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6 INTRODUCTION 

Large-scale depositional bedforms, among which sediment waves, have been recognized both in passive 

and active continental margins (Symons et al., 2016; Ribó et al., 2018). They have been documented at 

various depths and settings among which the slopes of volcanic islands, submarine canyons and channels, 

continental shelves, continental slopes, continental rises and abyssal plains (Gonthier et al., 2002; Gong et 

al., 2012; Baldwin et al., 2017; Belde et al., 2017; Pope et al., 2018; Ribó et al., 2018). Their sedimentary 

structures can have a wide variety in lithology, morphology and dimensions (Ribó et al., 2018). They mostly, 

but not exclusively, form in fine-grained sediments such as silt and clay (Faugères et al., 2002a). The 

mechanisms behind these sediment waves have been discussed for a long time, because many sediment 

dynamic processes can lead to their formation (Karl et al., 1986; Wynn and Stow, 2002; Li et al., 2019). It is 

generally accepted that generating deep-water sediment waves involves flows at or close to the sea floor 

(Cartigny et al., 2011). However, there are four dynamic systems that are most prominent in generating deep-

water sediment waves being: turbidity currents (Fig. 1A), gravity-controlled mass transport (Fig. 1B), internal 

wave dynamics (Fig. 1C) and contour currents(Fig. 1D; Li et al., 2019). 

 

A B 

  

C D 

 
 

Fig. 1: A composite figure of the seismic expression of the different wave dynamics. A) Sediment waves generated by 

turbidity currents in the canyon area of the northern South China Sea; modified after Li et al. (2019). B) Sediment 

waves generated by gravity-driven submarine creep in the canyon areas of the northern South China Sea; modified 

after Li et al. (2019). C) Sediment waves formed by the interaction of internal waves; modified after Ribó et al. (2016). 

D) An elongate drift deposit with a sigmoidal character on P67 in the study of the Corsica Channel by Roveri (2002). 
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The sediment waves formed by turbidity currents frequently occur on the back side of levees, close to canyon 

and channel systems on the continental slope (Lee et al., 2002). These have been documented in many 

places as for example in the northern South China Sea (Gong et al., 2012), on the South Iberian Margin 

(Perez-Hernandez et al., 2014) and in the Monterey Fan channel (Normark et al., 1980). This dynamic system 

only occurs with a downslope flow, creating sediment waves whereof their crests align perpendicular to the 

slope (Wynn and Stow, 2002). In seismic profiles they commonly show as gently undulating and slightly 

climbing bedforms (Cartigny et al., 2011). Turbidity current formed sediment waves can have wavelengths 

up to 7 km and a wave hight up to 80 m in fine-grained sediments. In coarse grained sediments, the 

dimensions are smaller. Here, the wavelengths of the sediment waves can go up to 1 km and can have a 

wave height up to 10 m (Wynn and Stow, 2002). Sediment waves formed by turbidity currents can show a 

cyclic step, where the step refers to the slowly upstream migrating bedforms (Fig.2A). The downward step is 

formed due to the steeply dropping flow passing through a hydraulic jump. This process is extensively 

explained by Cartigny et al. (2011). 

 

Sediment waves can also be formed due to gravity-driven mass transport such as submarine creep, sliding 

or slumping (Faugères et al., 2002a). Examples are slump structures in the Porcupine basin, offshore Ireland 

(Moore and Shannon, 1991), submarine creep on the northern South China Sea (Li et al., 2019) and sediment 

waves formed by cascading dense shelf waters in the Gulf of Roses (Ribó et al., 2018). However, these are 

not sediment waves in the strict definition due to their synsedimentary origin (Faugères et al., 2002a). These 

undulations are formed when higher up the slope extension or sliding occurs, which will cause a compression 

lower on the slope. In that way sediment accumulations and deformations are formed, aligning perpendicular 

to the slope. Gravity-driven formed sediment waves mostly occur on a moderate to steep continental slope, 

but can also occur on seamounts. The waves are characterized by the presence of extension and 

compression related elements (Fig. 2B). Examples of the first are detachment faults, rotated blocks, faults, 

etc. Examples of compression related elements are folds, faults, compressional edges, etc. (Faugères et al., 

2002b). 

 

The third type of hydrodynamic process, forming sediment waves, are internal waves. These waves exist at 

interfaces between water masses with a high contrast in density and temperature (Cullen and Ivanov, 2020). 

Examples are the interface of the Western Mediterranean Intermediate Waters and the Levantine 

Intermediate Waters influencing the Gulf of Valencia (Ribó et al., 2016a) and the interface of the Northern 

Pacific Intermediate and Deep Water manipulating the northern South China Sea (Li et al., 2019). They 

manifest as large vertical fluctuations within the water column and are associated with strong horizontal 

currents (Yuan et al., 2020). When the internal waves coincide with the tidal cyclicity, they are called internal 

tides. Whenever these internal waves or tides interact with the continental slope, sediment waves can form. 

However, this can only occur under a critical angle, where the slope of the path ray of the internal waves 

exceeds the slope of the seafloor (Rice et al., 1990). The breaking of these internal waves on the slope can 

generate local intense bottom currents which can transport and redeposit sediment (Fig. 2C) (Bogucki and 

Redekopp, 1999; Ribbe and Holloway, 2001; Reeder et al., 2011). The seafloor-fluid mixtures, created in this 

process, have a repeated upslope and downslope movement (Hotchkiss and Wunsch, 1982; Karl et al., 1986; 

Pomar et al., 2012). This can create sediment waves with their crests parallel to the isobaths (Ma et al., 

2016). 
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A 

 

B 

 

C 

 

D 

 

Fig. 2: A composite figure illustrating the different wave dynamic processes. A) Sketch drawing of downslope 

asymmetrical cyclic steps beneath a turbidity current, showing the principal of a cyclic step; modified after Cartigny 

et al. (2011). B) Sketch of a gravity-driven failure dominated by gravity gliding, showing proximal extension, 

translation and distal contraction; modified after Rowan (2020). C) Sketch of internal waves breaking on a slope 

creating high turbulence sediment erosion, transportation and redeposition; modified after Pomar et al. (2012). D) A 

schematic summary of the different types of contourite drifts; after Rebesco and Stow (2001). 
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Lastly, an important and complex dynamic for large-scale depositional bedforms are contour currents, which 

are still poorly understood (Rebesco et al., 2014). These currents move along-slope and can occur on many 

different depths on the continental slope. Examples are the Atlantic Mediterranean Water contributing to the 

Le Danois contourite depositional systems (Liu et al., 2020) and the Northern Pacific Deep Water influencing 

the South China Sea Slope (Gong et al., 2012). The aligned crests usually occur diagonally to the dominant 

flow direction. There are different contourite drift morphologies that exist with contour currents (Fig. 2D). The 

sediment waves can migrate upslope as well as downslope (Faugères et al., 2002a). Wave dimensions can 

vary between a wavelength of 10 km and a wave height of 150 m in fine grained sediments and a wavelength 

of about 200 m and only a few meters in height in course-grained sediments (Wynn and Stow, 2002). 

 

When such large-scale depositional bedforms are studied, the depositional environment plays a key role in 

the determination of the dynamic type. Li et al. (2019) studied seafloor undulations at three different dynamic 

environments. These environmental settings helped the determination, together with the seismic 

interpretation and/or lithology. Also in the Porcupine Seabight (PSB), offshore Ireland, sediment drifts have 

been observed that were formed by the along-slope deep-water contour currents present (Stoker, 1997; 

McDonnell and Shannon, 2001; Stoker et al., 2001). It is also know that internal waves influence the PSB. A 

permanent pycnocline is observed and is associated with an enhanced energy supply due to the internal 

waves and tides (Dickson and McCave, 1986; White, 2007; Dullo et al., 2008; White and Dorschel, 2010; 

Mohn et al., 2014). 

 

In the Porcupine Seabight, cold-water coral (CWC) mounds have been associated with contourite drifts (De 

Mol et al., 2002; Huvenne et al., 2002; Van Rooij et al., 2003, 2007). Several cold-water coral mound 

provinces have been discovered in the PSB (Fig. 3B), although the Belgica Mound Province (BMP) is the 

largest and is clearly influenced by stronger bottom currents (Henriet et al., 1998; De Mol et al., 2002; 

Huvenne et al., 2002; Van Rooij et al., 2003, 2007). Both the strong currents and the mounds influence each 

other (Hebbeln et al., 2016). The mounds create obstacles in the bottom topography, inducing stronger 

bottom currents. But the stronger bottom current also create a better environment for coral growth (Van Rooij 

et al., 2003). Van Rooij et al. (2003, 2007) inferred a connection with the settlement of some CWC mounds 

on sigmoidal units observed underneath those mounds (Fig. 4). These depositional bedforms were observed 

within an interpreted early-middle Miocene unit (Unit P1; Van Rooij et al., 2003; Fig. 4) on the eastern slope 

of the PSB (Ferdelman et al., 2006a; Van Rooij et al., 2003). However, understanding these depositional 

bedforms becomes difficult because of the lack of insight in their period of deposition. Even though knowledge 

about the Miocene Oceanography in the Porcupine Seabight (or Atlantic Ocean in general) is sparse, 

studying the depositional features is still important. 

 

During the early Miocene, the major intermediate and deep-water masses in the Atlantic and Pacific aged in 

a northward direction. These water masses had a common source originating around Antarctica (Butzin et 

al., 2011). Only after the narrowing and/or closure of both the Central American and Tethys seaways, the 

NADW production intensified starting at around 4.6 Ma (Haug and Tiedemann, 1998). The deepening of the 

Greenland-Scotland Ridge between 18 Ma and 15.5 Ma, and from 12.5 Ma, could have initiated major deep-

water flow from the Nordic Seas into the North Atlantic at 11.5 Ma (Wright and Miller, 1996; Wei and Peleo-

Alampay, 1997). 
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On the eastern slope of the Porcupine several Miocene Isotopic Event stages (Mi-3a, Mi-3b and Mi-4) were 

recognized in the study of Quaijtaal et al. (2014), which reflect major changes in glaciation (Miller et al., 1991). 

They concluded that these were associated with the cooling of sea surface waters and a possible drop in 

relative sea-level. Furthermore, an additional input of nutrients was observed which could have been caused 

by upwelling due to the possible strengthening of the northerlies (Quaijtaal et al., 2014). At the Atlantic margin 

the overall Oligocene and Miocene sedimentation also seems to be characterized by along-slope transport 

caused by a combination of differential basin subsidence and regional sea level and palaeoclimate changes 

(Ferdelman et al., 2006a). Some of these oceanographic changes will have induced the sigmoidal bedforms 

and could have also led to the initiation of coral settlement as Van Rooij et al. (2003) suggest. 

