
Authorisation Specifications
Automatic Web Form Generation based on

Academic year 2020-2021

Master of Science in de informatica

Master's dissertation submitted in order to obtain the academic degree of

Supervisors: Dr. Anastasia Dimou, Prof. dr. ir. Ruben Verborgh

Student number: 01505066
Femke Brückmann

The author gives the permission to use this thesis for consultation and to copy parts of it for

personal use. Every other use is subject to the copyright laws, more specifically the source

must be extensively specified when using results from this thesis.

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en

delen van de masterproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder

de bepalingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de

bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze masterproef.

Gent, August 10, 2021.

The author,

Femke Brückmann

ACKNOWLEDGEMENTS

First of all, I would like to thank my promotors, dr. Anastasia Dimou and dr. Ir. Ruben

Verborgh, as well as my counsellors Ben De Meester and Sven Lieber. They gave me the

chance and freedom to research these interesting topics and guided me through every step

of the process.

Secondly, I would like to thank Ms Helen Chuter for taking the time to answer some questions

concerning a real-life application of the subject.

Of course, a huge thanks to all of my parents for giving me every possible opportunity to

pursue this education in the best circumstances I could have ever wished. They have always

supported me to the best of their abilities.

Next, I want to praise Sander for always being a source of encouragement and necessary

distractions, continuously giving me the energy to keep going and tirelessly allowing me

to voice my thoughts every single day. His support throughout this past year has been

unmatched.

Furthermore, a big thanks to Pieter and Karel for spending their precious time reading

and re-reading my thesis down to the last detail, offering suggestions and reassuring me

countless times along the way.

Last but definitely not least, I would like to thank my friends Bert and Pieter for always

believing in me throughout our years at Ghent University. I cannot praise them enough for

celebrating the highs and pulling me through the lows. Without them, I would have never

gotten this far.

Thank you all for making this possible.

Femke, 2021.

SUMMARY

Since the introduction of the General Data Protection Regulation (GDPR), businesses and

organisations must comply with the extensive regulations associated with the processing of

people’s personal data. Nowadays, an enormous amount of this personal data is available

on the Web in various forms. As this data is commonly ambiguously described, the Semantic

Web aims to make data unambiguous and machine-readable. This Linked Data can be stored

in Knowledge Graphs (KG). Forms can be generated on top of these KGs to enable easier

enrichment of the data, increasing the machine-readability of data on the Web.

Various publications approach the automatic generation of forms on top of KGs. Additionally,

there are numerous approaches to expressing the concepts and rules of the GDPR in the

Semantic Web in the form of ontologies and models. However, access control in the context

of consent in the GDPR has not yet been combined with form generation.

This thesis proposes an intermediate model that aims to act as an abstraction layer between

expressed consent and a Knowledge Graph. The model applies a data subject’s explicit and

specific consent, in the form of an authorisation specification – expressed in the Privacy

Preference Ontology (PPO) – to Shape Constraint Language (SHACL) shapes and forms

generated on top of these shapes.

The application of this model has been evaluated by carrying out experiments to measure

how well this model applies the expressed authorisation specification and to what degree

Privacy Preference Ontology (PPO) and Social Semantic SPARQL Security for Access Control

(S4AC) can be expressed using this model’s features.

Applying eight combinations using Access Control List (ACL) access types resulted in 32

values expressed in Create, Read, Update, Delete (CRUD) access. The model applied 100%

of these values correctly in the SHACL shape, and 93.75% was expressed correctly in the

generated form. The model can be applied to forms without nesting and SHACL shapes with

up to at least three levels of nesting, where properties can inherit the granted access from

their parent if the data subject explicitly allows this behaviour. Consent expressed using PPO

can be fully represented by the model, while 44% of S4AC’s features can be mapped to the

model.

SAMENVATTING

Sinds de introductie van de Algemene Verordening Gegevensbescherming (GDPR) moeten

bedrijven en organisaties voldoen aan de uitgebreide voorschriften rond de verwerking van

persoonsgegevens van mensen. Vandaag zijn enorm veel gegevens in verschillende vormen

beschikbaar op het Web. Aangezien deze data meestal dubbelzinnig beschreven wordt, is

het doel van het Semantisch Web om deze data ondubbelzinnig en machineleesbaar te

maken. Deze zogenaamde Linked Data kan opgeslagen worden in Knowledge Graphs (KG).

Formulieren kunnen dan gegenereerd worden voor deze KG’s om het verrijken van de data

te vereenvoudigen, wat de machineleesbaarheid vergroot.

Verschillende publicaties onderzochten het automatisch genereren van formulieren voor

KG’s. Daarnaast werden er talrijke manieren onderzocht om GDPR regels en concepten uit te

drukken in het Semantisch Web in de vorm van ontologieën en modellen. Toegangscontrole

en toestemming in de GDPR werden echter nog niet gecombineerd met het genereren van

webformulieren.

Deze thesis stelt een intermediair model voor dat als abstractielaag moet fungeren tussen

uitgedrukte toestemming en een KG. Het model past de expliciete en specifieke toestemming

van de betrokkene – uitgedrukt in de vorm van een autorisatiespecificatie in de Privacy Pref-

erence Ontology (PPO) – toe op Shape Constraint Language (SHACL) shapes en formulieren

gegenereerd op basis van deze shapes.

Het toepassen van dit model werd geëvalueerd door het uitvoeren van experimenten die

meten hoe goed dit model de autorisatiespecificatie toepast en in welke mate PPO en Social

Semantic SPARQL Security for Access Control (S4AC) uitgedrukt kunnen worden aan de hand

van dit model.

Het uitvoeren van acht combinaties met Access Control List (ACL) toegangstypes resulteerde

in 32 waarden uitgedrukt in Create, Read, Update, Delete (CRUD) toegang. Het model

paste 100% van deze waarden correct toe in de SHACL shape terwijl in het gegenereerde

formulier 93.75% correct werd toegepast. Het model kan toegepast worden op formulieren

zonder geneste velden en op SHACL shapes met tot drie nestniveaus, waarbij de betrokkene

kan kiezen of eigenschappen de verleende toegang van hun ouder erven. Toestemming

uitgedrukt met PPO kan volledig voorgesteld worden aan de hand van het model, terwijl het

model 44% van de functies van S4AC kan uitdrukken.

Automatic Web Form Generation
based on Authorisation Specifications

Femke Brückmann

Supervisors: Dr. A. Dimou, Prof. Dr. Ir. R. Verborgh

Abstract— Since the introduction of the General Data Pro-
tection Regulation (GDPR), the data subject’s explicit and spe-
cific consent is required to process a natural person’s data.
Data on the World Wide Web is commonly stored ambiguously.
The goal of the Semantic Web is to make the Web machine-
readable to enable automatic processing using Knowledge
Graphs (KG). In order to advance towards automated GDPR
compliance regarding the data subject’s consent, access con-
trol can be applied on forms generated on top of KGs. This
thesis proposes an intermediate model that allows applying an
authorisation specification to a form generated on top of a data
graph and a shape graph. Experiments indicate that the main
access control functionality is implemented, but more work is
needed to improve the access control applied to the generated
form.

Keywords— Form Generation, Knowledge Graph, Access
Control, Consent

I. INTRODUCTION

As of 2018, the introduction of the General Data Protec-
tion Regulation (GDPR) [3] has established regulations
regarding the processing of a natural person’s data and
the data subject’s consent. As of articles 6 and 7 of the
GDPR, accessing, storing, or processing one’s data
requires the data subject’s explicit consent. This re-
quirement applies to all data collected on, for example,
visited sites: Web usage stored as cookies or infor-
mation filled out in a form. However, data acquired
from forms is commonly stored in databases where
it is ambiguously described. Therefore, machines do
not understand the represented information and how it
relates to other data.

The goal of the Semantic Web is to make the Web
machine-readable by making the data unambiguous
[1], allowing for automatic processing. Contrary to
regular databases, entities and their relationships are
semantically described as Knowledge Graphs (KG)
represented using the Resource Description Frame-
work (RDF) [6,9]. Their meaning is unambiguous [1],
allowing for machines to understand the data they are
processing. Since the employed shape structure [4,5]
essentially describes what the data should look like, it
enables automatic data processing and access con-
trol applications based on consent. One possible ap-
proach would be to automatically generate data editing
interfaces on top of this data to simplify the enriching
process of the KG [5].

GDPR compliance regarding consent has not been
taken into account for existing form generation ap-
proaches. Over the past years, multiple publications
[2,7,12] have generated forms on top of KGs to enrich
them. However, Noy et al. [7]1 is the only publica-
tion that incorporates options for sharing created docu-
ments while granting either reading or writing access
to certain people. Achieving and checking compliance
is a demanding task for companies considering the
number of directives in the GDPR, its extensiveness
and the fact that it is fairly light on specifics [10]. Thus,
businesses could be aided in automating the enforce-
ment of GDPR compliance by applying access control
to generated forms.

The focus of this dissertation is the application of ac-
cess control to KGs to comply with the GDPR in the
context of giving consent. Access control and privacy
privileges will be applied to forms generated on top of
these KGs, based on authorisation specifications ex-
pressed using the Privacy Preference Ontology (PPO)
[8]. Thus, the data owner can specify which parts
of their data are accessible, which types of access
are granted and who can access this data using fine-
grained access specifications.

II. IMPLEMENTATION

This thesis presents an intermediate model to tackle
this problem. First, introductory steps are described
before diving into the design and application of the
intermediate model.

A. Schı́matos

Since a recently published application called Schı́matos2

has already tackled form generation on top of KGs,
this application is used as a base for the implementa-
tion. Schı́matos is a form-based Web application that
can be used to create and edit Resource Description
Framework (RDF) [9] data constrained and validated by
Shape Constraint Language (SHACL)3 shapes [11,12].
The user chooses the desired target and SHACL
shapes using the Sidebar Management, which query

1WebProtégé – https://webprotege.stanford.edu/
2Schı́matos – http://schimatos.github.io
3SHACL – https://www.w3.org/TR/shacl/

Figure 1: Schı́matos Architecture.

the corresponding triplestores using SPARQL Protocol
And RDF Query Language (SPARQL)4 ASK queries.
The resulting JavaScript Object Notation (JSON)5 data
is saved in the Context Management, where the Form
Context transforms the JSON objects to allow the field
generation in the Form Display. The application’s ar-
chitecture is visualised in fig. 1.

The first steps of the implementation process consist
of creating a simple authentication system to allow the
user to log in using a limited set of predefined user
profiles. The user that is currently logged in will be
referred to as the requester. Additionally, the user
can insert a privacy preference expressed using PPO,
which is assumed to be the data subject’s explicit and
specific consent to using their data.

B. Intermediate Model Design

The intermediate authentication specification model is
a JavaScript object containing dictionaries of objects,
centring around the Policy with its UserAccessCon-
ditions and DataAccessConditions. The primary ref-
erence for creating the structure of this intermediate
model is PPO. Figure 2 visualises the intermediate
model’s design.

Each UserAccessCondition has an associated
SPARQL ASK query to determine if the Policy applies
to the requester based on their characteristics. On the
other hand, DataAccessConditions contain properties
indicating to which resources and data properties the
Policy applies. The access granted to each Policy can
be one of the basic CRUD operations: Create, Read,
Update or Delete.

4SPARQL – https://www.w3.org/TR/sparql11-query/
5JSON – https://www.json.org/

Figure 2: Intermediate Model.

This model aims to act as an abstraction layer be-
tween the expressed authorisation specification and
the SHACL shape or form the specification is applied
to. A specification expressed in PPO can therefore be
mapped to this intermediate model.

C. Model Application

The application of this model is twofold. visualised in
fig. 1 as access control options A and B, respectively.
On the one hand, it can be applied to the JavaScript
objects that generate the forms in Schı́matos. On the
other hand, it can be applied directly to the SHACL [5]
shape used to generate the form and its constraints.

C.1 Form Generation

The first application option is based on creating an
extra JavaScript object that indicates which types of
access are granted to each field. Applying the authori-
sation specification essentially generates a new object
containing the granted access types, which is taken
into account while the form is being generated. This
object contains four boolean values for every form field,
each indicating one of the four CRUD access types:
canRead, canUpdate, canCreate and canDelete.

Before the generation, the necessary information is
fetched to determine the field properties. Depending
on the corresponding access types, the allowed input
fields and buttons are enabled and shown. For ex-
ample, fig. 3 shows a generated form field where the
requester has Create, Read and Update access, but
cannot Delete values.

This step focused on implementing the access function-
ality, paving the way for a more generalised approach.

Figure 3: One generated form field.

C.2 SHACL Shapes

The intermediate model can also be applied to the
SHACL constraint graph, applying the authorisation
specification to the shape constraints before the form is
generated. The model determines the applicable Poli-
cies and granted access types based on the property
features and the requester’s characteristics. These
access types are then added as triples to the property
shape, for example:

1 <h t t p : / / schema . org / givenName>
2 <h t t p : / / example . org / access>
3 <h t t ps : / / ns . i n r i a . f r / s4ac / v2#Read> .

Since the triples are added directly to the SHACL
shape, the shape with its applied access control can
be used for other applications as well.

Due to implementation limitations in Schı́matos and
time constraints, these adjusted SHACL shapes were
not implemented to replace the original shapes used to
generate the forms. The following section will therefore
consider these two application methods separately.

III. EVALUATION

The functionality and performance of the intermediate
model are evaluated using three experiments. First, the
main features centred around granting access control
are tested. The next experiment focuses on applying
access control to nested shapes and access types
inheritance from parents to their children. Finally, the
mapping of Privacy Preference Ontology (PPO) and
Social Semantic SPARQL Security for Access Control
(S4AC) to the intermediate model is compared.

A. Results

Granting Access. In this experiment, eight resources
are granted various combinations of ACL access types
(acl:Read, acl:Write and acl:Append). These access
options are then applied to the form generation and
the SHACL shapes, resulting in 32 values expressed
in CRUD. The model applied 100% of these values cor-
rectly in the SHACL shape, and 93.75% was expressed
correctly in the generated form. In the latter case, grant-
ing only acl:Append access without acl:Write access
results in some incorrectly disabled fields, since there
is no distinction between input fields for new versus
existing values.

Nesting. The second experiment explores the appli-
cation of access control in nested shape constraints.
The model can be applied to generated forms without
nesting and to SHACL shapes with up to at least three
levels of nesting. The data subject has the option to
explicitly allow children to inherit granted access types
from their parent.

Expressing Vocabularies. The classes and proper-
ties of PPO and S4AC were mapped to those of the
intermediate model. In PPO, 16 out of 16 (100%) fea-
tures could be expressed using the model, while for
S4AC, this was only possible for 11 out of 25 features
(44%). As mentioned earlier, the intermediate model
is mainly based on PPO. On the other hand, concepts
like access evaluation context and conjunctive/disjunc-
tive condition sets are not included in the specification
of the model.

B. Research Questions

Subquestion 1: Applying access control to a
shape. Access control can be applied to a SHACL
shape using an intermediate model to modify and add
constraints to the given shape with up to three levels
of nesting.

Subquestion 2: Applying explicit consent to form
generation. A subject’s explicit and specific consent
can be applied to form generation without nesting us-
ing an intermediate model that adds access-related
properties to the JavaScript objects for each field.

Research Question: Complying with GDPR’s con-
sent on generated forms. A subject’s data shape can
comply with the GDPR’s definition of consent by using
a fine-grained specification of access control permis-
sions, as defined by the data subject using PPO.

IV. CONCLUSION AND FUTURE WORK

This thesis proposed an intermediate model to express
an authorisation specification. This model applies a
data subject’s explicit consent to SHACL shapes and
the forms generated on top of these shapes. Three
experiments indicated that the model could apply the
consent expressed in PPO to shape constraints while
taking into account nested shapes. However, applying
the model to form generation requires some improve-
ments in nesting and granting acl:Append access.

N-Quads. The implementation of the intermediate
model could be expanded to support N-Quads and
allow more options for expressing consent.

User-Friendly Consent Specification. Creating a
more user-friendly way of expressing explicit and spe-
cific consent would allow inexperienced users to ex-
press their consent without understanding the underly-
ing technologies.

Abstraction. A full abstraction between the consent
expressed in any authorisation specification and the
goal shape or the generated form could create a further
generalised intermediate model. This generalisation
could allow using different ontologies to express the
data owner’s consent.

Logical Condition Sets. Including some logical divi-
sion between conjunctive and disjunctive condition sets
in applying the intermediate model, combined with an
indication of the condition set type, would increase the
flexibility of the authorisation specifications.

Access Context. Another possible expansion for the
model could support access context constraints, like
temporal restrictions and a limited number of accesses.
An additional description could inform the requester
about the reason for access limitation.

Nesting. The model’s application to the form genera-
tion might be improved by enhancing the inheritance
of granted access types between parents and their
children.

Strictness. Additional settings for the model might
support more specific settings for strictness regarding
combinations of denied and granted access. This ap-
proach could allow more flexibility for granting access.

New and Existing Fields. A distinction between fields
of existing and new values could be made by adding
an indication to the form fields before generating. This
distinction could improve the application of the granted
access in the form.

REFERENCES

[1] Berners-Lee, T., Connolly, D., Stein, L.A., Swick, R.: The
semantic web (August 2000),
https://www.w3.org/2000/Talks/
0906-xmlweb-tbl/text.htm

[2] Butt, A.S., Haller, A., Liu, S., Xie, L., et al.: Activeraul: A web
form-based user interface to create and maintain rdf data. In:
International Semantic Web Conference (Posters & Demos).
pp. 117–120 (2013)

[3] Council of European Union: Regulation (EU) 2016/679 (2016),
https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX:32016R0679

[4] Group, S.C.: Shex – shape expressions (2012),
https://shex.io/

[5] Knublauch, H., Kontokostas, D.: Shapes constraint language
(shacl) (2017),
https://www.w3.org/TR/shacl/

[6] Manola, F., Miller, E., McBride, B.: Rdf primer (2004),
https://www.w3.org/TR/rdf-primer/

[7] Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W.,
Musen, M.A.: Creating semantic web contents with protege-
2000. IEEE intelligent systems 16(2), 60–71 (2001)

[8] Sacco, O., Passant, A.: A privacy preference ontology (ppo) for
linked data. In: LDOW (2011)

[9] W3C: Resource description framework (rdf) (2014),
https://www.w3.org/2001/sw/wiki/RDF

[10] Wolford, B.: What is GDPR, the EU’s new data protection law?
(2020),
https://gdpr.eu/what-is-gdpr/

[11] Wright, J.: Shacl form react (2021),
https://github.com/schimatos/shacl-form-react

[12] Wright, J., Méndez, S.J.R., Haller, A., Taylor, K., Omran, P.G.:
Schı́matos: a shacl-based web-form generator for knowledge
graph editing. In: International Semantic Web Conference. pp.
65–80. Springer (2020)

Webformulieren automatisch genereren
op basis van autorisatiespecificaties

Femke Brückmann

Begeleiders: Dr. A. Dimou, Prof. Dr. Ir. R. Verborgh

Abstract— Sinds de introductie van de Algemene Verorde-
ning Gegevensbescherming (GDPR) is expliciete en specifieke
toestemming vereist voor het verwerken van persoonsgege-
vens. Data in het wereldwijde web wordt vaak dubbelzinning
opgeslagen. Het doel van het Semantisch Web is om het web
machineleesbaar te maken om data automatisch te kunnen ver-
werken aan de hand van Knowledge Graphs (KG). Om de toe-
stemming van de betrokkene volgens de GDPR automatisch
na te leven, kan toegangscontrole worden toegepast op formu-
lieren die gegenereerd worden aan de hand van KG’s. Deze
masterproef stelt een intermediair model voor, waarmee een
autorisatiespecificatie kan worden toegepast op een formulier
dat is gegenereerd op basis van een data graph en een shape
graph. Experimenten geven aan dat de belangrijkste functio-
naliteiten voor toegangscontrole zijn geı̈mplementeerd, maar
er is aanvullend werk nodig om de toepassing van toegangs-
controle op gegenereerde formulieren te verbeteren.

