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Summary

This dissertation investigates the effects of decentralization on social
network applications with respect to functionality and time to com-
plete actions of users. In a first step we propose a hypothetical social
network application based on linked data and compare its function-
ality to a centralized social network. Next, a social graph generating
algorithm is implemented and the results compared to the Facebook
social graph. The social network application and network generator
are combined to create an agent-based discrete event simulation,
which is subsequently used to test the behaviour of decentralized
social networks under various circumstances and configurations.
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I. INTRODUCTION

In the past ten years the world has flocked to online social
media platforms to connect and share their lives with others [1].
These enormous platforms all share one common characteristic:
large scale collection and analysis of user data for the purpose of
targeted advertisement as a business model. Recent events such
as the whistle blowing of Edward Snowden in 2014 [2] and the
Facebook-Cambridge Analytica scandal in 2018 [3] have made
it clear that this precarious situation, where the data of millions
is controlled by a few tech giants, is unmaintainable. To break
these data monopolies, a bottom-up revolution is needed in the
form of decentralization. Tim Berners-Lee, the creator of the
World Wide Web, has proposed a new decentralized platform
called Solid [4], based on Linked Data, that gives users back
control of the information they share, and provides a uniform
API for developers to build applications that can reuse existing
user data, and as such reduce applications to views of data [5].
These benefits come with the downside that querying data be-
comes more complex in decentralized systems, since a group of
uncoordinated sources need to be searched in order to find in-
formation, whereas centralized systems can make use of highly
optimized databases to resolve queries. In this work we consider
a social application based on linked data, inspired by Solid, and
implement it into a discrete event simulation in order to test how
server response times change under various conditions.

II. RELATED WORK
A. Linked Data

Linked Data is a cornerstone technology of the Semantic
Web, an idea proposed by Tim Berners-Lee with the goal to
make data on the web accessible to machines [6][7][8]. Linked
Data is published in RDF [9], a schemaless a graph-based data
model that represents information in the form of triples, that
have the following structure:

<subject> <predicate> < object>

where subject and predicate are HTTP URIs that can be re-
solved on the web to provide more information, and the object
can either be an HTTP URI or a typed literal. RDF can be
queried in a language called SPARQI [10]. Combining many
of these triples creates knowledge graphs and through the usage
of URIs as names for things, linked data essentially creates a
knowledge graph that spans the entire internet, often referred to
as the Web of data.

B. Solid

Solid is a decentralized platform proposed by Tim Berners-
Lee upon which applications involving user data can be built
[11] [5]. Solid is based on personal online datastores or pods:
these are containers that hold all personal information of a user.
Pods can be located on the servers of a pod-provider of the user’s
choosing, or be hosted by users themselves. Pods are imple-
mented according to the linked data platform (LDP) specifica-
tion [12], and contain user information in the form of linked
data. The triples in a pod are stored in linked data documents
fashion, i.e. all triples about a certain URI are stored in the file
pointed to by that URL. The servers themselves do not execute
queries for specific triples, rather they serve the linked data doc-
uments, that can subsequently be queried at client-side. In this
paper we will propose a hypothetical application based on these
same principles, to then implement into a discrete event simula-
tion.

C. Social Graph Characteristics

A social network is a structure made up of people that main-
tain one-to-one social relationships. Such a network can be
modeled by a social graph: The nodes in the graph represent
people, while the the vertices represent the presence of some
predefined social relationship between two persons. We briefly
describe a number of mathematical graph properties which are
relevant to the study of social graphs:

o Degree The degree k of a node is the amount other nodes it is
connected to, thus in a social graph, it represents the amount of
people an individual is connected to.

o Degree distribution: Let p; be the fraction of the network
that has degree k. The degree distribution shows the values pj,
for every value of k [13].

« Hop distance: The minimum amount of connections one has
to traverse to reach one node starting from another.

o Neighbourhood function: The neighbourhood function
N (h) of a graph describes the number of pairs (u, v) such that u
is reachable starting from v, taking a path that counts h edges or



less. In other words, it shows what portion of the graph we can
cover in h hops on average, starting from a random node. This
measure is more robust than the average hop distance [13].

« Degree assortativity: The correlation between the degree of a
random node, and the degree of the nodes it is connected to. For
social networks, a positive assortativity means that people with
many friends are connected to other people with many friends.
« Local clustering coefficient: The ratio of the number of con-
nections in the neighborhood of a node (i.e. the induced sub-
graph consisting of a node and all its one-hop neighbors) over
the amount of possibles connections in that neighborhood.
Following characteristics are typical for social graphs [13], [14]:
o Sparseness

o A fat-tailed degree distribution

« A positive degree assortativity

« A Short average hop distance

« A high average local clustering coefficient

We will propose an algorithm to generate social graphs that dis-
play these properties.

D. Discrete Event Simulation

The discrete event simulation (DES) is a popular method for
modeling systems wherein behaviour is partly stochastic, and
changes to the system happen at discrete moments in time, such
as requests arriving at servers [15] . Because of this latter prop-
erty, it is not necessary to simulate the system in intervals be-
tween changes. The simulation thus “jumps” through time, from
one state change to the next. These state-changing events are
kept in a chronologically sorted event list, which is traversed
throughout the simulation. State changes are handled one by
one, and any state-changing events they might cause are ap-
pended to the event list. An approach to model Poisson pro-
cesses in a DES is the following: whenever some type of event
is encountered, the same type of event is appended to the event
list, but at a time increment that is drawn from an exponential
distribution.

III. SOoCIAL APPLICATION MODEL

In this section we lay out a design for a hypothetical social
network application based on pods. This design will then later
be implemented into a discrete event simulation. The model we
present is only theoretical, and as such does not implement real-
world design criteria such as privacy.

A. Functionality

Starting from the definition of a social network site in [16]
and expanding upon it, we present the following list of desired
functionalities:

1. Users have a profile that contains personal information.

2. Users maintain a list of profiles to whom they are connected.
It would be possible to create a Twitter-like application with
“followers”, i.e. unidirectional connections, but we choose to
make the connections bidirectional, in the style of Facebook
“friendships”, as we have data on the graph properties of the
Facebook social graph [13].

3. Users can create content in the form of text posts. The post
should reside in the pod of the creator.

4. Users can leave comments on content their connections have
created, which can itself consist of a comment or a text post.
These comments should reside in the pod of the creator, while a
link o this comment should be added to the original post.

5. Users can get an overview of the recent posts and comments
made by their connections, together with the comments other
people have created in reaction to those posts (cfr. Facebook’s
news feed) .

B. File Structure

To achieve the proposed functionality, we propose the follow-
ing set of files and folders, kept in the datapod of each user:
1. A profile, a file containing all personal information of a user,
and a list of connected users.
2. A folder called “posts”, containing a users text posts. Each
post gets it’s own file within this folder. A post keeps a link to
the creator, and keeps links to any comments that might have
been left by other users in reaction to the post.
3. A folder called “comments”, again containing a single file
per comment created by the user. A comment file keeps refer-
ence to the creator and to the original content it has been created
for.
4. An event file, a file that contains most recent events a user has
generated. An event keeps a reference to the event source. Only
a limited number of the most recent events is kept.

C. User Actions

Within the application a user can perform the following ac-
tions: creating posts and comments, and compiling news feeds
by collecting event files of their connections. Note that compil-
ing a news feed is a sequential process, where first the event files
of connected users, then the event sources of those events, and
then the comments on the event sources must be collected. This
process thus requires requests to the datapods of all connected
users, and any users that have left comments on the posts of
those users. Note that although these stages of news feed collec-
tion are sequential, the individual requests per stage are issued
in parallel, e.g. once an event file arrives, all events sources it
contains are fetched at the same time.

D. Discussion

The system we propose in this section offers basic social net-
work functionality: creating content such as text posts and leav-
ing comments is still possible while keeping all data in the pods
of the creators through linking. Through the use of “events”,
which keep track of the most recent actions a user has under-
taken, compiling of news feeds becomes tractable, and avoids
the need to gather and filter needlessly large amounts of data. In
our implementation these events are only used to represent the
creation of a new text post or a new comment, but they could just
as well be used to represent videos, links, articles, birthdays, etc.

One feature a decentralized system doesn’t offer is the ability
to easily look up profiles and content in a single request, since
data is spread out over multiple servers that aren’t necessarily
indexed. Two approaches are possible to resolve this problem:
we can either aggregate and index all servers through web crawl-
ing, or use link traversal strategies, possible aided by data sum-



maries, to find relevant sources on the fly [17]. Data summaries
allow for a quick evaluation of whether a source can contribute
to a given query, and thus speeds up finding sources through link
traversal.

IV. SocCIiAL NETWORK SIMULATION

In this section we describe the component of the discrete
event simulation. This simulation is implemented in Javascript
using the Node.js framework.

A. Social Graph Generation

The first step in simulating a social network is to generate a
realistic social graph structure, exhibiting the properties in sec-
tion II-C. To this end we implemented an algorithm that creates
a hierarchy of clusters. At each step of the algorithm, a set of
clusters of nodes is generated according to input parameters. In
the next iteration, these clusters themselves are treated as the
nodes that in turn get clustered. The connections between clus-
ters are then finally resolved into inter-person connections. To
achieve a positive degree assortativity, we select users to connect
randomly, but with a probability proportional to the amount of
connections they have. This has the effect that highly connected
users are again connected to highly connected users, and that
highly connected users become even more connected, thus cre-
ating a heavy-tailed degree distribution. The validity of this net-
work is tested in section V. User activity is modeled as a Poisson
process with a rate proportional to the amount of connections a
user has [18].

