
on Edge to Cloud Orchestration
Developing Software Services in Smart Cities based

Academic year 2019-2020

Master of Science in Information Engineering Technology

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Tom Goethals
Supervisor: Prof. dr. Bruno Volckaert

Student number: 01606256
Jaro Robberechts

Norwegian University of Science and Technology
Faculty of Computer Science

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

Supervisors: Prof. Dr. Sobah Abbas Petersen
Prof. Dr. Bruno Volckaert

Co-supervisor: Dr. Amir Sinaeepourfard
Counsellor: Tom Goethals

Norwegian University of Science and Technology
Faculty of Computer Science

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

This Master’s dissertation has been established in collaboration with the ZEN
research center.

Master’s dissertation submitted in order to obtain the
academic degree of

Master of Science in Information Engineering Technology
Academic Year 2019-2020

Acknowledgment

Throughout the creation of this Master’s dissertation, I have received a great deal
of support.

First and foremost, I would like to thank my supervisor from the NTNU,
prof. dr. Sobah Abbas Petersen, for giving me the opportunity to write this
Master’s Thesis at the NTNU and in collaboration with the ZEN Research Center.
Secondly, I want to thank my supervisor from the UGent, prof. dr. Bruno
Volckaert, for always giving me good advice and support when I needed it the
most. This really kept me motivated. Next, I want to express my gratitude
towards dr. Amir Sinaeepourfard, for supporting me and pushing my limits
throughout this semester. You thought me many things that will stay with me for
the rest of my life. You also gave me the opportunity of publishing my first paper.
I am thankful for this tense but exciting experience and it was a pleasure to be
working with you. I also want to thank Tom Goethals for his support, feedback,
and motivation.

Furthermore, I want to thank Wouter Vandendriessche for our endless talks about
each others work in Moholt. I also want to thank my family and friends for
always being there when I needed them. Especially, Valerie, even though we were
separated during my five-month stay in Norway, you always kept me motivated
and happy.

Ghent, August 2020
Jaro Robberechts

Permission for use of content

The author gives permission to make this master’s dissertation available for
consultation and to copy parts of this master dissertation for personal use. In all
cases of other use, the copyright terms have to be respected, in particular with
regard to the obligation to state explicitly the source when quoting results from
this master dissertation.

Ghent, August 2020
Jaro Robberechts

Table of Contents

Acknowledgment i

Permission for use of content iii

List of Figures ix

List of Tables xi

Acronyms xiii

Abstract xvii

Nederlands Abstract xix

Summary xxi

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 2

1.3 Approach and Outline . 2

1.4 Publications . 3

2 Software Services from Edge to Cloud in Smart Cities 5

2.1 Background . 5

2.1.1 Smart Cities . 6

2.1.2 Cloud Computing . 6

2.1.3 cloudlet Computing . 8

2.1.4 Fog Computing . 8

2.1.5 Edge Computing . 9

vi

2.1.6 Mobile Edge Computing 10

2.2 Literature Review . 11

2.2.1 Methodology . 12

2.2.2 Result . 12

2.3 Edge-to-Cloud-as-a-Service architecture for Smart Cities 13

2.4 Developing Software Services in Smart Cities 16

2.4.1 Classification of City Services 19

2.4.2 Design Output . 22

2.4.3 Computing Platform . 23

2.4.4 ICT Management . 24

2.4.5 Technological Tools . 28

2.4.6 Implementation . 35

2.4.7 Efficiency Measurements 35

3 EMS Software Services in Smart Neighborhoods 37

3.1 Background . 38

3.1.1 ZEN research center . 38

3.1.2 Smart Neighborhoods 38

3.1.3 Smart Grid . 38

3.1.4 Energy Management Systems 39

3.2 Edge-to-Cloud-as-a-Service architecture for ZEN Center 40

3.3 Developing EMS Software Services in Smart Neighborhoods . . . 43

3.3.1 Classification of City Services 44

3.3.2 Design Output . 44

3.3.3 Implementation . 48

3.3.4 Efficiency Measurements 48

3.4 Directions towards implementation 49

3.4.1 Scenario and Goals . 49

vii

3.4.2 Technological Tools . 49

4 Implementation 51

4.1 Scenario and Setup . 51

4.1.1 Virtual Wall . 53

4.1.2 Kubernetes . 53

4.2 Results . 54

4.3 Discussion . 58

5 Conclusion and Future Work 59

References 61

A A Novel Edge-to-Cloud-as-a-Service (E2CaaS) Model for Building
Software Services in Smart Cities 69

List of Figures

2.1 IaaS, PaaS, and SaaS [4] . 7

2.2 Literature Review Query . 12

2.3 Software Service models in Smart Cities (Appendix A) 15

2.4 Taxonomy of Fog Computing applications in Smart Cities [17] . . 17

2.5 How to develop Software Services in Smart Cities 18

2.6 Centralized vs Distributed vs Decentralized [32] 24

2.7 Comprehensive Scenario Agnostic Data Lifecycle model for a
Smart City [12] . 25

2.8 Monolithic architecture vs Microservices architecture [44] 29

2.9 Container-based application vs VM-based application [48] 30

2.10 Collaboration model between SDN and distributed technologies [54] 32

2.11 Integration of IoT and social media stream-based applications [59] 35

3.1 Energy Management System in a Smart Grid [63] 40

3.2 E2CaaS architecture for ZEN Center 41

3.3 Developing EMS Software Services for Smart Neighborhoods . . 43

3.4 Connecting multiple pilots through the E2CaaS architecture 45

3.5 Data types in ZEN Center [36] 47

4.1 Different implementations of the temperature data processing service 52

4.2 Maximum number of requests per second of IoT nodes 55

4.3 Average CPU usage of IoT nodes 56

4.4 Average CPU usage of cloudlet nodes 57

4.5 Average CPU usage of Cloud nodes 57

List of Tables

2.1 Distinct features of cloudlet - and Cloud Computing 9

2.2 Distinct features of Fog - and Cloud Computing [10] 10

2.3 Distinct features of Edge - and Cloud Computing 10

2.4 Distinct features of MEC - and Cloud Computing 11

2.5 Comparison of Docker and Virtual Machines [18] 30

4.1 Specifications of the Virtual Wall nodes 53

Acronyms

AI Artificial Intelligence. 20, 34

API Application Programming Interface. 30, 32, 35

BS Base Station. 14, 20, 45

CaaS Cloud-as-a-Service. 6, 13

caaS cloudlet-as-a-Service. 13

CC Cloud Computing. 1, 6, 8, 11, 28, 31, 54

CPU Central Processing Unit. ix, 52, 53, 55–57

D2C Distributed-to-Centralized. xvii, 24

DC2C Decentralized-to-Centralized. xvii

DSM Demand-Side Management. 39

DSU Dynamic Software Update. 48

E2CaaS Edge-to-Cloud-as-a-Service. ix, 13, 25, 40, 41, 43, 45, 49, 54, 58–60

EaaS Edge-as-a-Service. 14

EC Edge Computing. 1, 9–11, 19, 25, 27, 28, 32, 33, 45

EMS Energy Management System. ix, xvii, xix, 2, 3, 37–40, 42–44, 48, 49, 51,
52, 59

EU European Union. 20, 44

xiv

FaaS Fog-as-a-Service. 13

FC Fog Computing. 1, 8–11, 16, 32, 45

GDPR General Data Protection Regulation. 20, 44

GPU Graphics Processing Unit. 34

I2CM-IoT Integrated and Intelligent Control and Monitoring of IoT. 14, 46, 48,
54

IaaS Infrastructure-as-a-Service. ix, 6, 7

ICT Information and Communication Technology. xvii, xix, 2, 8, 12, 16, 22–24,
26–28, 35, 44, 49, 60

IoT Internet of Things. ix, xvii, xix, 1, 6, 8, 9, 14, 20, 22, 25, 27–29, 31, 33–35,
42, 52–57

IT Information Technology. xvii

KPI Key Performance Indicator. 16, 35, 46, 48

MEC Mobile Edge Computing. 10, 11, 20, 26, 27, 29, 32, 33, 42

MECaaS MEC-as-a-Service. 14

MNO Mobile Network Operator. 11

MQTT Message Queuing Telemetry Transport. 21, 33, 34, 48, 50, 58, 60

NFV Network Function Virtualization. 27, 32, 33

OS Operating System. 30, 53

PaaS Platform-as-a-Service. ix, 6, 7, 33

RAN Radio Access Network. 10, 11, 14, 28

SaaS Software-as-a-Service. ix, 6, 7

SDK Software Development Kit. 35

xv

SDN Software-Defined Networking. ix, 27, 31, 32, 47, 48

SP Service Provider. 6, 9, 11, 28, 32, 33

SSH Secure Shell. 19

VM Virtual Machine. ix, 29, 30, 33

VNF Virtual Network Function. 33

ZEN Zero Emission Neighborhoods. i, ix, xvii, xix, 2, 3, 37, 38, 40, 41, 43–49,
59, 60

Abstract

Complex challenges such as fast population growth, pollution, safety, and climate
chance urge the need for newer and better Information Technology (IT) services.
Smart Cities are one of the scenarios where these services are utterly important.
The main goal of Smart Cities is to enhance the Quality of Life of its inhabitants
by providing services that can tackle the previously mentioned challenges. Smart
Cities can leverage their wide variety of Information and Communication
Technology (ICT) components that are built around Internet of Things (IoT) to
offer these Software Services. However, managing all these ICT components is
challenging. Consequently, the demand for ICT architectures in Smart Cities is
high. Traditional solutions are based on centralized ICT architectures using
Cloud-based technologies. With services shifting towards the edge of the network
and the Cloud coming up short on many levels, novel distributed architectures are
gaining popularity. Many solutions that can manage the ICT components from
the edge of the network to the Cloud through distributed technologies, such as
Distributed-to-Centralized (D2C) and Decentralized-to-Centralized (DC2C)
architectures, have already been proposed. This thesis aims to give a general
overview of the various technologies and methods related to large-scale Software
Services in Smart Cities using different multilevel technologies. Some research
questions are identified to provide the reader with a clear objective throughout
this work. Based on a thorough literature review, a model on how to develop
Software Services in Smart Cities is presented. Afterward, the knowledge gained
from this literature study is applied onto the ZEN Research Center. This second
part of the thesis explores the possibilities of EMS Software Services in Smart
Neighborhoods as a use-case. The final part of this thesis gives an example of a
simplified Software Service that can be used for EMSs and compares a couple
scenarios to visualise the impact of using a distributed layout.

Nederlands Abstract
Dutch Abstract

Recent, door de opkomst van uitdagingen zoals onder meer een snelle
demografische groei, privacy issues, en klimaatsverandering, wordt de vraag naar
“slimmere” services en applicaties steeds groter. Vooral in steden, waar veel
mensen dicht bij elkaar wonen en werken, spelen dit soort services nu al een grote
rol. Zo een “slimme” stad of Smart Cities is gebouwd rond ICT componenten en
IoT toestellen. Deze componenten en toestellen kunnen gebruikt worden om data
op te halen, die dan op zijn beurt kan dienen om services aan te bieden voor de
inwoners. Het blijft echter een moeilijke kwestie om al deze toestellen te beheren.
Traditioneel wordt dit gedaan aan de hand van gecentraliseerde technologieën die
zich in de Cloud bevinden. Tegenwoordig is de vraag naar services echter aan het
verschuiven richting de rand van het netwerk. Als reactie hierop zijn er al heel
wat gedistribueerde oplossing voorgesteld. Dit onderzoek tracht een duidelijk
overzicht te bieden van de verscheidene technologieën en methodes die kunnen
bijdragen tot het ontwikkelen van Software Services, van de rand van het netwerk
tot aan de Cloud. Gebaseerd op een grondig literatuur onderzoek stelt deze studie
een architectuur voor die de meeste voorkomende gedistribueerde en
gecentraliseerde technologieën in een Smart City plaats. Daarnaast wordt een
stappenplan voor het ontwikkelen van Software Services uitgewerkt. In het
tweede deel van dit werk, worden deze modellen toegepast op het ZEN Research
Center in Noorwegen. De mogelijkheden voor het bouwen van EMS Software
Services in Smart Cities en Smart Neighborhoods worden hierbij onderzocht. In
het laatste hoofdstuk wordt een voorbeeld van een versimpelde Software Service
geı̈mplementeerd door gebruik te maken van containerization. Enkele scenario’s
worden vergeleken om de impact van een gedistribueerd platform te visualiseren.

Developing Software Services in Smart Cities based
on Edge to Cloud Orchestration

Jaro Robberechts

Supervisor(s): Sobah Abbas Petersen, Bruno Volckaert, Amir Sinaeepourfard, and Tom Goethals

Abstract—Complex challenges such as fast population growth, pollution,
safety, and climate chance urge the need for newer and better Informa-
tion Technology (IT) services. Smart Cities are one of the scenarios where
these services are utterly important. The main goal of Smart Cities is to
enhance the Quality of Life of its inhabitants by providing services that
can tackle the previously mentioned challenges. Smart Cities can leverage
their wide variety of Information and Communication Technology (ICT)
components that are built around Internet of Things (IoT) to offer these
Software Services. However, managing all these ICT components is chal-
lenging. Consequently, the demand for ICT architectures in Smart Cities
is high. Traditional solutions are based on centralized ICT architectures
using Cloud-based technologies. With services shifting towards the edge
of the network and the Cloud coming up short on many levels, novel dis-
tributed architectures are gaining popularity. Many solutions that can
manage the ICT components from the edge of the network to the Cloud
through distributed technologies, such as Distributed-to-Centralized (D2C)
and Decentralized-to-Centralized (DC2C) technologies, have already been
proposed. This study aims to give a clear overview of the various technolo-
gies and methods related to large-scale Software Services in Smart Cities
using different multilevel technologies. A general overview of how to de-
velop Software Services in Smart Cities is presented based on a thorough
literature review. The knowledge gained from this broad literature study is
then applied onto the ZEN Research Center. This part of the study explores
the possibilities of Energy Management System (EMS) Software Services in
Smart Neighborhoods, as a use-case in Smart Cities. Finally, an example of
a simplified Software Service that can be used for EMSs is presented. This
service is implemented in a couple of scenarios to visualize the impact of
using a distributed layout.

Keywords—Smart City, IoT, Edge-to-Cloud, Distributed-to-Centralized
ICT, Edge-to-Cloud-as-a-Service

I. INTRODUCTION

RECENT challenges related to population growth, pollution,
safety, and climate change in cities have led to the adoption

of new technologies such as IoT. IoT devices constitute to the
main building block that forms a Smart City. To deal with some
of these challenges, and to improve the Quality of Life of the
citizens, the city needs Software Services that can interact with
the IoT devices on a large-scale. Traditionally, these services are
located on a centralized Cloud, far away from the citizens. Due
to recent demands, such as low latency and privacy, the com-
puting power is shifting closer towards the edge of the network.
Consequently, novel paradigms such as Edge Computing (EC)
and Fog Computing (FC) are arising. With all the new technolo-
gies, devices, and complexities, the demand for a general unified
architecture that can utilize both the benefits of the centralized
Cloud-based as the distributed Edge and Fog-based technologies
is high.

This study tries to fill this gap by firstly providing a gen-
eral overview of the current technologies and trends for build-
ing Software Services in Smart Cities. Next, based on a lit-
erature review, a novel Edge-to-Cloud-as-a-Service (E2CaaS)
architecture and a model of how to develop Software Services
in Smart Cities is presented. This model consists of four main

steps that guide the reader through the process of developing
a Software Service. Afterward, this general model and archi-
tecture are applied onto the ZEN Research Center, resulting in
an architecture and model for developing EMS Software Ser-
vices in Smart Neighborhoods. Finally, a simplified Software
Service that can be used for EMSs is implemented in four dif-
ferent scenarios. The main focus in terms of technologies when
developing this service lies on containerization. Comparing the
measurements of the different scenarios shows that moving the
computing power and the services (partially) closer towards the
citizens can reduce the amount of traffic towards and the load on
the Cloud.

II. SOFTWARE SERVICES IN SMART CITIES

A. Background

This section briefly explains some of the most vital concepts
related to Software Services in Smart Cities.

A.1 Cloud Computing

CC is a computing model where users can utilize comput-
ing resources on-demand. These resources are often managed
by a Service Provider (SP). The client can save a lot of money
by simply renting computing power instead of investing in ex-
pensive dedicated hardware. The four most common methods
for providing Cloud-as-a-Service (CaaS) are: Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-
Service (SaaS), and Serverless Computing.

IaaS offers virtualization, storage, and processing. This
leaves a lot of freedom to the client as they can choose their
own Operating System (OS) and software.

