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I. INTRODUCTION

THROUGHOUT the history of sports, people have always
been fascinated by the ability to accurately forecast the out-

comes of sport events. This human fascination of predicting the
future in the context of sports is most apparent in the recent pro-
liferation of online sports betting to a multi-billion dollar indus-
try [1]. Tennis is without a doubt one of the most popular sports
in the world. It is played by millions of people and the most
prestigious tournaments draw a substantial amount of interna-
tional attention. This popularity along with the chance to turn a
profit in the betting market makes tennis an appealing research
subject.

The goal of this thesis is to build on the current state-of-the-art
in male professional tennis prediction. Concretely, given infor-
mation about a tennis match, we want to accurately predict the
winning probability of each player in an attempt to turn a profit
in the online tennis betting market. Like most research , we re-
strict our focus to predicting professional ATP singles matches
played at the tour-level. Meaning matches played in the main-
draw of Grand Slams, ATP Masters 1000 tournaments, and ATP
500/250 Series tournaments.

A. Related Work

The first attempts in tackling the problem of tennis match pre-
diction started in 1999 with the first regression model of Boulier
and Stekler [2] to forecast tennis matches based on a player’s
ATP-ranking. Ever since then, interest has continued to rise,
leading many researchers to develop machine learning models
of varying complexities and types. Nowadays, most approaches
in the literature with the goal of predicting tennis matches fall
into one of three categories: point-based, pairwise comparison
and regression.

Pairwise comparison is a way of comparing players in pairs
trough the use of some underlying metric(s) defining each
player. A popular type of pairwise comparison model is the

Bradley-Terry model [3] which has been broadly applied in ar-
eas such as sports, and machine learning. It allows to predict the
outcome of a paired comparison of individuals i and j, given a
respective metric πi and πj .

P (individual i beats individual j) =
πi

πi + πj
(1)

The first application of such model applied directly to tennis was
developed by McHale and Morton [4] in 2011.

Point-based models relate to a type of prediction models that
in essence only try to estimate the probability of winning a point
on serve and return. Assuming that every point is indepen-
dent and identically distributed (IID) from all other points in
the match, the winning probability of each player can be de-
rived in closed-form. Although it was proven that the IID as-
sumption does not hold, researchers argued that deviations are
small enough that using a constant probability throughout the
match is fine for most purposes [5]. With this in mind, Klaassen
and Magnus developed a way to estimate winning probabilities
from any point in the match by modeling the tennis match as a
discrete-time Markov chain, where each state represents a cor-
responding score [6]. Having established this model of a tennis
match, the only thing that remains to be estimated are the serve
point winning probabilities of each player in order to predict a
full tennis match.

Contrary to point-based models, regression models try to
model the players winning probabilities directly. They achieve
this by extracting a set of features describing the characteris-
tics of each player for every match in time. The relationship
between these features and winning probability is then learned
using a machine learning model capable of probabilistic classifi-
cation. Regression models differ in the set of features they con-
sider and the used machine learning model. Regression based
models perform better than the other approaches when the goal
is to predict winning probabilities before the match has started
as they do not rely on the false assumption of IID points. On the
other hand, point-based have more flexibility when it comes to
in-play predictions and can even be used to estimate the chance
of a particular score outcome. Since the goal of this work is to
predict outcomes before the match has started, regression based
methods are the most sensible choice.

II. DATASET

The bulk of the raw tennis match data was collected from
an open-source dataset published by Jeff Sackmann on GitHub
[7]. The dataset contains all tour-level main-draw matches start-
ing from 1968. The dataset also contains Challenger matches
starting starting from 1978 and Futures matches starting from



1991. Even though the goal of this thesis is to predict tour-level
matches, match results at a lower level will also be used for
training and feature extraction. When a player first competes in
a tour-level match, his strength can still be assessed using data
from the Futures and Challengers tournaments. In the absence
of this data, the model would have to treat every new player as
equal and would have to be overly conservative in its predic-
tions. Even the best players spend a few years of their early ca-
reer in the Futures and Challengers circuit before they are ready
for the bigger tournaments.

Matches that were stopped before completion are removed
from the dataset. It is not useful that the model learns form these
matches, as they are usually the result of injuries or disqualifica-
tion. In this scenario, the injured or disqualified player’s strength
is not properly reflected in the result of the match and is thus not
useful as learning data for the model. Walkovers are removed
from the dataset for the same reason.

A. Feature Extraction

Before features are extracted, the raw Sackmann dataset is
sorted by date. This will ensure that each feature extractor will
only use data from the past, as using matches from the future
would result in data leakage. A brief overview of the extracted
features is given below.

The absolute amount of wins and losses of each player are
added as features. The matches are divided in three categories
according to tournament prestige. Furthermore, the matches are
divided by time, to discern matches played in the last semester,
year, and of all time. This results in 18 features per player. We
choose to not use winning percentage to more accurately present
players with a low amount of matches.