B. Server Model

In the simulation all datapods of users are stored on simu-
lated servers: simple datastructures with following fields: a re-
quest queue, i.e. a list holding pending requests, latency and
bandwidth. All users are distributed evenly across the servers.
Servers distribute available bandwidth equally over all pending
requests. Server traffic is dominated by read request, thus write
request are assumed to happen instantly, without going through
the server queue [18].

V. EXPERIMENTS
A. Experiment 1: Network Generator Validation

In this experiment we investigate how the properties of the
generated networks compare to random networks and the Face-
book social graph properties [13]. We generate 50 networks of
480 people, analyze them in Python using the Networkx library,
and average out the results.

B. Experiment 2: Decentralization With Constant Bandwidth

In this experiment we investigate how distributing a fixed set
of user pods over an increasing amount of servers affects the
server response time, and the average time it takes to compile
news feeds, when total bandwidth in the system remains con-
stant, i.e. the more servers there are, the less bandwidth each
server receives. The experiment is conducted with a network
size of 120, and the amount of servers is varied from 1 to 100.
The simulated period is 1 day. A total bandwidth of 1 Gbps is

present in the system. This experiment is run 5 times and the
results are averaged out.

C. Experiment 3: Increasing User Activity

In this experiment we investigate the change in server re-
sponse time and average time it takes to compile a news feed
when user activity increases. The experiment is conducted with
a network size of 120, and the average frequency of requesting
a news feed varies form 3 to 215 times a day. The simulated
period is 1 day. This experiment is run 5 times and the results
are averaged out.

D. Experiment 4: Increasing Network Size With Self-Hosting
Users

In this experiment we investigate the effects of increasing the
size of a network, where all users host their own datapods on
smaller servers, i.e. the number of servers in this experiment
is always equal to the amount of users in the network. We vary
this number from 60 to 240, and assume each user has a personal
server with a bandwidth of 0.01 Gbps. Again we measure server
response time and average time it takes to compile a news feed.
The simulated period is 1 day. This experiment is run 5 times
and the results are averaged out.

VI. RESULTS
A. Experiment 1: Network Generator Validation
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Fig. 1: Comparison of characteristics between algorithmically
generated networks, randomly generated networks, and the
Facebook social graph

The overall results are shown in figure 1. From this experi-
ment we learn that our algorithm outperforms random networks



for all measured properties, but still doesn’t fully capture the
characteristics of a real social graph. The steep drop-offs in fig-
ure 1c and 1d are due to the smaller network size. In general we
note that it is hard to precisely tune the properties of a network,
as these aren’t orthogonal to one another.

B. Experiment 2: Decentralization with constant bandwidth

The results of this experiment are shown in figure 2 and show
that the time to resolve individual requests and time to load news
feeds do increase with increasing decentralization, with 625%
and 23% respectively. The difference between these two per-
centages is due to the fact that many requests are issued in par-
allel. The strong increase in server response time is due to a
“popularity” effect; a higher degree of decentralization means
less users, and thus less bandwidth per server. If some of those
few users is very popular, and its files are requested often, this
server is flooded with requests, slowing down average response
times.

individual request duration average time to collect newsfeed

individual request time
news feed collection time (s)

0 20 ) 60 80 100 o 20 40 60 80
servers servers

(a) Average time between start and (b) Average time between start and
completion of an individual request ~ completion of gathering a news feed

Fig. 2: Results of experiment 2: varying amount of servers w/
constant bandwidth in system

C. Experiment 3: Increasing User Activity

Again we see in figure 3 that the server response time and
the total time to collect news feeds increases, but less severely
than the increase seen in the previous experiment: an increase in
request frequency a factor 200 only increases the server response
time by ~ 30%. The time to collect news feeds is again lower,
and increases by 4%.
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completion of an individual request ~ completion of gathering a news feed

Fig. 3: Results of experiment 3

D. Experiment 4: Increasing Network Size With Self-Hosting
Users

In this experiment we change the size of the network, and by
doing so slightly alter some important network characteristics,
most notably the average amount of connections per user and,
as a consequence, the user activity rate, and thus the load on the
system. These latter two values are shown in figure 4, and show
that the load increases slightly with increased network size. This
needs to be taken into account when looking at the change in
server response times and average time to compile a news feed
shown in figure 5.

In figure 5a we see that the time to resolve an individual re-
quest at the servers barely changes, from 0.465 to 0.476 seconds
with increasing network size, i.e. an increase of 2% . The aver-
age time to collect a news feed changes from 7.75 to 8.15 sec-
onds, shown in figure 5b. This increase is at a higher percentage
than the individual request times, by 5%. This is likely due to
the increased average amount of friends, as users need to collect
more files on average per news feed collection.
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Fig. 4: network characteristics and server load of experiment 4
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Fig. 5: Results of experiment 4

VII. DISCUSSION

We first note that the simplifications made in the experiment
set-ups and small network sizes might affect numerical results,
yet the general trends are expected to stay valid for larger, more
complex, networks.

The first experiment shows that the proposed hierarchical clus-
tering algorithm is a viable approach to create social graph struc-



tures, yet more research in optimal parameters is needed to truly
mimic networks such as Facebook.

The second experiment shows that decentralization of data in-
creases the time it takes to complete actions if bandwidth re-
mains constant. The extrapolated implication of this finding is
that a decentralized network requires more bandwidth to offer
the same response times when compared to a centralized sys-
tem. The third experiment shows that the time to execute user
actions increases with increased frequency of those actions, al-
beit not by much. The implication for pod providers is that they
should be prepared to scale up in bandwidth when Solid were to
suddenly become a popular platform.

The final experiment indicates that self-hosting is a valid strat-
egy for a decentralized network in terms of time to complete
user actions. If a Solid-like network were to use self-hosting
as a selling point and emphasize the complete data control that
is created by storing the data physically in the homes of users,
a sudden increase in popularity wouldn’t affect the server re-
sponse times as much as in a system that relies on pod-providers
that need to scale up with the increased network traffic, as shown
in experiment 2 and 3.

VIII. CONCLUSION

In this paper we have described a hypothetical decentral-
ized social network application, inspired by the Solid platform.
We implemented this social network application into a discrete
event simulation, combined with an algorithm to generate real-
istic social graph structures, to test such a decentralized system
under various configurations and circumstances regarding net-
work size, number of servers and user activity.

We found that basic social network functionalities can be
mapped onto decentralized networks, but that there exist fea-
tures that are more easily achieved in a centralized system, such
as looking up specific content, which require smart querying tac-
tics in a decentralized system.

The proposed network generating algorithm was validated
against a random baseline and the Facebook social graph. It
was shown that the algorithm is a viable approach, yet more re-
search is needed to determine optimal parameters to completely
capture the characteristics of an online social graph.

The proposed discrete event simulation was used to test a
number of set-ups: varying network size with constant total
bandwidth, varying user activity rates and varying network size
with self-hosting users. We showed that for the first two experi-
ments, the time it takes to complete user actions goes up, while
for the last experiment this time remained constant.

IX. FUTURE WORK
A. Expanding Functionality

The application simulated in this work only implements very
basic features such as creating posts and comments, and compil-
ing news feeds. Future work could expand upon this set of fea-
tures to mimic social networks more closely. Features such as
uploading images, uploading videos, chatting with other users,

pages for events and organizations attracting, following profiles
instead of bidirectional friendships, etc. could all be added.

B. Experimenting With Load Distribution

The generated network traffic was assumed to be static over
time in this thesis. In future work it would be interesting to see
how decentralized networks withstand sudden surges in traffic,
for example when a piece of content goes “viral”.

C. Querying Social Networks

One of the features that a decentralized social network does
not offer is a straightforward way to look up specific profiles
or content on social media. It would be interesting to investigate
ways to make this possible, for example through data summaries
and link traversal query execution.

D. Social Application Benchmark

In this work we opted to simulate simple servers in a discrete
event simulation. As a general remark on that approach, it was
found that discrete event simulations - although allowing for fine
control simulation parameters, and giving clear insight in the
simulated system - is costly in terms of runtime, and it might be
worthwhile to investigate alternative simulation methods, such
as simulating the network with real servers. The work presented
in this dissertation could be used as a benchmark generator, that
generates the load under which the servers operate.

E. Facilitate self-hosting

In experiment 4 we show that the approach of self-hosting
pods with small servers scales well with a growing network size.
Self-hosting of pods is possible on the Solid platform, yet re-
quires a prohibitive amount of technological knowledge to be
accessible to a large public'. Tt would be interesting to investi-
gate the development of physical plug-and-play data pods that
anyone could easily set up at home. This could also be a sell-
ing point of the Solid platform: anecdotal evidence of the author
proves that it’s easier to explain to a layman that his data is on
a pod he has at home, than the subtle difference between what
server ("what’s a server?”’) his data resides on.
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Chapter 1

Preface

1.1 Introduction

”Data is the new oil”. When this phrase was first coined in 2006, the person who
did so -Clive Humby, a data scientist who helped create the world’s first loyalty
card at Tesco [1]- could have never predicted how right he would turn out to
be: at the time, Facebook counted only twelve million users, both Twitter and
Reddit had just been launched, and overall only 18% of the world was online. In
comparison, today 46% of the world uses the internet, over 300 million people
are on Twitter and Reddit respectively, and Facebook counts 2.38 billion users
as of 2019 [2].