 

Fig. 3: A) An overview map indicating the Porcupine Seabight with a white square, B) The Porcupine region with its 

main morphological structures indicated and contour lines every 500 m. The general bathymetric chart of the Oceans 

(GEBCO) was used as background image. 
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These Miocene bedforms were observed on previous data taken from the BMP. New data may enlighten the 

dynamics behind the depositions better. This required data was obtained within the scope of the FWO 

DynaMOD project (An oceanographic and sediment DYNamic MODelling study of MOunded contourite drifts; 

Van Rooij, pers. comm.). This project (2019-2023) aims to study increasing bottom current intensities in the 

presence of CWC mounds (Van Rooij, pers. comm.). The seismic data within this project yields unique 

pseudo-3D insight in these sedimentary bedforms. The area of research overlaps with the BMP and is 

contained between water depths of around 500 m and 800 m (Fig. 3B). 

 

Within this dissertation, there will be attempted to discover the depositional environment of Miocene bedforms 

only through the study of the spatial and seismic character. This due to the still underexplored Miocene 

oceanography, which is why the depositional environment cannot be known in advance. Examining these 

bedforms could lead to an interpretation on oceanographic changes, that might have initiated coral settlement 

and growth at some locations. Discovering these local oceanographic changes may help the understanding 

of major palaeoceanographic changes in the North Atlantic. The ultimate goal of this research would be to 

stimulate further research on palaeo-sedimentary bedforms around the world and, to uncover more 

information about still unknown local and global palaeoceanography. 

 

Several objectives were established within the framework of this dissertation. First, there will be aimed to 

document the seismic facies, morphology and geometry to gain a better understanding in how these were 

formed. Sediment wave dynamics can be discovered by comparing the bedform characteristics with those in 

literature. A next step will be to discover the relation between the formation of the sedimentary bedforms and 

the cold-water coral mounds. Thirdly, there will be aimed to look at spatial and temporal changes within 

(different) sediment wave fields to get an idea about the local palaeoceanographic changes, and there will 

be assessed how these changes influenced the sediments within the research area. The last aim would be 

to connect local palaeoceanographic changes to more globally scaled changes within the (North) Atlantic. 

Eventually, to discover global tectonic or climate changes that induced the major oceanographic changes 

and broaden our understanding of the Miocene. 

 

Fig. 4: Line drawing of P980549 showing the depositional bedforms clearly in the interpreted early-Middle Miocene 

unit P1; modified after Van Rooij et al. (2003). 
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7 ENVIRONMENTAL SETTING 

7.1 Geomorphology 

The Porcupine Seabight is a small, amphitheatre-shaped bight along the North Atlantic margin (Van Rooij et 

al., 2007; Fig. 3A). It is a 50 000 km² large basin, located southwest of the coast of Ireland, with an overall 

north-south trend (Fig. 3A). The PSB ranges in water depths from 250 m to over 3000 m, respectively from 

the north to the southwest (Huvenne et al., 2005; Dorschel et al., 2010). In the southwest, the basin evolves 

into the Porcupine Abyssal Plain (Huvenne et al., 2005). In all other directions, it is enclosed by four shallow 

platforms consisting of metamorphic Precambrian and Palaeozoic rocks. In the east, it is enclosed by the 

Irish Mainland Shelf and in the south by the terraced Goban Spur. On the western side, it is bordered by the 

Porcupine Bank and in the north by the Slyne Ridge (Naylor and Shannon, 1982; Moore and Shannon, 1991; 

Van Rooij et al., 2003). The bight is unique in many ways and is therefore much investigated (Henriet et al., 

1998; De Mol et al., 2002; Van Rooij et al., 2003; Øvrebø et al., 2006; Huvenne et al., 2007; Eisele et al., 

2008; Dorschel et al., 2009). The region first gained attention due to the moderate interest of petroleum 

(Croker and Shannon, 1987). In the course of the petroleum research, the presence of deep-water cold-water 

coral banks received notice and became the well-known feature of the PSB (Henriet et al., 1998; De Mol et 

al., 2002; Huvenne et al., 2003). The area of research regarded for this dissertation lies on the eastern slope 

of the Porcupine Seabight and is about 50 km² in size (Fig. 3B). It is located within 51°19” N and 51°26” N 

latitude and 11°30” W and 11°45” W longitude. 

 

One of the most prominent morphological features present in the Porcupine Seabight is the Gollum Channel 

System (Dorschel et al., 2010). It is a meandering feature with a system of levees and channels on the 

eastern slope of the PSB, first described by Berthois and Brenot (1966). The channel system received its 

name and was further described by Kenyon et al. (1978). The Gollum channel system extends from the shelf 

edge through the central Seabight, down to the Porcupine Abyssal Plain (Fig. 3B). Here it left less traces with 

a poorly present deep-sea fan (Rice et al., 1991; Van Rooij et al., 2003). The poorly developed deep-sea fan 

can be linked to sediment reworking and redistribution by strong bottom currents (Rice et al., 1991). Some 

small channels also occur in the north-eastern PSB, where the formation of those is closely related to the 

presence of cold-water coral mounds (Beyer et al., 2003; Dorschel et al., 2010). The formation of channels 

on the eastern and central slope of the Porcupine Seabight can be linked with the existence of a gentle slope 

angle. Furthermore, a small canyon system is present in the southern tip of the PSB, west of the Goban Spur 

(Dorschel et al., 2010). 

 

Cold-water coral mounds are one of the important marine ecosystems in the North Atlantic Ocean and occur 

extensively on the upper continental slopes (<1000 m) (Roberts et al., 2006; Wienberg and Titschack, 2017). 

The heights of the mounds can vary from 50 to 200 m, whereas the diameter is generally between 0.5 and 2 

km (White, 2007). The mounds consist of skeletons of cold-water corals, shells of associated fauna, 

hemipelagic sediments and ice-rafted debris (IRD) or dropstones (De Mol et al., 2002; Dorschel et al., 2005, 

2007; Wienberg et al., 2008). Corals prefer a hard substrate for settlement, which explains the presence of 

IRD within the mound sequence. At first, it was thought that the growth of the cold-water coral mounds was 

linked to hydrocarbon seepage (Hovland and Thomson, 1997). However, recent data shows that the coral 

growth is linked to environmental settings such as enhanced ocean currents and water column structure (De 

Mol et al., 2002; Dorschel et al., 2005, 2007; Wienberg et al., 2008). Along the Irish margin, most carbonate 
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mounds are also located on an erosional surface, which is probably of late early Pliocene age (Van Rooij et 

al., 2003; van Weering et al., 2003; Mienis et al., 2006). 

 

Already in 1948, these coral ecosystems were recognized in the Porcupine area by Le Danois (1948). There 

are three recognized CWC mound provinces in the PSB: the Belgica Mound Province on the eastern slope, 

the Magellan Mound Province (MMP) and the Hovland Mound Province (HMP) on the northern slope (Eisele 

et al., 2008). Each province is characterized by its own properties (Wheeler et al., 2007). The small Magellan 

mounds are almost all buried by hemipelagic sediment and thus do not reach the present-day seabed 

(Huvenne et al., 2003, 2007). The HMP is characterized by giant carbonate mounds of a conical or elongated 

form. Nowadays, these mounds are mostly all covered by moderately developed cold-water coral thickets 

(De Mol et al., 2002; Huvenne et al., 2005; Wheeler et al., 2007). The BMP covers more than 1000 exposed 

and buried mounds (Wienberg et al., 2020) and is colonized by the best developed and densest coral thickets 

in the PS (Beyer et al., 2003; Van Rooij et al., 2003; Foubert et al., 2005; De Mol et al., 2007). The mounds 

in the BMP can reach heights up to 150 m above the seafloor and occur between water depths of 500 and 

1100 m (Beyer et al., 2003; Van Rooij et al., 2003; Wheeler et al., 2005). The mounds themselves are conical 

in shape, can reach heights up to 150 m above the seafloor and laterally spread over several kilometres. The 

CWC mounds are buried asymmetrically and occur as single mounds or in elongated clusters (Beyer et al., 

2003; Van Rooij et al., 2003). 
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7.2 Oceanography 

7.2.1 Present-day 

There are four main water masses currently passing 

through the Porcupine Seabight. They follow a 

northward cyclonic flow direction along the Goban 

Spur, entering the Porcupine and steered by the Shelf 

Edge Current (SEC), and eventually flowing out along 

the Porcupine Bank (White, 2007; Fig. 5). At the top of 

the stratified water column (Fig. 6), below a north-

flowing surface current, the East North Atlantic Water 

(ENAW) can be found between approximately 200 m 

and 700 m water depth. It comprises of a mixture of 

subtropical and subpolar gyre waters (Wienberg et al., 

2020). The ENAW is part of a southern branch of the 

North Atlantic Current (NAC), where it flows into the 

Bay of Biscay (Fig. 5). There it encounters intense deep 

winter mixing (Pingree, 1993; Van Aken and Becker, 

1996). 

 

Below that, the Mediterranean Outflow Water (MOW) 

stretches up to about 1,200 m water depth (Fig. 6). The 

MOW is a very saline water originating from the 

Mediterranean Sea (Millot, 2014). It exits from the Strait 

of Gibraltar, into the Gulf of Cádiz, flowing north-

westward along the Iberian middle slope into the Bay 

of Biscay and further in the PSB as a notable contour 

current (Serra et al., 2010; Hernández-Molina et al., 

2014). The Labrador Sea Water (LSW) is found below 

the MOW up to a depth of approximately 1,800 m water 

depth (Fig. 6). It originates in the Labrador Sea and is 

transported by the deep NAC. The LSW is a much 

colder water mass and less saline in comparison with 

the upper MOW. Lastly, the deepest North East Atlantic 

Deep Water and Norwegian Sea Water (NEADW, 

NSW) can be found beneath ~1,800 m (Pingree and Le 

Cann, 1989, 1990; Rice et al., 1991; Van Aken, 2000; 

Van Rooij et al., 2007). 

 

At the boundary of the ENAW and the MOW a permanent pycnocline has been observed due to the high-

density difference (Rice et al., 1991; Fig. 6). At this interface, internal waves can be generated which 

increases the already present bottom currents. Internal waves provide across-slope sediment movement and 

can in that way create sediment waves on a ‘critical slope angle’, where the slope of the ray path of the waves 

is larger than the slope of the seafloor (Rice et al., 1990, 1991; De Mol et al., 2002; Van Rooij et al., 2007). 

But also on the bottom boundary of the MOW (with the LSW) a density difference can be recognized and 

 

Fig. 5: An overview map of the North East Atlantic 

showing the main present-day oceanographic 

features; modified after Wienberg et al. (2020). 
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internal waves can exist. However, the density gradient is lower in this case, thus the internal waves are less 

pronounced. This is because the ‘critical slope angle’ is inversely proportional to the density gradient (Sherwin 

and Taylor, 1987). 