PaaS SPs allows their clients to only control the applications
that are running on their servers. They cannot choose the un-
derlying infrastructure, OS, or development tools [1]. PaaS is
mostly used as a development framework as it simplifies and
speeds up the application development process.

SaaS offers the client the least amount of freedom. The client
rents a service and has no control over the infrastructure, plat-
form, and application. The advantage of SaaS is that it enables
the client to be quickly up and running with the least amount of
effort and minimal upfront cost.

Finally, Serverless Computing offers less flexibility than PaaS
because the client cannot create the whole application. The
client is however able to develop single functions of the appli-
cation, resulting in more freedom than with SaaS.

A.2 cloudlet Computing

cloudlets are a concept that places the computing power
closer towards the end-users and datasources. A cloudlet can be
a small datacenter or group of computing devices, often referred
to as a ”datacenter in a box” [2].

By moving the computing power closer towards the edge of
the network, the citizens can receive services with lower latency.
Plus, it is easier to keep their data local and private. Finally, by
distributing the computational tasks, traffic towards the Cloud
can be decreased.

A.3 Fog Computing

FC is an extension of CC and, as with cloudlets, tries to move
the computational power closer towards the edge of the network.
Compared to cloudlets, Fog nodes have relatively low comput-
ing power and are thus mostly used for simple processing tasks
[3].

A.4 Edge Computing

EC is similar to both cloudlet Computing and FC. However,
EC uses devices located at the edge of the network with often
more computing power than Fog nodes. Edge nodes can even
offer services while being disconnected from the Internet.

Because EC offers relatively high computational power close
to the end-users, it is well suited for offering real-time, critical,
local, private services to citizens [4].

A.5 Mobile Edge Computing

MEC is a variant of EC. The main difference between the
two paradigms is that MEC focusses on mobile devices and the
Radio Access Network (RAN). Computing nodes are located at
the Base Stations (BSs) of the RAN edge to provide computing
capabilities and services close to the end-users [5].

B. E2CaaS architecture for Smart Cities

To form a baseline for the proposed architecture for the ZEN
Research Center in III-A, the author of this study has proposed
an Edge-to-Cloud-as-a-Service (E2CaaS) architecture for Soft-
ware Services in Smart Cities in [6]. This architecture places the
concepts explained in the previous section inside the scenario of
a Smart City. The idea behind this architecture is based on a
literature review discussed in the next section and the previous
work of Sinaeepourfard et al. [7].

C. Developing Software Services in Smart Cities

Next, as the results of a literature review on FC, EC, and
cloudlets in Smart Cities, and a systematic literature review by
Javadzadeh et al. [8], the author has proposed a model on how
to develop Software Services in Smart Cities. The model, shown
in Fig. 1 consists of four main steps: Classification of City Ser-
vices, Design Output, Implementation, and Efficiency Measure-
ments.

The goal of the Classification of City Services is to define the
Domain of the service inside the city. Alongside this domain,
some (non-)functional requirements can be identified. It is also
important to consider the City and ICT Objectives in this step.

Fig. 1: Developing Software Services in Smart Cities

The figure shows some common non-functional requirements
for a Software Service in a Smart City.

Next, in the Design Output, the type of Computing Platform,
the ICT Management strategies, and the Technological Tools are
selected. Some possible Computing Platforms, such as a Cen-
tralized and Distributed Computing Platform, are shown in the
illustration. The three main categories of the ICT Management
that should be considered are the Data/Database Management,
the Resource Management, and the Network Communication
Management and Cybersecurity. The figure also shows some
common Technological Tools that were encountered during the
literature review and that can execute the different tasks that
come along with the ICT Management.

In the third step, the Implementation, the selected technolo-
gies and tools are implemented. This often results in a Front-
End and a Back-End. The Back-End contains most of the ap-
plication logic and algorithms. The Front-End is used by the
clients, citizens, or employees, to use the service. Both parts of
the application can interact with each other through an Applica-
tion Programming Interface (API) or Software Development Kit
(SDK).

In the final step, the Efficiency Measurements are taken and
analyzed. These measurements come in the shape of Key Per-
formance Indicators (KPIs). A KPI is a measurable value that
indicates how well the service achieves key business objectives.
These values can be obtained by performing simulations, mea-
surements, and surveys on the service [9]. Two types of KPIs

Fig. 2: E2CaaS architecture in a ZEN Center pilot

are considered in this study: ICT KPIs and city/use-case KPIs.
The former are general measurable values like bandwidth and la-
tency [7]. These KPIs are related to the Data/Database Manage-
ment, the Resource Management, and the Network Communica-
tion Management and Cybersecurity. The latter depend more on
the requirements of the Smart City or the specific domain/use-
case of the service.

More details on this model for Smart Cities are published in
[6]. The model is used in Section III to discuss developing Soft-
ware Services for EMSs, as a use case for the ZEN Research
Center.

III. EMS SOFTWARE SERVICES IN SMART
NEIGHBORHOODS

The ZEN Research Center is a research center located in Nor-
way that researches Zero Emission Neighborhoods (ZEN) in
Smart Cities. The main goal is to contribute to a low carbon
society by achieving no emission of greenhouse gas in the neigh-
borhoods of Smart Cities1. This research is conducted through
eight pilots in Norway, located in Bodø, Trondheim, Steinkjer,
Evenstad, Elverum, Oslo, Bærum, and Bergen [10].

One of the interests of the ZEN Center is to develop an archi-
tecture for building efficient Software Services for Smart Cities
and Smart Neighborhoods. This architecture can be used to de-
velop EMS services that can reduce the energy consumption and
improve the Quality of Life in the city and its neighborhoods.

This section aims to address this goal by applying the knowl-
edge, gained from designing the architecture and model in the

1https://fmezen.no/

previous section, onto the ZEN Research Center as a use-case.

A. E2CaaS architecture for the ZEN Center

The result of applying the proposed E2CaaS architecture to
the pilots of the ZEN Center is shown in Fig. 2.

The IoT devices are located inside the Smart Buildings and
Smart Homes. These devices, which can be sensors, smart me-
ters, actuators, etc., are connected to the EMSs and generate data
from the Smart Grid. This data can be used by Software Services
running somewhere in the neighborhood, city, or Cloud. For pri-
vate, critical, or real-time applications, the citizens can appeal
to the Edge nodes inside or near-by the Smart Homes and Smart
Buildings. These devices offer relatively high computing power
and can work independently. For monitoring and managing their
EMS, the citizens can use their mobile devices, such as smart-
phones, that are connected to the Radio Access Network (RAN)
and can offload computing tasks using MEC. The data can also
be sent towards the Fog nodes. These nodes are gateways and
routers with limited computational capabilities that can prepro-
cess and forward the data to the stronger cloudlets and Cloud.
The Cloud can be used for applications running across multiple
pilots or for high demanding services that need a lot of comput-
ing power and storage.

The non-IoT datasources, shown on the bottom right of
the figure, produce data based on human-human and human-
machine interactions. The companies and organization which
produce this kind of data can have their own cloudlets at their
disposal. Consequently, these datasources are directly con-
nected to the cloudlets. If this is not the case, Fog nodes can
be used to process and/or forward the data to the cloudlets and

Cloud.
After some processing task is executed on the data, the ser-

vices can report back to the citizens and to the EMSs to give
feedback and to improve the energy management in the city.

As with the general E2CaaS architecture, the goal is to move
the control over the computing and network resources to the
cloudlet layer. This idea, introduced by Sinaeepourfard et al.
[7] uses an Integrated and Intelligent Control and Monitoring of
IoT (I2CM-IoT) box which is responsible for the ICT manage-
ment inside the city.

B. Developing EMS Software Services in Smart Neighborhoods

This section adapts the model on how to develop Software
Services in Fig. 1 to the ZEN Research Center. The adapted
model can be seen in Fig. 3. Again, the same four main cate-
gories are identified in this model.

Fig. 3: Developing EMS Software Services for Smart Neighbor-
hoods

B.1 Classification of City Services

For the Classification of City Services, the focus lies on the
Smart Neighborhood and EMS Domain. This means that the
services are located close to the citizens, and will process pri-
vate data from the citizens. Additionally, the services will work
together with an EMS, thus should be energy efficient. Because
of these requirements, two main City and ICT Objectives are
identified: the General Data Protection Regulation (GDPR) and

Energy Efficiency in terms of the bandwidth usage. Notably,
more objectives can be applied to this scenario. The two se-
lected objectives serve as an example to show the reader how
the model should be used.

B.2 Design Output

When designing the output, like in the general architecture,
the Computing Platform, the different ICT Management strate-
gies, and the Technological tools should be selected. The first
two categories of the Design Output are discussed in this sec-
tion. The chosen Technological Tools are explained in Chap-
ter IV.

In terms of Computing Platform, the ZEN Center is mainly
interested in a D2C platform. This type of platform enables both
privacy-friendly and real-time computation at the edge of the
Smart City and computing-intensive applications in the Cloud.

Next, the different ICT Management categories are discussed
briefly.
• In terms of the database selection for the Database Man-
agement, there are many options to choose from. Because the
database type that should be used depends on the specific ser-
vices that will be implemented, this study does not suggest an
“optimal” database.
Sinaeepourfard et al. [9] defined a data management archi-
tecture for the ZEN Center scenario. The authors have iden-
tified three types of data: Context Data, Research Data, and
KPI Data. The context data is coming from the datasources in-
side the Smart Neighborhoods. This data is not useful on its
own but can be processed to gain valuable knowledge and infor-
mation. Context Data is available on all levels of the E2CaaS
architecture. Research Data is generated by special dedicated
applications such as simulations or data planning applications.
Research Data is available on the Meso (cloudlet) and Macro
(Cloud) level. This data is produced by the Smart Buildings in
the pilots. The final type of data, KPI Data, is gathered based on
the predefined KPIs of the ZEN Center. This data is collected by
carrying out surveys, simulations, and measurements. The KPI
Data can be found, again, on all levels.
• The Resource Management for the use-case is similar to
that of the general model for Smart Cities. The orchestration
is placed inside the cloudlet layer using the proposed I2CM-
IoT box [7]. This could be realized using a container orches-
trator located on the cloudlets. This orchestrator can then pro-
ceed to manage the resources inside the neighborhoods of the
Smart City. The disadvantage of container orchestrators like Ku-
bernetes is that they need their control plane to be reliable and
highly available. Resulting in most systems placing their orches-
trator in a centralized, Cloud-based location. A possible solution
is to divide the city into smaller clusters, each managed by a
cloudlet. Another approach could utilize Software-Defined Net-
working (SDN) controllers for managing the resources. How-
ever, as with container orchestrators, the programmable control
plane of SDN is centralized.
• As with the selection of the database, there are many available
technologies for the Network Communication Management
and Cybersecurity. Each of these technologies have their ad-
vantages and disadvantages and thus should be selected based
on the service. For large-scale, real-time, and critical services,

messaging queue technologies such as Apache Kafka Streams2

or the various MQTT Brokers are a good option. Simple ap-
plications that do not require asynchronous communication and
high-scalability can use other methods such as HTTP Requests.
Security and privacy between the computing nodes can be ac-
complished by technologies such as Blockchain and SDN. For
securing the EMS of Smart Homes and Smart Neighborhoods,
other proposals have been made. For example, a study by Mu-
garza et al. [11] proposes a solution for security in EMS Smart
City applications using the Cetratus framework [12] for enabling
Dynamic Software Updates (DSUs).

B.3 Implementation

The frameworks and tools for developing the Front-End and
Back-End depend on the preferences of the developers and of
the actual purpose of the service.

A Front-End for managing ZEN KPIs is already introduced
by Sinaeepourfard et al. in [7].

B.4 Efficiency Measurements

The ZEN Center has defined seven categories with sets of as-
sessment criteria and KPIs for achieving zero emission neigh-
borhoods. These seven categories are Greenhouse Gas Emis-
sion, Energy, Power/Load, Mobility, Economy, Spatial Qual-
ities, and Innovation. Sinaeepourfard et al. [7] place these
criteria and KPI s inside a “ZEN KPI box.” This box is then
connected to the “ZEN Toolbox,” presented in [13]. These two
boxes work together with the I2CM-IoT control entity in the
cloudlet layer to measure the performance and assess the Soft-
ware Services of a specific pilot.

IV. IMPLEMENTATION OF A SOFTWARE SERVICE

The goal of this final chapter is to give a simplified example
on how to develop a Software Service for an EMS in a Smart
Neighborhood or Smart City. The implementation will focus on
containerization for managing the resources and the deployment
of the application. Four different scenarios are implemented to
visualize the impact of moving the computing tasks (partially)
closer to the edge of the network.

A. Scenario and Setup

The service that will be implemented uses the proposed
E2CaaS architecture. The service reads temperature values from
sensors of an EMS in a Smart Home or Smart Building. A sim-
ple processing job is executed on the temperature values. In a
real-world scenario, this could provide valuable information to
the clients. The service can be extended easily by, for exam-
ple, sending feedback and notifications to the citizens and EMS
when the temperature values reach a specific threshold.

For the Data/Database Management, the best choice for this
kind of scenario would be a lightweight MySQL database, as the
temperature values are simple consistent values. For more com-
plex or variable data, NoSQL databases that use a document-like
structure can be used.

As mentioned before, containerization is used for the Re-
source Management. The container technology product of

2https://kafka.apache.org/documentation/streams/

choice for this implementation is Docker3. Docker is one of the
most popular containerization platforms that offers easily de-
ployable and manageable containers. Plus, it works well with
the chosen container orchestrator: Kubernetes4. Kubernetes is
also widely used and enables developers to automate the deploy-
ment, scaling, and management of containerized applications,
making it an excellent choice for managing the resources. How-
ever, it is not possible with a default Kubernetes setup to move
the control plane to the distributed cloudlet layer, as is suggested
in the E2CaaS architectures. In future work, alternatives such as
KubeEdge should be considered to solve this problem.

In terms of the Network Communicationn Management,
Kubernetes is compatible with a lot of plugins that enable net-
work communication between cluster nodes. This study uses
the Weave Net plugin5. This plugin is easy and quick to deploy
and does not require any configuration. However, the Weave
Net plugin does not come with any privacy and security features
out of the box. Consequently, the Cybersecurity should also be
addressed in the future.

The data is sent from node to node using HTTP POST re-
quests. This method is widely used and easy to set up. The au-
thor suggests that future work looks into publish/subscribe pro-
tocols such as Message Queuing Telemetry Transport (MQTT)
instead. These types of protocols are more suited for sending
real-time data across the network, as they offer asynchronous
communication and high scalability.

B. Results

The application is deployed on the imec IDLab Virtual Wall.
Four different scenarios are implemented: the first scenario uses
1 IoT node, 1 cloudlet, and 1 Cloud node; the second scenario
uses 2 IoT nodes, 1 cloudlet, and 1 Cloud node; the third sce-
nario uses 4 IoT nodes, no cloudlets, and 1 Cloud noded; the
final scenario uses 4 IoT nodes, 2 cloudlets, and 1 Cloud node.

Fig. 4a shows the average CPU usage of the cloudlet nodes
when increasing the maximum requests per second on the IoT
devices. Adding an extra IoT devices to a cloudlet increases the
load on the cloudlet by 93%. This is to be expected as the device
has to process twice as many requests. Notably, the CPU values
stagnate from around 2 to 3000 requests/s. This is caused due to
the IoT devices not being able to send more requests/s.

Fig. 4b shows that moving the computing tasks closer to-
wards the citizens can reduce the load on the Cloud significantly.
However, it is notable that when using four IoT nodes and two
cloudlets, the test did become more variable. The readings from
the cloudlets are not as constant compared to the other scenarios.

By measuring the maximum number of requests per seconds
at which the IoT devices were able to send their requests in the
different scenarios shows that using two and four IoT devices
reduces the individual performance of the devices respectively
by 8% and 19%. But when taking into account that there are
now multiple devices sending data simultaneously, an overall
increase in performance of 84% and 225% is observed.