Kernwoorden— webformulieren, Knowledge Graph, toe-
gangscontrole, toestemming

I. INTRODUCTIE

In 2018 heeft de Algemene Verordening Gege-
vensbescherming (AVG of GDPR) voorschriften
geı̈ntroduceerd met betrekking tot het verwerken van
persoonsgegevens en het verlenen van toestemming
hiertoe door de betrokkene. Artikels 6 en 7 van de
GDPR stellen dat toegang, opslag en verwerking van
persoonsgegevens uitdrukkelijke toestemming verei-
sen van de betrokkene. Deze vereiste is van toepas-
sing op alle gegevens die verzameld worden, bijvoor-
beeld op bezochte sites: webgebruik opgeslagen als
cookies of informatie ingevuld in een formulier. Ge-
gevens die verkregen worden uit formulieren, worden
gewoonlijk echter opgeslagen in databanken waar ze
dubbelzinnig worden beschreven. Machines hebben
hierdoor geen notie van de weergegeven informatie en
hoe deze zich verhoudt tot andere gegevens.

Het doel van het Semantisch Web is om het Web
machineleesbaar te maken door data ondubbelzinnig
te maken [1], wat automatische verwerking mogelijk
maakt. In tegenstelling tot reguliere databanken wor-
den entiteiten en hun relaties semantisch beschreven
als Knowledge Graphs (KG), die voorgesteld worden
met behulp van het Resource Description Framework
(RDF) [5,8]. Hun betekenis is ondubbelzinnig [1], wat
ervoor zorgt dat machines de gegevens die ze verwer-
ken ook kunnen begrijpen. Aangezien de gebruikte
shape-structuur [3,4] beschrijft hoe de gegevens eruit

moeten zien, worden automatische gegevensverwer-
king en toepassingen op toegangscontrole op basis
van toestemming mogelijk. Een mogelijke aanpak zou
zijn om automatische gebruikersinterfaces voor het
bewerken van gegevens te genereren bovenop deze
gegevens om het verrijkingsproces van de KG te ver-
eenvoudigen [4].

Naleving van de GDPR met betrekking tot toestemming
werd niet eerder in rekening gebracht bij bestaande be-
naderingen voor het genereren van formulieren. In de
afgelopen jaren hebben meerdere publicaties [2,6,11]
formulieren gegenereerd op basis van KG’s om deze
te verrijken. Slechts één publicatie [6]1 bevat opties
voor het delen van documenten met anderen, waarbij
lees- of schrijftoegang verleend wordt. Voor bedrijven
is het een veeleisende taak om de GDPR volledig na te
leven en dit te controleren, gezien het aantal richtlijnen
in de GDPR, de uitgebreidheid en de weinige details
[9]. Bedrijven zouden dus geholpen kunnen worden
bij het automatiseren van de naleving van de GDPR
door toegangscontrole toe te passen op gegenereerde
formulieren.

De focus van deze masterproef is het toepassen van
toegangscontrole op KG’s om te voldoen aan de GDPR
bij het geven van toestemming. Toegangscontroles en
privacyrechten zullen toegepast worden op formulieren
die gegenereerd worden op basis van deze KG’s, geba-
seerd op de autorisatiespecificaties. Deze specificaties
worden uitgedrukt aan de hand van de Privacy Pre-
ference Ontology (PPO) [7]. De betrokkene kan dus
aangeven welke delen van hun gegevens toegankelijk
zijn, welke toegang verleend wordt en wie de gege-
vens kan raadplegen met behulp van gedetailleerde
toegangsspecificaties.

II. IMPLEMENTATIE

Deze masterproef stelt een intermediair model voor
om dit probleem op te lossen. De voorbereidende
stappen worden hieronder beschreven, gevolgd door
het ontwerp en de toepassing van het tussenliggende
model.

1WebProtégé – https://webprotege.stanford.edu/

Figuur 1: Architectuur van Schı́matos. Naar [11].

A. Schı́matos

Aangezien Schı́matos2, een recent gepubliceerde ap-
plicatie, reeds de mogelijkheid biedt om formulieren
te genereren aan de hand van KG’s, wordt deze
applicatie gebruikt als basis voor de implementatie.
Schı́matos is een op formulieren gebaseerde webap-
plicatie die gegevens in Resource Description Frame-
work (RDF) [8] kan aanmaken en bewerken. Hierbij
wordt de vorm van de gegevens gewaarborgd aan de
hand van de Shape Constraint Language (SHACL)3

shapes [10,11]. De gebruiker kiest de gewenste bron
en SHACL shapes in de Sidebar Management, die de
overeenkomstige triplestores zal aanspreken met be-
hulp van SPARQL Protocol And RDF Query Language
(SPARQL)4 ASK queries. De resulterende JavaScript
Object Notation (JSON)5-data wordt opgeslagen in
de Context Management, waar de Form Context de
JSON-objecten zal omvormen tot ze bruikbaar zijn om
het formulier te genereren in de Form Display. De ar-
chitectuur van deze applicatie is afgebeeld in fig. 1.

De eerste stappen van het implementatieproces be-
staan uit het aanmaken van een eenvoudig authenti-
catiesysteem zodat de gebruiker kan inloggen aan de
hand van een beperkt aantal voorgedefinieerde gebrui-
kersprofielen. De gebruiker die op dit moment ingelogd
is, zal de aanvrager genoemd worden. Daarnaast kan
de gebruiker een privacyvoorkeur uploaden, uitgedrukt
in PPO, wat wordt verondersteld de uitdrukkelijke en
specifieke toestemming van de betrokkene te zijn voor
het gebruik van hun gegevens.

2Schı́matos – http://schimatos.github.io
3SHACL – https://www.w3.org/TR/shacl/
4SPARQL – https://www.w3.org/TR/sparql11-query/
5JSON – https://www.json.org/

Figuur 2: Intermediair Model.

B. Design van het intermediaire model

Het intermediaire model voor de authenticatiespeci-
ficatie is een JavaScript-object dat dictionaries van
objecten bevat, opgebouwd rond de Policy met zijn
UserAccessConditions en DataAccessConditions. De
primaire referentie voor het maken van de structuur
van dit model is de Privacy Preference Ontology (PPO).
Figuur 2 visualiseert het ontwerp van dit intermediaire
model.

Elke UserAccessCondition heeft een bijhorende
SPARQL ASK query om te bepalen of een Policy van
toepassing is op de aanvrager, gebaseerd op hun ka-
rakteristieken. Anderzijds bevatten de DataAccessCon-
ditions eigenschappen die aangeven op welke bronnen
en gegevenseigenschappen de Policy van toepassing
is. De toegang die verleend wordt aan een Policy, kan
één van de basis-CRUD-bewerkingen zijn: aanmaken
(Create), lezen (Read), aanpassen (Update) of verwij-
deren (Delete).

Dit intermediaire model zal fungeren als een abstrac-
tielaag tussen de uitgedrukte autorisatiespecificatie en
de SHACL shape of het formulier waarop deze specifi-
catie toegepast is. Een specificatie die uitgedrukt is in
PPO kan dus worden vertaald naar dit model.

C. Toepassen van het model

Het model kan op twee manieren toegepast worden,
die in fig. 1 weergegeven worden als opties A en
B. Enerzijds kan het model toegepast worden op de
JavaScript-objecten die de formulieren in Schı́matos
genereren. Anderzijds kan het model rechtstreeks
toegepast worden op de SHACL shape die gebruikt
wordt om het formulier en de bijbehorende validatie te
genereren.

Figuur 3: Een gegenereerd veld.

C.1 Formuliergeneratie

De eerste manier van toepassen is gebaseerd op het
aanmaken van een bijkomend JavaScript-object dat
aangeeft welk type toegang verleend wordt aan elk
veld. Het toepassen van deze autorisatiespecificatie
genereert een nieuw object dat de verleende toegangs-
types bevat. Tijdens het genereren van het fomulier zal
rekening gehouden worden met dit object. Het object
bevat vier booleaanse waarden voor elk formulierveld,
die elk één van de vier CRUD-toegangstypen aange-
ven: canRead, canUpdate, canCreate and canDelete.

Alvorens het genereren zal de nodige informatie voor
het bepalen van de veldeigenschappen opgevraagd
worden. Knoppen en invoervelden worden zichtbaar
en ingeschakeld naar gelang de overeenkomstige toe-
gangstypes. Figuur 3 toont bijvoorbeeld een gegene-
reerd invoerveld waar de aanvrager Create-, Read- en
Update-toegang heeft, maar geen waarden kan verwij-
deren.

Deze stap is gericht op het implementeren van de
toegangsfunctionaliteit, ter voorbereiding van een meer
algemene aanpak.

C.2 SHACL shapes

Het intermediaire model kan ook toegepast worden op
de SHACL constraint graph, waarbij the autorisatiespe-
cificatie zal toegepast worden op de shape constraints
alvorens het formulier gegenereerd wordt. Het mo-
del bepaalt welke Policies toepasbaar zijn en welke
toegangstypes hierbij toegekend worden op basis van
de eigenschappen en de karakteristieken van de aan-
vrager. Deze toegangstypes worden dan als triples
toegevoegd aan de property shape, bijvoorbeeld:

1 <h t t p : / / schema . org / givenName>
2 <h t t p : / / example . org / access>
3 <h t t ps : / / ns . i n r i a . f r / s4ac / v2#Read> .

Aangezien de triples rechtstreeks toegevoegd worden
aan de SHACL shape, zou deze shape met toegepaste
toegangscontrole ook gebruikt kunnen worden voor an-
dere doeleinden.

Door beperkingen bij de implementatie in Schı́matos
en tijdslimieten werden deze aangepaste SHACL sha-
pes niet geı̈mplementeerd als vervanging voor de ori-
ginele shapes in de formuliergeneratie. De volgende

sectie zal daarom deze twee toepassingsmogelijkhe-
den apart beschouwen.

III. EVALUATIE

De functionaliteit en prestatie van het intermediaire
model worden geëvalueerd aan de hand van drie ex-
perimenten. Eerst worden de voornaamste functies
rond het verlenen van toegangscontrole getest. Het
volgende experiment richt zich op het toepassen van
toegangscontrole op geneste shapes en de overerving
van toegangscontrole van ouders naar hun kinderen.
Tot slot wordt de vertaling van de Privacy Preference
Ontology (PPO) en de Social Semantic SPARQL Secu-
rity for Access Control (S4AC) naar het intermediaire
model vergeleken.

A. Resultaten

Toegang toekennen. In dit experiment krijgen acht
bronnen verschillende combinaties van ACL toegangs-
types (acl:Read, acl:Write en acl:Append) toegekend.
Deze toegangsopties worden dan toegepast op de for-
muliergeneratie en de SHACL shapes, wat resulteert
in 32 waarden uitgedrukt in CRUD. Het model past
100% van deze waarden correct toe op de SHACL
shape, terwijl 93.75% ervan correct worden toegepast
in het gegenereerde formulier. In het tweede geval
zal het toekennen van enkel acl:Append-toegang zon-
der acl:Write-toegang resulteren in een paar onterecht
uitgeschakelde velden, aangezien de applicatie geen
verschil aanduidt tussen invoervelden voor nieuwe of
bestaande waarden.

Nesten. Het tweede experiment onderzoekt de toe-
passing van toegangscontrole in geneste shape cons-
traints. Het model kan toegepast worden op gegene-
reerde formulieren zonder nesten en SHACL shapes
met maximaal drie nestniveaus. De betrokkene heeft
de mogelijkheid om kinderen expliciet toe te staan ver-
leende toegangstypes van hun ouder te erven.

Uitdrukken van ontologieën. De klassen en eigen-
schappen van PPO en S4AC werden vertaald naar
deze van het intermediaire model. 16 van de 16 (100%)
functies van PPO kunnen uitgedrukt worden aan de
hand van dit model. Bij S4AC is dit slechts 11 van de
25 (44%). Zoals eerder vermeld is het intermediaire
model vooral gebaseerd op PPO. Anderzijds worden
concepten als de context van de toegangsevaluatie en
conjunctieve/disjunctieve conditiesets niet in beschou-
wing genomen in de specificatie van het model.

B. Onderzoeksvragen

Subvraag 1: Toepassing van toegangscontrole op
een shape. Toegangscontrole kan toegepast worden
op een SHACL shape aan de hand van een interme-

diair model dat beperkingen aanpast en toevoegt aan
de gegeven shape met tot drie geneste niveaus.

Subvraag 2: Toepassing van expliciete toestem-
ming op gegenereerde formulieren. De expliciete
en specifieke toestemming van de betrokkene kan toe-
gepast worden op gegenereerde formulieren zonder
nesting met behulp van een intermediair model dat toe-
gangsgerelateerde eigenschappen toevoegt aan het
JavaScript-object voor elk veld.

Onderzoeksvraag: Voldoen aan toestemming in
de GDPR op gegenereerde formulieren. De data
shape van een betrokkene kan voldoen aan de de-
finitie van toestemming in de GDPR door gebruik te
maken van fine-grained toelatingsspecificaties zoals
door de betrokkene gedefinieerd in PPO.

IV. CONCLUSIE EN AANVULLEND WERK

Deze thesis stelt een intermediair model voor om een
autorisatiespecificatie uit te drukken. Dit model past de
expliciete toegang van een betrokkene toe op SHACL
shapes en de formulieren die hierop gegenereerd wor-
den. Drie experimenten gaven aan dat het model,
uitgedrukt in PPO, toegepast kan worden op shape
constraints. Anderzijds heeft de toepassing op formu-
liergeneratie verbeteringen nodig op vlak van nesten
en het toekennen van acl:Append-toegang.

N-Quads. De implementatie van het intermediaire mo-
del kan uitgebreid worden om N-Quads te ondersteu-
nen, wat zou zorgen voor meer flexibiliteit bij het uit-
drukken van toestemming.

Gebruiksvriendelijke toestemmingsspecificaties.
Een meer gebruiksvriendelijke manier voor het uitdruk-
ken van expliciete en specifieke toestemming zou het
eenvoudiger maken voor onervaren gebruikers om hun
toestemming uit te drukken zonder de onderliggende
technologieën te begrijpen.

Abstractie. Een volledige abstractie tussen de uitge-
drukte toestemming in eender welke autorisatiespecifi-
catie en de doelshape of het gegenereerde formulier
zou voor een verdere veralgemening van het interme-
diaire model zorgen. Deze veralgemening zou de be-
trokkene toestaan om hun toestemming uit te drukken
aan de hand van verschillende ontologieën.

Logische conditiesets. Het implementeren van een
logisch onderscheid tussen conjunctieve en disjunc-
tieve conditiesets bij het toepassen van het intermedi-
aire model, gecombineerd met een indicatie van het
type conditieset, zou de flexibiliteit van de autorisatie-
specificiatie vergroten.

Toegangscontext. Een andere mogelijke uitbreiding
voor het model zou beperkingen op toegangscontext,
zoals temporele restricties en een beperkt aantal toe-
gangen, in acht nemen. Een bijkomende beschrijving

zou de aanvrager kunnen informeren over de reden
voor toegangsbeperking.

Nesten. De toepassing van het model op de formu-
liergeneratie zou verbeterd kunnen worden door het
verbeteren van de overerving van verleende toegangs-
types tussen ouders en hun kinderen.

Strengheid. Bijkomende instellingen voor het model
zouden meer specifieke instellingen voor strengheid bij
verschillende combinaties van toegekende toegangs-
types kunnen toestaan. Deze aanpak zou voor meer
flexibiliteit zorgen bij het toekennen van toegang.

Nieuwe en bestaande velden. Een onderscheid tus-
sen invoervelden voor bestaande en nieuwe waarden
door een aanduiding toe te voegen aan de velden
alvorens ze te genereren. Dti onderscheid zou de
toekenning van toegang in het formulier verbeteren.

REFERENTIES

[1] Berners-Lee, T., Connolly, D., Stein, L.A., Swick, R.: The
semantic web (August 2000),
https://www.w3.org/2000/Talks/
0906-xmlweb-tbl/text.htm

[2] Butt, A.S., Haller, A., Liu, S., Xie, L., et al.: Activeraul: A web
form-based user interface to create and maintain rdf data. In:
International Semantic Web Conference (Posters & Demos).
pp. 117–120 (2013)

[3] Group, S.C.: Shex – shape expressions (2012),
https://shex.io/

[4] Knublauch, H., Kontokostas, D.: Shapes constraint language
(shacl) (2017),
https://www.w3.org/TR/shacl/

[5] Manola, F., Miller, E., McBride, B.: Rdf primer (2004),
https://www.w3.org/TR/rdf-primer/

[6] Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W.,
Musen, M.A.: Creating semantic web contents with protege-
2000. IEEE intelligent systems 16(2), 60–71 (2001)

[7] Sacco, O., Passant, A.: A privacy preference ontology (ppo) for
linked data. In: LDOW (2011)

[8] W3C: Resource description framework (rdf) (2014),
https://www.w3.org/2001/sw/wiki/RDF

[9] Wolford, B.: What is GDPR, the EU’s new data protection law?
(2020),
https://gdpr.eu/what-is-gdpr/

[10] Wright, J.: Shacl form react (2021),
https://github.com/schimatos/shacl-form-react

[11] Wright, J., Méndez, S.J.R., Haller, A., Taylor, K., Omran, P.G.:
Schı́matos: a shacl-based web-form generator for knowledge
graph editing. In: International Semantic Web Conference. pp.
65–80. Springer (2020)

LAY SUMMARY

GDPR

In 2018, the General Data Protection Regulation (GDPR) was introduced in the European

Union. This new law on data privacy and security includes new requirements for organisations

that handle their users’ or customers’ personal data. Personal data is any piece of information

that can relate to an identifiable person, including names, addresses, phone numbers, as

well as data collected by visiting sites and using products. Accessing, storing or processing

this personal data requires explicit and specific consent from the data owner. High fines

are issued when this regulation is violated. Since the GDPR contains many rules, correctly

applying all of them is a challenge for organisations.

