
Music recommendation using genetic programming

Academic year 2019-2020

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Stefaan Vercoutere
Supervisors: Prof. dr. ir. Luc Martens, Prof. dr. ir. Toon De Pessemier

Student number: 01508456
Robbe Vanhaesebroeck

Music recommendation using genetic programming

Academic year 2019-2020

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Stefaan Vercoutere
Supervisors: Prof. dr. ir. Luc Martens, Prof. dr. ir. Toon De Pessemier

Student number: 01508456
Robbe Vanhaesebroeck

Acknowledgement

The period of my master thesis has been without a doubt the weirdest period of my life so far.

Not only was this the first time that I had to undertake a project of such proportions, but at

the same time, the COVID-19 virus has significantly changed daily life for everybody. Given

these special circumstances, it has been an exceptionally hard year that I would not have been

able to complete if not for the following people.

First, I would like to thank my supervisor Stefaan Vercoutere who has helped me throughout

this year. I could always knock on his door and ask him questions on subjects I did not

understand, have discussions about designs and implementations, and he took the time to read

parts of my report and give feedback. I would also like to thank my promotors prof. dr. ir.

Luc Martens and prof. dr. ir. Toon De Pessemier for proposing this subject, attending the

intermediate presentation, and providing valuable feedback.

In my personal life too, there are a few people whom I would like to show my appreciation

and without whom I would not have been able to finish this tremendous project. My girlfriend

Isa Wille, who has always been there for me, who celebrated my victories with me and helped

me get through the rough moments. My friend Pieter De Clercq who supported me through

thick and thin, always ready to help me out and listen to me. Doing our thesis at the same time

was something that gave me the strength and willpower to give it my best, and sharing jokes

and memes always put a smile on my face. My other friend Pieter Dernau, whose regular video

chats were a welcome distraction from the project. I would not have had any social contact if it

weren’t for him. Additionally, he read certain parts and corrected errors.

Finally, I would like to express my love and gratitude for my family. My brother who has

brought out the best in me and always encouraged me to be as ambitious as himself. My parents,

who have supported me, not only this year but my entire life. They have always let me follow

my instincts and have given me the space to grow and learn the things I was passionate about.

Special thanks to my mother for reading my entire work and helping with fixing errors. I hope

I will make you proud.

Permission for Usage

The author(s) gives (give) permission to make this master dissertation available for consultation

and to copy parts of this master dissertation for personal use. In all cases of other use, the copy-

right terms have to be respected, in particular with regard to the obligation to state explicitly

the source when quoting results from this master dissertation.

Robbe Vanhaesebroeck, May 2020

Music Recommendation Using Genetic Programming

Robbe VANHAESEBROECK (01508456)

Supervisors: Prof. Dr. Ir. Luc Martens, Prof. Dr. Ir. Toon De Pessemier

Counsellor: Stefaan Vercoutere

Master’s dissertation submitted in order to obtain the academic degree of

Master of Science in Computer Science Engineering

Academic year 2019–2020

Abstract

Recommender systems help people find their way in large volumes of information in a

personalised manner. Their use has become widespread in many domains such as music,

movies, e-commerce, news,. . . Traditional recommender systems focus on accuracy but this

may be detrimental to user satisfaction. Evolutionary computing is a suitable candidate

to optimise other, more user-centric metrics while not completely neglecting the accuracy

requirement. This work presents an algorithm that produces a set of recommendations using

a traditional recommender system. Next, the items are reranked according to a function

constructed by genetic programming. This way, the system balances accuracy and other

metrics. This thesis first reviews the basic concepts of recommender systems and evolutionary

computing. Next, the state of the art is discussed. Building on this, the work presents the

recommendation approach and conducts some experiments to evaluate its performance. The

results show that it is possible to find a reasonable trade-off in terms of most metrics.

However, some functions perform well in terms of the metrics, while a deeper analysis shows

that they are not fit for use in a real system.

Keywords— Recommender systems, Genetic programming

Music Recommendation Using Genetic
Programming

Robbe Vanhaesebroeck

Supervisors: Luc Martens, Toon De Pessemier
Counsellor: Stefaan Vercoutere

Abstract—Recommender systems help people find
their way in large volumes of information in a per-
sonalised manner. Their use has become widespread
in many domains such as music, movies, e-commerce,
news,. . . Traditional recommender systems focus on
accuracy but this may be detrimental to user satisfac-
tion. Evolutionary computing is a suitable candidate
to optimise other, more user-centric metrics while
not completely neglecting the accuracy requirement.
This work presents an algorithm that produces a set
of recommendations using a traditional recommender
system. Next, the items are reranked according to a
function constructed by genetic programming. This
way, the system balances accuracy and other metrics.
This thesis first reviews the basic concepts of recom-
mender systems and evolutionary computing. Next, the
state of the art is discussed. Building on this, the work
presents the recommendation approach and conducts
some experiments to evaluate its performance. The
results show that it is possible to find a reasonable
trade-off in terms of most metrics. However, some
functions perform well in terms of the metrics, while
a deeper analysis shows that they are not fit for use in
a real system.

Keywords—Recommender systems, Genetic
programming

I. INTRODUCTION

Today, recommender systems are indispensable to
find relevant content on the internet. People interact
with them daily when listening to music or watching
movies via online streaming services, when checking
the news, when buying items in a webshop,. . . In the
past, recommender systems focused solely on provid-
ing accurate recommendations. Unfortunately, this
could mean that recommendations became obvious.
This is especially a problem for multimedia systems,
where users are typically interested in finding new
and exciting things. In the last few years, research has
acknowledged that besides accuracy, other metrics
are important to increase user satisfaction. Common
metrics are diversity, coverage, novelty and serendip-
ity. Recommender systems should find a balance
between being accurate and exploring the catalogue
of items to find new, perhaps surprising discoveries.

The recommendation problem is thus modelled as a
multi-objective optimisation problem, i.e. a problem
where multiple, conflicting objectives are jointly op-
timised without neglecting any one of them.

One way to find solutions to such problems,
is evolutionary computing. This dissertation uses a
variant of evolutionary computing known as genetic
programming to find a scoring function that reranks
items in a list of recommendations. The remainder
of this paper first introduces some related work in
Section II. Next, Section III presents the design of
the algorithm. The algorithm has several parameters
that influence computation time and quality of the
found solutions. Section IV discusses the parameter
settings and the found solutions. Finally, Section V
concludes this paper.

II. RELATED WORK

A. Recommender Systems

Through the years, researchers have developed
many approaches towards recommending items to
users in a personalised way. Traditionally, the com-
munity makes a distinction between three large cat-
egories [1]:

1) Content-based recommenders: users rate items
where each item is represented by a descrip-
tion. The system recommends items with a
similar description. However, the items may be
too similar to previously consumed item res-
ulting obvious and uninteresting recommenda-
tions.

2) Collaborative filtering: the system finds users
who have rated similar items similarly. A target
user receives recommendations of items she
or he did not consume yet, but that other,
similar users liked. This technique does not
need content descriptions.

3) Hybrid systems: The above approaches each
have some benefits and drawbacks. Hybrid
systems combine elements of both to combine
strengths and overcome weaknesses.

The traditional recommender systems were built
for explicit feedback, such as a 5-star rating system.

In practice, most of the feedback is implicit, such as
clickstreams. In that case, the system cannot distin-
guish between a user disliking an item or simply not
interacting with it. Researchers have developed sev-
eral techniques to deal with implicit feedback [10].
One popular example is Bayesian Personalised Rank-
ing [13]. The technique formulates a Bayesian model
to create a total ordering relationship on the items for
each user.

Typically, recommender systems maximise the ac-
curacy of the recommendations. An item should be
as relevant as possible. This work expresses accuracy
as the NDCG: the normalised discounted cumulative
gain. However, the recommendations can become so
accurate that they do not provide a lot of added
value. The user already knows the recommended
items. Especially in the case of multimedia systems, a
recommender system should aid a user in discovering
new items or tastes. To achieve that, researchers have
developed other metrics:

• Diversity: how different are the recommenda-
tions in a provided list. If they are all very
similar, chances are a user will not like any of
them.

• Novelty: how likely is it that the user did not
know an item before it was recommended. Un-
popular items have a higher chance of being
novel.

• Serendipity: how surprising is the recommenda-
tion to the user. This metric is hard to achieve
because it is very subjective and encompasses
several things. A serendipitous recommendation
should be novel, and unlike items a user usually
prefers. However, the user should like the item
before it can be serendipitous.

• Coverage: which fraction of items from the
total catalogue appears in at least one recom-
mendation list. This is especially interesting for
webshops. Amazon, for example, gets most of
its profits from the long tail of items [2], [4].

B. Evolutionary Computing

Evolutionary computing is a metaheuristic optim-
isation technique based on biological evolution [7]. It
maintains a population of individuals. An individual
encodes a solution to the problem at hand. Each
individual has a fitness, which indicates how well
it solves the problem. In every iteration, individuals
have a chance of being selected for genetic oper-
ations, usually proportional to their fitness value.
The genetic operations either randomly change the
individual (mutation) or combine elements from two
or more parents into one or more children (recom-
bination or crossover). By doing this, the algorithm

attempts to find the global optimum, or a solution as
close as possible to the global optimum.

A somewhat special form of evolutionary comput-
ing is genetic programming. This approach evolves
functions or computer programs that are typically
encoded as syntax trees. The crossover operation ex-
changes subtrees between individuals while mutation
replaces a subtree with a new randomly grown tree.

Evolutionary computing can also be used to solve
multi-objective optimisation problems. In such prob-
lems, multiple criteria need to be optimised to-
gether. Evolutionary computing can find Pareto-
optimal solutions. These solutions perform at least
as good as other solutions on all metrics but better
on at least one of them. In one run, the algorithm can
find multiple solutions that make different trade-offs.

C. Multi-objective Recommender Systems

As mentioned in Section II-A, recommender sys-
tems have multiple objectives to optimise. Research-
ers have made attempts to improve different as-
pects of recommender systems [11]. Several of
those use evolutionary computing. Ribeiro et al.
combined multiple recommender systems that fo-
cused on different aspects, where evolutionary com-
puting determined the weights [14]. Guimarães et
al. developed the GUARD framework [9]. This
framework uses genetic programming to find simple
neighbourhood-based ranking functions. Another ap-
proach first generates a list of recommendations L
and then uses an evolutionary computing technique
to select k items from that list to optimise multiple
metrics simultaneously [5], [8], [12], [15]–[17].

III. ALGORITHM DESIGN

Figure 1 shows the proposed algorithm. First,
a regular recommender system produces a list of
recommendations L. This work uses Bayesian Per-
sonalised Ranking [13]. In parallel, for each of the
items a set of features is produced. These features
can come from an external source, such as content-
related features but they can also be based purely
on collaborative data. The output from these two
steps serve as input for the genetic programming step.
This step finds a function that scores each item in
the list L. Next, it reranks the items according to
the new score and keeps the top k items. Finally,
the fitness is determined. The fitness consists of 4
recommender system performance metrics: accuracy,
coverage, novelty and diversity. Based on the fitness,
some of the individuals are selected for reproduction
and mutation, forming a new generation. The step
runs for a fixed number of generations.

This design has three goals:

Recommender
system

New score
calculation

Item features
calculation

Reranking

Fitness
calculation

Genetic programming

Pareto-optimal
solution
selection

Figure 1: The general flow of the proposed recom-
mender algorithm.

1) It jointly optimises the recommender system
metrics.

2) The algorithm can be applied in an environ-
ment where a regular recommender system is
already running.

3) The time-consuming evolutionary computing
step only has to be run sporadically.

Previous research already accomplished the first
two goals by first producing a list of recommenda-
tions L and subsequently selecting a subset of k items
from them [16]. However, with previous designs, the
evolutionary computing steps had to be rerun every
time a new set of recommendations was needed. The
algorithm in Figure 1 uses genetic programming to
find a scoring function. This function can be reused
every time a new set of recommendations needs to
be provided.

IV. EVALUATION

The experiments use a subset of 1.4 million user-
item-playcount triplets from the Taste Profile subset.
This is a subset of the Million Song Dataset [3]. The
item features were obtained via AcousticBrainz [6].
First, the recommender system was tuned before-
hand. Next, there is one iteration per set of para-
meters. In each iteration, the recommender system
is trained on the training data and produces a list
of recommendations per user. Next, these lists serve
as input to the genetic programming step together
with the item features. The genetic programming
step finds several Pareto-optimal scoring functions.
To ensure that the scoring functions keep performing
well when more user data is available, the traditional
recommender system was retrained on train and

simulation data and evaluated on the test set. This
simulates the real situation where the system needs
to provide a new set of recommendations after some
time when users have listened to new songs. In that
case, the genetic programming step does not need
to execute every time, which was one of the design
goals. Table I shows the algorithm parameters. For
the experiments, the population size and number of
generations were varied in a Cartesian grid.

Parameter Value
Latent factors 80
Regularisation 0.01

training epochs 100
Learning rate 0.01

Crossover probability 0.9
Mutation probability 0.05

Tree initialisation minimum height 1
Tree initialisation maximum height 3

Maximum tree height 17
Mutation tree minimum height 0
Mutation tree maximum height 2

Original list size L 50
Final list size k 10
Population size {50, 100, 200, 300}
generations {50, 100}

Table I: The algorithm parameters and values.

The experiments show that a larger population
size and a higher number of generations find more
and better trade-offs. Especially more generations
make a big difference. However, the genetic pro-
gramming step takes proportionally more time. Even
large parameter values are no guarantee for finding
good trade-offs. Figure 2 shows the found solutions
that perform better in terms of coverage, novelty and
diversity for population size 100 and 100 generations.
Note that the diversity is not explicitly shown in
the figure because it remains relatively constant. Be
that as it may, all shown solutions have a better
diversity than the original recommendation list. Some
solutions achieve a significantly higher coverage and
novelty than the baseline performance. However, in
most cases, this is accompanied by a sharp decrease
in NDCG.

The solutions that achieve a reasonable comprom-
ise between all metrics are not necessarily good to
be used afterwards. The function tanh(cos(sin(s)))
where s is the original score achieves a good trade-
off in terms of the metrics. However, upon closer
inspection, it leaves the list mostly unaltered for
some users while for other users it reverses the list
completely. In other words, for some users, it focuses
purely on accuracy while for the other users it focuses
on novelty and coverage. This is not desirable be-
cause the goal is to have a compromise on a per-user
base. Other functions also rely explicitly on the item
features and hence are better to obtain a real trade-

Figure 2: The found solutions that perform better in terms of coverage, novelty and diversity than the original
recommendation list.

off. This is the case for tanh((num_rat·s)/−6.74).
Besides relying on the score, this function also takes
into account the number of ratings an item received.
The interpretation is that unpopular items will be
favoured hence boosting novelty.

V. CONCLUSION

This work presented the design and evaluation of
a recommender system enhanced with genetic pro-
gramming. The main goal is to balance recommend-
ation accuracy with other performance metrics such
as novelty, coverage and diversity. The algorithm can
find reasonable trade-offs between the metrics but
not all found solutions are practical. Moreover, the
presented algorithm can be applied in an environment
where a regular recommender system is already
running. Finally, the slow genetic programming step
only has to be run occasionally, because the resulting
reranking functions can be reused.

REFERENCES

[1] Aggarwal, C. C. et al., Recommender systems.
Springer, 2016, vol. 1.

[2] Anderson, C., ‘The long tail,’ Wired Magazine,
vol. 12, no. 10, pp. 170–177, 2004.

[3] Bertin-Mahieux, T., Ellis, D. P., Whitman, B.
and Lamere, P., ‘The million song dataset,’ in
Proceedings of the 12th International Confer-
ence on Music Information Retrieval (ISMIR
2011), 2011.

[4] Brynjolfsson, E., Hu, Y. J. and Smith, M. D.,
‘The longer tail: The changing shape of
amazon’s sales distribution curve,’ Available
at SSRN 1679991, 2010.

[5] Cui, L., Ou, P., Fu, X., Wen, Z. and Lu, N., ‘A
novel multi-objective evolutionary algorithm
for recommendation systems,’ Journal of Par-
allel and Distributed Computing, vol. 103,
pp. 53–63, 2017.

[6] (). ‘Downloads,’ [Online]. Available: https :
/ / acousticbrainz . org / download (visited on
11/04/2020).

[7] Eiben, A. E., Smith, J. E. et al., Introduction
to evolutionary computing. Springer, 2003,
vol. 53.

[8] Geng, B., Li, L., Jiao, L., Gong, M., Cai, Q.
and Wu, Y., ‘Nnia-rs: A multi-objective optim-
ization based recommender system,’ Physica
A: Statistical Mechanics and its Applications,
vol. 424, pp. 383–397, 2015.

[9] Guimarães, A., Costa, T. F., Lacerda, A.,
Pappa, G. L. and Ziviani, N., ‘Guard: A ge-
netic unified approach for recommendation,’
Journal of Information and Data Management,
vol. 4, no. 3, pp. 295–310, 2013.

[10] Jannach, D., Lerche, L. and Zanker, M., ‘Re-
commending based on implicit feedback,’ in
Social Information Access, Springer, 2018,
pp. 510–569.