3https://www.docker.com/
4https://kubernetes.io/
5https://www.weave.works/oss/net/

0.1 0.2 0.3 0.4 0.5 0.75 1

·104

0

5

10

15

Fixed number of requests/s

A
ve

ra
ge

C
PU

us
ag

e
of

cl
ou

dl
et

no
de

s
(%

)
Average CPU usage of cloudlet nodes

1 IoT 1 cloudlet
2 IoT 1 cloudlet
4 IoT 2 cloudlet

(a) Average CPU usage of cloudlet nodes

0.1 0.2 0.3 0.4 0.5 0.75 1

·104

0

5

10

15

20

Fixed number of requests/s

A
ve

ra
ge

C
PU

us
ag

e
of

C
lo

ud
N

od
es

(%
)

Average CPU usage of Cloud nodes

1 IoT 1 cloudlet
2 IoT 1 cloudlet
4 IoT no cloudlet
4 IoT 2 cloudlet

(b) Average CPU usage of Cloud nodes

Fig. 4: The average CPU usage of cloudlet and Cloud nodes in function of the increasing fixed number of request/s

V. CONCLUSION

This study proposed an E2CaaS architecture and model for
developing Software Services in Smart Cities based on a litera-
ture review. Afterward, this architecture and model are applied
onto the ZEN Research Center to provide a base-line for de-
veloping EMS Software Services for Smart Neighborhoods. A
simplified Software Service is implemented and deployed on the
imec IDLab Virtual Wall. Measurements show that it is indeed
beneficial to move the computing task closer to the citizens, on
a distributed platform. This study does not aspire to give a com-
plete overview of all the available technologies and possibilities
regarding Software Services. Alternatively, the author seeks to
lay a foundation and give a general direction for the future of
Software Services in Smart Cities and the ZEN Center.

Future work should focus on technologies that enable the con-
trol over the network, data, and resources on the cloudlet layer.
Alternatives to Kubernetes, such as KubeEdge, could be worth
looking into. Additionally, using a publish/subscribe messaging
queue protocol such as MQTT could significantly improve the
performance and scalability of the service. Finally, the imple-
mented scenario did not pay any attention to security and pri-
vacy issues regarding the EMS Software Services.

ACKNOWLEDGEMENT

This study has been carried out within the Research Centre
on Zero Emission Neighborhoods in Smart Cities (FME ZEN).
The author gratefully acknowledges the support from the ZEN
partners and the Research Council of Norway. Additionally, the
author wants to thank his supervisors, co-supervisor, and coun-
cilor for their continuous support and advice.

REFERENCES

[1] A. G. Prajapati, S. J. Sharma, and V. S. Badgujar, “All About Cloud: A
Systematic Survey,” in 2018 International Conference on Smart City and
Emerging Technology (ICSCET), Jan. 2018, pp. 1–6.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[3] R. Huang, Y. Sun, C. Huang, G. Zhao, and Y. Ma, “A Survey on Fog Com-
puting,” in Security, Privacy, and Anonymity in Computation, Communi-
cation, and Storage, ser. Lecture Notes in Computer Science, G. Wang,
J. Feng, M. Z. A. Bhuiyan, and R. Lu, Eds. Cham: Springer International
Publishing, 2019, pp. 160–169.

[4] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, Sep. 2019.

[5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration,” IEEE Communications Sur-
veys Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[6] J. Robberechts, A. Sinaeepourfard, T. Goethals, and B. Volckaert, “A
Novel Edge-to-Cloud-as-a-Service (E2CaaS) Model for Building Soft-
ware Services in Smart Cities,” in IEEE International Conference on Mo-
bile Data Management (MDM 2020), Versailles, France, Jun. 2020.

[7] A. Sinaeepourfard, J. Krogstie, and S. A. Petersen, “A Distributed-to-
Centralized Smart Technology Management (D2C-STM) model for Smart
Cities: A Use Case in the Zero Emission Neighborhoods,” in 2019 IEEE
International Smart Cities Conference (ISC2), Oct. 2019, pp. 760–765.

[8] G. Javadzadeh and A. M. Rahmani, “Fog Computing Applications in
Smart Cities: A Systematic Survey,” Wireless Networks, vol. 26, no. 2,
pp. 1433–1457, Feb. 2020.

[9] A. Sinaeepourfard, J. Krogstie, S. A. Petersen, and D. Ahlers, “F2c2C-
DM: A Fog-to-cloudlet-to-Cloud Data Management Architecture in Smart
City,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Apr.
2019, pp. 590–595.

[10] A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, and E. Marin-Tordera,
“Data Preservation through Fog-to-Cloud (F2C) Data Management in
Smart Cities,” in 2018 IEEE 2nd International Conference on Fog and
Edge Computing (ICFEC), May 2018, pp. 1–9.

[11] I. Mugarza, A. Amurrio, E. Azketa, and E. Jacob, “Dynamic Software Up-
dates to Enhance Security and Privacy in High Availability Energy Man-
agement Applications in Smart Cities,” IEEE Access, vol. 7, pp. 42 269–
42 279, 2019.

[12] I. Mugarza, J. Parra, and E. Jacob, “Cetratus: Towards a live patch-
ing supported runtime for mixed-criticality safe and secure systems,” in
2018 IEEE 13th International Symposium on Industrial Embedded Sys-
tems (SIES), Jun. 2018, pp. 1–8.

[13] A. H. Wiberg and D. Baer, “ZEN TOOLBOX: First concept for the ZEN
Toolbox for use in the development of Zero Emission Neighbourhoods
Version 1.0,” NTNU/SINTEF, Memo, 2019.

1
Introduction

1.1 Background

With Smart Cities becoming more potent in recent years, the need for an efficient
approach to develop Software Services for improving the Quality of Live of the
citizens and the sustainability of the city is urging. Alongside this evolution,
novel technologies related to Internet of Things (IoT) and data-centric
applications inside cities are imminent. This thesis aims to explore and bring
some structure to this vast ocean of technologies and methodologies that are
available from the Edge of the network to the Cloud, mainly focusing on the
different multilevel technologies such as Edge Computing (EC), Fog Computing
(FC), cloudlets, and Cloud Computing (CC). Some Research Questions are
identified to provide a clear objective throughout this work. With the help of a
broad literature review, the reader is guided through the process of developing
Software Services in Smart Cities. Proceeding towards this goal, many

2 INTRODUCTION

technologies are explained and discussed. Additionally, the knowledge gained
from this literature study is applied to the ZEN Research Center. The ZEN Center
researches zero emission of greenhouse gas in Smart Neighborhoods. Software
Services can help to achieve this objective by managing Energy Management
Systems (EMSs) in these neighborhoods. Notably, this study does not aim to give
a complete overview of all the possibilities regarding Software Services in Smart
Cities. Alternatively, the author seeks to lay a foundation and give a general
direction for the future of Software Services in Smart Cities and the ZEN Center.

1.2 Research Questions

The following research questions have been identified for this thesis:

• Q1: How to d̄evelop efficient Software Services using multilevel ICT
architectures from Edge to Cloud in Smart Cities?

– Q1.1: What are the current technological trends for developing
Software Services in Smart Cities from Edge to Cloud?

– Q1.2: How to use these technologies to build Software Services from
Edge to Cloud?

• Q2: How to build EMS Software Services from Edge to Cloud in Smart
Neighborhoods?

– Q2.1: What is a possible architecture for developing EMS Software
Services in Smart Neighborhoods that uses the discovered
technologies and methods from Q1.2?

– Q2.2: How to develop an EMS Software Service using this proposed
architecture while focusing on Container Technologies?

1.3 Approach and Outline

This section goes over the approach and methodology that was used when
addressing the research questions defined in the previous section.

INTRODUCTION 3

In the first part of this thesis (Chapter 2), some background knowledge about the
concepts Cloud -, Edge - and Fog Computing is gathered using general literature
reviews and state-of-the-art surveys on the subjects. These concepts are explained
in Section 2.1. Afterward, a literature review on Edge - and Fog Computing in
Smart Cities is conducted to solve Q1.1. This literature review is discussed in
Section 2.2. With the knowledge gathered from this literature study, Q1.2 is solved
by proposing a method for developing Software Services in Smart Cities.

The second part of this thesis can be found in Chapter 3 and aims to solve Q2.1
by applying the knowledge from the general study onto the ZEN Research Center
as a use-case. This results in an architecture for developing EMS Software
Services for the ZEN Center. Afterward, to validate the viability of the proposed
architecture and to answer Q2.2, a simplified example of an EMS Software
Service is developed using the proposed architecture. The process of developing
this example, the tools that were used, and the results are discussed in Chapter 4.

Finally, some reflections, thoughts, and future work are given in Chapter 5.

All the work and tasks that are stated in this section were carried out as a
collaboration between the ZEN research center, the Norwegian University of
Science and Technology, and Ghent University.

1.4 Publications

In the process of writing this Master’s Thesis, a compact version of Chapter 2 is
published at the The First International Workshop on (3SCity-E2C) Building
Software Services in Smart City through Edge-to-Cloud orchestration1 in
conjunction with the 21st IEEE International Conference on Mobile Data
Management2, Versailles, France (Online Conference). This paper can be found
in Appendix A.

J. Robberechts, A. Sinaeepourfard, T. Goethals and B. Volckaert, “A Novel Edge-
to-Cloud-as-a-Service (E2CaaS) Model for Building Software Services in Smart
Cities,” 2020 21st IEEE International Conference on Mobile Data Management
(MDM), Versailles, France, 2020, pp. 365-370

1https://fmezen.no/3scity-e2c-workshop-2020/
2http://mdmconferences.org/mdm2020/

https://fmezen.no/3scity-e2c-workshop-2020/
http://mdmconferences.org/mdm2020/

2
Software Services from Edge to Cloud

in Smart Cities

This chapter starts by explaining the different service models and technologies
that can be used to offer services to citizens in Smart Cities. Next, it covers a
literature review on some of these models. Afterward, a model on how to develop
software services from edge to cloud in Smart Cities is proposed using the
knowledge extracted from this literature review.

2.1 Background

This section explains some vital concepts regarding Software Services in Smart
Cities. These concepts include Smart Cities, Cloud -, Fog -, Edge -, and Mobile
Edge Computing.

6 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

2.1.1 Smart Cities

Recently, many devices and concepts are acquiring the term “smart”. Smart
devices, for example, are devices that can communicate with each other and
perform some kind of task more or less independently, without human
interaction. Another type of device that gets more attention lately, is IoT devices.
These IoT devices can be smart devices that contain a sensor or actuator to
measure or observe something. Together, IoT and smart devices can transform a
city into a Smart City. They enable new services that can enhance the Quality of
Life inside the city or improve the sustainability of the city [1, 2]. Software
Services play an important role in Smart Cities. There is a constant demand for
new and better services to further improve the Quality of Life in the city. One
example of such a smart service is a smart car. Lately, smart vehicles are getting
more numerous because they offer features and tools to the citizens which
improves their driving experience. The government, organizations, and
companies are also interested in Software Services. Based on data gathered from
the citizens and IoT devices they can improve their existing services or introduce
new services for the customers and citizens.

2.1.2 Cloud Computing

According to [3], Cloud Computing (CC) is a computing model where users can
utilize computing resources on-demand, managed by a Service Provider (SP).
This means that the client does not have to invest in expensive dedicated
hardware for computing tasks and software services. Instead, the client can rent
the necessary resources from the SP. There are three common methods for
providing Cloud-as-a-Service (CaaS): infrastructure providers who provide
Infrastructure-as-a-Service (IaaS), platform providers providing a
Platform-as-a-Service (PaaS), software providers who provide
Software-as-a-Service (SaaS), and providers who charge their clients based on
their usage, which is called Serverless Computing. These different concepts will
be explained in detail in the next paragraphs and can be seen in Fig. 2.1.

IaaS offers the client virtualization, storage, and processing [5]. The clients have
a lot of freedom, they can, for example, choose the Operating System (OS) and
software that they want to use for their tasks. Fig. 2.1 shows that the model

CHAPTER 2 7

Figure 2.1: IaaS, PaaS, and SaaS [4]

includes the management of the datacenter, the management of the networking
and security between the nodes in the cloud, and the management of the cloud
servers and storage. IaaS is primarily used for product design, data storage,
website hosting, big data analysis, and temporary processing campaigns [4, 5].
Examples of companies that offer IaaS are Amazon AWS and Microsoft Azure
IaaS.

PaaS clients do only have control over their applications. They do not have to
manage the underlying infrastructure, OS, and development tools [5]. Fig. 2.1
shows that the PaaS method includes the aspects of IaaS, and also offers the OS
and the development tools, database management, and business analytics.
Compared to IaaS, the client has less freedom but can still decide on the
application itself. This makes the development of applications on PaaS easier and
quicker. This service model is mostly used as a development framework, or for
analytics and additional services [6]. Some common examples are Microsoft
Azure, Salesforce, and Amazon AWS.

SaaS providers offer applications that are running on the cloud. Consequently, the
client has no control over the infrastructure, platform, and application whatsoever.
The clients can connect to the applications by connecting to the internet through,
for example, a browser. The main advantage of SaaS is that it allows the client
to be quickly up and running with the least amount of effort and minimal upfront
cost [7]. Well known examples of SaaS are Facebook, Google, and Twitter.

Serverless Computing offers less flexibility than PaaS as the client does not have
to create the whole application. The client does get more freedom than SaaS as

8 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

single functions of the application can still be created.

2.1.2.1 Cloud Computing in Smart Cities

As the goal of a Smart City is to enhance services and to increase the quality of
life inside the city through smart technologies, CC is used as a tool to manage,
store, and process the data coming from the different ICT devices inside the city
[8]. The Cloud can be used by the government and by organizations to improve
the quality of their services, which are in turn used by the citizens to improve their
Quality of Life. Some of the benefits of using CC in Smart Cities are reduced
cost of services for the citizens, more agile, flexible, and elastic services, globally
available services, and support for sustainable development [5].

2.1.3 cloudlet Computing

cloudlets, introduced by Satyanarayanan et al. in 2009 [9], are a concept that
places the computing power closer towards the end-users and datasources. A
cloudlet can be a small datacenter or group of computing devices. Many studies
refer to the cloudlet as a datacenter in a box whose goal it is to move the Cloud
closer towards the edge of the network.

The main advantages of moving the computing power to these smaller datacenters
is improved latency for the citizens, and possibly improve the security and privacy.
The downside to cloudlets are additional complexities due to handovers, which
occurs when a mobile user is moving and has to be transferred from one cloudlet
to another, and the need for rapid provisioning. Table 2.1 shows the difference
with some features of cloudlet and Cloud.

2.1.4 Fog Computing

Fog Computing (FC) is a concept that was designed to counter the weaknesses of
CC. There are many issues concerning CC especially when handling critical IoT
services. Some of these issues are high latency and lack of location awareness
due to the Cloud being located far away from the datasources, and higher risk of
security breaches while the data is being transferred towards the Cloud. The Fog

CHAPTER 2 9

Table 2.1: Distinct features of cloudlet - and Cloud Computing

Features cloudlet Cloud Computing
Service node location: Local datacenter in city Cloud datacenter
Number of nodes: Medium Low
Delay: Medium High
Bandwidth requirement: Medium High
Computing capability: Medium-High High
Mobility support: Some mobility support No
Service type: Local Global
Architecture: Decentralized Centralized

paradigm solves these issues by moving the computing towards the edge of the
network. Thereby enabling real-time or near real-time data processing, possibly
offering better data privacy (e.g. federated learning), and offering computing on
widely distributed geographical locations [10].

If we describe the Cloud as a centralized unit of computing, the Fog can be seen as
a network of small devices with limited computing capabilities that work together
in a decentralized way. Some characteristics of Fog and Cloud are compared in
Table 2.2. Fog Nodes are often grouped inside different domains, each managed
by an SP. The nodes are working together but are controlled and provisioned by an
entity (e.g. master node or fog leader) belonging to the SP of their domain [11, 12].
The different Fog Domains can work together and offload tasks to each other,
thus forming a distributed network of computing nodes. Fog Nodes include many
different types of devices like routers, smartphones, and wireless access points.

Because Fog Nodes do not have a lot of computing power at their disposal, they
are often used for small computing tasks such as data preprocessing. This reduces
the data that has to be sent towards the datacenters in the Cloud or cloudlet.

2.1.5 Edge Computing

The terms Fog and Edge Computing (EC) are often used as synonyms. Although
these concepts are similar, they are not the same. Both paradigms try to extend
the Cloud towards the edge of the network. But where FC moves the computing
of the Cloud downwards, EC uses the computing power available at the edge of
the network to offer services. The computing takes place either on the IoT device,

10 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

Table 2.2: Distinct features of Fog - and Cloud Computing [10]

Features Fog Computing Cloud Computing
Service node location: Between source and center Cloud datacenter
Number of nodes: Very High Low
Delay: Low High
Bandwidth requirement: Low High
Computing capability: Low High
Mobility support: Yes No
Service type: Local Global
Architecture: Distributed/Decentralized Centralized

where the data is generated, or on some computing device or local datacenter
close to the source [13]. FC uses gateways and other devices with limited
computing power, making it highly dependent on more centralized cloud-like
technologies, whereas EC can work more independently and even disconnected
from the Internet.

Because the computing power is located as close as possible to the data sources
and citizens, EC can offer critical real-time services, privacy and high connectivity
[13]. As with FC, this technique is also able to offer services in widely distributed
geographical locations. Some characteristics of Fog and Cloud are compared in
Table 2.2.