Internet and the World Wide Web

The Internet is the worldwide system of interlinked computers that communicate between

networks and devices. Essentially a network of networks, the Internet carries a huge range

of services, including the World Wide Web (WWW). The World Wide Web, also known as the

Web, is an information system where documents are linked using hypertext. Hypertext is

text with references to other text that are immediately accessible by the reader. Additionally,

data on the Web can be added and edited by anyone.

Semantic Web & Linked Data

The Semantic Web is an extension of the World Wide Web, created to fix some major issues.

Even though the Web is good at displaying information for humans to read, machines and

computers have a harder time understanding this data. The Semantic Web allows giving data

a meaning, allowing machines to understand the given information. Additionally, Semantic

Web tools can reach and manage this data if it is available in a standard format. By defining

relationships as links between different pieces of information, a network of linked datasets is

established: this is Linked Data. One such network of interlinked entities is a Knowledge

Graph (KG). In a KG, each entity is described alongside its relationship with other entities in

the graph.

Defining these relationships is done using ontologies, vocabularies that define concepts and

relationships in specific domains. For example, Friend of a Friend (FOAF) defines how people

relate: friends, business partners, or family. The “mould” or so-called shape this data should

fit in can be expressed using the Shape Constraint Language (SHACL). This language defines

the requirements and restrictions the data should meet to be valid. For example, a person

can have at most one birth date. Both the ontologies and shape constraints will return in

this summary.

Solution

This thesis focuses on the combination of complying with the GDPR when it comes to consent

and the generation of form interfaces on top of the data graphs that contain personal data. In

a form generated on top of a person’s data, the data owner could determine who can access

or modify each part of their data. Thus, the automatic form generation with integrated

access control would aid organisations in complying with the GDPR while making it easier to

enter and modify data in KGs.

Implementation

This thesis proposes a model that acts as a layer between a person’s expressed consent and

the Knowledge Graph (KG) that contains their data. This intermediate model translates the

expressed consent and can be applied in two ways: to both the shapes that constrain the

data and the forms that are generated to edit the data. The expressed consent determines

who can access or modify which part of the data. For each type of operation (Create, Read,

Update, Delete, abbreviated as CRUD), a new property is added to a part of the shape’s

constraints. The added property types depend on which access is granted and who is

requesting the access. This information can then be used to generate the form, determine

which fields should be visible and which actions the requesting user can take on each piece

of information.

xiii

Evaluation

The performance of this model was evaluated using three experiments, considering the two

application methods separately.

The first experiment applies allowed access expressed in the data owner’s consent. Three

access types defined in Access Control Lists (ACL), namely Read, Append and Write, are

coupled in eight different combinations. Then the translation from this expressed consent to

the CRUD access types is checked. 100% of these values were translated correctly in the

shape, while 93.75% was expressed correctly in the generated form.

The next evaluated aspect is how granted access is passed down from parent to child

component. For example, if one is allowed to modify a person’s address, are they allowed to

modify the country of residence as well? The tests showed that access is passed down at

least up to three “generations” in the SHACL constraints, where the data subject chooses if

the children inherit their parent’s access types. However, in the generated form, access is

not passed down to the children.

The final experiment evaluated how well two ontologies, Privacy Preference Ontology (PPO)

and Social Semantic SPARQL Security for Access Control (S4AC), could be translated to the

model. PPO can be fully translated, while 44% of S4AC can be expressed using the model.

xiv

CONTENTS

Contents xvi

Glossary xvii

Acronyms xviii

1 Introduction 1

2 Background 3

2.1 Semantic Web and Linked Data . 3

2.1.1 World Wide Web . 3

2.1.2 Semantic Web . 4

2.1.3 Semantic Web Stack . 5

2.2 GDPR . 10

3 Related Work 12

3.1 Form generation . 12

3.1.1 RDF Authoring Tools . 12

3.1.2 Supporting Tools & Mechanisms . 14

3.1.3 Conclusion . 15

3.2 Access Control . 16

4 Research Questions and Methodology 19

4.1 Research Questions . 19

4.2 Research Methodology . 20

5 Implementation 21

5.1 Schímatos . 21

5.2 Authorisation Specifications . 23

5.2.1 Goals . 23

5.2.2 First Steps . 24

5.2.3 Access Control Vocabularies . 26

5.2.4 Intermediate Authorisation Specification Model 30

6 Evaluation 38

6.1 Shapes and Authorisation Specifications . 38

6.1.1 Users . 38

6.1.2 Authorisation Specifications . 39

6.2 Experiments . 39

6.2.1 Granting Access . 39

6.2.2 Nesting . 42

6.2.3 Expressing Vocabularies . 46

7 Conclusion 48

7.1 Fulfilment of Research Objectives . 49

7.2 Remaining Challenges and Future Directions . 50

List of Figures 52

List of Tables 53

List of Examples 54

Bibliography 55

Appendix 59

xvi

GLOSSARY

conjunctive a conjunctive set of values is only True if and only if all of its values are true.

28, 30, 50

consent any freely given, specific, informed and unambiguous indication of the data

subjects wishes by which they, by a statement or by a clear affirmative action, signify

agreement to the processing of personal data relating to them. 11, 17

consistency a knowledge base KB is consistent if and only if its negation is not a tautology;

in other words, if and only if there exists an interpretation which has KB as a logical

consequence. 8

controller the natural or legal person, public authority, agency or other body which deter-

mines the purposes and means of the processing of personal data. 11, 17, 19

disjunctive a disjunctive set of values is only True if and only if at least one of its values is

true. 28, 30, 50

HTTP cookie a small piece of data that a server sends to the user’s web browser [26]. 11

personal data any information relating to an identified or identifiable natural person, called

the data subject. 10

processing any operation or set of operations which is performed on personal data or on

sets of personal data, whether or not by automated means. 10, 11, 17

processor a natural or legal person, public authority, agency or other body which processes

personal data on behalf of the controller. 17, 19

ACRONYMS

ACL Access Control List. 18, 27, 32, 36, 39, 40, 48

CRUD Create, Read, Update, Delete. 29, 30, 32, 34, 36, 39, 40, 48

GDPR General Data Protection Regulation. 1–3, 10–12, 16–20, 22, 37, 48, 49

HTML HyperText Markup Language. 13, 21

IRI Internationalized Resource Identifier. 6, 7

JSON JavaScript Object Notation. 21, 22, 34

KG Knowledge Graph. 1, 2, 7, 8, 22, 48, 52

OWL Web Ontology Language. 4, 8, 12

PPO Privacy Preference Ontology. 2, 18, 20, 23, 24, 26, 27, 30, 31, 36, 37, 39, 40, 46, 48–50

RDF Resource Description Framework. 1, 4, 6–9, 12–18, 20, 21, 24–26, 31

RDFS RDF Schema. 8

S4AC Social Semantic SPARQL Security for Access Control. 18, 20, 23, 26, 28, 30, 34, 37,

46, 48, 50

SHACL Shapes Constraint Language. 5, 8, 9, 12–16, 20–24, 32, 34, 35, 37, 39, 40, 42, 43,

45, 48, 49, 52, 54, 62, 63

ShEx Shape Expressions. 5, 9, 15, 22

SPARQL SPARQL Protocol And RDF Query Language. 9, 10, 14, 15, 18, 21, 22, 25, 27–30,

34, 37, 38

URI Uniform Resource Identifier. 6, 7, 25, 29, 36

W3C World Wide Web Consortium (W3C). 3–5, 9, 14, 17, 18, 20

WAC Web Access Control. 18, 27, 30

WWW World Wide Web. 3, 4, 6

CHAPTER 1

INTRODUCTION

As of 2018, the introduction of the General Data Protection Regulation (GDPR) [11] has

established regulations regarding the processing of a natural person’s data and the data

subject’s consent. Data may only be processed under specific lawful bases, one of which is

consent ([11], art. 6, 7). Therefore, accessing, storing, or processing one’s data requires

the data subject’s explicit consent. This requirement applies to all data collected on the

visited sites: our Web usage is stored as cookies, to which users agree upon entering the

site, or we fill out some information in a form. These forms are typically manually created

since the acquired data is commonly stored in databases where it is ambiguously described.

Therefore, machines do not understand the represented information and how it relates to

other data.

The goal of the Semantic Web is to make the Web machine-readable by making the data

unambiguous [3], allowing for automatic processing. Contrary to regular databases, entities

and their relationships are semantically described as Knowledge Graphs (KG) represented

using the Resource Description Framework (RDF) [24, 40]. Their meaning is unambiguous

[3], allowing for machines to understand the data they are processing. Since the employed

shape structure [17, 22] essentially describes what the data should look like, it enables

automatic data processing and access control applications based on consent. One possible

approach would be to automatically generate data editing user interfaces on top of this data

to simplify the KGs’ enriching process [22].

GDPR compliance regarding consent has not been taken into account for existing form

generation approaches. Over the past years, multiple publications [5, 27, 49] generated

forms on top of KGs to enrich them. Only one publication [27]1 incorporates options for

sharing created documents while granting either reading or writing access to certain people.

This sharing option is one step towards expressing consent regarding data access in the

context of forms. Other publications did not take privacy preferences or consent into account.

Achieving and checking compliance is a demanding task for companies considering the

number of directives in the GDPR, its extensiveness and the fact that it lacks specificity [47].

Thus, businesses could be aided in automating the enforcement of GDPR compliance by

applying access control to generated forms.
1WebProtégé – https://webprotege.stanford.edu/

https://webprotege.stanford.edu/

The focus of this dissertation is the application of access control to KGs to comply with

the GDPR in the context of giving consent. More specifically, access control and privacy

privileges will be applied to forms generated on top of these KGs, based on authentication

specifications expressed using the Privacy Preference Ontology (PPO). Thus, the data owner

can specify which parts of their data are accessible, which types of access are granted and

who can access this data using fine-grained access specifications. This solution is another

step towards automatically applying the GDPR to linked data.

The remainder of this dissertation is structured as follows. Chapter 2 introduces concepts

that this thesis builds upon. Then related work and research will be discussed in Chapter 3.

The resulting research questions and methodology are described in Chapter 4. Then, the

proposed solution and its implementation are presented in chapter 5. Chapter 6 describes

the evaluation methods and their results. Finally, the dissertation concludes in Chapter 7

with a prospect on possible future work, followed by the bibliography and appendix.

2

CHAPTER 2

BACKGROUND

This chapter presents some of the key concepts and describes background information

on what this dissertation builds upon to provide context. First, the Semantic Web and its

technologies will be explained, followed by a brief explanation of the GDPR and its core

principles.

2.1 Semantic Web and Linked Data

This section discusses the Semantic Web, including the World Wide Web and the Semantic

Web Stack, along with the supporting technologies and used syntaxes.

2.1.1 World Wide Web

The Semantic Web cannot be explained without mentioning its foundation, the World Wide

Web (WWW). The World Wide Web was invented by the English scientist Tim Berners-Lee

in 1989 while employed at Conseil Européen pour la Recherche Nucléaire (CERN), where it

started as a networked information project. The original proposal by Berners-Lee discusses

how information loss affected the organisation’s operations and describes a solution based

on a distributed hypertext system [2]. Hypertext is text with references to other text, called

hyperlinks, that are immediately accessible by the reader. Through these hypertext links

and multimedia techniques, anyone can easily browse and contribute to the Web. W3C, an

international community that develops open standards to ensure the long-term growth of

the Web [46], defines the WWW as “the universe of network-accessible information, the

embodiment of human knowledge” [38]. Making data available online, in a human-readable

format, nevertheless does not mean that this data is essentially readable by machines as

well.

2.1. SEMANTIC WEB AND LINKED DATA

2.1.2 Semantic Web

The Semantic Web is an extension of this World Wide Web. The term “Semantic Web” refers

to the Web of linked data, which provides a common framework that allows data with a

well-defined meaning to be shared and reused between diverse agents, which are entities,

programs or applications that can perform actions on the Web. W3C has set the standards

for this Web to make all available data interpretable by machines. To illustrate the growth of

the Semantic Web throughout the years, fig. 2.1 visualises the Linked Open Data Cloud1,

a diagram that depicts publicly available linked datasets. Whereas in May 2007 the chart

contained only 12 interlinked datasets, this number has grown to 1,301 in May 2021. It is

important to note that the Semantic Web and the “regular Web” do not coexist side-by-side

as two separate technologies. Instead, the Semantic Web lives on top of the World Wide Web

as a semantic extension layer. This layer compromises a set of formats and technologies,

providing formal descriptions of relationships and concepts [3], which will be explained later

in this chapter. Additionally, it allows for recording how the data relates to real-world objects.

The vast amount of data on the Web should be made available in a standard format and be

reachable and manageable by Semantic Web tools. The Web of Data is established by defin-

ing relationships among this data, which creates a collection of interrelated datasets called

Linked Data [42]. The Semantic Web relies on technologies like the Resource Description

Framework (RDF) [40] and Web Ontology Language (OWL) [39], to allow such functionality.

The ultimate goal is to enable computers to perform tasks by analysing data and develop

systems that can support trusted interactions.

In the Semantic Web, vocabularies define the concepts and relationships used to describe a

particular domain and are the basic building blocks for inference techniques. Inference in

the Semantic Web is generally characterised by automatically discovering new relationships

based on the data and information from the vocabulary [41]. Vocabularies are used to classify

terms used in a particular application and define relationships and possible constraints

[43]. A widely used example is Friend of a Friend (FOAF), devoted to linking people and

their information on the Web [4]. The word “vocabulary” can often be interchanged with

“ontology”. “Vocabulary” is more often used when strict formalism is unnecessary, while the

latter is often used for a more complex and possibly quite formal collection of terms.

One aspect of interest about the Semantic Web is its open-world assumption: what is not

known to be true is not necessarily false due to its open, distributed nature. In practice,

this implies that conclusions can only be made from explicitly stated hypotheses. From the

absence of a statement, one cannot infer that this statement is false. Interpreting ontology

assertions as rules or conditions about certain data thus violates this open-world assumption.
1Linked Open Data Cloud – https://www.lod-cloud.net/

4

https://www.lod-cloud.net/

CHAPTER 2. BACKGROUND

(a) May 1st, 2007. (b) September 19th, 2011

(c) August 22nd, 2017.
(d) May 5th, 2021.

Figure 2.1: Linked Open Data Cloud throughout the years. (https://www.lod-cloud.net/)

Languages like SHACL2 or ShEx3 allow to describe graph-based data and explicitly define

constraints and requirements that the data should satisfy. These languages will be explored

further in the next section, among other technologies in the Semantic Web Stack.

2.1.3 Semantic Web Stack

This section outlines the technologies used in the relevant layers of the Semantic Web Stack,

an overview of which can be found in fig. 2.24. Since the notion of a Semantic Web evolves

throughout the years, the depicted stack is a tweaked version [19]. The bottom layers

contain well-known technologies used in the hypertext web that provide the basis for the

Semantic Web. The middle layers of the stack contain technologies that W3C standardises

to enable the building of Semantic Web applications and will be the focus of this dissertation.

In contrast, the top layer technologies are not yet standardised and thus out of the scope of

this thesis.
2SHACL – https://www.w3.org/TR/shacl/
3ShEx – https://shex.io/shex-semantics/
4Semantic Web Stack – https://dbpedia.org/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%

2FSemantic_Web_Stack and [19]

5

https://www.lod-cloud.net/
https://www.w3.org/TR/shacl/
https://shex.io/shex-semantics/
https://dbpedia.org/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FSemantic_Web_Stack
https://dbpedia.org/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FSemantic_Web_Stack

2.1. SEMANTIC WEB AND LINKED DATA

Figure 2.2: The Semantic Web Stack. The dashed area includes the technologies relevant in
this thesis. Adapted from [19].

Some supporting technologies in the Semantic Web Stack are Uniform Resource Identifier

(URI)5 and Internationalized Resource Identifier (IRI)6. In the World Wide Web, and therefore

in the Semantic Web, to identify and access individual objects. Uniform Resource Identi-

fiers and Internationalized Resource Identifiers are parts of this universal set of identifiers

[25]. The IRI defines a complement of the URI protocol by expanding the set of allowed

characters to include most characters from the Universal Character Set. The valid IRI

https://päypal.com, for example, would be an invalid URI. Since a mapping from IRIs

to URIs is defined, one can use IRIs instead of URIs to identify resources [13]. A Uniform

Resource Locator (URL) is a form of URI that maps onto an access algorithm using network

protocols [25], such as https://google.com. URL is a subset of URI, identifying the location

of the resource.

Next, the Resource Description Framework (RDF)[40] is a directed, labelled graph data

format for representing information on the Web. Its goal is expressing the meaning of

information using a triple, much like a sentence contains a subject, verb and object. For

example, the statement

http://www.example.org/index.html has a creator whose value is John Doe

can be described using a triple [24]:

• The subject is the thing described by the statement.

In this case, the URL http://www.example.org/index.html.

• The predicate is a specific property of the thing the statement describes.

In this case, the word “creator”.
5URI – https://www.rfc-editor.org/rfc/rfc3986.html
6URI – https://www.rfc-editor.org/rfc/rfc5122.html

6

https://google.com
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc5122.html

CHAPTER 2. BACKGROUND

• The object is the value of this property.

In this case, the phrase “John Doe”.

Figure 2.3: Graph visualisation of this triple.

Figure 2.3 shows a visual representation of the triple. In this directed graph, the object and

subject are both nodes, while the relationship between them is categorised with a directed

edge. Using a URI to name each part of a triple allows for structured and semi-structured

data to be mixed and shared across different applications [40]. This triple structure will

re-occur in later chapters. One format for storing these triples is N-Triples, a line-based, plain

text format for encoding an RDF graph that is designed to be easy to parse and generate [1].

The simplest triple statement is a sequence of (subject, predicate, object) terms, for

example:

1 <http://example.org/#spiderman> <http://www.perceive.net/schemas/relationship/enemyOf>

2 <http://example.org/#green-goblin> .

Listing 2.1: N-Triple example.

A serialisation similar to N-triples is N-Quads, which allows encoding multiple graphs. A

simple example statement is the following, which is a sequence of (subject, predicate,

object) terms and an optional blank node label or IRI labeling what graph the triple belongs

to [6]:

1 <http://example.org/#spiderman> <http://www.perceive.net/schemas/relationship/enemyOf>

2 <http://example.org/#green-goblin> <http://example.org/graphs/spiderman> .

Listing 2.2: N-Quad example.