Another way to reflect a player’s strength is by the use of a
rating system. While the official ATP-ranking has some short-
comings when used as a means to reflect current form, rating
systems such as Elo have been successfully applied to tennis
prediction [8]. For this reason, we used Glicko-2 [9] ratings,
which is an improvement over Elo, as features.

Across all levels of tennis, the playing surface can have a siz-
able influence on the expected outcome of a match. To model
this, a one-hot encoding of the surfaces is added along with the
absolute amount of wins and losses of each player on every sur-
face.

The other extracted features are related to:
• Home advantage
• Age
• Whether the match is best-of-thee or best-of-five
• Head-to-head record
• Previous success in this tournament
• Recent form / inactivity
• Time

An overview of all 84 extracted features is given in Table I.

III. MACHINE LEARNING MODELS

Initially, the focus is entirely on making a good predictor of
tennis matches without considering the betting market. A better
predictor will result in a better betting model provided that the
same betting strategy is used.

TABLE I
EXTRACTED FEATURES

Category Type Number of Extracted Features
Wins & Losses Player 36
Rating Systems Player 6

Surface Environment 4
Surface Player 16

Home Advantage Player 2
Age Player 2

Best-Of-X Environment 1
Head-To-Head Player 2

Tournament Player 4
Recent Matches Player 8

Time Environment 3
84

First, a logistic regression model is fit solely on ATP-ranking
as a baseline. Afterwards, We will attempt to beat this baseline
with a logistic regression model and a neural network using the
extracted features. All models are trained to minimize the lo-
gistic loss and are evaluated using the same testing strategy and
metrics.

A. metrics

Evaluation metrics are a way to measure and compare the
quality of machine learning models. it is often desirable to use
multiple evaluation metrics, because some models may score
well using one particular evaluation metric, but may perform
poorly using another metric. The logistic loss itself, albeit
harder to interpret, is also very useful to compare between the
models, as minimizing a well chosen loss function should natu-
rally improve the metrics.

The simplest metric for classification is accuracy. This mea-
sures the fraction of matches that are correctly categorized as
either a win or a loss. Accuracy has the advantage that is the
easiest to interpret, but unlike logistic loss, it does not take into
account the confidence of the predictions.

Another metric that will be used is calibration. A calibration
curve enables us to compare a model’s predicted probability to
the empirical probability of an event. Naturally, it is desirable
for a model’s predictions to be reflective of the true underlying
probability in a probabilistic classification context.

B. Testing Strategy

To assess the generalization capacity of the trained models, a
nested validation strategy is used. Model hyperparameters are
only tuned in the inner validation loops, so an unbiased error
estimation can be made in the outer validation loop. This nested
validation strategy is illustrated in Figure 1

When dealing with time series data, precise care must be
taken to avoid data leakage, which would lead to an overly op-
timistic error estimation. In order to achieve this, the rolling
origin validation technique is used, wherein the training set for
each testing set simply contains all matches that chronologically
occurred before all matches in the test set [10]. Concretely, the
outer validation loop splits the dataset in four train-test sets re-



Fig. 1. Testing strategy using nested validation

sulting in four test years: 2016, 2017, 2018 and 2019. Matches
played in qualifying, Challengers and Futures tournaments are
filtered from the test sets, since we are only interested in predict-
ing tour-level matches. To fairly compare the various models,
these train-test sets are kept constant, but the validation strategy
used to tune the hyperparameters for each training set may differ
between models.

C. Hyperparameter Tuning

The inner loop validation strategy used for the logistic regres-
sion model is equal to the outer loop validation strategy. Only
two hyperparameters need to be optimized for logistic regres-
sion. The L2 regularization parameter λ and whether to train on
all available matches in the train set or only tour-level matches
which more closely resemble the matches in the test set. These
parameters are tuned using grid search. The result can be seen
in Table II. It stands out that the model scored better by train-

TABLE II
LOGISTIC REGRESSION TUNED HYPERPARAMETERS

Test Year 1
λ All Matches?

2016 1000 No
2017 1000 No
2018 0.494 No
2019 0.869 No

ing only on tour-level matches as opposed to training on all data.
This does not mean that the data from these lower-level matches
is not used at all, since they are in some way also included in the
extracted features of the the tour-level matches.