Table 2.3: Distinct features of Edge - and Cloud Computing

Features Edge Computing Cloud Computing
Service node location: Between source and center Cloud datacenter
Number of nodes: Very High Low
Delay: Very Low (Real-time) High
Bandwidth requirement: Low High
Computing capability: Low-Medium High
Mobility support: Yes No
Service type: Local Global
Architecture: Decentralized Centralized

2.1.6 Mobile Edge Computing

Mobile Edge Computing (MEC) is a similar concept to Edge Computing, except
that it focuses on the Radio Access Network (RAN). MEC uses computing devices

CHAPTER 2 11

at the Base Stations (BSs) of the RAN edge to provide computing capabilities and
services close to the end-users [14, 15].

The main advantages of MEC to the user are the ability to offer location-based
applications, and the potential for a variety of new applications using contextual
data and content. The SPs, often Mobile Network Operators (MNOs), benefit
from MEC by collecting more information on their customers in terms of location,
interests, and content which can be used to improve their quality of service or to
offer new types of applications [14].

MEC is mostly used for data pre-processing, task-offloading from mobile devices,
and context-aware services. Some features of MEC are compared to CC in
Table 2.4 [15].

Table 2.4: Distinct features of MEC - and Cloud Computing

Features MEC Cloud Computing
Service node location: Between source and center Cloud datacenter
Number of nodes: Very High Low
Delay: Very Low (Real-time) High
Bandwidth requirement: Low High
Computing capability: Low-Medium High
Mobility support: Yes No
Service type: Local Global
Architecture: Distributed Centralized

2.2 Literature Review

To get a better view on current technological trends involving FC and EC, a general
literature review was carried out. This study aims to solve research question Q1.1
and to lay a foundation for research question Q1.2.

12 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

2.2.1 Methodology

The search engines used for the literature review are IEEE Xplore1 and Scopus2.
These engines were selected because they offer a wide variety of options that are
easily adjustable based on the needs of the researcher. They both handle citations
well and contain a rich collection of published work.

The query that is used for this research can be found in Fig. 2.2. As the scope
of this query is quite large and the literature had to be studied in a short period,
the results were narrowed down to the last quarter of 2019 and the first quarter of
2020. This resulted in 247 Journal Papers and 46 Conference Papers.

Figure 2.2: Literature Review Query

A first selection of 76 papers was made based on the title and abstract from the
list of 293 papers. This selection was narrowed down to 20 papers based on their
quality and content. The next subsection will go over what there is to learn from
this selection of papers.

2.2.2 Result

Most of the selected papers go into detail on one specific aspect of Software
Services in Smart Cities by either addressing a problem related to the ICT
management or by addressing or trying to improve one scenario of a domain in a

1https://ieeexplore.ieee.org/
2https://www.scopus.com/

https://ieeexplore.ieee.org/
https://www.scopus.com/

CHAPTER 2 13

Smart City. These studies often do not discuss in detail how their services are
being deployed.

To to solve research questions Q1.1 and Q1.2, and to resolve the issue highlighted
above, a model on how to develop Software Services in Smart Cities is proposed
in Section 2.4 (Appendix A). This model can be seen as a summary of the work
that is studied in this literature review, as it features the most common
technological trends that were encountered. The goal of this model is to give a
general direction when developing Software Services using different multi-level
technologies in Smart Cities. The selected papers from the literature review are
classified based on this model to provide some examples of proposals and
technologies to the reader.

2.3 Edge-to-Cloud-as-a-Service architecture for
Smart Cities

Because most of the current studies do not focus on the use of a combination of
different multilevel distributed and centralized technologies and to form a baseline
for Q2.1, an Edge-to-Cloud-as-a-Service (E2CaaS) architecture for Smart Cities is
proposed by the author of this thesis (Appendix A). The idea behind this model is
to use cloudlets as a middleware layer between the Cloud and the edge of the City.
An overview of this city architecture is shown in Fig. 2.3. This image shows how
all these different distributed and centralized technologies have their own place
inside a Smart City.

The top layer is the Cloud-as-a-Service (CaaS) layer. The Cloud is the largest
entity in the architecture and covers more than the Smart City on its own. This
layer houses the historical data, as discussed in Section 2.4.4.1 about data
management. This data is not produced right now but is being stored for later use
or services that do not need fast response times. The Cloud has almost unlimited
resources, resulting in Macro data storage and high demanding computation
tasks. The second layer, cloudlet-as-a-Service (caaS), is located inside the city,
closer to the citizens. The cloudlets contain the last-recent data and still have
decent storage and computing capabilities. They also offer services with lower
latency. Plus, the data does not have to leave the city, which improves the security
and privacy of the citizens. Fog-as-a-Service (FaaS) offers fast response times

14 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

close to the citizens in a distributed fashion. These kinds of devices are often used
for simple preprocessing tasks. Next, the bottom right of the figure, contains the
non-IoT data sources. Non-IoT data is data resulting from human-device or
human-human interactions. This kind of data can be produced by companies or
organizations. The IoT data sources and Edge Nodes are located in the middle of
the lowest layer. Edge-as-a-Service (EaaS) can offer private, local, real-time,
critical services close to the citizens with decent computing capabilities. These
devices can be dedicated computing nodes in shops or near houses of citizens.
Finally, the left side shows MECaaS. This model offers mobile Software Services
through computing units at the BSs of the RAN.

The idea of placing the control over the network and resources in the cloudlets
is based on Sinaeepourfard et al. [16]. The authors introduced a concept called
Integrated and Intelligent Control and Monitoring of IoT (I2CM-IoT). This idea
places the control of the cloudlet, Fog, and Edge devices and their corresponding
services inside the cloudlet layer. The main reasons behind this proposal are the
following:

• The cloudlets are located inside the city, between the Cloud and the edge
of the Smart City network. This makes cloudlets a potential bridge between
the citizens and the centralized Cloud.

• The cloudlets can provide Services to the citizens while respecting local
city policies and data privacy laws such as the General Data Protection
Regulation (GDPR). The GDPR is explained in Section 2.4.1.2.

• As cloudlets are small data centers, they offer quite a lot of computing
power. This makes the cloudlet layer suitable for executing services that do
not require as much computing power as demanding Cloud services while
keeping the data inside the city. Resulting in less bandwidth towards the
Cloud, lower latency, and better data privacy for the citizens.

C
H

A
P

T
E

R
2

15

Figure 2.3: Software Service models in Smart Cities (Appendix A)

16 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

2.4 Developing Software Services in Smart Cities

This section explains a model on how to develop Software Services in Smart Cities.
The selected papers from the literature review (Section 2.2) are classified based on
this model.

In [17], Javadzadeh et al. present a taxonomy on applications in Smart Cities at
the Fog layer based on a systematic literature review. This taxonomy serves as a
base-line for the model of this thesis and can be seen in Fig. 2.4. The taxonomy is
used to classify current work on FC in Smart Cities. The three main categories
are Service Objective, Application Classification, and Outcome Type. The first
category is based on the Service Objective. The authors have selected some
common service requirements such as Bandwidth Management, Latency
Management, and Mobility for this classification. The second category aims to
categorize the work based on their application domain (e.g. Smart Healthcare,
Smart Building, Smart Education, etc.). Finally, the authors make a distinction
between the expected outcome type of the application. This can either be a
platform, an architecture, or a framework.

The extended model, proposed in this study, contains four main categories. These
categories can be seen as steps when developing Software Services. First of all,
one has to determine the (non-)functional requirements of the service based on
the goal and domain of the service. This step is called the Classification of City
Services. The second step, the Design Output, is to design the services itself by
selecting the appropriate technologies and architectures. This step pays attention
to the ICT Management Requirements. These requirements are derived from the
City and ICT Objectives from the previous step and determine the technologies
that are used for developing the service. Afterward, the service must be developed
and deployed. This step often results in a back-end service and a front-end service
for the citizens to interact with. Finally, the Efficiency Measurements are taken
based on the ICT Key Performance Indicators (KPIs) and the City/Use-case KPIs.
These KPIs are often related to the City Domain and City and ICT Objectives from
step 1. These four steps will be discussed in detail in the remainder of this section.
The model can be found in Fig. 2.5.

CHAPTER 2 17

Figure 2.4: Taxonomy of Fog Computing applications in Smart Cities [17]

18 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

Figure 2.5: How to develop Software Services in Smart Cities

CHAPTER 2 19

2.4.1 Classification of City Services

Before a service can be developed, one has to determine the functional and the
non-functional requirements of the service. The functional requirements define
what the service does or must not do. These requirements depend on the purpose
of the service and will not be further discussed in this study. The non-functional
requirements, however, depend more on the demand of the customers/citizens and
the domain of the service, showing the importance of determining the City
Domain. An emergency Smart Healthcare service, for example, will have
different requirements than a Smart Education application for students.

The following studies are examples of proposals related to the Smart
Neighborhood domain inside a Smart City. More information on Smart
Neighborhoods can be found in Section 3.1.2.

Yang et al. [18] combines street lighting with sensing devices to create smart
street lighting in Smart Neighborhoods. This proposal uses a container-based
system for fast deployment and high scalability. Data is managed using NoSQL
and in-memory databases. The data originating from the sensors can be processed
using EC. Afterward, historical data is saved on Cloud servers This all while
maintaining a secure transmission using an asymmetric key and Secure Shell
(SSH) encrypted tunnel. Zeng et al. [19] proposes a security architecture schema
based on Blockchain technology for existing smart traffic light systems. Another
study by Atif et al. [20] is also related to smart technology in Smart
Neighborhoods. They propose a system that improves the utilization of parking
lots. This proposal uses predictive analytics to predict the transformation of
parking spots in a parking.

The remainder of this section will discuss some common non-functional
requirements for services in Smart Cities.

2.4.1.1 Interoperability

The term Interoperability in Softwares Services means that different computing
and networking entities from the different Smart City layers must be able to work
together in an efficient matter. This is an important requirement to consider
because often when developing a new service and installing new hardware or

20 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

software, some technology is already present. It is crucial in such a scenario to
make sure that the old and new technologies can operate together.

2.4.1.2 GDPR

The General Data Protection Regulation (GDPR) is a privacy regulation for the
protection of data brought into life by the European Union (EU). The GDPR on its
own is not a non-functional requirement but its regulations oblige companies and
organizations which handle data of consumers and citizens of Smart Cities in the
EU to take specific requirements related to privacy and data security into account
[21].

Badii et al. [22] present a Smart City architecture, “Snap4City”, mainly focusing
on the GDPR. The security platform is Cloud-based, but it also supports
on-premise Edge applications which can connect to the platform using IoT
brokers. The “Snap4City” architecture has been tested across a variety of test
cases and scenarios. These extensive tests prove that their proposal is highly
secure and satisfies the GDPR. It does seem like citizens who connect to a service
of the platform in a secure way are obliged to go through the Cloud as all the
security and privacy management is located in the Cloud. Additionally, a study of
Varadi et al. [23] discusses the legal issues regarding Fog, Edge, Cloud and
Artificial Intelligence (AI) applications related to the GDPR guidelines. The
authors conclude their study with some recommendations for legal compliance of
these applications.

2.4.1.3 Mobility and Location-Awareness

When a service or application has to support Mobility and Location-Awareness,
it must be able to handle citizen/device movement from one area in the city to
another, and possibly from one Smart City layer to another. Common examples of
devices that can move to different locations and thus require support for Mobility
and Location-Awareness are smartphones and drones.

Wei et al. [24] introduce a mobility-aware service caching system for MEC
applications. The system tries to predict the target locations of the mobile users to
forwards the service request to the appropriate BS. Tests show that the system

CHAPTER 2 21

significantly reduces service response time and increases the amount of services
that are offered locally. Mobile devices also cause problems in the mobile health
domain. Dai et al. [25] propose a computation offloading mechanism for mobile
health applications. As applications are often too demanding for one mobile
device, tasks are divided between nearby helpers (e.g. other emergency vehicles).
The offloading system uses a Particle Swarm Optimization Algorithm to optimize
the computation offloading problem. Simulations show that the proposed solution
can efficiently decrease the task completion time of emergency healthcare
applications.

2.4.1.4 Real-time

Many healthcare services are services that require fast response times and analysis.
These kinds of services must be able to handle incoming data in real-time to satisfy
the demands. This low-latency and real-time requirement is often necessary in
critical applications.

Almeida et al. [26] present a real-time system for assisted living for elderly in
a Smart City. Real-time data from sensors is processed on Edge devices using
machine learning algorithms. This real-time data processing enables the system
to alert medics and family members in case of emergencies. These notifications
are sent using the MQTT protocol as a publish/subscribe communication protocol.
More information on the MQTT protocol can be found in Section 2.4.5.6.

2.4.1.5 Scalability

A Scalable service must be able to adjust to a varying load and must support easy
expansion when the amount of tasks increases.

As mentioned at the beginning of this section, Yang et al. [18] propose a smart
street lighting system that uses a container technology for fast deployment and high
scalability. The use of Docker containers and Docker Swarm enables the system
to dynamically adjust its resources depending on the demand. More information
on Container Technologies can be found in Section 2.4.5.2.

22 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

2.4.1.6 Reliability/High Availability

The service must be able to withstand node failures and must undergo as little
downtime as possible.

2.4.1.7 Energy Efficiency

Energy Efficiency of Smart City services can be addressed in multiple ways. One
possible kind of improving energy efficiency is through bandwidth management
inside the city network. A different method for reducing the energy consumption
is through an improved load scheduling system. Many algorithms for task
scheduling that try to reduce energy consumption and evenly divide the load over
the computing nodes are already extant.

Luo et al. [27] introduce a novel method for optimizing the runtime performance
of continuous data flow applications. The reliability of nodes is verified using an
anomaly detection method, as anomalous nodes can cause an increase in energy
consumption and task delay. A block coordinate descend-based max flow
algorithm is proposed to solve the latency-aware energy consumption
optimization problem. Simulations show that the proposed method successfully
optimizes the performance of continuous data flow applications. Goudarzi et al.
[28] present an application placement technique in Fog and Edge IoT applications
to minimize the execution time and energy consumption. A Memetic Algorithm
is used for batch application placement. Additionally, the authors propose a
pre-scheduling algorithm to maximize the number of parallel tasks that can be
executed. Testing results based on their weighted cost model show that their
proposal improves execution time and energy consumption of concurrent IoT
applications.

2.4.2 Design Output

The goal of the second step is to design either an Architecture, a Platform, or a
Framework [17]. This development process has to be executed while applying the
ICT Management requirements related to the use case. These requirements often
depend on the City and ICT Objectives as they determine what kind of platform,
management strategies, and technological tools will be used.

CHAPTER 2 23

The remainder of this section explains the difference between an Architecture, a
Platform, and a Framework. Afterwards the different possibilities regarding the
Computing Platform are discussed in Section 2.4.3. Next, the three main aspects
of the ICT Management for Software Services in Smart Cities are examined.
These aspects are Data/Database Management, Resource Management, and
Network Communication Management and Cybersecurity. Finally, some common
technological tools that were encountered during the literature review are given in
Section 2.4.5.

• An architecture is an abstract blueprint or template on how a software system
is designed and implemented. It is in fact the design of a structure, how the
components of a system move and communicate [29].

• A platform can be perceived as a collection of technologies that are used as
a foundation for other applications, processes, or technologies [30].

• A framework is a kind of architecture that is specifically designed to be
extended, and to make the implementation of certain technologies easier
[17, 31].

2.4.3 Computing Platform

There are three basic types of Computing Platforms in a Smart City scenario:
“Centralized”, “Distributed”, and “Decentralized” platforms. The most common
Computing Platform is a centralized computing platform. This kind of platform
often uses cloud-based technologies (Section 2.1.2). All the storage and
computing of the city data takes place inside the Cloud. Distributed computing
platforms divide their computing power across multiple nodes are
managed/owned by a larger entity. In a decentralized computing platform, all the
nodes are connected to other nodes without any hierarchical structure. No master
node has control over the other nodes. cloudlets, which are small datacenters that
are often owned by different companies or organizations inside the City, can
connect to form a decentralized computing platform (Section 2.1.3). However,
they can also be part of a distributed platform when the cloudlets are connected to
multiple Fog Nodes while acting as leader nodes over these Fog Nodes. Fig. 2.6
gives a visual representation of the different types of computing platforms.

