(R),

1

2

(
ϕ(x)v.p.(

1

x
) ∗ δ̌(x) + ϕ(x)δ(x) ∗ (v.p.

1

x
)̌

)
=

1

2

(
ϕ(x)v.p.

1

x
+ ϕ(0)v.p.

−1

x

)
=

1

2

(
(ϕ(x)− ϕ(0)

)
v.p.

1

x
.

It remains to notice that

(ϕ(x)− ϕ(0))v.p.
1

x
=
ϕ(x)− ϕ(0)

x
,

is continuous at 0 and bounded around 0. We thus have

〈[v.p. 1
x
· δ], ϕ〉 = lim

x→0

ϕ(x)− ϕ(0)

2x
= lim
x→0

ϕ′(x)

2
=
ϕ′(x)

2
= 〈1

2
δ′(x)〉,

which is (2.19). 4

The regularisation method used by the strict product can be used for other classes of delta nets. The
set of delta nets considered is then implies the properties of the resulting product. One important such
product is the model product.

2.7 Model product

The model product uses the class of model delta nets.

Definition 2.7.1 (Model delta net). The class of model delta nets consists of the nets (ϕε)ε∈(0,1], where

ϕε(x) =
1

εn
ϕ

(
x

ε

)
,

for any ϕ ∈ D(Rn) with
∫
Rn ϕ(x)dx = 1.
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Every model delta net is a strict delta net since have the support property

suppϕε = ε suppϕ,

and the integral ∫
Rn
ϕε(x)dx =

∫
Rn
ϕ(x)dx,

and similarly for the integral of the absolute values. To create a model product, we regularise the
multiplication of distributions by convolution with model delta nets as follows.

Definition 2.7.2 (Model product). For u, v ∈ D′(Rn), we write

u[v] = lim
ε→0

u(ϕε ∗ v), (model1)

[u]v = lim
ε→0

(ϕε ∗ u)v, (model2)

[u][v] = lim
ε→0

(ϕε ∗ u)(ψε ∗ v), (model3)

[uv] = lim
ε→0

(ϕε ∗ u)(ϕε ∗ v), (model4)

if the limits exist and are equal for all model delta nets (ϕε)ε∈(0,1] and (ψε)ε∈(0,1].

The model product has an equivalent formulation similar to the condition (strict5). The difference is
in the notion of value at a point.

Definition 2.7.3 (Value at a point, Lojasiewicz). A distribution u ∈ D′(Rn) has the value c ∈ C at the
point x0 ∈ Rn if the limit

lim
ε→0
〈u(x), ϕε(x− x0)〉 (2.20)

exists and equals c for all model delta nets ϕε.

Lojasiewicz introduced this concept in [26] as the value c such that for ϕ ∈ D(Rn)

lim
ε→0
〈u(x0 + εx), ϕ(x)〉 = c

∫
Rn
ϕ(x)dx.

It is clear that the value of (2.20) is equivalent to the value of the model product u[δ]. This notion gains
even more strength when combined with tensor products.

Definition 2.7.4. Let u(x, y) ∈ D′(R2n) be a distribution of two variables, then u is said to have the
section T (x) ∈ D′(Rn) at y = 0 if u(x, y)[1(x)⊗ δ(y)] = T (x).

In [23] Jeĺınek proves a useful characterisation for model product (model4) by sections.

Theorem 2.7.5. Let u, v ∈ D′(Rn). Model product (model4) exists if and only if

1

2

(
u(x+ y)v(x− y) + u(x− y)v(x+ y)

)
,

has a section w(x) at y = 0 and then
w(x) = [u · v].

2.8 Consistency of products of distributions

We now have defined several different product maps. We want to make sure that different methods gives
the same products. As noted before, the model product extends the strict product. We prove that the
strict product extends the Fourier product and extends the Duality product for spaces that are closed
under convolution.

Proposition 2.8.1. Let V,W ⊂ D′ be subspaces of distributions such that the multiplication map M :
V ×W → D′ is seperately continuous. Suppose that V is closed under convolution by elements of D, then
strict products (strict1)-(strict3) extend the multiplication map M .
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Proof. Let v ∈ V and w ∈ W . The strict product is defined as the limit of (ρε ∗ v)w. We have that
ρε ∗ v → v ∈ V . By continuity of M , we conclude that (ρε ∗ v)w converges to M(v, w).

For the duality prodcut on the Sobolev spaces, this theorem applies. This means that the strict product
extends the Sobolev product maps given in Theorem 2.4.8. We now want to show the consistency of the
strict product with the Fourier product. For this we need the following lemma.

Lemma 2.8.2. Let f ∈ D′L1 , then Ff is continuous.

Proof. Represent f as f =
∑
|α|≤m ∂

αfα for m ∈ N and fα ∈ L1. We compute

Ff =
∑
|α|≤m

xαFfα,

where every Ffα is continuous by the Riemann-Lesbesgue theorem, Theorem 1.3.21, as the Fourier
transform of an L1 function.

This allows us to prove that the strict product of the Fourier transforms coincides with the exchange
formula (1.7) for when the S′-convolution exists.

Lemma 2.8.3. Let S, T ∈ S ′. Assume that the S ′-convolution of S and T exists. Then strict product
(strict1)-(strict3) of FS and FT exists and this strict product equals

FS[FT ] = F(S ∗ T ). (2.21)

Proof. By definition of the S ′-convolution the lefthandside of (2.21) is to be interpreted as

S′〈F(S ∗ T ), ϕ〉S = S′〈S ∗ T,Fϕ〉S (2.22)

= D′
L1
〈(F(ϕ) ∗ Š)T, 1〉DL∞ (2.23)

= F−1((F(ϕ) ∗ Š)T )(0). (2.24)

In the last line we only have equality of values in case the S ′-convolution exists. Moreover, we have that
(F(ϕ) ∗ Š) ∈ OM since the convolution is of type S ∗ S ′. Therefore we can apply the exchange formula
to get

F−1((Fϕ ∗ Š)T ) = F−1(Fϕ ∗ Š) ∗ F−1T = (ϕFS) ∗ (FT )̌.

By lemma 2.8.2, this function is continuous since (Fϕ ∗ Š)T ∈ D′L1 . Particularly it satisfies property
(strict5), thus by Theorem 2.6.2 we get existence of the strict product FS[FT ] and equality to the value
F−1((F(ϕ) ∗ Š)T )(0).

Theorem 2.8.4. Let u, v ∈ D′(Ω) such that their Fourier product exists. Then the strict product (strict1)-
(strict3) exists and equals the Fourier product.

Proof. By definition of the Fourier product, we have existence of the S ′ convolution of F(u) and F(v).
The Fourier product is then defined on Ω as F−1(Fu ∗ Fv). By Lemma 2.8.3, we have that

u[v] = F−1Fu[F−1Fv] = F−1(Fu ∗ Fv).

We show off a neat observation related to Lemmas 2.8.2 and 2.8.3.

Corollary 2.8.5. Let u ∈ D′, then the Fourier product δu exists then u is continuous in a neighborhood
of zero.

Proof. We only need to consider the localized product in a neighborhood of zero as supp δ = 0. So let
Ω be a neighborhood of zero and let ϕ ∈ D equal one on Ω. By existence of the Fourier product, there
is some Ω small enough such that the S ′-convolution of F(ϕδ) and F(ϕu) exists. We calculate that
F(ϕδ) = F(ϕ(0)δ) = F(δ) = 1. By definition of the S ′-convolution we have for all ψ ∈ S

(ψ ∗ 1̌)F(ϕu) =

(∫
ψ

)
F(ϕu) ∈ D′L1 .

Thus F(ϕu) ∈ D′L1 . We can then write F(ϕu) =
∑
|α|≤m ∂

αuα for some m ∈ N and uα ∈ L1. Applying
lemma 2.8.2 for the inverse Fourier transform makes ϕu continuous. We conclude that u is continuous in
a neighborhood of zero.
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So far we have thus seen that several products can be reduced to the study of point values of distri-
butions. This completes our discission of intrinsic products. We continue the chapter with a discussion
of extrinsic multiplication, the Colombeau algebra and the very weak solution concept.

2.9 Extrinsic multiplication and Colombeau algebra

Another approach is to define an extrinsic multiplication. We want to have an associative algebra in
which every distribution is represented. We then could perform the multiplication inside the algebra. If
we are lucky the result might again represent a distribution. Ideally we want an algebra (A,+, ◦) with
the following properties:

(i) A is associative.

(ii) D′ is linearly embedded into A and the constant function 1 is the unity in A.

(iii) There are derivation operators ∂xi which satisfie the Leibniz rule.

(iv) The operators ∂xi coincide with the usual partial derivatives.

(v) ◦ coincides with the pointwise product for continuous functions.

However, it is impossible to get all of these properties. This famous impossibility result is due to Schwartz
[33].

Theorem 2.9.1. If the algebra (A,+, ◦) satisfies (i), (ii), (iii), (iv), then (v) does not hold.

Proof. We give a contradicting example in one dimension. For multiple dimensions, consider the tensor
product with the constant function 1. First define x+ = xH(x). Then (i)− (iv) imply either

x+ ◦ x 6= x+ ◦ x+, or (2.25)

x ◦ (x log |x| − x) 6= x2 log |x| − x2. (2.26)

For a contradiction, assume that both (2.25) and (2.26) are false. Using only properties (i)-(iv) the
following calculations are valid.

∂2(x+) ◦ x = ∂2(x+ ◦ x)− 2∂(x+)∂(x)− x+ ◦ ∂2(x)

= ∂(x2
+)− 2∂x+ = 0,

x ◦ ∂2(x log |x| − x) = ∂2(x2 log |x| − x2)− 2∂(x log |x| − x)

= ∂(2x log |x| − x)− ∂(2x log |x| − 2x) = 1.

By associativity,
∂2(x+) ◦ 1 = ∂2(x+) ◦ x ◦ ∂2(x log |x| − x) = 0,

which contradicts (ii) because ∂2(x+) = δ(x) in D′.

The proof above shows that the problem is not with distributions but with pointwise multiplication
of continuous functions. It is possible to define an associative algebra that satisfies (i)-(iv) and

(v’) ◦ coincides with the product on smooth functions.