Those billions of people create an unrelenting stream of data, ranging from the
holiday pictures they upload to the links they carelessly click, a stream that
pours into the server farms of companies like Google and Facebook, where it is
subsequently analyzed and put to use for targeted advertisement. If data is the
new oil, the user bases of large social media platforms have become the new oil
fields, and tech giants are squeezing every drop out of them.

Events such as the whistle blowing of Edward Snowden in 2014 [3], where it was
revealed that the American government has access to private data on the servers
of American social media companies, and the Facebook-Cambridge Analytica
scandal in 2018 [4], in which the data of over 80 million users was harvested and
analyzed for political campaign purposes (without permission of those users),
have made it painfully clear how valuable, but more importantly, how vulnerable
our personal data has become in recent times.

In response to these growing concerns the European union implemented a set of
laws in 2018, known as the General Data Protection Regulation (GDPR) [5], to
rein in companies regarding privacy and personal data of their users. Top-down
regulations like this are of course strides in the right direction, yet pose only a



partial solution to the wider problem of data monopolies; to truly address the
issue, a bottom-up revolution is required, in the form of decentralization.

1.2 problem Statement

Today, the choice presented to users when signing up for Facebook is to either
consent to the stated privacy policy “as is”, or simply not to see what their
friends and family share of their lives. Users that became fed up with Face-
book’s stance on hate speech in the recent “stop hate for profit”! campaign had
no way to easily switch to a different network without having to completely
recreate their profiles and connections (assuming those connections also made
a switch to the same network, otherwise that online friendship would become
impossible to maintain). Current social networks are intentionally designed in
such a way that our data becomes “locked in”. Developers that do want to
access this data in their own applications are subjected to the whims of social
network APIs, that can change policies and restrict access at any time.

Such problems are solved by distributed or decentralized social networks, net-
works in which there exist many providers, which might all offer different privacy
policies and user experiences, but are compatible with one another. Examples
of such networks are Friendica?, Mastodon® and Diaspora?®, which are all part
of the Fediverse, a collection of interoperable social networks.

In 2016, a remarkable decentralized social network initiative was launched by the
creator of the World Wide Web, Tim Berners-Lee, called Solid (initially derived
from “Social Linked Data”) [6]. Rather than a social network like Facebook or
Twitter, the project comprises a set of standards upon which social applications
-or any type of application involving user data- can be built. Solid stands out
because of it’s aim to provide complete data control for users, and it’s radically
open attitude towards application developers. Data control is achieved through
the use of pods, containers in which users store data, at a provider of their
choosing, in a country with adequate privacy laws for example. The openness
toward developers follows from the use of Linked Data, allowing developers to
create applications that can interpret and reuse existing data in pods, which
stands in stark contrast to the data lock-in mentioned before.

This data reuse allows users to switch platforms instantly, essentially reducing
applications to views[7], and thus reinstating users as the primary consumers of
social platforms, instead of the products. If data is the new oil, Social Linked
Data might just be the renewable we need.

Lwww.stophateforprofit.org
2https://friendi.ca/
3https://mastodon.online/about
4https://diasporafoundation.org/



Yet, there’s no such thing as a free lunch. Together with the many advan-
tages of decentralizing data come some disadvantages, which will need to prove
surmountable if Solid is to be adopted by a wider public. The most obvious
drawback of decentralization is the fact that querying data becomes signifi-
cantly more complicated. Whereas centralized systems can make use of highly
optimized database systems to resolve queries, executing a query over decentral-
ized data might require many different uncoordinated sources to be consulted
through the web, which typically results in a longer execution time. Efficiently
executing these so-called “federated” queries is still a matter of ongoing research.
A notable advancement in this field is link traversal based query execution [8],
in which new data sources are found “on the fly” by following links in interme-
diate results. This approach allows for unexpected sources to contribute to the
query results, fully exploiting the discoverability of the semantic web.

For applications where time isn’t a critical factor, this drawback might be ac-
ceptable. Yet for others, such as social media applications, which are nowadays
used by a public that has grown accustomed to very fast loading web pages, the
effects of this disadvantage could make or break social applications built upon
Solid. It is precisely this problem that is addressed in this thesis.

We consider a decentralized social network application, where each user has it’s
own datapod, which might be stored at the server of a provider, or hosted by the
user itself (potentially negatively affecting uptime and bandwidth). In the spirit
of Solid, users in this network have complete control over their data, thus all
content they create should reside in their own pod, and be linked to by others.
In such a system, simple operations such as reading a friend’s new post and
the comments left by other people would require queries over many datapods,
since the post itself and all comments are stored in the pods of their creators.
Whereas centralized applications such as Facebook are able to serve a news feed
in a single request, which is subsequently processed server-side, a decentralized
application needs to request each piece of content individually. In this thesis we
investigate how this decentralization affects waiting times for users.

1.3 Research Questions

In this thesis the effects of decentralization on social network applications through
linked data, as is used in Solid, is investigated, summarized in the research ques-
tion

e How does decentralization affect social network applications?
and more specifically

1. How does decentralization affect social network applications in terms of
functionality?



2. How does decentralization affect social network applications in terms of
time to complete user operations?

The first sub-question serves to investigate the network dynamics of a decen-
tralized social network built upon linked data. The findings of this research will
then be used to answer the second sub-question, namely how these dynamics
affect the time it takes to complete user actions such as loading a news feed or
posting a microblog.

1.4 Hypotheses

For these research questions we present the following hypotheses:

1. Tt’s possible to map the functionality of a centralized social network (e.g.
Facebook) onto a decentralized social network based on data pods.

2. The average time to complete user operations will increase with increas-
ing decentralization of data when keeping total bandwidth of all servers
constant.

3. The average time to complete user operations will increase with increasing
frequency of these operations.

4. The average time to complete user operations will not increase significantly
with increasing network size when each user hosts it’s own pod.

These hypotheses will be either accepted or rejected at the end of this disserta-
tion.

1.5 Outline

The remainder of this work is structured as follows: in chapter 2 we discuss
related work, next, in chapter 3 we propose a hypothetical decentralized social
network and discuss its functionality, we then describe how this social network
application is simulated in a discrete event simulation in chapter 4, where we also
lay out the algorithm used to generate realistic social graph structures. Then
in chapter 5 we describe the experiments we conducted in order to validate
the network generation algorithm and test our hypotheses together, we also
report the results of these experiments here, which we discuss in chapter 6. We
formulate conclusions in chapter 7, and discuss future work in chapter 8.



Chapter 2

Related Work

In this chapter we will discuss a number of subjects which proved relevant to
the design and implementation of the experiments conducted in later chapters.

2.1 The Semantic Web

2.1.1 Origins

The world wide web as most people know and use it today consists of a large
collection of documents that are connected through the use of hyperlinks, which
in itself don’t mean anything more than “this page has something to do with
that page”. For humans this vagueness is hardly ever a problem, as we can read
the context in which a link appears and deduce what the relation between the
sources is. Yet before the recent developments in natural language processing
through machine learning, it was inconceivable that computers would ever be
able to do the same. Thus for a program, this so-called web of documents was
a heap meaninglessly linked pages, and the information that lay within was
mostly inaccessible without a human mind to parse it.

In his 2001 article [9] Tim Berners-Lee introduced a concept that was designed
to counteracts this ambiguity and finally allow machines to comprehend and
act upon the wealth of data present on the internet: the semantic web. By
meaningfully annotating pieces of information and the links between them with
specific names and labels, computers would be able to unambiguously interpret
data and thus become intelligent agents, capable of performing complex “hu-
man” tasks.

2.1.2 Linked Data

In order to realize the semantic web, a couple of things we’re needed: firstly,
a set of technological standards and conventions upon which the network itself



would be built were required. These standards are described in [9], and the
most fundamental ones are listed here:.

Technologies and Standards

e The hyper text transfer protocol (HTTP), which is also used by the web
of documents to transfer web pages.

e the use of URIs, or uniform resource identifiers, unique identifiers for re-
sources, of which the URL, or uniform resource locator, is a better known
subset, it being a URI that can be resolved on the web through the HTTP
protocol)

e resource description framework (RDF), a simple data model in which all
data is represented in the form < subject> < predicate> < object>. These
simple statements are called triples.

e the use of vocabularies (or ontologies) to annotate concepts and the links
between them. Vocabularies are collections of labels which have clear
definitions, expressed in RDF.

the latter two of these technologies will be discussed further in this chapter.

Linked Data Principles

In order to allow for the creation of useful semantic web applications, lots of
data complying to the standards first had to be made available. In 2006, Tim
Berners-Lee published a set of principles as a guide for publishing data so that
could be useful for the semantic web, knows as the Linked Data principles [10]:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information.

4. Include links to other URIs. so that they can discover more things.

In 2010, these principles were appended with a 5-star rating scheme:

1. W

Available on the web (whatever format) but with an open licence, to be
Open Data



2. W

Available as machine-readable structured data (e.g. excel instead of image
scan of a table)

3. ik
as (2) plus non-proprietary format (e.g. CSV instead of excel)

4. dolkokk
All the above plus, use open standards from W3C (RDF and SPARQL)
to identify things, so that people can point at your stuff

5. Yokodriok
All the above, plus: Link your data to other people’s data to provide con-
text

Guided by these principles, and encouraged by the linking open data project®, a
vast amounts of data have been published in the past 20 years by governments,
research institutions and companies alike [11]. The Linked Open Data cloud, or
LOD-cloud 2, gives an overview of published data sets and the links between
them.