24 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

Figure 2.6: Centralized vs Distributed vs Decentralized [32]

As there are many different types of computing nodes and service providers
inside a Smart City, the Computing Platform for Software Services is not limited
to these scenarios. Another type of Computing Platform is a
“Distributed-to-Centralized (D2C)” computing platform. This platform can be
created by combining a centralized platform with one or more distributed
computing platforms. Sinaeepourfard et al. [12, 33, 34] propose a Fog-to-Cloud
data management architecture for Smart Cities. The goal of this architecture is to
enable data access not only at the centralized Cloud, but also closer to the citizens
at the Fog Nodes. In [16, 35, 36], the authors extend this idea by adding a cloudlet
layer to the architecture and also addressing the ICT Management and Software
Management.

2.4.4 ICT Management

One of the most important aspects of Smart Cities is the management of all its
ICT resources. Current literature [16] mentions that there are three main
categories when classifying the ICT Management tasks: Data/Database
Management, Resource Management, and Network Communication Management
and Cybersecurity. The remainder of this section will explain each of these
management aspects and will give some specific examples related to each
category.

2.4.4.1 Data/Database Management

The first ICT Management category is Data/Database Management. As the term
implies, this step determines the data management methods and the database

CHAPTER 2 25

management methods.

According to Sinaeepourfard et al. [36], there are three main data types inside a
Smart City: Historical Data, Last-recent Data, and Real-time Data. The Historical
Data is located in the Cloud. This data is accessible from everywhere but with a
relatively high latency. The Last-recent Data is located in the cloudlet layer. This
data is accessible inside the city, closer to the citizens, thus with faster response
times. Finally, the Real-time data is available at the edge of the network, at the
sources of the data. The E2CaaS architecture (Fig. 2.3) also covers EC.
Consequently, a fourth data type is added: Almost Real-time Data. The Real-time
Data shifts to the Edge Nodes, as they can offer real-time services because they
are almost directly connected to the IoT sources. Depending on the location of
the Fog Nodes, they either house Real-time Data or Almost Real-time Data.

The management of these data types include every step concerning the lifecycle
of the data in a Smart City. This lifecycle includes Data Acquistition, Data
Processing, and Data Preservation [12]. The subtasks of each Part of the Data
Lifecycle for a Smart City are shown in Fig. 2.7. It is important when designing a
Smart City Software Service that these tasks are addressed when designing the
data flow and selecting the tools for the service.

Figure 2.7: Comprehensive Scenario Agnostic Data Lifecycle model for a Smart City [12]

A second important aspect when handling data in a service is the database
management. Selecting the right type of database for the acquired data is crucial.
Currently, there are many options to choose from with each their corresponding
strengths and weaknesses. Traditional databases are SQL-based databases.
Lately, new types of databases, called NoSQL databases, are gaining popularity.

26 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

Yang et al. [18] use a NoSQL and an in-memory database to achieve flexible data
management in their smart street lighting system.

Another notable trend that was encountered during the literature review related to
data management is caching. The concept of data caching has been around for
a while. Recently, it has also found its way into Smart Cities to reduce the data
retrieval delay [13]. The following studies propose caching methods for Software
Services in Smart Cities.

Xu et al. [37] present a Blockchain-based Edge caching scheme for mobile
systems. To lower the content delivery delay to the end-user, the data is cached on
the Edge Nodes. The Blockchain technology is used to tackle security and
caching capacity issues on the Edge Layer. The Blockchain supervises the
caching transactions between the mobile users and the Edge Nodes, while
protecting the cache content. A max-min based algorithm is used to optimize the
caching resources based on user demands. Simulations show that the proposed
methods improve the utilities of the Edge Nodes and the Quality of Experience of
the mobile users. As previously mentioned, Wei et al. [24] introduce a
mobility-aware service caching system for MEC applications. The authors
propose a service cache algorithm based on a back-propagation neural network.
This Machine Learning algorithm results in the most popular services being
cached on the MEC Nodes.

2.4.4.2 Resource Management

The second category is the Resource Management, involving the efficient
organization of numerous ICT devices inside a Smart City. The main tasks of
Resource Management are Resource Discovery, Resource Provisioning, Resource
Scheduling, Offloading, and Load Balancing [13]. Resource Discovery is the
process of identifying and locating existing resources inside the city. This process
is mandatory for enabling the orchestrator to match the best suitable resources to
its appointed services. The process of matching these resources to the services is
called Resource Provisioning. This process provides parts of their allocated
resources to the services. In other words, the orchestrator has some available
resources which it has to divide between its services. Resource Provisioning is
related to the Task Scheduling, Offloading, and Load Balancing processes. Task
Scheduling divides the service in multiple subtasks and assigns these tasks

CHAPTER 2 27

individually to the available resources. When there are not enough resources
available, the orchestrator can decide to offload the tasks to other orchestrators.
For example, when a smartphone does not have the computing power for a task,
the task can be offloaded to a MEC server. Finally, it is important to use a good
Load Balancing method to make sure that not all the tasks are being scheduled
onto the same group of computing nodes. Load Balancing can be improved by
monitoring the load on the resources, which is called Resource Monitoring.

Wu et al. propose a task offloading scheme in a Vehicular Fog Network. The task
offloading problem is based on semi-Markov decision process, which is solved by
an iterative algorithm. This solution aims to reduce the transmission and
computation delay of the tasks. Another study by Sharmin et al. [38], also related
to the Internet of Vehicles, introduces a fog-federation environment where Smart
Vehicles can either execute tasks themselves or offload the tasks to nearby Fog
Nodes. The authors have designed a pricing model to offload the tasks. Talaat et
al. [39] present a load balancing strategy using reinforcement learning for IoT
Fog systems. The system continuously monitors the load on every server, the
traffic in the network, and handles and distributes the requests/tasks. Deng et al.
[40] again formulate the resource allocation process as a Markov Decision
Process in an EC scenario. This time, the problem is solved using reinforcement
learning. A policy is trained which generates resource allocation schemes that
maximize the trustworthiness of the services.

2.4.4.3 Network Communication Management and Cybersecurity

The final ICT Management category addresses the communication between the
ICT components in the city and the security of this communication. Tools like
Software-Defined Networking (SDN) and Network Function Virtualization (NFV)
can be used to control the access to and from the network resources. Both SDN
and NFV will be explained in Section 2.4.5. Many other tools can be used for
securing the communication between the network resources as these nodes often
send confidential or sensitive data to each other.

Pham et al. [41] introduce a hierarchy of Edge-to-Cloud publish/subscribe broker
overlay networks. An algorithm is designed to cluster these brokers based on
topic similarities and location. This approach should reduce network traffic
among brokers. Simulations show that the proposed method achieves optimal

28 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

data delivery latency. The publish/subscribe paradigm is widely used because of
its ability to loosely couple the entities in the network in terms of time, space, and
synchronization.

To tackle the security problems of EC and CC, Tian et al. [42] propose a web attack
detection system based on deep learning, which is deployed on IoT Edge devices.
Experiments show that the system performs well when detecting web attacks. Due
to the distributed technologies present in a Smart City, the network is often shared
by many SPs who do not co-operate. Ling et al. [43] use a Blockchain-based RAN
architecture to answer the complexities that come with authentication while the
network is being shared by these SPs. The architecture can establish trust among
SPs and to efficiently manage resources across the network.

2.4.5 Technological Tools

The third and final topic related to the ICT Management Requirements for the
design of Software Services in Smart Cities is about the Technological Tools.
These tools are used to address the tasks highlighted in the previous section
(2.4.4) about the three categories of ICT Management. This section will go over
some of the common tools that are used for Software Services in Smart Cities.

2.4.5.1 Microservices

The concept of Microservices architectures is to divide a service into multiple
smaller services which are limited to one or a couple subtasks. The main
advantages of these individual independent microservices over traditional
monolithic architectures are improved scalability, improved speed, and more
flexibility in terms of which technologies can be used [44]. The downside to these
microservice architectures, according to [45], is that it requires more design and
planning. It also needs good load balancing algorithms to keep its efficiency up.
Additionally, microservices are more prone to cyber-attacks due to the
independent services which have to trust each other for their communication. The
difference between a monolithic architecture and a microservices architecture is
visualized in Fig. 2.8.

Zhou et al. [46] proposes an approximation latency-aware microservice mashup

CHAPTER 2 29

Figure 2.8: Monolithic architecture vs Microservices architecture [44]

approach to solve the problem of collocating IoT application microservices in
MEC. This problem is an integer non-linear programming problem which is
NP-hard. Microservices are used because they are easy to deploy through
Container Technologies and offer more flexibility compared to monolithic
applications.

2.4.5.2 Container Technologies

According to [47], container technologies are lightweight virtualization
technologies which enable the deployment and execution of large-scale
distributed applications on Cloud, cloudlet, Edge, and Fog platforms. The main
advantages of container technologies are their easy life-cycle management,
negligible overhead while running, reduced start, restart, and stop time compared
to Virtual Machines (VMs), and portability. The three main components of
container technologies are the containers itself, the container manager, and the
container orchestrator. Containers come in various shapes and sizes, depending
on the product of choice, e.g. Docker, LXC, OpenVZ, etc. A container is a unit of
software that puts the code and the dependencies of an application/service inside
a package to make the application quickly and reliably deployable across
computing environments [48]. Fig. 2.9 shows the difference between a
Docker-based application and a VM-based application. It is clearly visible that

30 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

the containerized applications share a single OS, where the VMs each have their
own OS. This makes them more lightweight and decrease their start, restart, and
stop times by a lot. The lifecycle of the containers can be managed through an
Application Programming Interface (API), exposed by the container manager. It
is the task of the container orchestrator to manage the deployment, monitoring,
and configuration of multi-container applications. Examples of well-known
orchestrators are Docker Swarm and Kubernetes.

Figure 2.9: Container-based application vs VM-based application [48]

As mentioned above, Yang et al. [18] use Docker containers and Docker Swarm for
their smart street lighting system. The authors chose containerization because of its
high scalability when deploying Cloud and Edge services and because of the good
balance between flexibility and performance overhead of Docker containers. They
compared different features of Docker containers and VMs in Table 2.5 below.

Table 2.5: Comparison of Docker and Virtual Machines [18]

Features Docker Virtual Machine
Start time: < 50ms 30 - 45 seconds
Stop time: < 50ms 5 - 10 seconds
System overhead: No overhead Overhead
Storage space: Tens of MBs in size Tens of GBs in size
Scalability: Highly scalable Not easily scalable

CPU load when idle: Normal
± 1.5% more than
docker

Isolation: Less isolation More isolation
Network round trip time: ± 75 µ s ± 60 µ s
Throughput
(read and write): 10 000 I/Os per second 5000 I/Os per second

CHAPTER 2 31

2.4.5.3 Blockchain

Blockchain is a technology that is recently getting a lot of attention from a variety
of industries including information technologies such as IoT, CC, and Big Data.
The authors of [49] explain Blockchain as data and information blocks which are
chained together chronologically. The blocks are safely recorded by encryption.
Blockchain uses a distributed node consensus algorithms to generate and update
blocks in the chain. In other words, a node cannot add data blocks to the chain
unless the data gets validated by enough other nodes. The main reasons why
Blockchain is a worthy candidate for providing secure network communication
between nodes in distributed IoT environments is its consistency, integrity of data
transmission, transparency, and distributed nature [50].

Xiao et al. [51] propose an IoT architecture “EdgeABC” for Edge applications
that uses Blockchain technology to ensure the integrity of transaction data and
profits. The authors also propose a Task Offloading and Resource Allocation
algorithm which is built upon the benefits of the Blockchain. A study by Aujla et
al. [52] proposes a Blockchain-based secure data processing framework for an
edge Vehicle-to-X environment. Blockchain is used to target the following
problems: 1. potential inappropriate utilization of Edge Nodes, 2. Operational
challenges in data integrity and caching, and 3. High energy consumption due to
link reestablishment after link breakage. Blockchain provides consistency and
integrity of data during migration from one node to another. Plus, it can be used
for pre-caching.

2.4.5.4 SDN

Software-Defined Networking (SDN) is a networking technique where the data
and control plane are separated by creating a virtualized control plane that
manages the network functions. By doing so, SDN bridges the gap between
service provisioning and network management. It enables the network to be
directly programmable using southbound interfaces (e.g. “OpFlex”, “OpenFlow”,
etc.), resulting in a flexible network that can adapt to dynamic situations like
changing network conditions, and changing needs of businesses, markets, and
citizens [53].

In a study by Baktir et al. [54], SDN is described as an enabler for technologies

32 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

like cloudlet Computing, FC, EC, and MEC. By simplifying the network
management, defining network flows, increasing network capability, and
facilitating virtualization, SDN can decrease the complexity of these
technologies. The authors present a collaboration model to show the feasibility of
their ideas. The architecture of the model can be seen in Fig. 2.10. The
architecture uses “OpenFlow” southbound interfaces to connect the Edge Layer
to northbound applications (i.e. Service Orchestrator, Load Balancer, etc.). The
southbound interfaces form the forwarding plane, while the northbound
applications are the programmable control plane of the network. This control
plane is accessed by the SDN Controller through the northbound API.

Figure 2.10: Collaboration model between SDN and distributed technologies [54]

2.4.5.5 NFV

According to [53], Network Function Virtualization (NFV) is the virtualization of
network functions on top of commodity servers. This enables the SP to use

CHAPTER 2 33

commodity hardware instead of dedicated hardware devices for these network
functions, thus greatly reducing the initial and operational cost. SPs are also able
to easily add, remove, or update functions for a specific subset of customers.
Additionally, NFV offers flexibility to scale services up or down based on
customer demands, making it more practical to offer tailored services to
customers.

Mouradian et al. [55] present a novel PaaS architecture for a Fog/Cloud-based
system. As this architecture is use-case driven, the authors describe two different
scenarios. These two applications are decomposed into multiple functions. These
Virtual Network Functions (VNFs) are chained together in a forwarding graph. A
placement algorithm is developed for deploying this graph and its VNFs onto the
available resources. The system is also able to discover existing resources. The
authors chose NFV because it enables them to deploy network functions as
software instances on general-purpose hardware. Xu et al. [56] propose a
placement strategy for placing VNFs in a MEC environment. Simulations show
that the proposed algorithm outperforms other algorithms significantly. This
study also chose NFV because it lowers the operational cost of the network
functions by replacing the dedicated hardware with software running in VMs.

2.4.5.6 MQTT

Message Queuing Telemetry Transport (MQTT)3 is an open, lightweight,
easy-to-implement, client-server publish/subscribe messaging transport protocol.
Because of its characteristic, MQTT is popular messaging protocol in IoT and
Machine-to-Machine communications. MQTT uses a message broker, the MQTT
Broker. The MQTT Broker receives messages from clients and routes them to
other clients. Messages are published on topics. Other clients can subscribe to
these topics to receive the published messages. The authors chose this protocol
because it is lightweight and thus can run on IoT devices with low computing
capabilities. Plus, it enables the devices to send messages to the broker
asynchronously.

Almeida et al. [26] uses MQTT in their real-time medical assistance application
for elderly. Data from IoT sensors in the houses of the elderly are processed using
EC. In case of an emergency, notifications are sent to family members or medics

3https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

34 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

using the MQTT protocol.

2.4.5.7 Machine Learning

Machine Learning is an application of AI. It allows a system to learn and improve
based on experience. Authors in [57] state that Machine Learning has advanced a
lot lately due to the growing interest in IoT and sensing technologies. Large
quantities of data are being collected and stored that can be used for Machine
Learning applications. Advancements in Graphics Processing Unit (GPU)
technologies also aid the rapid evolution of Machine Learning. Finally, there are
many advanced Machine Learning algorithms available, improving the efficiency
of Machine Learning applications. Machine Learning can be used for a diversity
of applications in Smart Cities such as Resource Scheduling, data anomaly
detection, and intrusion detection.

Wei et al. [24] use a backpropagation neural network for their Edge caching
system. The neural network is used to predict the most popular services. These
services are then cached on the Edge Nodes. A neural network is a set of
algorithms that are designed to recognize patterns. They are especially useful for
clustering and classifying. Additionally, Farhat et al. [58] propose a solution for
an on-the-fly deployment of Fog Nodes near users. The deployment and
scheduling of these nodes must be done cleverly because the demand can change
randomly. In order to solve this scheduling problem, the authors propose a
reinforcement R-learning model. This model can produce a Fog placement
schedule based on the behavior of clients. R-learning is a variant of Q-learning,
which is a model-free reinforcement learning algorithm. The main feature of
Q-learning is that does not require a model of the environment. R-learning uses
Q-learning based on Average Reward. This reward is a combination of rewards
earned during the transition between states and should be maximized.
Experiments show that the proposed solution can reduce the amount of requests
towards the Cloud and thereby reducing its load. It is also notable that the
services are deployed using the Kubernetes orchestrator and Docker containers.