The complexity of neural networks results in quite a bit more
hyperparameters to tune compared to logistic regression. It is
infeasible to tune every single component of a neural network
architecture, so some assumptions are made about the optimal
architecture for our problem. Specifically, it is assumed that an
architecture with one hidden layer using the rectifier as activa-
tion function can lead to satisfactory results. Furthermore, for
computational reasons the neural network hyperparameters are
only tuned once and kept constant for all test years. To do this,
for each candidate of hyperparameters, a network is trained on
all matches before 2014 and validated on all tennis matches in
2014 and 2015. The long training time of the neural network
makes Bayesian optimization the logical choice to guide the hy-
perparameter search. The resulting tuned hyperparameters are
outlined in Table III. Unlike logistic regression, the neural

TABLE III
NEURAL NETWORK TUNED HYPERPARAMETERS

Hidden Neurons Dropout Batch Size Epochs Learning Rate All Matches?
256 0.45 5696 59 0.00045 Yes

network performed significantly better when trained on matches
from all levels of tournaments. This is probably because the
nonlinear decision function defined by the neural network can
properly discern and learn from the huge amount of low-level
matches without negatively affecting prediction for tour-level
matches.

D. Evaluation

The logistic regression models are implemented using scikit-
learn [11] and trained using the lbfgs solver. The neural network
is implemented using Keras [12] and trained with the Adam op-
timizer. The logistic loss and accuracy of the trained models
averaged over the four test years is depicted in Table IV.

TABLE IV
METRICS AVERAGED OVER ALL MATCHES IN THE TEST SETS

Model Logistic Loss Accuracy
Rank Baseline 0.646 64.5%

Logistic Regression 0.597 67.4%
Neural Network 0.592 68.2%

The full logistic regression model substantially outperforms
the baseline in both metrics. We can conclude that the extracted
features are much more informative than ATP-ranking on its
own. In turn, the neural network outperforms logistic regres-
sion in both accuracy and logistic loss. While the improvement
might seem marginal, it can have a substantial impact in the con-
text of betting.

Finally the calibration plot of the three models is compared
in Figure 2. As expected, the full logistic regression model is
much better calibrated than the baseline, but also even slightly
outperforms the neural network. All three models seem to have
a bias of underestimating the winning chances of the underdog.

Overall, the neural network appears to be the best model, as
it outperforms logistic regression in two of the three metrics.

IV. RESULTS AND EXPERIMENTS

We now attempt to make the trained neural network profitable
in the online betting market by systematically improving the bet-
ting strategy. The logistic regression model will not be evaluated
to avoid the data snooping bias. Consider for example the case
where a high quantity of subpar models are evaluated. Due to
some randomness in the betting market, it is likely that we could
at least make one of these models profitable. However, it would
be unreasonable to assume that this model would be profitable
in the real world.

To test the neural network in the online betting market, Pinna-
cle closing odds of tour-level matches are obtained from Tennis-
Data [13]. Using these odds, the online tennis betting market
can be simulated. Simulations are run starting from 2016 until
the end of 2019, for a total of 10099 matches. Starting from a



Fig. 2. Calibration curves

bankroll of 1, the ending bankroll for each strategy is shown in
Table V.

As a baseline, two static betting strategies are simulated.
These strategies are considered static because they follow a
static betting rule: always unit (1% of bankroll) betting on the
favorite or underdog respectively. As expected, these strategies
lose almost all of their starting bankroll over a period of four
years.

A first improvement over the static betting strategies is to use
the neural network’s predictions to decide which player to bet
on. If the model’s winning probability prediction is higher than
the implied probability of the odd, according to the model this
bet is profitable, in which case a unit bet is made. While it is
a definite improvement over the static betting strategies, it still
loses most of the bankroll over the four years.

The main flaw of the unit betting strategy is that the same
amount of money is wagered every time, regardless of confi-
dence. The Kelly criterion offers a way so solve this problem.
The Kelly criterion is a formula for bet sizing that leads to opti-
mal expected return as the number of bets tends to infinity [14].
Even though the Kelly criterion should in theory outperform the
previous strategies, it has the worst results of all of them. This
is because Kelly’s promise of optimal bankroll growth relies on
the assumption that the predictions are equal to the ground truth,
which is of course too optimistic since the predictions are only
an estimate.

A way to protect the model against its own optimism and re-
duce the volatility is to only bet a fixed fraction of the amount
proposed by the Kelly criterion. This is known as fractional
Kelly [15]. Using this approach with a fraction of 1

30 , a profit of
14.2% can be made over four years.

Researchers have attempted to tackle the problem of uncer-
tainty in the predictions trough a more systematic approach.
Baker and McHale [16] propose a modified Kelly criterion based
on the error variance of the predictions instead of the ad-hoc
method used in fractional Kelly, which has no theoretical basis.
Instead of only betting a fraction of the Kelly criterion, the bets
sizes are shrunk proportionally to the uncertainty of the predic-
tions σ2. The authors acknowledge it is very hard to directly
quantify an optimal σ2 theoretically, so instead we run simula-

tions on matches from 2016 and select the σ2 that leads to opti-
mal bankroll growth. Under the assumption that the uncertainty
of the model stays roughly the same, the selected σ2 should also
lead to good results in matches from 2017-2019. This process
of selecting σ2 is shown in Figure 3. Indeed we find that the
optimal σ2 for matches in 2016 is close to the optimum for the
rest of the matches. The resulting simulation leads to a profit of
119%.