[11] Kaminskas, M. and Bridge, D., ‘Diversity,
serendipity, novelty, and coverage: A survey
and empirical analysis of beyond-accuracy

objectives in recommender systems,’ ACM
Transactions on Interactive Intelligent Systems
(TiiS), vol. 7, no. 1, pp. 1–42, 2016.

[12] Lin, Q., Wang, X., Hu, B., Ma, L., Chen, F.,
Li, J. and Coello Coello, C. A., ‘Multiobjective
personalized recommendation algorithm using
extreme point guided evolutionary computa-
tion,’ Complexity, vol. 2018, 2018.

[13] Rendle, S., Freudenthaler, C., Gantner, Z. and
Schmidt-Thieme, L., ‘Bpr: Bayesian person-
alized ranking from implicit feedback,’ arXiv
preprint arXiv:1205.2618, 2012.

[14] Ribeiro, M. T., Lacerda, A., Veloso, A. and
Ziviani, N., ‘Pareto-efficient hybridization for
multi-objective recommender systems,’ in Pro-
ceedings of the sixth ACM conference on Re-
commender systems, 2012, pp. 19–26.

[15] Wang, S., Gong, M., Li, H. and Yang, J.,
‘Multi-objective optimization for long tail
recommendation,’ Knowledge-Based Systems,
vol. 104, pp. 145–155, 2016.

[16] Wang, S., Gong, M., Ma, L., Cai, Q. and Jiao,
L., ‘Decomposition based multiobjective evol-
utionary algorithm for collaborative filtering
recommender systems,’ in 2014 IEEE Con-
gress on Evolutionary Computation (CEC),
IEEE, 2014, pp. 672–679.

[17] Zuo, Y., Gong, M., Zeng, J., Ma, L. and
Jiao, L., ‘Personalized recommendation based
on evolutionary multi-objective optimization
[research frontier],’ IEEE Computational In-
telligence Magazine, vol. 10, no. 1, pp. 52–62,
2015.

Contents

1 Introduction 1

2 Recommender Systems 4

2.1 Introduction . 4

2.2 Classes of Recommender Systems . 4

2.2.1 Content-based Recommender Systems . 5

2.2.2 Collaborative Filtering Systems . 5

2.2.3 Hybrid Recommender Systems . 8

2.3 Implicit Feedback . 8

2.4 Measuring Recommender System Performance 9

2.4.1 Accuracy . 10

2.4.2 Other Metrics . 11

3 Evolutionary Computing 13

3.1 Introduction . 13

3.2 Schema . 14

3.3 Components . 14

3.3.1 Fitness . 14

3.3.2 Individuals . 14

3.3.3 Parent Selection . 15

3.3.4 Variation Operators . 15

3.3.5 Survivor Selection . 16

3.4 Evolutionary Computing Variants . 16

3.5 Multi-objective Optimisation . 17

4 Related Work 19

4.1 Recommender Systems as a Multi-objective Optimisation Problem 19

4.2 Solving the Multi-objective Optimisation Problem 20

4.3 Evolutionary Algorithms for Recommender Systems 21

5 Data 23

5.1 Million Song Dataset . 23

5.1.1 Taste Profile . 24

5.2 Problems . 26

5.3 Auxiliary Data . 26

5.3.1 Data Loss . 27

5.4 Audio Classifiers . 27

5.4.1 Genres . 28

5.4.2 Mood . 28

5.4.3 Audio . 28

5.5 Item Features . 28

6 Design of the Algorithm 30

6.1 Motivation & Design Goals . 30

6.2 High-level Overview . 31

6.3 Recommender system . 32

6.4 Item Features . 32

6.5 Genetic Programming . 33

6.5.1 Process . 33

6.5.2 Scoring Function . 35

6.5.3 Pareto-optimal Solution Selection . 35

7 Experiments 36

7.1 Data . 36

7.2 Algorithm Parameters . 37

7.3 Performance Criteria . 38

7.4 Experimental Setup . 39

7.5 Results . 40

7.5.1 Baseline . 40

7.5.2 Experimental Settings . 40

7.5.3 Influence of More Data . 41

7.5.4 Bloat . 41

7.5.5 Pareto-optimal Solutions . 42

7.6 Discussion . 57

7.6.1 Functions . 57

7.6.2 Evaluation Method . 60

8 Conclusion 61

8.1 Future Work . 62

Appendices 64

A Full Data Description 65

A.1 Genres . 65

A.1.1 Dortmund . 65

A.1.2 Rosamerica . 66

A.1.3 Tzanetakis . 66

A.1.4 Electronic Music . 66

A.1.5 Ballroom . 67

A.2 Moods . 67

A.3 Other Classifiers . 68

B Full Results Table 70

List of Figures

3.1 The general evolutionary computing scheme [21]. 14

3.2 An illustration of some Pareto-optimal solutions compared to other solutions. . . 18

5.1 The number of unique listeners per song. Notice the logarithmic y-axis. 25

5.2 The number of unique songs played per user. The y-axis is logarithmic. 25

6.1 The general flow of the proposed recommender algorithm. 31

6.2 An example tree representation for Equation (6.1). 34

7.1 The variation of height throughout the generations. 43

7.2 Normalised discounted cumulative gain (NDCG) vs. coverage. 45

7.3 NDCG vs. novelty. 46

7.4 NDCG vs. diversity. 47

7.5 Novelty vs. coverage. 48

7.6 Novelty vs. diversity. 49

7.7 Coverage vs. diversity. 50

7.8 The NDCG, coverage and novelty for population size 50 and 50 generations. . . . 51

7.9 The NDCG, coverage and novelty for population size 50 and 100 generations. . . 51

7.10 The NDCG, coverage and novelty for population size 100 and 50 generations. . . 52

7.11 The NDCG, coverage and novelty for population size 100 and 100 generations. . 52

7.12 The NDCG, coverage and novelty for population size 200 and 50 generations. . . 52

7.13 The NDCG, coverage and novelty for population size 200 and 100 generations. . 53

7.14 The NDCG, coverage and novelty for population size 300 and 50 generations. . . 53

7.15 The NDCG, coverage and novelty for population size 300 and 100 generations. . 53

7.16 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 50 and 50 generations. 54

7.17 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 50 and 100 generations. 54

7.18 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 100 and 50 generations. 55

7.19 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 100 and 100 generations. 55

7.20 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 200 and 50 generations. 55

7.21 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 200 and 100 generations. 56

7.22 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 300 and 50 generations. 56

7.23 Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 300 and 100 generations. 56

7.24 The reranking functions that only depend on the score. 59

List of Tables

2.1 Example of a rating matrix . 5

2.2 Example of a binary rating matrix . 7

6.1 The allowed operators and constants in the tree representation. 33

7.1 The recommender system (RS) parameters and values. 37

7.2 The parameter choices for the genetic programming (GP) step. 38

7.3 The system-wide parameter values. 38

7.4 The original RS performance. 41

7.5 The GP settings that were varied during the experiments with their time to execute. 41

7.6 The average performance differences on reranked RSFull and RSTrain recom-

mendations. 42

7.7 A few interesting scoring functions. 58

7.8 The performance for the functions from Table 7.7. 59

A.1 Class percentages of songs in the data for the Dortmund classifier. 66

A.2 Class percentages of songs in the data for the Rosamerica classifier. 66

A.3 Class percentages of songs in the data for the Tzanetakis classifier. 66

A.4 Class percentages of songs in the data for the Electronic classifier. 67

A.5 Class percentages of songs in the data for the ballroom classifier. 67

A.6 Class percentages of songs in the data for the binary mood classifiers. 68

A.7 Class percentages of songs in the data for the Mirex classifier. 68

A.8 Class percentages of songs in the data for the remaining classifiers. 69

B.1 The performance for the functions from Table 7.7 relative to the baseline per-

formance. 70

List of Abbreviations

AMAN all missing values as negatives.

AMAU all missing values as unknown.

BPR Bayesian Personalised Ranking.

CF collaborative filtering.

DCG discounted cumulative gain.

EA evolutionary algorithm.

EC evolutionary computing.

GP genetic programming.

MOP multi-objective optimisation problem.

MSE mean squared error.

NDCG normalised discounted cumulative gain.

RMSE root mean squared error.

RS recommender system.

Chapter 1

Introduction

The internet contains an unbelievable amount of information on anything imaginable, and more

information is being added every second. News sites publish new articles every day, people post

on their social media, webshops sell items online, and multimedia streaming services provide

catalogues containing millions of items. Owing to the volume and velocity, people cannot keep

up and they may quickly become overwhelmed. This phenomenon is commonly known as the

information overload problem. To assist people in finding the product, article, or service they

need, RSs have been proven to work very effectively [12].

A recommender system is a type of system that filters out unnecessary and irrelevant in-

formation for people in a personalised way to help them in finding the things they need in the

colossal collection of data. To achieve this goal, they operate on users’ historical consumption

patterns to learn which type of items they typically prefer. This data can take several forms

such as 5-star ratings, likes and dislikes, purchase history, clickstreams,. . . Once the system has

modelled the user’s interests, it attempts to find items that match their tastes. Traditionally,

there are three approaches to doing this [4]. Content-based RSs try to find items similar to

what a user has interacted with before based on descriptions of the items. In other words, each

item is represented as a vector of features and the system searches for items whose features are

similar to the features of previously consumed items. Collaborative filtering (CF), on the other

hand, does not need content-specific features to recommend items, but identifies other users with

similar histories to the target user and then recommends items that those users have consumed,

to the target user. Finally, hybrid RSs combine elements from both techniques to achieve better

results and overcome the weaknesses of the separate approaches.

When building a RS, the focus is usually on making the recommendations as accurate as

possible. If a user receives a list of 10 recommended items, ideally the most relevant item should

be on top, followed by the second most relevant item and so on. Research has pointed out that

the most accurate recommendations are not necessarily the most appropriate to the users of a

1

system, and that user satisfaction with the system may decrease by focusing on (only) optimising

standard accuracy metrics [41]. Suppose a user likes the songs Master of Puppets and Fade To

Black by Metallica. A recommender system may recommend other songs by the same band. In

that case, the system has successfully learned that the user likes that particular band and hence

provides accurate recommendations. However, the user will probably not be satisfied with the

system, because she/he already knew most of the recommended songs.

It is hence clear that a too high focus on accurate recommendations may decrease user

satisfaction with the system. This is true to some extent for almost all environments that use

RSs, but it becomes especially important for multimedia applications such as music, movies

or book recommenders. Users of such a system want to find accurate items they like, but the

recommendations should not be unduly obvious because then the RS would not be of much

help: the user could have found these items without help. Instead, an important goal of RSs

in such situations becomes helping users explore the catalogue of items hopefully finding new

and exciting items that the user did not know before but likes nonetheless. In this respect,

it can be helpful to recommend items that are unpopular and unknown because this increases

the probability that the user was indeed not familiar with the item before. Moreover, RSs

typically provide a list of several recommendations. If all the items in that list resemble each

other a lot, the probability increases that the user will not like any of them. Therefore, it

may be beneficial to make the recommended items somewhat different to each other (within

reasonable bounds). Additionally, for webshops, for example, there is an effect known as the

long-tail phenomenon [6]. This means that a very small minority of the items is very popular

while most of the other items have very few interactions. Yet, at Amazon, for example, it has

been observed that most of the sales come from the long tail [15]. Hence, explicitly making

recommendations for as many different items as possible at the system-wide level may increase

sales and profits. Consequently, researchers have developed alternative performance metrics

to quantify these behaviours to improve RS performance for those metrics as well. That is

not to say these systems should disregard accuracy altogether: all the performance metrics are

important and should be jointly optimised.

Since recommender systems no longer only focus on optimising accuracy, the problem be-

comes a multi-objective optimisation problem (MOP). Most techniques to solve such problems

are based on optimising a weighted sum of the different criteria where a human in the loop can

set the weights differently to achieve different trade-offs [40]. Be that as it may, one technique

named evolutionary computing (EC) can find so-called Pareto optimal solutions to the prob-

lem. This means they try to find solutions that perform well on all criteria, without hurting

the performance on the other criteria. EC techniques simulate biological evolution. Given a

population of individuals that encode a solution to a certain optimisation problem, under the

2

influence of genetic operations like crossover (sexual reproduction) and mutation, the algorithm

will generate a new generation of offspring from individuals of the previous generation. Each in-

dividual receives a fitness score, which indicates how well the solution encoded by the individual

solves the problem at hand. By choosing individuals with a higher fitness to create offspring,

over time, the fitness of the population is expected to increase and hence a solution as close as

possible to the global optimum can be discovered [21]. Over the decades, many researchers have

developed variants of this basic scheme to solve a diverse set of problems. One of these is called

GP. This variant attempts to find a function that given a predefined input produces an output

to optimise one or more criteria.

The goal of this work is to use GP to build a RS that not only focuses on accuracy but also

the other RS performance metrics mentioned above. Besides this main goal, the system should

attain some additional objectives. It should be easy to adopt this system in an environment

where an existing RS is already running. Additionally, the time-consuming GP step should

not be rerun every time the system produces a new set of recommendations. These goals are

accomplished by using a two-step process, where first a regular accuracy-focused RS generates

a set of recommendations for every user, and then a reranking of those results takes place based

on a function that has been evolved using GP. That way, each time the system generates new

recommendations, it can reuse the same function.

The remainder of the report looks as follows. First, Chapter 2 will discuss some general

concepts related to RSs. Second, Chapter 3 gives an introduction to EC techniques and MOPs.

With this theoretical background in mind, Chapter 4 will review recent research and the state-of-

the-art regarding RS as MOPs. Chapter 5 lists the main data sources used for experimentation,

and explains how the dataset used was built. Then, in Chapter 6 the design of the proposed

algorithm is deliberated, following a top-down approach. The experimental results are given and

examined in more detail in Chapter 7. Finally, Chapter 8 concludes the report with a summary

and some future research directions.

3

Chapter 2

Recommender Systems

The current chapter discusses some theoretical background related to recommender systems

(RSs). First, Section 2.1 outlines the general context of a RS. Section 2.2 summarises the main

classes, their properties and some important examples from literature. Then, Section 2.3 spends

some time on RSs for implicit feedback data. Finally, Section 2.4 lists some metrics for measuring

RS performance.

2.1 Introduction

Recommender systems use historical data on users’ interests for certain items to predict possibly

relevant items in the present and near future. Typically, this historical data is represented as

a matrix R called the rating matrix, utility matrix or simply user-item matrix. Each row

represents a single user while each column represents an item. The elements of the matrix rui

indicate the preference of a user u for a particular item i. Often, this preference value is an

integer number on a scale of 1 to 5 or 1 to 10 (e.g. star ratings) where the minimum denotes

a strong dislike while the maximum denotes a strong preference for the item. A rating scale

could also be binary, where a 1 represents a preference and a −1 a dislike. However, there are

also unary ratings or implicit feedback data such as purchase history in a webshop, song playing

history, video view time, . . . In that case, if an entry rui has a filled-in value, this indicates some

interest of the user u for that item i. If an entry in the matrix is not filled in in the matrix, it

could be either because the user dislikes that item, but it could also be because the user simply

did not interact with the item yet [5].

2.2 Classes of Recommender Systems

There are three big classes of recommender systems: content-based recommenders, collaborative

filtering (CF) and hybrid systems. Each of these is briefly discussed in the sections below.

4

2.2.1 Content-based Recommender Systems

Content-based RSs utilise item descriptions in combination with user rating behaviour to dis-

cover which type of items a user likes. For example, suppose Bob likes Master of Puppets by

Metallica. This song belongs to the genre ‘metal’, and release year 1986. A content-based re-

commender will then look for songs with similar properties, such as Angel of Death by Slayer

which is also a ‘metal’ song released in 1986.

Content-based RSs can recommend new items for which sufficient rating data is not available.

This is because a user may have rated similar items in the past, and hence the system understands

that the active user will presumably like that item as well. However, content-based systems have

several disadvantages. First, the provided recommendations are rather obvious. The system will

always look for similar content and hence recommended items will typically not be diverse or

surprising.

2.2.2 Collaborative Filtering Systems

Collaborative filtering leverages ratings from the community to find relevant items for a target

user. Within the CF systems, there are two categories: neighbourhood-based CF and model-

based CF. These will be presented in this section, followed by a comparison of both methods

relative to each other, and relative to content-based filtering methods.

Master of Puppets The Trooper Highway to Hell Method Man Juicy

Alice 1 - - 4 -

Bob 5 - 4 3 -

Carol 2 2 - 5 5

Dave 5 5 4 - -

Ellen - 2 - 4 4

Table 2.1: Example of a rating matrix

Neighbourhood-based Collaborative Filtering Within the neighbourhood-based CF

methods, there are essentially two dual formulations of the recommendation problem, in the sense

that they can mostly use the same formulas and algorithms, adapted to the specific situation:

� User-user systems: for a given target user, the system tries to determine the most similar

users. The items liked by these users are probably also relevant for the target user if the

user did not rate them yet. Take the rating matrix in Table 2.1 as an example. Suppose

the system wants to recommend a song to Bob. Bob has rated Master of Puppets and

5

Highway to Hell highly. The system looks for similar users and finds that Dave gave similar

ratings as Bob. Since Dave rated The Trooper highly, this is probably a song Bob will like

as well.