The web of data today covers a plethora of diverse disciplines and topics, such
as people, companies, books, scientific publications, films, music, television and
radio programs (most notably those of the BBC [12]), genes, proteins, drugs and
clinical trials, online communities, statistical data, census results, and reviews.

[11]

Some notable data “hubs” -data sets linked to by many other data sets- on the
web of data include:

e DBpedia3, a data set extracted from Wikipedia’s “info boxes”, which are
usually found in the upper right-hand corner of a Wikipedia page, con-
sisting of more than 103 million RDF triples [13].

e GeoNames?, a data set containing information on over 25 million geo-
graphical names.

Thttps://www.w3.org/wiki/Sweol G/ TaskForces/ CommunityProjects/LinkingOpenData
2https://lod-cloud.net/

Shttps://wiki.dbpedia.org/

4http:/ /www.geonames.org/



RDF

The resource description framework (RDF) is a data format for representing
schemaless data on the Web [14]. All information in RDF is expressed in the
form of t¢riples, which take on the shape

<subject> < predicate> < object>

Where the subject and predicate positions are URIs, and the object position
can either be a URI or a typed literal, e.g. a string, a date, or a number.

A statement like this simply describes two things and the relationship between
them. Multiple RDF statements connect to form graphs of information. It
should be noted that RDF is a data model, not a data format. RDF can be
serialized into several data formats, which are all useful in different contexts.
The most common serializations are given below [15]:

1. turtle: a human readable form

2. RDF/XML: the original RDF format in XML
3. RDFa: RDF embedded in HTML attributes
4. JSON-LD: RDF serialized in JSON

As an example, let’s say Alice and Bob both have their own web pages,
“http://alice.com/me” and “http://bob.com/me” respectively, which they use
to refer to themselves on the web. If Alice would like to state that she knows Bob
on her page, she can do so by using a triple. However, in order for the triple
to be interpretable by humans and machines that don’t understand English
(or language as a concept, for that matter), she needs to use a label that is
recognized by others as well. This is where ontologies come in, and it’s the
subject of the next section. For now, let’s assume there’s a universally accepted
predicate “http://example.com/knows” to express that the subject knows the
object. Note that this predicate is also a URI that can be resolved, ideally to
find more information about what it really means to “know” someone. This
statement now takes on the form:

<http://alice.com/me> < http://example.com/knows> <hitp://bob.com/me>

And results in the graph shown in figure 2.1:

hitp:ffexample com/knows

hitp:/falice_.com/me http:ffbob.com/me

Figure 2.1: an RDF statement as a graph



Now let’s say Bob wants people to know that his nickname is “Bertrand” and
that his birthday is on the 16'® of August. (Again, we assume there are predi-
cates “http://example.com/nickname” and “http://example.com/birthday”, that
are understood by everyone). The graph would then take on the shape shown
in figure 2.2:

"Bertrand”

hitp:iiexample.com/
nickname

hitp:fexample. com/knows

hitp://alice.com/me http://bob.com/me

hitp:flexample.com/
birthday

Figure 2.2: a set of RDF statements as a graph

Note that the values “Bertrand” and “August 16” are not URIs but literals of
the types string and date respectively.

Ontologies

In the previous section we assumed the existence of some universally understood
terms such as “http://example.com/knows” to express certain concepts. In
reality, we don’t expect people and machines who stumble across this data to just
know what those terms mean. Rather, we define what they mean in so-called
vocabularies (also called ontologies, though this name is usually reserved for
more complex vocabularies [16]). Vocabularies are themselves described in RDF
triples. This provides linked data with one of it’s greatest assets: discoverability,
i.e. the possibility for people and machines to follow links, and learn what
those links mean “on the fly”. Many vocabularies for different purposes have
been created, some of which are reused so often they have been dubbed “core
vocabularies” [15], such as

e FOAF?® for describing people

e vCard® for describing people and addresses

Shttp://xmlns.com/foaf/spec/
Shttps://www.w3.org/ TR /vcard-rdf/



e DOAP” for describing projects
e RDFS® for describing ontologies themselves

In 2011, The companies behind the largest browsers on the web, Google, Bing
and Yahoo! published a new vocabulary called “schema.org”®. Terms from this
vocabulary are used to add structured mark-up to web pages, and allows search
engines to better interpret the content of those pages [17].

2.1.3 Querying Linked Data

There are several ways in which linked data is offered on the web, with variable
degrees of queryability: most data sets are not live queryable, i.e. they cannot
be searched without first downloading the entire knowledge graph [18]. They
are offered as data dumps, i.e. large files containing all triples of a data set.
This type of data set puts the complete burden of query execution on the client,
and might cause a lot of network overhead, since a client who might look for
only a single triple is still required to download the whole set.

An approach that gives slightly more responsibility to the server is the so-called
linked data documents method. In this paradigm the triples of a data set are
distributed over several files instead of one monolithic file. The files are struc-
tured in such a way that the URI of a file is either subject or object of the triple
it contains. Structuring triples about a URI in the file pointed to by that URI
is in accordance with the Linked Data principles mentioned in subsection 2.1.2.
This type of structuring also allows for link traversal based query execution, a
querying strategy in which new data sources are discovered at runtime by re-
solving URISs in (partially) matching triples that have already been encountered

[8].

On the opposite side of the spectrum we find SPARQL-endpoints, a type of
endpoint where the client submits queries in the SPARQL-language, a query
language designed to query RDF [19]. Thus, in this paradigm queries are com-
pletely executed server-side, incurring a high server cost. As a consequence, the
majority of linked data is not offered in this way, and the SPARQL endpoints
that do exist suffer from frequent downtime [20].

An approach that balances the load of query execution between client and server
are triple pattern fragments [18], a query interface where servers are tasked with
matching triples according to a pattern, given by the client, and the client with
breaking down complex queries into triple patterns, optimally scheduling the
requests of these triple patterns, and finally aggregating these partial pattern
matches into the final results of the complete query.

"http:/ /usefulinc.com/ns/doap
8https://www.w3.org/TR/rdf-schema/
9https://schema.org/

10



2.1.4 Solid

Solid is a decentralized platform upon which applications involving user data
can be built, based on RDF and Semantic web technologies. In Solid each user
can create one or multiple personal online datastores pod, which can reside on
either the server of a provider or on a personal server. Solid applications are
implemented as client-side web applications that directly read and write data
from pods. As such Solid applications essentially become “views” of the data
residing in the pod [7]. Data and application are decoupled from that data by
design to allow for data reuse and seamless switching between applications [6],
without the need to migrate or copy data. Users in Solid are identified through
a globally unique URL called aWebld [21]. A solid pod itself is structured ac-
cording to the linked data documents paradigm, in which triples are distributed
over files to which they are relevant, as explained above. A solid server is imple-
mented according to the linked data platform (LDP) specification [22], which
specifies how clients can interact with the server.

In order to test the hypotheses proposed in chapter 1, we will simulate a social
network that operates in a similar fashion to a Solid application.

2.2 Social Network Structure

A social network is a structure made up of people that maintain one-to-one social
relationships. Such a network can be modeled by a social graph: The nodes in
the graph represent people, while the the vertices represent the presence of some
predefined social relationship between two persons. Social graphs can be used
to model many types of social networks, but in the context of this thesis, we will
focus on the modeling of online social networks. In section 2.2.1 we describe
a number of mathematical graph properties, which we use in section 2.2.2 to
characterise online social graphs.

2.2.1 Graph Properties

Some fundamental concepts and properties that are relevant for describing social
graphs are given here:

e Degree The degree k of a node is the amount other nodes it is connected
to, thus in a social graph, it represents the amount of people an individual
is connected to.

e Degree distribution: Let p; be the fraction of the network that has
degree k. The degree distribution shows the values py for every value of
k [23].

e Hop distance: The minimum amount of connections one has to traverse
to reach to get from one node to another node, averaged out over all nodes

11



as start and end point. In a social graph this would represent the number
intermediate acquaintances two people have between them. (On Face-
book, the average hop distance is 4.3. [23]) This value is unfortunately
only defined in connected graphs, i.e. graphs where any pair of nodes
is connected though some path. Furthermore it can easily be skewed by
a single ill-connected path [23]. The networks generated in later chap-
ters aren’t always guaranteed to be connected, which is why we resort to
measuring the neighborhood function, described in the next bullet point.

e Neighbourhood function: The neighbourhood function N (h) of a graph
describes the number of pairs (u,v) such that u is reachable starting from
v, taking a path that counts h edges or less. In other words, it shows what
portion of the graph we can cover in A hops on average, starting from a
random node. This measure is more robust than the hop distance.

e Degree assortativity: The correlation between the degree of a random
node, and the degree of the nodes it is connected to. For social networks, a
positive assortativity means that people with many friends are connected
to other people with many friends.

e Local clustering coefficient: The ratio of the number of connections
in the neighborhood of a node (i.e. the induced subgraph consisting of a
node and all nodes connected to that node) over the amount of possibles
connections in the neighborhood.