Fig. 3. Ending bankroll as a function over σ2

TABLE V
ENDING BANKROLLS FOR ALL BETTING STRATEGIES

Strategy End Bankroll
Underdog Unit Betting 0.002
Favorite Unit Betting 0.045

Neural network Unit Betting 0.324
Kelly Criterion 0.000
Fractional Kelly 1.14
Kelly Shrinkage 2.19



V. CONCLUSION

Using open-source data from all levels of professional ten-
nis, an extensive list of features were extracted based on previ-
ous research and data analysis. Afterwards a logistic regression
model was trained on these features and tested over four sea-
sons significantly outperforming the baseline based on the offi-
cial ATP-ranking over all metrics: accuracy, logistic loss, and
calibration. Seeking further improvement a single hidden layer
neural network was trained and compared to the logistic regres-
sion model. We found that the neural network further exceeded
the performance in logistic loss and accuracy, with only a slight
decrease in calibration. For our purpose of predicting tour-level
matches, logistic regression attained better results by only train-
ing on tour-level matches. On the other hand, the neural network
performed better when trained on matches from both tour-level
and lower level tournaments.

Finally, the neural network’s predictions are made profitable
in the online betting market by systematically improving betting
strategies. Ultimately, the best results were obtained by applying
the bet sizing model proposed by Baker and McHale [16] which
shrinks the bet size proportionally to the prediction uncertainty,
resulting in a profit of 119% over three tennis seasons (2017-
2019).
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Chapter 1

Introduction

Throughout the history of sports, people have always been fascinated by the ability to accu-

rately forecast the outcomes of sport events. This human fascination of predicting the future

in the context of sports is most apparent in the recent proliferation of online sports betting

to a multi-billion dollar industry [1].

Tennis is without a doubt one of the most popular sports in the world. It is played by millions

of people and the most prestigious tournaments draw a substantial amount of international

attention. This popularity along with the chance to turn a profit in the betting market makes

tennis an appealing research subject.

The first attempts in tackling the problem of tennis match prediction started in 1999 with

the first mathematical model of Boulier and Stekler [2] to forecast tennis matches based

on a player’s ATP-ranking. Ever since then, interest has continued to rise, leading many

researchers to develop machine learning models of varying complexities and types. The goal

of this thesis is to build on the current state-of-the-art in male professional tennis prediction.

Concretely, given information about a tennis match, we want to accurately predict the winning

probability of each player in an attempt to turn a profit in the online tennis betting market.

During the professional tennis season, players compete in a wide array of tournaments all

over the world organized by the International Tennis Federation (ITF) and the Association

of Tennis Professionals (ATP). Ranking points are awarded proportional to the prestige of

each tournament and how far a player manages to advance. These ranking points are used to
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Chapter 1. Introduction

calculate the official ATP world ranking and serve as qualification and seeding of tournaments

in the future. The tournament types ranked from most to least prestigious are: Grand Slams,

Masters 1000, 500/250 Series, Challenger Tour and finally Futures tournaments. Like most

research, our machine learning models will be evaluated on matches in events up until the

500/250 Series level. From now on these will be called tour-level tournaments. However,

contrary to most current research, matches played in the lower-level tournaments will also be

analyzed and incorporated in the feature set. This is because these matches can still contain

useful information about up and coming players, as even the most successful players today,

once competed at these lower level tournaments. Finally, tennis can be played individually

against a single opponent (singles) or as a team of two players (doubles). Like most existing

research we will restrict our focus to predicting singles matches.

1.1 Chapter Outline

In Chapter 2, we will begin by giving an overview of previous research with the goal of tennis

prediction. We will also quickly go over the workings of an online bookmaker. Chapter 3

will discuss how a raw dataset of historical tennis matches was obtained and used to extract

features. Afterwards, we try to beat the official ATP-ranking over multiple metrics with a

logistic regression and neural network model trained on these extracted features. This is done

in Chapter 4.

In Chapter 5, we attempt to turn a profit in the online betting market using the best model

from the previous chapter by iteratively improving the betting strategy. Finally in Chapter

6, the results are summarized and some ideas for future work are suggested.
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Background

2.1 Related Work

Most approaches in the literature with the goal of predicting tennis matches fall into one of

three categories: point-based, pairwise comparison and regression.

2.1.1 Pairwise Comparison Models

Pairwise comparison is a way of comparing players in pairs trough the use of some underlying

metric(s) defining each player. A popular type of pairwise comparison model is the Bradley-

Terry model [3] which has been broadly applied in areas such as sports, and machine learning.

It allows to predict the outcome of a paired comparison of individuals i and j, given a

respective metric πi and πj .

P (individual i beats individual j) =
πi

πi + πj
(2.1)

The first application of such model applied directly to tennis was developed by McHale and

Morton [4] in 2011. In their research, each player’s winning capabilities are modeled by

a single metric which is optimized using maximum likelihood over past matches, with an

exponential decay to give more importance to recent matches.