� Item-item systems: items that are comparable to items liked by a target user will probably

also be interesting to the user. Consider once again the same rating matrix from Table 2.1.

Suppose the system wants to recommend items to Alice. Since Alice has rated Method

Man highly, the system looks for songs with similar ratings. The song Juicy has received

similar ratings and probably Juicy would make a good recommendation for Alice.

In practice, item-item CF systems often achieve better accuracy than user-based systems.

This is because, in user-based systems, other users’ ratings are used to estimate ratings on

unrated items. Users are typically more complex to model than items and they may have

overlapping but different interests to the target user. Additionally, user interests may evolve

over time and hence result in less accurate recommendations. An item, on the other hand, is

static.

Neighbourhood-based models are intuitively simple and hence their recommendations can

easily be interpreted. However, their performance degrades when the rating matrix is sparse. If

none of Bob’s neighbours in a user-based system rated the song Toxicity by System of a Down,

the system will not be able to predict an accurate rating for that song, even though the song

may be very relevant to Bob.

Model-based Collaborative Filtering A second class are the model-based CF techniques.

This class uses machine learning techniques to predict missing ratings in the user-item matrix.

Different machine learning techniques can be generalised to be used for the recommendation

task. However, the most commonly known method is the matrix factorisation model. The basic

idea is to approximate the rating matrix with dimensions m×n by a product of a user matrix U

with dimensions m×k and an item matrix V of dimensions k×n. The interpretation is that the

rows of the user matrix represent the users’ affinity for each of k latent factors while the columns

of the item matrix indicate the affinity of the items for each of the latent factors. Algorithms

like singular value decomposition (SVD) or Alternating Least Squares (ALS) estimate the user

and item matrices based on the observed ratings. Then, to determine the predicted rating of

the user u for an item the dot product between Uu and Vi is made.

A concrete example could be the following. Consider the binary rating matrix in Table 2.2.

This matrix could be factorised as follows:

6

Master of Puppets The Trooper Highway to Hell Method Man Juicy

Alice -1 - - 1 -

Bob 1 - 1 1 -

Carol -1 -1 - 1 1

Dave 1 1 1 - -1

Ellen - -1 - 1 1

Table 2.2: Example of a binary rating matrix



−1 · · 1 ·
1 · 1 1 ·
−1 −1 · 1 1

1 1 1 · ·
· −1 · 1 1


=



−1 1

1 1

−1 1

1 −1

−1 1


·

1 1 1 0 0

0 0 0 1 1



The latent factors can have a direct interpretation. In this example, the first row of the item

matrix has a 1 for the rock and metal songs and a 0 for the hip-hop songs, while the second

row has a 0 for rock and metal songs and a 1 for the hip-hop songs. The user matrix also shows

some patterns, for instance, Alice does not like metal but does like hip-hop. Similar reasoning

follows for the other users.

Model-based techniques are less intuitive than neighbourhood-based techniques. While the

latent factors can sometimes have an interpretation, this interpretation is not always clear and

hence it may be unknown why a particular item is recommended to a certain user. How-

ever, model-based techniques deal much better with sparsity issues since they represent the

information of the rating matrix in a much more compact way. This also benefits the storage

requirements and prediction speed.

Pros and Cons of Collaborative Filtering Compared to content-based filtering, CF sys-

tems can typically recommend more diverse items than content-based systems. The system can

pick up on seemingly counterintuitive correlations. For example, hip-hop fans may like Sabotage

by Beastie Boys even though this is arguably more a rock song than a hip-hop song. Addition-

ally, CF techniques can easily be used in many different contexts. Since they only use rating

information it is unimportant which type of item is being recommended, whether it is music,

movies, news,. . . The same cannot be said for content-based systems since they rely on highly

domain-specific features of the items.

However, CF methods, like content-based ones, suffer from the cold-start problem. Just like

in content-based methods, CF techniques cannot provide recommendations to new users, since

7

the system does not have any historical data and hence does not know what they like. However,

content-based systems could still recommend new items without sufficient rating information.

This is not the case for CF. This problem causes a paradox because the RS will not recommend

new items because they do not have ratings, but nobody will rate these items because they are

not recommended.

2.2.3 Hybrid Recommender Systems

The final class of recommender algorithms are hybrid systems. As mentioned before, these

systems combine elements from both content-based systems and CF to solve some of the typical

problems of either class. Hybrid RSs can often reach better performance than standalone CF

or content-based systems. They can be constructed either by creating an ensemble of several

off-the-shelf algorithms or by designing a custom algorithm that combines data from different

sources. Perhaps the most well-known hybrid RS is the winning entry of the Netflix Prize

contest: Bell-Korr’s Pragmatic Chaos [35].

2.3 Implicit Feedback

Most recommendation algorithms were originally developed for explicit feedback systems such

as a 5-star rating system, like and dislike buttons,. . . The problem with explicit feedback is that

it can be hard to come by because it requires active user participation. On the contrary, it is

easy to collect implicit feedback in almost any information processing system. In a webshop,

for example, a user’s purchase history, the time spent looking at certain items, which items the

user clicked, the items that were put in the shopping cart,. . . may all be used to derive the user’s

preferences for certain items. For a music streaming service, the system may keep track of which

songs the user listened to, how many times that song was played, whether the song was played

entirely or whether the user skipped to the next song after 30 seconds,. . .

Since implicit feedback is more abundant, and in many environments more practical, re-

searchers have developed some techniques to recommend items based on implicit feedback rather

than explicit feedback [33]. The simplest and most intuitive approach is to find a way to convert

the implicit feedback into explicit rating data and then use standard recommendation algorithms

for the task at hand. This is not a straightforward task since implicit feedback often contains

positive-only data with little to no information on what a user actually dislikes. If an item was

not consumed this can either be because the user dislikes the item, or simply because the user

does not know about the item.

Two ways of constructing a rating matrix from implicit feedback data are either all missing

values as negatives (AMAN) or all missing values as unknown (AMAU) [45]. In AMAN, positive

8

examples receive a label ‘1’ while missing items receive a label ‘0’. This makes it possible to

use existing CF techniques without much adaptation. In AMAU on the other hand, the missing

items receive a label ‘?’ and the algorithms only work on the positive examples. This technique

requires that the existing algorithms are modified to only deal with positive examples because

these may lead to trivial solutions. Both methods are oversimplifying the situation because, in

reality, the missing values contain both unknown positive examples as well as negative examples.

A more complicated approach is to embrace the implicit feedback data and develop special-

ised techniques to produce recommendations from that data. Pan et al. developed a method

based on low-rank approximation of the rating matrix that assigns confidence weights to the sig-

nals to express the probability that a signal is correctly interpreted as positive or negative [45].

They hence have a more nuanced view of the rating matrix where a rating from a user on an

item can be positive or negative with a certain probability.

An interesting example of an implicit feedback RS is the Bayesian Personalised Ranking

(BPR) model developed by Rendle et al. [46]. This model takes a different approach to recom-

mend items. The previous models essentially tried to predict the rating a user u would give to

an item i and then ranks the items based on the predicted ratings. The BPR method assumes

that the predicted ratings are irrelevant and only the ranking of the items is important: the

most relevant item should be at the top of the list. Therefore, the model tries to reconstruct for

each user a total ordering of the items. For each user-item-item triplet, if user u prefers item i

over item j:

i >u j u ∈ U i, j ∈ V (2.1)

The Bayesian formulation of this problem consists of maximising the posterior probability:

p(Θ| >u) ∝ p(>u |Θ)p(Θ) (2.2)

After some further simplifying assumptions, the final form eventually becomes tractable.

The authors also developed a variant of gradient descent that converges faster than the classical

methods for their objective function. Their paper provides more detailed information [46].

2.4 Measuring Recommender System Performance

The goal of RSs is to help a user find relevant items, and especially in the case of multimedia

systems like music or movie streaming, help the user explore items that she/he did not know

before. The best way to measure this is through user surveys. However, these can be cumbersome

to set up and require active user participation. Therefore, the most commonly used approach is

to measure performance on a historical data set. The most obvious way to quantify performance

9

is to measure the accuracy of the predictions, although other metrics are important for the user

experience as well.

2.4.1 Accuracy

To measure the accuracy of the system, a part of the ratings is held out as a test set. The

system then makes predictions for the missing ratings and measures the differences between the

predicted and actual ratings. The error of the system is commonly expressed in terms of the

mean squared error (MSE). Let the test set of ratings be denoted by T , then the mean squared

error on this set is defined as:

MSE =

∑
(u,i)∈T (r̂ui − rui)2

|T | . (2.3)

Because of the square operation, larger errors decrease performance more than smaller ones.

The MSE can quickly grow large. Therefore, an alternative measure is the root mean squared

error (RMSE). This metric expresses the error in units of ratings instead of units of squared

ratings, resulting in a number that is easier to interpret.

RMSE =
√

MSE =

√∑
(u,i)∈T (r̂ui − rui)2

|T | (2.4)

These accuracy metrics are often used in practice, for example for the Netflix Prize [9].

However, there are some problems. Ratings on popular items heavily influence both metrics. If

a system is highly accurate at predicting ratings for popular items but makes large errors for

the less conventional items, the MSE and RMSE might still be better than for a system that

makes moderate errors on all items, which is undesirable.

One might also note that most systems provide a list of recommendations and not the actual

predicted ratings. To quantify the quality of a list of recommendations, one can compare the

ranking provided by the RS to the ideal ranking of items. This can be done using a correlation

metric such as the Spearman ranking coefficient. A final type of accuracy metrics is utility-based

methods, which use both the ratings and the rankings to quantify how useful a recommendation

list might be to a user. A user would like the items with the highest ground truth ratings to be

at the top of the recommendation list. One way to quantify this, is through the NDCG:

NDCG(L, u) =
DCG(L, u)

DCG(Lideal, u)
, (2.5)

where L is the recommendation list for user u, Lideal is the ideal recommendation list and DCG

is the discounted cumulative gain:

DCG(L, u) =

|L|∑
i=1

rui
d(i)

, (2.6)

with d(i) a discount function. A popular choice is d(i) = log2(i+ 1).

10

2.4.2 Other Metrics

As already mentioned before, accuracy does not tell the whole story [41]. A music RS that

only recommends music that a user has already listened to is very accurate. Unfortunately,

the user will not be satisfied with the system because it does not recommend interesting items.

Therefore, it is necessary to investigate other metrics as well. These will focus more on other

aspects of the user experience. One problem is that these aspects are typically more subjective

and hence harder to quantify. Some of these metrics are now discussed in more detail, and if

possible a quantitative formula is given.

Diversity

Diversity can be defined as the extent to which recommendations within a single recommendation

list differ from each other. A list of songs of the same genre, same bands and same albums has

a very low diversity. From a user’s perspective, this may be detrimental to the quality of the

RS. The recommendations, even though they may be very accurate, do not provide a lot of

added value to the user, since the user most likely already knows the type of recommended

items. By increasing the diversity of the recommendations, the probability increases that the

list contains at least some useful recommendations. Additionally, it encourages users to expand

their knowledge or interests.

To measure diversity, one needs to be able to express the difference or similarity between

items. The best approach is to use content descriptions since these express the actual properties

of an item. Alternatively, if these are not available, one could for example use the latent factors

from a matrix factorisation, or even the rating vectors for each item. To calculate the diversity

of a recommendation list, one computes the average pairwise distance between the items of the

list [34]:

div(L) =

∑
i∈L

∑
j∈L\{i} dist(i, j)

|L|(|L| − 1)
, (2.7)

with dist a distance function between two items. The distance function differs widely in lit-

erature, from the inverse of Jaccard similarity or Pearson correlation [50], the inverse cosine

similarity [24] or even Hamming distance in the case of using rating vectors [14].

Novelty

The term novelty refers to the probability that a user did not know a recommended item be-

fore. A popularity-based recommender is unlikely to provide novel recommendations because

it focuses solely on items that as many users as possible recognise. Intuitively, one can expect

that unpopular items have a much higher chance to be novel to a user. This intuitive notion

is translated into the commonly used formula to express the novelty of an item. Namely, the

11

novelty is often defined in terms of the self-information of an item [34], [50]:

nov(i) = − log2 p(i) = − log2
|{u ∈ U |rui 6= ∅}|

|U | . (2.8)

In other words, the less popular an item is, and the further it is situated in the long tail, the

higher its novelty. To express the novelty of a recommendation list, one simply computes the

average novelty of all items in the list:

nov(L) =

∑
i∈L− log2 p(i)

|L| (2.9)

Serendipity

Closely related to novelty is serendipity, a concept that can be described as the degree to which

a recommendation surprises the user. Serendipity is arguably one of the most difficult metrics

to define and to achieve because it is highly subjective. For an item to be serendipitous it should

be unexpected, relevant and novel to the user [36]. However, defining when a recommendation

is unexpected is not straightforward. One possibility is to compare the recommendations from a

RS to a näıve baseline system that generates obvious recommendations, such as a content-based

RS [25]. An item that is recommended by the system under test, but not by the baseline system

is considered to be unexpected. The usefulness of an item is then to be judged by the user and

expressed as u(i) = 1 if the item is useful and u(i) = 0 otherwise. Suppose the list of unexpected

recommendations from the system under test is expressed as Lunexp Then, the serendipity of a

recommendation list is expressed as follows:

srdp(L) =

∑
i∈Lunexp

u(i)

|Lunexp|
(2.10)

It is easy to see that this definition is by no means practical for offline evaluation since it requires

active user participation to express which items are useful and which are not.

Coverage

Finally, the coverage of a RS is a system-wide metric that expresses which fraction of items from

the catalogue is recommended to at least one user. Increasing the coverage of a system may have

positive effects on both user satisfaction and product sales [3], [6]. Additionally, one expects

that when the coverage of the system increases, it may also have a positive effect on metrics

like diversity, novelty and serendipity although this relation has not been studied in detail [34].

Formally, the coverage is defined as follows:

cov =
| ∪u∈U Lu|
|I| , (2.11)

with Lu the recommendation list for user u and I the set of all items in the catalogue.

12

Chapter 3

Evolutionary Computing

The current chapter introduces general concepts from evolutionary computing (EC). Section 3.1

places EC techniques in the context of optimisation algorithms and metaheuristics. Next, Sec-

tion 3.2 will describe the general schema, and Section 3.3 will zoom in on the main components.

Section 3.4 summarises several well-known variants of the basic scheme. Finally, Section 3.5

concludes the chapter with a short explanation of multi-objective optimisation problems, and

how to use EC to solve such problems.

3.1 Introduction

EC techniques or evolutionary algorithms (EAs) are algorithms that draw their inspiration from

the biological evolution process. They form a subclass of the nature-inspired metaheuristics.

Metaheuristics are algorithms that approximately solve so-called hard optimisation problems,

i.e. problems for which it is not possible to find an optimal solution or a solution within a

guaranteed bound of the optimum in a reasonable amount of time [13]. The heuristics are meta

because they can be applied to a wide range of such problems with little adaptation. Common

examples of these metaheuristics include simulated annealing, tabu search, iterated local search,

and EC.

Several variations of the basic EA exist, but they all share the same underlying ideas. Given

a population of individuals, the individuals will compete for survival. Through sexual repro-

duction and mutation, the individuals produce a new generation in the hope that generation

after generation, the fitness of the population increases [21]. In the following section, the general

schema of EAs is discussed, followed by a description of the most important components.

13

Population

Parents

Offspring

Random

initialisation

Termination

(Fitness-based)

parent selection

Recombination

& Mutation

(Fitness-based)

survivor selection

Figure 3.1: The general evolutionary computing scheme [21].

3.2 Schema

The basic schema for EC is given in Figure 3.1. In an EA, the population is key. A population

is a group of individuals. One individual encodes a solution to some optimisation problem. The

first step initialises the population with a group of random individuals. Second, the algorithm

measures the fitness of each individual and chooses some individuals as parents for the next

generation. Typically, individuals with the highest fitness are most likely to be selected. The

parents create offspring through genetic operations called recombination and mutation. Finally,

the survivors are selected from the created offspring to form the next generation. This process

repeats for a fixed number of iterations, after which the algorithm terminates, hopefully with a

good solution to the optimisation problem.

3.3 Components

3.3.1 Fitness

The fitness function or evaluation function embodies the requirements a solution should strive

to meet. The goal of the EA is to maximise the fitness of their individuals and population. If

the problem at hand is a minimisation problem, one can reform the original objective function

into a fitness function to maximise by putting a minus sign in front of it.

3.3.2 Individuals

Individuals encode a solution to the problem. Different variants of the algorithm use different

encodings. For some problems, a solution can be encoded using a binary string. Other problems

require a vector of real values or even tree representations. The separate elements of an individual

are called genes, while the specific value of a gene in an individual is called an allele.

14

3.3.3 Parent Selection

Once the fitness is determined for each individual in the population, the algorithm picks several

individuals based on their quality. The individuals will be used in one of the variation operators

to create new, better offspring. Different schemes exist to select parents. In some variants, all

the individuals are chosen and combined with another random individual to create new offspring.

In others, the parent selection is probabilistic, proportional to the fitness of individuals. This

means high-quality parents have a higher chance of being selected.

3.3.4 Variation Operators

The variation operators are the driving force to create a diverse population. This is necessary

because if all the individuals resemble each other closely, a large part of the search space remains

unexplored, decreasing the chance of finding a global optimum. The variation operators are

inspired by the genetic processes of recombination and mutation.