2.2.2 Social Graph Characteristics

A social network site is defined in [24] as a site that allows users to create public
or semi-public profiles, to create a list of other users with whom they share a
connection, and view and traverse their list of connections and those made by
others on the website. The characteristics of social networks have been the sub-
ject of study for quite some time, with the well known assertion that all people
in the world are connected through “six degrees of separation” going back to
1929, and Milgram studying the same phenomenon in 1967 [25]. Yet it is only
since the advent of social network sites that researchers have been able to map
and study large scale social networks such as Facebook [24].

Some key characteristics of social graphs in general are presented in [26], and
are confirmed to be present in the Facebook social graph in [23]. These charac-
teristics are summarized here:

1. Sparseness, i.e. only a fraction of all possible links in the network actually
exist, reflecting that people only know few people compared to the total
amount of people in the network.

2. A heavy-tailed degree distribution, i.e. the there are some nodes that
are very well connected compared to the mean, reflecting the fact some

12



individuals have very large social “bubbles” (outside of pandemics, that
is).

3. A positive degree assortativity, i.e. people are mostly connected to people
who have a similar amount of friends.

4. A Short average hop distance.

5. A high average local clustering coefficient, meaning that although the
network as a whole is sparsely connected, the “social bubble” of individual
people is highly connected

2.3 Discrete Event Simulation

The discrete event simulation (DES) is a popular method for modeling systems
where behaviour is (partly) stochastic in nature, and changes to the system
happen at discrete moments in time. The technique is used in various domains
such as economic behaviour modeling, energy and environmental problems, sup-
ply chain management, healthcare modelling, project management and queuing
theory [27].

The basic assumption in a DES is that the state of the system only changes
at discrete instances in time. The state remains unchanged in the time be-
tween those instances, and therefore must not be simulated. The simulation
thus “jumps” through time, from one state change to the next. As such DES
stands in contrast to continuous-time simulations, where the state of a system
is usually evaluated at small, fixed time increments.

2.3.1 Flow of execution

Discrete event simulations simulate the evolution of a system in a sequential
manner. At the core of the simulation lies a variable clock that keeps track of
the simulated time. The simulation also maintains an event list, which contains
events scheduled in the future. An event is anything and everything that changes
the state of the system, e.g. the arrival of a message in a queue or the sudden
crash of a server. The event list is stored in chronological order, so that the
earliest future event sits at the top. A single simulation step is comprised of the
following operations:

1. The top event is popped from the event list.

2. The system state is updated according to the event that has been taken
from the list in (1).

3. Any new events that might have been generated because of the state
change in (2) are added to the list at their respective chronological posi-
tion.

13



The simulation ends when a certain criterion, usually a certain simulation time
limit, has been reached [28].

2.3.2 Stochastic Systems

Discrete event simulations are often used to model stochastic systems, where cer-
tain event parameters or the frequency of occurrence of events are distributed
according to a probability distribution [29].

The most commonly used process to model occurrences of events in a system,
such as the arrival of requests at servers, is the Poisson process. A Poisson
process is a counting process where occurrences of a certain event within an
interval of length ¢ are counted. The occurrences are independent of one an-
other. Given that there are on average A -t occurrences in the interval, the
probability of k occurrences in the interval is given by the following probability
mass distribution:

Where A is called the rate parameter.

Another way to define a Poisson process is as follows: given is a process where
events occur at discrete points in time. If the intervals in between subsequent
events constitute a sequence of independent exponentially distributed random
variables with rate A, then the process is a Poisson process with rate A. The
exponential probability density function is given by:

flasA) = X-e™r®

This second definition is quite useful in a discrete event simulation: if we wish
to generate a Poisson process with rate A, all we need to do is make sure that
the time between two events is drawn from an exponential distribution with
rate A. In practice, when an event is popped from the event list at time ¢y, we
draw an interval of length [y from an exponential distribution with rate A, and
add a new event to the event list at time ¢y + o, thus creating a Poisson process.
Such an approach is shown in figure 2.3

Figure 2.3: Schematic of a Poisson process
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Chapter 3

Social Application Model

In this chapter we will describe a model for a hypothetical decentralized social
media application. The focus lies on designing a system that provides basic
social media functionality through the use of Linked data, based on the premise
that every user has a pod in which data is stored. We assume that these pods
reside in simple document-serving servers, as is the case on the Solid platform,
and are not accessible through SPARQL-endpoints. This hypothetical system
will serve as the basis for simulations in later chapters. Therefore, in order
to keep these simulations tractable, we omit real-world design criteria such as
privacy.

3.1 Functionality

Starting from the definition of a social network site in [24] and expanding upon
it, we present the following list of desired functionalities:

1. Users have a profile that contains personal information.

2. Users maintain a list of profiles to whom they are connected. It would be
possible to create a Twitter-like application with “followers”, i.e. unidirec-
tional connections, but we choose to make the connections bidirectional,
in the style of Facebook “friendships”, as we have data on the graph prop-
erties of the Facebook social graph [23].

3. Users can create content in the form of text posts. The post should reside
in the pod of the creator.

4. Users can leave comments on content their connections have created, which
can itself consist of a comment or a text post. These comments should
reside in the pod of the creator, while a link to this comment should be
added to the original post.
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5. Users can see an overview of the posts their connections have recently
made, together with the comments other people have created in reaction
to those posts (cfr. Facebook’s news feed) .

3.2 File Structure

To achieve aforementioned functionality, we propose the following set of files
and folders, kept in the datapod of each user:

1. A profile, a file containing all RDF triples describing the user, as well as
the triples describing his or her connections to other users. The file also
contains references to all files mentioned below, so that these files do not
have to reside in a fixed place.

2. A folder called “posts”, containing this users text posts. Each post gets
it’s own file within this folder. A post keeps a link to the creator, and
keeps links to any comments that might have been left by other users in
reaction to the post.

3. A folder called “comments”, again containing a single file per comment
created by the user. A comment file keeps reference to the creator and to
the original content it has been created for. Note that this content can
itself be a comment.

4. An event file, this file contains most recent events a user has generated. An
event keeps a reference to the event source (which in this simple application
can only consist of the creation of a post or comment by the user, but
could be cover more types of event sources in future work). The event
file contains only a limited number of the most recent events, i.e. when a
new event arrives, the oldest events gets pushed out. This is inspired by
the Facebook news feed, which is also limited in number of events that
are displayed. In a real implementation of a social application, it would of
course also be possible to retrieve all posts or comments a user has made,
but we choose to omit this functionality in favour of simplicity for our
simulated application.

Posts and comments are all structured in linked data document fashion, i.e. the
URI of a post or comment points to a file containing triples that have that URI
as subject or object. Note that alternatively we could have chosen to maintain
one large file containing all posts, and let individual posts be identified through
so-called “hash URIs” [30]. This would however require other users to download
this entire file each time a single post is requested, which could cause significant
network overhead.

3.3 User Actions

Within the application a user can perform the following actions:
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1. Creating posts: creating a post causes a new file to be added in the
“posts” folder, en a new event to be added to the event file. This event is
of the type “writeAction” in the schema.org vocabulary.

2. Creating comments: creating a comment causes a new file to be added
in the “comments” folder, en a new event to be added to the event file.
This event is also of the type “writeAction” in the schema.org vocabulary.

3. Compiling a news feed: As mentioned above, a news feed is created
by gathering the event files of all connections, and subsequently collecting
the associated event sources. Note that the traffic generated by this action
depends on the amount of connections one has. Having many connections
requires more data to be collected than having few.

A schematic overview of the file system is given in figure 3.1. A schematic of
the graph structure of a post created by user Alice and a comment created by
user Bob is shown in 3.2, where all terms except for “a” are in the schema.org
vocabulary (“a” is shorthand for ”rdf:type”). The dashed line represents the
boundary between data pods.

T
g
e —
pod
R
Y Y
me event posis comments
file
post comment
n m

Figure 3.1: Schematic overview of the application file system

3.4 Discussion

In this section we consider whether it’s possible for a decentralized social net-
work to offer all features of a centralized network.
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Figure 3.2: Example Graph structure of a post and comment.

The system we propose in this chapter clearly offers the most basic social net-
work functionality: maintaining lists of connections and creating content such
as text posts and comments is still possible while keeping all data in the pods
of the creators through linking. Through the use of “events”, which keep track
of the most recent actions a user has undertaken, the creation of news feeds
becomes tractable, and avoids the need to gather and filter needlessly large
amounts of data. In our implementation these events are only used to represent
the creation of a new text post or a new comment, but they could just as well
be used to represent videos, links, articles, etc.

One feature a decentralized system doesn’t offer is the ability to easily look up
profiles and content in a single request, since data is spread out over multiple
sources that aren’t necessarily indexed. Two approaches are possible to resolve
this problem: we can either aggregate and index all servers through web crawl-
ing, or use link traversal strategies, possible aided by data summaries, to find
relevant sources on the fly [31]. Data summaries allow for a quick evaluation of
whether a source can contribute to a given query, and thus speeds up finding
sources through link traversal.
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Chapter 4

Social Network Simulation

In this chapter we describe how the simulation we use is designed. We present
the algorithm used to generate social graphs, and explain the design choices
made in the various components of the simulation.

4.1 Overview

In order to test the proposed hypotheses we will run a discrete event simulation
of the social network application described in the previous chapter. The system
we simulate is agent-based, meaning we will simulate individual users, of whom
the data is distributed over pods residing in a number of simulated servers.
These users can perform three types of action: create posts, create comments
and collect news feeds containing the most recent actions of their friends. Since
the traffic generated by a user depends on the amount of connections to other
users he or she has, as will be explained later, it is important to create social
graphs that display to the characteristics laid out in section 2.2 as much as
possible. In the next section we describe how such graphs are generated in our
simulation.