Pairwise comparisons can also be be carried out by rating systems. One such rating system is

the Elo rating system, originally developed by Arped Elo to more accurately reflect the skill

level of chess players. These pairwise models can be used on their own [5], but they can also

be incorporated in regression based models [6] or point-based models [7].
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2.1.2 Point-Based Models

Tennis has a hierarchical scoring system, with a match consisting of sets, witch in turn consists

of games, which finally consist of points. Matches are played until a player wins the necessary

amount of sets needed to win the match (2 or 3), so there is no possibility for a draw.

Point-based models relate to a type of prediction models that in essence only try to estimate

the probability of winning a point on serve and return. Assuming that every point is inde-

pendent and identically distributed (IID) from all other points in the match, the winning

probability of each player can be derived in closed-form.

This IID assumption of points was tested by Klaassen and Magnus [8] in 2001. They discovered

that points are neither independent nor identically distributed. For example, winning the

previous point has a positive effect on winning the current point. Although they found the

IID assumption does not hold, they argued that deviations are small enough that using a

constant probability throughout the match is fine for most purposes.

With this in mind, in 2003 they developed a way to estimate winning probabilities from any

point in the match by modeling the tennis match as a discrete-time Markov chain, where

each state represents a corresponding score [9]. Given each player’s probability of winning a

point on serve, the probability to win the next point, game, set and match can be calculated

in closed-form. Figure 2.1 depicts such a Markov chain for predicting the probability to win

a best-of-three set match, given the probability p to win a set.

Having established this model of a tennis match, the only thing that remains to be estimated

are the serve point winning probabilities of each player. The most basic way to estimate

these is to average the frequency of point wins on serve and return for each player. Nowadays,

improvements in point-based models are mainly the result of improving these estimates trough

the use of pairwise and regression models to model these point winning probabilities. For

example, Donninger [7] used the Elo system for this purpose.

2.1.3 Regression Models

Contrary to point-based models, regression models try to model the players winning probabil-

ities directly. They achieve this by extracting a set of features describing the characteristics
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Figure 2.1: Markov chain for a best-of-three set match

of each player for every match in time. The relationship between these features and winning

probability is then learned using a machine learning model capable of probabilistic classifi-

cation. The models differ in the set of features they consider and the used machine learning

model.

In 1999, Boulier and Stekler [2] used a probit model using solely the players ATP-ranking

as features. It was the first model of its kind and has since been the inspiration for more

complex features and machine learning models.

Perhaps the most extensive work in this category of models comes from Sipko (2015) [10]. 22

features from raw historical data, including abstract features, such as player fatigue and injury

were extracted and used to train a logistic regression model and artificial neural network. It

was also established to be profitable in the online betting market in the years 2013-2014.

Praet [6] implemented logistic regression purely for the purpose of classification using 25

extracted features with great emphasis on Elo features in particular.

Regression based models perform better than the other approaches when the goal is to predict

winning probabilities before the match has started as they do not rely on the false assumption
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of IID points [11]. On the other hand, point-based have more flexibility when it comes to

in-play predictions and can even be used to estimate the chance of a particular score outcome.

Since the goal of this thesis is to predict outcomes before the match has started, regression

based methods are the most sensible choice.

2.2 Tennis Betting

Tennis has some interesting properties for betting. Given the unique scoring system, it is

rather uncommon that the lesser player on that given day wins the match. This would

argue in the favor of tennis being an easily predictable sport. Being an individual sport

however, it is not hard to imagine that the performance of a single player is more volatile

than the performance of a team in a team sport, which in turn makes tennis matches hard

to predict. The popularity of the sport and this unpredictability make tennis an appealing

betting market.

Bets can be placed trough a bookmaker, which functions as a market maker for sports wagers.

The popularity of sports betting has seen a significant increase in the last few years as a result

of online betting. It is not uncommon for one tennis match to have more than 20 different

betting options before the match even starts. There is an abundance of tennis tournaments

played around the world each year and the nature of the scoring system also serves well for

live betting. During the game bettors can bet on a multitude of different options: who will

win the next game/set, how many sets will be played, etc. However, in this thesis, the sole

focus will be on predicting the winner of the match before play has started.

2.2.1 Betting Odds

The bookmaker assigns appropriate odds to each possible wager. These odds represent how

probable different outcomes of a bet are. If an outcome is deemed unlikely to occur, the payout

will be high. On the other hand, expected outcomes will have a lower payout. Odds can be

represented in decimal, fractional or moneyline format. The most common representation in

Europe is by far the decimal format, with the exception of British bookmakers, who usually

use fractional odds. Henceforth, odds will always be represented in decimal format.