Mutation is a unary operator that takes one parent individual, and changes it randomly

to create a child. For binary encodings, a common choice is to induce a bit flip at a random

position. For real values, one could add a Gaussian noise sample to each of the elements in the

vector. Mutation occurs with a given (small) probability, meaning not all selected individuals

undergo mutation. Some EC variants dynamically vary the mutation probability. The reasoning

is that in the beginning, mutation helps to explore the search space more broadly. Towards the

end of the algorithm, the individuals are expected to be close to a good solution, so it makes

less sense to significantly change them.

Recombination on the other hand is a binary (or k-ary) operator, also known as crossover.

The operator blends parts from two or more parents to create one or more offspring. Like

mutation, recombination is stochastic too. Determining which parents and which parts of the

parents to combine depends on (pseudo-)random drawings. The main goal of recombination is to

merge two or more individuals to hopefully combine their strengths and to create new, stronger

offspring. Common recombination operators for vector representations (binary or real-valued)

are:

� One-point crossover: selects a random position in the vector and swaps the parts of each

parent.

� k-point crossover: selects k point and swaps the different parts.

� Uniform crossover: determines whether to switch the alleles for each gene separately with

a given probability.

15

3.3.5 Survivor Selection

Finally, the algorithm selects survivors from the created offspring based on their quality. It is

possible to generate more offspring than the given size of the population. In that case, a subset

of the created offspring is selected based on quality. A different approach is to create a smaller

number of offspring that replace a part of the preceding population. The replaced part of the

population could consist of the weakest individuals, or it could be determined stochastically.

Another possibility could be generational where the created offspring completely substitutes the

previous population.

3.4 Evolutionary Computing Variants

EC variants differ mostly in the way they represent their individuals. Of course, this also implies

that certain variants are more suitable than others to solve certain problems. Arguably the most

well known EC technique is the genetic algorithm [29]. In its ‘canonical’ form a genetic algorithm

has a binary representation, selects parents proportional to the fitness of individuals. Genetic

algorithms implement both recombination and mutation, the latter with a low probability. The

new offspring replaces the old offspring in every generation.

A second variant of EAs is called evolutionary strategies and it dates back to the early

1960s [11]. These differ from the genetic algorithms by using real-valued vectors to represent

individuals. For crossover, they typically use discrete crossover, where certain parts of the vectors

are exchanged between two parents. Another frequent alternative is intermediary crossover,

where a new allele is formed through a linear combination of the parent alleles. For the mutation

operation, they typically add Gaussian random noise to the alleles. An interesting feature of

evolutionary strategies is that they dynamically adapt the mutation step size where the mutation

step parameter is included in the representation of the individual and can hence also change

through recombination and mutation. Finally, survivors are deterministically selected: after the

offspring has been created, the fittest individuals from the parents and offspring are selected, to

speed up convergence.

Related to evolutionary strategies, evolutionary programming was also developed in the

1960s [21]. In the beginning, the researchers principally used finite state machines as indi-

viduals, but now they mostly use real-valued vectors just like evolutionary strategies. The

main difference is that evolutionary programming does not use recombination but only relies

on mutation through Gaussian noise on the alleles. Each parent hence creates one offspring

through mutation. The survivors are probabilistically selected through tournament selection.

Several randomly selected individuals compete with each other in a tournament, and only the

winner survives. That way, less fit individuals still have the chance of surviving causing a better

16

exploration of the search space. Through the years, evolutionary programming has steadily

evolved which led to the development of so-called meta-evolutionary programming which intro-

duced self-adaptation of mutation step sizes. This blurred the distinction between evolutionary

programming and evolutionary strategies.

The last major variant of EC techniques is genetic programming [17], [37]. It deviates sig-

nificantly from the previous techniques because the individuals are usually not represented as

vectors of bits or floating-point numbers. This technique essentially operates on a set of com-

puter programs or mathematical expressions that are usually represented as trees. As crossover

operation, GP exchanges subtrees between parents, while for mutation, a random change is done

in the trees. Like genetic algorithms, the newly created offspring generation replaces the old

generation. While mutation does occur in GP, it is advised to set the mutation rate very low [7],

[37].

Many other variants and alterations of these basic schemes exist: learning classifier systems,

differential evolution, particle swarm optimisation, estimation of distribution, co-evolutionary

algorithms, cultural evolution, scatter search, ant colony optimisation, artificial immune sys-

tems. . . [13], [21]. The specifics of each algorithm are different but they almost always follow a

similar scheme to the one explained in Section 3.2.

3.5 Multi-objective Optimisation

In many optimisation problems, there is an objective function that needs to be optimised, subject

to some restrictions. However, in some problems there can be multiple, sometimes conflicting

requirements that should each be optimised. In that case, it becomes difficult to define when a

solution is optimal. A solution may optimise one of the objective functions, but achieve poor

results for the other requirements. One possibility to avoid this that is often used in literature

is to define an optimal point in the sense of Pareto-optimality.

Definition 3.1 (Dominance) Given a function F(x) = (F1(x), F2(x), . . . , Fn(x)) and two

points x,x∗ ∈ X, x∗ dominates x if and only if F(x) ≤ F(x∗) and ∃i ∈ 1, . . . , n : Fi(x) < Fi(x
∗).

In other words, x∗ is at least as good as x on all criteria, and better for at least one.

Definition 3.2 (Pareto-optimality) Given a set of functions to be optimised F(x) = (F1(x),

F2(x), . . . , Fn(x)), a point x∗ ∈ X is Pareto-optimal if and only if there exists no other point

x ∈ X that dominates x∗.

In other words, a Pareto-optimal solution is not dominated by any other solution; no solution

performs better for one of the objectives and at least as good for all other ones. For a given set of

17

functions, there are usually multiple Pareto-optimal points that form the so-called Pareto-front

or Pareto-set. This is shown in Figure 3.2. No solution performs better on both objectives than

the solutions on the red line.

Figure 3.2: An illustration of some Pareto-optimal solutions compared to other solutions.

One frequently used method to solve a MOP is through scalarisation [40]. The different

objective functions are joined into a single objective function that is then solved using standard

methods. Sometimes this is just a weighted sum of all the objective functions, but more com-

plex designs exist that incorporate parameters to model the preferences of the decision-makers.

Another method could be to work lexicographically. This strategy orders the results according

to the most important optimisation function first, followed by another and so on. By varying

the parameters, different Pareto-optimal points can be found.

EAs can also be used to solve MOPs. The advantage of this technique is that the objective

functions do not need to be weighted, and no parameters need to be set or varied to find different

Pareto-optimal solutions. A single run of the algorithm can find multiple solutions on or near

the Pareto-front. A system can then present the different Pareto-optimal solutions, and the

customer can choose the best trade-off. One disadvantage is that EAs are not guaranteed to

find actual Pareto-optimal solutions since they are probabilistic and heuristic. Nevertheless,

they have shown promising results in finding multiple good solutions for the problem at hand.

18

Chapter 4

Related Work

The previous chapters treated the basic concepts of recommender systems (RSs) and evolution-

ary computing (EC). RS performance is not one-dimensional but encompasses many aspects

that can be subjective and conflicting. This chapter will review recent research that has at-

tempted to optimise the various facets of RS performance at the same time. In particular, the

focus will be on methods that have used EC techniques in some form. The remainder of this

chapter looks as follows. First, Section 4.1, will cast RSs as multi-objective optimisation prob-

lems (MOPs) where the metrics from Section 2.4 are the objectives to be optimised. Second,

Section 4.2 briefly enumerates several approaches to solve the problem at hand. The chapter

concludes with a more detailed view of research using evolutionary algorithms (EAs) to increase

RS performance in Section 4.3.

4.1 Recommender Systems as a Multi-objective Optimisation

Problem

As mentioned in Section 2.4.2, several criteria characterise the performance of an RS. Accuracy,

diversity, novelty, serendipity and coverage all contribute to the overall user experience of the

system. RSs can hence be seen as MOPs. The goal is to maximise all the metrics mentioned

above. However, improving one metric must not be at the expense of another. For example, a RS

may maximise accuracy as much as possible, resulting in extremely low coverage or novelty. This

is not advisable for a good user experience [41]. In practice, different trade-offs are possible.

For a new user, it is probably good to provide accurate recommendations since not a lot of

information about their preferences is available. On the other hand, for more seasoned users,

it may be better to increase the novelty or diversity in the recommendations. In doing so, the

user can discover new and exciting items. Therefore, the goal is to find solutions on (or near)

the Pareto-front such that the best compromise between the metrics can be selected.

19

4.2 Solving the Multi-objective Optimisation Problem

Several approaches have been developed to increase one or more of the ‘alternative’ RS per-

formance metrics [34]. Some techniques start from the recommendations produced by a regular

recommender that optimises accuracy. They then reorder the results to optimise one or more

alternative metrics without losing too much accuracy. Inspired by Smyth and McClave, sev-

eral researchers have used a simple greedy algorithm to rerank the recommendations to boost

diversity [48]. The idea is to start from the original list of recommendations (which should

all be somewhat relevant) and in every round, the item that is most dissimilar to the already

included items is chosen. This technique has been successfully applied by Ziegler et al. to in-

crease topic diversity [55]. Barraza-Urbina et al. introduced a parameter to better control the

trade-off between diversity and accuracy [8]. Adomavicius and Kwon developed another rerank-

ing approach to find a balance between coverage and accuracy [2]. Their design introduces a

parameter that switches between ranking functions that optimise one of the metrics. Items with

predicted ratings above some threshold will be ranked according to a standard accuracy-based

ranking function. The other items are ranked according to some alternative ranking function

that optimises different criteria. By increasing the threshold towards higher predicted items,

the accuracy increases but coverage decreases.

Another class of techniques model the problem at hand as a graph problem and then use

graph algorithms to collectively optimise several performance metrics. Onuma et al. developed a

system that assigns a score to items such that items that have connections to separate clusters of

users receive a higher score [44]. If an item connects to several user clusters, it has a higher chance

of being serendipitous. Nakatsuji et al. constructed a user similarity graph and performed a

random walk algorithm to find connected but not too similar users. These then serve as a source

for serendipitous recommendations [43]. Zhou et al. developed a heat spreading algorithm [53].

They model the users and items in a network and initialise the algorithm by assigning a ‘resource’

to each item. Then they redistribute this across the network using a process analogous to heat

diffusion. The ‘resource’ is evenly spread from items to the neighbouring users, and then back

from the users to the items. By doing so, the algorithm favours items with few links, thus

boosting novelty. By introducing a hybridisation parameter, they can balance their approach

and ProbS, another graph-based algorithm that redistributes the resources in a different way

that leads to a high accuracy [54]. The advantage of their scheme is that the hybrid method has

the same computational complexity as both separate algorithms.

Finally, several researchers have leveraged EC techniques to increase several alternative met-

rics to accuracy. This will be the focus of the next section.

20

4.3 Evolutionary Algorithms for Recommender Systems

Because of their metaheuristic nature, EAs can be used in many different ways. In the RS field,

they have been used to tackle several of the classic problems such as the cold start problem,

sparsity,. . . Horvàth and de Carvalho published a review on some recent papers [31]. They

performed a SWOT analysis identifying multi-objective optimisation as one of the main strengths

of using EC in RSs. EC has several use cases within the RS framework. However, the focus

of this work is on improving the performance of RSs concerning the different metrics discussed

in Section 2.4. Therefore, the rest of this section examines the multi-objective optimisation

techniques using EC.

Perhaps one of the most straightforward approaches to optimising multiple criteria is combin-

ing different algorithms. Ribeiro et al. proposed to use a set of algorithms A = (A1, A2, . . . , Al)

that predict ratings for a user-item pairs [47]. Each algorithm optimises a different objective.

The final rating is a weighted sum of the individual ratings, where the weights are determined

using an EA. The advantage of this strategy is that it does not depend on which algorithms are

aggregated, nor on the data domain. Though searching for Pareto optimal weights is expensive,

the authors mention that they can be calculated in an offline manner. Moreover, the weights do

not have to be recomputed often. Their results show that a good trade-off can be made between

the different metrics, dependent on what a user needs.

The GUARD framework focused on generating computationally simple, memory-based rank-

ing functions that optimise accuracy, diversity and novelty [28]. The authors of the paper use

genetic programming to evolve a function that uses simple aggregations of the data such as the

average rating of a user or item, bias terms estimated from a simple model,. . . They cache the

terminals beforehand, which takes considerable time but can be done offline. The authors tested

their framework on MovieLens data (100K and 1M) but only outperformed the baselines on the

smaller data set. They hypothesised that the parameters of their method were not properly

tuned for the bigger data set.

Wang et al. developed a technique where first a regular item-based CF system is used to

predict a list of recommendations L followed by an EA that selects k items from this list where

different trade-offs can be made between accuracy and diversity [52]. They use a multi-objective

EA based on decomposition (MOEA/D) where the individuals are lists of items selected from the

original list L, and recombination and mutation are one-point crossover and one-point mutation

respectively.

A slightly different path taken by the same authors is named MORS [51]. They wanted

to obtain a balance between recommending items that are accurate, and items that are in the

long tail. In a first step, they compute a list L like before, and for each item, they determine

21

the unpopularity. The unpopularity is inversely proportional to the mean rating and standard

deviation of the rating, meaning that items that receive low ratings are unpopular. After these

initial computations, they apply MOEA/D to find a balance between the different objectives.

The authors also swapped the one-point crossover operation for two-point crossover.

Similarly, Geng et al. attempted to improve the diversity and novelty of recommenda-

tions while maintaining the accuracy using the Nondominated Neighbour Immune Algorithm

(NNIA) [26].

Related to the previous works, Zuo et al. proposed to use a multi-objective EA (NSGA-II)

to simultaneously provide accurate, diverse and novel recommendations [56]. They use ProbS

as their accuracy estimator [54].

Cui et al. developed an improved variant inspired by the previously discussed designs [18].

Their goal is to maintain accuracy while also providing topic diversification. The researchers

reason that the previous methods can be improved by slightly altering the genetic operations.

More specifically, they established a crossover operator based on typical user behaviour. This

operator takes multiple parents and calculates the frequency that each item appears in the

parent. The higher this frequency, the higher the probability that the user will like this item.

Hence, it receives a higher probability of being included in the child solution. Experiments on

the MovieLens 100K dataset shows that their approach can achieve better results, especially in

terms of diversity and novelty.

Finally, Lin et al. proposed some further improvements to these techniques [39]. To improve

convergence speed, they use an extreme point guided method. This means that solutions are

computed that maximise one of the objectives (accuracy, diversity or novelty) based on the prior

knowledge of the RS. These extreme points are then used for the initialisation of the population

such that it converges more quickly to the Pareto-front and also to diversify the population. For

their crossover operation, they select two parent solutions that each have a recommendation list

for all the users in the cluster. They then find similar users in the different parent solutions and

perform an adapted uniform crossover operation to ensure that no invalid recommendation lists

are generated. Their algorithm, outperforms earlier techniques, while also reducing convergence

time.

22

Chapter 5

Data

This chapter describes the data which was used for the RS and how the data from different

sources were combined to utilise it for experimentation. Section 5.1 discusses the Million Song

Dataset and its related collections of data. Some statistics and remarkable properties will be

given. Unfortunately, there were some issues along the way that needed to be addressed. These

will be mentioned in Section 5.2. To solve some of the problems, additional data was used,

which will be described in Section 5.3. This section will also examine the properties of these

data sources and explain how the Million Song Dataset and the new data were linked. Section 5.4

investigates the audio features in more detail. Finally, Section 5.5 summarises the features that

will be used for the algorithm in Chapter 6.

5.1 Million Song Dataset

The Million Song Dataset is a set of one million contemporary1 songs [10]. The Echo Nest

provided the core dataset, which consists of the metadata and audio analysis of each song. The

metadata consists of general information about the song such as a song ID for identification, a

title, the release year, a track ID to refer to the music track that was used for the audio analysis,

the album and some extra information of the album,. . . In case the release year is unknown, it

is set to 0. However, this can skew the distribution of the dataset. Therefore, the release year

is imputed in the following way. If the release year is missing, but the artist has other songs

with known release year, the release year is set to the average release year of that artist. In case

there are no release years for the artist, it is set to the overall average release year.

The data also include additional information on the artist: the artist’s Echo Nest ID, name,

1The dataset contains no new songs since it was initially released, meaning that no songs released past 2011

are included.

23

location, tags, IDs from other music services such as playme2, 7digital3 and MusicBrainz. The

Echo Nest also included the artist familiarity and artist ‘hotttnesss’ [38]. The familiarity indic-

ates how well-known an artist is. The ‘hotttnesss’ on the other hand expresses to what extent

an artist is gaining popularity. At the time of the initial release artists with the highest famili-

arity were Akon, Paramore, and Britney Spears. Kanye West, Daft Punk and Black Eyed Peas

received the highest hotttnesss.

The audio features contain a wide range of acoustic information such as the timings of the

beats and bars, the key, the mode, the average loudness of the analysed track, the sections of a

song (e.g. verse, chorus), the segments, some segment-specific features such as loudness, pitch,

timbre,. . .

Besides the core data, the Million Song Dataset also contains a collection of related datasets.