4.2 Social Graph Generation

We repeat the most important properties of an online social network here for
convenience:

1. Sparseness
2. Heavy-tailed degree distribution
3. Positive degree assortativity

4. Short average hop distance (or a neighborhood function that covers most
of the graph in few hops)
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5. High average local clustering coefficient

4.2.1 Algorithm

The algorithm employed to generate social graph structures that display afore-
mentioned characteristics is designed to iteratively generate a hierarchy of clus-
ters, where clusters are densely connected sets of nodes. The core idea is that,
at each step of the algorithm, a set of clusters of nodes is generated according
to input parameters. In the next iteration, these clusters themselves are treated
as nodes that in turn get clustered.

An example of this hierarchy structure in the real world would be a school of
children: children have two or three best friends in their classroom. These are
small, very dense clusters, as all children in a group of best friends know one
another very well. Of course, there is quite some overlap between these small
clusters, forming a larger, less densely connected cluster, namely the class itself.
Many children also get along with children from other classes in the same grade,
forming an even larger cluster of classes, the entire grade. Finally, a few children
even know kids in other grades, forming the largest cluster: the whole school.

In this example the highest level of the hierarchy is the school. The school itself
is made up of a cluster of loosely connected grades. Grades are made up of
a slightly stronger connected cluster of classes, classes are clusters made up of
even more strongly connected friend groups, and these friend groups are small,
extremely densely connected groups of children.

Here we explain how the algorithm operates by going through the input param-
eters and how they are used, together with a numerical example, of which the
steps are shown in figure 4.1.

1. Cluster sizes: a list that holds the sizes of clusters at each level of the
hierarchy, from lowest level to highest level.

Example: the network generated by list [2, 3, 4] would contain

e 2 top-level clusters, both consisting of:
e 3 sub-clusters, which both consist of:
e 4 users, since at the lowest level, nodes of the network are simply

users.

The total network size can thus be calculated by taking the product of the
cluster sizes, in this case 2 -3 -4 = 24. The resulting (not yet connected)
cluster hierarchy is shown in figure 4.1a.

2. Cluster densities: a list that hold the densities of the clusters at each
level of the hierarchy. By density we mean the amount of existing connec-
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tions divided by the amount of possible connections in a cluster.

Example: Continuing with the network generated by cluster sizes [2, 3, 4]
from (1), we now assume the cluster densities [1, 1, Z]. This means that

e the top level of 2 clusters should have a density of 1. As the amount
of possible connections is 1, this simple means the two clusters should
be connected.

e One level down, we find that the clusters consisting of 3 nodes should
have % of all possible connections realized. The total amount of
possible connections is 3, and 3 - % =1, so one connection should be
created.

e On the lowest level, a cluster density of % is given, so % of all 6

possible connections, resulting in 4 connections being made.

The created connections between clusters are shown in figure 4.1b, note
that the connections between high-level clusters aren’t resolved to user
connection yet.

. Connection densities: a list that holds the densities of connections be-
tween the clusters at each level of the hierarchy. In (2) we describe how
clusters themselves can be connected. Of course, this operation is not yet
well-defined, i.e. it does not specify whether all people belonging to a clus-
ter should be connected to all people belonging to another cluster in case
these two clusters are connected, or only a fraction thereof. The amount
of connections that should be created between two clusters is given by
the entries of this list, again as fractions of the total amount of possible
connections.

Example: We resume the example from (1) and (2), and add the input

connection densities [45, £, 1].

e The two top clusters are connected, and both clusters contain 12
users. The total possible amount of connections is thus 12-12 = 144.
the top level input connection density is 4—18, so 3 users from one
cluster should be connected to 3 users from the other cluster.

e The next level has cluster density é, and the clusters on this level
all contain 4 users, thus if two of those clusters are connected, this
results in 4 - 4 = 16 possible connections, and thus 16 - é = 2 created
connections.

e On the lowest level, the concept of connection density doesn’t make
sense, since a connection between two individual users is binary: it
either exists or it doesn’t. Therefore the last number in the connec-
tion density list does not affect the algorithm. It is always interpreted
as being 1.
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In figure 4.1c we show the network in which connections between clusters
have been resolved to connections between individual users. The connec-
tions pass through the hierarchy level where the original cluster connection
was created.

An important thing to note is the way in which users are selected to form a
connection: one possibility would be to randomly select users with a uniform
probability, yet this would result in a normal degree distribution, and no signif-
icant degree assortativity.

Therefore we choose a different method: we still randomly select users, but with
probabilities proportional to the amount of connections a user already has. The
effect of this approach is twofold: on one hand, it causes highly connected users
to become even more connected, ensuring a heavy-tailed degree distribution. On
the other hand, the connection that is formed is likely to be between two highly
connected users, thus creating a positive degree assortativity.

This algorithm is tested in chapter 5.

We also mention that in earlier iterations of the simulation the Havel-Hakimi
algorithm was used to create graphs [32]. This algorithm generates a graph ac-
cording to a given degree sequence (i.e. a sorted list of the degrees of all nodes).
However, not all degree sequences are graphical, i.e. for some sequences of num-
bers there exist no graphs that have this sequence as degree sequence, which
made this into a cumbersome manual search for graphical sequences of various
sizes. Furthermore, there exists no intuitive way to control graph parameters
like degree assortativity and clustering in this algorithm. The only control one
has is over the degree sequence. These difficulties sparked the search for a new,
more tuneable algorithm, which we have presented in this section.

4.2.2 User Activity

Another important aspect of the network is the user activity rate, i.e. how of-
ten a user performs certain actions such as creating posts and comments, and
compiling their news feeds. In [23] a positive correlation is found between the
amount of connections a user has, and how active this user is on the applica-
tion. Intuitively this makes sense: The more friends one has one the network,
the more new events there are to catch up on, thus creating an incentive to be
more active on the network.

To achieve this effect, we simulate user activity through a Poisson process of
which the rate parameter is proportional to the amount of connections a user
has. Note that user activity on social networks most likely does not follow
a Poisson distribution in reality. Yet, to the best of our knowledge, no work
has been published on the what an actual user activity distribution looks like.
Therefore we use the Poisson distribution as an approximation, since it is easily
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generated in a discrete event simulation and allows for fine control of event
occurrence rates.

4.2.3 User Action Handling

A Facebook benchmark study found that the server load in social networks is
dominated by read operations [33]. Therefore we only simulate read requests at
the servers; write operations are executed, i.e. posts and comments are created,
but this happens instantly and does not create simulated server traffic.

The way in which the three possible user actions is handled is described here:

e Posting: creating a post simply creates a new file in the folder “posts”
of the user performing the action. The content of this post is a string of
a randomly chosen length. This action also pushes a new “WriteAction”
event in the users event file. No server traffic is generated.

e Commenting: Creating a comment works analogous to creating a post,
with the only difference that it a URI reference pointing to the newly cre-
ated comment is appended to the file of the post or comment the comment
has been created for. Again, this creates no load on the simulated servers.

e Compiling news feeds: This action is handled in a sequence of steps:

1. The profiles of all connected users (”friends” in Facebook-speak) are
collected from the servers where the data pods of the connections
reside. From these profiles the URIs of the respective eventfiles are
extracted.

2. As soon as a profile arrives, the eventfile URI is extracted, and is
collected next. These eventfiles contain the most recent events of
users, pointed to by a source URL

3. As soon as an eventfile arrives, the post or comment pointed to by
the event source URI is fetched for each event in the eventfiles.

4. If the retrieved post or comment itself has comments, these are gath-
ered next. This is an recursive process, in order to collect complete
“threads”.

This sequence is also shown in the UML-diagram in figure 4.2

4.2.4 Server model

The data pods of users are stored on simulated servers. These servers are
implemented as simple document-serving servers, and have the following fields:

e Request queue: in this queue pending requests are stored.
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e Latency, expressed in seconds: this value models any latency a request
might experience.

e Bandwidth, expressed in bytes per seconds.

Servers are implemented in such a way that the complete bandwidth is evenly
distributed over all pending requests. Since we actually generate all user data,
and thus create all files that can be requested from the server, we simply inspect
these generated RDF-documents to find the size of a requested document in the
simulation.

Data pods are stored and queried according to the linked data documents paradigm,
the server thus stores triples regarding a certain URI in the file pointed to by
that URI. The server itself does not query the documents, it only serves them
to clients.

4.3 Discrete Event Simulation
The discrete event simulation consists of the following steps:

1. A social graph is generated according to input parameters.

2. For each user in this social graph, the corresponding files are created (cfr.
figure 3.2).

3. A set of servers is generated according to input parameters.

4. The individual users are equally distributed over the servers. (In future
work unequal distribution might be interesting to investigate.)

5. The simulation event queue is initialized with the three possible user ac-
tions for each user, i.e. posting, commenting and compiling a news feed,
as described in chapter 3.

6. The simulation warms up by filling up the folders of users with a number
of posts and comments. The content of the posts is dummy text of variable
length.

7. The simulation iterates over the event queue. The way in which actions are
handled is described earlier in this chapter. Whenever a user action has
been encountered, the same action for the same user is appended to the
event queue at an exponentially distributed time increment to create the
effect of a Poisson process, as described in section 2.3. The time between
arrival and completion of a request at the simulated servers is recorded in
log files.