 

These bottom current enhancements add to the low frequency character and generally weak velocity of the 

benthic currents (White, 2007). But bottom currents are also strongly steered by bottom topography, which 

is why these large cold-water coral mounds play a big role in the strength and flow of bottom currents (Pingree 

and Le Cann, 1989, 1990; Rice et al., 1991; Van Rooij et al., 2003, 2007, 2009). Mean residual bottom 

currents have been measured between 2 and 5 cm s-1, but can go up to 10 cm s-1 which is a value measured 

at 1000 m water depth in the northern part of the Belgica Mound Province (Pingree and Le Cann, 1990; 

White, 2007). Today, the slope area of the PSB is intensely steered by bottom-current activity. This is 

 

Fig. 6: Depth-temperature and depth-salinity profile (respectively upper graph and lower graph) along a cross section 

on the eastern slope of the Porcupine Seabight (which is indicated as a red line on the overview map included in first 

graph). Both data clearly show the Eastern North Atlantic Water (ENAW), the Mediterranean Outflow Water (MOW) 

and the Labrador Sea Water (LSW). The transition zone (TZ) between the ENAW and the MOW is rather broad. It 

comprises water depths between 700 and 900 m. (Wienberg et al., 2020; after Locarnini et al., 2013; Zweng et al., 

2013). 
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evidenced by the many topographical features surrounding the CWC mounds, as e.g. gravel ridges, barchan 

dunes, large moats formed by drift sediments and sediment waves (Van Rooij et al., 2003; Foubert et al., 

2005; Huvenne et al., 2005; Wheeler et al., 2005; Dorschel et al., 2007). 

 

7.2.2 Miocene 

The Miocene (23.03 Ma – 5.333 Ma; Cohen et al., 2013, updated) is an epoch characterized by a complex 

evolution in the Earth’s climate and ocean circulation. The continents lay close to their modern position (Fig. 

7). The lithosphere plate movements influenced the configuration of interoceanic passages which led to 

significant changes in ocean circulation (Butzin et al., 2011). Benthic 13C records show that interoceanic 

differences remained small (Billups, 2002; Bickert et al., 2004; Poore et al., 2006). This interconnection was 

present due to the connection between oceans through the Central American Seaway and the Tethys. The 

Central American Seaway narrowed from 17 Ma up to its final closure at about 2.7 Ma (Duque-Caro, 1990; 

Coates et al., 2003; Bartoli et al., 2005; Steph et al., 2006). The Eastern Tethys on the other hand narrowed 

between 18 Ma and 16 Ma, to finally close around 14 Ma (Rögl, 1991; Meulenkamp and Sissingh, 2003). 

 

The temperature changes within the Miocene also influenced some local oceanography. The Oligocene-

Miocene transition (~23.1 Ma) marks the termination of the late Oligocene warming trend. The onset of the 

Miocene is associated with large-amplitude expansion of Antarctic ice sheets (Egger et al., 2018). However, 

this was followed by the middle Miocene Climatic Optimum (23.03 Ma – 14.5 Ma) and middle Miocene 

Climatic transition (14.5 Ma -12.5 Ma) (Super et al., 2018). The cooling trend was re-established after around 

15 Ma, which was concurrent with the enlargement of the eastern Antarctic Ice sheet and the gradual onset 

of the modern ocean circulation patterns (Flower and Kennett, 1994). 

 

Fig. 7: A representation of the world during the middle Miocene; after Scotese. 
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7.3 Geology 

The PSB is underlain by the Porcupine basin, which developed as a Middle to Late Jurassic failed rift of the 

proto-North Atlantic Ocean (Moore and Shannon, 1991; Naylor and Shannon, 1982; Fig. 8). The formation 

model for this basin is thought to be a general McKenzie (1978) simple shear extensional model (Croker and 

Shannon, 1987). The basin formed in accordance with a series of rift episodes, each separated by thermal 

subsidence events (Shannon, 1991). The Late Jurassic differential subsidence episode was responsible for 

the shallow marine sedimentary environment of the Porcupine basin (Ferdelman et al., 2006a). The failed rift 

basin is filled with a 10 km thick sediment deposit, acquired during the Mesozoic and Cenozoic (Moore and 

Shannon, 1991; Fig. 8). The base of the Cretaceous, where marine strata onlap Jurassic sequences, is 

marked by a undulatory unconformity due to a eustatic sea level fall (Ziegler, 1982; Shannon, 1991; Moore 

and Shannon, 1995). The Cretaceous sediments vary from offshore sandstones to shelf pelagic carbonates 

(Ferdelman et al., 2006; Fig. 8). A high-amplitude reflector separates the Mesozoic from the Cenozoic, where 

the sedimentation changes from carbonate to clastic deposition (Shannon, 1991). The Paleogene postrift 

sediments are mostly characterized by sandstones and shales with the influence of frequent sea level 

fluctuations (Ferdelman et al., 2006a). 

 

Due to a passive uplift of the Norwegian, British and Irish landmasses during the late Paleogene and 

Neogene, the present-day Atlantic margin was formed and an enhancement of contour currents was 

observed (Ferdelman et al., 2006a). Therefore, the Oligocene and Miocene are characterized by local erosion 

and redeposition leading to the formation of contourite siltstones and mudstones, and hemipelagic-pelagic 

deep-marine sediments (Ferdelman et al., 2006a). A major shift in sediment transport, downslope to along-

slope, was observed at the latest Eocene to earliest Oligocene unconformity (C30; Fig. 9) and marks the 

start of the contourite dominant Neogene deposits in the PSB (Stoker et al., 2001). Throughout the Neogene, 

the Porcupine basin remained in deep marine conditions. The only exception is a minor inversion episode 

(Fig. 9) in the Oligocene accompanied by submarine canyon development (Naylor and Anstey, 1987). The 

 

Fig. 8: A stratigraphy interpretation of the eastern slope of the Porcupine basin (Arrows = modelled pathways of 

hydrocarbon-rich gases, after Ferdelman et al. (2006) and after Naeth et al. (2005). 
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main sedimentation throughout the Oligocene and Miocene is characterized by transport and redepositional 

processes yielding mudstones, contourite siltstones and hemipelagic-pelagic deep-marine sediments. A 

combination of regional sea level and palaeoclimate changes and differential basin subsidence caused the 

deposition of these sediments (Ferdelman et al., 2006a). The youngest sequences (Miocene to Quaternary) 

are characterized by the presence of large erosive surfaces (Fig. 9), contourite drifts and a unique existence 

of cold-water coral mounds (Van Rooij et al., 2003, 2007, 2009). The east-west oriented Gollum Channel is 

thought to have been the main sediment supplier to the basin. In fact, during glacial periods, the channel 

system extended downstream from the southern Irish Mainland Shelf (Berthois and Brenot, 1966; Van Rooij 

et al., 2009). Recent sedimentation is pelagic to hemipelagic, with some foraminiferal sands on the eastern 

continental margin. Nowadays, the main supply zone seems to be located on the Irish and Celtic shelves 

(Rice et al., 1991). 

 

The Neogene seismic stratigraphy of the eastern slope of the PSB has been described in detail by Van Rooij 

et al. (2003) where two major unconformities were recognized (Fig. 10). The first is of early mid-Miocene age 

(Louwye et al., 2008), defined by Van Rooij et al. (2003) as RD2 unconformity. This unconformity is in 

accordance with the C20 series unconformities defined by McDonnell and Shannon (2001; Fig. 9), which 

were formed due to late pulses of the Alpine Orogeny and major plate reorganization. The second 

unconformity, defined as RD1 by Van Rooij et al. (2003), was linked to the C10 Early Pliocene unconformity 

observed by Stoker et al. (2001; Fig. 9). The IODP 307 expedition has given the opportunity to perform 

palynostratigraphic studies (Louwye et al., 2008) and other dating methods could be applied (Kano et al., 

 

Fig. 9: A lithostratigraphic column of the Cenozoic successions in the Porcupine and Rockall basins, following the 

proposed sequence scheme of Stoker et al. (2001); after Shannon et al. (2007). 
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2007). However, due to the inconsistency in dates, the onset of the erosion event is placed at a general Late 

Miocene age. RD1 represents a large-scale erosional event that must have been induced by a large 

hydrodynamic regime (Van Rooij et al., 2009). This big oceanographic change could have been the 

introduction of the MOW in the PSB (Van Rooij et al., 2003). These two unconformities separate three seismic 

stratigraphic units P3, P2 and P1 (Fig. 10) defined by Van Rooij et al. (2003), but this nomenclature was 

abandoned in later papers (by Van Rooij et al. (2007) onwards) and U1, U2 and U3 were used instead. The 

lowermost unit U3 is bound at the top by RD2. This unit is characterized by moderate to locally high amplitude 

reflectors and continuous parallel strata. Its lithology mainly comprises of sands and silts with some 

occurrence of clay (Ferdelman et al., 2006a; Fig. 10). A number of sigmoid reflectors are recognized within 

the unit which are interpreted as migrating drift bodies of Miocene age (De Mol et al., 2007; Van Rooij et al., 

2003; Fig. 10). Above U3 lays U2 with its transparent acoustic facies and few high amplitude reflections. Unit 

U2 is interpreted by De Mol et al. (2002) as a nannofossil ooze of Pliocene age. The uppermost unit, U1, 

consists of Quaternary drift deposits partly enclosing the mounds that onlap on RD1 (De Mol et al., 2002; 

Van Rooij et al., 2003). This unit mostly consist of clays with some sands interbedded (Ferdelman et al., 

2006a; Fig. 10). 

  

 

Fig. 10: An interpretation of a seismic profile with NNW - SSE transect along the eastern slope of the Porcupine 

Seabight adapted from Van Rooij et al. (2003) with the lithostratigraphy added of all three sites of the 307 IODP 

expedition; modified after Ferdelman et al. (2006). 
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8 MATERIAL AND METHODS 

8.1 Data 

This dissertation focusses on the seismic data acquired during the RV Belgica cruise 2019/16 (Van Rooij 

and Mestdagh, 2019). This cruise was carried out in June 2019 on an attempt to understand and quantify the 

temporal and spatial variability of the present-day hydrodynamic regime within the Belgica Mound Province, 

within the scope of the DynaMOD project (Van Rooij and Mestdagh, 2019). This area has been surveyed 

before, however the density of the seismic grid is exceptional in comparison to previous seismic data (see 

below). This was one of the reasons why it was opted to only use the most recent seismic data from the RV 

Belgica cruise 2019/16. Another reason was that the equipment (hydrophones and streamers) has improved 

over the years and the processing has refined, which lead to an improved dataset. But in particular, better 

weather circumstances caused an enhanced dataset. 