Colombeau algebra

We shall give a short introduction to the special Colombeau algebra Gs(Ω) based on [14] and [20].
Colombeau algebras are a large topic with broad literature and numerous applications to PDE’s. For the
interested reader, we refer to the orginial works of Colombeau [10] and the work of Grosser et al. [20].

Let Ω ⊂ Rn open. The space C∞(Ω)(0,1] is the differential algebra of all maps from the interval (0, 1]
int C∞(Ω). The subalgebra of moderate families EM (Ω) consists of all nets (uε)ε∈(0,1] ∈ C∞(Ω)(0,1] such
that for all j ∈ N and K ⊆ Ω compact, there are C,N ≥ 0 with

|uε|j,K ≤ Cε−N ,

where |·|j,K are the C∞(Ω) seminorms (1.5). Every distribution u ∈ D′(Ω) has a regularisation (uε)ε∈(0,1]

in EM (Ω) trough convolution with a model delta net. We discuss this more in section 2.10. The ideal of
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negligible families N s(Ω) consists of the nets (uε)ε∈(0,1] ∈ C∞(Ω)(0,1] such that for all j ∈ N and K ⊂ Ω
compact and all N ≥ 0 there is C ≥ 0 such that

|uε|j,K ≤ CεN .

The special Colombeau algebra then is

Gs(Ω) = EM (Ω)/N s(Ω),

An element of the special Colombeau algebra Gs(Ω) is then an equivalence class of moderate families.
A moderate family (uε)ε∈(0,1] ∈ EM (Ω) is called a representative of the Colombeau generalised function
U = (uε)ε∈(0,1] +N s(Ω).

Definition 2.9.2. A generalised function U ∈ Gs(Ω) is associated with a distribution u ∈ D′(Ω) if it has
a representative (uε)ε∈(0,1] ∈ EM (Ω) such that uε → u ∈ D′(Ω).

We show how to construct a Colombeau generalised function associated with a distribution. We adapt
Proposition 1.2.20 of [20] where an explicit embedding of E ′(Ω) into Gs(Ω) is shown.

Theorem 2.9.3. Let Ω ⊆ Rn and u ∈ E ′(Ω). Let (ϕε)ε∈(0,1] be a model delta net, then uε = (u ∗ ϕε)|Ω
satisfies

∀K ⊆ Ω compact ,∀α ∈ Nn, ∃Mα, Nα > 0, sup
x∈K
|∂αx uε| ≤Mαε

−Nα .

Proof. By the structure theorem of compactly supported distributions, Theorem 1.3.12, there exists
r ∈ N, cα ∈ C and f ∈ C(Ω) continuous on Ω and compactly supported such that u =

∑
|α|≤r cα∂

αf .
We show that each of the terms vα = ∂αf satisfy the bound

sup
x∈K
|vα,ε| ≤ Cαε−Lα ,

for some Cα, Lα ≥ 0. It then follows that

sup
x∈K
|uε| ≤

∑
|α|≤r

cαCαε
−Lα ≤M0ε

−N0 ,

with the constants

M0 =
∑
|α|≤r

cαCα,

N0 = max
|α|≤r

Lα.

So let vα = ∂αf . Fix K ⊂ Ω compact and take ε ≤ ε0 small enough. We have for any x ∈ K

(v ∗ ϕε)(x) = (f ∗ ∂αϕε)(x)

=

∫
f(x− y)∂αxϕε(y)dy

=

∫
f(x− y)ε−n−|α|(∂αϕ)(

y

ε
)dy

=

∫
f(x− εy)ε−|α|∂αy ϕ(y)dy

≤ Cαε−|α|,

Rn with Cα = ||f ||L∞(Rn)

∫
Rn
∣∣∂αϕ(y)

∣∣ dy. The same argument applies for the estimate of the derivatives

∂βu since
∂β(u ∗ ∂αϕε) = u ∗ ∂α+βϕε.

We can map every distribution u ∈ E ′(Ω) to a moderate family through regularisation with a model
delta net.

E ′(Ω)→ EM (Ω) : u 7→ (u ∗ ϕε)ε∈(0,1]|Ω.
This map can be extended for u ∈ D′(Ω through localisation, see [20, Theorem 1.2.13, 1.2.14]. This
construction was long known as sequential approach of Mikusinski [27].
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Example 2.9.4. Not every moderate family is a regularisation of a distribution. Examples include
oscillating nets and nets of large growth.

a) The net of constant functions (uε)ε∈(0,1] = {sin(
1

ε
)} is a moderate family since it it uniformly

bounded in epsilon. However it does not converge distributionally.
b) Let (ϕε)ε∈(0,1] be a model delta net. The net of squares (ϕ2

ε)ε∈(0,1] is a moderate family. However
in Example 2.1.1, we showed that it can’t converge to a distribution. 4

What is the benefit of constructing the factor algebra Gs(Ω) = EM (Ω)/N s(Ω) over just considering

the moderate families EM (Ω)? Consider delta nets of the type ϕε(x) = ε−nϕ(
x

ε
) for ϕ ∈ S(Rn) with the

additional property that ∫
Rn
xαϕε(x)dx = 0, ∀α ∈ Nn.

Then the map
C∞(Ω)→ Gs(Ω) : f 7→ f ∗ ϕε|Ω +N s(Ω),

is independent of the delta net ϕε chosen. This unique equivalence class also contains the constant
embedding f +N s(Ω). It follows that the multiplication of the embeddings coincide with the pointwise
multiplication of smooth functions.

Jelinek [23], proven for the full Colombeau algebra G(Ω).

Theorem 2.9.5. Let U, V ∈ G(Ω) with associated distributions u, v ∈ D′(Ω). Let W = UV ∈ G(Ω) be the
product in the special Colombeau algebra of U and V . Then W is associated to a distribution w ∈ D′(Ω)
if and only if the model product [uv] exists and then w = [uv].

The theory of Colombeau algebras is can be used to analyse partial differential equations with singular
coefficients and initial or boundary conditions. Examples from literature are [13], [14] and [21]. It is
somehow still difficult to use it in practical applications since the initial data must be represented in
the Colombeau algebra, which is often not the case. Recently the very weak solution has given another
approach to solving PDEs with singular coefficients. Although the concepts of moderate and negligigle
nets seem similar to the Colombeau setting, the very weak solution concept has the advantage for being
applied directly to the PDE. Therefore its results can give a more refined treatment of the singular terms.

2.10 Very weak solution

The very weak solution concept orginates from the a 2015 article by Garetto and Ruzhansky [19]. Here
the authors use the method of the very weak solution to analyse hyperbolic equations. The idea has
since been applied more widely, see e.g. [2, 3, 4, 5, 28, 31, 32]. The method consists of three main parts:
existence, uniqueness and consistency.

The very weak solution concept describes its solutions through the qualitative behaviour of nets of
regularised solutions. Moderate and negligible nets are defined in the following way.

Definition 2.10.1 (Moderate and negligible nets). Let (aε)ε∈(0,1] be a net of non-negative real numbers.

a) The net (aε)ε∈(0,1] is moderate if there are C,N ≥ 0 such that

aε ≤ Cε−N .

b) The net (aε)ε∈(0,1] is negligible if for all q ≥ 0 there are constants Cq ≥ 0 such that

aε ≤ Cqεq.

Remark 2.10.2. Suppose that the net (aε)ε∈(0,1] is moderate and that (bε)ε∈(0,1] is negligible, then

aεbε ≤ Cε−NCqεq, for all q > 0,

such that the net of products (aεbε)ε∈(0,1] is negligible.

The quantities that we use to describe the net behaviour are often norms or semi-norms of the function
nets. It will be useful to have language for that.
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Definition 2.10.3 (X-moderate, X-negligible nets). Let X be a Banach space with norm || · ||X .

a) A net (uε)ε∈(0,1] is X-moderate if the net of X-norms (||u||X)ε∈(0,1] is moderate. A net (uε)ε∈(0,1]

is X-negligible if the net of X-norms is negligible.

Let X be a Fréchet space with seminorms {| · |k, k ∈ N}.
a) A net (uε)ε∈(0,1] is X-moderate if for all k ∈ N the nets of k-th seminorms (|uε|k)ε∈(0,1] are moderate.

b) A net (uε)ε∈(0,1] isX-negligible if for all k ∈ N the nets of k-th seminorms (|uε|k)ε∈(0,1] are negligible.

We also need nets of slower growth.

Definition 2.10.4 (Moderate of log-type). Let (aε)ε∈(0,1] be a net of non-negative real numbers. The
net (aε)ε∈(0,1] is moderate of log-type if there exists C ≥ 0 such that

aε ≤ C log
1

ε
.

Let X be a normed space. A net (uε)ε∈(0,1] ⊂ X is X-moderate of log-type if the net of norms
(||uε||X)ε∈(0,1] is moderate of log-type. Similarly for a Fréchet space if for all seminorms the net of
seminorms is moderate of log-type.

Example 2.10.5. We show how to construct log-type moderate nets from moderate nets. Suppose that
(aε)ε∈(0,1] is a moderate net. We change the parametrisation of ε to get a slower rate of growth. By
moderateness of (aε)ε∈(0,1] we have the estimate

aε ≤ C1ε
−N , (2.27)

for constants C1, N ≥ 0. Now consider the net.

(bε)ε∈(0,1] = (aλε)ε∈(0,1],

where

λε =

(
log

1

ε

)− 1

N
. (2.28)

We show that (bε)ε∈(0,1] is moderate of log-type. By (2.27) we can estimate for bε

bε = aλε ≤ C1λ
−N
ε ,

= C1

(log
1

ε

)− 1

N


−N

= C1 log
1

ε
,

which proves that (bε)ε∈(0,1] is moderate of log type.
If the constant N is unknown, then one can use the following reparametrisation. Let

cε = (aµε)ε∈(0,1],

where

µε =
1

log log
1

ε

.