CHAPTER 2 35

2.4.6 Implementation

The third step is implementing the selected technologies and the service logic
from the previous steps. Most Software Services consist of a Front-End and a
Back-End. The Back-End contains most of the logic and algorithms used for the
service. It regulates how the applications work. The Front-End is used by the
citizens to access the logic inside the Back-End. The interaction between the
Back-End and the Front-End is often through an API or a Software Development
Kit (SDK). Fig. 2.11 by Tönjes et al. shows how the Front-End and Back-End can
be connected through an API in a scenario where IoT and social media
stream-based applications are integrated.

Figure 2.11: Integration of IoT and social media stream-based applications [59]

2.4.7 Efficiency Measurements

The final step for building software Services in Smart Cities is to take and analyze
the Efficiency Measurements. These measurements are taken in the shape of
KPIs. A KPI is a measurable value that indicates how well the service achieves
key business objectives. They can be obtained by performing simulations,
measurements, and surveys on the service [36]. Two types of KPIs should be
considered: ICT KPIs and city/use-case KPIs. ICT KPIs [16] are general
measurable values like bandwidth and latency. They are related to the
Data/Database Management, the Resource Management, and the Network
Communication Management and Cybersecurity. City/Use-case KPIs depend on

36 SOFTWARE SERVICES FROM EDGE TO CLOUD IN SMART CITIES

the requirements of the Smart City or the specific domain/use-case of the service.
The use-case of this study is discussed in Chapter 3.

3
EMS Software Services in Smart

Neighborhoods

As Chapter 2 discussed a general overview of developing Software Services in
Smart Cities, this chapter goes narrower into the specific use-case of this study.
First of all, some background information regarding the use-case on the ZEN
Research center, Smart Neighborhoods, Smart Grid, and EMSs is given.
Afterward, Q2.1 is solved by applying the proposed model from the previous
chapter to this scenario. The final section of this chapter gives some directions
towards the implemented in Chapter 4, which addresses Q2.2.

38 CHAPTER 3

3.1 Background

3.1.1 ZEN research center

The ZEN Research Center researches Zero Emission Neighborhoods (ZEN) in
Smart Cities. The goal of the ZEN center is to contribute to a low carbon society
by achieving no emission of greenhouse gas in the neighborhoods of Smart Cities1.
The research center tries to achieve this goal by developing solutions for future
buildings and neighborhoods. Their research is conducted through eight pilots
in Norway. These pilots are located in Bodø, Trondheim, Steinkjer, Evenstad,
Elverum, Oslo, Bærum, and Bergen [12].

One of the interests of the ZEN Center is to develop an architecture for building
efficient Software Services for Smart Cities and Smart Neighborhoods (Q2.1).
This architecture can be used to develop Energy Management System (EMS)
services that can reduce the energy consumption and improve the Quality of Life
in the city and its neighborhoods.

3.1.2 Smart Neighborhoods

Smart Cities consist out of Smart Neighborhoods. By focusing on the
neighborhoods of the city instead of the city itself, some complexities that come
with large scale EMSs can be eliminated. Plus, by keeping the data and the
services as local and close the citizens as possible, more respect to privacy and
data security can be paid.

3.1.3 Smart Grid

The electrical grid in a city or neighborhood is a network connecting electrical
energy producers to consumers. Components of this grid are generating stations,
transmission stations, transmission lines, and distribution lines [60]. The
generation stations generate electrical energy (i.e. power plants). This energy can
be stepped up or down in the transmission stations and is transported and
delivered to the consumers via the transmission lines. A Smart Grid, indicates

1https://fmezen.no/

https://fmezen.no/

EMS SOFTWARE SERVICES IN SMART NEIGHBORHOODS 39

that technologies, ranging from meters to advanced software are used to manage
and improve the functionalities of the electrical grid. These technologies give the
grid the characteristics of a computer network. The main characteristics of such a
Smart Grid are listed below [60].

• Reliability: Due to automated grid analysis and fault detection, problems
in the grid are detected more quickly. Resulting in faster solutions or even
avoidance.

• Flexibility: New generating plants can be connected to the existing grid in a
plug-and-play fashion, providing more flexibility to the grid. Additionally,
there is more support for renewable energy sources such as solar, wind, and
water plants.

• Efficiency: Due to, among others, Demand-Side Management the
efficiency of the energy infrastructure can be improved. Demand-Side
Management (DSM) is a concept that tries to reduce the amount of energy
consumed during peak hours [61]. This does not reduce the total energy
consumption but it releases some of the pressure from the power plants.
DSM also opens new opportunities for renewable energy sources such as
solar energy plants, because these kinds of energy plants are not able to
satisfy the otherwise high peak demands. Challenges like load balancing
and Peak-to-Average ratio reduction [62] are important factors that can
improve the grid’s efficiency.

3.1.4 Energy Management Systems

EMSs are systems in Smart Homes, Smart Neighborhoods, or Smart Cities that
control the energy consumption. They are often connected to the Smart Grid for
monitoring and managing energy consumption. Plus, they enable citizens to
understand and interact with their energy consumption [63]. An EMS can for
example guide inhabitants of a Smart Home through the process of DSM to avoid
energy consumption during peak hours. Fig. 3.1 by Aman et al. [63] illustrates
the role of an EMS in a Smart Grid.

40 CHAPTER 3

Figure 3.1: Energy Management System in a Smart Grid [63]

3.2 Edge-to-Cloud-as-a-Service architecture for
the ZEN Center

After gaining some background knowledge on the ZEN Center, EMS, etc., the
first step towards a solution for Q2.1 can be taken. In the previous chapter, an
E2CaaS architecture is proposed for Software Services in Smart Cities. The goal
of this chapter is to adapt this architecture to the ZEN Center, and to tailor the
model on how to develop Software Services in Smart Cities to this architecture.
The resulting E2CaaS for the ZEN Research Center is shown in Fig. 3.2.

E
M

S
S

O
F

T
W

A
R

E
S

E
R

V
IC

E
S

IN
S

M
A

R
T

N
E

IG
H

B
O

R
H

O
O

D
S

41Figure 3.2: E2CaaS architecture for ZEN Center

42 CHAPTER 3

Firstly, one can see the IoT devices located inside the Smart Homes and on
various places inside the Smart Neighborhoods. In a EMS scenario, these devices
are sensors, smart meters, etc. that are connected to the Smart Grid via the EMS.
These devices generate data necessary for the Software Services in the Smart
Neighborhoods. For private or critical real-time applications, the citizens can
make an appeal to the Edge nodes that are located close by. These nodes can be
dedicated computing devices or small local datacenters that do not need a
connection to the Internet. The IoT devices can also send their data to the Fog
nodes inside the Smart Homes, as these nodes are often gateways or switches.
The Fog nodes can execute small tasks that do not require a lot of computing
power such as data preprocessing. They can also offload more demanding tasks
such as training a machine learning model, to the cloudlets in the Smart City or
Neighborhood. These cloudlets have decent computing capabilities and are well
connected to the Internet. When services have to be applied to multiple pilots
(cities) at once, the communication will go through the Cloud. With almost
unlimited computing capabilities, the Cloud can execute the most demanding
tasks. Additionally, Fig. 3.2 shows that MEC can have its place in a Smart
Neighborhood. The citizens can use their mobile devices, such as smartphones, to
monitor and manage the EMS of their Smart Home.

The non-IoT datasources are located on the bottom right. This non-IoT data is
produced by human-human or human-machine interactions. The companies and
organizations that produce this kind of data can have their own cloudlet at their
disposal. Consequently, the datasources in the figure are directly connected to the
cloudlet layer. If this is not the case, some Fog nodes can be used to processes or
forward the data. The data can then be used for services, or can simply be stored
on a cloudlet or on the Cloud.

After executing the tasks for a specific service, the computing entities in the Smart
City and its neighborhoods can report back and manage the utilization of the Smart
Grid in the neighborhoods through the EMSs.

EMS SOFTWARE SERVICES IN SMART NEIGHBORHOODS 43

3.3 Developing EMS Software Services in
Smart Neighborhoods

This section tries to answer Q2.1 by looking at the model of Chapter 2 in Fig 2.5
and tailoring this model to the ZEN research center and our E2CaaS architecture
from the previous section. Fig. 3.3 shows the result. Like Chapter 2, this figure
will be explained step by step. Alongside this, references towards the role of the
steps inside the E2CaaS architecture will be clarified.

Figure 3.3: Developing EMS Software Services for Smart Neighborhoods

44 CHAPTER 3

3.3.1 Classification of City Services

Section 3.1.1 explained how the ZEN Research Center is connected to the Smart
Neighborhoods. It is important to the research center to develop software solutions
that contribute to the Zero Emission Neighborhoods (ZEN)s. In Fig. 3.3, the Smart
Neighborhood and EMS domains are selected. These domains automatically bring
some objectives along. Firstly, the services are located close to the citizens in the
neighborhoods of a Smart City and will probably process private data from these
citizens. This leads to the first City and ICT Objective: the GDPR. As mentioned
in Section 2.4.1.2, when a company or organization processes or stores data from
inhabitants of the EU, they must comply with the GDPR. This involves paying
special attention to the security and the privacy of the citizens’ data. Concepts such
as the ”Right to be forgotten” must be implemented [21]. Secondly, the goal of the
services for the ZEN Center is to enable or to aid zero-emission of greenhouse
gasses. This means that another important objective of the services can be the
energy efficiency. Addressing the bandwidth used by new or existing services can
lead to improved energy efficiency and thus reduce the amount of greenhouse gas
emission.

3.3.2 Design Output

When addressing the ICT Management of the services, not only a solution for the
Data/Database Management but also for Resource Management and the Network
Management and Cybersecurity must be developed. The literature review from
Chapter 2 indicates that there are many different approaches and technologies
available for these problems. Most of these solutions are useful for specific
services and scenarios, as they all have their strengths and weaknesses. This
section discusses the Computing Platform and ICT Management categories. The
Technological Tools are discussed later on in Section 3.4 when giving directions
towards the implementation.

3.3.2.1 Computing Platform

ZEN Center is mainly interested in a Distributed-to-Centralized architecture.
This type of Computing Platform enables both privacy-friendly and real-time

EMS SOFTWARE SERVICES IN SMART NEIGHBORHOODS 45

computation at the edge of the Smart City, and computing-intensive applications
in the Cloud. As the research center is also working with pilots spread across
Norway, there are possibilities for computing applications to run on individual
pilots, but also for applications that run in the Cloud and cover multiple pilots.

Fig. 3.4 shows how the distributed and centralized computing platforms can be
placed inside the pilots. Close to the citizens, in the Smart Homes and Smart
Buildings, there are possibilities for EC and FC. The Fog nodes can connect to the
dedicated local datacenters (cloudlets) to offload tasks and send data. Mobile users
can connect to the computing units at the BSs, which are connected to the local
datacenters. The different pilots are connected through a centralized Cloud.

Figure 3.4: Connecting multiple pilots through the E2CaaS architecture

3.3.2.2 Data/Database Management

In terms of database selection, there are many options to choose from. As the
type(s) of database that should be used is/are highly dependent on the specific
service that will be implemented, there is no general suggestion for this
architecture. However, when giving directions towards the implementation of a
service in Section 3.4, an example of the selection of the database is explained.

Sinaeepourfard et al. [36] has already defined a data management architecture for
the ZEN Center scenario. Three main data types have been identified: Context

46 CHAPTER 3

Data, Research Data, and KPI Data2.

• Context Data is the data coming from IoT devices or external sources. This
data can be processed and interpreted but is not useful by itself. Examples
are temperature data, sensor data from energy systems, and weather data.

• Research Data is generated by special dedicated applications such as
simulations or data planning applications. This data comes from live
buildings in the pilots. This can be for example citizen behavior or energy
data.

• KPI Data is gathered based on the predefined KPIs of the ZEN Center. This
type of data is collected by carrying out surveys, simulations, and
measurements. KPI data is mainly used in the fourth and final step of
building software services: Efficiency Measurements.

Fig. 3.5 shows where these data types are generated and are accessible in a Smart
City. The Context Data is available in the Micro, the Meso, and the Macro level
[36]. This data can be collected for each building, for each neighborhood, or for
the city as a whole. Next, the Research data can exist on the Meso and Macro
level. Finally, the KPI data can exist again on all three levels. Furthermore, it also
shows how these data types are related to the Smart City data types. On the Macro
level, the Context, Research, and KPI data is stored as Historical data. This means
that the data was not produced right now and can be used later on. The Meso level
can contain Last-recent data and Almost Real-time data from the Micro level. As
mentioned, there can be KPI data at the Meso level when simulations, surveys, and
measurements are carried out. This data can come in the form of either Almost
Real-time or last-recent data. On the Micro level, the context data produced by
various physical devices in the neighborhood can be produced as Real-time data.
The Micro level can also produce Real-time KPI data close to the end-users.

3.3.2.3 Resource Management

The Resource Management for the use-case is similar to that of the general model
for Smart Cities. In the proposed architecture from Fig. 3.2, the orchestration is
located in the cloudlet layer using the proposed I2CM-IoT method of

2https://fmezen.no/

https://fmezen.no/

EMS SOFTWARE SERVICES IN SMART NEIGHBORHOODS 47

Figure 3.5: Data types in ZEN Center [36]

Sinaeepourfard et al. [16]. A first possible solution could use a container
orchestrator located on the cloudlets. The orchestrator can then proceed to
manage the resources inside the neighborhoods of the Smart City. The
disadvantage of centralized orchestrators like Kubernetes is that they need their
master node to be reliable and highly available. This results in most systems
placing the orchestrator in the Cloud layer. A possibility that should be explore in
future work is to divide the city in multiple clusters. These smaller clusters could
then be managed from the cloudlet layer and potentially enable this concept.
Another approach could utilize SDN controllers for managing the resources.
However, as with the container orchestrators, the programmable control plane of
SDN is centralized. Consequently, a solution for distributing this control plane
across the cloudlet nodes must be designed.

3.3.2.4 Network Communication Management and Cybersecurity

As with the selection of the database, there are many available technologies for
the network communication. The right technology or protocol highly depends on
the purpose of the service, the preferences of the developers, and the type of data
that is sent between nodes. For real-time services, messaging queue technologies

48 CHAPTER 3

such as Apache Kafka Streams3 (based on the Kafka Messaging Protocol) or one
of the various MQTT Brokers (Section 2.4.5.6 for more information on MQTT)
are a good option as they enable asynchronous communication between nodes and
high scalability. Nodes can also subscribe to specific topics, simplifying the work
of the sender. Simple applications that do not require these characteristics can use
HTTP Requests or other protocols such as REST4.

Security and privacy between the computing nodes can be accomplished through
the same technologies as for a general Smart City service. Section 2.4.4.3 has
discussed some possible technologies such as Blockchain and SDN. For securing
the EMS of Smart Homes and Smart Neighborhoods, other proposals have been
made. For example, a study by Mugarza et al. [64] proposes a solution for security
in EMS Smart City applications using the Cetratus framework [65] for enabling
Dynamic Software Updates (DSUs).

3.3.3 Implementation

Like the Design Output, the implementation depends on the purpose of the service
that will be developed. There are many frameworks and tools available in a variety
of programming languages for both Front-End and the Back-End.

A Front-End for managing the ZEN KPIs is already introduced by Sinaeepourfard
et al. in [16].

3.3.4 Efficiency Measurements

The ZEN Center has defined seven categories with sets of assessment criteria and
KPIs for achieving zero emission neighborhoods. These seven categories are
Greenhouse Gas Emission, Energy, Power/Load, Mobility, Economy, Spatial
Qualities, and Innovation. Sinaeepourfard et al. [16] place these criteria and KPIs
inside a “ZEN KPI box.” This box is then connected to the “ZEN Toolbox,”
presented in [66]. These two boxes work together with the I2CM-IoT control
entity in the cloudlet layer to measure the performance and asses the Software
Services of a specific pilot.

3https://kafka.apache.org/documentation/streams/
4https://restfulapi.net/

https://kafka.apache.org/documentation/streams/
https://restfulapi.net/

EMS SOFTWARE SERVICES IN SMART NEIGHBORHOODS 49

3.4 Directions towards implementation

This section will give directions towards the implementation of a simplified EMS
Software Service in Chapter 4, used for solving Q2.2. First of all, a quick sketch
of the scenario is given. Afterward, the selected Technological Tools and the
motivation behind this selection are discussed.

3.4.1 Scenario and Goals

The service that will be implemented uses the proposed E2CaaS architecture for
the ZEN center. The service reads temperature values from sensors of an EMS in a
Smart Home. The purpose of this service is to execute a simple processing task on
the incoming temperature values. This should enable the service to send feedback
or alerts to the citizens and the EMS of their home.