Knowledge Graphs (KG), also known as semantic networks, are used in many domains

and have many definitions. One possible definition is that a KG represents a network of

real-world entities expressed as triples and describes their relationships [14]. Figure 2.4 is

a simple example of a KG. One example of an agency that often uses KGs is the National

Aeronautics and Space Administration (NASA)7. Researchers and domain experts can enrich

KGs by manually inserting information themselves or inferring new knowledge by mining

relationships from multiple sources. However, enriching a KG requires experience with the

technologies mentioned above, meaning that domain experts often need assistance from

Semantic Web experts to do so.
7See https://ntrs.nasa.gov/search?q=knowledge%20graph

7

https://ntrs.nasa.gov/search?q=knowledge%20graph

2.1. SEMANTIC WEB AND LINKED DATA

Figure 2.4: An example Knowledge Graph (KG).

RDF Schema (RDFS)8 is a general-purpose language for representing simple RDF vocabu-

laries on the Web. Web Ontology Language (OWL) builds on RDFS and is a computational

logic-based language designed to convey complex knowledge about things, groups, and

relationships. This language allows for defining structured ontologies that enable richer inte-

gration and interoperability of data since OWL is open and extensible and can be distributed

across numerous systems [12]. Computer programs can use OWL documents, known as

ontologies, e.g. to make implicit knowledge explicit or verify the consistency of expressed

knowledge [39].

Shapes Constraint Language (SHACL) is the language for validating aforementioned RDF

graphs against a set of conditions, provided as shapes and other constructs expressed in

the form of an RDF graph. Possible conditions or constraints include that a specific shape

property can only exist at most one time or that a certain string should match a given regular

expression9, using the following constraints respectively:

1 sh:maxCount 1 .

2 sh:pattern '^B' .

Listing 2.3: Two simple examples of SHACL constraints.

8RDFS – https://www.w3.org/TR/PR-rdf-schema/
9"^B" means that the string should start with “B”.

8

https://www.w3.org/TR/PR-rdf-schema/

CHAPTER 2. BACKGROUND

Note that the prefix sh: is an abbreviation for http://www.w3.org/ns/shacl# in the code

examples throughout this dissertation.

In SHACL, RDF graphs are called shape graphs, while RDF graphs validated against a shape

graph are called data graphs. SHACL shape graphs are used to validate the data graphs and

are considered a description of the data graphs that satisfy its conditions. Validation takes a

data graph and a shapes graph as input. It generates a validation report that indicates the

conformance and all the validation results, optionally providing structural information on

how the violations in the data graph can be identified and fixed. Besides validation, these

descriptions could be used for building user interfaces and various other purposes [22].

Structural information expressed by SHACL is a significant aspect of the implementation in

chapter 5. Another language for describing and validating RDF nodes and graph structures is

ShEx [17]. SHACL and ShEx have similar goals and features, like the usage of shapes, node

and property constraints. ShEx emphasises human readability with its compact syntax that

follows traditional language design principles [44]. However, ShEx is not a W3C standard

and will therefore not be used in this dissertation.

SPARQL Protocol And RDF Query Language (SPARQL)10 is a set of specifications that provide

languages and protocols to query and manipulate RDF graph content on the Web or in an

RDF store [33]. It can be used to express queries across diverse data sources and can query

graph patterns, support aggregation, subqueries, negation, create values by expressions,

extensible value testing, and constraining queries by source RDF graph. Listing 2.4 is an

example of a simple SPARQL query, intending to find the title of a book from a given data

graph.

1 PREFIX dc: <http://purl.org/dc/elements/1.1/> .

2 SELECT ?title

3 WHERE {

4 <http://example.org/book/book1> dc:title ?title .

5 }

Listing 2.4: A simple SPARQL SELECT query.

The result of a SPARQL query is either a result set or an RDF graph. SPARQL has four query

forms to form result sets or RDF graphs, including SELECT and ASK. ASK queries are used to

test whether or not a query pattern has a solution but do not return any information about

possible solutions [33]. Listing 2.5 is an example query used to determine an entity named

“Alice” exists in the given data graph.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

2 ASK ?x foaf:name "Alice" .

Listing 2.5: A simple SPARQL ASK query.

10SPARQL – https://www.w3.org/TR/sparql11-query/

9

http://www.w3.org/ns/shacl#
https://www.w3.org/TR/sparql11-query/

2.2. GDPR

In the context of forms, SPARQL updates are used to execute the user’s changes in the form

to the actual data. SPARQL ASK queries can also be used to check certain information about

the requesting user to determine if they should be granted access to the requested resource.

This practice is further explored in chapter 5.

2.2 GDPR

Figure 2.5: Article 8 from the official original European Convention on Human Rights text,
1950.

“Everyone has the right to respect for his private and family life, his home and his corre-

spondence.” This article includes the right to privacy in the 1950 European Convention on

Human Rights (see fig. 2.511)[9]. With the vastly growing number of applications and the

increasing amount of data on the Web, the right to privacy is a rising concern. The European

Data Protection Directive from 1995 [10, 15] initially regulated the processing of personal

data within the European Union (EU), incited by the fast progression of technology and the

invention of the Internet. Each member state implemented their own law based on this

ruling, which established minimal data privacy and security standards. However, considering

the rapid evolution of technology and the accompanied amount of personal data usage on

the Web, this directive was quickly proved insufficient. Banner ads started to appear online,

financial institutions offered online banking, and social media applications gained popularity.

These rapid advancements caused the need for “a comprehensive approach on personal

data protection” [47].

The enforcement of the General Data Protection Regulation (GDPR) in May 2018 adds some

new principles, defining rules regarding the protection of processing personal data and its

free movement for a natural person. It aims to address several issues, such as creating a

greater level of uniformity by eliminating inconsistencies in national laws, providing better

privacy protection for individuals and better addressing contemporary privacy challenges

created by the wide usage of the Internet and its numerous applications. This regulation

applies to personal data processing, both automatically and as part of a filing system, even
11Source: https://www.echr.coe.int/Documents/Archives_1950_Convention_ENG.pdf

10

https://www.echr.coe.int/Documents/Archives_1950_Convention_ENG.pdf

CHAPTER 2. BACKGROUND

when transferred outside the EU. Europe signals its firm stance on privacy and security with

the introduction of the GDPR and issuing high fines for violations, which can mount up to

=C20 million or 4% of the company’s turnover [47].

For the average user, the introduction of the GDPR was most noticeable by the sudden

prominent presence of dialogue boxes on visited websites requesting the user’s “consent”

for the usage of personal data for multiple purposes. From product usage and actions on

Web pages to HTTP cookies, businesses gather user information and personal data daily.

The GDPR defines a set of rules organisations and businesses have to comply with when

processing any personal data since the processing of personal data is only legal under a

set of circumstances. Since the GDPR is such a vast set of rules, it can be challenging for

a company to ensure that their applications and data usage comply with the regulation.

Therefore, it would be helpful to automate this process and reduce its complexity. Since this

regulation is too vast to cover every discussed aspect, this dissertation focuses on consent

in the GDPR. The remainder of this section will thus expand on this facet. As an example, the

data subject must give explicit, unambiguous consent to process the data, or the processing

is necessary to comply with a legal obligation or perform a task in the public interest.

There are strict new rules about what constitutes a data subject’s consent to process their

information. Consent must be “freely given, specific, informed and unambiguous”, compared

to the earlier definition of simply being “unambiguous”. The controller should keep evidence

of consent, and any given consent can be withdrawn by the data subject whenever they

want. Requests for consent must be presented in clear and plain language and distinctly

distinguishable from other matters. For consent to be “specific”, the data subject must be

correctly notified about what kind of data will be processed, ranging from “name and date

of birth” to different kinds of “data provided by cookies” (e.g. for targeted ads), as often

prompted on websites nowadays.

A list of term definitions used throughout both the GDPR [11] and this dissertation can be

found in the glossary.

11

CHAPTER 3

RELATED WORK

This chapter describes the state of the art technologies and related research on automatic

form generation and access control. Related work on form generation regarding editing

Knowledge Graphs in the Semantic Web is described in the first section. The second presents

previous research on the topic of access control in the Semantic Web, as well as considered

vocabularies.

3.1 Form generation

In the context of improving the ease of conforming to the GDPR in the Semantic Web, this

section will explore previous attempts at generating forms on top of Knowledge Graphs and

related tools and publications. Due to the size of the Semantic Web and the immense amount

of available data, manually creating a form for each graph would require a tremendous

manual effort. Automating this process and enabling form generation on top of a graph

would simplify this procedure for all users.

This section first discusses Resource Description Framework (RDF) authoring tools, continuing

with other related work.

3.1.1 RDF Authoring Tools

In recent years, multiple form-based authoring tools have been proposed. Since Resource

Description Framework (RDF) is the standard for information representation in the Semantic

Web, this section will focus on RDF authoring tools, from mature ones before the introduction

of Shapes Constraint Language (SHACL) to more recent publications from the past year.

One resource often mentioned in work related to form generation is Protégé [27], a mature

graphical tool for ontology editing and knowledge acquisition. This tool is targeted towards

people familiar with languages used in the Semantic Web. Its primary purpose is to create

and validate the ontology schema. Instances can also be created, but this process requires

detailed knowledge of RDF and Web Ontology Language (OWL).

CHAPTER 3. RELATED WORK

In the Web version called WebProtégé1, pictured in fig. 3.1, the created ontology can be

either public or private. In the former case, the ontology as a whole can be shared with

a select number of other users, who can be allowed either write or read access. This

coarse-grained access control is one step towards giving explicit consent as to who can

access specific resources.

Figure 3.1: WebProtégé.

Another example of form-based RDF data-editing is RDForms2, whose main task is to

facilitate the construction of form-based RDF editors in a web environment. It relies on a

templating mechanism that describes the HTML form generation and the mapping from

specific RDF expressions to corresponding fields. Additionally, it can be used to present and

validate RDF graphs.

FORMULIS [23] is a data-driven RDF editor, making input suggestions based on the data

currently filled in. Their goal is to make the process easier for novice users by hiding RDF

notations and offering guidance by dynamically computing intelligent filling suggestions.

Additionally, form fields are suggested dynamically based on the fields and values already

entered, which improves usability. The forms can be nested as deeply as necessary to create

multiple interlinked entities at once. FORMULIS allows editing RDF data using generated

forms and automatically generated form fields, allowing for easier and supported enrichment

of Knowledge Graphs. However, FORMULIS is more targeted towards making dynamic input

and field suggestions based on available data.

A recent publication is called Schímatos [49], a Web application to create and edit RDF

data constrained and validated by shapes. Users can create and edit instance assertions,

as well as create and edit shapes. The application allows to automatically generate Web

forms from SHACL shapes, shown in fig. 3.2. The user can edit the generated Web form
1WebProtégé – https://webprotege.stanford.edu/
2RDForms – https://rdforms.org/

13

https://webprotege.stanford.edu/
https://rdforms.org/

3.1. FORM GENERATION

within the tool and update their SHACL definition using SPARQL updates. Some features,

like adding new predicates with constraints to the shape and thus a new form to the field,

require knowledge of the underlying languages from the user. Input validation is applied

using SHACL constraints, like limiting values between certain boundaries and conforming to

specific patterns.

Figure 3.2: Schímatos.

At the time of writing, the researchers behind Schímatos are working on redesigning internals

for the form generation. This project is a form generator for SHACL constraints compliant to

the W3C SHACL standard [48]. It is currently still in progress and has no related publication

yet, but worth mentioning nonetheless because of the focus of generating fields based on

SHACL constraints.

3.1.2 Supporting Tools & Mechanisms

The resources described in this subsection are different from the previous ones because they

are not specific to RDF or do not generate forms themselves.

A Web service called ActiveRaUL [5, 18] allows the automatic rendering of Web form-

based user interfaces from any input ontology (see fig. 3.3). Therefore, it is not bound

to RDF usage and more versatile. ActiveRaUL operates on a model defined according to

the RDFa User Interface Language (RaUL), a UI ontology. However, this tool was created

before the introduction of SHACL in 2016, which means that for generating a form, the

ontology assertions need to be interpreted as rules, violating the aforementioned open-

world assumption of the Semantic Web. Schímatos, a publication that was described in

the previous section and will be mentioned again later, makes use of ActiveRaUL in its

implementation.

A resource worth mentioning that does not generate the RDF forms itself is the Annotation

Profile Model [29]. This model is a configuration mechanism from which annotation tools

14

CHAPTER 3. RELATED WORK

Figure 3.3: ActiveRaUL.

can be automatically generated. It consists of a data capturing part and a presentation

part, called the Graph Pattern Model and Form Template Model, respectively. The Graph

Pattern model is both a query and a template language, heavily inspired by SPARQL and

responsible for capturing and creating subgraphs of triples. On the other hand, the Form

Template Model is a tree with references to variables of the Graph Pattern Model, providing

order, grouping and deviations. The term “annotation” implies the human authoring of

metadata. They mean to offer support for automatic generation of user-friendly form-based

editors, depending on which role the user has: annotation profile author, annotation profile

facilitator, or end-user. Annotation Profiles mainly target simplifying the editing process

for end users. The Annotation Profile Model can thus form a basis for implementing form

generation to which access control can be applied.

Lastly, Fresnel is a browser-independent presentation that provides an RDF vocabulary to

encode information about how to present Semantic Web to users, what content to show

and how to show it [32]. The vocabulary contains core RDF display concepts to promote

the exchange of presentation knowledge. Nevertheless, though Fresnel aims to present

Semantic Web content in a human-readable way, it does not generate forms.

3.1.3 Conclusion

Various publications already approached the practice of form generation in the context of

the Semantic Web. Some of these publications are not applied to data shapes because they

were published before the introduction of shape constraint languages like SHACL and ShEx.

Only WebProtégé has access restrictions implemented, albeit coarse-grained, in the context

of only being able to restrict a whole document compared to different specific resources.

15

3.2. ACCESS CONTROL

This dissertation will focus on applying fine-grained access control on forms generated

on top of Knowledge Graphs. Since Schímatos is a recent publication that automatically

generates forms for RDF data from SHACL shapes, this application will be a foundation for

the implementation.

3.2 Access Control

To comply with the GDPR and its regulation concerning the subject’s consent and processing

of their data, the data subject should give “specific and unambiguous” consent [47]. In

other words, the subjects should specify under which exact conditions their data can be

accessed. For example, specific colleagues or people with particular requirements might

access a confined part of their personal data. Additionally, the subject also has to specify

which actions are permitted: the user might be allowed to modify and delete some data or

only to read it. Access control refers to mediating access to resources on the basis of identity

and is generally policy-driven [36]. In this context, access control would be implemented

as defining which (parts of the) data can be accessed, for what purposes, and by whom.

This subsection describes related publications and goes deeper into vocabularies concerning

access control in the Semantic Web.

As a starting point, Kirrane et al. [21] classify more than 70 articles based on privacy, security

and policy issues to identify common trends and research gaps. Regarding effectiveness,

for example, both access control enforcements and administration need to be effective

in both performance and correctness. Unfortunately, there was no general access control

benchmark available at the time of writing. For this thesis, this survey was mainly a starting

point for gathering related work on the topic of access control. The identified shortcomings

in state of the art, related publications and authors referenced in this survey were further

explored to determine the direction of this dissertation.

Various methods have been explored in applying access control to data in the Semantic

Web. One can make an initial distinction between coarse-grained and fine-grained access

control considering the data that is being accessed. The former often means that access

control is applied to the whole document or graph, whereas the latter indicates that it can

be applied to specific triples or resources. On the other hand, there are different paradigms

to implement access control. Role-based access control grants permissions by assigning one

or multiple roles to users. On the other hand, attribute-based or policy-based access control

uses policies combining attributes, like user or resource attributes.

For example, Padia et al. [28] describe a framework to support attribute-based fine-grained

access control, which is done by representing the policies in a triple-based format. The

access policies are enforced by rewriting the user’s query before execution. They explore its

16

CHAPTER 3. RELATED WORK

feasibility and present an initial analysis on the relationship between access control policies,

query execution time and size of the RDF dataset.

Some more recent publications take into account the GDPR and its obligations regarding

processing and consent. For example, Kirrane et al. [20] present the Scalable Policy-aware

Linked Data Architecture For Privacy, Transparency and Compliance (SPECIAL) consent,

transparency and compliance demo system architecture. It uses Semantic Web technologies

for the expression and evaluation of information for GDPR compliance. In addition, their

system can be used to automatically check if existing data processing and sharing comply

with the GDPR. This system gives data subjects more control and enables data controllers

and processors to comply based on usage policies and events.

Vocabularies

As mentioned in chapter 2, vocabularies define the concepts and relationships of certain

domains. Different vocabularies were considered to implement the access control in this

dissertation. Previous research has been done and vocabularies have been created for ex-

pressing privacy preferences and consent. Since there are many available, practical options

to use in this context, creating a new vocabulary is out of the scope of this dissertation. This

thesis will use a previously defined vocabulary to express the authentication specifications,

aiming to focus on applying this access control to shapes and not reinvent the wheel. The

most relevant vocabularies will be discussed in this section.

An interesting option is GConsent, a consent ontology by Pandit et al. [30] based on an

analysis of modelling data requirements related to the consent lifecycle for GDPR compliance.

This ontology allows the modelling and representation of information related to compliance

in an extensible and comprehensive manner. Most other ontologies are dated from before

the employment of the GDPR, meaning that they do not take into account the entire lifecycle

of consent, including withdrawal or modification. This ontology also includes distinctions

in concepts like Purpose, Medium and PersonalDataCategory, which are meaningful and

necessary in real-world applications but will not be considered in this thesis.

Similarly, Fatema et al. [16] propose their Consent and Data Management Model (CDMM).

This consent ontology forms a semantic model of consent, making it specific and unambigu-

ous as required by the GDPR (see section 2.2). They aim to improve the integration of data

management across different information systems and helping controllers to demonstrate

compliance. Their vocabulary offers definitions for Purpose, Legal Basis and Data Controllers,

as well as Consent with expiry, withdrawal and provision. These concepts which will not be

discussed in detail in this thesis since they are out of scope. Since GConsent and CDMM are

more recent and W3C does not yet recommend their usage, they will not be used in this

thesis.

17

3.2. ACCESS CONTROL

With Data Privacy Vocabulary (DPV), Pandit et al. [31] aim to set a basis for establishing

interoperable standards, addressing several gaps by complementing existing W3C standards.

They provide a comprehensive and standardised way of annotating privacy policies, consent

receipts and records of personal data handling. Again, the annotation of policies and consent

receipts are not the focus of this dissertation.

A more mature option is the Web Access Control (WAC) vocabulary, which grants access to a

whole RDF document based on the user-defined Access Control List (ACL). However, it does

not provide fine-grained privacy measures specifying complex restrictions to access the data.