We notice that fact that
(log x)

N ≤ x,
for x ∈ R sufficiently large. Then (cε)ε∈(0,1] is moderate of log-type since for any N ≥ 0 it holds that

cε = aµε

≤ C1

 1

log log
1

ε


−N

,

≤ C1

(
log log

1

ε

)N
,

≤ C1 log
1

ε
,
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if ε is sufficiently small. 4

Example of a very weak solution

Now we illustrate the very weak solution concept through a simple example. We consider the boundary
value problem (1.15) but with distributional righthandside f ∈ D′((0, 1)),

d

dx
u(x)− d2

dx2
u(x) = f(x)

u(0) = 0, u(1) = 0.
(2.29)

If we take some regularisation (fε)ε∈(0,1] of f , then we can consider for each ε ∈ (0, 1] the regularised
problem 

d

dx
uε(x)− d2

dx2
uε(x) = fε(x),

uε(0) = 0, uε(1) = 0.
(2.30)

For fε ∈ L2((0, 1)) the regularised problem has the weak formulation:∫ 1

0

d

dx
uε(x)v(x)dx+

∫ 1

0

d

dx
uε(x)

d

dx
v(x)dx =

∫ 1

0

fε(x)v(x)dx, ∀v ∈ H1((0, 1)), (2.31)

with the solution u ∈ H1
0 ((0, 1)).

Definition 2.10.6. We call a net (uε)ε∈(0,1] a very weak solution to (2.29) if:

� The net (uε)ε∈(0,1] is in H1
0 ((0, 1)).

� There is a regularisation (fε)ε∈(0,1] of f such that for each ε ∈ (0, 1] the function uε solves the weak
regularised problem (2.31).

� The net (uε)ε∈(0,1] is L2((0, 1))-moderate.

In this definition the moderateness of the solution net (uε)ε∈(0,1] is subject to change. For example
one can consider a stronger notion where the net (uε)ε∈(0,1] admits a stronger type of moderateness.
Depending on the form of the equation and the energy estimate, it may be neccesary to ask stronger
moderateness for some of the coefficients.

We prove the existence of a very weak solution for problem (2.29). Let (ϕε)ε∈(0,1] be a model delta
net. Then (fε)ε∈(0,1] = (f ∗ ϕ

ε
|(0,1))ε∈(0,1] is an L2((0, 1))-moderate regularisation of f . Without proof,

by the Lax-Milgram theorem we find for each ε ∈ (0, 1] a unique solution uε ∈ H1
0 ((0, 1)) to the weak

regularised problem (2.31). If the net (uε)ε∈(0,1] is L2((0, 1))-moderate, then it is a very weak solution to
(2.29). Also by the Lax-Milgram theorem, we have the energy estimate

||uε||L2((0,1)) ≤
1

c
||fε||L2((0,1)),

where c is the ellipticity constant of the bilinear form. Since (fε)ε∈(0,1] is L2((0, 1))-moderate, then so is
(uε)ε∈(0,1].

Let’s now discuss uniqueness of the very weak solution.

Definition 2.10.7. We say that the problem (2.29) has a very weak solution if the following holds.
Suppose (uε)ε∈(0,1] and (ũε)ε∈(0,1] are two very weak solutions to (2.29) by respective regularisations
(gε)ε∈(0,1] and (g̃ε)ε∈(0,1] of g. If

(gε − g̃ε)ε∈(0,1] is L2((0, 1))-negligible,

then

(uε − ũε)ε∈(0,1] is L2((0, 1))-negligible.
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In the case of the example problem (2.29) we use again the energy estimate. We have that the
very weak solution (uε)ε∈(0,1] satisfies equation (2.31) for each ε and that (ũε)ε∈(0,1] satisfies (2.31) with

righthandside f̃ε. Substracting equations gives∫ 1

0

d

dx

(
uε(x)− ũε(x)

)
v(x)dx+

∫ 1

0

d

dx

(
uε(x)− ũε(x)

) d

dx
v(x)dx =

∫ 1

0

(
fε(x)− f̃ε(x)

)
v(x)dx,

for all v ∈ H1((0, 1)). The Lax-Milgram theorem is again applicable, now with the righthandside fε − f̃ε
and solution uε − ũε. Therefore we have the energy estimate

||uε − ũε||L2((0,1)) ≤
1

c
||gε − g̃ε||L2((0,1)).

Given that gε − g̃ε is L2((0, 1))-negligible, we conclude that uε − ũε is L2((0, 1))-negligible.
In the next chapter we will apply the very weak solution concept to a concrete problem.
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Chapter 3

The Euler-Bernoulli equation

In this chapter we define a very weak solution for the clamped Euler-Bernoulli equation with discontinuous
cross-section and distributional forces and show its unique existence. In [21] the authors solve this
equation in a Colombeau algebra. The goal is to adapt the results of [21] to the very weak solution
setting. First we discuss the physical modelling of the Euler-Bernoulli beam. Next we present the
weak formulation of the Euler-Bernoulli equation, following [21]. Then we prove the existence of an
L2-moderate very weak solution with minimal conditions on the regularisations of the coefficients. For
the uniqueness of the very weak solution we need to assume additional moderateness of derivatives of the
solution. In the last part of this chapter we numerically investigate the solutions to the Euler-Bernoulli
equation with distributional forces.

3.1 Physical model

We discuss how the Euler-Bernoulli beam equation is derived as a model for an elastic rod. A general
theory of elasticity is found in [7].

Let us consider a cylindrical beam of length L. A beam is often modelled by considering deviations
from the beam axis. The beam is under influence of a vertical force g1 and an axial force P . We assume
that there are no lateral forces. We model the vertical displacement of the beam axis at time t and
position x by the function u(x, t).

Material particles also experience displacements in the axial direction w(x, z, t). That is, suppose p is a
particle that starts at the coordinates (x, z) at time t = 0. Then w(x, z, t) is the horizontal displacement
of p at time t. For small horizontal deformations we can approximate w(x, z, t) = z∂xu(x, t). We
model the elasticity of the beam by Hooke’s law. The stress σ(x, t) is then proportional to the relative
extension of the material. Locally, the relative extension is given by the derivative ∂xw(x, z, t). This is
σ(x, t) = E(x)∂xw(x, z, t). The proportionality constant E(x) is called the modulus of elasticity. The
bending moment M is a stress resultant given by M(x, t) =

∫
C(x)

σ(x, t)zdA, with the integral over the

cross-section of the beam C(x) at position x. In our case we find

M(x, t) =

∫
C(x)

E(x)∂xw(x, z, t)zdA =

∫
C(x)

E(x)∂2
xu(x, t)z2dA

= E(x)∂2
xu(x, t)

∫
C(x)

z2dydz = E(x)I(x)∂2
xu(x, t),

where we put I(x) =
∫
C(x)

z2dydz, which is the second moment of area of the beam’s cross-section. A

shearing force is defined as an excess force on the top part of the beam over the bottom part of the beam.
The bending moment defines the shearing force

Q1(x, t) = −∂2
xM(x, t) = −∂2

x

(
E(x)I(x)∂2

xu(x, t)
)
.

The minus sign is because an excess force in a position x with positive curvature results in a downwards
force. Next we have the shearing force due to the axial force, that is

Q2(x, t) = −P (t)∂2
xu(x, t).
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The shearing forces are vertical forces as a result of the stress and the axial force acting on a curved beam
and thus deforming the beam axis. Using Newton’s second law on the vertical displacement u(x, t) and
the vertical forces g1(x, t), Q1(x, t) and Q2(x, t) results in the dynamic Euler-Bernoulli equation

R(x)∂2
t u = g1(x, t) +Q2(x, t) +Q2(x, t). (3.1)

The line density R(x) is a replacement for the proper mass, as we are working locally on a cross-section
of infinitesimal width. It is defined as ∂xm(x) with m(x) the mass of the beam contained in the interval
[0, x]. Rearranging equation (3.1) we get explicitly

∂2
x

(
A(x)∂2

xu
)

+ P (t)∂2
xu+R(x)∂2

t u = g1(x, t),

where

� A is the bending stiffness, given as A(x) = E(x)I(x), with E(x) the modulus of elasticity of the
material and I(x) the moment of inertia.

� R is the line density, i.e. mass density per unit length.

� P is the axial force.

� g1 is the vertical force.

� u is the vertical displacement of the beam axis. Thus ∂2
t u is the acceleration of the rod and ∂2

x is
the linearized curvature.

We shall discuss solutions to the clamped Euler-Bernoulli beam, i.e. the boundary conditions

u(0, t) = u(1, t) = ∂xu(0, t) = ∂xu(1, t) = 0.

And we put the initial conditions

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x).

We want to consider the case of a beam with discontinuous materials, such that A and R are of
Heaviside type. For example A(x) = EI1 + H(x − x0)(EI2 − EI1), for some x0 ∈ (0, 1) that is the
point of discontinuity. The modulus of elasticity of the material E is constant for the whole beam and
I1 and I2 are the second moments of area of the left and right part respectively. For R we consider
R(x) = R1 +H(x− x0)(R2 −R1), where R1, R2 are the line densities of the beam parts.

We want to discuss distributional forces P (t) ∈ D′([0, T ]) and g1(x, t) ∈ D′([0, 1]× [0, T ]) to allow for
forces like P (t) = P0 + P1δ(t− t0) and g1(x, t) = F (t)δ(x− x1).

Standard theory of PDE’s handle the case where the coeffient of ∂2
t is constant. Therefore we formally

apply the change of variables t 7→
√
R(x)t to (3.1) which gives

∂2
x

(
A(x)∂2

xu(x,
√
R(x)t)

)
+ P (

√
R(x)t)∂2

xu(x,
√
R(x)t) +R(x)

∂2
t u(x,

√
R(x)t)√

R(x)
2 = g(x,

√
R(x)t).

This simplifies to the equation

∂2
x

(
c(x)∂2

xu
)

+ b(x, t)∂2
xu+ ∂2

t u = g(x, t), (3.2)

with the notation c(x) = A(x), b(x, t) = P (
√
R(x)t), g(x, t) = g1(x,

√
R(x)t) and the same name for

u. We will further focus our analysis on the transformed equation (3.2) under the assumption that the
change of variables t 7→

√
R(x)t is well-defined. We start with a weak solution for L∞ coefficients, which

we will apply when solving regularisations of the Euler-Bernoulli equation with distributional coefficients.

3.2 Weak solution to the Euler-Bernoulli equation with
L∞ coefficients

The existence and uniqueness of a very weak solution to the Euler-Bernoulli problem has been given in
[21] by Oparnica and Hörmann. They adapted abstract variational results for a time dependent weak
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formulation such that it can be applied to the case of the Euler-Bernoulli equation. A general theory for
time-dependent weak formulations can be found in [12, chapter XVIII]. We specifically refer to chapter
XVIII §5 p. 552 about evolution problems of second order in time. In what follows, we follow the ap-
proach of Sections 1.3 and 2 of [21]. First is a theorem for an abstract formulation. Then it is applied to
the Euler-Bernoulli equation in Theorem 3.2.2.