� The Second Hand Songs dataset comprises some cover songs.

� The musiXmatch dataset provides lyrics of the songs.

� The MAGD and tagtraum dataset provide genre labels.

� The last.fm dataset includes other song-level tags.

Finally, there are two datasets containing user listening data. The first one is the Taste

Profile subset which comprises triplets of users, songs and the number of times a user listened

to a particular song that is also present in the Million Song Dataset. The other dataset is a

mapping of Echo Nest song IDs to thisismyjam IDs. Thisismyjam was a social website that

allowed users to share their favourite song of the moment, and other people could like this. The

service no longer exists but they made a dump of its data available for download. The creators

of the Million Song Dataset matched the Echo Nest IDs to the thisismyjam IDs such that this

user data can also be used, e.g. in a RS. Eventually, The Taste Profile subset seemed like the

best alternative because it integrates better with the original dataset: no additional mapping

phase is needed. The Taste Profile subset will be discussed next.

5.1.1 Taste Profile

The Taste Profile subset contains user listening data from 1 019 318 anonymised users on a subset

of the songs present in the Million Song Dataset. In total 384 546 unique songs are present in the

total dataset good for 48 373 586 entries in total. The dataset thus has an extremely large size,

and that is not the only challenge. The feedback data is implicit: it is not because a user listened

to a song once or twice, or even ten times that she/he rates it highly or lowly. Additionally,

2http://www.playme.com/ww/web/radio/
3https://www.7digital.com/

24

http://www.playme.com/ww/web/radio/
https://www.7digital.com/

most items have very little different listeners. Figure 5.1 shows the number of distinct users

that have listened to a song. Notice that the y-axis is logarithmic. Most songs have very few

different listeners, while some have a high number of unique listeners. It turns out that 50% of

the songs have 13 or fewer distinct listeners.

Figure 5.1: The number of unique listeners per song. Notice the logarithmic y-axis.

On the other hand, one constraint of the Taste Profile subset is that each user has listened

to at least 10 different songs. Yet, 50% of the users have listened to 27 songs or less, which is

not a lot to accurately model a user’s preferences. Figure 5.2 shows the precise distribution.

Notice the logarithmic y-axis again.

Figure 5.2: The number of unique songs played per user. The y-axis is logarithmic.

25

These statistics and distributions already indicate that the data is extremely sparse. In the

total Taste Profile subset, only 0.012% of the user-item pairs are known. The sparsity of the

data makes recommendation a difficult task: as mentioned in Chapter 2 enough examples need

to be available for a model to reliably learn a user’s preferences. Fortunately, the Million Song

Dataset provides audio features for the songs. A hybrid RS could use those in combination with

the collaborative data to improve the quality of the recommendations.

5.2 Problems

During the exploration of the dataset, some problems arose. While a part of the metadata is

available for all the songs, it is only possible to download the audio features and additional

metadata for 1% of the songs as a preview to test out algorithms. For the other items, a public

dataset snapshot is accessible on Amazon AWS. Unfortunately, the overlap between the subset

of songs and the Taste Profile Dataset was too small for practical purposes. Additionally, at the

time I did not have an Amazon EC2 instance available and in the meantime, I went looking for

a temporary solution. When eventually, an EC2 instance was obtained, this solution proved to

be good enough for experimentation.

5.3 Auxiliary Data

The solution for the problem with the original audio features involved getting freely accessible

data from other sources. Two additional sources were needed to obtain alternative audio features.

As mentioned in Section 5.1, the original metadata contains IDs to link to other platforms to

fetch extra data. Unfortunately, this did not help a lot in trying to find other features: the

7digital ID can be used to get an audio fragment for the songs, and the other IDs can only

provide more information on the artists. In the past, the Echo Nest had an API known as

Project Rosetta. People could send song IDs from several music services to this API and obtain

the corresponding song ID from a different music service. When Spotify acquired The Echo Nest

in 2014, they deprecated the API, and today it is no longer accessible. Luckily, the people at

AcousticBrainz scraped the API for all the Million Song Dataset songs resulting in a dump of

JSON files to convert Echo Nest song IDs into IDs of other services [42]. Using this data dump,

the Echo Nest song IDs can be mapped to MusicBrainz IDs.

Subsequently, the MusicBrainz IDs can be used to retrieve audio features for the songs. The

AcousticBrainz database contains audio features for its songs, and for this database too, a dump

of JSON files is available [20]. Two types of features are possible: low-level and high-level. The

former consists of all kinds of technical acoustic descriptors for the songs related to rhythm,

26

tone, loudness, spectral properties,. . . The latter results from processing the low-level features

with several classifiers and algorithms to obtain values that are much easier for humans to

interpret such as moods, danceability, genres, whether the song is instrumental, . . . This project

opted for the high-level features for two reasons. First, the size of the high-level features is much

smaller because the small number of meaningful features compress the information significantly.

Second, the high-level features take away the burden of feature engineering: if only the low-level

features were available, several meaningful feature transformations would have to be designed

to be usable in a final recommender model. However, using high-level features could also have

some drawbacks. It takes away a part of the flexibility of having raw acoustic information.

Moreover, the classifiers are not perfect. They can make mistakes. For example, classifying a

song as a rock song while in reality, it is a jazz song. However, from the confusion matrices

that are provided with the models, these seem to be a minority and the benefits outweigh the

drawbacks. A more in-depth examination of the features present in the high-level set will follow

in the Section 5.4.

5.3.1 Data Loss

Sadly, the matching of Echo Nest song IDs to MusicBrainz IDs and then finding the song IDs

is not perfect. During each of the previously described “linking” steps, a considerable number

of mappings are not available. From the 384 546 songs originally present in the Taste Profile

Subset, only for 222 779 unique songs, a matching MusicBrainz ID was found. Moreover, finding

a MusicBrainz ID does not necessarily mean that there are audio features for it. From the songs

remaining after the first matching step, audio features are only found for 70 214 songs. The

number of users that have listened to one of these songs also drastically decreases to 395 811.

This reduces the number of entries in the Taste Profile subset from 48 373 586 to 14 099 853 user-

item-play count triplets. However, this is still more than sufficient since the final experiments

only use a subset of the available data.

5.4 Audio Classifiers

The high-level data contains a range of semantically meaningful music features that are computed

by several default models in AcousticBrainz [1]. In total there are no less than 18 different

classifiers that attribute different properties to each of the songs. The properties are usually

easy to interpret for humans like genres, moods, whether the song is instrumental,. . . There are

both binary and multi-class classifiers. The remainder of this section enumerates the different

classifiers and classes used to construct a feature vector.

27

5.4.1 Genres

AcousticBrainz contains multiple genre classifiers. Some of these are general and assign a label

like rock, metal, hip-hop, reggae,. . . However, some classifiers identify subgenres within a music

genre. For example, one classifier determines the subgenre for electronic music, such as ambient,

drum and bass, house, techno and trance. Another classifier identifies the subgenres of ballroom

music based on dance styles. These “specific” classifiers are run for all songs, even when the

base genre is not electronic or ballroom.

5.4.2 Mood

A song can put people in a certain mood. It can sound happy or sad, aggressive or relaxed,

or it can put people in a party mood. AcousticBrainz utilises several, mostly binary classifiers

to determine these moods. There is one multi-class classifier that divides songs into one of five

classes [32]. Researchers found that the mood of a song is hard to determine because there

is no general standard to describe it. Therefore they recommended a cluster-based approach.

Appendix A gives precise descriptions of the classes.

5.4.3 Audio

There are some classifiers that identify the sound of a song. The classifiers all use the underlying

low-level audio features, but these models distill the information into something interpretable

for humans. The danceability of a song determines whether a song is suitable to dance on or

not. There is also a classifier to identify if a song (or the vocals) are sung by a male or female

voice. Additionally, A song can contain mostly vocals or be instrumental. it can also sound dark

or bright (the timbre). Finally, the tonality can also be determined. In most cases, a song has

a tonal centre around which it is built. Some songs or compositions do not have this, in which

case they are atonal.

5.5 Item Features

The final set of features the algorithm will work with consists of two parts. The feature vector

includes the audio features from the previous section. For binary classifiers, only one class

remains in the final feature vector. For example, if a classifier determines whether a song is

“sad” or not, only the “sad” class probability is added to the feature vector. The “not sad”

class is not included since the cross-correlation with the “sad” class is -1 anyway. For multi-class

classifiers, all class probabilities are added to the feature vector.

Besides the audio features, some of the metadata can also be informative. The metadata is

28

provided by the Million Song Dataset and includes the duration of the song, the release year,

the artist familiarity and the artist hotttnesss.

29

Chapter 6

Design of the Algorithm

This chapter gives a broad overview of the recommender algorithm enhanced with genetic pro-

gramming (GP). First, Section 6.1 explains the motivation and goals of the algorithm. Then,

Section 6.2 sketches the proposed approach at a high level. Sections 6.3 to 6.5 zoom in on certain

parts to provide a more detailed explanation where necessary.

6.1 Motivation & Design Goals

Traditional RSs, such as the ones summarised in Chapter 2 tend to concentrate on maximising

the accuracy of recommendations, which is not advisable to achieve the best possible user ex-

perience [41]. Section 4.3 reviewed several techniques that leverage the power of EC to solve

RSs as a MOP.

Specifically, the algorithm described in this chapter draws inspiration from the general scheme

put forward by Wang et al. where a regular RS first generates a list of recommendations L from

which eventually k items are selected [52]. The main benefit from their scheme is the fact that

the first step in the algorithm consists of just a regular RS, which implies that their strategy

is easy to adopt in an existing environment to improve the user experience. The principal

drawback of their method, and other related methods outlined in Section 4.3 is the fact that

the EA has to be rerun every time the RS has to generate a new set of recommendations. Since

one of the main disadvantages of EC techniques is their time complexity, this is detrimental to

the performance of the entire system. These considerations lead to the following design goals:

� The algorithm design should be such that it can easily be adopted in an existing environ-

ment where a regular RS is already running.

� The algorithm should attempt to optimise the different RS metrics at the same time,

making sure not to prioritise one metric over the others.

30

� The algorithm should not rerun the EC steps every time to provide new recommendations.

The system proposed by Wang et al. achieves the first and second goals, but not the third.

However, by replacing evolutionary programming with GP, where the individuals represent

functions or computer programs, it is possible to realise all three design goals. This is because

the GP step is used to find a scoring function that transforms the original ranking of items into

a different ranking that achieves a better performance on all metrics. Once the algorithm has

produced a suitable scoring function, it can be reused on a new set of recommendations. That

way, the GP step only needs to run sporadically, much less frequently than the regular RS.

6.2 High-level Overview

Recommender

system

New score

calculation

Item features

calculation

Reranking

Fitness calculation

Genetic programming

Pareto-optimal

solution selection

Figure 6.1: The general flow of the proposed recommender algorithm.

Figure 6.1 shows a birds-eye view of the proposed algorithm. In the first step, a RS is trained

and used to generate several recommendations for each user in the system. This RS focuses ex-

clusively on accuracy and thus, the recommendations should be mostly relevant for the users.

Additionally, the system calculates some features for each of the items in the catalogue. These

can be actual item features such as the ones discussed in Section 5.4. They could also be trans-

formed versions of the original features such as principal components. Another possibility could

be to derive the features purely from the collaborative data if no domain-specific information

is present (e.g. bias terms, self-information etc.). Note that it is possible to calculate the item

features beforehand since it does not depend on any results of the RS or any other systems.

31

Following these initial steps, the GP step starts. First, a function takes the original re-

commender score and item features as input to calculate a new score for each item in the list.

Next, the items are reranked based on the new score. Finally, this new ranking is evaluated

using the typical RS performance metrics to determine whether the scoring function provides a

good balance between these metrics. This entire process is repeated for all functions within the

generation, after which a new generation is produced using the genetic operators discussed in

Chapter 3.

After the GP step has processed the last generation of individuals, the algorithm terminates.

During the process, the GP step keeps track of all non-dominated solutions it encountered. After

termination, a user can ultimately choose between the obtained Pareto-optimal solutions. That

way, different users can find a balance between the different criteria according to which ones

they value most.

6.3 Recommender system

The first step of the algorithm comprises a regular accuracy-focused RS. It takes the user listening

data as input and comes up with a list of items for each user. In this stage, the recommendations

should be as relevant as possible. In principle, any algorithm can be used: neighbourhood-based

CF, matrix factorisation, deep learning models. One may also utilise a hybrid recommender

system that makes use of domain-specific information. This work adopted the BPR model1

from Section 2.3 as the RS. It fits best with the dataset because the researchers explicitly

designed it for implicit feedback data. Moreover, it performs well and takes little training time.

6.4 Item Features

As mentioned in Section 6.2, the item features can be (transformations of) domain-specific fea-

tures, but they can also be derived from purely collaborative data. Even though domain-specific

features are available, it also seems reasonable to take into account collaborative information.

For example, using a simple bias model, bias terms can be calculated to capture whether people

tend to listen to certain songs more than others. Additionally, the number of unique users that

consumed an item, or the self-information which is a function of that number, could also prove

useful when scoring items. For instance, a scoring function could assign a higher score to items

with a higher self-information to increase the novelty of the recommendations.

This is valuable information that can help the GP step to discover better solutions. Therefore,

1The implementation used in this work comes from the Implicit library (https://github.com/benfred/

implicit) via an API bridge in the LKPY project [23]

32

https://github.com/benfred/implicit
https://github.com/benfred/implicit

this project uses both the pre-existing features as well as the features based on collaborative

data.

6.5 Genetic Programming

6.5.1 Process

The GP process involves many design choices related to representation, initialisation, operators

and selection. Before diving into how the recommendations tie in with the GP part, the most

important design decisions related to GP will briefly be listed.

The representation that is used here is a traditional (syntax) tree. An inner node represents

an operation like the addition or multiplication, while the leaves may contain constants or input

variables. The tree can be “compiled” into an executable expression that takes the variables

as input and produces a score as output. The included operators and constants are shown in

Table 6.1. The safe division is like a regular division, the only difference being that when a

division by zero occurs, it returns 0. The tree may also contain a uniformly generated constant

between -10 and 10. The i in the symbol ci indicates that if multiple constants occur within one

tree, these constants may have different values. An example expression could be:

s′ = c0 × s+ sin (c1 + (x+ y)) , (6.1)

where x and y are input variables to the function. s is a somewhat special input variable and

represents the score of the item in the original recommendation list. The tree representation of

this expression is given in Figure 6.2.

Name Symbol

Addition +

Subtraction −
Multiplication ×
Safe division /

Cosine cos

Sine sin

Hyperbolic tangent tanh

Uniform random constant ∈ [−10, 10] ci

Table 6.1: The allowed operators and constants in the tree representation.

To initialise the first generation, the classic ramped half-and-half schema is used [37]. Essen-

tially, when generating random trees in the beginning, a tree is allowed to have a depth between

33

+

×

c0 s

sin

+

c1 +

x y

Figure 6.2: An example tree representation for Equation (6.1).

a minimum and a maximum. The ramped half-and-half schema divides the initial population

such that an equal part of the trees has a particular depth. Moreover, it splits the tree genera-

tion into two strategies. Half of the trees within a class is grown fully, meaning that all leaves

have the same depth, while the other half is allowed to have leaves at different depths. By using

this initialisation scheme, the hope is that the initial population will be as diverse as possible to

explore a larger part of the search space.

After the initialisation, the individuals are evaluated. This will be discussed more in detail

shortly. Since there are multiple objectives to be optimised, the selection operator needs to take

that into account. This work uses the NSGA-II algorithm from the DEAP library because it

has been shown to find non-dominated solutions as close as possible to the Pareto-front [19].

Moreover, the algorithm explicitly maintains diversity in the parents during the selection pro-

cedure. In doing so, the individuals of the next generation explore a larger part of the search

space so that they can discover more distinct Pareto-optimal points.

Using the multi-objective selection operator the parents for the next generation are chosen

and they create offspring using genetic operators. The crossover operation is a simple one-point

crossover where two parents exchange subtrees to create new individuals. The mutation operator

selects a random node in the parent and replaces the subtree at this node with a random fully

grown tree (of limited depth). There is one common issue that often occurs in GP known as

bloat. This is the phenomenon that the average size of the individuals keeps getting longer

unless appropriate action is taken. Over the years, many researchers have made attempts to

control bloat in the trees. One of the most intuitive ways, already proposed by Koza is to just

limit the height of the trees [37]. In other words, if a crossover or mutation operation produces

a child that exceeds the height limit, this child will not be valid. In that case, a copy of the

34

parent will take its place in the next generation. This work opts for this simple but effective

approach. The proposed genetic operators produce a new set of individuals from the parents and

the cycle can start over. The process is repeated for a fixed number of generations. The precise

parameter values will be listed in Chapter 7. All functionality related GP was implemented

using the Distributed Evolutionary Algorithms in Python package also known as DEAP2. The

library contains tools for designing and implementing many variations of the general EA.

6.5.2 Scoring Function

The goal of the GP step is to find a function that, given as input a list of recommendations and

features of the items, computes a score for each item in the list. This is exactly what happens in

Equation (6.1): a function of some input variables (including the original score) produces a new

score s′ and the items are reranked based on s′ After reranking, the new recommendation lists

are evaluated for the RS metrics in the hope that the function achieves a good balance between

all of them. These metrics are the fitness values in the evolutionary process.