 

8.1.1 Single channel reflection seismic profiling 

Single channel reflection seismic profiling uses 

a single source and single receiver to obtain 

seismic profiles. This seismic system provides 

deeper penetration compared to other 

hydroacoustic systems such as multibeam 

bathymetry (frequency usually around 12 kHz 

for deep-water systems; Beyer, 2006) due to the 

lower frequency used (a frequency of around 

3.5 kHz in this case; Van Rooij and Mestdagh, 

2019). This makes it possible to view the 

internal structure of marine sediments and 

underlying bedrock (Gadallah and Fisher, 

2009). 

 

Acoustic waves originating from the source will 

propagate through the water column at a 

velocity of 1,500 meters per second, which is an 

averaged estimation of sound velocity in sea 

water. These waves will reflect at an interface 

which can be at the seabed, at interfaces in the 

sediments/bedrock or at an object in the water 

column. The reflection happens due to a 

difference in acoustic impedance, which is the 

product of compressional velocity and density (Onajite, 2014). The reflected signal will be captured by the 

hydrophone(s) within the streamer, towed at a constant distance from the source (Fig. 11). The measurement 

made by the system is the time it takes for the signal to go from source to interface to receiver and is called 

the TWT (two-way travel time) (Fig. 11). The TWT is a measure of depth represented in seconds but can be 

converted to meters or mbsl (meters below sea level). This can be perceived when the speed of sound in the 

different media are known. An average of 1,650 meters per seconds for the P-wave velocity in the sediments 

 

Fig. 11: Visualization of single channel reflection seismic 

principle, with a SIG-sparker as source and SIG-streamer as 

receiver. Two possible pathways of the seismic rays are 

displayed: one reflecting on the seabed and the second 

reflecting on an interface in the sediments. The figure also 

visualizes the principle of TWT. Both estimated velocities of 

water and sediment are added in the figure. 
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was used according to the data of Ferdelman et al. (2006b). For better speed estimation within the water 

column and sediments, CTD (conductivity, temperature and depth) and core logging analysis can be applied. 

From the velocity estimations, a depth in metres instead of TWT can be calculated with the following formula: 

 

𝐷𝑒𝑝𝑡ℎ (𝑚) =  
𝑇𝑊𝑇 (𝑠) × 𝑉(𝑚

𝑠
)

2
         F1. 

 

 

Fig. 12: A bathymetric map (Beyer et al., 2003) showing the location and orientation of the seismic lines obtained 

during RV Belgica cruise 2019/16. Seismic lines referred to further in the text, have their name added in this figure. 

The cropped seismic lines used in further figures are displayed in grey. The grey area represents the survey area. 
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During the RV Belgica cruise 2019/16, 44 single channel reflection seismic profiles (average length 68 km) 

were acquired (Fig. 12). These were obtained with a single channel SIG-streamer receiver and SIG-sparker 

source (frequency 3.5 kHz). The source was triggered every two seconds with an energy of 600 J. This 

resulted into an average penetration of 500 ms TWT (400 m). The seismic lines were spread in a grid of 

approximately 80 km² with water depths ranging from 460 m to 900 m. In NNW-SSE direction the spacing 

between the lines was 0.25 nautical miles (nm) to 0.5 nm (462.5 m – 925 m), while the lines in WSW-ENE 

direction were 0.125 nm to 0.25 nm (231,3 m – 462.5 m) spaced from each other. During acquisition, the 

ships velocity was kept constant at three knots, while using the electrical propulsion. The electrical propulsion 

is better to use because it generates less noise with respect to a pure diesel propulsion. The data was 

digitized with an IXblue Delph-system at a sampling frequency of 8 kHz (Van Rooij and Mestdagh, 2019). 

 

Prior to the start of seismic acquisition, a marine mammal survey was carried out for one hour. This is 

necessary to make sure no marine mammals would suffer from the frequency pulses during seismic 

acquisition. When no marine mammals were observed, a soft-start procedure was then followed by starting 

with a lower energy of 200 J, gradually increasing to 600 J over a period of 20 min (Van Rooij and Mestdagh, 

2019). 

 

Reflection seismic data are displayed in a seismic profile as a compilation of several seismic traces. A seismic 

trace is the detected seismic energy received after one shot from the source, often presented as a wiggle 

line. Similar wiggles can be followed from trace to trace, especially when positive and negative wiggles are 

represented in a different colour (Onajite, 2014). In this way, reflective surfaces (called reflection when 

considering only one point, reflector when considering a long traceable interface) become visible, where 

some show a stronger reflection than others. Some of these strong and distinguishable reflectors can then 

be defined as a horizon of a specific unit or layer. 

 

8.2 Processing 

Processing of the data was executed using RadExPro (DECO Geophysical software company, 1992) 

software. All 44 seismic lines were processed applying the following workflow. First bandpass filtering was 

applied, which is a filter designed to pass signal and reject noise (Reynolds, 2011). Using the Ormsby 

bandpass filter, a bandwidth is chosen with a low-cut ramp and high-cut ramp. When choosing the 

frequencies for the bandwidth, an attempt is made to include the frequencies containing coherent energy 

(reflections), and exclude the frequencies containing mostly noise (Gadallah and Fisher, 2009). For the 

purpose of this dissertation, lower frequencies were included to obtain more signal in the deeper parts, where 

the sediment waves occur. The downside of doing this is that more noise is included in the top layers. The 

values used for the Ormsby settings were variable from one seismic profile to another, depending on with 

which values the best amount of noise was rejected. The minimum and maximum values used were: for the 

lowest value between 100 Hz and 150 Hz, the second value between 200 Hz and 250 Hz, the third value 

between 700 Hz and 1250 Hz and the last value was set between 1000 Hz and 1500 Hz. The tapering value 

was left default at 10% of trace length. 

 

The second correction was the burst noise removal, where abnormally high amplitudes randomly occurring 

through the data were removed, using the default settings. Next an amplitude correction was necessary to 

correct the gradual amplitude decrease with depth due to spherical spreading and absorption. Doing this, 

shallow reflections were weakened whereas the deeper amplitudes were strengthened (Reynolds, 2011). On 

each profile this was applied between the shallowest point of the seafloor to the deepest data point of interest 
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(usually around 1300 ms TWT, varying between 1080 ms TWT and 1400 ms TWT), using mean trace 

equalization and the value 2.0 for time raised to power. 

 

Additionally, corrections were carried out to reduce the swell influence. During acquisition, swell can place 

the source and receiver on a different level. This variation in the reference level is visible in the data and was 

removed by applying the swell filter. The seafloor location was defined and picked by the functions ‘trace 

header math’ and ‘first breaks picking’ and was adjusted manually in the presence of errors. The swell filter 

function could then be applied to the newly picked seafloor, with an averaging base of 4 or 5 depending on 

the seismic profile and a max/min rejection of 30%. Lastly the data above the seafloor was removed with the 

‘trace editing; top muting’ function, using the just picked seafloor as base. 

 

8.3 Interpretation procedure 

The interpretation of the seismic profiles were carried out in the IHS Kingdom software (IHS Markit, 2019), 

where all 44 seismic profiles were loaded in. Due to the included coordinate files, all seismic profiles are 

correctly geographically positioned (WGS84, UTM zone 29N) which makes it possible to obtain reliable 

geographic and geometric information. This also makes it easier to compare all crossing profiles and compare 

the interpretations on each one of them. 

 

8.3.1 Horizon picking 

Horizon interpretation implies picking and tracking of laterally consistent seismic reflectors. A clear horizon 

shows a transition between two units by having different acoustic and geometric characteristics. Interfaces 

between units, that can then be defined as horizons, are created due to a difference in acoustic impedance 

of the sediments. This is influenced by the compression velocity and density of the sediment. A change in 

either of those will result in a different acoustic impedance. A great difference in acoustic impedance between 

two sediments will result in a difference in amplitude on the seismic profile (Onajite, 2014). A horizon can 

also be defined at the transition of different geometric characteristics caused by different geologic facies. 

Seismic facies can be studied by describing internal seismic reflection patterns that are caused by different 

depositional environments and related lithofacies. These can show various arrangements of reflectors (e.g., 

parallel, subparallel, chaotic, divergent…). Reflector terminations and non-conform contacts can also be 

distinguishing characteristics for defining horizons (Fig. 13). These different components in the sediment bed 

make it possible to construct a reasoned interpretation (Nanda, 2016). 

 

 

Fig. 13: Reflector terminations defined within sequence stratigraphy, that can be used to define units in a seismic 

profile; after Catuneanu (2002). 
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8.3.2 Describing sedimentary features 

Since the objectives of this dissertation deal 

with clinoforms, sedimentary features such 

as undulations, convex or concave shapes 

or clinoform types (Fig. 14) were searched 

for in the seismic section. If sediment waves 

were observed, they were described 

thoroughly through sediment wave 

characteristics such as: (a)symmetry (Fig. 

15A), directionality, thickening 

upslope/downslope flanks, wave form, 

shape of through and crest (Fig. 15A), 

migration wave field (Fig. 15B), wave 

dimensions, form of the seismic reflections, 

etc. Sediment waves can also show various 

types of progradational clinoforms (Fig. 14) 

which characterize a varied depositional 

dynamic environment (Nanda, 2016). 

 

Hereafter, similar features having the same 

characteristics in different seismic sections were grouped. In that way the large-scale sedimentary bedforms 

and their spatial arrangement become visible. Comparing the sedimentary features could be done by looking 

at location and depth-level, to see which of the grouped features were of the same origin. Mapping these 

depositional bedforms was the next step to further define the groups of features. Individual reflectors within 

these sedimentary features were picked and tracked (and were termed tracks), to characterize the movement 

of some of these depositional bedforms. Wavelengths and wave height can then be determined by measuring 

those in s TWT and converting to meters using F1. 

 

8.4 Gridding 

A gridding algorithm was used to create relief maps of specific horizons and units in IHS Kingdom (IHS Markit, 

2019). The different gridding algorithms available were cubic spline, flex gridding, gradient projection, inverse 

distance to power and minimum curvature. For this data, my personal confidence level was higher to use flex 

gridding. The other gridding algorithms gave a less geologically correct image due to the amount of 

interpolation the algorithm applies and of course the algorithm itself also plays a big role in the geological 

correctness. An extrapolation limit (convex hull) was applied on top of it to prevent interpolations of horizons 

where they were not longer visible. The distance limit from the data was set to 400 m, which was chosen so 

that no holes are created between the seismic lines, but the interpolation is also not stretched too far. Fit to 

data was set to 0 and the smoothness to 11, other settings were left at default. The image then created is an 

interpolation that is geologically more correct. Afterwards, isopach maps (thickness maps) could be made by 

subtracting two horizon grids (deepest – shallowest) from each other. 