Let V,H be two complex, seperable Hilbert 1 spaces, where V is densely embedded into H. Denote
the norm in V by | · | and in H by || · ||. Thus if V ∗ is the anti-dual2 of V , then V ⊂ H ⊂ V ∗. Let
a(t, ., .), a0(t, ., .), and a1(t, ., .), t ∈ [0, T ], be families of continuous sequilinear3 forms on V with

a(t, u, v) = a0(t, u, v) + a1(t, u, v), ∀u, v ∈ V,

such that a0 and a1 satisfy

(i) for all u, v ∈ V : t :7→ a0(t, u, v) is continuously differentiable [0, T ]→ C,

(ii) a0 is Hermitian, i.e. a0(t, u, v) = a0(t, v, u) for all u, v ∈ V ,

(iii) there exist real constants λ and α > 0 such that

a0(t, u, u) ≥ α|u|2 − λ||u||2, ∀u ∈ V,∀t ∈ [0, T ],

(iv) for all u, v ∈ V : t 7→ a1(t, u, v) is continuous in [0, T ]→ C,

(v) there is C1 ≥ 0 such that for all t ∈ [0, T ] and u, v ∈ V : |a1(t, u, v)| ≤ C1|u|||v||.

Theorem 3.2.1. Let a(t, ., .) satisfy conditions (i) − (v). Let u0 ∈ V, u1 ∈ H, and f ∈ L2((0, T ), H).
Then there exists a unique solution u ∈ L2((0, T ), V ) satisfying the regularity conditions

u′ = ∂tu ∈ L2((0, T ), V ), and u′′ = ∂2
t ∈ L2((0, T ), V ′),

and solving the abstract initial problem

〈u′′(t), v〉+ a(t, u(t), v) = 〈f(t), v〉, ∀v ∈ V,∀t ∈ (0, T ), (3.3)

u(0) = u0, u′(0) = u1. (3.4)

Additionally, we have the energy estimate

|u(t)|2 + ||u′(t)||2 ≤

(
DT |u0|2 + ||u1||+

∫ t

0

||f(τ)||2dτ

)
· exp(tFT ), ∀t ∈ [0, T ],

where the constants DT and FT are given by

DT = (C + λ(1 + T ))/min(1, α) and FT = max(C0 + C1, C1 + T + 2)/min(1, α).

We describe how this abstract formulation applies to the clamped Euler-Bernoulli beam equation.

Let H = L2((0, 1)) and V = H2
0 ((0, 1)). We write the L2((0, 1)) inner product as 〈u, v〉 =

∫ 1

0
u(x)v(x)dx.

The anti-dual of V is equal to its dual V ′ = H−2((0, 1)). We define the sequilinear form a = a0 + a1 on
V × V by

a0(t, u, v) = 〈∂2
xu, ∂

2
xv〉, a1(t, u, v) = 〈b(t)∂2

xu, v〉, u, v ∈ V.

It then remains to specify sufficient conditions on the coefficients b and c and the righthandside g such
that Theorem 3.2.1 is applicable. From [21, Theorem 2.2], we have the weak solution.

Theorem 3.2.2. Assume b ∈ C([0, T ], L∞((0, 1)) and c ∈ L∞((0, 1)) with

0 < c0 ≤ c(x) ≤ c1, for x ∈ (0, 1),

1A Hilbert space is a normed space where the norm is induced by an inner product. A topological space is separable if
it has a countable, dense subset.

2The anti-dual V ∗ is the space of anti-linear functionals f on V . The functional f is anti-linear if f(λv) = λ̄f(v).
3A map of two arguments is sequilinear if it is linear in the first argument and anti-linear in the second
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where c0, c1 ∈ R are constants. Suppose f1 ∈ H2
0 ((0, 1)), f2 ∈ L2((0, 1)) and g ∈ L2((0, T ), L2((0, 1))),

then there exists a unique u ∈ L2((0, T ), H2
0 ((0, 1))) that solves the initial value problem

〈∂2
t u, v〉+ 〈c∂2

xu, ∂
2
xv〉+ 〈b(t)∂2

xu, v〉 = 〈g(t), v〉, ∀v ∈ H2
0 ((0, 1)), t ∈ (0, T ), (3.5)

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x). (3.6)

Additionally we have
u ∈ H1((0, T ), H2

0 ((0, 1))) ∩H2((0, T ), H−2((0, 1))),

and for any t ∈ [0, T ] the energy estimate

||u(t)||2H2((0,1)) + ||∂tu(t)||2L2((0,1)) ≤

(
DT ||f1||H2((0,1)) + ||f2||L2((0,1)) +

∫ t

0

||g(τ)||2L2((0,1))dτ

)
exp(tFT ),

(3.7)
holds, where

DT = (c1 + C1/2c0(1 + T ))/min(
c0
2
, 1), and FT = (||b||L∞(XT ) + T + 2)/min(

c0
2
, 1).

The constant C1/2 is such that

||v||2H1((0,1)) ≤
1

2
||v||2H2((0,1)) + C1/2||v||L2((0,1)),

for all v ∈ H2
0 ((0, 1)).

Write the time-space domain (0, T )× (0, 1) as XT . In [21], the authors continue with a solution of the
clamped Euler-Bernoulli equation the Colombeau algebra GH∞(XT ). Essentially they consider H∞(XT )
moderate nets for the coefficients and the initial conditions. In our very weak solution we consider
distributional coefficients and fixed initial conditions.

3.3 Very weak solution to the Euler-Bernoulli equation

Given the initial values f1 ∈ H2
0 ((0, 1)), f2 ∈ L2((0, 1)) and the coefficients b ∈ D′(XT ), c ∈ D′((0, 1))

and g ∈ D′(XT ), then we consider the initial-boundary value problem

∂2
x

(
c(x)∂2

xu
)

+ b(x, t)∂2
xu+ ∂2

t u = g(x, t), (EB)

u(0, t) = u(1, t) = 0, ∂xu(0, t) = ∂xu(1, t) = 0, (bc)

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x). (ic)

We define what we mean by a very weak solution.

Definition 3.3.1 (Very weak solution). A net (uε)ε∈(0,1] is a very weak solution to (EB), (bc), (ic) if

� there exist nets (bε)ε∈(0,1] regularisation of b, (cε)ε∈(0,1] regularisation of c and (gε)ε∈(0,1] regulari-
sation of g such that,

� for each ε ∈ (0, 1] the function uε is a weak solution (3.5), (3.6), to the regularised problem

∂2
x

(
cε(x)∂2

xuε

)
+ bε(x, t)∂

2
xuε + ∂2

t uε = gε(x, t), (EBε)

uε(0, t) = uε(1, t) = 0, ∂xuε(0, t) = ∂xuε(1, t) = 0, (bcε)

uε(x, 0) = f1(x), ∂tuε(x, 0) = f2(x). (icε)

� The net (uε)ε∈(0,1] is L2(XT )-moderate.

The choice of regularisations for the coefficients b and c and righthandside c is still unspecified. For
all distributions there exist C∞-moderate regularisations through convolution with model delta nets, see
Theorem 2.9.3. We want to consider more general classes of regularisations that are sufficient to guarantee
that the solution net (uε)ε∈(0,1] is L2(XT )-moderate. We prove existence of a very weak solution first on
the level of nets.
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Theorem 3.3.2. Let f1 ∈ H2
0 ((0, 1)), f2 ∈ L2((0, 1)). Let (bε)ε∈(0,1] be an L∞(XT )-log type moderate

net in C([0, T ], L∞((0, 1)). Let (gε)ε∈(0,1] be an L2((0, T ), L2((0, 1))-moderate net. and let (cε)ε∈(0,1] ⊂
L∞((0, 1)) be a net which satisfies the bounds

0 < c0 ≤ cε(x) ≤ c1, for all x ∈ [0, 1],

for positive constants c0, c1. Then for each ε ∈ (0, 1] there is a weak solution uε to the problem (EBε),
(bcε), (icε). The net of solutions (uε)ε∈(0,1] is L2-moderate.

Proof. For fixed ε ∈ (0, 1] a weak solution to the problem (EBε), (bcε), (icε) is the weak formulation
(3.5), (3.6). Additionally all conditions of Theorem 3.2.2 are verbatim fulfilled. For every ε ∈ (0, 1] we
this find a unique

uε ∈ H1((0, T ), H2
0 ((0, T ))) ∩H2((0, T ), H−2((0, 1))),

which is a weak solution to the problem (EBε), (bcε), (icε). We claim that the net of solutions (uε)ε∈(0,1])

is L2(XT )-moderate. We use the energy estimate (3.7) of Theorem 3.2.2. For any t ∈ [0, T ] it holds

||uε(t)||2L2((0,1)) ≤ ||u(t)||2H2((0,1)) + ||∂tu(t)||2L2((0,1)),

≤

(
Dε
T ||f1||H2((0,1)) + ||f2||L2((0,1)) +

∫ t

0

||g(τ)||2L2((0,1))dτ

)
exp(tF εT ).

Using the moderateness of (bε)ε∈(0,1] and (cε)ε∈(0,1], we find

Dε
T ≤ C||cε||L∞((0,1))) ≤ C ′, and F εT ≤ K||b||L∞((0,T )×(0,1))) ≤ K ′ log(

1

ε
),

for constants C,C ′,K,K ′ > 0. Thus

||uε(t)||2L2((0,1)) ≤

(
C ′ +

∫ t

0

||gε(τ)||2L2((0,1))dτ

)
exp(tK ′ log(

1

ε
)),

=

(
C ′ +

∫ t

0

||gε(τ)||2L2((0,1))dτ

)
ε−tK

′
.

This bound is monotonically increasing in t and thus reaches its maximum at t = T . Thus for all t ∈ [0, T ]
it holds

||uε(t)||2L2((0,1)) ≤

(
C ′ +

∫ T

0

||gε(τ)||2L2((0,1))dτ

)
ε−TK

′

=
(
C ′ + ||gε||L2((0,T ),L2((0,1))

)
ε−TK

′
.