Let us consider the odds of the Wimbledon final of 2019 between Novak Djokovic and Roger
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Federer. At the start of the match, the odds for a Djocovic win were rated at 1.55. If you

would bet e2 on Djokovic and he wins, you would receive e3.1 in return (the stake is included

in the return). If he loses, you would lose the e2 to to bookmaker. The same reasoning can be

applied to Roger Federer, who had odds of 2.66. Note that the possible payout is determined

at the time a bet is placed, as bookmakers may change their odds over time.

2.2.2 Implied Probability

The betting odds can be represented as probabilities by taking the inverse of the odds. This

probability then represents the expected probability of an outcome occurring according to

the bookmaker. In the example above, The implied probabilities for a Djokovic and Federer

win are 64.5% and 37.6% respectively.

Converting betting odds into implied probabilities is useful for bettors as it helps to recognize

value in a particular market. It indicates what percentage of the time you would need to be

correct in your wager to have a positive expected return. So if you know for a fact an outcome

is more likely than its implied probability, it is always profitable to bet on that outcome in

the long run.

2.2.3 Bookmaker Margin

You may have noticed that the sum of the implied probabilities in the example above does

not equal 100%. The excess over 100% equals the margin of the bookmaker (2.1% in this

particular case). This margin is where the bookmakers make their profit.

There are two stages how the bookmakers decide the odds for each player. First, they make

an initial guess of what they think are the true odds of the possible outcomes and add their

margin. These odds are usually published 1-2 days before the tennis match and are called the

opening odds. Afterwards, as customers start betting, they adjust both odds to attract bets

in the right proportion to make a profit regardless of the match outcome. When successful,

this set of odds and bets which guarantees a profit is called a Dutch book. In the other case,

the bookmaker may have to pay out more than what was staked or may profit more than

expected. This dynamic process of setting the odds is depicted in Figure 2.2.
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Figure 2.2: Fictitious example of how odds can drift away from the opening odds

2.2.4 Betting Market Efficiency

The odds just before a match starts are called the closing odds. They are a representation

of all the money bet on that market up until the start of the match. They contain all the

information known to the bettors and their opinions. Closing odds are a closer approximation

to the true odds of the tennis match. There is more information available about the match

since the opening odds were published that could influence the expected outcome: weather

forecasts may have changed to favor a certain player, rumors about an injury may pop up,

etc. This information does not necessarily need to be public. Bettors with inside information

can also influence the odds as long as they wager enough money.

Bookmakers with a higher volume of wagered money can afford to operate with a smaller

margin because their closing odds are more efficient. In this thesis, the closing odds from

Pinnacle will be used to validate our models. Pinnacle is one of the sharpest (low margin)

bookmakers available in the market.

The efficiency of Pinnacle’s closing odds are shown in the form of a calibration curve in

Figure 2.3. A calibration curve enables us to compare a model’s predicted probability to the

8



Chapter 2. Background

empirical probability of an event. In this case the predicted probability is equal to the implied

probability of the closing odds. The empirical probability is equal to 1 if the event occurred,

otherwise 0. The predicted and empirical probabilities are binned and depicted by a blue

line.

Figure 2.3: Pinnacle closing odds calibration plot.

From the calibration curve it is clear that, on average, the implied probability is higher than

the empirical probability. This is a direct result of the margin applied by Pinnacle. As

explained in Section 2.2.2, a bet is only profitable if the true probability of an event is higher

that the implied probability of the odds. As a result, betting on every match with the same

stake will result in a negative expected return regardless of the strategy. This notion is in

line with research from Lyócsa and Výrost [12]. The Performance of 40 diverse betting rules

on the tennis market were found to be not profitable after data-snooping bias was taken into

account.
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2.2.5 Beating the Market

Clearly, a profitable betting model should not bet on every match. At the very least a good

model should bet more if it is confident and less when unsure. Consequently, if the goal is

to make a profitable betting model, it should not only predict the winner of the match, but

also the confidence of the prediction. As a whole the tennis betting market is very efficient,

but that does not rule out that some matches have biases that can be exploited by a smart

betting model.
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Dataset

A vital part of any machine learning algorithm is the dataset. Although the learning algo-

rithms are usually the center of attention, no useful learning can take place when using a

poor dataset. High-quality labeled datasets are usually difficult and expensive to produce.

Fortunately there exist some excellent open-source datasets for tennis.

3.1 Tennis Match Data

The bulk of the raw tennis match data was collected from an open-source dataset published by

Jeff Sackmann on GitHub [13]. The dataset contains all tour-level main-draw matches from

Grand Slams, ATP Masters 1000 tournaments, and ATP 500/250 Series tournaments starting

from 1968. The dataset also contains tour-level qualifying and Challenger matches starting

from 1978. Finally, Futures tournaments are recorded starting from 1991. The dataset is

updated regularly to include all recent matches.