 

Relief maps were made from the most important horizons and from the tracks defining the sediment waves 

(see §8.3.2). Using these, isopach maps could be made for some units or subunits. The isopach maps could 

 

Fig. 14: A schematic representation of various types of 

progradational clinoforms; after Mitchum et al. (1977a, b). 
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also be used to show the movement of the sediment waves when using the tracks and the slope below. In 

that way the effect of the slope is diminished and the track movements is better visualised. 

 

A contour can be added to the grid but was in this case not always applied. This because the contours can 

give a misleading image due to inaccurate interpolation and thus give a geologically incorrect map. A 

smoothness factor was applied to its maximum and the fit to data was put at its minimum. In that way a 

smoother transition between the data is obtained, and a better refined map is created. However, this 

smoothing of the data was not enough to refine the contour lines in some of the maps created and these 

were left out. 

A. 

 

B. 

 

Fig. 15: A) a schematic representation of a sediment wave, showing the crest and throughs. L represents the 

wavelength, while H represents the wave height; modified after Cheng et al. (2020). B) A schematic representation 

of different wave geometries that form due to the dominant process being aggradation or progradation; modified after 

Faugères and Mulder (2011). 
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9 RESULTS 

In this chapter, the results will be accurately described with regard to the main focus unit of this thesis. Firstly, 

the general seismic stratigraphy of all units and subdivisions will be given, followed by a thorough seismic 

characterization of the sedimentary features within unit 3. Lastly, after the seismic description of the 

sedimentary features, their spatial extend will be elucidated. This spatial characterization will be supported 

by relief maps of horizons and isopach maps of certain (sub)units. 

 

9.1 General seismic stratigraphy 

In total, three main units were recognized in the survey area (U1, U2 and U3) on the eastern slope of the 

Porcupine Seabight. All are separated from each other by erosive surfaces (H1 and H2). In this thesis the 

main focus is on the third unit, where undulations and various sedimentary features were observed. A brief 

description will be given for U1 and U2, whereas U3 will be described in more detail. Unit 3 is subdivided in 

two subunits (sU3.1 and sU3.2) and separated by two horizons (H2.1 and H2.2). However, the lower horizon 

H2.2 cannot be traced over the complete area. In the latter case, no thickness can be determined for sU3.2, 

due to the limit of vertical penetration. In case of the presence of H2.2, no unit beneath is defined/described 

due to the same reason. The seismic profile P190604 (figure 16) is used to describe the general seismic 

stratigraphy. It is a NNW-SSE profile (Fig. 12) that includes all the units and horizons visible throughout the 

area. It also contains the main sedimentary structures that will be described in §9.2. The line drawing of figure 

16 (and further line drawings) is focussed on sU3.2. This is first of all because, as already mentioned, the 

main focus within this dissertation lies with unit 3. And second because sU3.1 is more uniform and the 

sedimentary features lie within sU3.2. 

 

9.1.1 Unit 1 

The uppermost unit, visible in all profiles within the survey area, is U1 (Fig. 16). It is a unit that varies in 

thickness from approximately 37 ms TWT (~30.5 m) to 265 ms TWT (~218.5 m). In this unit, there can be 

distinguished between two components (Fig. 16). One being the large conical feature showing low acoustic 

amplitude and the comprises of purely sediment. 

 

The sedimentary component comprises of roughly parallel bedding and is characterized by high-amplitude 

reflections. Some large elongated mounded bedforms, mostly progradational to aggradational features, are 

visible within the unit (Fig. 16). The unit is bound between the seafloor reflector (SF) and H1, which is defined 

by truncations (Fig. 16). These truncations are indicative for erosional unconformities, which H1 is. The wavy 

truncations incise the units below. 

 

The other component, comprising the low amplitude conical features, is acoustically transparent in 

comparison to the sediments (Fig. 16). These features can be buried by sediment or protrude the SF. Within 

this survey area, all of these conical features are settled on the erosive surface of H1 (Fig. 16). Most of the 

conical features leave a velocity pull-up disturbance through the rest of the profile below. 
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9.1.2 Unit 2 

In contrast to unit 1, unit 2 is characterized by low amplitude reflections (Fig. 16). It is therefore visible as an 

acoustically transparent unit on the seismic profiles. The internal reflections are very linearly structured with 

the occasional high amplitude reflector (for better visualization see §9.2.2 Fig 26). U2 does not extend 

laterally due to the erosional characteristics of H1. In most cases the unit has been eroded completely, 

especially in the western part of the survey area. The maximum thickness of the unit within the survey area 

is roughly 126 ms TWT (~104 m). The lower boundary (H2) is, as H1, also defined by an erosive surface. 

Although that in the biggest part of the area H1 incises through the erosive surface H2 into the unit below. 

 

9.1.3 Unit 3 

The lowermost unit (U3) has moderate to high amplitude reflections, which clearly distinguishes it from unit 

2. U3 is bound on top by H2 (or H1 where it has eroded to a deeper level than H2) and the lower boundary 

is not defined due to the limit of vertical penetration (Fig. 16). It is a unit that comprises laterally continuous 

seismic reflections that are very linearly structured, but at the same time also contains chaotic seismic 

reflections. This visible contrast can be observed at H2.1, above which a linearly stacked sediment body is 

located and more disturbed reflections are featured below (Fig. 16). Therefore unit 3 has been subdivided 

into two subunits, subunit 3.1 (sU3.1) and subunit 3.2 (sU3.2), divided by H2.1. The lower boundary is defined 

by H2.2, which is a horizon marked by a downlap of reflectors in the northern part of the area (Fig. 16). H2.2 

cannot be laterally traced because at a certain point it is consumed by the chaotic reflections in the south-

west of the survey area. 

 
Subunit 3.1 
 

Subunit 3.1 is characterized by very linear reflectors, bordered on top by H2 (or H1) and at the bottom by 

H2.1. It has high amplitude reflections at the top going to moderate amplitude reflections deeper towards 

H2.1. In the middle part some low-amplitude reflections are observed, creating the image of a unit with a 

broad variation in amplitudes (Fig. 16). The thickness of the subunit varies and it completely disappears 

where it is eroded by H1. The maximum thickness of the subunit observed in the survey area is 107 ms TWT 

(~88 m). 

 
Subunit 3.2 
 

Below the very linearly stacked subunit, a more chaotic reflection pattern is observed in the lowermost 

subunit, which is sU3.2 (fig. 16). It is bordered on top by H2.1 and on the bottom by H2.2. As mentioned 

above, H2.2 is only visible in the northern part of the area, where subunit 3.2 is characterized by mainly 

prograding sigmoidal to complex (Fig. 14) sediment waves. More towards the south H2.2 becomes 

untraceable due to the presence of chaotic and irregular sedimentary features with poor lateral continuity 

(Fig. 16). At these locations sU3.2 is thus not (visually) bound by a lower horizon, but it is limited by the end 

of vertical penetration. In between both the sigmoidal to complex structures in the north and the chaotic 

features in the south, the reflections are assembled linearly. Both these structures are on the same level of 

depth, which is shown clearly by reflections that can be continued from the sigmoidal to complex structures 

into the more southern occurring undulations (Fig. 16). The presence of these sedimentary features in this 

particular subunit is the reason why only this subunit will be discussed further. In the next section these 

features will be discussed in a broader sense seismically, but will also be described spatially. 
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Fig. 16: P190604 is a seismic profile tracked through the research area in a NNW-SSE direction. The seismic line is represented in the upper part of the figure 

from 0.75 s to 1.3 s TWT. Within the line drawing, the dark grey area is Unit 1, the light grey area is Unit 2 and everything below is Unit 3 with the thick lines 

marking the boundaries between the subunits. The (buried) conical features are represented in blue. 
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9.2 Seismic and spatial characterization subunit 3.2 

When taking into account general sediment feature and internal structure characteristics, three types of 

features have been recognized within subunit 3.2. As already mentioned in the unit description, sediment 

waves were distinguished, some located more in the north of the area and others more in the south (Figs. 

16, 17). Based on their similar characteristics, the sediment waves could be subdivided in two types and 

comprise the two main features recognized. The first type of sediment waves, grouped as SW1, are the ones 

located more to the north. The second type, grouped as SW2, are the ones located more to the south. Both 

features will be discussed extensively below using two crossing sections per feature (Figs. 18, 19 and Figs. 

25, 26), a detail of both sections (Figs. 20, 27) and relief/isopach maps (Figs. 21, 22). The third feature, 

convex in shape, is recognized on two longer seismic profiles P190606 and P190607 (Figs. 17, 23, 24). It 

should be mentioned that due to the lack of crossing seismic lines, this feature could only be interpreted from 

these two lines and is thus not that reliable. More data and research are required. In the view of the foregoing, 

this third feature will only be discussed briefly together with SW1. 

 

Fig. 17: A multibeam map (only used to show location, not visible on multibeam because these features are located 

within sU3.2; Beyer et al., 2003) showing the three distinguished areas where sedimentary features could be 

determined and grouped. Two types of sediment waves (SW1 and SW2) and a convex shaped feature were 

distinguished. The grey area represents the survey area. 
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Both the top (H2.1) and bottom (H2.2) horizons in which the sediment waves are observed are mapped, to 

visualize the horizon topography. H2.1 shows a gradual deepening towards the basin (Fig. 21A), following 

subunit 1 linearly. The slope looks to be slightly less steep (~0.17°) than the present bottom topography 

(~0.4°) (bathymetry in Fig. 10), especially in the northern part of the survey area. H2.2 also shows a gradual 

deepening towards the basin (Fig. 21B), but the slope is steeper than H2.1 (~0.2°) (only looking at the area 

where SW1 occur, because more towards the south H2.2 is influenced by SW2). The difference in slope 

angle between both horizons can also be observed on the isopach map in figure 22A. A slope upward (north-

westward) thinning can be observed of subunit 2. 

 

9.2.1 Sediment waves 1 

The first set of sediment waves (SW1) is located in the northern part of the area within sU3.2. The 

sigmoidal/complex (Fig. 14) arrangement of these undulations is visually the most dominant characteristic. 

This feature is best visible in the WSW-ENE profiles (Fig.18), where the sediment waves migrate upslope. In 

the NNW-SSE profiles the sigmoidal nature is less explicit. The sediment waves are visible as downlapping 

northwards along the slope with a gentle angle (Fig. 19). An estimation was made on the average wavelength 

and wave height being respectively 2-3 km and 30 m. 

 

Within the sigmoid/complex features, a differentiation can be made between two different reflector 

configurations. Firstly, there are the reflectors that continue laterally throughout the seismic profiles and thus 

throughout the sediment waves (black lines; Figs. 18, 20). They start with a parallel arrangement towards 

H2.2 in the WSW. The reflectors will all converge towards H2.2, but not all at once, rather progradational. 

The transition from parallel arrangement to converging is characterized by the crest (Fig. 20). Afterwards the 

reflectors will again follow a parallel arrangement to H2.2. Both track 1 and track 2 are such reflectors (Figs. 