By L2((0, 1), L2((0, 1))-moderateness of (gε)ε∈(0,1] we have the bound

||gε||L2((0,T ),L2((0,1)) ≤ Cgε−Ng ,

for some constants Cg, Ng ≥ 0. So next we estimate

||uε(t)||2L2((0,1)) ≤
(
C ′ + Cgε

−Ng
)
ε−TK

′
,

≤ C ′′ε−K
′′
,

(3.8)

for the constants C ′′ = max(C ′, Cg) and K ′′ = max(Ng, TK
′). Now integrating from 0 to T gives

||uε||2L2((0,T ),L2((0,1))) =

∫ T

0

||uε(τ)||2L2((0,1))dτ,

≤
∫ T

0

C ′′ε−K
′′
dτ,

= TC ′′ε−K
′′
.
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This proves L2((0, T ), L2((0, 1)))-moderateness of (uε)ε∈(0,1]. Since

uε ∈ H1((0, T ), H2
0 ((0, 1))) ⊂ L2(XT ),

we have equality of the norms

||uε||2L2(XT ) = ||uε||2L2((0,T ),L2((0,1))) ≤ (TC ′′)ε−K
′′
.

Therefore the net of weak solutions (uε)ε∈(0,1] is L2(XT )-moderate.

Remark 3.3.3. In the literature, see e.g. [2], a time dependent formulation of moderateness is used. For
our problem we could similarly have defined the following moderateness requirement. For each t ∈ [0, T ]
the net (uε(t))ε∈(0,1] is L2((0, 1))-moderate. Then existence would follow directly from (3.8). Moreover
this bound is uniform for t ∈ [0, T ]. By analogy of the Colombeau solution of the Euler-Bernoulli equation
in [21], we choose to consider L2(XT )-moderateness of (uε)ε∈(0,1] instead.

Now we prove the existence of a very weak solution by constructing regularisations of the distributional
coefficients that suffice the requirements of Theorem 3.3.2.

Theorem 3.3.4 (Existence). Let the initial values f1 ∈ H2
0 ((0, 1)) and f2 ∈ L2((0, 1)). Let the righthand-

side and g ∈ D′(XT ). Let the coefficients b ∈ D′(XT ) and let c ∈ L∞((0, 1)) such that

0 < c0 ≤ c(x) ≤ c1, for all x ∈ [0, 1],

for positive constants c0, c1. Then there exists a very weak solution to (EB), (bc), (ic).

Proof. Let (ϕε)ε∈(0,1] ⊂ D(R2) be a model delta net. By Theorem 2.9.3 we find the C∞(XT )-moderate
regularisations

bε = b ∗ ϕε|XT , gε = g ∗ ϕε|XT ,

It follows directly that the net (bε)ε∈(0,1] is in C([0, T ], L∞((0, 1))) and is L∞(XT )-moderate. Similarly
(gε)ε∈(0,1] is L2(XT )-moderate. For c we consider the constant net (cε)ε∈(0,1] = (c)ε∈(0,1]. These regu-
larisations satisfy the conditions of Theorem 3.3.2. Thus we find and L2(XT )-moderate net (uε)ε∈(0,1] of
weak solutions to (EBε), (bcε), (icε). We conclude that (uε)ε∈(0,1] is a very weak solution to (EB), (bc),
(ic).

Remark 3.3.5. Alternatively one can also consider regularisations of c. Let (ψε)ε∈(0,1] ⊂ D(R) be a
positive model delta net such that ψε(−x) = ψε(x). Then the regularisation (cε)ε∈(0,1] = (c∗ψε|(0,1))ε∈(0,1]

is smooth and satisfies the bounds

0 <
c0
2
≤ cε(x) ≤ c1, for all x ∈ [0, 1].

Now we define uniqueness of the very weak solution.

Definition 3.3.6 (Uniqueness). Let the initial values f1 ∈ H2
0 ((0, 1)), f2 ∈ L2((0, 1)) and the coefficients

b ∈ D′(XT ), c ∈ D′((0, 1)) and g ∈ D′(XT ) be given. Consider the regularisations

� (bε)ε∈(0,1] and (b̃ε)ε∈(0,1] regularisations of b in C([0, T ], L∞((0, 1))) and L∞(XT )-moderate of log-

type, such that (bε − b̃ε)ε∈(0,1] is L∞(XT )-negligible,

� (cε)ε∈(0,1] and (c̃ε)ε∈(0,1] regularisations of c that satisfy the bounds

0 < c0 ≤ cε(x) ≤ c1, 0 < c̃0 ≤ c̃ε(x) ≤ c̃1, for almost all x ∈ [0, 1],

for positive constants c1, c2, c̃1, c̃2, such that (cε − c̃ε)ε∈(0,1] is W 2,∞((0, 1))-negligible,

� (gε)ε∈(0,1] and (g̃ε)ε∈(0,1] regularisations of g, such that (gε − g̃ε)ε∈(0,1] is L2((0, T ), L2((0, 1))-
negligible,

Now let (uε)ε∈(0,1] and (ũε)ε∈(0,1] be very weak solutions to (EB), (bc), (ic), by means of the corresponding
regularisations of the coefficients. We say that the problem (EB), (bc), (ic) has a unique very weak solution
if for all nets L2((0, T ), H4((0, 1))-moderate nets (uε)ε∈(0,1] and (ũε)ε∈(0,1] we have that (uε − ũε)ε∈(0,1]

is L2(XT )-negligible.
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Remark 3.3.7. This definition thus only considers uniqueness for L2((0, T ), H4((0, 1))-moderate solution
(uε)ε∈(0,1]. We would want to strenghten this result by giving minimal conditions on the coefficient reg-
ularisations to guarantee this property. Then one can consider uniqueness for the solution nets produces
by the sufficiently regular coefficients.

We prove uniqueness in two parts. In Lemma 3.3.8 we apply energy estimate (3.7) in the case of a
negligible coefficient (gε)ε∈(0,1]. Then in Theorem 3.3.9 we reduce uniqueness to the case of Lemma 3.3.8.

Lemma 3.3.8. Let (bε)ε∈(0,1] ⊂ C([0, T ], L∞((0, 1)) be an L∞(XT )-moderate net of log-type and let
(cε)ε∈(0,1] be an L∞((0, 1))-moderate net satisfying the bounds

0 < c0 ≤ cε(x) ≤ c1, c0, c1 ∈ R+,

for almost every x ∈ [0, 1], ε ∈ (0, 1]. Assume that the net (gε)ε∈(0,1] is L2((0, T ), L2((0, 1)))-negligible.
Let (uε)ε∈(0,1] ⊂ L2((0, T ), H2

0 ((0, 1))) be a solution net satisfying (EBε), (bcε) and initial conditions

uε(x, 0) = 0, ∂tuε(x, 0) = 0, x ∈ [0, 1].

Then (uε)ε∈(0,1] is L2(XT )-negligible.

Proof. The coefficients bε, cε and gε are such that for fixed ε the conditions of Theorem 3.2.2 are satisfied
and (uε)ε∈(0,1] is the unique net of weak solutions. Energy estimate (3.7) thus applies. For the constant
F εT we can bound by L∞(XT )-moderateness of log-type of (bε)ε∈(0,1]

F εT =
(
||b||L∞(XT ) + T + 2

)/
min

(
c0
2
, 1

)
≤ C log

1

ε
,

for some C ≥ 0. We write explicitly the L2((0, T ), L2((0, 1))-negligibility of (gε)ε∈(0,1]

||gε||L2((0,T ),L2((0,1))) ≤Mqε
q, for all q > 0.

Taking into account ||f1||H2((0,1)) = 0 and ||f2||L2((0,1)) = 0 gives

||uε||2L2(XT ) ≤
∫ T

0

∫ t

0

||gε(τ)||2L2((0,1)) exp (tF εT ) dτdt

≤ exp (TF εT )

∫ T

0

∫ t

0

||gε(τ)||2L2((0,1)dτdt

≤ exp

(
TC log

1

ε

)
||gε||L2((0,T ),L2((0,1)))

≤Mqε
−TC+q,

for any q > 0. We conclude that (uε)ε∈(0,1] is L2(XT )-negligible.

Theorem 3.3.9. Let f1 ∈ H2
0 ((0, 1)), f2 ∈ L2((0, 1)), b ∈ D′(XT ), g ∈ D′(XT ) and c ∈ L∞((0, 1)).

Suppose c satisfies the bounds

0 < c0 ≤ cε(x) ≤ c1, for all x ∈ [0, 1],

for some positive constants c0, c1. Then the problem (EB), (bc), (ic) has a unique very weak solution in
the sense of Definition 3.3.6.

Proof. Take any solution nets (uε)ε∈(0,1] and (ũε)ε∈(0,1] and any coefficient nets (bε)ε∈(0,1], (b̃ε)ε∈(0,1],
(cε)ε∈(0,1], (c̃ε)ε∈(0,1], (gε)ε∈(0,1] and(g̃ε)ε∈(0,1] that satisfy the conditions from 3.3.6. We need to prove
that (uε − ũε)ε∈(0,1] is L2(XT )-negligible. We reduce this theorem to Lemma 3.3.8 for the net
(uε − ũε)ε∈(0,1] and appropriate coefficents. We have the governing equations

∂2
x

(
cε(x)∂2

xuε

)
+ bε(x, t)∂

2
xuε + ∂2

t uε = gε(x, t), (EBε)

∂2
x

(
c̃ε(x)∂2

xũε

)
+ b̃ε(x, t)∂

2
xũε + ∂2

t ũε = g̃ε(x, t), (ẼBε)
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Substracting equation (ẼBε) from (EBε) and rearranging gives

∂2
x

(
cε∂

2
x(uε − ũε)

)
+ bε∂

2
x(uε − ũε) + ∂2

t (uε − ũε) = (gε − g̃ε) + (b̃ε − bε)∂2
xũε + ∂2

x((c̃ε − cε)∂2
xũε).

(3.9)

We write the righthandside of (3.9) as hε(x, t). The net (hε)ε∈(0,1] is L2((0, T ), L2((0, 1)))-negligible since
each of its terms is. We verify that. The difference (gε − g̃ε)ε∈(0,1] is negligible by assumption. The term

(b̃ε − bε)∂2
xũε is a product of an L∞(XT ) function with an L2(XT ). Then the Holder’s inequality 1.4

gives the bound
||(b̃ε − bε)∂2

xũε||L2(XT ) ≤ ||(b̃ε − bε)||L∞(XT ||∂
2
xũε||L2(XT ).