Social Semantic SPARQL Security for Access Control (S4AC) [37] and Privacy Preference

Ontology (PPO) [34, 35] both provide fine-grained privacy measures for the Semantic Web

up to triple level. Fine-grained access allows the application of restrictions to a resource,

statement or graph instead of being limited to restrictions on RDF graph level, which allows

for giving the specific consent required by the GDPR. They either reuse concepts from or

build on top of WAC. Both use SPARQL ASK queries for representing the access conditions.

The SHI3LD framework [7, 8] provides an authorisation mechanism for RDF stores, while

considering the mobile context in which data consumption occurs. Therefore, it is grounded

on two ontologies: S4AC deals with core access control concepts and PRISSMA focuses on

the mobile context [8]. Considering the mobile context is out of the scope of this thesis.

Conclusion

Fine-grained access control has already been implemented to data in the Semantic Web

by rewriting the user’s query before execution. However, access control techniques have

not been applied to shape constraint languages nor directly to forms or form generation.

As discussed in the previous section, there are already multiple applications that allow the

automatic generation of forms on top of RDF data. Applying access control to this form

generation might allow more comprehensive adoption of the Semantic Web by supporting

data subjects and data processors in complying with the GDPR.

Not to reinvent the wheel, multiple vocabularies were considered to implement access

control in this dissertation. While younger ones are based on the definition of consent in the

GDPR, the more mature W3C recommendations also provide fine-grained privacy measures.

More specifically, PPO and S4AC will be further explored in Chapter 5.

18

CHAPTER 4

RESEARCH QUESTIONS AND

METHODOLOGY

In this chapter, we define the research questions and related hypotheses identified through

the research challenges and existing work described in the previous chapter. This thesis will

comprise both form generation, as well as GDPR compliance, in the context of a person’s

private data and giving explicit consent.

4.1 Research Questions

As summarised in the previous chapter, little research can be found on the application of

access control and consent on the combination of shape constraint languages and form

generation. Recent work on vocabularies does take into account the GDPR and its restrictions,

but they do not consider applying the expressed consent and access control to shapes and

forms generated on top of these shapes. Bridging the gap between this framework and

available implementations would benefit processors and controllers that should comply

with this regulation and the data subject on giving their specific, explicit and unambiguous

consent.

These findings lead to the research question that summarises the research topic of this

dissertation:

Research Question. How can we comply with the GDPR for giving explicit and specific

consent while automatically generating forms on a Knowledge Graph?

This research question can be split into two subquestions:

Subquestion 1. How can we apply access control to a shape to satisfy the GDPR in the

context of giving consent?

Subquestion 2. How can we apply the subject’s explicit consent to a form generated on a

Knowledge Graph?

4.2. RESEARCH METHODOLOGY

This first question focuses on applying the subject’s authorisation preferences on the SHACL

shape. On the other hand, the second question concentrates on applying these authorisation

specifications on the form that is being generated on top of the relevant Knowledge Graph.

4.2 Research Methodology

Following the structure of the research questions, a hypothesis will be formulated for each of

the subquestions.

Fine-grained access control is preferred over coarse-grained to precisely determine which

resources the user can access to comply with the GDPR in the context of specific and explicit

consent, which leads to the following hypothesis:

Main Hypothesis. A subject’s data shape can comply with the GDPR’s definition of consent

by using a fine-grained specification of access control permissions, as defined by the data

subject using Privacy Preference Ontology (PPO).

An intermediate model was created to map the subject’s specific consent to a more general

authorisation specification. In its turn, the model can be applied to the SHACL shape and the

form generation. This leads to the following hypotheses:

Hypothesis 1. Access control can be applied to a SHACL shape using an intermediate

model to modify and add constraints to the given shape with nested properties.

Hypothesis 2. A subject’s explicit and specific consent can be applied to form generation

without nesting using an intermediate model that adds access-related properties to the

JavaScript objects for each field.

Schímatos will be used as a starting point for the form generation, as this is a recent

publication that implements form generation and input validation. Schímatos also uses

the SHACL standard to express conditions for validating Resource Description Framework

(RDF) based Knowledge Graphs. Privacy Preference Ontology (PPO) was chosen as a starting

vocabulary because it is a W3C recommendation that provides fine-grained privacy measures

up to triple level. In addition, Social Semantic SPARQL Security for Access Control (S4AC)

is similar to PPO in terms of application and specifications. It will thus be considered as

a second language to test the intermediate model created for applying the authorisation

specifications.

20

CHAPTER 5

IMPLEMENTATION

This chapter describes the steps taken and considerations raised for the application of access

control to SHACL shapes in the context of form generation using Schímatos. The first section

describes the starting point of the implementation, followed by the implementation of the

authorisation specifications. This section will dive deeper into the goals, vocabularies and

methodologies.

5.1 Schímatos

As mentioned in the chapter on related work (chapter 3), Schímatos [49] is a recently pub-

lished form-based Web application that can be used to create and edit Resource Description

Framework (RDF) data constrained and validated by shapes, as well as edit the shapes

themselves. It is available to download as an HTML+CSS/JavaScript package1 and can be

run in the browser2.

The main components in the architecture of Schímatos (fig. 5.1) are the Sidebar Management,

the Context Management, the Form Display and the triplestores. The Sidebar Management

allows the user to select data targets and shape graphs, which are queried from the

corresponding triplestores using SPARQL Protocol And RDF Query Language (SPARQL) queries.

The triplestores return the data in JavaScript Object Notation (JSON), a standardised data

format. This data is stored in the Context Management and used to generate objects to

create a form. Finally, the form is generated and visualised using the Form Display and the

Input Mappings. At this point, the user can use the generated form to make modifications to

the selected shape and target data.

In order to achieve a generated form for a given target using a specified shape, the user

follows the next steps. First, the user queries a data graph to select the desired data

target using the Target Selection. Next, the SHACL Selection is used to determine which

conditions the chosen data graph should satisfy. The selected Shapes Constraint Language

(SHACL) shape determines what the form should look like, including the form fields and their
1Schímatos package – http://schimatos.org
2Schímatos online – http://schimatos.github.io

http://schimatos.org
http://schimatos.github.io

5.1. SCHÍMATOS

validation. On the other hand, the selected data target is the person whose data will be

represented in the generated form, so the user can then update this target person’s data.

Both the data graph and the shapes graphs are available from configurable triplestores. In

addition, the sidebar component of the application contains Target and SHACL Selection

components (fig. 5.2a and fig. 5.2b), which the user can utilise to select the desired data

targets and SHACL shapes.

The triples obtained from these triplestores are transformed into JSON, and saved into the

Form and Storage Contexts. The Form Context transforms the JSON objects to JavaScript

objects with additional properties to generate each field in the Form Display. After the form

on the selected entity has been generated using the selected SHACL shape(s), any current

information on the selected target is visualised, and the user is prompted to fill out any

missing information. Once the form is completed, the obtained data, and the class and

datatype annotations, are submitted to a Knowledge Graph over a configurable SPARQL

endpoint. The outline of the application’s architecture can be found in fig. 5.1

Initially, Schímatos did not have access control implemented. This thesis aims to combine

conforming with consent in the GDPR and form generation on top of KGs. Therefore,

the data subject could be enabled to express their consent to accessing, processing and

modification of specific parts of their data in Schímatos. This consent could then be applied

to the generated forms. The red locks in fig. 5.1 indicate the two Access Control options

implemented by this dissertation. These options, namely applying access control to the

form in Schímatos and the SHACL shape using an intermediate model, will be described in

section 5.2.4.

Forms in the application are automatically generated from SHACL shapes, automatically

choosing a correct input field type and adding input validation. For example, the sh:in

constraint generates a dropdown field with a limited set of value options to choose from,

while sh:pattern automatically applies the desired regular expression to the user’s input.

On the other hand, the value range constraints sh:minCount and sh:maxCount allow or

disallow the user to add new values to the property or indicate that at least a certain number

of values is required for the given property for the form to be valid. The forms themselves

and their SHACL definitons can be edited in the tool using SPARQL updates. The JavaScript

package and the online version have a local instance of Wikidata3 set as the default data

graph and reuse existing ShEx files translated to SHACL.

3Wikidata – https://www.wikidata.org/

22

https://www.wikidata.org/

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Main outline of the architecture of Schímatos. Adapted from [49].

5.2 Authorisation Specifications

This section describes the parts implemented to achieve access control in the context of

consent, applied to forms generated in Schímatos. The first section will clarify some goals.

The following section will describe some of the priming steps, followed by an explanation of

Privacy Preference Ontology (PPO) and Social Semantic SPARQL Security for Access Control

(S4AC). Finally, this section will conclude with how the interpretation of these vocabularies

led to an intermediate model for applying the expressed authorisation specification.

5.2.1 Goals

This dissertation aims to implement a data subject’s explicit and specific consent to forms

generated on top of Knowledge Graphs. This section will explore two methods of applying

a user-created authorisation specification to SHACL shapes using an intermediate model.

This model will act as a layer between the expressed consent and the target data or form by

determining which access applies to which parts of the data for a given requester.

First, applying the access control to the form generated in Schímatos is developed as a

starting point. Consequently, this approach is then used to create a more generalised

23

5.2. AUTHORISATION SPECIFICATIONS

(a) Target Selection component.

(b) SHACL Selection Component.

Figure 5.2: Sidebar components in Schímatos.

method by applying the model to the underlying SHACL shape. The shape’s constraints

are then modified and enriched to accommodate the expressed consent and include the

required access control. This generalised approach could later be used for other purposes

and possibly different applications for generating forms. The application to the triples of the

SHACL constraints is visualised as access control option A in fig. 5.1, while option B is the

application to the objects that are used to generate the form. This intermediate model will

be created based on PPO to act as an abstraction layer between SHACL and the authorisation

specification.

5.2.2 First Steps

Schímatos does not have any privacy or authorisation specifications implemented. The first

step is to create a simple authentication system, allowing to check who is currently using

the application. This system is based on a Resource Description Framework (RDF) file parsed

to create a fixed set of profiles. A simplified example of such a profile can be found in listing

5.1. Schema.org was chosen as the vocabulary to express the users’ properties since it is

a widely used collaborative community activity for creating and maintaining schemas for

structured data on the Internet4.

Saving user profiles in Turtle serialisation allows us to parse them into a local RDF triple store,

which enables directly executing the ASK queries expressed in the authorisation specification
4Schema.org – https://schema.org/

24

https://schema.org/

CHAPTER 5. IMPLEMENTATION

on the profile of the current user. The fact that the ASK queries can be executed directly

simplifies the implementation. Instead of an RDF store, a Labeled Property Graph is another

storage option that can be queried. RDF stores are more widely used and implemented

since RDF is a W3C standard for data exchange in the Web. The RDFStore5 package allows

creating an RDF store using the Turtle serialisation and querying its entries with SPARQL

queries. Another library is Comunica6, a modular knowledge graph querying framework that

also allows to execute SPARQL queries in JavaScript apps. However, RDFStore has a more

straightforward way of importing a local file as a store, while Comunica mainly supports

using online sources as stores.

1 @prefix ex: <http://example.org/> .

2 @prefix schema: <http://schema.org/> .

3 ex:Daniel a schema:Person ;

4 schema:givenName "Daniel" ;

5 schema:familyName "Johnson" ;

6 schema:email "daniel@company.com" ;

7 schema:homeLocation [

8 schema:streetAddress "Example Lane 123" ;

9 schema:postalCode "94043" ;

10 schema:addressCountry "US"

11] ;

12 ex:emergencyContact [

13 schema:givenName "Daniel Sr." ;

14 schema:familyName "Johnson" ;

15 schema:email "danielsr@example.com" ;

16] ;

17 ex:ownsResources ("https://example.org/Daniel);

18 schema:hasOccupation ex:employee .

19 ex:employee a schema:Occupation .

Listing 5.1: Example user profile for an employee. Short version of listing 1 in appendix A.

Each profile represents a person and has a given name and a unique e-mail address used to

identify them. They each also have a list of owned resources, saved as URIs. In addition,

other properties of this person, such as their occupation and home country, can be used in

the authorisation process to determine if the current profile has access to a given resource.

While using Schímatos, the user has the option to log in by selecting a profile, visualised

using their name and role, from the authentication dropdown (see fig. 5.3a). The user that

is currently logged in, will be referred to as the requester. It is worth mentioning that the

application can be used without logging in. The initial functionality without access control

is thus retained to keep the original testing environment, where the user can perform any

possible action to the presented form without limited access. The login mechanism allows

to simulate access control from the point of view of various users with different roles. This
5RDFStore – https://www.npmjs.com/package/rdfstore
6Comunica – https://comunica.dev/

25

https://www.npmjs.com/package/rdfstore
https://comunica.dev/

5.2. AUTHORISATION SPECIFICATIONS

(a) The authentication dropdown.

(b) The authentication specification form.

Figure 5.3: Implemented authentication components in Schímatos.

authentication system is a simple auxiliary model used as an example to implement the

actual access control for generated forms. Setting up an account system with passwords

and security is outside of the scope of this dissertation.

Apart from logging in, it should also be possible to specify which privacy preferences

must be taken into account while generating the forms. Since this thesis focuses on the

actual application of the expressed consent, the preferred privacy specifications can be

entered by the user (fig. 5.3b) and are processed in the local application. Saving these

authorisation specifications in the local state simplifies the implementation process. The

privacy specifications should be expressed in Turtle semantics and using Privacy Preference

Ontology (PPO). Similarly to the user profiles mentioned earlier in this section, the privacy

specifications are parsed from Turtle into a local RDF store, from which the intermediate

model (section 5.2.4) will be built. By default, there is no privacy preference specified,

retaining the original functionality provided by Schímatos. The access control implemented

in this thesis is an illustration and can be turned on and off as desired.

5.2.3 Access Control Vocabularies

Before describing the intermediate authorisation specification model used in the implemen-

tation, two access control vocabularies will be discussed in more detail. Out of the various

vocabularies discussed in section 3.2, Privacy Preference Ontology (PPO) and Social Semantic

SPARQL Security for Access Control (S4AC) are the two mature W3C recommendations that

provide fine-grained access control conditions.

26

CHAPTER 5. IMPLEMENTATION

Privacy Preference Ontology (PPO)

The first and most mature vocabulary that will be explored is Privacy Preference Ontology

(PPO) [34]. It was developed on top of the existing Web Access Control (WAC)[45] vocabulary

to provide fine-grained privacy measures, which WAC did not support. An overview of PPO

can be found in fig. 5.4.

Figure 5.4: An overview of the Privacy Preference Ontology. Taken from [34].

PPO has classes for Privacy Preferences, Conditions and Access Spaces. The main class,

PrivacyPreference, contains properties to define multiple aspects of the privacy preference.

Conditions are used to define restrictions within a privacy preference. For example, a

condition can indicate if the privacy preference applies to statements that have a particular

resource as their subject or that contain a certain literal. Indicating which requesters are

granted access is defined by the AccessSpace. This AccessSpace contains SPARQL ASK

queries with attributes and properties to satisfy. These queries are thus applied to the

requester’s profile and return either True or False whether the requester’s information

satisfies the graph pattern [34]. If the query returns a positive answer, the requester is

granted access to the statement. The type of access is defined using the Web Access Control

(WAC) vocabulary, which uses Access Control List (ACL) [45] Read and Write privileges.

Lastly, each privacy preference also indicates to which resource, statement or named graph

it applies and should thus be restricted.

The example query in listing 5.2 shows how a microblog post can be restricted to users

that share an interest similar to the concept used to tag the post, which is Linked Data in

this case [34]. Line 5 indicates to which resource the PrivacyPreference applies and the

granted access is specified in line 6. Lines 7 to 10 describe the condition that the tag of

the specified resource should be equal to http://dbpedia.org/resource/Linked_Data for

the PrivacyPreference to be applicable. The AccessSpace of lines 11 to 14 defines the ASK

27

5.2. AUTHORISATION SPECIFICATIONS

query that is executed to determine if the requester will be granted access. In this case, the

query checks if the requester is interested in the topic of Linked Data.

1 @prefix ppo: <https://vocab.deri.ie/ppo#> .

2 <http://www.example.org/pp2>

3 a ppo:PrivacyPreference ;

4 ppo:appliesToResource <http://smob.me/user/xyz/post1>;

5 ppo:assignAccess acl:Read ;

6 ppo:hasCondition [

7 ppo:hasProperty tag:Tag ;

8 ppo:resourceAsObject <http://dbpedia.org/resource/Linked_Data>

9];

10 ppo:hasAccessSpace [

11 ppo:hasAccessQuery

12 " ASK { ?x foaf:topic_interest <http://dbpedia.org/resource/Linked_Data> }"

13].

Listing 5.2: PPO example.

Social Semantic SPARQL Security for Access Control (S4AC)

Another vocabulary is Social Semantic SPARQL Security for Access Control (S4AC) [37], a

lightweight ontology that also allows specifying fine-grained access control policies. An

overview of S4AC can be found in fig. 5.5.

Figure 5.5: An overview of the S4AC Vocabulary. Taken from [37].

The core of S4AC is the Access Condition (AC), a SPARQL ASK clause that establishes which

conditions should be met to gain access to a resource. An Access Condition is said to be

verified if the ASK query returns true. Conditions can be further restrained by using tags

and contextual information. For example, the former can indicate a social aspect of the

accessing user, and the latter includes requirements concerning temporal features. An

Access Condition Set (ACS) is a set of Access Conditions. S4AC distinguishes two subclasses:

disjunctive and conjunctive ACS. A disjunctive ACS is verified if at least one of the contained

28

CHAPTER 5. IMPLEMENTATION

access conditions is verified. For a conjunctive ACS to be verified, every contained access

condition should be verified. Finally, an Access Evaluation Context (AEC) can be defined by

binding conditions to distinct values to constrain the ASK query evaluation and provide an

access evaluation context. For example,

<?resource, <http://MyExample.net#doc>>

binds the URI of the resource to <http://MyExample.net#doc> [37]. With this binding, the

variable name ?resource can be used in the ASK query, which will be expanded with a

SPARQL BIND statement binding the variable name to its value. It is worth noting that these

bindings, and thus the access conditions themselves, are not limited to the attributes of

the requester. The type of privilege that is granted is defined by the Access Privilege and

can be either Create, Read, Update or Delete (CRUD), the four basic functions of persistent

storage in computer programming.

The rule in listing 5.3 defines a policy that only named graphs tagged “family” are con-

strained. Update access is granted to requesters if they have a hasParent relationship

with the provider and if the resource is accessed after December 31st at 23:59 [37]. The

AccessCondition of lines 6 to 16 describes the temporal validity in lines 7 to 11. The ASK

query of lines 13 and 14 defines the requirement that the requesting user should have a

hasParent relationship with the provider, who is the creator if the requested resource. The

granted access is expressed in line 18. Finally, line 19 that the AccessTaggingRule applies to

graphs tagged “family”.