The dataset currently covers a total of 788135 matches. The distribution of these matches is

represented in Figure 3.1. Over half of the recorded matches are played in Futures tourna-

ments while the rest is quite evenly split between Challenger and tour-level matches. This

is to be expected, because only a fraction of the young Futures players will make it as a

professional tennis player in the end.

Even though the goal of this thesis is to predict tour-level matches, match results at a lower

level will also be used for training and feature extraction. When a player first competes

11
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Figure 3.1: Distribution of match data divided by tournament level

in a tour-level match, his strength can still be assessed using data from the Futures and

Challengers tournaments. In the absence of this data, the model would have to treat every

new player as equal and would have to be overly conservative in its predictions. Even the best

players spend a few years of their early career in the Futures and Challengers circuit before

they are ready for the bigger tournaments.

3.2 Betting Odds Data

A probabilistic classifier can be built using the data above. However, to test the classifier’s

performance on the betting market, we need to have betting odds data to simulate a betting

environment. Tennis-Data provides free match data of tour-level matches starting from the

year 2000 [14]. From 2010 onward, it also contains the Pinnacle closing odds for all those

matches. These closing odds for each match are simply linked to the corresponding match in

the Sackmann dataset.

3.3 Data Cleaning

Matches that were stopped before completion are removed from the dataset. It is not useful

that the model learns form these matches, as they are usually the result of injuries or disqual-

ification. In this scenario, the injured or disqualified player’s strength is not properly reflected

in the result of the match and is thus not useful as learning data for the model. Walkovers
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are removed from the dataset for the same reason. This data cleaning removes 27780 matches

from the dataset, accounting for 3.5%.

3.4 Feature Extraction

Machine learning algorithms need a set of training examples to learn the relationship between

input and desired output. Therefore, the initial set of raw data needs to be mapped to an

informative set of features, where each data record represents one tennis match in time,

alongside with the desired target value (win or loss). This process is called feature extraction.

Before the features are extracted, the raw Sackmann dataset is sorted by date. This will

ensure that each feature extractor will only use data from the past, as using matches from

the future would result in data leakage.

3.4.1 Types of Features

We will discern the extracted features as either environment features or player features. En-

vironment features are equal for both players in a match. The date of a match, the playing

surface, the weather and the tournament are examples of such features. As a result, one such

feature can be modeled using only one value per match.

On the other hand, features such as age and ranking are player features because they are not

equal for both players. These features need to be modeled by two separate features, one for

Player1 and one for Player2.

3.4.2 Target

The desired target value is defined as follows:

Target =


1, when Player1 wins

0, when Player1 loses

(3.1)

Notice how the target value can always be made 0 or 1 by swapping the values of the player

features. A basic example is shown in Table 3.1. The environment features obviously remain

unchanged.
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Table 3.1: Shows how one match can be represented in 2 different but equivalent ways

Year Player1 Rating Player2 Rating Surface Target

2011 200 115 Clay 1

m

Year Player1 Rating Player2 Rating Surface Target

2011 115 200 Clay 0

3.4.3 Wins & Losses

The most basic player feature is to use the amount of wins and losses of a player as a feature.

The most obvious way to model this is to use the winning percentage as a single feature to

model both wins and losses together. While this works well for players that have already

played a lot of matches, it is a rather poor feature for players with a low amount of matches

played. Consider for example a player who has played and won only one single match. Even

though this player has a winning percentage of 100%, it is safe to assume this player is not

as good as someone with an 80% win rate over many more matches. The opposite conclusion

can be drawn for a player that lost the first match of his career. For this reason, this feature

will be simply modeled by the absolute number of wins and losses. In doing so, the model

can decide for itself if and how players with different amounts of matches will be handled.

Of course not every win and loss is equally informative about a player’s strength. The level

of the tournament and opponent naturally play a role in the importance of a given match.

To make this distinction, the matches are divided in three categories:

1. Tour-level matches: the main-draw of Grand Slams, ATP Masters 1000 tournaments,

and ATP 500/250 Series tournaments.

2. Qualifying matches for the tournaments above, as well as Challenger matches.

3. Futures matches.

Finally, the matches are divided another time per player by time. The skill of a player can

rapidly increase or decrease with age. It would be unfair to weigh the matches of a player’s
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junior days equally to his recently played matches. To tackle this problem, a distinction is

made for matches played in the last semester, year and whole career of that player.

This extra information does not come for free. That which first started as a simple winning

percentage, is now modeled by 36 feature values. One value per combination in the following

Cartesian product:

{Player1, P layer2}×{wins, losses}×{level1, level2, level3}×{semester, year, career} (3.2)

3.4.4 Rating Systems

Another way to reflect a player’s strength is by the use of a rating system. The exact

calculation of the official ranking utilized by the ATP is rather complex. Put simply, ranking

points are awarded to a player according to how far they get in each tournament, with more

prestigious tournaments being worth more points. These earned ranking points are dropped

52 weeks after after the tournament took place. A player’s ATP-ranking points thus represent

their performance in the last year. While this ATP-ranking serves as a valid tool for seeding

draws and as a good way to encourage players to participate in more tournaments, it has

some obvious flaws when used as a means to reflect current form:

• Ranking points are awarded irrespective of the opponents. Ideally, the level of the

opponent should also be considered in assessing the value in a win or loss.