The product of the negligible net (||(b̃ε−bε)||L∞(XT ))ε∈(0,1] and the moderate net (||∂2
xũε||L2)ε∈(0,1] is again

negligible. For the third term ∂2
x

(
(c̃ε − cε)∂2

xũε
)
, it is sufficient that (c̃ε−cε)∂2

xũε is L2((0, T ), H2((0, 1)))-
negligible. Since

(c̃ε − cε)ε∈(0,1] ⊂ C∞([0, T ],W 2,∞((0, 1))),

and
(∂2
xũε)ε∈(0,1] ⊂ L2((0, T ), H2((0, 1))),

the Sobolev product (c̃ε − cε)∂2
xũε, is again in L2((0, T ), H2((0, 1))). With the the Leibniz rule for the

Sobolev product and then applying the triangle inequality and Holder’s inequality we get

||∂2
x

(
(c̃ε − cε)∂2

xũε

)
||L2(XT ) = ||∂2

x (c̃ε − cε) ∂2
xũε + ∂x (c̃ε − cε) ∂3

xũε + (c̃ε − cε)∂4
xũε||L2(XT ) (3.10)

≤ ||∂2
x(c̃ε − cε)||L∞(XT )||∂2

xũε||L2(XT ) + ||∂x(c̃ε − cε)||L∞(XT ) (3.11)

||∂3
xũε||L2(XT ) + ||c̃ε − cε||L∞(XT )||∂4

xũε||L2(XT ) (3.12)

≤ 3||c̃ε − cε||W 2,∞ ||∂2
xũ||L2((0,T ),H2((0,1)) (3.13)

= 3||c̃ε − cε||W 2,∞ ||ũ||L2((0,T ),H4((0,1)). (3.14)

Since (cε)ε∈(0,1] is W 2,∞-moderate and (ũε)ε∈(0,1] is L2((0, T ), H4((0, 1))-moderate the bound (3.14) is
negligible. Therefore the term ∂2

x((c̃ε − cε)∂
2
xũε) is L2(XT )-negligible. We conclude that (hε)ε∈(0,1]

is L2((0, T ), L2((0, 1))-negligible. Now uε − ũε satisfies the boundary conditions (bc) and the initial
conditions

(uε − ũε)(x, 0) = 0, and ∂t(uε − ũε)(x, 0) = 0.

Together with (3.9), the conditions of Theorem 3.3.8 are fulfilled for the solution net (uε− ũε)ε∈(0,1] with
coefficients cε and bε and the righthandside hε. Therefore (uε − ũε)ε∈(0,1] is L2(XT )-negligible.

The question of consistency of the very weak solution was not yet considered. Next we analyse
numerically the solutions to the Euler-Bernoulli equation with distributional forces.

3.4 Numerical analysis

In this section we study the solutions of regularisations of the Euler-Bernoulli equation with distributional
forces. We will solve the regularised equation numerically for small ε. We use the finite element method
(FEM) introduced in Section 1.5. First we construct the finite element solution of the Euler-Bernoulli
equation. Then we analyse the numerical results for several examples of distributional coefficients.

3.4.1 Finite element solution

We construct the Galerkin approximation (1.19) of the variational problem (3.5) with boundary conditions
(3.6). We look for a solution in the space

V =
{
f ∈ H2((0, 1)) : f(0) = f(1) = 0, ∂xf(0) = ∂xf(1) = 0

}
.

To implement boundary conditions we choose the Galerkin approximation Vh = V ∩ V 1,3
h to implement

boundary conditions. That is

Vh =
{
u ∈ V 1,3

h : u(0) = u(1) = 0, u′(0) = u′(1) = 0
}

=


n−1∑
j=1

αjϕj +

n−1∑
j=1

βjψj , αj , βj ∈ R

 .
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where the basis functions ϕi, ψi of V 1,3
h are given by

ϕ0(x) =


1

h2
(x− h)2(1 +

2x

h
), if 0 ≤ x ≤ h,

0, otherwise.

ϕn(x) =


1

h2
(x− 1 + h)2(1 +

2

h
(1− x)), if (n− 1)h ≤ x ≤ 1,

0, otherwise.

For j = 1, . . . , n

ϕj(x) =


2

h2
(x− (j − 1)h)2(1 +

2

h
(jh− x), if (j − 1)h ≤ x ≤ jh,

2

h2
(x− (j + 1)h)2(1− 2

h
(jh− x)), if jh ≤ x ≤ (j + 1)h,

0, otherwise,

ψ0(x) =


1

h2
(x− h)2x, if 0 ≤ x ≤ h,

0, otherwise,

ψn(x) =


1

h2
(x− 1 + h)2(x− 1), if (n− 1)h ≤ x ≤ 1,

0, otherwise.

For j = 1, . . . , n

ψj(x) =


1

h2
(x− (j − 1)h)2(x− jh), if (j − 1)h ≤ x ≤ jh,

1

h2
(x− (j + 1)h)2(x− jh), if jh ≤ x ≤ (j + 1)h,

0, otherwise.

Figure 3.1: Basis functions of V 1,3
h on [0, 1], n = 5, h = 0.2. Left to right: ϕ0, . . . , ϕ5
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Figure 3.2: Basis functions of V 1,3
h on [0, 1], n = 10, h = 0.2. Left to right: ψ0, . . . , ψ5

The basis functions have the following properties. For j = 0, . . . , n,

suppϕj = suppψj = [(j − 1)h, (j + 1)h] ∩ [0, 1],

ϕj(jh) = 1,

ψ′j(jh) = 1.

Moreover, the second order weak derivatives ϕ′′(x) and ψ′′(x) are piecewise linear and thus in L2((0, 1)).
Thus V 1,3

h ⊂ H2((0, 1)) for any n ∈ N. A function uh ∈ L2((0, T ), Vh) can be written in terms of basis
functions

uh(x, t) =

n−1∑
j=1

αj(t)ϕj(x) +

n−1∑
j=1

βj(t)ψj(x), (3.15)

for time dependent coefficients αj(t), βj(t) ∈ L2((0, T )), j = 1, . . . , n − 1. For fixed t, the finite element
solution uh then satisfies∫ 1

0

∂2
t uh(x, t)v(x)dx+

∫ 1

0

c(x)∂2
xuh(x, t)∂2

xv(x)dx+

∫ 1

0

b(x, t)∂2
xuh(x, t)v(x)dx =

∫ 1

0

g(x, t)v(x)dx,

(3.16)
for all v ∈ Vh. By taking linear combinations, one sees that it is sufficient that (3.16) is satisfied only for
basis functions v = ϕi, ψi, i = 1, . . . , n− 1. We will write the system of linear equations (3.16) in matrix
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form.

ai,j =



∫ 1

0
∂2
xϕj(x)∂2

xϕi(x)dx, if 1 ≤ i, j ≤ n− 1∫ 1

0
∂2
xψj−(n−1)(x)∂2

xϕi(x)dx, if 1 ≤ i ≤ n− 1, 1 ≤ j − (n− 1) ≤ n− 1,∫ 1

0
∂2
xϕj(x)∂2

xψi−(n−1)(x)dx, if 1 ≤ i− (n− 1) ≤ n− 1, 1 ≤ j ≤ n− 1,∫ 1

0
∂2
xψj−(n−1)(x)∂2

xψi−(n−1)(x)dx, if 1 ≤ k − (n− 1) ≤ n− 1, k = i, j.

(3.17)

ci,j =



∫ 1

0
c(x)∂2

xϕj(x)∂2
xϕi(x)dx, if 1 ≤ i, j ≤ n− 1∫ 1

0
c(x)∂2

xψj−(n−1)(x)∂2
xϕi(x)dx, if 1 ≤ i ≤ n− 1, 1 ≤ j − (n− 1) ≤ n− 1,∫ 1

0
c(x)∂2

xϕj(x)∂2
xψi−(n−1)(x)dx, if 1 ≤ i− (n− 1) ≤ n− 1, 1 ≤ j ≤ n− 1,∫ 1

0
c(x)∂2

xψj−(n−1)(x)∂2
xψi−(n−1)(x)dx, if 1 ≤ k − (n− 1) ≤ n− 1, k = i, j.

(3.18)

bi,j(t) =



∫ 1

0
b(x, t)∂2

xϕj(x)ϕi(x)dx, if 1 ≤ i, j ≤ n− 1∫ 1

0
b(x, t)∂2

xψj−(n−1)(x)ϕi(x)dx, if 1 ≤ i ≤ n− 1, 1 ≤ j − (n− 1) ≤ n− 1,∫ 1

0
b(x, t)∂2

xϕj(x)ψi−(n−1)(x)dx, if 1 ≤ i− (n− 1) ≤ n− 1, 1 ≤ j ≤ n− 1,∫ 1

0
b(x, t)∂2

xψj−(n−1)(x)ψi−(n−1)(x)dx, if 1 ≤ k − (n− 1) ≤ n− 1, k = i, j.

(3.19)

gi(t) =

{∫ 1

0
g(x, t)ϕi(x)dx, if 1 ≤ i ≤ n− 1∫ 1

0
g(x, t)ψi−(n−1)(x)dx, if 1 ≤ i− (n− 1) ≤ n− 1.

(3.20)

Let A, B(t) and C be the matrices of dimension (2n − 2) × (2n − 2) with elements ai,j , bi,j(t) and ci,j
respectively and let G(t) be the column vector of dimension 2n− 2 with elements gi(t).

It should be noted that in a numerical setting, the integrals in (3.17), (3.18), (3.19) and (3.20) might
need to be numerically computed or approximated. Especially the coefficients ci,j turned out to be hard
to approximate numerically exactly. Define the coefficient vector

U(t) =
{
α1, . . . αn−1, β1, . . . , βn−1

}T
.

Then equation (3.16) reads
A∂2

tU(t) + (B(t) + C)U(t) = G(t). (3.21)

To solve the system of differential equations (3.21), we employ the finite difference method. Split the time

interval [0, T ] into m equal parts with midpoints tk = kht, k = 0, . . .m, ht =
1

m
. We consider equation

(3.21) only in the points t = tk. Next we approximate the second order time derivative by the backward
difference operator

∂2
tU(tk) ≈ U(tk−2)− 2U(tk−1) + U(tk)

h2
t

, k = 0, . . . ,m.