8. the simulation runs until the desired simulated time has passed.
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4.4 Implementation

The network generator and the discrete event simulation have been written in
Javascript using the Node.js framework, and have been implemented from the
ground up. For manipulating RDF triples, the rdflib.js' library has been used.
Analysis of the results have been done in Python using the Pandas and Networkx
libraries.

Lhttps://linkeddata.github.io/rdflib.js/doc/
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Chapter 5

Experiments

In this chapter we present the experiments we have conducted to assess the
validity of the network generation algorithm, and to test the hypotheses formu-
lated in chapter 1.

5.1 General Notes

The main limiting factor when running these experiments is time: the inherent
sequential nature of a discrete event simulation doesn’t allow for parallelization,
and since we actually generate all user files, a lot of slow IO-operations are
required. The implementation of this simulation has been an iterative process
throughout which improvements in runtime have been made, such as avoiding
sorting the event list of the DES as much as possible, creating separate event
lists per server (which are itself easier to keep sorted), since sorting lists ac-
counts for a large part of the computational cost, and keeping a a JSON-object
to link posts URIs to any comment URIs that they might link to, to avoid hav-
ing to extract this information from the RDF-files themselves. Despite these
efforts, the experiments are still conducted with small population sizes, as the
runtime scales exponentially with the number of users in the simulated network.

Furthermore we would like to note that these experiments do not serve to make
predictions about real-world systems in terms of absolute numbers; too many
assumptions and simplifications are made in the server model, the application
model, and the network model to accurately predict real server response times.
The main focus lies on modeling how the results change under changing config-
urations and circumstances.
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5.2

Assumptions

In this section we repeat the assumptions made in the following experiments:

User activity follows a Poisson process with a rate that is proportional to
the amount of connections a user has. We assume that per extra connec-
tion, the frequency of collecting a news feed goes up by a certain fixed
amount.

Servers distribute bandwidth equally over all pending requests. This im-
plies that if the amount of requests in a server queue changes, the time to

completion for all requests needs to be updated because of the changing
bandwidth.

Users are distributed equally over the servers.

Network latency, i.e. the time it takes for data to travel from client to
server and vice versa, is equal for all requests

Servers do not compress files.
Clients do not cache files.
Servers do not experience downtime.

Server traffic is dominated by read request, thus write request are assumed
to happen instantly, without going through the server queue. This choice is
made to keep the simulation tractable in terms of complexity and runtime
duration.

Recursion of requested comments is limited in depth. As described in ear-
lier chapters, comments themselves can have comments, creating a nested
structure. When collecting a news feed, users will not gather comments
that are nested beyond a certain depth. This is copied from social network
sites like Reddit.

5.3 Experiment 1: Network Generator Valida-

tion

5.3.1 Set-up

To ensure that the algorithm proposed in chapter 4 creates networks with the
desired properties, we generate a sample set of 50 networks with empirically
determined inputs, and compare them to a baseline of 50 randomly generated
networks with the same amount of connections, and to properties of the Face-
book social graph, analyzed in [23]. We compare the networks with respect to
degree assortativity, neighborhood function, local clustering coefficient in func-
tion of degree, and degree distribution. Analysis is done in Python using the
Networkx library.
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5.3.2 Parameters

The networks are generated with the parameters shown in table 5.1

Parameter Value
Cluster sizes [8, 5, 4, 3] (network size = 480)
Cluster densities [0.4, 0.8, 0.9, 1]
Connection densities (0.1, 0.5, 0.9, 1]

Table 5.1: Parameters of experiment 1

5.3.3 Results
The results of this experiment are shown in figure 5.1.

e Figure 5.1a shows that our algorithm outperforms random networks in
terms of degree assortativity, i.e. the correlation between the degrees of
connected nodes. The algorithm however does not reach the assortativity
of a real network.

e Figure 5.1b compares the neighborhood functions, i.e. it plots the fraction
of nodes that can be reached in function of the amount of hops taken, aver-
aged out over all nodes as starting points. Our algorithm outperforms the
random networks, albeit only slightly, and the generated networks are no-
ticeably stronger connected than the Facebook graph, as it takes less hops
to reach the whole graph. The fact that our algorithm never completely
reaches a value of 1 indicates that some algorithmic networks consist of
multiple disjoint subgraphs. This is also the case for the Facebook social
graph, but 99.91 percent of users belong to the same subgraph, so that
the effects are less noticeable. This disjointness however does not have a
consequence for simulations.

e In figure 5.1c we plot the average local clustering coefficient in function of
node degree. Note the logarithmic axes. We can again see that out algo-
rithm outperforms random networks in terms of clustering, as clustering
is higher for every degree. Compared to Facebook, our algorithm clusters
too strongly for some degrees, while for others, mainly smaller degrees,
it does not cluster enough. The steep drop-off at degree = 100 is caused
by the fact that our generated network is only 480 nodes large, and thus
doesn’t have nodes with a degree over 100. Facebook enforced a maximum
of 5000 connections at the time [23] was published.

e In figure 5.1d we compare the degree distributions. Note the logarith-
mic axes. Again, our algorithm generates networks with heavier tails
than random networks, yet still diverges significantly from a real social
network. The most important difference is that our algorithm doesn’t
generate enough nodes with low degrees. Again, the sudden drop-off at
100 is caused by the smaller size of our generated network.
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5.3.4 Conclusion

For this experiment we conclude that our algorithm outperforms random net-
works, yet still does not fully capture the characteristics of a real social network
like Facebook. Furthermore, tuning the input parameters of the algorithm is
far from easy, as the characteristics are not orthogonal; e.g. shifting the degree
distribution to include more nodes of low degree directly impacts clustering,
etc. Designing an algorithm that does capture all characteristics perfectly could
likely fill up a thesis of it’s own, and is not the main focus of this disserta-
tion. We make a trade-off between accuracy and complexity by opting for this
network generation algorithm.

degree assortativity comparison
PG neighborhood function comparison
1.0-

0.25 -

0.20 -

o
@

0.15-
0.126

o
o

0.10-

°
kS

0.05 -

degree assortativity coefficient [-]
o
N

fraction of nodes reached [-]

—=— algorithm
0.00 - —_— —e— random

! KB ) 0.0 —%— Facebook
algorithm random Facebook

hops
d tativit fficient - . . .
(a) degree assortativity coefficient compar (b) neighborhood function comparison

1S0n
clustering coefficient comparison degree distribution comparison
0 1012
10 —m— algorithm —m— algorithm
—e— random ~&— random

—¥ Facebook 102 —+ Facebook

10-1 -

clustering coefficient [-]
fraction of population [-]
g

10° 10! 102 103 10° 10! 10? 10°
degree degree

(c) clustering coefficient in function of de- (d) degree distribution comparison of algo-
gree comparison rithmically generated networks

Figure 5.1: Comparison of characteristics between algorithmically generated
networks, randomly generated networks, and the Facebook social graph
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5.4 Experiment 2: Decentralization with con-
stant bandwidth

5.4.1 Set-up

In this experiment we aim to test hypothesis 2, which we repeat here:

The average time to complete user operations will increase with increasing de-
centralization of data, keeping bandwidth constant in the network.

The reasoning behind this hypothesis is as follows:

1. Because of the nature of linked data, actions such as compiling news feeds
are executed sequentially per connected user, as described in chapter 4,
(i.e. for one connection, first the profile is requested, then the eventfiles,
then the posts and comments, because the URIs of later requests need to
be extracted from previous requests. Note that the requests constituting
these sequential steps are executed in parallel, e.g. all requests for the
event sources of a user are issued at the same time). Consequently, if any
of these intermediate steps is delayed, the entire action takes longer.

2. The files of “popular”, i.e. well-connected users, are requested significantly
more often than those of less connected users, since well-connected users
not only have more connections, but are connected to well-connected -
and thus more active - users.

3. When collecting many users in large servers with corresponding band-
width, this popularity-factor is averaged out; a server will likely contain a
mix of pods of highly connected and less connected users.

4. By distributing users over more servers, there are less user per server and
as such less averaging over popularity, creating a group of popular servers
which are often “congested”, and as such delay the operations of all users
needing files from them.

In order to prove or disprove this hypothesis, we run a series of simulations,
in which we distribute a fixed amount of users over an increasing amount of
servers, while keeping the total bandwidth in the system constant, by distribut-
ing it equally over the servers.
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5.4.2 Parameters

The parameters for this experiment are given in table 5.2.

type parameter value(s)
network size 120 users
simulated period 1 day

fixed average news feed collection rate 14.35 times/day
average post creation rate 2 times/day

average comment creation rate 4 times/day

max. comment recursion depth 3

max. number of events in user eventfiles 5

. number of servers 1, 5, 10, 50, 100

variable .

bandwidth per server 1 Gbps/(number of servers)

Table 5.2: Parameters of experiment 2

We run this experiment 5 times and average out the results, to account for
possible variability due to the network structure and the randomly generated
intervals between events.

5.4.3 Results

The results are shown in figure 5.2. Note that there are error bars drawn to
show the variance between the 5 runs of this experiment, but the variance is
very small.

e Figure 5.2a shows the total amount of requested data throughout the sim-
ulation. This is measured to ensure that any increase in server response
times is due to decentralization and not due to an increased load on the
servers.