18, 19). Second, are the internal reflectors (grey lines) that begin or end in toplap or downlap, always between 

two reflectors of the previously mentioned origin (Fig. 20). Both due to this and due to the converging 

character, these features lean more towards complex than sigmoid. 

 

In the WSW-ENE profiles (Fig. 18) an upslope thinning of subunit 3.2 can be observed, which is also visible 

on figure 22A. This could be attributed to the converging character of the reflectors. Another thing that was 

observed in the WSW-ENE transects is the change in wave dynamic processes. Starting from the WSW the 

sediment waves follow a progradational geometry. While when moving upwards and towards the ENE 

through the subunit, the sediment waves start changing towards an aggradational geometry. This shift in 

dynamic processes is observed with track 1 as boundary. Below track 1 progradation is more prominent. 

Above track 1 aggradation is more dominant. 

 

Both track 1 (Fig. 21C) and track 2 (Fig. 21D) were mapped. By mapping these, the general directionality 

and migration could be discovered. Similar maps are observed as in the previously discussed relief map of 

H2.1 and H2.2, that again show a gradual deepening towards the basin. Track 1 shows a less steep region 

(~0.05° cf. ~0.21°) between 1.08 s TWT (~850 mbsl) and 1.16 s TWT (~914 mbsl). Track 2 also shows a less 

steep region (~0.05° cf. ~0.22°), but a bit more towards the southwest between 1.14 s TWT (~898 mbsl) and 

1.22 s TWT (~960 mbsl). These regions of gentle slope represent the moment when the specific reflectors 

that were tracked start converging towards H2.2. Therefore, a line was added on both maps to illustrate 

where the crest (Fig. 17) of that track is located and is interpolated to cross all seismic lines (Figs. 22 C, D; 

Figs. 23 B, C). 
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A better visualization of the pathway of track 1 and track 2 was realised by creating isopach maps, where the 

thickness between both tracks and H2.2 was visualized (respectively Fig. 24B and Fig. 24C). In that way, the 

sediment waves are also straightened to remove the influence of the slope (as represented in the sketch on 

figure 20) and the converging character of the sediment waves becomes visible. On both isopach maps the 

general upslope thinning is clearly visible, with the steep converging feature prominent. For track 1 this 

feature manifests between a thickness of 20 ms TWT (~16.5 m) and 50 ms TWT (~41 m). The feature for 

track 2 manifests more to the southwest between a thickness of 10 ms TWT (~8 m) and 45 ms TWT (~37 

m). The directionality of this converging feature seams to follow a NW-SE transect. 

 

Another aspect recognized within sU3.2 is a convex shaped feature visible in the east on profiles P190606 

(Fig. 23) and P190607 (Fig. 24). These are two WSW-ENE transect profiles that extend a little bit further 

towards the northeast in comparison to the other profiles. There should be taken into account that this 

structure is only observed in these two lines at the border of the research area and could not be recognized 

in other sections. This feature occurs at the end of SW1, where they start to show an aggradational trend. 

The feature is not recognized as a part of SW1 because the reflections start going upward towards the ENE 

side of the feature. 

 

The convex shaped feature itself seems to move upslope on section P190606 (Fig.23), however it does not 

seem to move much on P190607 (Fig. 24). On the latter section, the feature is also smaller. Comparing both 

seismic profiles spatially, it seems that the feature has a NW-SE directionality. However, it should be 

mentioned that this is based on only two seismic lines, whereof interpreting spatial directionality is something 

to be vigilant about. 
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Fig. 18: P190630 is a seismic profile tracked in the northern part of the research area in a WSW-ENE direction. In 

the upper image the full seismic line is represented from 0.6 s to 1.4 s TWT. A differentiation is made between 

horizons (thick black lines), reflectors (black) including the tracks and internal reflectors (grey). The (buried) conical 

features are represented in blue. The black box indicates the area taken for the detail image (Fig. 20). 
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Fig. 19: P190632 is a seismic profile tracked through the centre of the research area in a NNW-SSE direction. The 

seismic line is represented in the upper part of the figure, but only partly from shotpoint 1 to 1050 and from 0.6 s to 

1.3 s TWT (Fig. 12). A differentiation is made between horizons (thick black lines), reflectors (black) including the 

tracks and internal reflectors (grey). The (buried) conical features are represented in blue. The black box indicates 

the area taken for the detail image (Fig. 20). 
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 Fig. 20: A more detailed view of the seismic profiles and line drawings from figures 17 and 19. A Sketch of the structures within subunit 2 was added to 

clarify the architecture of the sediment waves, and was based on all profiles combined. In the sketch the slope was rotated to a horizontal for additional 

clarity. The crest of the reflections is indicated on one reflector, both in the line drawing and sketch, with an arrow. 
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Fig.21: Relief maps of horizons H2.1 (A) and H2.2 (B), and of tracks T1 (C) and T2 (D) with a contour every 0.04 s 

TWT (~30 m). The grey area shows the survey area as displayed in figures 12 and 17. In image C and D the black 

line represents the alignment of the crests of both wave tracks. 
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Fig. 22: Isopach maps from A) subunit 3.2; B) Track 1 to H2.2; C) Track 2 to H2.2. The grey area shows the survey 

area as displayed in figures 12 and 17. In image B and C the black line represents the alignment of the crests of both 

wave tracks. 
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Fig. 23: P190606 is a seismic profile tracked in the north-western part of the research area in a WSW-ENE direction. 

The seismic line is partly represented in the upper part of the figure, from shotpoint 1 to 800 and from 0.85 s to 1.15 

s TWT (Fig. 12). A differentiation is made between horizons (thick black lines), reflectors (black) including the tracks 

and internal reflectors (grey). The arrow marks the movement of the channel. 
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Fig. 24: P190607 is a seismic profile tracked in the north-western part of the research area in a WSW-ENE direction. 

The seismic line is partly represented in the upper part of the figure, from shotpoint 1554 to 2354 and from 0.85 s to 

1.15 s TWT (Fig. 12). A differentiation is made between horizons (thick black lines), reflectors (black) including the 

tracks and internal reflectors (grey). The arrow marks the movement of the channel. 
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9.2.2 Sediment waves 2 

The second set of sediment waves (SW2) are observed in the southwestern part of the study area. These 

undulations are much less a model example of sediment waves. The characteristics, migration pattern and 

directionality were much harder to distinguish due to its irregularity and poor lateral continuity. In some parts 

in the centre of the survey area the sediment waves can slightly overlap SW1 (Fig. 17). Both NNW-SSE (Fig. 

25) and WSW-ENE (Fig. 26) profiles show a chaotic character and hummocky (Fig. 14) undulations. 

However, the undulations in the WSW-ENE transects are slightly less chaotic than those on the NNW-SSE 

transects. An average estimation was made of the wavelength being ~700 m and of the wave height being 

~20 m. 

 

Once more, two types of reflector configurations were recognized in figures 25, 26 and 27. Firstly, there are 

the reflectors that continue over a larger part of the section and eventually downlap or toplap other reflectors 

(black lines; Figs. 25, 26 and 27). In contrast to the previous type of configuration, the second type of 

reflectors is expressed on a smaller scale. The second type of reflectors can be regarded as internal reflectors 

(grey lines; Figs. 25,26 and 27) downlapping or toplapping within the first set of reflectors. 

 

The hummocky character, best observed in the NNW-SSE profiles, comes from the erosion on one flank and 

the redeposition on the other flank (Fig. 27). In this case the erosion flank of all the undulations switches 

between upslope and downslope flank easily, but it is occurring more on the downslope flank. 

 

The track visualization was also attempted with the second set of sediment waves (SW2), but failed due to 

the lack of lateral continuity. Reflectors could not be mapped well throughout the different profiles. Therefore, 

no relief maps nor isopach maps could be realized to observe directionality and migration pattern. 
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Fig. 25: P190628 is a seismic profile tracked through the western part of the research area in a NNW-SSE direction. The seismic line is partly represented in 

the upper part of the figure, from shotpoint 50 to 2050 and from 0.82 s to 1.27 s TWT (Fig. 12). A differentiation is made between horizons (thick black lines), 

reflectors (black) including the tracks and internal reflectors (grey). The (buried) conical features are represented in blue. The black box indicates the area taken 

for the detail image (Fig. 27). 
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Fig. 26: P190620 is a seismic profile tracked in the southern part of the research area in a WSW-ENE direction. The 

seismic line is fully represented in the upper part of the figure from 0.6 s to 1.4 s TWT. A differentiation is made 

between horizons (thick black lines), reflectors (black) including the tracks and internal reflectors (grey). The (buried) 

conical features are represented in blue. The black box indicates the area taken for the detail image (Fig. 27). 
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 Fig. 27: A more detailed view of the seismic profiles and line drawings from figures 25 and 27. A Sketch of the structures within subunit 2 was added to clarify 

the construction of the sediment waves, and was based on all profiles. 
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10 DISCUSSION 

10.1 Seismic stratigraphy 

The Neogene stratigraphy within this study area has been examined extensively by Van Rooij et al. (2003, 

2007) and Huvenne et al. (2009). Their studies will be compared with the data obtained in this dissertation 

(Fig. 28). This will elucidate on the formation history of the corresponding units and horizons. The 

nomenclature used by Van Rooij et al. (2007) will be applied where possible, and will be used for further 

discussion. 

 

The lowermost unit U3, separated in two subunits sU3.2 and sU3.1, is characterised by seismic facies for 

both calm and less calm depositional environments. Complex/sigmoidal (SW1) and hummocky (SW2) 

sediment configurations were recognized within sU3.2, where they occur on the same depth level within the 

seismic profiles and thus were formed at roughly the same time. sU3.1 represents the sedimentation during 

a calm depositional environment with its linearly stacked reflectors. This unit has no lower boundary due to 

the limit of vertical penetration. Unit 3 is described by Van Rooij et al. (2007) but shows a lower boundary in 

the case of the presence of downlapping sigmoidal features and a 4th unit U4 is defined beneath (Fig. 28). 

This horizon defining the boundary between U3 and U4, seems to coincide with H2.2. However, H2.2 is not 

defined by the downlapping of these structures. It seems that the horizon defined by Van Rooij et al. (2007) 

crosses reflectors through the structure of SW1. Also H2.2 is a horizon that becomes untraceable in the 

chaotic seismic facies of SW2, which is why it was not considered as a horizon dividing two units, but rather 

two subunits. No subunits were described in literature, which is why the nomenclature for these two is 

maintained, together with both their horizons. U3 is bound on top by RD2. This horizon coincides with H2 in 

this research (Van Rooij et al., 2003; Fig. 28). RD2 is thought to be of early mid-Miocene age (Louwye et al., 

2008). It is assumed to be related to late pulses of the Alpine Orogeny and major plate reorganization 

(McDonnell and Shannon, 2001) and could be linked to bottom currents introduced by the initiation of 

Norwegian Sea water in the Nord Atlantic (de Graçiansky et al., 1985). The associated hiatus is thought to 

be of minor magnitude because it is not reflected as a clear break in the palynological record (Louwye et al., 

2008). 