Then (3.21) becomes

A
U(tk−2)− 2U(tk−1) + U(tk)

h2
t

+ (B(tk) + C)U(tk) = G(tk), k = 0, . . . ,m.

This gives an implicit scheme for the coefficients

(A+ h2
t (B(tk) + C))U(tk) = h2

tG(tk)−A(U(tk−2)− 2U(tk−1)), k = 0, . . . ,m. (3.22)

One can solve for U(tk) by multiplying (3.22) by the inverse matrix of (A + h2
t (B(tk) + C)). From the

coefficients U(tk) we construct the numerical solution by by equation (3.15).
By itself the central difference operator

∂2
tU(tk−1) ≈ U(tk−1)− 2U(tk−1) + U(tk)

h2
t

, k = 0, . . . ,m,

is a better approximating for the second order time derivative than the backward difference operator.
This however makes an explicit scheme, which is less numerically stable than the implicit scheme created
by the backward difference operator.

Next we implement the initial conditions

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x).
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We approximate the intial state to uh(x, 0) by means of the interpolation operator Πh. We put

αj(t0) = f1(jh), βj(t0) = ∂xf1(jh), j = 1, . . . , n− 1,

then

Πhf1(x) =

n−1∑
j=1

αj(t0)ϕj(x) +

n−1∑
j=1

βj(t0)ψj(x).

Given that f1 is sufficiently smooth, Πhf1 will be a good approximation of f1. For the initial velocity,
we approximate

Πhf2(x) ≈ f2(x) ≈ u(x, t0)− u(x, t−1)

ht
≈ Πhu(x, 0)− u(x, t−1)

ht
,

therefore we set
U(t−1) = Πhf1(x) + htΠhf2(x).

3.4.2 Regularisation

We describe the numerical procedure for the regularisation of the coefficients. We consider the standard
mollifier in Rn

ϕ(x) =

A exp

(
1

1− |x|2

)
, if |x| < 1,

0, otherwise.
(3.23)

The constant A is chosen such that ∫
Rn
ϕ(x)dx = 1.

Then we have the model delta net ϕε(x) =
1

εn
ϕ

(
x

ε

)
. For our experiments, we will fix ε to be a small

number. So fix one corresponding ϕε. Write fε for f ∗ ϕε. If f ∈ D′(XT ), then fε ∈ C∞(Rn) and
supp fε ⊆ XT + ε. This has the consequence that fε is small at the the boundary ∂XT whenever f is
bounded around ∂XT . This could lead to instability of the numerical solutions. We describe an improved
regularisation procedure. Suppose that f has uniquely determined values f(x) on the boundary ∂XT .
We extend the domain of f to Rn. For each x ∈ Rn, define xp as the closest point to x in XT . We can
then define an extension, constant from the boundary

f̄(x) =

{
f(x), x ∈ XT ,

f(xp), x /∈ XT .

Now we consider the regularisation f̄ε. Then f̄ε will be approximately the value near the boundary of f .
Suppose that we consider a constant bending stiffness c(x) = 1 on [0, 1]. The naive regularisation we

mentioned is given in figure (3.3), while the regularisation of the extension is c̄ε(x) = 1, independent of
ε. It is clear that this procedure results in more smooth functions at the boundary.

Figure 3.3: The regularisation cε(x) of c(x) = 1 for ε = 0.05.
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3.4.3 Numerical experiments

We want to use numerical analysis to gain insight into the Euler-Bernoulli beam with discontinuous
cross-section and singular forces. Our approach is through regularisation of the singular forces. We use
the finite element method of Section 3.4.1 to numerically approximate the solutions.

Constant coefficients

We start with a basic case to see what can be expected from a solution to the Euler-Bernoulli beam
equation. We consider one of the simplest non-trivial cases of the Euler-Bernoulli equation.

f1(x) = 0,

f2(x) = 0,

b(x, t) = 1,

g(x, t) = 1,

c(x) = 1.

(3.24)

The boundary value problem we solve is then

∂2
t u(x, t) + ∂4

xu(x, t) + ∂2
xu(x, t) = 1,

u(x, 0) = 0, ∂tu(x, t) = 0.
(3.25)

We use the finite element method of Section 3.4.1 to numerically approximate the solution u(x, t). We
visualise u(x, t) in a 3d-plot. Figure 3.4 presents the solution to (3.25).

Figure 3.4: The solution u(x, t) to (3.25), the Euler-Bernoulli equation with constant coefficients. The
beam vibrates and converges to an equilibrium state. Numerical settings: T = 1, n = 200, m = 200.

The solution u(x, t) can be interpreted as the beam vibrating around and converging to an equilibrium
state. The vibration can be seen more easily if we track a single point in time, see Figure 3.5.
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Figure 3.5: The function u(0.5, t), where u(x, t) is solution to (3.25), the Euler-Bernoulli equation with
constant coefficients. The point on the beam follows the trajectory of a damped vibration. Numerical
settings: T = 1, n = 200, m = 200.

Remark 3.4.1. We mention a small numerical anomaly in our simulations which can be seen in Figure
3.4 for x ≈ 1. This numerical error exists in all the results we present in this section. The anomaly does
not significantly impact the whole numerical solution of the Euler-Bernoulli beam. The anomaly is most
likely the result of the accumulation of numerical errors at a matrix inversion.

Segmented beam

We want to consider a beam with discontinuous cross-section. The bending stiffness c is then of Heaviside
type

c(x) = EI1 + (EI2 − EI1)H(x− a), a ∈ (0, 1), E, I1, I2 ∈ R+. (3.26)

Suppose b and g satisfy (3.24) and where c is given by (3.26) with a = 0.5, EI1 = 1 and EI2 = 5. The
coresponding regularised boundary value problem is

∂2
t u(x, t) + ∂2

x

(
1 + 4H(x− 0.5)∂2

xu(x, t)
)

+ ∂2
xu(x, t) = 1,

u(x, 0) = 0, ∂tu(x, t) = 0.
(3.27)

The solution u(x, t) to (3.27) is presented in Figure 3.6. Again the beam vibrates and converges to an
equilibrium. We consider the shape of the equilibrium state further by Figure 3.7 3.7. The physical
interpretation of the bending stiffness c can be seen as follows. The beam part (x ≥ 0.5) with higher
bending stiffness is less bent then the beam part (x ≤ 0.5) with a lower bending stiffness.

Figure 3.6: The solution u(x, t) to (3.27), the Euler-Bernoulli equation with discontinuous cross-section.
The beam vibrates and converges to an equilibrium state. The part of the beam (x ≥ 0.5) with high
bending stiffness c(x) is less bent than the part of the beam (x ≤ 0.5) with lower bending stiffness. The
two beam parts meet at the point of discontinuity Numerical settings: T = 1, n = 200, m = 200.
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Figure 3.7: The function u(x, 1), where u(x, t) is the solution to (3.27), the Euler-Bernoulli equation with
discontinuous cross-section. The plot shows the beam at a time close to the equilibrium state. The part
of the beam (x ≥ 0.5) with high bending stiffness c(x) is less bent than the part of the beam with lower
bending stiffness (x ≤ 0.5). Numerical settings: T = 1, n = 200, m = 200.

Now we investigate the behaviour of regularisation of c(x) of Heaviside type. The regularisation cε of
c is

cε(x) = (c ∗ ϕε)(x),

with ϕε the standard mollifier (3.23). The boundary value problem is

∂2
t u(x, t) + ∂2

x

(
cε(x)∂2

xu(x, t)
)

+ ∂2
xu(x, t) = 1,

u(x, 0) = 0, ∂tu(x, t) = 0.
(3.28)

In Figure 3.8 the numerical solution to (3.28) for ε = 0.2, 0.1, 0.05 is presented. On the left graph, around
the piont x = 0.5 the beam bends more gradually than for the discontinuous case, since cε changes less
abrubtly than c. Therefore the stress force applies more evenly. In the right and bottom graphs, the result
looks more comparable to the situation without regularisation in Figure 3.6. The smoothing happens on
the scale [−ε, ε] and is thus hard to notice. We chose the values for ε such that the width of the finite
element discretisation h = 0.005 (since n = 200) is sufficiently smaller than ε. This guarantees that the
regularisation procedure is not lost to the numerical approximation.
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(a) ε = 0.2 (b) ε = 0.1

(c) ε = 0.05

Figure 3.8: The solution u(x, t) to (3.28) for ε = 0.2, 0.1, 0.05, the regularised Euler-Bernoulli equation
with discontinuous cross-section. Numerical settings: T = 1, n = 200, m = 200.

Point force

We consider a stationary point masss at point x = a modelled by the distributional force g(x, t) =
δ(x−a). Let other coefficients be constant as in (3.24). We analyse the regularisation of the corresponding
boundary value problem. First we regularise g as

gε(x, t) = (δ(y − a) ∗ ϕε(y, τ))(x, t),

=

∫ +∞

−∞
ϕε(x− a, τ)dτ.

(3.29)

with ϕε the standard mollifier (3.23) in R2. We solve the regularised equation

∂2
t u(x, t) + ∂4

xu(x, t) + ∂2
t u(x, t) = gε(x, t),

u(x, 0) = 0, ∂tu(x, 0) = 0.
(3.30)

We choose a = 0.4 so that the assymmetry may reveal more of the behaviour of the point force. For
ε = 0.2, 0.1, 0.05 the solution to (3.30) is plotted in Figure 3.9. Compared to the constant force, Figure
3.4, the point force behaves very similarly. This is due to the bending coefficient ∂2

xc(x)∂2
xu(x, t), which

makes the beam bend as a whole.
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(a) ε = 0.2 (b) ε = 0.1

(c) ε = 0.05

Figure 3.9: The solution u(x, t) to (3.30) for ε = 0.2, 0.10.05, regularised Euler-Bernoulli equation with
point force. Numerical settings T = 1., n = 200, m = 200.