In practice, the implementation does not compute the score separately for each item. Instead,

a single data frame contains the recommendation lists of all users. The program merges the item

features to the appropriate items in the lists. That way, the scoring function can operate on

Pandas3 columns using the broadcasting mechanism for speed. This results in a much more

efficient implementation than iterating over all users and items separately. The RS performance

metrics also utilise the broadcasting mechanism to improve computation speed.

6.5.3 Pareto-optimal Solution Selection

The GP process runs for a fixed number of generations. During the process, the program keeps

track of non-dominated solutions in a separate data structure. Throughout the generations, if

the algorithm discovers a new non-dominated solution, it is added to the data structure. If

the new solution dominates any of the existing non-dominated solutions, they are removed. As

discussed in Section 3.5, EC techniques can find multiple points close to the Pareto-optimal

solutions in a single run. Therefore, when the algorithm terminates, there are several scoring

functions to choose from.

There are several possibilities to select a solution. For example, it is possible to select the

solution with the highest coverage subject to the condition that the accuracy should be at least

60% of the original. Another approach could be to let the users interactively decide which

criteria are more important for them or use an algorithm to determine it for them. That means

that different users could have different reranking functions tailored to their needs.

2https://github.com/deap/deap
3https://pandas.pydata.org/

35

https://github.com/deap/deap

Chapter 7

Experiments

This chapter discusses several implementation details related to the algorithm presented in

Chapter 6. Additionally, some experiments were carried out to investigate whether the proposed

approach of the previous chapter achieves better performance in terms of the alternative RS

metrics. The rest of the chapter has the following structure. First, Section 7.1 describes the

dataset on which the experiments were conducted. Second, Section 7.2 details the choices for

the parameters of the algorithm. Section 7.3 clarifies the quantitative performance criteria used

for the experiments. Next, Section 7.4 presents the setup of the experiments. Then, Section 7.5

enumerates the results from the different experiments with the necessary visual material. The

chapter concludes with a deeper discussion and interpretation of the results the algorithm found

in Section 7.6.

7.1 Data

Chapter 5 already went into great detail to describe how the data was obtained and combined

from various sources. To recapitulate, after the data from all sources were combined, the dataset

size abated to about 14 million user-song entries instead of 48 million. Due to the large sparsity,

this subset still contains almost 400 000 users and more than 70 000 songs. Training and using

the system on a dataset of this size would require substantial time.

To keep the time manageable for experimentation, the final dataset is a subset containing

1.4 million entries. The number of entries in this dataset gives a distorted picture because it

still comprises about 48 000 users and 34 000 songs. This is vast compared to the more popular

Movielens 1M dataset1 of an analogous size which contains ratings from only 6 000 users on

4 000 movies.

1https://grouplens.org/datasets/movielens/1m/

36

https://grouplens.org/datasets/movielens/1m/

7.2 Algorithm Parameters

The algorithm outlined in Section 6.2 is configurable through several parameters. Some of these

parameters pertain to a single step of the algorithm such as the RS or the GP parts. Other

parameters regulate the interaction between these steps.

As the system is structured to be applicable in an environment where a regular RS is already

in place, the parameters of the base RS need to be properly tuned. In a realistic scenario,

these would typically be tuned to maximise the accuracy of the system. The BPR algorithm

incorporates many parameters which typically provide a trade-off between better accuracy and

shorter training times. For most of these, the defaults proved to be a good starting point.

The only parameter that was changed is the number of latent factors of the underlying matrix

factorisation model. This was set to 80 instead of 100. Table 7.1 shows the RS parameters and

their corresponding final values.

Parameter Value

Latent factors 80

Regularisation 0.01

training epochs 100

Learning rate 0.01

Table 7.1: The RS parameters and values.

For the GP step, there are also numerous parameters to be set. Since this step takes a

long time to run, it was not possible to perform a full grid search over all parameter values. In

literature, choosing the values typically relies on conventions or ad hoc choices [22]. Additionally,

there is some limited form of experimentation with different parameters and a limited range of

values. However, this brings about problems of its own because the parameters affect each

other. It is not possible to optimise the parameters one by one: they must be collectively

optimised. Finally, there is no guarantee that the optimal parameter values will be among the

tested combinations. There is a compromise between the granularity of the search grid and

speed.

Since the focus of this work is not on solving the tuning problem of EA, the selected parameter

values are selected following the conventions. This work experimented with two GP parameters,

namely the population size and the number of generations. All of the other parameter choices

were made in an ad hoc fashion, corresponding to the conventions. They are shown in Table 7.2.

Finally, there are two system-wide parameters. These are the size of the original recom-

mendation list L generated by the regular RS and the size of the output list k. The former will

37

Parameter Value

Crossover probability 0.9

Mutation probability 0.05

Tree initialisation minimum height 1

Tree initialisation maximum height 3

Maximum tree height 17

Mutation tree minimum height 0

Mutation tree maximum height 2

Table 7.2: The parameter choices for the GP step.

significantly influence the final performance. The larger the original list, the more exploration

opportunities for the GP step. On the other hand, a larger list L also implies a larger computa-

tion time for the scoring function and a larger memory footprint. The output list size k depends

more on the environment. Sometimes, the user would need a large list of recommendations to

choose from, while in other situations a few options suffice. Table 7.3 displays the system-wide

parameter values.

Parameter Value

Original list size L 50

Final list size k 10

Table 7.3: The system-wide parameter values.

7.3 Performance Criteria

Before showing and discussing the results of the experiments, it is necessary to know which

quantitative criteria the algorithm should optimise. Section 6.2 mentioned that the typical

RS performance metrics should be optimised. These comprise the accuracy, novelty, coverage,

diversity and serendipity.

As discussed in Section 2.4 the last one does not have a practical quantitative formula,

because it would require explicit user feedback on whether a recommendation is surprising and

relevant. The remaining metrics do have quantitative formulae which can be utilised to quantify

the performance before, during and after the GP step.

For the accuracy, this work prefers the normalised discounted cumulative gain (NDCG) over

the root mean squared error (RMSE) to reflect the fact that the ranking of the items is more

important than the predicted rating. Moreover, the feedback is implicit so the ‘ratings’ do not

38

express the degree of preference, making the RMSE even less relevant. The novelty is expressed

by the average self-information in the recommendation list as shown in Equation (2.9). The

coverage is simply calculated as the fraction of items that appear in at least one recommendation

list such as in Equation (2.11).

Finally Equation (2.7) provides a formula to calculate the diversity of the recommended

items as the intra-list distance between the items. However, there is a slight problem in that

this formula can take quite a while to compute for a large number of users. This is especially

the case because pandas’ groupby-apply mechanism cannot utilise the broadcasting mechanism.

Considering the diversity needs to be computed for every individual during the GP step, an

alternative approach to quantify this metric is proposed. Every item in a user’s recommendation

list has several features. Intuitively, the diversity of the recommendation list will be larger if

the standard deviation on each of these features increases. Therefore, a few important features

are chosen and in every step, their average standard deviation in the recommendation list is

calculated as a measure for the diversity. Let ij = (ij,1, ij,2, . . . , ij,k) be an item represented by

its features. The alternative formula to calculate diversity is then:

div(L) =
1

k

k∑
n=1

√√√√ 1

L

L∑
j=1

(ij,n − µn)2, (7.1)

Here, µn is the average value of the n-th feature. The formula computes the mean standard

deviation on the item features. This is a lot faster to compute and therefore, this formula is used

instead of Equation (2.7). The diversity is not calculated with all item features, but only with

those that have an intuitive meaning for humans. The experiments calculate diversity based

on the Dortmund genre classifier and the binary danceability, happy, sad, timbre and tonal

classifiers.

7.4 Experimental Setup

The experimental setup is as follows. The RS is tuned beforehand using threefold cross-validation

and its parameters remain fixed throughout the rest of the process. Next, the data is split into

three parts: one training part, one part to simulate future interactions, and one part for testing.

The split is made per user. The first two parts represent 90% of the data while the third part

represents 10%. Within this 90%, the training part represents 90% while the future interactions

part is good for 10%. There is one iteration per set of parameters. In each iteration, the regular

RS is trained on the training data and produces a set of recommendations. Then, this set of

recommendations and the item features serve as input to the GP step. This step runs for a

fixed number of generations to find a set of Pareto-optimal scoring functions. To ensure that the

39

functions attain the goal of optimising alternative RS metrics when more data is available, the

regular RS is retrained. However, this time the training data also includes the part of the data

to simulate future interactions. The scoring functions found during the GP step are then used

to rerank the new recommendation lists, and the performance is recorded and compared to the

original performance. That way, the experiments check what happens after new data becomes

available. This relates to a realistic scenario where after some time, users listened to some new

songs and need a new recommendation list based on their updated profiles. The functions should

still obtain a reasonably high score for the different metrics.

7.5 Results

The current section presents the results of the experiments. First, Section 7.5.1 discusses the

baseline performance. The experimental environment and tested parameter settings are given

in Section 7.5.2. Section 7.5.3 considers the influence of more data on the performance of

the algorithm. Next, Section 7.5.4 discusses the potential problem of bloat during the GP

step. Finally, Section 7.5.5 examines the solutions found in this step and their results on the

performance metrics.

7.5.1 Baseline

Before diving into the results, the baseline performance needs to be determined. The baseline

system is the original RS without the GP step applied after it. Note that the hyperparameters

of this RS were tuned using a separate strategy, as discussed in Section 7.4. The original

performance is shown in Table 7.4. This table does not indicate generalisation performance of

the RS. Instead it shows what the performance of the RS is without the GP step. The name-

column contains the names these RSs will get throughout this chapter. RSTrain refers to the

RS trained with just the train set and RSFull was trained with both the train and validation

sets.

Performance-wise, the NDCG and coverage increase significantly when more data is available.

This is because the system has more knowledge to model the users’ preferences accurately.

The novelty and diversity decrease slightly. Note that the baseline to compare against is the

performance for RSFull.

7.5.2 Experimental Settings

The experiments varied the population size and the number of generations of the GP step. The

larger both of these are, the longer the GP step will take because there are more individuals to

evaluate. Table 7.5 shows the different settings that were tested during experimentation with

40

Dataset Name NDCG Coverage Novelty Diversity

Train RSTrain 0.073833 0.273876 8.965489 0.807235

Train + Simulate RSFull 0.092631 0.335119 8.838002 0.802768

Table 7.4: The original RS performance.

their total execution time. The experiments used an Amazon EC2 t3.large instance with 2 AMD

EPYC 7571 vCPUs and 8GiB of memory.

Population size # generations Time

50 50 6h 24m

50 100 12h 30m

100 50 12h 8m

100 100 23h 36m

200 50 23h 20m

200 100 46h 11m

300 50 34h 40m

300 100 67h 55m

Table 7.5: The GP settings that were varied during the experiments with their time to execute.

7.5.3 Influence of More Data

As stated in Section 7.4, the experiments measure the influence of more user data to simulate

the scenario where users listen to new songs and thus need new recommendations after some

time. This influence is studied because one of the goals of the design is to run the GP step only

sporadically. To measure the influence, the results of the found functions on recommendations

from both RSTrain and RSFull were compared. Table 7.6 shows the average performance dif-

ferences on all metrics during the training stage vs. when evaluated on the test set. Like for the

baseline, the NDCG and coverage of the system increase when evaluated on the test set while the

novelty and diversity decrease slightly. However, the differences are somewhat less outspoken.

This implies that the found functions remain stable when more user data is available. When

the functions are used to rerank unseen lists of recommendations, they keep performing well.

7.5.4 Bloat

Besides overfitting, GP can also suffer from bloat. During evolution, the code keeps track of

several statistics of the population. One of these is the height of each individual. Figure 7.1

41

Avg. difference RSFull vs. RSTrain

Pop. size # gens. NDCG Coverage Novelty Diversity

50 50 0.008249 0.039432 -0.111176 -0.004463

50 100 0.010288 0.048405 -0.103987 -0.004774

100 50 0.009216 0.045136 -0.108187 -0.004985

100 100 0.009690 0.048690 -0.104535 -0.004520

200 50 0.010369 0.046150 -0.113284 -0.004233

200 100 0.011365 0.051425 -0.106182 -0.005099

300 50 0.011322 0.051318 -0.107435 -0.005246

300 100 0.011086 0.051318 -0.101779 -0.004936

Table 7.6: The average performance differences on reranked RSFull and RSTrain recommenda-

tions.

shows the minimum, average and maximum height of the individuals per generation. For each

set of GP parameters, there is a clear upward trend in the average and maximum heights.

However, the increase in average height is rather small and thus bloat is not a problem in this

case.

7.5.5 Pareto-optimal Solutions

All of the Pareto-optimal solutions perform at least as good on one of the four criteria from

Section 7.3. During the final solution selection step of the algorithm, the system can serve

several purposes. Perhaps, the owner of a webshop cares most about NDCG and coverage while

novelty and diversity are secondary goals. An end-user of a music streaming service, on the

other hand, would care more about diversity and novelty than about coverage and NDCG.

Some users may want the best of all worlds. These scenarios require looking at a different

number of dimensions. Therefore, the present discussion will start by investigating the found

solutions in two dimensions. Next, it will add a dimension to optimise simultaneously. Finally,

all four metrics will be looked at together.

Two Dimensions

The GP step finds many solutions on or near the Pareto-front. These solutions are then used

to rerank the recommendations from RSFull. Because the system attempts to optimise four

metrics, the performance cannot be shown simultaneously for all of them. Figures 7.2 to 7.7

present all pairs of these metrics as two-dimensional scatterplots.

There are a few noticeable trends in the figures. When considering just NDCG and coverage

42

Figure 7.1: The variation of height throughout the generations.

43

in Figure 7.2, it is possible to select a solution that achieves a significantly higher coverage

with an acceptable accuracy loss. Particularly for more generations and more individuals per

generation, this is the case. Sadly, many solutions also perform worse on both of the metrics.

Note that this does not mean that they do not belong to the Pareto-front. Their novelty and/or

diversity can still be better than other solutions.

Figure 7.3 shows an evident negative correlation between the NDCG and novelty. This is

to be expected because a higher novelty of an item means that fewer people have listened to it.

Therefore the chance that a user listened to that song, and thus that it would show up in the

test set, is smaller. This ultimately results in a smaller accuracy. Again, for higher values of the

parameters, the algorithm finds slightly better trade-offs.

Figures 7.4, 7.6 and 7.7 indicate that the diversity remains relatively constant as a function of

the other metrics. This could be a consequence of the chosen features to calculate the diversity.

However, for some parameter settings, the GP step finds solutions where the diversity decreases

drastically. Additionally, this seems to happen only for a relatively small range of values of

the other metrics. Even upon closer inspection, it is not immediately clear why this happens.

One hypothesis is that the underlying reranking functions rely too much on only a few features.

Section 7.6 will investigate this in more detail.

It is also possible to find a good compromise between novelty and coverage as Figure 7.5

shows. The largest part of the found solutions achieves a slightly higher novelty than the original

solution but a much smaller coverage. Be that as it may, some solutions reach better scores for

both metrics. Again, higher parameter values seem to find better trade-offs.

Three Dimensions

The two-dimensional figures give some information about how two metrics correlate but they

cannot give a total picture. A point with a high NDCG and novelty could score very low for

coverage. Given the fact that the diversity is relatively constant Figures 7.8 to 7.15 provide

a three-dimensional view of the NDCG, novelty and coverage of the Pareto-optimal solutions

for the different parameters in Table 7.5. The figures all have some extreme points. With a

few exceptions, the original solution is the one with the highest NDCG value. On the opposite

end, there are a few solutions that achieve a high novelty and reasonable coverage, but at the

cost of the accuracy. Likewise, it is also possible to choose a solution that optimises coverage

and achieves acceptable novelty. Unfortunately there too, this results in a loss of accuracy.

When trying to find solutions that do not disregard accuracy completely, some problems arise.

The figures show that without losing too much accuracy, there are quite a lot of solutions that

achieve a high novelty. However, this comes at the cost of coverage. Especially for the smaller

44

Figure 7.2: NDCG vs. coverage.

45

Figure 7.3: NDCG vs. novelty.

46

Figure 7.4: NDCG vs. diversity.

47

Figure 7.5: Novelty vs. coverage.

48

Figure 7.6: Novelty vs. diversity.

49

Figure 7.7: Coverage vs. diversity.

50

parameter values of Figures 7.8 to 7.10, there are no solutions that achieve a reasonable trade-off

between these three metrics. For the larger parameter values in Figures 7.11 to 7.15 the situation

improves slightly.

Figure 7.8: The NDCG, coverage and novelty for population size 50 and 50 generations.

Figure 7.9: The NDCG, coverage and novelty for population size 50 and 100 generations.

Four Dimensions

So far, the graphs discussed trade-offs between at most three out of four metrics. Adding an extra

dimension implies that it is no longer possible to visualise the solutions in easily interpretable

graphs. Given that the main interest is to improve novelty, coverage and diversity while not

discarding NDCG, Figures 7.16 to 7.23 show the solutions that perform at least as good as

the baseline on those three criteria. The figures demonstrate that for smaller values of the

parameters, the algorithm has trouble finding good solutions for all metrics. It does not find

many solutions and the solutions that it finds often have a low NDCG. As the parameter values

51

Figure 7.10: The NDCG, coverage and novelty for population size 100 and 50 generations.