 

The middle unit U2, bound on top by the erosive horizon H1, is an acoustic transparent unit containing the 

occasional high amplitude reflector. This unit was also defined by Van Rooij et al. (2007). The horizon H1 is 

equal to RD1 defined by Van Rooij et al. (2003; Fig. 28). The erosional event that RD1 defines, eroded most 

part of U2 and also some of U3. Data from Kano et al. (2007) and Louwye et al. (2008) infer that RD1 

represents a long hiatus between the late Miocene and late Pliocene. The oceanographic change that 

induced such large erosive event must have been of great scale (Van Rooij et al., 2009). Van Rooij et al. 

(2003) proposed the introduction of the MOW as a possible onset for this erosive event.  

 

The low-amplitude conical features observed within the uppermost unit (fig. 28) are interpreted as cold-water 

coral mounds (De Mol et al., 2002). These CWC mounds are in this survey area only settled on RD1, which 

is an erosive surface that marks the onset of the glacial and inter-glacial cycles and with that also the onset 

of the modern oceanographic regime (Van Rooij et al., 2003). This means that in this survey area no coral 

mounds were settled on the sediment waves. Van Rooij et al. (2003) suggested that there could be a 

connection between both, but this is thus not the case within this research area. It is considered that by the 
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late Pliocene the corals have successfully colonized the appealing environment of this erosional event that 

RD1 represents (Ferdelman et al., 2006c). 

A

 

B

 

Fig. 28: Comparison of the seismic stratigraphy with literature A) line drawing of P190620 showing both SW1 and 

SW2; B) line drawing of a seismic profile showing the three drill sites with seismic units U1 through U4 marked (Van 

Rooij et al., 2007) and the depth of the interface between the MOW and ENAW; modified after Huvenne et al. (2009). 
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The uppermost unit (U1) comprises of parallel bedding with some elongate mounded packages close to the 

CWC mounds. This unit is the same as U1 defined by Van Rooij et al. (2007; Fig. 28). The mostly 

progradational feature within this unit are elongate sediment drifts that are part of the current contourite 

regime oceanography within this area. Wherein, the CWC mounds play a big role in the bottom topography 

and thereby influencing the bottom currents (Van Rooij et al., 2003). This drift sedimentation is thought to 

have started later than the settlement of the CWC mounds, namely from the middle early Pleistocene (Kano 

et al., 2007; Van Rooij et al., 2007). 
 

10.2 Uncovering the sediment wave dynamics 

Both types of sediment waves will be discussed separately in this section since they display different 

geometries and localities. Based on the sediment facies and geometries of the sediment waves, the genetic 

processes can be assessed. Afterwards both will be compared spatially with each other to determine the 

local oceanographic processes. 

 

10.2.1 Sediment waves 1 

The first set of sediment waves have a complex/sigmoidal architecture (Fig. 20) and were formed on a slope 

of about ~0.2°. They show a general asymmetrical geometry with their crests closer upslope (Fig 20). The 

sediment waves show a progradational to aggradational migration pattern (Fig. 18). Sigmoidal clinoforms 

showing aggradation usually suggest a high rate of sediment supply (Nanda, 2016). This could indicate that 

these sediment waves started with a low rate of sediment supply and changed to a higher rate of sediment 

supply. Their crests are aligned along-slope, slightly diagonally (~21° cf. isobaths in horizontal plane) with a 

NW directionality (Fig. 22B, C). Internally the sediment waves show a downlapping seismic facies (Fig. 20). 

The wave dimensions were estimated with the wavelength and wave height, respectively at 2-3 km and 30 

m. 

 

Sediment waves formed by turbidity currents occur most of the time close to canyon or channel systems (Lee 

et al., 2002). Taking into account that no major downslope channel or canyon features were observed within 

the present-day bathymetry, it seems less likely that these sediment waves could have been formed by 

turbidity currents. On the other hand, the crest are more or less aligned perpendicular to the slope, which 

also occurs in turbidity formed sediment waves (Wynn and Stow, 2002; Fig. 22B,C). However, the undulating, 

climbing bedforms (Cartigny et al., 2011) are not recognized in SW1, where a more progradational migration 

without cyclic steps is observed (Fig. 20). For these reasons, it seems not likely that turbidity currents were 

related with the formation of SW1. 

 

Gravity-driven mass transport usually occurs on a steep slope, which is generally taken at >10°, but can in 

some cases also occur on less steep slopes (Faugères et al., 2002a). But still, because of the low slope 

angle this system is less likely to have formed the sediment waves. Also no extensional or compressional 

characteristic elements were observed within sU3.2 (Fig. 20), but they could also just not be visible. However, 

sediment waves formed by deformation do not show lateral migration, but rather a random scatter of 

dimensions (Wynn and Stow, 2002). SW1 have a migration pattern and also internally show downlapping in 

one specific dimension, namely upslope towards the ENE (Figs. 18, 20). For these reasons there was 

concluded that SW1 are not related to gravity-driven mass transport. 
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The sediment movement with internal waves is generally bidirectional in deep-water environments. However 

they can have a net downslope component (Hotchkiss and Wunsch, 1982; Karl et al., 1986; Pomar et al., 

2012). This creates crests aligned to the slope isobaths (Ma et al., 2016), which is the case with the crests 

of SW1 (Fig. 22B, C). Large-scale sediment waves have diagnostic approximate sinusoidal curves (He et al., 

2008). This cannot be observed in the sediment waves in this survey area (Figs. 18, 19, 20). Internal waves 

can occur very locally and can have a very variable intensity (Pomar et al., 2012). However, internal-wave 

deposits are very variable and definitive criteria are still underdeveloped (Pomar et al., 2012; Ribó et al., 

2016b). This is why there cannot be concluded with certainty if internal waves are related to the formation of 

the sediment waves or not. 

 

Contour currents are along-slope currents, where the sediment wave crests are formed usually diagonally to 

the dominant flow (Wynn and Stow, 2002). This is the case with these sediment waves. Contour currents 

usually flow over long distances and are generally strong (Masson et al., 2002). Due to the many varieties 

within contourite drift deposits (Fig. 2D), this dynamic system could be an option when considering it as the 

formation dynamic for SW1. If so, the most likely contourite drift system would be an elongated drift, because 

of the internal downlapping seismic facies (Fig. 20). The contour current could have moved upslope through 

time to form these prograding bedforms (Fig. 18). The convex feature recognized in the northeastern side of 

the area (Figs. 23, 24) could be the moat where this contour current flowed through. But the wave dimensions 

are on the smaller side, especially the wave height when comparing to the dimensions defined for this type 

of dynamic process. Fine grained contourites can have wavelengths up to 10 km and wave heights up to 150 

m. 

 

In a study by Roveri (2002, P67) of the Corsica Channel contourites in the Tyrrhenian Sea, similar sediment 

wave configurations were recognized. Figure 1D shows an upslope migration of an elongate drift and can be 

compared with the sediment waves observed in the WSW-ENE transects (Fig. 20). The sediment drifts of 

the Corsica Channel show a more aggradational wave geometry in comparison to those presented in figure 

18. However, at the eastern end of SW1 in the WSW-ENE transects a transition was observed from 

progradation to aggradation. These sediment waves with a more aggradational character (Fig. 18) show 

better similarities to the sediment waves in the Corsica Channel (Fig. 1D). If SW1 are considered elongate 

drifts, it is likely that the more progradational character was formed due to an upslope movement of the along-

slope flow. 

 

10.2.2 Sediment waves 2 

The other sediment waves located more to the southwest of the area (Fig. 17) are characterized by chaotic 

seismic facies and hummocky undulations (Fig. 27). No migration pattern or other dimensions could be 

determined due to the poor lateral continuity of these sediment waves. The internal reflectors show 

downlapping and toplapping facies (Fig. 27). An average estimation of the wavelength and wave height are 

respectively ~700 m and ~20 m. 

 

Turbidity formed sediment waves also seem less likely to have formed SW2, for the same reason as for SW1 

that no major downslope channel or canyon features were recognized. However, the crest alignment or 

migration pattern, respectively perpendicular to slope and upslope for turbidites, were of no use to determine 

these sediment waves due to their poor lateral continuity. But the lack of crest alignment and migration pattern 

is also a determining factor to discard the relationship of turbidity currents with these sediment waves. 
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For gravity-driven mass transport, the same applies as with SW1. The slope was not that steep and no 

extensional nor compressional elements were observed. However, sediment waves formed by deformation 

do not show lateral migration, but rather a random scatter of dimensions (Wynn and Stow, 2002). The chaotic 

and random character of SW2 could thus be related to gravity-driven mass transport, but the slope angle is 

too small for that (~0.2°). 

 

Due to the poor lateral continuity with these sediment waves, there is a lack of information on the crest 

alignment or migration pattern of SW2. With internal wave deposits, crests are aligned parallel to the isobaths 

of the slope (Ma et al., 2016). According to Pomar et al. (2012) a hummocky character can be caused by 

internal wave dynamics. However, the general characteristics of internal wave deposits are still 

underdeveloped (Pomar et al., 2012; Ribó et al., 2016b). Thus internal waves may have formed these 

sediment waves. 

 

Also for contour currents the crest alignment cannot tell everything. The estimated wave height and 

wavelength seem a bit too low for the waves to be contourites. Wave dimensions in fine grained sediments 

can go up to a wavelength of 10 km and a wave height of 150m (Wynn and Stow, 2002). However, contourite 

deposits are very diverse in morphology (Fig. 2D), which is why this dynamic system cannot be excluded, 

together with internal waves. A channel related contourite drift (Fig. 2D) usually shows random lateral 

migration and hummocky configurations (Rebesco and Stow, 2001), which SW2 also shows. Nonetheless, 

these channel related contourite drifts are formed in confined basins or channels (Rebesco et al., 2014), but 

this is not the case with SW2. So according to the general model for contourite morphologies (Fig. 2D), these 

sediment waves could not have been formed by contour currents. 

 

In any case, it is clear that these sediment waves have been formed in a high-energy depositional area. Their 

chaotic character alone indicates a link to a high-energy deposition (Nanda, 2016). Turbidity currents can 

definitely be excluded together with gravity-driven mass transport and there is a high probability for the 

sediment waves to be related to internal waves. They could also be related to a combination of multiple 

dynamic systems, which could explain the chaotic character, the lack of lateral continuity and the inability to 

map these features. An example could be a combination of contour currents and internal wave dynamics 

(Rebesco et al., 2014). These would create the existence of an along-slope component together with a 

bidirectional upslope and downslope component.  
 