To goal of this implementation, is to answer Q2.2 by validating the proposed
E2CaaS for ZEN architecture and by giving an example on how to build a
Software Service according to the model from Fig. 3.3. The main focus in terms
of technology lies on the use of containerization. Additionally, some different
setups of the service are implemented to compare the load on the resources in a
distributed and centralized layout.

3.4.2 Technological Tools

This section explains the selection of Technological Tools for managing the ICT
components.

3.4.2.1 Tools for Data/Database Management

The data that is processed and sent to other nodes in the service are temperature
values. As these values are simple floats they do not require special NoSQL
databases such as MongoDB5 that allow for document-like database entries.

5https://www.mongodb.com/

https://www.mongodb.com/

50 CHAPTER 3

Possible lightweight databases are PostgreSQL6, MySQL7, and SQLite8.

3.4.2.2 Tools for Resource Management

The main focus of the implementation, in terms of technology, lies on
containerization. The containerization product of choice for this implementation
is Docker9. Docker is one of the most popular containerization platforms that
offers easily deployable and manageable containers. Plus, it works well together
with the chosen Container Orchestrator: Kubernetes10. Kubernetes is also widely
used and one of the most popular container orchestrators at the moment of
writing. It enables developers to automate the deployment, scaling, and
management of containerized applications, making it an excellent choice for
managing the resources.

3.4.2.3 Tools for Network Communication Management and Cybersecurity

Kubernetes is compatible with a lot of plugins that enable network
communication between cluster nodes. The networking plugin that was selected
for this implementation is the Weave Net plugin11. This plugin is selected
because it is easy and quick to deploy on the cluster nodes and does not require
any configuration. However, the plugin offers barely any privacy and security
features out of the box. There are no other measurements taken for the security
and privacy in this implementation. Consequently, the cybersecurity aspect
should be further explored in future work.

The data is sent from node to node using HTTP POST requests. This method is
widely used and easy to set up. HTTP Requests are chosen for the
communication because the service in this scenario does not require any
asynchronous communication and is executed on a small scale. Future Work
should consider diving into the possibilities of messaging queue
publish/subscribe-based alternatives such as the MQTT protocol instead.

6https://www.postgresql.org/
7https://www.mysql.com/
8https://www.sqlite.org/index.html
9https://www.docker.com/

10https://kubernetes.io/
11https://www.weave.works/oss/net/

https://www.postgresql.org/
https://www.mysql.com/
https://www.sqlite.org/index.html
https://www.docker.com/
https://kubernetes.io/
https://www.weave.works/oss/net/

4
Implementation

This chapter goes into detail about the setup and results of the implementation that
is introduced in Section 3.4. Firstly, the scenario is highlighted. Next, the working
of the used products and technologies is explained. Finally, the implementation is
evaluated based on the setup experience and some measurements.

4.1 Scenario and Setup

As mentioned before, the goal of this implementation is that validate the proposed
architecture from the previous chapter and to give a simplified example of how
EMS Software Services can be developed. The Software Service that is described,
is based on a temperature sensor from an EMS in a Smart Home, Smart Building,
or Smart Neighborhood. Data is collected at the edge of the network and has to be
sent upwards in the direction of the Cloud for data processing. In this scenario, a
basic processing job is deployed on the cloudlet layer. The result of this processing

52 CHAPTER 4

job is reduced anonymous data that can be sent towards the Cloud layer. This
data can be saved as Historical data inside this layer and can be used for various
applications. The cloudlet receiving and processing the data can use the incoming
Last-recent data to give feedback to the EMS or to generate notifications when, for
example, a specific threshold is met. Four variants of this setup are implemented.
Afterward, they are compared in Section 4.2 in terms of CPU usage of the Cloud
nodes and cloudlet nodes, and in terms of the amount of requests the IoT devices
can send to the upper layers. Fig. 4.1 illustrates these different setups. All these
implementations are deployed on the imec IDLab Virtual Wall1. The concept of
the Virtual Wall is briefly explained in Section 4.1.1.

Figure 4.1: Different implementations of the temperature data processing service

The Cloud layer has two nodes: a Cloud Worker Node, and a Kubernetes Master
Node. The Cloud Worker Node is used to handle incoming requests from the lower
layers. The Kubernetes Master Node manages the Kubernetes cluster and allocates
the resources. More detailed information on how Kubernetes works can be found
in Section 4.1.2. The cloudlet nodes are part of the Kubernetes cluster and each
house a container with the data processing service. Finally, the IoT nodes read
temperature data from a dataset file and send this data to the upper layers using
HTTP POST requests. The dataset used for this project was found on the IEEE
Open Data Sets-webpage2.

The results are obtained by sending the complete dataset from the IoT devices to
the cloudlets or Cloud at an incrementing maximum rate (i.e. first test at
maximum 1000 requests per second, second test at max 1500 requests per second,
etc.). Meanwhile, the actual rate at which the data is being delivered and the load
on the Central Processing Units (CPUs) of all the devices is measured. This

1https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
2https://site.ieee.org/pes-iss/data-sets/

https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
https://site.ieee.org/pes-iss/data-sets/

IMPLEMENTATION 53

allows for the comparison of the load on the devices based on the specific
scenarios.

4.1.1 Virtual Wall

The Virtual Wall is a testbed by IDLab, imec, and Ghent University for advanced
networking, distributed software, cloud, big data, and scalability research and
testing. Users can select and reserve nodes from a variety of different types of
devices. Afterward, the reserved nodes can be set up however the user likes.
Table 4.1 shows the specifications of the nodes used for this project.

Table 4.1: Specifications of the Virtual Wall nodes

Node Type CPU RAM
Cloud Worker Node 2x Quad core Intel E5520 (2.2GHz) 12GB
Kubernetes Master Node 2x Quad core Intel E5520 (2.2GHz) 12GB
cloudlet Worker Nodes 2x Quad core Intel E5520 (2.2GHz) 12GB
IoT Nodes 2x Dual core AMD opteron 2212 (2GHz) 8GB

4.1.2 Kubernetes

Kubernetes3 is an open-source platform that enables easy deployment and
management of containerized applications. Applications are split up into different
parts. These parts are built into containers. Containers share the OS of the node
that they are running on, making them lightweight and fast. Kubernetes can
manage these different containers and ensure that there is no downtime.
According to their website, the main features of Kubernetes are:

• Service Discovery and Load balancing

• Storage orchestration

• Automated rollouts and rollbacks

• Automatic bin packing

• Self-healing

3https://kubernetes.io/

https://kubernetes.io/

54 CHAPTER 4

• Secret and configuration management

These functionalities make Kubernetes an excellent choice for addressing many
aspects of the E2CaaS architecture.

The downside is that Kubernetes is developed around the idea of CC.
Consequently, the orchestration part of the cluster should run in a robust,
centralized location. This makes it less viable for the proposed I2CM-IoT control
box in the cloudlet layer. However, there are already some alternatives available
such as KubeEdge4 which are worth looking into in future work.

In terms of how the services was deployed using Kubernetes, firstly, a new
Kubernetes cluster is initiated on the Kubernetes Master Node. The network
plugin used for communicating inside the cluster is the Weave Net plugin5. Next,
the services for the Cloud Worker Node and the cloudlet Worker nodes are placed
inside a Docker container and pushed to Docker Hub6. Afterward, the worker
nodes are added to the cluster. By labeling the nodes based on their layer, the
containers can be deployed on their corresponding layers using a deployment. To
make the cloudlet nodes accessible from the IoT Nodes (outside the cluster), the
cloudlet deployment is exposed as a service with type NodePort, allowing the
service to be reachable through an exposed port on the worker nodes. The Cloud
deployment is also exposed internally to the cluster to enable it to receive requests
from the cloudlets. Finally, the IoT Nodes can start sending requests to the
cloudlet layer.

4.2 Results

The first graph in Fig. 4.2 shows that connecting multiple IoT devices to a single
cloudlet or Cloud node decreases the amount of requests that the devices can send
per second. However, if this number is multiplied by the number of nodes, the
result is a much higher number of requests per second. In this setup, when
connecting two IoT nodes, the individual performance of the IoT devices is
reduced by 8%, and when connecting four devices, it is reduced by 19%. But

4https://kubeedge.io/en/
5https://www.weave.works/
6https://hub.docker.com/

https://kubeedge.io/en/
https://www.weave.works/
https://hub.docker.com/

IMPLEMENTATION 55

when taking into account that there are now multiple devices sending data
simultaneously, an overall increase of respectively 84% and 225% is observed.

0.1 0.2 0.3 0.4 0.5 0.75 1

·104

1,000

2,000

3,000

Fixed number of requests/sA
ve

ra
ge

ac
tu

al
nu

m
be

ro
fr

eq
ue

st
s/

s
by

Io
T

no
de

s Comparison of max number of requests/s by IoT nodes

1 IoT 1 cloudlet (A)
2 IoT 1 cloudlet (B)
4 IoT 2 cloudlet (C)
4 IoT no cloudlet (D)

Figure 4.2: Maximum number of requests per second of IoT nodes

The second graph in Fig. 4.3 shows the average CPU usage of the IoT nodes in
function of the maximum number of requests per second. As the graph illustrates,
the highest CPU usage, at an average of 15.3%, occurs when four IoT nodes are
sending requests to a single Cloud node. In the other scenarios, it seems that using
two IoT devices and one cloudlet uses less CPU on the IoT devices (within 2%).
This could be caused by inconsistencies on the IoT devices, as sometimes one of
the IoT devices would consume a lot of CPU while the others remain at a more
normal percentage. Nonetheless, using cloudlets allows the IoT devices to remain
at a CPU usage of around 10-12%, while the Cloud scenario consumes around
15%. This can have a big impact on real-world IoT devices that do not have a lot
of computing power.

The graph in Fig. 4.4 shows the average CPU usage of the cloudlet nodes when
increasing the maximum requests per second on the IoT devices. Adding an extra
IoT device to a cloudlet increases the load on the cloudlet by 93%. This is also to
be expected as the device has to process twice as many requests than in scenario
A when doubling the number of IoT devices.

56 CHAPTER 4

0.1 0.2 0.3 0.4 0.5 0.75 1

·104

0

5

10

15

20

Fixed number of requests/s

A
ve

ra
ge

C
PU

us
ag

e
of

Io
T

no
de

s
(%

)

Average CPU usage of IoT nodes

1 IoT 1 cloudlet (A)
2 IoT 1 cloudlet (B)
4 IoT 2 cloudlet (C)
4 IoT no cloudlet (D)

Figure 4.3: Average CPU usage of IoT nodes

Finally, Fig. 4.5 is more useful in terms of comparing the distributed approach
from scenario C to the centralized layout from scenario D. The graph shows that
moving the computational tasks to the cloudlets greatly reduces the load on the
Cloud. However, with this setup, the results do become more variable. This is
visible when looking at the green lines in the graphs. They are not as constant as
the other lines because the performance of the cloudlet and IoT nodes fluctuated
more than in the other scenarios.

IMPLEMENTATION 57

0.1 0.2 0.3 0.4 0.5 0.75 1

·104

0

5

10

15

Fixed number of requests/s

A
ve

ra
ge

C
PU

us
ag

e
of

cl
ou

dl
et

no
de

s
(%

)
Average CPU usage of cloudlet nodes

1 IoT 1 cloudlet (A)
2 IoT 1 cloudlet (B)
4 IoT 2 cloudlet (C)

Figure 4.4: Average CPU usage of cloudlet nodes

0.1 0.2 0.3 0.4 0.5 0.75 1

·104

0

5

10

15

20

Fixed number of requests/s

A
ve

ra
ge

C
PU

us
ag

e
of

C
lo

ud
N

od
es

(%
)

Average CPU usage of Cloud nodes

1 IoT 1 cloudlet (A)
2 IoT 1 cloudlet (B)
4 IoT 2 cloudlet (C)
4 IoT no cloudlet (D)

Figure 4.5: Average CPU usage of Cloud nodes

58 CHAPTER 4

4.3 Discussion

The hardest part in this implementation, is setting op the Kubernetes cluster and
configuring the devices in a persistent way (i.e. not having to manually reinstall
everything when restarting the nodes). Once the cluster is up and running, the
services are easily deployable thanks to Kubernetes and Docker. These tools also
leave almost unlimited opportunities for improving and extending the system. For
example, one can easily add a Front-end running on the cloudlet nodes for
visualization of and interaction with the incoming data.

The testing results show that bringing the computing tasks closer towards the
edge of the network can effectively reduce the amount of work of the Cloud.
Additionally, by prepocessing the data and not sending all the data to the Cloud,
less bandwidth towards the Cloud is used.

The author does believe that there are some limitations with using the HTTP
methods for sending data. A publish/subscribe protocol such as MQTT would be
a better alternative and will definitively improve the performance and scalability
of the existing system. As mentioned before, it could be worth it to look into
alternatives to Kubernetes such as KubeEdge to try to bring the control layer
closer towards the edge of the network as proposed in the E2CaaS architecture.
This was not possible in this implementation due to time constraints.

5
Conclusion and Future Work

In this Master’s dissertation, a general solution on how to build Software Services
in Smart Cities is designed and formulated. This goal was achieved by firstly
carrying out a broad literature review on Software Services in Smart Cities based
on distributed technologies. Using this knowledge, an E2CaaS architecture,
which includes some of the most common distributed and centralized
technologies, is proposed. Alongside this architecture, a model on how to develop
Software Services in Smart Cities is presented. The purpose of this model is to
guide the reader through the process of developing Software Services. The
second part of the thesis applied this architecture and model onto the ZEN
Research Center. The goal of this part of the dissertation is to explore the
possibilities of developing Software Services for EMS and to show how the
model from Chapter 2 can be applied onto a general use-case. Finally, to validate
the proposed model and to explore the possibilities of containerization, a
simplified Software Services that can be used for EMSs is implemented using
Docker containers and the Kubernetes orchestrator. Four different scenarios are

60 CHAPTER 5

compared to visualize the impact of distributing the computing tasks over
cloudlets instead of centralizing these tasks on the Cloud. The results show that
moving the computing tasks to the cloudlets can reduce the datastream towards
and the load on the Cloud significantly. Notably, this work does not aspire to give
a complete overview of all the possible technologies and methods that are
available to develop Software Services in Smart Cities. Alternatively, the author
aims to give a general direction towards common tools and technologies that can
enable the development of Software Services. This study servers as a foundation
for future work on developing Software Services for Smart Cities and for the
ZEN Research Center.

Future work should aim to improve the proposed architecture for the ZEN Center
by moving the control layer to the cloudlets. Alternatives to the Kubernetes
orchestrator, such as KubeEdge, should be explored when addressing this issue.
Additionally, the possibilities and performance in terms of scalability when using
a publish/subscribe communication protocol, such as MQTT, should be studied.
A part of the ICT Management category in the model that was ignored for this
study was the security and privacy aspect. With regulations getting more strict
and more data of the citizens being used for services, this is an important topic
that should definitely be researched in the future. Finally, a more complete
implementation of a Software Service should be implemented using the proposed
E2CaaS architecture based on real-world data from one of the pilots of the ZEN
Center.

References

[1] “Internet of Things Global Standards Initiative,” https://www.itu.int/en/ITU-
T/gsi/iot/Pages/default.aspx.

[2] A. H. Alavi, P. Jiao, W. G. Buttlar, and N. Lajnef, “Internet of Things-enabled
smart cities: State-of-the-art and future trends,” Measurement, vol. 129, pp.
589–606, Dec. 2018.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art and
research challenges,” Journal of Internet Services and Applications, vol. 1,
no. 1, pp. 7–18, May 2010.

[4] “What is IaaS? Infrastructure as a Service — Microsoft Azure,”
https://azure.microsoft.com/en-us/overview/what-is-iaas/.

[5] A. G. Prajapati, S. J. Sharma, and V. S. Badgujar, “All About Cloud: A
Systematic Survey,” in 2018 International Conference on Smart City and
Emerging Technology (ICSCET), Jan. 2018, pp. 1–6.

[6] “What is PaaS? Platform as a Service — Microsoft Azure,”
https://azure.microsoft.com/en-us/overview/what-is-paas/.

[7] “What is SaaS? Software as a Service — Microsoft Azure,”
https://azure.microsoft.com/en-us/overview/what-is-saas/.

[8] N. Agarwal and G. Agarwal, “Role of Cloud Computing in Development
of Smart City,” in National Conference on Road Map for Smart Cities of
Rajasthan (NC-RMSCR, Apr. 2017.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-
Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing, vol. 8,
no. 4, pp. 14–23, Oct. 2009.