Figure 7.11: The NDCG, coverage and novelty for population size 100 and 100 generations.

Figure 7.12: The NDCG, coverage and novelty for population size 200 and 50 generations.

52

Figure 7.13: The NDCG, coverage and novelty for population size 200 and 100 generations.

Figure 7.14: The NDCG, coverage and novelty for population size 300 and 50 generations.

Figure 7.15: The NDCG, coverage and novelty for population size 300 and 100 generations.

53

increase, so do the number of solutions. Moreover, the quality of the found solutions increases

as well because the NDCG does not deteriorate as strongly. The number of generations has

a larger influence on the number of found solutions. For example, for 100 individuals and

50 generations, the algorithm only found 18 solutions that performed better on all metrics

(except NDCG). Letting the same number of individuals evolve over 100 generations results in

44 solutions. Comparing Figure 7.18 and Figure 7.19 also shows that the latter settings find

better trade-offs.

Figure 7.16: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 50 and 50 generations.

Figure 7.17: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 50 and 100 generations.

54

Figure 7.18: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 100 and 50 generations.

Figure 7.19: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 100 and 100 generations.

Figure 7.20: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 200 and 50 generations.

55

Figure 7.21: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 200 and 100 generations.

Figure 7.22: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 300 and 50 generations.

Figure 7.23: Solutions that perform at least as good in terms of coverage, novelty and diversity

for population size 300 and 100 generations.

56

7.6 Discussion

The previous section presented many graphs as a means to convey the general trend in the results.

While the figures provide a lot of information, they are not numerically precise. Therefore, the

current section considers the underlying numbers used to make the figures, to precisely state

how well the algorithm performs.

As mentioned before, there are little solutions that perform better in terms of coverage,

novelty and diversity and maintain a reasonable NDCG. Table 7.7 lists a few scoring functions

that achieve a sensible compromise between the performance metrics. Table 7.8 shows the cor-

responding performance for these functions. For a more in-depth comparison with the baseline,

Appendix B shows the relative differences of the metrics between the baseline and the scoring

functions. The formulas include several content-related features.

� tz xxx:feature from the Tzanetakis classifier

� dm xxx: feature from the Dortmund classifier

� ros xxx: feature from the Rosamerica classifier

� ism xxx: ballroom subgenre predicted by the Ismir04 Rhythm classifier

� mirex x: cluster from the Mirex moods classifier

� hotttnesss: artist hotttnesss from The Echo Nest

� familiarity: artist familiarity from The Echo Nest

Chapter 5 and Appendix A provide more information on the different classifiers and features.

Besides the content-related features, some of the found functions also include features from the

collaborative data. num rat is the number of ratings an item received, while self inf signifies

the self-information of an item.

7.6.1 Functions

Why do the scoring functions in Table 7.7 achieve better performance, especially in terms of

coverage and novelty? To determine this, the behaviour of the functions and the features are

studied in detail. The original score s originates from the BPR model. In principle, the score

does not have bounds and depends on the input rating matrix. For this dataset, the score

ranges from 0.75 to 6.21. Figure 7.24 shows the functions that depend only on the s variable

in Table 7.7. For the functions in the 1st, 8th and 11th rows, items that originally received a

high score around 3 or 6 will continue to score highly. However, items that score between 4 and

5 will be penalised. The function of the fifth row is a translated version. Unfortunately, the

57

Pop. size # gens Scoring function

1 50 50 cos(sin(s))

2 sin(s/tz reg)

3 50 100 cos(tanh((dm blues + num rat) · tz jazz))

4 cos(tanh(num rat · tz jazz))

5 100 50 cos(cos(s))

6 cos((sin(s)/ros rock)

7 100 100 dm funksoulrnb + s

8 tanh(cos(sin(s)))

9 tanh((num rat · s)/− 6.74)

10 tanh((num rat · s)/− 6.74 + familiarity)

11 200 50 sin(cos(sin(s)))

12 cos(cos(ros jaz + (tanh(dm raphiphop) + s) · s))
13 200 100 (dm rock + hotttnesss + self inf + mirex 1)/ tanh(sin(s))

14 (dm rock + sin(cos(2.36)) + self inf + mirex 1)/ tanh(sin(s))

15 300 50 sin(s+ 9.17)

16 cos(cos(dm pop · ism rumba) + s)

17 300 100 cos(self inf/s)

18 cos(ism chachacha)/ sin((dm funksoulrnb + cos(s))

Table 7.7: A few interesting scoring functions.

interpretation is a little more complicated. Typically, a user’s score range is limited to only a

part of the total score range. For example, a user could have scores between 3.3 and 4.3. In that

case, the final ordering would reverse all the items from the original list. On the other hand,

if a user’s scores lie between 1.6 and 3, the original ordering would not change. The problem

is that for some users, the RS will provide accurate recommendations, while for others it will

focus only on novelty and coverage. This is undesirable because it would be better to provide

a mix of both per user. In other words, while the metrics seem acceptable at a high level, the

underlying recommendations will not be satisfactory for the users. An analogous interpretation

follows for the 15th row.

The previous functions depend only on the original score of an item. Functions that also

rely on other features are more interesting and have a better chance of providing a real, per-user

trade-off. The functions in the 3rd and 4th rows do not depend on the original score at all.

Instead, items with a low number of ratings, and a low probability of being a jazz song (or

blues song in the 3rd row) receive a higher score. This is because the cos(tanh(x)) is decreasing

for x > 0. In other words, it favours less popular songs that are likely not jazz or blues. The

functions on row 9 and 10 also favour low scores and a low number of ratings, resulting in a

better novelty, coverage and diversity.

The functions in row 13 and 14 of Table 7.7 also depend on several item features. These

58

Pop. size # gens NDCG Coverage Novelty Diversity

1 50 50 0.063341 0.414413 9.028852 0.807926

2 0.030898 0.420940 9.232488 0.813773

3 50 100 0.046388 0.404578 9.622844 0.815006

4 0.046325 0.404285 9.624598 0.815634

5 100 50 0.034142 0.423399 9.330914 0.818138

6 0.033461 0.385230 9.213196 0.818165

7 100 100 0.092718 0.335294 8.839651 0.805955

8 0.063341 0.414413 9.028852 0.807926

9 0.061880 0.447693 9.477741 0.812037

10 0.057543 0.449069 9.561734 0.812956

11 200 50 0.063341 0.414413 9.028852 0.807926

12 0.035892 0.424131 9.208680 0.814095

13 200 100 0.051480 0.451908 9.658818 0.819415

14 0.050134 0.453284 9.700299 0.820671

15 300 50 0.087555 0.416637 8.938546 0.805547

16 0.080077 0.433497 9.030072 0.807909

17 300 100 0.050488 0.436571 9.456571 0.817617

18 0.045776 0.363863 9.137676 0.802937

Table 7.8: The performance for the functions from Table 7.7.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cos(sin(s))

tanh(cos(sin(s)))

sin(cos(sin(s)))

cos(cos(s))

sin(s+ 9.165176)

Figure 7.24: The reranking functions that only depend on the score.

59

functions favour a large self-information, reflected in the high novelty. They also attribute higher

scores to rock songs that sound passionate, rousing and confident (first Mirex cluster). The

denominator contains tanh(sin(s)). Depending on the range of scores, this may favour higher or

lower scores. However, due to the hyperbolic tangent function, the influence of this factor will

be relatively limited. The functions only differ in the fact that one also takes into account the

artist hotttnesss. This results in a slightly higher NDCG but a slightly lower coverage, novelty

and diversity.

7.6.2 Evaluation Method

On closer inspection, the evaluation method presented in Section 7.4 was not optimal. The

evaluation method does not properly check for overfitting of the GP solutions. Ideally, the

traditional RS would first be tuned. Then, it should compute recommendation lists for all users

that serve as a new dataset for the GP step. This new dataset should then be split into train,

validation and test sets. Finally, those sets should be used to train, tune and evaluate the GP

step. That way, the found solutions can be checked on totally new lists of recommendations

to make sure that they work well in general circumstances. For the evaluation method in

Section 7.4, the recommendation lists will contain overlapping recommendations. More precisely

on average 54.23% of the recommendations overlap for the RS trained on just the train set

compared to the one trained on the train and simulation set.

60

Chapter 8

Conclusion

This work investigated the use of GP to enhance the performance of an existing RS. The first

part reviewed the basic theory of RSs and EC. This provided a starting point for the literature

summary. Over the last two decades, researchers have invested a lot of time examining RSs.

Traditionally, RSs concentrate on accuracy as the main criterion to optimise. However, several

studies pointed out that this can lead to reduced user satisfaction. Therefore, researchers have

shifted their attention to other aspects of RSs such as coverage, novelty, diversity and serendipity.

These metrics often impose conflicting requirements to the recommendations and thus, a good

algorithm should attempt to find a balance between them.

While researchers have developed several techniques to achieve this goal, EC has gained

traction lately. This optimisation method draws inspiration from biological evolution to find

solutions to a problem that are as close to the global optimum as possible. One of the main

strengths of EC is that it can optimise multiple, conflicting objectives at the same time. Hence,

the technique is suitable to build an enhanced RS that focuses on multiple metrics simultan-

eously.

The algorithm presented in this work uses a particular variant of EC, namely GP. This

variant evolves functions or computer programs. The GP step of the algorithm takes a list of

recommendations produced by a regular RS as input and produces a score for each of the items.

The score depends on the original score from the RS but also on content-related features. Next,

the algorithm reranks the items based on the new score and returns that list to the end-user.

Since GP maintains a set of different solutions, it can find several Pareto-optimal solutions, i.e.

solutions that perform at least as good on all metrics and better for at least one metric compared

to other solutions.

The content to recommend in this work was music. More specifically, the Taste Profile

subset, related to the Million Song Dataset, was used for collaborative user data. The Million

Song Dataset provides an extensive set of audio features for the songs in the Taste Profile subset.

61

Unfortunately, due to problems with the logistics of this dataset, an alternative dataset from

AcousticBrainz was used instead.

With the algorithm and data in place, the next step is to verify if the algorithm attains

the goal of optimising the RS performance in terms of all metrics. The algorithm has many

parameters related to the original RS, the GP step and the algorithm as a whole. Since algorithm

execution can take a long time, only a few parameters were varied while the others were chosen

in an ad-hoc manner. Especially the population size and the number of generations in the GP

step were important. These have a big influence on the quality of the found solutions, and on

the execution time. The final parameter settings have to find a balance between these two.

The experiments found that in almost all cases it is possible to find a good trade-off between

pairs of metrics. However, finding a scoring function that achieves a good compromise between

three or more metrics is much harder. For smaller population sizes and number of generations,

the system is unable to find a good balance. For higher parameter values, the system finds a

balance, but at the cost of increased computation time of the GP step. Fortunately, this part of

the algorithm only has to be run very infrequently in comparison with the underlying RS. Once

the scoring functions are known, they do not have to be recomputed often.

8.1 Future Work

The system presented in this work can serve as a basis for further research in several directions:

1. The evaluation method should be corrected. Section 7.6.2 discussed some issues with the

evaluation method that should be addressed.

2. The influence of other GP parameters should be tested. As mentioned before, this work

made ad-hoc decisions for some algorithm parameters. Potentially, different settings for

those parameters may achieve better results. These settings could be numeric parameters,

but also the choice of reproduction operators and selection mechanism.

3. The current implementation will not scale to multiple machines and very large datasets.

Nevertheless, the algorithm design shows a lot of parallelism options. Several RSs have

been implemented for clusters 1. The GP step itself also provides some inherent parallelism.

The EC library used to implement this project provides distributed computing capabilities,

but unfortunately, some bugs in the library require quite a few workarounds to make it

work.

4. This work focused on music recommendation in particular. However, with relatively little

changes, it could be adapted for other datasets as well. Many of the algorithms discussed

1https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

62

https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

in the related work chapter used MovieLens datasets. The advantage of this is that a

comparison with those algorithms then becomes possible.

5. The algorithm can work with many types of features. This work used a combination of

content-specific features from an external data source as well as features derived from the

collaborative user data. One thing to research is what happens when only collaborative

features are used. In that case, could the same scoring function be used for different

datasets?

63

Appendices

64

Appendix A

Full Data Description

Chapter 5 discussed the different data sources used for this project. A part of the data originates

from AcousticBrainz, and consists of class probabilities for 18 different classifiers. The classifiers

attribute genres, moods, and audio-related features to each song. This appendix presents the

different classifiers in more detail. AcousticBrainz uses SVM models from the Essentia project1,

which provides tools for music analysis.

A.1 Genres

There are multiple genre classifiers. Some of these are general while others make a subdivision

within a specific genre.

A.1.1 Dortmund

The Dortmund genre classifier places songs into one of 9 general genre classes: alternative, blues,

electronic, folkcountry, funksoulrnb, jazz, pop, raphiphop and rock [30]. The classifier reaches

relatively high accuracies for folkcountry, jazz, raphiphop and rock. The other classes typically

do not achieve such a high accuracy, possibly because the training material was not balanced.

The aforementioned classes are overrepresented.

The data used for experimentation is classified for the most part as electronic, shown in

Table A.1. This could indicate that a large fraction of the songs is misclassified by this classifier.

In retrospect, this classifier’s classes should probably not have been used to measure the diversity

of the songs. Most of them will have a high value for the electronic class and a low value for the

other classes.

1https://essentia.upf.edu/

65

https://essentia.upf.edu/

Elec. Folkcountry Rock Alt. Blues Jazz Raphiphop Pop

87.11% 4.97% 3.10% 2.07% 1.56% 0.86% 0.31% 0.0014%

Table A.1: Class percentages of songs in the data for the Dortmund classifier.

A.1.2 Rosamerica

This is another general genre classifier [27]. The classes are different from the Dortmund one:

classical, dance, hip-hop, jazz, pop, rhythm’n’blues, rock and speech. It achieves a high accuracy

for most classes, except for the pop and rhythm’n’blues classes, which are confused relatively

often.

When looking at the class distribution in , the results are more evenly distributed than for

the Dortmund classifier.

Rock R&B Pop Hip-hop Classical Jazz Dance Speech

31.25% 19.54% 16,30% 12.33% 7.42% 7.38% 5.49% 0.29%

Table A.2: Class percentages of songs in the data for the Rosamerica classifier.

A.1.3 Tzanetakis

The last general genre classifier was developed by Tzanetakis and Cook [49]. Their system makes

a distinction between the following genres: blues, classical, country, disco, hip-hop, jazz, metal,

pop, reggae and rock. The researchers believe that they reach close to human performance levels.

The class distribution in Table A.3 shows that here too, there is a significant class imbalance,

pointing at potential misclassifications.

Jazz Rock Hip-hop Pop Blues Classical Reggae Country Metal Disco

92.60% 4.13% 1.49% 0.83% 0.48% 0.28% 0.086% 0.048% 0.035% 0.030%

Table A.3: Class percentages of songs in the data for the Tzanetakis classifier.

A.1.4 Electronic Music

This classifier subdivides electronic music into several subgenres: ambient, drum ’n bass, house,

techno and trance. Note that the classifier is also used on songs even though they are not neces-

sarily electronic. Therefore, the output will not always be semantically meaningful. Table A.4

shows the class distribution for the current classifier. Most of the songs are classified as ambient.

66

Ambient Trance House Techno Drum ’n bass

62.61% 28.37% 7.10% 1.02% 0.91%

Table A.4: Class percentages of songs in the data for the Electronic classifier.

A.1.5 Ballroom

Another subgenre classifier is the ‘Ismir04 rhythm’ classifier based on the ballroom dataset [16].

The dataset contains ballroom music from 8 possible subgenres: Cha Cha, Jive, Quickstep,

Rumba, Samba, Tango, Viennese Waltz and Slow Waltz. However, some of these subgenres con-

tain further subdivisions: Rumba is further split into American, international and miscellaneous

rumba. Again, this classifier is used for every item, even when the song is not a ballroom song.

The class distribution is shown in Table A.5.

Cha Cha Vien. Waltz Tango Am. Rumba Waltz Samba Jive Int. Rumba Quickstep Misc. Rumba

30.71% 24.81% 24.76% 9.61% 3.30% 2.72% 2.22% 1.50% 0.27% 0.10%

Table A.5: Class percentages of songs in the data for the ballroom classifier.

A.2 Moods

Besides genres, there are also classifiers to identify moods in songs. AcousticBrainz uses the

following default models to identify the moods. Note that some of these moods are not necessarily

feelings:

� Acoustic or not acoustic

� Electronic or not electronic

� Agressive or not aggressive

� Relaxed or not relaxed

� Happy or not happy

� Sad or not sad

� Party or not party

� Mirex

Table A.6 shows the class distributions of the aformentioned classifiers. All mood classifiers

are binary, except the last one. Hu and Downie found that classifying the mood of a song is

67

challenging because there is no standardised way to describe it [32]. Therefore, they worked out

a cluster-based approach with the following clusters:

1. passionate, rousing, confident, boisterous, rowdy

2. rollicking, cheerful, fun, sweet, amiable/good natured

3. literate, poignant, wistful, bittersweet, autumnal, brooding

4. humorous, silly, campy, quirky, whimsical, witty, wry

5. aggressive, fiery, tense/anxious, intense, volatile, visceral

The class distribution of this classifier is given in Table A.7.