10.2.3 Spatial comparison of the sedimentary waves and their dynamics 

The hydrodynamic processes behind both sediment wave types may be related to either contour currents or 

to internal waves action. The interpreted sediment waves are located at more or less the same level and can 

thus be spatially and stratigraphically related to each other. This is visible on figure 16 where both sediment 

waves are present and reflectors are laterally continued from the first set of sediment waves to the other. 

Hence, the sediment waves are situated on the same level and should have been deposited at more or less 

the same time. This leads to think that the dynamic systems that formed both sediment waves were related 

to one another. 

 

Nevertheless, the first set of sediment waves seems to be best related to contour currents. With the crest 

aligned slightly diagonally to the slope and thus flow direction. Their internal downlapping facies leading to 

think about elongate drift depositions. The progradation trend could then be explained by an upslope 
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movement of the current causing the deposition of the elongate drift also to move upslope (Fig. 29). On the 

other hand, the second set of sediment waves seems to be most likely formed by internal waves. With their 

hummocky undulations and random lateral migration, all other processes could be excluded. Of course, a 

multi-dynamic system with the influence of both internal waves and contour currents could also explain the 

chaotic character. This means that also SW1 might have been influenced or formed by internal waves. 

 

Figure 30 visualizes a formation model where both sediment-waves were influenced by a combination of 

internal waves and contour currents. Here it is considered that the first set of sediment waves were formed 

mostly by contour current influence and a minor influence of internal waves. While the second set of sediment 

waves were less influenced by the contour current and more by the internal waves. In an initial stage the 

influence of internal waves would have been larger then at a later stage. This change of major to minor 

influence may be explained by changes in sea level that can cause weakening or strengthening in the energy 

of the internal waves (He et al., 2008; Zhenzhong et al., 2013). The formation model presented here is only 

one possible interpretation. There are still other options. Both could be formed by internal waves or both may 

be formed by contour currents. It could also be that this formation model is too simple and a more complex 

situation occurred. 

 

 

Fig. 29: A representation of SW1 formed by an upslope moving contour current. 
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Fig. 30: A formation model of SW1 and SW2 influenced by both a contour current and internal waves (IW). The 

influence of internal waves is stronger in the initial stage and diminishes towards a later stage. It was chosen to 

visualize this representation of the mid and final stage on top of the isopach maps (Fig. 22B C), because these show 

the sediment wave architecture very well at two different moments in time. 
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10.3 Origin of the oceanographic changes 

For contour currents to have formed the sediment waves, in the research area on the eastern slope of the 

Porcupine Seabight, an along-slope deep-water current arising from thermohaline circulation needs to be 

present. For determining sediment waves formed by internal waves, the oceanographic setting is a very 

important factor. However, this is rather difficult in this case considering these are palaeo-sediment waves 

that formed somewhere before the early-middle Miocene. The presence of internal waves requires an 

interface between two water masses with a high contrast in density and temperature (Cullen and Ivanov, 

2020). 

 

Due to the sparse knowledge about the Miocene palaeoceanography, it becomes difficult to form an 

interpretation on the origin and flow direction of the contour current that flowed through the PSB, or the water 

masses present in the PSB. The NADW was still underdeveloped during the Miocene and only started 

intensifying around 4.6 Ma (Haug and Tiedemann, 1998). Due to a deepening of the Greenland-Scotland 

Ridge a major deep-water flow could have been initiated around 11.5 Ma from the Nordic Seas into the North 

Atlantic (Wright and Miller, 1996; Wei and Peleo-Alampay, 1997). Quaijtaal et al. (2014) interpreted a possible 

strengthening of the northerlies within the Porcupine Seabight during the middle Miocene. These several 

possible flow origins leave the interpretation of the flow direction in the PSB open for discussion. Considering 

these possible intensifying currents, a contour current could have shaped the eastern slope of the PSB. For 

internal waves on the other hand, there is less evidence concerning a water-mass with a high density or 

temperature contrast. The influence of MOW seems unlikely because the closure of the Eastern Tethys only 

occurred from the middle Miocene and thus a connection between the Southern Ocean was still established 

(Butzin et al., 2011). A strong Labrador current has been suggested to be present from 46 Ma onwards in 

the western North Atlantic and could have caused a density/temperature difference due to its very cold and 

low salinity characteristics (Egger et al., 2018). A first onset of LSW deep-convection is thought to be the 

cause of the deep-water stratification change in the Atlantic between 10.6 Ma and 7.3 Ma (Thomas and Via, 

2007; Butzin et al., 2011). From the latest Oligocene, bottom water temperature increased while the extend 

of the Antarctic ice sheets reduced. This warming continued up to the Middle Miocene Climatic Optimum. 

Hereafter, from 14.5 Ma, a cooling phase was initiated (Zachos et al., 2001; Böhme, 2003). These warm 

bottom waters together with early cold LSW pulses may have caused an interface where internal waves may 

have occurred. 

 

It is remarkable that the sedimentary features only occur within sU3.2. In sU3.1 bottom current influence is 

nowhere to be seen. It looks like a certain flow strengthened suddenly, but later faded or disappeared. The 

duration of deposition for these sediment waves can be estimated comparing to data from the IODP 

expedition (Ferdelman et al., 2006a). In core U1316 a lithological subunit 3A is defined with an age of 15.6-

18.3 Ma (Ferdelman et al., 2006c; Fig. 10). This youngest age was reassessed with strontium isotope dating 

(87Sr/86Sr) at 16.58 Ma (Kano et al., 2007). The lithological unit was correlated to the seismic profile (Fig. 10) 

and seems to coincide with the average thickness of the package of sediment waves (Figs. 18, 26) being 0.1 

s TWT (~82.5 m). This core was taken more to the WSW of the profiles in this research and consequently 

caution should be taken when correlating and extrapolating. There can thus be estimated that the sediments 

were deposited over a period of about 2 Ma, considering a continuous sedimentation rate equal to the one 

at site U1316. This may have been a short pulse/strengthening before the real onset of the Norwegian Sea 

water into the North Atlantic, which is represented by H2 (de Graçiansky et al., 1985), or it could have been 

a strengthening pulse in the NADW. In conclusion, other options cannot be totally excluded to declare this 

short but strong pulse that created the sediment waves. 
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11 CONCLUSIONS 

Previous seismic data taken from the eastern slope of the Porcupine Seabight revealed sediment structures 

in a unit (P1; defined by Van Rooij et al., 2003) beneath the cold-water coral mounds of the Belgica Mound 

Province. Dating clarified that this unit and thus also the sedimentary features are at least of early-middle 

Miocene age (Ferdelman et al., 2006a; Louwye et al., 2008). Van Rooij et al. (2003) suggested that these 

sedimentary features could have something to do with the settlement of some of the CWC mounds. With 

new data acquired of this specific area during the DynaMOD project, better understanding of these 

sedimentary bedforms could be realised. Within the framework of this dissertation, there was aimed to 

document the seismic facies, geometry and morphology to obtain information about their formation 

processes. In that way the relation between the sedimentary bedforms and the CWC mounds was assessed 

and information about the local palaeoceanography was obtained. Two different sediment wave fields were 

recognized and were compared based on spatial and temporal changes. An attempt was made to discover 

information or clues to the palaeoceanography and global changes that induced the formation of those 

sediment waves. However, this was not easy to obtain due to the lack of information on Miocene 

oceanography. 

 

A first set of sediment waves were found to be located in the northeastern part of the survey area within 

sU3.2. These sediment waves are prograding sigmoidal to complex features that show internal downlapping 

facies. They were formed on a slope of about 0.2°. Both internal waves as contour currents have been found 

to be likely formation processes for these sediment waves. Nevertheless, the formation by contour currents 

showed a better agreement with the characteristics. Their crests are aligned slightly diagonally to the slope 

and thus also to the flow direction in the case of the presence contour current. The internal downlapping 

facies and sigmoidal to complex architecture could be formed as an elongate drift. The progradational trend 

could then be explained by an upslope movement of the flow. The second set of sediment waves, located in 

the south-western part of the research area, was very different to the first. They show a very chaotic and 

random lateral migration. They also reveal a hummocky architecture. Mainly because of this chaotic feature, 

several formation processes could be excluded. Except for internal wave dynamics, these may show a 

hummocky character according to Pomar et al. (2012). 

 

However, both sediment wave fields occur on the same level, which means that they are spatially related to 

each other and were deposited around the same time. This suggests a shared hydrodynamic formation 

system. This leads to think that both internal waves and contour currents influenced both sediment wave 

fields. This multi-dynamic system would then cause for the existence of an along-slope component together 

with a bidirectional upslope and downslope component. An initial stage where the influence of internal waves 

was more prominent, followed by a change to a more contour current controlled environment was used as a 

formation model. The change in wave dynamics may then explain the two very different sediment wave fields. 

There is evidence of sea-level changes in the Miocene (Quaijtaal et al., 2014), which could explain the 

change in wave dynamics. 

 

For the existence of internal waves and contour currents, specific oceanographic criteria need to be fulfilled. 

Contour currents require a deep-water flow through the Porcupine Seabight to establish drift sedimentation. 

Internal waves on the other hand, need an interface between two water-masses where a high contrast in 

density or temperature exists. The presence of the latter is more difficult to interpret due to the sparse 
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knowledge on the Miocene palaeoceanography. Nonetheless, this study might have evidence for the 

presence of these criteria, but further research is needed to elaborate on that. Better 3D insight, in both 

sediment wave fields and especially SW2, would already be one thing that could clarify the formation of the 

sediment waves. Deeper penetration would also be an asset in future data acquirement, but this would result 

in a loss of resolution which would be disadvantageous in this case. 

 

Further research is a necessity to discover the true local palaeoceanography, not only by studying the 

sediment waves that were discussed in this dissertation but also to broaden the general knowledge about 

the different wave dynamic systems and their definitive criteria. A denser seismic grid or even 3D seismic 

acquisition would be a strong benefit in studying the sediment waves in this area. Additionally, coring through 

the sediment wave fields would be beneficial to discover the lithology but especially an asset to the age 

constraints that could elaborate on the duration of high-energy deposition. Coring would also give insight on 

the palaeoecology, which not only helps dating but may also elucidate on the water-masses that contributed 

to the formation of the sediment waves. Further research on the dynamic systems and their diagnostic criteria 

is also a necessity. In this way it might be possible to typify the sediment waves better without knowledge 

about their depositional environment. Especially further research on depositions caused by internal waves is 

essential, because their knowledge is rather sparse. A classifying system, as those that exist with contour 

currents (Fig. 2D), could be beneficial and would in that way help the identification of the diagnostic criteria. 

Future research on palaeo-sediment waves around the world, like the research presented here, would be 

very interesting to learn about their local palaeoceanography. These could eventually be compared to other 

studies to obtain insight on the global palaeoceanography. 
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