1 @prefix s4ac: <https://ns.inria.fr/s4ac/v2#> .

2

3 <http://MyExample.net/expolicies>

4 a s4ac:AccessTaggingRule;

5 s4ac:hasAccessConditionSet [

6 s4ac:hasAccessCondition [

7 s4ac:hasValidity [

8 time:hasBeginning [

9 time:inXSDDateTime 2011-12-31T23:59:00

10];

11];

12 s4ac:hasQueryAsk [

13 ASK { ?resource dcterms:creator ?provider .

14 ?provider rel:hasParent ?user }

15];

16];

17];

18 s4ac:hasAccessPrivilege s4ac:Update;

19 s4ac:hasTag scot:Tag family@en.

Listing 5.3: S4AC example.

29

5.2. AUTHORISATION SPECIFICATIONS

Comparison

Social Semantic SPARQL Security for Access Control (S4AC) differs from Privacy Preference

Ontology (PPO) in several aspects. The former allows considering the context, like temporal

validity and number of allowed accesses. Using S4AC, graphs can also be marked with sets

of tags. Considering the access context and using tags to distinguish different “categories”

of data would allow for additional access restriction options, but this is beyond the scope of

this thesis. On the other hand, PPO does not offer dedicated tagging functionality and does

not consider any access context. This makes PPO less extensive and fewer aspects have to

be considered while implementing.

PPO is built upon WAC and does not distinguish different Write actions. While generating a

form, a greater distinction is preferred when it comes to Write actions to determine which

buttons and fields should be enabled in the form. On the other hand, S4AC uses CRUD and

distinguishes Create, Update and Delete within the WAC Write class. This would allow for

more nuanced implementation of access control in this thesis.

The ASK queries in PPO are applied to the requester’s profile. On the other hand, queries

in S4AC are not specified to only apply to the requester’s attributes. In PPO, the resource

conditions are expressed using separate clauses outside of the SPARQL query. These two

definitions would therefore require different implementation approaches for checking the

access conditions.

In addition, S4AC makes a distinction between disjunctive and conjunctive ACS, which PPO

does not. This distinction enables more access restriction options and more flexibility, but

would require more nuances in the implementation of access control in this dissertation.

Based on the code example given in the publication, this thesis assumes that PPO applies

conjunctive properties within a condition, while conditions within a PrivacyPreference are

applied disjunctively.

This thesis will use PPO as a starting point since this ontology is more concise than S4AC.

Some of S4AC’s features are out of the scope of this thesis, while others would require

a higher implementation effort to achieve even more flexibility. In this dissertation, the

functionality of PPO suffices for implementing access control.

5.2.4 Intermediate Authorisation Specification Model

As a means of representing authentication specifications in Schímatos, a model was created

for internally parsing and applying authorisation specifications expressed by the data subject.

This model is grounded on other ontologies and reuses concepts from Web Access Control

and Privacy Preference Ontology mentioned above. The primary purpose of this model is

30

CHAPTER 5. IMPLEMENTATION

to map specifications written in different privacy ontologies like PPO to this model. These

specifications can then be applied to the generated form. Secondly, it aims to act as an

abstraction layer between the authentication specification and the shape constraints.

Model Design

This section features a description of the intermediate authorisation specification model,

along with the design choices and an illustrative example. The model is an intermediate

model since it acts as a layer between the expressed authorisation specifications and the

shape constraints those specifications apply to. This model is thus a layer between what is

considered to be the data subject’s explicit consent and the data that is being processed

and modified. Privacy Preference Ontology (PPO) was used as the primary reference for

the model design since the first and main focus was to apply authorisation specifications

expressed in PPO to the shape constraints and the form generation.

The intermediate authentication specification model is a JavaScript object containing dictio-

naries of objects. The main object is the Policy, which applies to a resource with a given URI.

Each Policy has a reference to one or multiple UserAccessConditions and DataAccessCon-

ditions, both of which are discussed in the next paragraph. The intermediate model has a

dictionary for each of these three object types.

The UserAccessConditions (UAC) are used to check if the requester has the right characteris-

tics to be allowed access granted by the Policy. Each UAC has an associated SPARQL ASK

query executed on the current user’s profile to determine if the Policy applies to this user.

Therefore, the data subject’s consent can define which characteristics a person has to meet

before gaining the associated type of access. On the other hand, DataAccessConditions

(DAC) determine if the Policy applies to a certain triple or resource. Each Policy applies to

data that meets the requirements described by its associated DAC. These conditions apply

to data with an rdf:subject, rdf:object, rdf:Property or rdfs:Literal. Therefore, the

data subject can accurately specify which exact resources should be granted the associated

access type. The specifications of these two condition types contribute to the specificity and

explicitness of the subject’s consent.

As mentioned in chapter 2, N-Triples (subject, predicate, object) are not the only seri-

alisation to express Resource Description Framework (RDF) statements: N-Quads (subject,

predicate, object, graph) add the graph label to an RDF triple to indicate which graph

the triple is considered to be a part of. Thus, if the data is expressed in N-Quads, the model

could be extended to consider the context graph of the quad. Consequently, it is possible to

determine whether or not the data is accessible to gain some more coarse-grained options.

This would allow the data subject more freedom in the expression of their consent. However,

this was not implemented yet and would be considered future work.

31

5.2. AUTHORISATION SPECIFICATIONS

Mode Allows
Create create new information
Read retrieve and read the contents
Update modify existing information
Delete delete information

Table 5.1: The four actions in the CRUD paradigm.

Mode Allows
acl:Read read the contents, including querying
acl:Write overwrite the contents, including deleting, modifying

and adding
acl:Append add information to the end of it, but not remove or

modify any other information
acl:Control set the Access Control List for this themselves

Table 5.2: The modes of access in WAC as defined by the ACL vocabulary [45].

Finally, the access granted by the Policy is described using an internal AccessType object.

After determining if a Policy applies to the current requester and a specific resource, the

AccessType determines which type of access the data subject grants. The AccessType object

thus allows the expression of explicit consent for the given action. This object represents the

basic Create, Read, Update, Delete (CRUD) actions (table 5.1), as opposed to using the four

access modes described by Access Control List (ACL) as classes, as seen in table 5.2 [45].

The acl:Control mode can be confusing, as it is an indirect way of specifying and allows

only read-write mode, but not read-only. acl:Control allows the controller to read/write but

does not deny read access to anyone else [45]. Additionally, Create, Read, Update, Delete

(CRUD) operations allow for more fine-grained applications than the Access Control List (ACL)

access classes and are widely used in the computer science world.

A visual representation of the intermediate model can be found in fig. 5.6. A code example

can be found in listing 2 in appendix A.

Model Application

The intermediate model described in the previous section is implemented in two ways in

this dissertation. Both options are built upon the same idea. In fig. 5.1, these two options

are indicated as access control options A and B, respectively.

The first option is more tied to the specific implementation of Schímatos since the first goal

was to apply the authorisation specification to the form generated using a SHACL shape.

This first application method is based on creating an extra object that indicates which types

of access are granted to each field. Schímatos uses multiple dictionaries with overarching

keys in the process of generating a form. Applying the authentication specification here

essentially generates a new object containing the access granted to each of the fields. This

32

CHAPTER 5. IMPLEMENTATION

Figure 5.6: The intermediate model.

object is added to the set of objects that are taken into account while generating the form

fields.

Before generating a field, the necessary information is fetched from these objects, which

determines the type and other properties of the field. The granted access for this property

defines whether the field is visible and enabled and if the corresponding buttons are enabled.

Figure 5.7 is an example of a generated field where the requester has Read, Update and

Create rights, but cannot Delete any values. Four distinct access options give the requester

the following rights and functionality:

• canRead allows the requesting user to see the form field and its content. If this access

is not granted, the user can only see the field’s label, but not its value.

• canUpdate allows the requester to edit the field. If this access is granted, canRead

access is assumed to be True as well. The field is thus visible and enabled. If canRead

is granted but canUpdate is not, the field value is visible, but the field itself is disabled.

• canCreate allows the requester to add new values to a property, as long as this property

still meets its constraints. For example, if a property has a sh:maxCount of 2, the user

will not be able to add a third value, as this would violate the original constraints. If

enabled, the add-button allows for creating new values.

• canDelete allows the requester to delete the property’s values if it has any. The delete

button is enabled accordingly.

33

5.2. AUTHORISATION SPECIFICATIONS

Figure 5.7: The requester has no Delete access to this shape property.

This first step focused on implementing the disabling and hiding of fields and their function-

ality in Schímatos, paving the way for a more generalised approach.

The model can be applied to the SHACL triples as a generalisation, applying the authorisation

specification to the shape constraints before the form is generated. For each triple, the

intermediate model determines which policies can be applied based on the requester and

the triple’s subject, predicate and object. If the requester does not have any access rights,

the whole property is disregarded in the shape, which means that the corresponding field

will not be generated. If the requester has access rights, the acquired access types are

added as triples to the property’s constraints. The example triple in listing 5.4 adds Read

access to the schema:givenName7 property.

1 <http://schema.org/givenName> <http://example.org/access> <https://ns.inria.fr/s4ac/v2#Read> .

Listing 5.4: Access triple granting Read access to schema:givenName.

The added access triples use Social Semantic SPARQL Security for Access Control (S4AC)’s

CRUD classes and accompanying hasAccessPrivilege property to reuse predefined classes

and properties from an existing vocabulary. If the requester should be allowed to see which

fields they do not have access to, this method can also indicate that they have no rights

instead of removing the triple from the shape altogether. Thus the field can be generated

without visible values or functionality for the requester. In this case, the requester could only

see the field’s title and be aware that they have no access to this data.

In the actual implementation of this model application, the intermediate model is not applied

directly to the shape triples because of the complexity of the implementation and the limited

amount of time. Instead, they are applied to the JavaScript Object Notation (JSON) format

of the SHACL shape, which are a direct conversion from the triples to a JavaScript Object

acquired from the triplestore using a comprehensive SPARQL query. The triples added for

access control are then part of the shape used to generate the form. So, for example, Read

access can be added to the givenName property in listing 5.5, as seen in listing 5.6.

7Schema – http://schema.org/

34

http://schema.org/

CHAPTER 5. IMPLEMENTATION

1 {

2 "datatype": "http://www.w3.org/2001/XMLSchema#string",

3 "minCount": "1",

4 "name": "given name",

5 "pathType": "path",

6 "path": "http://schema.org/givenName"

7 }

Listing 5.5: JSON representation of the original authentication specification.

1 {

2 "datatype": "http://www.w3.org/2001/XMLSchema#string",

3 "minCount": "1",

4 "name": "given name",

5 "pathType": "path",

6 "path": "http://schema.org/givenName",

7 "s4ac:hasAccessPrivilege": [

8 "s4ac:Read"

9]

10 }

Listing 5.6: Listing 5.5, now with an added access control triple.

The implementation of the form generation in Schímatos needs to be modified to consider

these additional triples in the actual form generation to ensure that the buttons and fields are

disabled and generated accordingly. In the current implementation, Schímatos still applies

access control using the first implementation option. The modified SHACL shape from the

second application option does not generate the form due to implementation limitations and

time constraints.

Modified Settings

The implementation of the intermediate model allows for setting modifiers. For example, the

boolean defaultAllow indicates if the requester has access to a triple for which no access

rule has been defined.

Additionally, the boolean strict can be modified to change the way multiple access rules

are handled. If strict is set to True, only the most restricting applicable rules are taken

into account. For example, the following policies

• Allow Read+Update on mother and father’s names

• Allow Read on father’s name

would result in the granted access of option A in table 5.3. On the other hand, setting strict

to False would allow the least restricting access. This case would then result in the granted

35

5.2. AUTHORISATION SPECIFICATIONS

access of option B in table 5.3 using the same policies. These modifiers can be adapted to

the required functionalities.

Option Resource Create Read Update Delete

A mother’s name × Ø Ø ×
father’s name × Ø × ×

B mother’s name × Ø Ø ×
father’s name × Ø Ø ×

Table 5.3: Allowed access for the given example.

PPO Mapping

Privacy Preference Ontology (PPO) (fig. 5.4) is the main reference and starting point for

creating the intermediate model, thus sharing multiple common aspects with this inter-

mediate presentation. This model simplifies seven aspects of PPO in order to make them

more abstract and applicable to the shapes used to generate the forms. For example,

the model’s appliesTo comprises PPO’s appliesToResource, appliesToStatement and

appliesToNamedGraph. PPO’s resourceAsSubject and classAsSubject are reduced to

hasSubject, while hasObject covers resourceAsObject and classAsObject. These sim-

plifications were made because the intermediate model saves resources, classes and graphs

using their Uniform Resource Identifier (URI).

Since PPO uses the Access Control List (ACL) access classes, these are mapped to the Create,

Read, Update, Delete (CRUD) operations used in the intermediate model using the rules from

table 5.4. So, for example, if the user has acl:Append privileges on a given resource they

can execute Create and Read actions on this resource, but cannot Update or Delete any

information. As mentioned before, acl:Control is complex and confusing and will thus be

set equivalent to acl:Write to retain simplicity. Additionally, since this application concerns

forms, each class that allows the user to modify the data in any way requires the form field

to be visible, hence the Read action should be allowed.

CRUD acl:Read acl:Write acl:Append acl:Control

Create × Ø Ø Ø

Read Ø Ø Ø Ø

Update × Ø × Ø

Delete × Ø × Ø

Table 5.4: The mapping from ACL to Create, Read, Update and Delete actions.

36

CHAPTER 5. IMPLEMENTATION

S4AC Mapping

As mentioned before, the main focus of the intermediate model was initially to apply the

authorisation specifications to the shape constraints to modify the form generation to comply

with the General Data Protection Regulation (GDPR)’s consent requirements. Additionally, as

a possible adaptation, the model could act as an abstraction layer between the authorisation

specification and the SHACL shape used to generate the form.. After applying the Privacy

Preference Ontology (PPO)-based, user-created specifications to the shape constraints, Social

Semantic SPARQL Security for Access Control (S4AC) (fig. 5.5) is the logical next step since

PPO and S4AC have similar goals. This mapping would go hand in hand with attempting to

make the model more of an abstract layer.

In the process of mapping an S4AC example to the intermediate model, the implementation

of S4AC conditions turned out to differ from PPO, and thus from the initial intermediate

model, more than expected. The main difference and greatest implementation effort is the

different approach in the application of the conditions. In PPO, the access conditions for

the requester were expressed using SPARQL ASK queries in an AccessSpace. In contrast,

the conditions applied to the data were passed as separate properties of a Condition. S4AC

uses SPARQL ASK queries to express the access conditions for both the requester and the

requested resources.

An approach that could bridge the gap between these two options would be the usage of

SPARQL ASK queries to determine the applicable policies for each part of the data. In this

case, the PPO Condition could be converted to an ASK query that would be executed on the

data. The current model applies the query related to the requester. The queries that apply

to the requested data on the one hand and the requester, on the other hand, should be

extracted to apply them to different data stores. Determining the feasibility of this extraction

is considered to be future work.

Other aspects from S4AC that are not yet present in the intermediate model will be discussed

in the section on future work (section 7.2). Later work can expand into these aspects and their

implementations since time constraints did not allow these adaptations to be implemented

in the actual intermediate model.

37

CHAPTER 6

EVALUATION

In this chapter, the performance of the intermediate model presented in the previous chapter

will be evaluated. This evaluation consists of two parts. First, in section 6.1, the used data

shapes and authorisation specifications are provided. This input data is then evaluated, and

the results are discussed in section 6.2.

This thesis does not consider the complexity of the ASK queries in the UserAccessConditions

of the intermediate model. These queries were implemented using the RDFStore JavaScript

library1; thus, their complexity is limited by the package’s functionality. Furthermore, as

described in section 6.1, the SPARQL ASK queries are simple and only apply to the user’s

employment as an illustration.

6.1 Shapes and Authorisation Specifications

This section introduces the data and shapes that are used throughout the experiments

explored in the next section. First, the different user profiles are described, as well as the

data subject and requester, followed by the used authorisation specifications.

6.1.1 Users

In the following examples, four user profiles will be used: Alice is an Admin, Bob is a Team

Lead, and Carol is an Employee. David, the data subject and consequently the owner of the

data used in the examples, is an Employee as well (see listing 1). This distinction is made

because the owner of the data inherently has different access rights than other employees.

As mentioned in section 5.2.2, these four people are the four possible profiles the user

can use to log in to test the authorisation specification applied in Schímatos. These three

occupations (Admin, Team Lead and Employee) are used in the authorisation specification

throughout this thesis.

The ASK queries used for defining the access spaces based on these occupations are provided

in listing 6.1.
1RDFStore – https://www.npmjs.com/package/rdfstore

https://www.npmjs.com/package/rdfstore

CHAPTER 6. EVALUATION

1 ex:adminSpace a ppo:AccessSpace ;

2 ppo:hasAccessQuery

3 "ASK { ?x <http://schema.org/hasOccupation> <http://example.org/admin> }" .

4 ex:teamLeadSpace a ppo:AccessSpace ;

5 ppo:hasAccessQuery

6 "ASK { ?x <http://schema.org/hasOccupation> <http://example.org/teamLead> }" .

7 ex:employeeSpace a ppo:AccessSpace ;

8 ppo:hasAccessQuery

9 "ASK { ?x <http://schema.org/hasOccupation> <http://example.org/employee> }" .

Listing 6.1: The ASK queries used to determine the access spaces.

These experiments assume that Daniel, mentioned above, is the data subject and owner.

The requester in each case is Carol, a fellow employee of the company. The applicable

AccessSpace is, therefore, ex:employeeSpace.

6.1.2 Authorisation Specifications

The consent expressed by Daniel is expressed using the Privacy Preference Ontology (PPO).

These experiments assume that the expressed conditions apply to Daniels data and that

Carol is the requester. The granted access will be visualised in tables to increase legibility.

As mentioned in section 5.2.4, Schímatos employs a different method for applying the access

control to the generated form, limiting the access control application and producing different

results in some cases. Therefore, applying the intermediate model to the SHACL shapes will

be approached separately to the application to Schímatos in the following experiments.

6.2 Experiments

In this section, the experiments carried out on the intermediate model and the form gen-

eration in Schímatos will be explained. The first subsection describes the main features

centred around access control, such as allowing Access Control List (ACL) operations and

granting Create, Read, Update, Delete (CRUD) access. The next subsection explores the

concept of nesting. The final subsection compares the mapping of different vocabularies to

the intermediate model.

6.2.1 Granting Access

This section focuses on granting different combinations of access types and evaluating the

different outcomes from both the intermediate model and the generated form.