Segmented beam with crack

A crack in the beam at the point x = a is modeled by b(x, t) = b0δ(x− a). This models the fact that the
stress induced by the axial force accumulates at a crack at the position x = a. We consider the regularised
boundary value problem. We construct an L∞ log-type moderate regularisation of b. Convolution of b
by the standard mollfier (3.23) gives similarly to (3.29)

ϕε ∗ b(x, t) = b0

∫ +∞

−∞
ϕε(x− a, τ)dτ =

b0
ε2

∫ +∞

−∞
ϕ((x− a)/ε, τ/ε)dτ =

b0
ε

∫ +∞

−∞
ϕ((x− a)/ε, τ)dτ.

Thus we have the L∞(XT )-moderateness bound

||ϕε ∗ b(x, t)||L∞(XT ) ≤ Cε−N ,

with

C = b0 sup
x∈(0,1)

∫ +∞

−∞
ϕ((x− a)/ε, τ)dτ,

and N = 1. Therefore we can use (2.28) for N = 1. That is

λε =

(
log

1

ε

)−1

and the reparametrised regularisation

bε(x, t) = (ϕλε(ξ, τ) ∗ b(ξ, τ))(x, t) =
b0
λε

∫ +∞

−∞
ϕ((x− a)/λε, τ)dτ,

which is an L∞(XT )-moderate regularisation of log-type of b. The speed of convergence of the regularisa-
tion of b is meaningless if b is the only coeffcient regularised. If corresponding net of solutions (uε)ε∈(0,1]

has a limit u, then any reparametrisation will have the same limit. This why we choose to regularise a
second coeffcient in this example, the segmented beam c(x) = 1 + 4H(x− 0.5) in this example. Setting
g = 1 constant, we thus consider the following regularised problem.

∂2
t u(x, t) + ∂2

x(cε(x)∂2
xu(x, t)) + bε(x, t)∂

2
xu(x, t) = 1,

u(x, 0) = 0, ∂tu(x, t) = 0.
(3.31)
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We pick the case a = 0.5, b0 = 20. The numerical solution for ε = 0.2, 0.1, 0.05 is given in Figure (3.10).

(a) ε = 0.2 (b) ε = 0.1

(c) ε = 0.05

Figure 3.10: The solution u(x, t) to (3.31) for ε = 0.2, 0.1, 0.05, the Euler-Bernoulli beam with dis-
continuous cross-section and crack a = 0.5 of strength b0 = 20. Numerical settings T = 4, n = 200,
m = 200.

Figure (3.10) shows that the beam converges again to an equilibrium state. The effect of the beam
crack is minimal since the corresponding regularisation parameter for b at ε = 0.05 is λε ≈ 0.33. For
smaller epsilon the beam vibrates slower. However since the regularisation parapeter λε ≥ 0.33 the
regularisation bλε is not a good approximation of b.

Our numerical results show that a numerical solution to the Euler-Bernoulli beam equation with
distributional forces and discontinuous cross-section can be found through regularisation. Depending on
the specific distributional coefficients, the results of the regularised equation are physically interpretable.
Further numerical analysis can be performed about time-dependent forces and non-zero initial conditions.
Also more exotic distributions, e.g. a point force of derivative delta type g(x, t) = ∂xδ(x), can be
considered. The experiments can also be performed for non-smooth regularisations of the coefficients as
is the case in the very weak solution. The moderateness of the solution net (uε)ε∈(0,1] can be numerically
verified.
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Chapter 4

Conclusion

In this thesis we discussed the muliplication problem for distributions. We discussed several definitions
and methods for multiplication maps. The Schwartz product is a standard definition in distribution
theory and defines a product between a distribution and a smooth function. However even the Schwartz
product is a continuous map D′(Rn)×C∞(Rn). Then we localised the Schwartz prodcuct to a product for
distributions with disjoint singular support. The localisation procedure is applicable to all further prod-
ucts. The duality method can produce a wide range of products that can be used in specific applications.
It also gives us a product for Sobolev spaces. The Fourier product generalises the exchange formula for
the S ′-convolution. The restriction to S ′convolutions optimises the properties against the generality of
the product. The strict product and the model product are defined through regularisation of the factors.
The limit of the regularised products is then taken as the distributional product, if the limit is equal for
all regularisations by strict and model delta nets respectively. There are different products depending on
how the factors are regularised. These products allow for a very general multiplication of distributions.
They can still be extended by considering smaller classes of delta nets. Model product (model4) is espe-
cially important since it captures the multiplication of distributions by Colombeau algebra, see Theorem
2.9.5.

The distributional products we discussed is not a complete discussion of the multiplication problem.
There are many other methods proposed in the literature, e.g. the parameter product, the Tillman prod-
uct and the neutrix product. We discussed extrinsic multiplciation in associative commutative algebras
of generalised distributions. Schwartz’s impossibility result says that we can’t have an extrinsic product
that keeps the pointwise multiplication of continuous functions. The Colombeau algebra of generalised
functions succeeds in keeping the pointwise product for smooth functions. We briefly introduced the
special Colombeau algebra Gs.

Next we introduced the very weak solution concept. Through a simple example we explained the
methods to define existence and uniqueness of the very weak solution to a partial differential equation.
We did however not discuss how one should approach proving consistency with classical results. This is
a key part to any method that uses regularisation.

In the third chapter we defined a very weak solution to the clamped Euler-Bernoulli with discontin-
uous cross-section and distributional forces. We proved existence of the very weak solution. Then we
proved uniqueness of the very weak solution provided that the very weak solution is L2((0, T ), H4((0, 1))-
moderate. If sufficiently many derivatives of the coefficient regularisations are moderate, this condition
is fulfilled. However a minimal condition where this is the case is not given. This is a topic for fur-
ther research. Also consistency of the very weak solution with classical results was not yet investigated.
In the numerical analysis we analysed different cases of the Euler-Bernoulli beam with distributional
forces. We only considered a few time-independent coefficients. To extend this numerical analysis one
can consider time-dependent coefficient and more exotic distribution coefficients. Also one can analyse
the moderateness bounds of the regularised solution nets.
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Appendix A

Nederlandstalige samenvatting.

Deze master thesis bevat drie hoodstukken. Het eerste hoofstuk dient als een inleidend hoofdstuk. We
beschrijven standaard concepten en nuttige resultaten uit distributietheorie, functionaalanalyse, partiële
differentiaalvergelijkingen en numerieke analyse.

Hoofstuk twee gaat over het vermenigvuldigingsprobleem van distributies. We baseren ons op het boek
’Multiplication of distributions and applications to partial differential equations’ [30] van Oberguggen-
berger. Het is geweten dat sommige producten van distributies, geen distributie kunnen zijn. De focus
van het hoofdstuk ligt op intrinsieke vermenigvuldiging, i.e. het resultaat van het product is opnieuw een
distributie. Omdat sommige producten onmogelijk zijn kunnen we enkel gedeeltelijke vermenigvuldig-
ingsafbeeldingen definieren. We beginnen met de standaard Schwartz vermenigvuldiging. De Schwartz
vermenigvuldiging definiëert een product tussen gladde functies en distributies via transpositie van de
vermenigvuldigingsafbeelding D → D : ϕ 7→ fϕ, voor f ∈ C∞. We zien dat zelfs het Schwartz product
geen volledig continue vermenigvuldiging is. Door middel van localisatie kan de Schwartz vermenigvuldig-
ing uitgebreid naar een product tussen distributies met disjuncte singuliere drager. Vervolgens bespreken
we de dualiteitsmethode. Als een deelruimte van distributies X normaal is, dan bekomen we een product
Xloc × X ′loc → D′, waarbij f ∈ D′ in Xloc is indien fϕ ∈ D voor alle ϕ ∈ D. Het Fourier product is
gebaseerd op de S ′-convolutie. Het Fourier product bestaat indien de S ′-convolutie van de Fourier trans-
formaties bestaat. Vervolgens bespreken we het strikt product en het model product. Deze producten
zijn het meest algemeen en worden gedefiniëerd via regularisatie van de factoren. Regularisatie via strikte
en model delta netten respectievelijk. Voor elk van deze producten geven we voorbeelden, bespreken we
continuiteit. We eindigen het hoofdstuk met een korte bespreking van extrinsieke vermenigvuldiging.
Het bekende onmogelijkheidsresultaat van Schwartz [33], zegt dat de ruimte van distributies niet uit-
gebreid kan worden tot een associatieve, commutatieve differentiealgebra waarbij de vermenigvuldiging
van continue functies samenvalt met de puntsgewijze vermenigvuldiging. We bespreken kort de speciale
Colombeau algebra Gs. Dat is een algebra waarvoor vermenigvuldiging van gladde functies puntsgewijs is.
Vervolgens bespreken we het concept van een zeer zwakke oplossing voor een partiele differentiaalvergeli-
jking. De zeer zwakke oplossing werd voor het eerst gebruikt in het artikel [31]. Existentie en uniciteit
van een zeer zwakke oplossing wordt uitgelegd aan de hand van een eenvoudig voorbeeld.

In het derde hoofdstuk definieren we een zeer zwakke oplossing van de Euler-Bernoulli vergelijking.
De Euler-Bernoulli vergelijking is een partiële differentiaalvergelijking die de buiging van een balk onder
verticale en axiale krachten beschrijft. De Euler-Bernoulli evenwichtsvergelijking wordt vaak gebruikt in
de ingenieurswetenschappen om stabiliteit van een balk na te gaan. Wij bespreken de dynamische Euler-
Bernoulli vergelijking die de beweging van de balk doorheen de tijd beschrijft. In het artikel ’Generalized
solutions to the Euler-Bernoulli model with distributional forces’ [21] beschrijven Oparnica en Hörmann
een oplossing van de Euler-Bernoulli vergelijking in een Colombeau algebra. We gebruiken deze resultaten
om een very weak solution van de Euler-Bernoulli vergelijking met distributionele krachten te beschrijven.
Als eerste in het hoofdstuk beschrijven we hoe de Euler-Bernoulli vergelijking tot stand komt. Daarna
definieren we een zeer zwakke oplossing van de Euler-Bernoulli vergelijking. We bewijzen existentie
van de zeer zwakke oplossing. Onder voldoende regulariteit van de oplossing bewijzen we uniciteit.
Tenslotte voeren we een numerieke analyse van de vergelijking uit. Met de eindige elementenmethode en
regularisatie benaderen we de oplossing van de Euler-Bernoulli vergelijking met distributionele krachten.
We bespreken enkele voorbeelden zoals een balk met discontinue doorsnede, een verticale puntkract en
een balk met een breuk.
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