It is clear that this number remains approximately constant for all simu-
lations, as is expected.

e Figure 5.2b shows the average time between arrival and completion of an
individual request at the server.
We can see that the server response time increases with increased decen-
tralization of the users. The increase starts out steep, but slows down for
larger numbers of servers, likely this is due to the “popularity” effect, as
described above, leveling out at a higher level of decentralization. The
time for resolving individual request increases significantly, with a factor
of approximately 7.25.

e Figure 5.2c shows the average time between the start of the first request
and finish of last request of collecting a news feed.
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The time to collect news feeds also increases, yet with a much lower factor
than the individual requests of only 1.23. This is due to the fact that,
although the different steps of news feed gathering are sequential, many of
the requests for content that constitute these steps are issued in parallel, as
shown in figure 4.2, thus reducing the effects on total news feed collection
time.

5.4.4 Conclusion

The results from this experiment seem to suggest that hypothesis 2 is
valid: the time to collect a news feed does increase due to decentraliza-
tion, since no other parameters were changes in this experiments, only the
amount of servers and their respective bandwidths.
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5.5 Experiment 3: Increasing User Activity

5.5.1 Set-up

In this experiment we aim to test hypothesis 4, which we repeat here:

The average time to complete user operations will increase with increasing fre-
quency of these operations in the network

We note that in our simulation, the only type of action that generates traffic at
the servers is the news feed collecting action, as explained earlier.

5.5.2 Parameters

The parameters for this experiment are given in table 5.3.

type parameter value(s)
network size 120 users
simulated period 1 day

q average post creation rate 2 times/day

xed . .

average post creation rate 2 times/day

average comment creation rate 4 times/day

max. comment recursion depth 3

max. number events in user eventfiles 5

number of servers 10
bandwidth per server 0.1 Gbps

variable | average news feed collection rate 2.9, 28.7, 57.5, 143.5, 215.4 times/day

Table 5.3: Parameters of experiment 3

We run this experiment 5 times and average out the results, to account for
possible variability due to the network structure and the randomly generated
intervals between events.

5.5.3 Results

The results of this experiment are shown in figure 5.3.

e Figure 5.3a shows the total amount of requested data throughout the sim-
ulation. The load on the servers clearly increases linearly with increasing
frequency of news feed collection.

e Figure 5.3b shows the average time between arrival and completion of an
individual request at the server.
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We see that this number rises, as expected, but less severely than the
increase in the previous experiment: an increase in request frequency a
factor 200 only increases the server response time by a factor of ~ 30%.

e Figure 5.3c shows the average time between the start of the first request

and finish of last request of collecting a news feed.

The time it takes to collect a news feed also increases, but - as was the
case in experiment 2 - with a lower factor than the individual requests of
around 1.04, due to the parallel issuing of many requests.

5.5.4 Conclusion

This experiment seems to indicate that the proposed hypothesis is valid; in-
creasing the user frequency does increase the time it takes to collect a news
feed, albeit not by a large factor.
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5.6 Experiment 4: Increasing Network Size with
Self-Hosting Users

5.6.1 Set-up
In this experiment we aim to test hypothesis 3, which we repeat here:

The average time to complete user operations will not increase significantly with
increasing network size, when each user hosts it’s own pod.

This hypothesis is interesting with regard to Solid, since it’s possible for users is
to host their own data pods on the platform. In this experiment we test whether
self-hosting a server is a scalable approach with increasing network size. In this
experiment we assume that users host servers with a lower bandwidth of 0.01
Gbps.

5.6.2 Parameters

The parameters for this experiment are shown in table 5.4

type parameter value(s)
simulated period 1 day
average post creation rate 2 times/day
average comment creation rate 4 times/day

fixed .
max. comment recursion depth 3
max. number of user events )
bandwidth per server 0.1 Gbps
. network size 60, 120, 180, 240 users

variable :

number of servers equal to network size

Table 5.4: Parameters of experiment 4

Again we run the experiment 5 times, and average out over the results.

5.6.3 Results

First off all we note that, by changing the network size, we unavoidably also
slightly change some graph properties. Most importantly, we see in figure 5.4a
that the average amount of friends a user goes up slightly. As the user activity
rate is based on the amount of friends a user has, this number also goes up,
as shown in figure 5.4b. This implies that the load on the servers will increase
slightly faster than linear with increasing network size, as can be seen in figure
5.4c.
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In figure 5.5a we see that the time to resolve an individual request at the servers
barely changes, from 0.465 to 0.476 seconds with increasing network size, i.e.
an increase of 2% . Consequently, the time to collect an entire news feed also
only changes slightly in figure 5.5b, from 7.75 to 8.15 seconds, although at a
higher percentage than the individual request times, by 5%. This is likely due
to the increased average amount of friends, since users need to collect more files
on average per news feed collection.

5.6.4 Conclusion

This experiment seems to validate hypothesis 4: scaling up a network of self-
hosting users doesn’t seem to significantly impact the time it takes collect news
feeds, and as such self-hosting appears to be a viable approach for a Solid-like
platform.
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Chapter 6

Discussion

The conducted experiments validate the proposed hypotheses in as far as our
simulation is able to capture the essence of a real-life social network applica-
tion. The simplifications made in the experiment set-ups and small network
sizes might affect numerical results, yet the general trends are expected to stay
valid.

The first experiment in section 5.3 shows that the proposed network genera-
tion algorithm is a viable approach to create social graph structures, yet more
research in optimal parameters is needed to truly mimic networks like Facebook.

The second experiment in section 5.4 shows that decentralization of data in-
creases the time it takes to complete actions if bandwidth remains constant.
The extrapolated implication of this finding is that a decentralized network will
require more bandwidth to offer the same response times when compared to a
centralized system. In this simulation users and servers acted in a very naive
way, i.e. for each document a separate request was issued, even if all requested
documents resided in the same server. A system that does take advantage of
partially centralized data would likely offer even better response times.

The third experiment in section 5.5 shows that the time to execute user actions
increases with increased frequency of those actions, albeit not by much. The
(obvious) implication for pod providers is that they should be prepared to scale
up bandwidth when Solid were to suddenly become a popular platform.

The final experiment shown in section 5.6 indicates that self-hosting is a valid
strategy for a decentralized network in terms of time to complete user actions. If
a Solid-like network were to use self-hosting as a selling point and emphasize the
complete data control that is created by storing the data physically in the homes
of users, a sudden increase in popularity wouldn’t affect the server response
times as much as in a system that relies on pod-providers that need to scale up
with the increased network traffic, as shown in experiment 2 and 3.
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Chapter 7

Conclusion

In this dissertation we have laid out a hypothetical decentralized social network
application, inspired by the Solid platform. We implemented this social net-
work application into a discrete event simulation, combined with an algorithm
to generate realistic social graph structures, to test such a decentralized system
under various configurations and circumstances regarding network size, number
of servers and user activity.

We found that basic social network functionalities can be mapped onto decen-
tralized networks, but that there are still features that are more easily achieved
in a centralized system, such as looking up specific content, which require smart
querying tactics in a decentralized system.

The proposed network generating algorithm was validated against a random
baseline and the Facebook social graph. It was shown that the algorithm is a
viable approach, yet more research is needed to determine optimal parameters
to completely capture the characteristics of an online social graph.

The proposed discrete event simulation was used to test a number of set-ups:
varying network size with constant total bandwidth, varying user activity rates
and varying network size with self-hosting users. We showed that for the first
two experiments, the time it takes to complete user actions goes up, while for
the last experiment this time remained constant. These findings confirmed our
hypotheses, albeit for networks of small sizes.
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Chapter 8

Future Work

8.1 Expanding Functionality

The application simulated in this work only implements very basic features such
as creating posts and comments, and compiling news feeds. Future work could
expand upon this set of features to mimic social networks more closely. Fea-
tures such as uploading images, uploading videos, chatting with other users,
pages for events and organizations attracting, following profiles instead of bidi-
rectional friendships, etc. could all be added.

8.2 Experimenting With Load Distribution

The generated network traffic was assumed to be static over time in this thesis.
In future work it would be interesting to see how decentralized networks with-
stand sudden surges in traffic, for example when a piece of content goes “viral”.

8.3 Querying Social Networks

One of the features that a decentralized social network does not offer is a
straightforward way to look up specific profiles or content on social media. It
would be interesting to investigate ways to make this possible, for example
through data summaries and link traversal query execution.

8.4 Social Application Benchmark
In this work we opted to simulate simple servers in a discrete event simulation.

As a general remark on that approach, it was found that discrete event simu-
lations - although allowing for fine control simulation parameters, and giving
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clear insight in the simulated system - is costly in terms of runtime, and it might
be worthwhile to investigate alternative simulation methods, such as simulating
the network with real servers. The work presented in this dissertation could be
used as a benchmark generator, that generates the load under which the servers
operate.

8.5 Facilitate self-hosting in Solid

In experiment 4 we show that the approach of self-hosting pods with small
servers scales well with a growing network size. Self-hosting of pods is possible on
the Solid platform, yet requires a prohibitive amount of technological knowledge
to be accessible to a large public!. It would be interesting to investigate the
development of physical plug-and-play data pods that anyone could easily set
up at home. This could also be a selling point of the Solid platform: anecdotal
evidence of the author proves that it’s easier to explain to a layman that his
data is on a pod he has at home, than the subtle difference between what server
(?what’s a server?”) his data resides on.

Lhttps://solidproject.org/use-solid /
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