39

6.2. EXPERIMENTS

Mode Allows Visible/Enabled
(no access) Nothing The property’s input field is

not visible, existing values
are hidden, add/delete but-
tons are disabled

Read Retrieving and reading the ex-
isting values of the property

The property’s input field is
visible but disabled, contain-
ing any existing values

Write Overwriting and deleting ex-
isting property values, adding
new values

The property’s input field is
visible and enabled, the add
and delete buttons are en-
abled

Append Adding property values, but
not modifying or deleting ex-
isting values

The add buttons are enabled,
an input field is visible and en-
abled, but existing values are
not visible

Read + Append Retrieving and reading exist-
ing property values, adding
new values

existing values are visible but
their input fields are disabled,
an empty input field is enabled
to add new values, the add
button is enabled

Read + Write Equal to Write (1)
Write + Append Equal to Write (2)
Read + Write + Append Equal to Write (1,2)

Table 6.1: Possible combinations of ACL access types and their interpretation in form context.

Table 5.2 describes each access control type in ACL and table 5.4 shows the mapping from

ACL to Create, Read, Update, Delete (CRUD) access types. The acl:Control type will be

assumed to be equivalent to acl:Write control. An explanation of the ACL access types,

possible combinations and how they could be interpreted in the context of a form can be

found in table 6.1. Some additional remarks on the mode combinations that are equal to

acl:Write access:

1. Values in a form cannot be modified without allowing acl:Read access since the

modification of data values relies mainly on using input fields. Therefore, this thesis

assumes that granting acl:Write access in the context of forms implies that the

requester should also be able to acl:Read the values.

2. The acl:Append access is a subclass of acl:Write. While acl:Write allows every

possible modification to the properties, acl:Append only allows adding new values.

Since acl:Append is a subclass of acl:Write, granting acl:Write access consequently

grants acl:Append access.

Table 6.2 shows eight possible combinations of Access Control List (ACL) access control

modes from Privacy Preference Ontology (PPO). These examples show how the intermediate

model is applied using different access control combinations, illustrating how the options

interact and how the user can use these options to achieve the desired goal. These access

options are applied using the intermediate model on the SHACL shape (table 6.3) and

40

CHAPTER 6. EVALUATION

Resource acl:Read acl:Write acl:Append

schema:givenName Ø × ×
schema:familyName × Ø ×
schema:hasOccupation × × Ø

schema:email Ø Ø ×
schema:salary × Ø Ø

schema:holiday Ø × Ø

schema:addressCountry Ø Ø Ø

schema:postalCode × × ×

Table 6.2: Different combinations of granted access.

Resource Create Read Update Delete

schema:givenName × Ø × ×
schema:familyName Ø Ø” Ø Ø

schema:hasOccupation Ø Ø” × ×
schema:email Ø Ø Ø Ø

schema:salary Ø Ø” Ø Ø

schema:holiday Ø Ø × ×
schema:addressCountry Ø Ø Ø Ø

schema:postalCode × × × ×

Table 6.3: The access applied in to the SHACL shape.

visualised on the form generated with Schímatos (table 6.4). As mentioned above, different

access options are implemented. These access types are represented in the form generation

using different components, like enabled or disabled buttons and hidden, disabled or visible

fields. Cases where acl:Append is granted consequently since it is a subclass of acl:Write

are indicated using quoted checkmarks (Ø”).

The intermediate model and Schímatos apply these eight combinations of access con-

trol similarly, although the results should be clarified more in-depth. For example, the

hasOccupation property only provides acl:Append access, meaning that new values can

be added, but existing values should not be visible, removable, nor editable. However, if

acl:Append access is granted in the current implementation, Read and Create access is

inherently granted, while Update access is not. Granting acl:Append without acl:Write

access causes the input field to remain disabled since there is no distinction between a field

with an existing value and a newly added value. These cases are indicated in table 6.4 using

Add-button Value Input field Delete button
Resource enabled visible enabled enabled
schema:givenName × Ø × ×
schema:familyName Ø Ø Ø Ø

schema:hasOccupation Ø Ø ×’ ×
schema:email Ø Ø Ø Ø

schema:salary Ø Ø Ø Ø

schema:holiday Ø Ø ×’ ×
schema:addressCountry Ø Ø Ø Ø

schema:postalCode × × × ×

Table 6.4: The access applied in the form generated by Schímatos.

41

6.2. EXPERIMENTS

a single-quoted cross (×’). Creating this distinction to improve the application of different

access types further is considered to be future work.

Therefore, access is granted correctly to the SHACL shape in 32 out of 32 values (100%) and

30 out of 32 values (93.75%) in the generated form.

6.2.2 Nesting

This subsection explores the concept of nesting in Shapes Constraint Language (SHACL)

shapes.

1 ex:Shape a sh:NodeShape ;

2 sh:property [

3 sh:name "first property" ;

4] ;

5 sh:property [

6 sh:name "parent" ;

7 sh:property [

8 sh:name "child" ;

9]

10] ;

11 sh:property [

12 sh:name "A: parent of B" ;

13 sh:property [

14 sh:name "B: child of A, parent of C" ;

15 sh:property [

16 sh:name "C: child of B and A" ;

17]

18]

19] .

Listing 6.2: An example of a shape with nested properties.

Some properties of a shape might have properties themselves. In this thesis, this will be

referred to as nesting. In the case of nesting, the parent is the property that encapsulates

another property, which is the child. This child can also contain other properties and thus be

a parent of these properties as well. Therefore, a property can simultaneously be a parent

and a child.

An example shape to illustrate the concept of nesting can be found in listing 6.2. The

example Shape has three properties. The first property is not nested since it does not

contain any other properties. The second property is nested and the parent of an enclosing

property child. The third property of Shape has multiple levels of nesting: property B is the

child of property A but also has a child C. C is thus a direct child of B and an indirect child of

A, while A is the parent of both B and C.

42

CHAPTER 6. EVALUATION

1 {

2 "policies": {

3 "ex:Policy-A": {

4 "hasAccess": ["read", "update"],

5 "hasUserAccessCondition": ["ex:UAC-A"],

6 "hasDataCondition": ["ex:DAC-A", "ex:DAC-B"]

7 },

8 },

9 "dataAccessConditions": {

10 "ex:DAC-A": { "hasProperty": ["schema:givenName"] },

11 "ex:DAC-B": { "hasProperty": ["schema:familyName"] },

12 },

13 "userAccessConditions": {

14 "ex:UAC-A": { "hasAskQuery": ["ASK { ... }"] },

15 "ex:UAC-B": { "hasAskQuery": ["ASK { ... }"] }

16 }

17 }

Listing 6.3: A simplified example of an intermediate model instance.

Nesting in the context of the authorisation specification, i.e. nesting conditions, will not be

considered. Nesting is not applicable to access conditions due to the structure of the objects

and the concept of access control. Figure 5.6 and listing 6.2 illustrate and confirm these

statements. An UserAccessCondition (UAC) or DataAccessCondition (DAC) can only be the

child of a Policy. A UAC contains one ASK query and cannot be the parent of another condition,

be it a UAC or a DAC. A DAC contains requirements that apply to data resources and cannot

incapsulate another condition either. The only nested objects in the intermediate model are

the UACs and DACs inherently nested in their parent Policy. A Policy can contain multiple

UACs and DACs to combine conditions and make the Policy more specific. Policies are thus

the parents of UACs and DACs, but cannot be the children of other objects. Therefore, the

structure defined in the intermediate model does not allow for conditions nested within other

conditions.

The simplified version of the used shape and the applied access specification can be found

in listing 3 and table 6.5. In the first part of this experiment, the allowed access type will

be limited to Read access for brevity and reduced cases. Table 6.6 explores the results of

applying three combinations of Read and Write access on a parent and its two children

using the intermediate model on the SHACL shape.

The SHACL shape is designed to handle different parent-child relationships and various

combinations of granted and denied access. The following questions will be addressed in

this experiment:

43

6.2. EXPERIMENTS

Granted Access Granted
Specified (SHACL) Access

Property Access no passDown with passDown (Schímatos)
property A Ø Ø Ø Ø

property B × × × ×
parent A Ø Ø Ø Ø

child A1 Ø Ø Ø ×
child A2 × × Ø” n/a

parent B × × × ×
child B1 Ø ×’ ×’ ×’
child B2 × × × n/a

parent C Ø Ø Ø Ø

child/parent C1 Ø Ø Ø ×
child C1.1 Ø Ø Ø ×
child C1.2 × × Ø” n/a

child/parent C2 × × Ø” n/a
child C2.1 Ø ×’ Ø” n/a
child C2.2 × × Ø” n/a

parent D Ø Ø Ø Ø

child/parent D1 Ø Ø Ø ×
child/parent D1.1 Ø Ø Ø ×

child D1.1.1 Ø Ø Ø ×

Table 6.5: The specified access and resulting granted access when applying the intermediate
model to the SHACL shape and Schímatos.

Granted Access
Specified (SHACL)

Property Access no passDown with passDown

parent A R R R
child A1 W R R
child A2 × × R

parent B W W W
child B1 R R W
child B2 × × W

parent C × × ×
child C1 R × ×
child C2 W × ×

Table 6.6: The specified access and resulting granted access when applying the intermediate
model to the SHACL shape, using a combination of Read (R) and Write (W) access.

44

CHAPTER 6. EVALUATION

• Can access control be applied to nested properties?

– What is the limit of nested levels?

• If parent and child have different access types, how are they applied?

– If more access is granted to the parent than the child, does the child inherit his

parent’s access type?

– Correspondingly, if more access is granted to the child, does the child still inherit

the parent’s access?

Applying the intermediate model to the SHACL shape results in granted access shown in

table 6.5, from which the following conclusions can be made:

• Access control can be applied to nested properties.

– This experiment uses a limit of three nested levels to illustrate the inheritance of

granted access.

• If the parent and child properties have different access types, the data subject can

choose if the more restricted child should inherit the access granted by the parent

property.

By leaving this choice to the data subject, they can explicitly indicate how their ex-

pressed consent for access should be applied. The passDown setting can be set to True

if more restricted child properties can inherit access. By default, this setting is set to

False to avoid wrongly granted access.

– If the parent has Read access while the child does not, access is not passed down

from parent to child. In case the passDown setting is enabled by the data subject,

the child inherits any access from the parent. These cases are indicated in table 6.5

using quoted checkmarks (Ø”) since these are instances where the child’s access

was not given explicitly by the data subject.

Similarly, if the parent (parent B in table 6.6) has Write access while the child (B1)

only has Read access, the child’s granted access will not be modified. Therefore,

access to the child is not granted unless explicitly stated.

– If the parent has no Read access, but the child does, the child inherits the parent’s

denied access and can thus not be read. Three such cases are indicated in table 6.5

using a single-quoted cross (×’). If the parent (parent A in table 6.6 has Read access

while the child (A1) has Write access, the child’s granted access will be restricted

to Read. This behaviour is implemented to avoid accidentally granting access to

resources that are part of restricted data.

If the data subject enables the passDown setting, the parent’s more restricted

45

6.2. EXPERIMENTS

access shall be passed down to the child, even when access to the child has been

explicitly granted.

Out of the 19 elements without passDown, 17 instances are applied correctly. At the same

time, two cases (×’) can be interpreted and may be considered either correct or incorrect

depending on the meaning accepted by the data subject. If the data subject has enabled

the passDown setting, 18 out of the 19 cases are applied as specified by the data subject,

while one case (×’) is open for interpretation. For these three interpretable cases, another

option setting could be created for the user to allow access to these cases explicitly.

The form generated by Schímatos can be found in fig. 1, while the granted access is

expressed in table 6.5. Since the only granted type of access is Read, the buttons and input

fields are disabled in the generated form. It is noteworthy that Schímatos only generates

the first child of a property due to an unfixed error in the original form generation of the

application. These non-generated cases are indicated as “n/a” in the table. In this web

application, the form generation is based on a set of JavaScript objects, while the object

that determines the applied access control is based on these original objects. Unfortunately,

these objects were not optimised to support the generation of nested properties, which

explains that only the first child is generated. On the other hand, the implementation and

representation of these nested objects in Schímatos make applying access rules to the

nested fields a more complex task.

6.2.3 Expressing Vocabularies

This section focuses on the vocabularies that can be expressed using the intermediate

model. For both Privacy Preference Ontology (PPO) (fig. 5.4) and Social Semantic SPARQL

Security for Access Control (S4AC) (fig. 5.5), this section will evaluate and compare how

many features from each ontology can be expressed.

The classes and properties of PPO and S4AC mapped to the properties of the intermediate

model can be found in table 6.7 and table 6.8, respectively. Here we see that in PPO 16 out

of 16 features (100%) can be expressed, while for S4AC, this is 11 out of 25 (44%).

The main reason S4AC has fewer equivalent features in the intermediate model is described

in section 5.2.4. S4AC introduces concepts that were either out of scope, like the access

evaluation context and its related properties (hasAccessEvaluationContext, hasVariable,

hasDescription, ...), or the nuance differences between S4AC’s AccessCondition and the

intermediate model’s DataAccessCondition and UserAccessCondition. Additionally, the

model makes no distinction between conjunctive and disjunctive condition sets.

46

CHAPTER 6. EVALUATION

Class/Property Intermediate Model
PrivacyPreference Policy
AccessSpace UserAccessCondition
Condition DataAccessCondition
hasAccessSpace hasUserAccessCondition
hasAccessQuery hasASKQuery
hasAccess hasAccess
appliesToResource appliesTo
appliesToStatement appliesTo
appliesToNamedGraph appliesTo
hasCondition hasDataAccessCondition
resourceAsSubject hasSubject
resourceAsObject hasObject
classAsSubject hasSubject
classAsObject hasObject
hasProperty hasProperty
hasLiteral hasLiteral
Total: 16 16

Table 6.7: Features of PPO mapped to the intermediate model.

Class/Property Intermediate Model
AccessCondition UserAccessCondition & DataAccessCondition
AccessPrivilege AccessType
AccessPolicy Policy
AccessEvaluationContext ×
AccessConditionSet ×
DisjunctiveAccessConditionSet ×
ConjunctiveAccessConditionSet ×
Create s4ac:Create
Read s4ac:Read
Update s4ac:Update
Delete s4ac:Delete
Value ×
Variable ×
hasAccessPrivilege hasAccess
hasAccessConditionSet ×
hasAccessEvaluationContext ×
hasAccessCondition hasUserAccessCondition
isAccessConditionOf ×
hasName ×
hasVariable ×
hasVarName ×
hasValue ×
hasDescription ×
hasQueryAsk hasASKQuery
appliesTo appliesTo
Total: 25 11

Table 6.8: Features of S4AC mapped to the intermediate model.

47

CHAPTER 7

CONCLUSION

The main objective of this dissertation was to automatically generate forms on a Knowledge

Graph while complying with the General Data Protection Regulation (GDPR) for giving explicit

and specific consent. These goals were addressed by implementing an intermediate model

that applies the expressed access control and consent in two ways. On the one hand, this

model was applied to the JavaScript objects that generate the forms in Schímatos. On the

other hand, it was applied directly to the Shapes Constraint Language (SHACL) shape used

to generate the form and its constraints.

Experiments show that these two methods produce mixed results due to their differences

in implementation. First, granting different types of Access Control List (ACL) access was

explored. Applying eight combinations using ACL resulted in 32 values expressed in Create,

Read, Update, Delete (CRUD) access. The model applied 100% of these values correctly

in the SHACL shape, and 93.75% was expressed correctly in the generated form. Next,

Schímatos provides limited support for nesting and granted access in nested fields. On the

other hand, the intermediate model supports nesting at least up to three levels, where the

data subject has the option to explicitly allow the children to inherit the parents’ granted

access types. Finally, mapping the features of both Privacy Preference Ontology (PPO) and

Social Semantic SPARQL Security for Access Control (S4AC) to those of the intermediate

model demonstrated that PPO could be fully mapped to this model, while the model could

express 44% of S4AC’s features.

The remainder of this chapter will first revisit the research questions and hypotheses

established in chapter 4. Finally, opportunities for future work will be explored in section 7.2.

CHAPTER 7. CONCLUSION

7.1 Fulfilment of Research Objectives

This section will first explore the answers to the subquestions and evaluate their hypotheses

before answering the main research question and assessing its hypothesis.

Subquestion 1. How can we apply access control to a shape to satisfy the GDPR in the

context of giving consent?

Hypothesis 1. Access control can be applied to a SHACL shape using an intermediate

model to modify and add constraints to the given shape with nested properties.

Section 6.2.1 demonstrated that access expressed by the data subject in Privacy Preference

Ontology (PPO) could be applied to a SHACL shape using the intermediate model described

in section 5.2.4. This model adds constraints to the given shape to indicate the access

granted to its properties. As seen in section 6.2.2, access control can be applied to up to

three levels of nested properties. This hypothesis can therefore be accepted.

Subquestion 2. How can we apply the subject’s explicit consent to a form generated on a

Knowledge Graph?

Hypothesis 2. A subject’s explicit and specific consent can be applied to form generation

without nesting using an intermediate model that adds access-related properties to the

JavaScript objects for each field.

As with the first subquestion, section 6.2.1 indicated that access expressed in PPO could

be applied to forms generated in Schímatos using the intermediate model designed in

section 5.2.4. The model creates a new JavaScript object that contains the access granted

for each of the properties used to generate the form fields.

In this case, however, applying the access control is limited by the application’s implemen-

tation in the context of nested properties. Therefore, the hypothesis can be accepted for

generated forms without nested properties.

After discussing the two subquestions, these answers can be combined to answer the main

research question:

Research Question. How can we comply with the GDPR for giving explicit and specific

consent while automatically generating forms on a Knowledge Graph?

Therefore, the following main hypothesis can be accepted:

Main Hypothesis. A subject’s data shape can comply with the GDPR’s definition of consent

by using a fine-grained specification of access control permissions, as defined by the data

subject using PPO.

49

7.2. REMAINING CHALLENGES AND FUTURE DIRECTIONS

7.2 Remaining Challenges and Future Directions

Various opportunities for future work have been mentioned in earlier sections. This final

section will elaborate on these remaining challenges.

N-Quads. The intermediate model currently employs N-triples in its implementation. The

implementation of the intermediate model could be expanded to support N-Quads and allow

more options for expressing consent.

User-Friendly Consent Specification. The current implementation assumes that the

data subject is familiar with Turtle semantics and can express his consent using Privacy

Preference Ontology (PPO). Creating a more user-friendly way of expressing explicit and

specific consent would allow inexperienced users to express their consent without knowing

the underlying technologies.

Abstraction. Future studies could address the abstraction created by the intermediate

format. As mentioned in section 5.2.4 and section 6.2.3, the current intermediate model

does not allow for a full abstraction between the consent expressed in any authorisation

specification and the goal shape or the generated form. The current model is more tied to

Privacy Preference Ontology (PPO) and not easily generalisable to other ontologies like Social

Semantic SPARQL Security for Access Control (S4AC). Later research could attempt to further

generalise the intermediate model by adapting the application of the access conditions as

described in section 5.2.4.