Mood Positive Negative

Acoustic 24.31% 75.69%

Aggressive 19.78% 80.22%

Electronic 59.41% 40.59%

Happy 27.83% 72.17%

Party 27.21% 72.79%

Relaxed 68.35% 31.65%

Sad 24.31% 75.69%

Table A.6: Class percentages of songs in the data for the binary mood classifiers.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1.28% 11.97% 20.72% 3.69% 62.34%

Table A.7: Class percentages of songs in the data for the Mirex classifier.

A.3 Other Classifiers

Finally, there are a few other classifiers that tag songs in various ways:

� Danceable or not Danceable

� Male or female

� Dark or bright (timbre)

� Tonal or atonal

68

� Voice or instrumental

Table A.8 shows these distributions. Some classes do not correspond to human intuition.

For example, more than half of the songs is classified as instrumental. This is probably a

misclassification. Moreover, less than half of all songs is classified as tonal, while in reality the

majority of the songs has a tonal centre.

Classifier Positive Negative

Danceability 35.70% 64.30%

Is male 37.52% 62.48%

Bright timbre 41.12% 58.88%

Tonal 37.75% 62.25%

Instrumental 52.65% 47.35%

Table A.8: Class percentages of songs in the data for the remaining classifiers.

69

Appendix B

Full Results Table

Pop. size # gens NDCG Coverage Novelty Diversity

Absolute Relative Absolute Relative Absolute Relative Absolute Relative

1 50 50 0.063341 -31.62% 0.414413 +23.66% 9.028852 +2.16% 0.807926 +0.64%

2 0.030898 -66.64 % 0.420940 +25.61% 9.232488 +4.46% 0.813773 +1.37%

3 50 100 0.046388 -49.92% 0.404578 +20.73% 9.622844 +8.88% 0.815006 +1.52%

4 0.046325 -49.99% 0.404285 +20.64% 9.624598 +8.90% 0.815634 +1.60%

5 100 50 0.034142 -63.14% 0.423399 +26.34% 9.330914 +5.58% 0.818138 +1.91%

6 0.033461 -63.88% 0.385230 +14.95% 9.213196 +4.25% 0.818165 +1.98%

7 100 100 0.092718 +0.09% 0.335294 +0.05% 8.839651 +0.02% 0.805955 +0.40%

8 0.063341 -31.62% 0.414413 +23.66% 9.028852 +2.16% 0.807926 +0.64%

9 0.061880 -33.20% 0.447693 +33.59% 9.477741 +7.24% 0.812037 +1.15%

10 0.057543 -38.00% 0.449069 +34.00% 9.561734 +8.19% 0.812956 +1.27%

11 200 50 0.063341 -31.62% 0.414413 +23.66% 9.028852 +2.16% 0.807926 +0.64%

12 0.035892 -61.25% 0.424131 +26.56% 9.208680 +4.19% 0.814095 +1.41%

13 200 100 0.051480 -44.42% 0.451908 +34.85% 9.658818 +9.29% 0.819415 +2.07%

14 0.050134 -45.88% 0.453284 +35.26% 9.700299 +9.76% 0.820671 +2.23%

15 300 50 0.087555 -5.48% 0.416637 +24.33% 8.938546 +1.14% 0.805547 +0.34%

16 0.080077 -13.55% 0.433497 +29.36% 9.030072 +2.17% 0.807909 +0.64%

17 300 100 0.050488 -45.50% 0.436571 +30.27% 9.456571 +7.00% 0.817617 +1.85%

18 0.045776 -50.58% 0.363863 +8.58% 9.137676 +3.39% 0.802937 +0.02%

Table B.1: The performance for the functions from Table 7.7 relative to the baseline performance.

70

Bibliography

[1] (). ‘Accuracies and confusion matrices for default models,’ [Online]. Available: https:

//acousticbrainz.org/datasets/accuracy (visited on 12/04/2020).

[2] Adomavicius, G. and Kwon, Y., ‘Improving aggregate recommendation diversity using

ranking-based techniques,’ IEEE Transactions on Knowledge and Data Engineering, vol. 24,

no. 5, pp. 896–911, 2011.

[3] Adomavicius, G. and Kwon, Y., ‘Optimization-based approaches for maximizing aggregate

recommendation diversity,’ INFORMS Journal on Computing, vol. 26, no. 2, pp. 351–369,

2014.

[4] Adomavicius, G. and Tuzhilin, A., ‘Toward the next generation of recommender systems:

A survey of the state-of-the-art and possible extensions,’ IEEE transactions on knowledge

and data engineering, vol. 17, no. 6, pp. 734–749, 2005.

[5] Aggarwal, C. C. et al., Recommender systems. Springer, 2016, vol. 1.

[6] Anderson, C., ‘The long tail,’ Wired Magazine, vol. 12, no. 10, pp. 170–177, 2004.

[7] Banzhaf, W., Nordin, P., Keller, R. E. and Francone, F. D., Genetic programming. Springer,

1998.

[8] Barraza-Urbina, A., Heitmann, B., Hayes, C. and Carrillo-Ramos, A., ‘Xplodiv: An exploitation-

exploration aware diversification approach for recommender systems,’ in The Twenty-

Eighth International Flairs Conference, 2015.

[9] Bennett, J., Lanning, S. et al., ‘The netflix prize,’ in Proceedings of KDD cup and workshop,

Citeseer, vol. 2007, 2007, p. 35.

[10] Bertin-Mahieux, T., Ellis, D. P., Whitman, B. and Lamere, P., ‘The million song data-

set,’ in Proceedings of the 12th International Conference on Music Information Retrieval

(ISMIR 2011), 2011.

[11] Beyer, H.-G. and Schwefel, H.-P., ‘Evolution strategies–a comprehensive introduction,’

Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

71

https://acousticbrainz.org/datasets/accuracy
https://acousticbrainz.org/datasets/accuracy

[12] Borchers, A., Herlocker, J., Konstan, J. and Reidl, J., ‘Ganging up on information over-

load,’ Computer, vol. 31, no. 4, pp. 106–108, 1998.

[13] Boussäıd, I., Lepagnot, J. and Siarry, P., ‘A survey on optimization metaheuristics,’ In-

formation sciences, vol. 237, pp. 82–117, 2013.

[14] Bridge, D. and Kelly, J. P., ‘Ways of computing diverse collaborative recommendations,’ in

International conference on adaptive hypermedia and adaptive web-based systems, Springer,

2006, pp. 41–50.

[15] Brynjolfsson, E., Hu, Y. J. and Smith, M. D., ‘The longer tail: The changing shape of

amazon’s sales distribution curve,’ Available at SSRN 1679991, 2010.

[16] Cano, P., Gómez, E., Gouyon, F., Herrera, P., Koppenberger, M., Ong, B., Serra, X.,

Streich, S. and Wack, N., ‘Ismir 2004 audio description contest,’ 2006.

[17] Cramer, N. L., ‘A representation for the adaptive generation of simple sequential pro-

grams,’ in Proceedings of the first international conference on genetic algorithms, 1985,

pp. 183–187.

[18] Cui, L., Ou, P., Fu, X., Wen, Z. and Lu, N., ‘A novel multi-objective evolutionary algorithm

for recommendation systems,’ Journal of Parallel and Distributed Computing, vol. 103,

pp. 53–63, 2017.

[19] Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., ‘A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: Nsga-ii,’ in International conference on

parallel problem solving from nature, Springer, 2000, pp. 849–858.

[20] (). ‘Downloads,’ [Online]. Available: https://acousticbrainz.org/download (visited

on 11/04/2020).

[21] Eiben, A. E., Smith, J. E. et al., Introduction to evolutionary computing. Springer, 2003,

vol. 53.

[22] Eiben, A. E. and Smit, S. K., ‘Evolutionary algorithm parameters and methods to tune

them,’ in Autonomous search, Springer, 2011, pp. 15–36.

[23] Ekstrand, M. D., ‘The lkpy package for recommender systems experiments: Next-generation

tools and lessons learned from the lenskit project,’ arXiv preprint arXiv:1809.03125, 2018.

[24] Ekstrand, M. D., Harper, F. M., Willemsen, M. C. and Konstan, J. A., ‘User perception

of differences in recommender algorithms,’ in Proceedings of the 8th ACM Conference on

Recommender systems, 2014, pp. 161–168.

72

https://acousticbrainz.org/download

[25] Ge, M., Delgado-Battenfeld, C. and Jannach, D., ‘Beyond accuracy: Evaluating recom-

mender systems by coverage and serendipity,’ in Proceedings of the fourth ACM conference

on Recommender systems, 2010, pp. 257–260.

[26] Geng, B., Li, L., Jiao, L., Gong, M., Cai, Q. and Wu, Y., ‘Nnia-rs: A multi-objective optim-

ization based recommender system,’ Physica A: Statistical Mechanics and its Applications,

vol. 424, pp. 383–397, 2015.

[27] Guaus, E., ‘Audio content processing for automatic music genre classification: Descriptors,

databases, and classifiers,’ Ph.D. dissertation, Universitat Pompeu Fabra, Barcelona, Spain,

2009.

[28] Guimarães, A., Costa, T. F., Lacerda, A., Pappa, G. L. and Ziviani, N., ‘Guard: A genetic

unified approach for recommendation,’ Journal of Information and Data Management,

vol. 4, no. 3, pp. 295–310, 2013.

[29] Holland, J. H. et al., Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. MIT press, 1992.

[30] Homburg, H., Mierswa, I., Möller, B., Morik, K. and Wurst, M., ‘A benchmark dataset for

audio classification and clustering.,’ in ISMIR, vol. 2005, 2005, pp. 528–31.

[31] Horváth, T. and Carvalho, A. C. de, ‘Evolutionary computing in recommender systems:

A review of recent research,’ Natural Computing, vol. 16, no. 3, pp. 441–462, 2017.

[32] Hu, X. and Downie, J. S., ‘Exploring mood metadata: Relationships with genre, artist and

usage metadata.,’ in ISMIR, 2007, pp. 67–72.

[33] Jannach, D., Lerche, L. and Zanker, M., ‘Recommending based on implicit feedback,’ in

Social Information Access, Springer, 2018, pp. 510–569.

[34] Kaminskas, M. and Bridge, D., ‘Diversity, serendipity, novelty, and coverage: A survey and

empirical analysis of beyond-accuracy objectives in recommender systems,’ ACM Trans-

actions on Interactive Intelligent Systems (TiiS), vol. 7, no. 1, pp. 1–42, 2016.

[35] Koren, Y., ‘The bellkor solution to the netflix grand prize,’ Netflix prize documentation,

vol. 81, no. 2009, pp. 1–10, 2009.

[36] Kotkov, D., Konstan, J. A., Zhao, Q. and Veijalainen, J., ‘Investigating serendipity in

recommender systems based on real user feedback,’ in Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, 2018, pp. 1341–1350.

[37] Koza, J. R., Genetic programming: on the programming of computers by means of natural

selection. MIT press, 1992, vol. 1.

73

[38] Lamere, P., Artist similarity, familiarity and hotness, 2009. [Online]. Available: https://

musicmachinery.com/2009/05/25/artist-similarity-familiarity-and-hotness/.

[39] Lin, Q., Wang, X., Hu, B., Ma, L., Chen, F., Li, J. and Coello Coello, C. A., ‘Multiob-

jective personalized recommendation algorithm using extreme point guided evolutionary

computation,’ Complexity, vol. 2018, 2018.

[40] Marler, R. T. and Arora, J. S., ‘Survey of multi-objective optimization methods for engin-

eering,’ Structural and multidisciplinary optimization, vol. 26, no. 6, pp. 369–395, 2004.

[41] McNee, S. M., Riedl, J. and Konstan, J. A., ‘Being accurate is not enough: How accuracy

metrics have hurt recommender systems,’ in CHI’06 extended abstracts on Human factors

in computing systems, 2006, pp. 1097–1101.

[42] (2016). ‘Million song dataset echo nest mapping archive,’ [Online]. Available: https :

//labs.acousticbrainz.org/million-song-dataset-echonest-archive/ (visited on

11/04/2020).

[43] Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Fujimura, K. and Ishida, T., ‘Clas-

sical music for rock fans? novel recommendations for expanding user interests,’ in Proceed-

ings of the 19th ACM international conference on Information and knowledge management,

2010, pp. 949–958.

[44] Onuma, K., Tong, H. and Faloutsos, C., ‘Tangent: A novel,’surprise me’, recommenda-

tion algorithm,’ in Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2009, pp. 657–666.

[45] Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M. and Yang, Q., ‘One-class

collaborative filtering,’ in 2008 Eighth IEEE International Conference on Data Mining,

IEEE, 2008, pp. 502–511.

[46] Rendle, S., Freudenthaler, C., Gantner, Z. and Schmidt-Thieme, L., ‘Bpr: Bayesian per-

sonalized ranking from implicit feedback,’ arXiv preprint arXiv:1205.2618, 2012.

[47] Ribeiro, M. T., Lacerda, A., Veloso, A. and Ziviani, N., ‘Pareto-efficient hybridization

for multi-objective recommender systems,’ in Proceedings of the sixth ACM conference on

Recommender systems, 2012, pp. 19–26.

[48] Smyth, B. and McClave, P., ‘Similarity vs. diversity,’ in International conference on case-

based reasoning, Springer, 2001, pp. 347–361.

[49] Tzanetakis, G. and Cook, P., ‘Musical genre classification of audio signals,’ IEEE Trans-

actions on speech and audio processing, vol. 10, no. 5, pp. 293–302, 2002.

74

https://musicmachinery.com/2009/05/25/artist-similarity-familiarity-and-hotness/
https://musicmachinery.com/2009/05/25/artist-similarity-familiarity-and-hotness/
https://labs.acousticbrainz.org/million-song-dataset-echonest-archive/
https://labs.acousticbrainz.org/million-song-dataset-echonest-archive/

[50] Vargas, S. and Castells, P., ‘Rank and relevance in novelty and diversity metrics for recom-

mender systems,’ in Proceedings of the fifth ACM conference on Recommender systems,

2011, pp. 109–116.

[51] Wang, S., Gong, M., Li, H. and Yang, J., ‘Multi-objective optimization for long tail re-

commendation,’ Knowledge-Based Systems, vol. 104, pp. 145–155, 2016.

[52] Wang, S., Gong, M., Ma, L., Cai, Q. and Jiao, L., ‘Decomposition based multiobjective

evolutionary algorithm for collaborative filtering recommender systems,’ in 2014 IEEE

Congress on Evolutionary Computation (CEC), IEEE, 2014, pp. 672–679.

[53] Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R. and Zhang, Y.-C., ‘Solving

the apparent diversity-accuracy dilemma of recommender systems,’ Proceedings of the

National Academy of Sciences, vol. 107, no. 10, pp. 4511–4515, 2010.

[54] Zhou, T., Ren, J., Medo, M. and Zhang, Y.-C., ‘Bipartite network projection and personal

recommendation,’ Physical review E, vol. 76, no. 4, p. 046 115, 2007.

[55] Ziegler, C.-N., McNee, S. M., Konstan, J. A. and Lausen, G., ‘Improving recommendation

lists through topic diversification,’ in Proceedings of the 14th international conference on

World Wide Web, 2005, pp. 22–32.

[56] Zuo, Y., Gong, M., Zeng, J., Ma, L. and Jiao, L., ‘Personalized recommendation based on

evolutionary multi-objective optimization [research frontier],’ IEEE Computational Intel-

ligence Magazine, vol. 10, no. 1, pp. 52–62, 2015.

75

	Introduction
	Recommender Systems
	Introduction
	Classes of Recommender Systems
	Content-based Recommender Systems
	Collaborative Filtering Systems
	Hybrid Recommender Systems

	Implicit Feedback
	Measuring Recommender System Performance
	Accuracy
	Other Metrics

	Evolutionary Computing
	Introduction
	Schema
	Components
	Fitness
	Individuals
	Parent Selection
	Variation Operators
	Survivor Selection

	Evolutionary Computing Variants
	Multi-objective Optimisation

	Related Work
	Recommender Systems as a Multi-objective Optimisation Problem
	Solving the Multi-objective Optimisation Problem
	Evolutionary Algorithms for Recommender Systems

	Data
	Million Song Dataset
	Taste Profile

	Problems
	Auxiliary Data
	Data Loss

	Audio Classifiers
	Genres
	Mood
	Audio

	Item Features

	Design of the Algorithm
	Motivation & Design Goals
	High-level Overview
	Recommender system
	Item Features
	Genetic Programming
	Process
	Scoring Function
	Pareto-optimal Solution Selection

	Experiments
	Data
	Algorithm Parameters
	Performance Criteria
	Experimental Setup
	Results
	Baseline
	Experimental Settings
	Influence of More Data
	Bloat
	Pareto-optimal Solutions

	Discussion
	Functions
	Evaluation Method

	Conclusion
	Future Work

	Appendices
	Full Data Description
	Genres
	Dortmund
	Rosamerica
	Tzanetakis
	Electronic Music
	Ballroom

	Moods
	Other Classifiers

	Full Results Table