62 BIBLIOGRAPHY

[10] R. Huang, Y. Sun, C. Huang, G. Zhao, and Y. Ma, “A Survey on
Fog Computing,” in Security, Privacy, and Anonymity in Computation,
Communication, and Storage, ser. Lecture Notes in Computer Science,
G. Wang, J. Feng, M. Z. A. Bhuiyan, and R. Lu, Eds. Cham: Springer
International Publishing, 2019, pp. 160–169.

[11] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos, “A Comprehensive Survey on Fog Computing: State-of-the-Art
and Research Challenges,” IEEE Communications Surveys Tutorials, vol. 20,
no. 1, pp. 416–464, Firstquarter 2018.

[12] A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, and E. Marin-Tordera,
“Data Preservation through Fog-to-Cloud (F2C) Data Management in Smart
Cities,” in 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), May 2018, pp. 1–9.

[13] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, “All one needs to know about fog computing and
related edge computing paradigms: A complete survey,” Journal of Systems
Architecture, vol. 98, pp. 289–330, Sep. 2019.

[14] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[15] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and
Challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54–61,
Apr. 2017.

[16] A. Sinaeepourfard, J. Krogstie, and S. A. Petersen, “A Distributed-to-
Centralized Smart Technology Management (D2C-STM) model for Smart
Cities: A Use Case in the Zero Emission Neighborhoods,” in 2019 IEEE
International Smart Cities Conference (ISC2), Oct. 2019, pp. 760–765.

[17] G. Javadzadeh and A. M. Rahmani, “Fog Computing Applications in Smart
Cities: A Systematic Survey,” Wireless Networks, vol. 26, no. 2, pp. 1433–
1457, Feb. 2020.

BIBLIOGRAPHY 63

[18] Y.-S. Yang, S.-H. Lee, G.-S. Chen, C.-S. Yang, Y.-M. Huang, and T.-W.
Hou, “An Implementation of High Efficient Smart Street Light Management
System for Smart City,” IEEE Access, vol. 8, pp. 38 568–38 585, 2020.

[19] P. Zeng, X. Wang, H. Li, F. Jiang, and R. Doss, “A Scheme of
Intelligent Traffic Light System Based on Distributed Security Architecture
of Blockchain Technology,” IEEE Access, vol. 8, pp. 33 644–33 657, 2020.

[20] Y. Atif, S. Kharrazi, D. Jianguo, and S. F. Andler, “Internet of Things data
analytics for parking availability prediction and guidance,” Transactions on
Emerging Telecommunications Technologies, vol. 31, no. 5, p. e3862, May
2020.

[21] “What is GDPR, the EU’s new data protection law?” https://gdpr.eu/what-is-
gdpr/, Nov. 2018.

[22] C. Badii, P. Bellini, A. Difino, and P. Nesi, “Smart City IoT Platform
Respecting GDPR Privacy and Security Aspects,” IEEE Access, vol. 8, pp.
23 601–23 623, 2020.

[23] S. Varadi, G. Gultekin Varkonyi, and A. Kertesz, “Legal Issues of Social
IoT Services: The Effects of Using Clouds, Fogs and AI,” in Toward
Social Internet of Things (SIoT): Enabling Technologies, Architectures and
Applications: Emerging Technologies for Connected and Smart Social
Objects, ser. Studies in Computational Intelligence, A. E. Hassanien,
R. Bhatnagar, N. E. M. Khalifa, and M. H. N. Taha, Eds. Cham: Springer
International Publishing, 2020, pp. 123–138.

[24] H. Wei, H. Luo, and Y. Sun, “Mobility-Aware Service Caching in Mobile
Edge Computing for Internet of Things,” Sensors, vol. 20, no. 3, p. 610, Jan.
2020.

[25] S. Dai, M. Li Wang, Z. Gao, L. Huang, X. Du, and M. Guizani, “An Adaptive
Computation Offloading Mechanism for Mobile Health Applications,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 1, pp. 998–1007, Jan.
2020.

[26] A. H. Almeida, I. Santos, J. Rodrigues, L. Frazão, J. Ribeiro, F. Silva,
and A. Pereira, “Real-Time Low-Cost Active and Assisted Living for
the Elderly,” in Ambient Intelligence – Software and Applications –,10th
International Symposium on Ambient Intelligence, ser. Advances in

64 BIBLIOGRAPHY

Intelligent Systems and Computing, P. Novais, J. Lloret, P. Chamoso,
D. Carneiro, E. Navarro, and S. Omatu, Eds. Cham: Springer International
Publishing, 2020, pp. 153–161.

[27] Y. Luo, W. Li, and S. Qiu, “Anomaly Detection Based Latency-Aware Energy
Consumption Optimization For IoT Data-Flow Services,” Sensors (Basel,
Switzerland), vol. 20, no. 1, Dec. 2019.

[28] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An Application
Placement Technique for Concurrent IoT Applications in Edge and Fog
Computing Environments,” IEEE Transactions on Mobile Computing, pp.
1–1, 2020.

[29] “ARCHITECTURE — meaning in the Cambridge English Dictionary,”
https://dictionary.cambridge.org/dictionary/english/architecture.

[30] “PLATFORM — meaning in the Cambridge English Dictionary,”
https://dictionary.cambridge.org/dictionary/english/platform.

[31] “FRAMEWORK — meaning in the Cambridge English Dictionary,”
https://dictionary.cambridge.org/dictionary/english/framework.

[32] “What is the Difference Between Centralized, Distributed and Decentralized
AI Computing?” Oct. 2018.

[33] A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, and E. Marin-Tordera, “Fog-
to-Cloud (F2C) Data Management for Smart Cities,” in Saionference on FTC
2017, Vancouver, Canada, Nov. 2017, p. 8.

[34] A. Sinaeepourfard, J. Krogstie, and S. A. Petersen, “D2C-DM: Distributed-
to-Centralized Data Management for Smart Cities Based on Two Ongoing
Case Studies,” in Intelligent Systems and Applications, ser. Advances in
Intelligent Systems and Computing, Y. Bi, R. Bhatia, and S. Kapoor, Eds.
Cham: Springer International Publishing, 2020, pp. 619–632.

[35] A. Sinaeepourfard, S. A. Petersen, and D. Ahlers, “D2C-SM: Designing
a Distributed-to-Centralized Software Management Architecture for Smart
Cities,” in Digital Transformation for a Sustainable Society in the 21st
Century, ser. Lecture Notes in Computer Science, I. O. Pappas, P. Mikalef,
Y. K. Dwivedi, L. Jaccheri, J. Krogstie, and M. Mäntymäki, Eds. Cham:
Springer International Publishing, 2019, pp. 329–341.

BIBLIOGRAPHY 65

[36] A. Sinaeepourfard, J. Krogstie, S. A. Petersen, and D. Ahlers, “F2c2C-DM:
A Fog-to-cloudlet-to-Cloud Data Management Architecture in Smart City,”
in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Apr. 2019,
pp. 590–595.

[37] Q. Xu, Z. Su, and Q. Yang, “Blockchain-Based Trustworthy Edge Caching
Scheme for Mobile Cyber-Physical System,” IEEE Internet of Things
Journal, vol. 7, no. 2, pp. 1098–1110, Feb. 2020.

[38] Z. Sharmin, A. W. Malik, A. Ur Rahman, and R. MD Noor, “Toward
Sustainable Micro-Level Fog-Federated Load Sharing in Internet of
Vehicles,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3614–3622,
Apr. 2020.

[39] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali,
“A load balancing and optimization strategy (LBOS) using reinforcement
learning in fog computing environment,” Journal of Ambient Intelligence and
Humanized Computing, Feb. 2020.

[40] S. Deng, Z. Xiang, P. Zhao, J. Taheri, H. Gao, J. Yin, and A. Y. Zomaya,
“Dynamical Resource Allocation in Edge for Trustable Internet-of-Things
Systems: A Reinforcement Learning Method,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 9, pp. 6103–6113, Sep. 2020.

[41] V.-N. Pham, V. Nguyen, T. D. T. Nguyen, and E.-N. Huh, “Efficient Edge-
Cloud Publish/Subscribe Broker Overlay Networks to Support Latency-
Sensitive Wide-Scale IoT Applications,” Symmetry, vol. 12, no. 1, p. 3, Jan.
2020.

[42] Z. Tian, C. Luo, J. Qiu, X. Du, and M. Guizani, “A Distributed Deep Learning
System for Web Attack Detection on Edge Devices,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 3, pp. 1963–1971, Mar. 2020.

[43] X. Ling, Y. Le, J. Wang, and Z. Ding, “Hash Access: Trustworthy Grant-Free
IoT Access Enabled by Blockchain Radio Access Networks,” IEEE Network,
vol. 34, no. 1, pp. 54–61, Jan. 2020.

[44] “What are microservices?” https://www.redhat.com/en/topics/microservices/what-
are-microservices.

[45] A. V. Nene, C. T. Joseph, and K. Chandrasekaran, “Construing
Microservice Architectures: State-of-the-Art Algorithms and Research

66 BIBLIOGRAPHY

Issues,” in Knowledge Management in Organizations, ser. Communications
in Computer and Information Science, L. Uden, I.-H. Ting, and J. M.
Corchado, Eds. Cham: Springer International Publishing, 2019, pp. 364–
376.

[46] A. Zhou, S. Wang, S. Wan, and L. Qi, “LMM: Latency-aware micro-service
mashup in mobile edge computing environment,” Neural Computing and
Applications, Jan. 2020.

[47] E. Casalicchio and S. Iannucci, “The state-of-the-art in container
technologies: Application, orchestration and security,” Concurrency and
Computation: Practice and Experience, vol. n/a, no. n/a, p. 17, Jan. 2020.

[48] “What is a Container? — App Containerization — Docker,”
https://www.docker.com/resources/what-container.

[49] Y. Lu, “The blockchain: State-of-the-art and research challenges,” Journal of
Industrial Information Integration, vol. 15, pp. 80–90, Sep. 2019.

[50] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A Software Defined Fog Node
Based Distributed Blockchain Cloud Architecture for IoT,” IEEE Access,
vol. 6, pp. 115–124, 2018.

[51] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang, and L. Rui, “EdgeABC: An
architecture for task offloading and resource allocation in the Internet of
Things,” Future Generation Computer Systems, vol. 107, pp. 498–508, Jun.
2020.

[52] G. S. Aujla, A. Singh, M. Singh, S. Sharma, N. Kumar, and K.-K. R. Choo,
“BloCkEd: Blockchain-Based Secure Data Processing Framework in Edge
Envisioned V2X Environment,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 6, pp. 5850–5863, Jun. 2020.

[53] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and future
challenges,” Computer Networks, vol. 167, p. 106984, 2020.

[54] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How Can Edge Computing Benefit
From Software-Defined Networking: A Survey, Use Cases, and Future
Directions,” IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp.
2359–2391, Fourthquarter 2017.

BIBLIOGRAPHY 67

[55] C. Mouradian, F. Ebrahimnezhad, Y. Jebbar, J. K. Ahluwalia, S. N. Afrasiabi,
R. H. Glitho, and A. Moghe, “An IoT Platform-as-a-Service for NFV-Based
Hybrid Cloud/Fog Systems,” IEEE Internet of Things Journal, vol. 7, no. 7,
pp. 6102–6115, Jul. 2020.

[56] Z. Xu, W. Gong, Q. Xia, W. Liang, O. Rana, and G. Wu, “NFV-Enabled IoT
Service Provisioning in Mobile Edge Clouds,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[57] T. Hong, Z. Wang, X. Luo, and W. Zhang, “State-of-the-art on research
and applications of machine learning in the building life cycle,” Energy and
Buildings, vol. 212, p. 109831, Apr. 2020.

[58] P. Farhat, H. Sami, and A. Mourad, “Reinforcement R-learning model
for time scheduling of on-demand fog placement,” The Journal of
Supercomputing, vol. 76, no. 1, pp. 388–410, Jan. 2020.

[59] R. Tönjes, M. I. Ali, P. Barnaghi, S. Ganea, F. Ganz, M. Haushwirth, B. Kj,
and L. Vestergaard, “Real Time IoT Stream Processing and Large-scale Data
Analytics for Smart City Applications,” EU FP7 CityPulse Project, p. 5.

[60] S. M. Kaplan, “Electric Power Transmission: Background and Policy Issues,”
https://www.hsdl.org/?abstract&did=, Apr. 2009.

[61] W.-Y. Chiu, H. Sun, and H. V. Poor, “Demand-side energy storage system
management in smart grid,” in 2012 IEEE Third International Conference on
Smart Grid Communications (SmartGridComm), Nov. 2012, pp. 73–78.

[62] R. Deng, F. Luo, G. Ranzi, Z. Zhao, and Y. Xu, “A MILP Based Two-
Stage Load Scheduling Approach for Building Load’s Peak-to-Average
Ratio Reduction,” in 2020 5th Asia Conference on Power and Electrical
Engineering (ACPEE), Jun. 2020, pp. 771–775.

[63] S. Aman, Y. Simmhan, and V. K. Prasanna, “Energy management systems:
State of the art and emerging trends,” IEEE Communications Magazine,
vol. 51, no. 1, pp. 114–119, Jan. 2013.

[64] I. Mugarza, A. Amurrio, E. Azketa, and E. Jacob, “Dynamic Software
Updates to Enhance Security and Privacy in High Availability Energy
Management Applications in Smart Cities,” IEEE Access, vol. 7, pp. 42 269–
42 279, 2019.

68 BIBLIOGRAPHY

[65] I. Mugarza, J. Parra, and E. Jacob, “Cetratus: Towards a live patching
supported runtime for mixed-criticality safe and secure systems,” in 2018
IEEE 13th International Symposium on Industrial Embedded Systems (SIES),
Jun. 2018, pp. 1–8.

[66] A. H. Wiberg and D. Baer, “ZEN TOOLBOX: First concept for the ZEN
Toolbox for use in the development of Zero Emission Neighbourhoods
Version 1.0,” NTNU/SINTEF, Memo, 2019.

A
A Novel Edge-to-Cloud-as-a-Service

(E2CaaS) Model for Building Software
Services in Smart Cities

J. Robberechts, A. Sinaeepourfard, T. Goethals, B. Volckaert

presented at The First International Workshop on (3SCity-E2C) Building
Software Services in Smart City through Edge-to-Cloud orchestration, in
conjunction with the 21st IEEE International Conference on Mobile Data
Management, Versailles, France (Online Conference)

365

2020 21st IEEE International Conference on Mobile Data Management (MDM)

2375-0324/20/$31.00 ©2020 IEEE
DOI 10.1109/MDM48529.2020.00079

Authorized licensed use limited to: University of Gent. Downloaded on August 18,2020 at 11:27:17 UTC from IEEE Xplore. Restrictions apply.

366

Authorized licensed use limited to: University of Gent. Downloaded on August 18,2020 at 11:27:17 UTC from IEEE Xplore. Restrictions apply.

367

Authorized licensed use limited to: University of Gent. Downloaded on August 18,2020 at 11:27:17 UTC from IEEE Xplore. Restrictions apply.

368

Authorized licensed use limited to: University of Gent. Downloaded on August 18,2020 at 11:27:17 UTC from IEEE Xplore. Restrictions apply.

369

Authorized licensed use limited to: University of Gent. Downloaded on August 18,2020 at 11:27:17 UTC from IEEE Xplore. Restrictions apply.

370

Authorized licensed use limited to: University of Gent. Downloaded on August 18,2020 at 11:27:17 UTC from IEEE Xplore. Restrictions apply.

	Acknowledgment
	Permission for use of content
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Nederlands Abstract
	Summary
	Introduction
	Background
	Research Questions
	Approach and Outline
	Publications

	Software Services from Edge to Cloud in Smart Cities
	Background
	Smart Cities
	Cloud Computing
	cloudlet Computing
	Fog Computing
	Edge Computing
	Mobile Edge Computing

	Literature Review
	Methodology
	Result

	Edge-to-Cloud-as-a-Service architecture for Smart Cities
	Developing Software Services in Smart Cities
	Classification of City Services
	Design Output
	Computing Platform
	ICT Management
	Technological Tools
	Implementation
	Efficiency Measurements

	EMS Software Services in Smart Neighborhoods
	Background
	ZEN research center
	Smart Neighborhoods
	Smart Grid
	Energy Management Systems

	Edge-to-Cloud-as-a-Service architecture for ZEN Center
	Developing EMS Software Services in Smart Neighborhoods
	Classification of City Services
	Design Output
	Implementation
	Efficiency Measurements

	Directions towards implementation
	Scenario and Goals
	Technological Tools

	Implementation
	Scenario and Setup
	Virtual Wall
	Kubernetes

	Results
	Discussion

	Conclusion and Future Work
	References
	A Novel Edge-to-Cloud-as-a-Service (E2CaaS) Model for Building Software Services in Smart Cities