Access Context. Along with these generalisations, the intermediate model could be

expanded to allow taking into account the access context. For example, features could be

added to allow checking the number of allowed accesses and time constraints. Additionally, a

description could be added to inform the user why access has been denied without revealing

the actual access conditions.

Logical Condition Sets. Social Semantic SPARQL Security for Access Control (S4AC)

supports the distinction between conjunctive and disjunctive condition sets. Including some

logical division in applying the intermediate model and an indication of the condition set

type would increase the flexibility of the authorisation specifications.

Nesting. The application of the authorisation specification to nested properties could

be improved to increase the correctness of the model, mainly in the forms generated by

50

CHAPTER 7. CONCLUSION

Schímatos. Since Schímatos does not allow complete functionality of nested fields and the

generation is based on a set of JavaScript objects, access is not correctly granted. This

implementation could be reworked to apply the authorisation specifications to both the

parent fields and the nested children.

Strictness. The intermediate model could be expanded to support more specific settings

for strictness, allowing more flexibility for the data owner concerning the granted access.

These settings would allow the data subject to specify how strict the model should approach

combinations of denied and granted access.

New and Existing Fields. As for the implementation of the granted access in the form

generation, a distinction could be made to improve the application of acl:Append access.

For example, the current implementation does not enable the input field if the Update access

is not granted along with the Create access granted by acl:Append. An improvement would

be to add an indication to the generated fields, indicating if they are linked to existing values

in the data shape or newly added fields by the requester for adding a new value. This

additional indication would allow enabling the new input fields without compromising the

Read and Update access of the existing values.

51

LIST OF FIGURES

2.1 Linked Open Data Cloud throughout the years. (https://www.lod-cloud.net/) 5

2.2 The Semantic Web Stack. The dashed area includes the technologies relevant

in this thesis. Adapted from [19]. 6

2.3 Graph visualisation of this triple. 7

2.4 An example Knowledge Graph (KG). 8

2.5 Article 8 from the official original European Convention on Human Rights text,

1950. 10

3.1 WebProtégé. 13

3.2 Schímatos. 14

3.3 ActiveRaUL. 15

5.1 Main outline of the architecture of Schímatos. Adapted from [49]. 23

5.2 Sidebar components in Schímatos. 24

5.3 Implemented authentication components in Schímatos. 26

5.4 An overview of the Privacy Preference Ontology. Taken from [34]. 27

5.5 An overview of the S4AC Vocabulary. Taken from [37]. 28

5.6 The intermediate model. 33

5.7 The requester has no Delete access to this shape property. 34

1 Form generated using the SHACL shape used in the nesting experiment. 63

https://www.lod-cloud.net/

LIST OF TABLES

5.1 The four actions in the CRUD paradigm. 32

5.2 The modes of access in WAC as defined by the ACL vocabulary [45]. 32

5.3 Allowed access for the given example. 36

5.4 The mapping from ACL to Create, Read, Update and Delete actions. 36

6.1 Possible combinations of ACL access types and their interpretation in form

context. 40

6.2 Different combinations of granted access. 41

6.3 The access applied in to the SHACL shape. 41

6.4 The access applied in the form generated by Schímatos. 41

6.5 The specified access and resulting granted access when applying the intermedi-

ate model to the SHACL shape and Schímatos. 44

6.6 The specified access and resulting granted access when applying the intermedi-

ate model to the SHACL shape, using a combination of Read (R) and Write (W)

access. 44

6.7 Features of PPO mapped to the intermediate model. 47

6.8 Features of S4AC mapped to the intermediate model. 47

LIST OF EXAMPLES

2.1 N-Triple example. 7

2.2 N-Quad example. 7

2.3 Two simple examples of SHACL constraints. 8

2.4 A simple SPARQL SELECT query. 9

2.5 A simple SPARQL ASK query. 9

5.1 Example user profile for an employee. Short version of listing 1 in appendix A. . 25

5.2 PPO example. 28

5.3 S4AC example. 29

5.4 Access triple granting Read access to schema:givenName. 34

5.5 JSON representation of the original authentication specification. 35

5.6 Listing 5.5, now with an added access control triple. 35

6.1 The ASK queries used to determine the access spaces. 39

6.2 An example of a shape with nested properties. 42

6.3 A simplified example of an intermediate model instance. 43

1 Example user profile for an employee named David. 59

2 An example of an authentication specification expressed using the intermediate

model. 60

3 Simplified version of the SHACL shape used in the nesting experiment. 62

BIBLIOGRAPHY

[1] Beckett, D.: Rdf 1.1 n-triples (February 2014),

https://www.w3.org/TR/n-triples/

[2] Berners-Lee, T.: Information management: A proposal. Tech. rep. (1989)

[3] Berners-Lee, T., Connolly, D., Stein, L.A., Swick, R.: The semantic web (August 2000),

https://www.w3.org/2000/Talks/0906-xmlweb-tbl/text.htm

[4] Brickley, D., Miller, L.: Foaf vocabulary specification 0.99 (January 2014),

http://xmlns.com/foaf/spec/

[5] Butt, A.S., Haller, A., Liu, S., Xie, L., et al.: Activeraul: A web form-based user interface

to create and maintain rdf data. In: International Semantic Web Conference (Posters &

Demos). pp. 117–120 (2013)

[6] Carothers, G.: Rdf 1.1 n-quads (February 2014),

https://www.w3.org/TR/n-quads/

[7] Costabello, L., Villata, S., Delaforge, N., Gandon, F.: Linked data access goes mobile:

Context-aware authorization for graph stores. In: LDOW-5th WWW Workshop on Linked

Data on the Web-2012 (2012)

[8] Costabello, L., Villata, S., Gandon, F.: Context-aware access control for rdf graph stores.

In: ECAI. vol. 242, pp. 282–287 (2012)

[9] Council of Europe: European Convention on Human Rights (1950),

https://www.echr.coe.int/Documents/Convention_ENG.pdf

[10] Council of European Union: Directive 95/46/ec (1995),

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31995L0046

[11] Council of European Union: Regulation (EU) 2016/679 (2016),

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679

[12] Daly, J.: World wide web consortium issues web ontology language candidate recom-

mendations (August 2003),

https://www.w3.org/2003/08/owl-pressrelease.html.en

https://www.w3.org/TR/n-triples/
https://www.w3.org/2000/Talks/0906-xmlweb-tbl/text.htm
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/n-quads/
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31995L0046
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://www.w3.org/2003/08/owl-pressrelease.html.en

BIBLIOGRAPHY

[13] Dürst, M., Suignard, M.: Internationalized resource identifiers (iris). Tech. rep., RFC

3987, January (2005)

[14] Education, I.C.: Knowledge graph (2021),

https://www.ibm.com/cloud/learn/knowledge-graph

[15] European Data Protection Supervisor (EDPS): The history of the general data protection

regulation (2018),

https://edps.europa.eu/data-protection/data-protection/legislation/

history-general-data-protection-regulation_en

[16] Fatema, K., Hadziselimovic, E., Pandit, H.J., Debruyne, C., Lewis, D., O’Sullivan, D.:

Compliance through informed consent: Semantic based consent permission and data

management model. In: PrivOn@ ISWC (2017)

[17] Group, S.C.: Shex – shape expressions (2012),

https://shex.io/

[18] Haller, A., Groza, T., Rosenberg, F.: Interacting with linked data via semantically

annotated widgets. In: Joint International Semantic Technology Conference. pp. 300–317.

Springer (2011)

[19] Idehen, K.U.: Semantic web layer cake tweak, explained (July 2017),

https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab

[20] Kirrane, S., Fernández, J.D., Dullaert, W., Milosevic, U., Polleres, A., Bonatti, P.A., Wen-

ning, R., Drozd, O., Raschke, P.: A scalable consent, transparency and compliance

architecture. In: European Semantic Web Conference. pp. 131–136. Springer (2018)

[21] Kirrane, S., Villata, S., dAquin, M.: Privacy, security and policies: A review of problems

and solutions with semantic web technologies. Semantic Web 9(2), 153–161 (2018)

[22] Knublauch, H., Kontokostas, D.: Shapes constraint language (shacl) (2017),

https://www.w3.org/TR/shacl/

[23] Maillot, P., Ferré, S., Cellier, P., Ducassé, M., Partouche, F.: Nested forms with dynamic

suggestions for quality rdf authoring. In: International Conference on Database and

Expert Systems Applications. pp. 35–45. Springer (2017)

[24] Manola, F., Miller, E., McBride, B.: Rdf primer (2004),

https://www.w3.org/TR/rdf-primer/

[25] Masinter, L., Berners-Lee, T., Fielding, R.T.: Uniform resource identifier (uri): Generic

syntax. Network Working Group: Fremont, CA, USA (2005)

[26] MDN Contributors: Using http cookies (2021),

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

56

https://www.ibm.com/cloud/learn/knowledge-graph
https://edps.europa.eu/data-protection/data-protection/legislation/history-general-data-protection-regulation_en
https://edps.europa.eu/data-protection/data-protection/legislation/history-general-data-protection-regulation_en
https://shex.io/
https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/rdf-primer/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

BIBLIOGRAPHY

[27] Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.: Creating

semantic web contents with protege-2000. IEEE intelligent systems 16(2), 60–71 (2001)

[28] Padia, A., Finin, T., Joshi, A., et al.: Attribute-based fine grained access control for triple

stores. In: 3rd Society, Privacy and the Semantic Web-Policy and Technology workshop,

14th International Semantic Web Conference (2015)

[29] Palmér, M., Enoksson, F., Nilsson, M., Naeve, A.: Annotation profiles: Configuring forms

to edit rdf. In: International Conference on Dublin Core and Metadata Applications. pp.

10–21 (2007)

[30] Pandit, H.J., Debruyne, C., OSullivan, D., Lewis, D.: Gconsent-a consent ontology based

on the gdpr. In: European Semantic Web Conference. pp. 270–282. Springer (2019)

[31] Pandit, H.J., Polleres, A., Bos, B., Brennan, R., Bruegger, B., Ekaputra, F.J., Fernández,

J.D., Hamed, R.G., Kiesling, E., Lizar, M., et al.: Creating a vocabulary for data privacy.

In: OTM Confederated International Conferences" On the Move to Meaningful Internet

Systems". pp. 714–730. Springer (2019)

[32] Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A browser-independent presentation

vocabulary for rdf. In: International Semantic Web Conference. pp. 158–171. Springer

(2006)

[33] Prud’hommeaux, E., Seaborne, A.: Sparql query language for rdf (2008),

https://www.w3.org/TR/rdf-sparql-query/

[34] Sacco, O., Passant, A.: A privacy preference ontology (ppo) for linked data. In: LDOW

(2011)

[35] Sacco, O., Passant, A., Decker, S.: An access control framework for the web of data. In:

2011IEEE 10th International Conference on Trust, Security and Privacy in Computing

and Communications. pp. 456–463. IEEE (2011)

[36] The OWASP Foundation: Access control (2021),

https://owasp.org/www-community/Access_Control

[37] Villata, S., Delaforge, N., Gandon, F., Gyrard, A.: An access control model for linked data.

In: OTM Confederated International Conferences" On the Move to Meaningful Internet

Systems". pp. 454–463. Springer (2011)

[38] W3C: About the world wide web (1997),

https://www.w3.org/WWW/

[39] W3C: Web ontology language (owl) (2013),

https://www.w3.org/OWL/

57

https://www.w3.org/TR/rdf-sparql-query/
https://owasp.org/www-community/Access_Control
https://www.w3.org/WWW/
https://www.w3.org/OWL/

BIBLIOGRAPHY

[40] W3C: Resource description framework (rdf) (2014),

https://www.w3.org/2001/sw/wiki/RDF

[41] W3C: Inference (2015),

https://www.w3.org/standards/semanticweb/inference

[42] W3C: Linked data (2015),

https://www.w3.org/standards/semanticweb/data

[43] W3C: Ontologies (2015),

https://www.w3.org/standards/semanticweb/ontology

[44] W3C: Shacl-shex-comparison (March 2017),

https://www.w3.org/2014/data-shapes/wiki/SHACL-ShEx-Comparison

[45] W3C: Webaccesscontrol (2019),

https://www.w3.org/wiki/WebAccessControl

[46] W3C: About w3c (2021),

https://www.w3.org/Consortium/

[47] Wolford, B.: What is GDPR, the EUs new data protection law? (2020),

https://gdpr.eu/what-is-gdpr/

[48] Wright, J.: Shacl form react (2021),

https://github.com/schimatos/shacl-form-react

[49] Wright, J., Méndez, S.J.R., Haller, A., Taylor, K., Omran, P.G.: Schímatos: a shacl-based

web-form generator for knowledge graph editing. In: International Semantic Web

Conference. pp. 65–80. Springer (2020)

58

https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/standards/semanticweb/inference
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/2014/data-shapes/wiki/SHACL-ShEx-Comparison
https://www.w3.org/wiki/WebAccessControl
https://www.w3.org/Consortium/
https://gdpr.eu/what-is-gdpr/
https://github.com/schimatos/shacl-form-react

APPENDIX

User Profile

1 @prefix ex: <http://example.org/> .

2 @prefix schema: <http://schema.org/> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

4

5 ex:employee a schema:Occupation ;

6 schema:name "Employee" ;

7 schema:estimatedSalary 1000.

8

9 ex:Daniel a schema:Person ;

10 schema:givenName "Daniel" ;

11 schema:familyName "Johnson" ;

12 schema:telephone "+32490000000" ;

13 schema:email "daniel@company.com" ;

14 schema:homeLocation [

15 schema:streetAddress "Example Lane 123" ;

16 schema:postalCode "94043" ;

17 schema:addressCountry "US"

18] ;

19 ex:emergencyContact [

20 schema:givenName "Daniel Sr." ;

21 schema:familyName "Johnson" ;

22 schema:telephone "+32490000001" ;

23 schema:email "danielsr@example.com" ;

24] ;

25 ex:holiday (

26 "2021-08-07T00:00:00Z"^^xsd:dateTime

27 "2021-08-08T00:00:00Z"^^xsd:dateTime

28 "2021-08-09T00:00:00Z"^^xsd:dateTime

29);

30 ex:ownsResources (

31 "https://example.org/Daniel"

32);

33 schema:hasOccupation ex:employee .

Listing 1: Example user profile for an employee named David.

BIBLIOGRAPHY

Intermediate Model

1 {

2 "policies": {

3 "http://example.com/ns#readBasicInfo": {

4 "appliesTo": ["http://example.com/ns#Daniel"],

5 "hasAccess": ["read"],

6 "hasUserAccessCondition": [

7 "http://example.com/ns#teamLeadSpace",

8 "http://example.com/ns#employeeSpace"

9],

10 "hasDataCondition": [

11 "http://example.com/ns#givenNameCondition",

12 "http://example.com/ns#familyNameCondition",

13 "http://example.com/ns#emailCondition"

14]

15 },

16 "http://example.com/ns#editEverything": {

17 "appliesTo": ["http://example.com/ns#Daniel"],

18 "hasAccess": ["read", "create", "update", "delete"],

19 "hasUserAccessCondition": [

20 "http://example.com/ns#adminSpace"

21],

22 "hasDataCondition": [

23 "http://example.com/ns#danielsData"

24]

25 },

26 ...

27 },

28 "dataAccessConditions": {

29 "http://example.com/ns#givenNameCondition": {

30 "hasProperty": ["http://schema.org/givenName"]

31 },

32 "http://example.com/ns#familyNameCondition": {

33 "hasProperty": ["http://schema.org/familyName"]

34 },

35 "http://example.com/ns#emailCondition": {

36 "hasProperty": ["http://schema.org/email"]

37 },

38 "http://example.com/ns#danielsData": {

39 "hasSubject": ["http://example.com/ns#Daniel"]

40 },

41 ...

42 },

43 "userAccessConditions": {

44 "http://example.com/ns#employeeSpace": {

45 "hasAskQuery": [

46 "ASK { ?x <http://schema.org/hasOccupation> <http://example.com/ns#employee> }"

60

BIBLIOGRAPHY

47]

48 },

49 "http://example.com/ns#adminSpace": {

50 "hasAskQuery": [

51 "ASK { ?x <http://schema.org/hasOccupation> <http://example.com/ns#admin> }"

52]

53 },

54 "http://example.com/ns#teamLeadSpace": {

55 "hasAskQuery": [

56 "ASK { ?x <http://schema.org/hasOccupation> <http://example.com/ns#teamLead> }"

57]

58 }

59 }

60 }

Listing 2: An example of an authentication specification expressed using the intermediate

model.

61

BIBLIOGRAPHY

Nesting

SHACL Shape

1 @prefix ex: <http://example.org/> .

2 @prefix sh: <http://www.w3.org/ns/SHACL#> .

3

4 ex:AuthNesting a sh:NodeShape ;

5 sh:property noNesting1 ;

6 sh:property noNesting2 ;

7

8 sh:property nesting1Y [

9 sh:property nestingLevel1Y ;

10 sh:property nestingLevel1N ;

11] ;

12 sh:property nesting1N [

13 sh:property nestingLevel1Y ;

14 sh:property nestingLevel1N ;

15] ;

16

17 sh:property nesting2 [

18 sh:property nestingLevel1Y [

19 sh:property nestingLevel2Y ;

20 sh:property nestingLevel2N ;

21] ;

22 sh:property nestingLevel1N [

23 sh:property nestingLevel2Y ;

24 sh:property nestingLevel2N ;

25] ;

26] ;

27

28 sh:property nesting3 [

29 sh:property nestingLevel1Y [

30 sh:property nestingLevel2Y [

31 sh:property nestingLevel3Y ;

32] ;

33] ;

34] .

Listing 3: Simplified version of the SHACL shape used in the nesting experiment.

62

BIBLIOGRAPHY

Generated Form

Figure 1: Form generated using the SHACL shape used in the nesting experiment.

63

	Contents
	Glossary
	Acronyms
	Introduction
	Background
	Semantic Web and Linked Data
	World Wide Web
	Semantic Web
	Semantic Web Stack

	GDPR

	Related Work
	Form generation
	RDF Authoring Tools
	Supporting Tools & Mechanisms
	Conclusion

	Access Control

	Research Questions and Methodology
	Research Questions
	Research Methodology

	Implementation
	Schímatos
	Authorisation Specifications
	Goals
	First Steps
	Access Control Vocabularies
	Intermediate Authorisation Specification Model

	Evaluation
	Shapes and Authorisation Specifications
	Users
	Authorisation Specifications

	Experiments
	Granting Access
	Nesting
	Expressing Vocabularies

	Conclusion
	Fulfilment of Research Objectives
	Remaining Challenges and Future Directions

	List of Figures
	List of Tables
	List of Examples
	Bibliography
	Appendix