• Points can only be won, not lost. This way, players with average results, who played

the maximum amount of allowed tournaments can achieve a better ranking than players

with better results, who were unable to do so for whatever reason.

• Solely takes into account tournaments in the last year.

Therefore, ATP-ranking will not be used as a feature. Instead we will first consider Elo as an

improvement over the ATP-ranking.

Elo rating was originally invented as a skill rating in chess, but can be easily used in any 2-

player zero-sum game, including tennis, without any modifications. Elo’s primary assumption

is that the performance of each player is a normally distributed random variable. The expected
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outcome of a match can then be calculated by taking into account the difference in rating

between the two players:

E1 =
1

1 + 10
R2−R1

400

(3.3)

Where:

E1 = expected winning percentage of Player1

Ri = the Elo rating of Playeri

After every match the winning player takes a number of Elo points from the losing one

proportional to the elo difference before the match. An expected outcome will lead to only a

few points being transferred. However, if an upset occurs, more points will be given from the

high-rated to the low-rated player.

Elo alleviates the 3 main shortcomings of the ATP-ranking described above and has been

shown to be a better predictor than ATP-ranking in predicting tennis matches [5]. Elo does

however have some flaws of its own. Because rating is represented by only one number, there

is no way to differentiate between players that might have different standard deviations to

their performances.

The Glicko [15] and subsequent Glicko-2 [16] rating systems invented by Mark Glickman, were

designed to resolve this issue. Besides the rating of a player, Glicko considers another variable

for rating deviation (RD), which is simply a standard deviation that measures the uncertainty

of a rating. This RD is decreased when a player competes in a match and is increased after

some period of inactivity. As is the case in Elo, the rating is simply changed after every

match, albeit not longer in a symmetrical fashion, but depending upon the respective RD’s.

Finally, Glicko-2 build on Glicko by adding a rating volatility variable (σ) to indicate the

degree of expected fluctuation in a player’s rating. This allows the system to model players

who have erratic performances differently from players that perform more consistently. The

extra modeling power of Glicko compared to Elo comes at the cost of some hyperparameters

which are optimized using Bayesian optimization.
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Similarly to Elo, Glicko allows to estimate the expected outcome of a match:

g(RD) =
1√

1 + 3q2
(
RD2

)
/π2

E1 =
1

1 + 10−g(
√

RD2
1+RD2

2)(R1−R2)/400
(3.4)

This expected winning percentage could be used as a feature, but instead we will use the

rating, RD and volatility of each player as features, so the model can learn and possibly

improve this relation for tennis matches itself. To reiterate, the added rating features are:

{Player1, P layer2} × {R,RD, σ} (3.5)

We compare the accuracy of the ATP-ranking and Glicko ratings systems with regards to pre-

dicting the winner in all tour-level matches from 2016-2019 in Table 3.2. Glicko outperforms

the ATP system by almost 2%.

Table 3.2: Accuracy comparison between ATP-rank and Glicko

Rating System Accuracy

ATP 64.5%

Glicko 66.4%

3.4.5 Surface

Across all levels of tennis, the playing surface can have a sizable influence on the expected

outcome of a match. Even the best players have surfaces were they perform much better or

worse. For illustration, The winning percentage by surface of 4 top level players is shown in

Figure 3.2, wherein it is indeed clear that there exists a discrepancy in performance between

the surfaces for each player.

To model this disparity in player performance by surface, 4 environment features are added

for every match as a one-hot encoding over clay, hardcourt, grass and carpet:

{?clay, ?hardcourt, ?carpet, ?grass} (3.6)
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Figure 3.2: Winning percentage by surface

These environment features are not enough on their own. It is also necessary to add player

features to reflect the past performance of a player on each surface. Simply using winning

percentage per surface has the same disadvantages as described in Section 3.4.3. Therefore,

it will again be represented by the absolute number of wins and losses, like so:

{Player1, P layer2} × {wins, losses} × {clay, hardcourt, carpet, grass} (3.7)

The need for a further subdivision in time is not necessary here, because the surface preference

stays rather constant over a player’s career.

3.4.6 Home advantage

Home advantage is a ubiquitous phenomenon in sport. It has been confirmed to exist in most

team sport where the attendance of large crowds is possible [17]. Koning [18] studied the

prevalence of home advantage in professional tennis matches. It was concluded that unlike

on the women’s tour, significant home advantage exists in the men’s tour. This phenomenon

will be indicated to the model by a player feature:

{Player1, P layer2} × {?home} (3.8)

Where ?home is a boolean variable, which equals true for a player if the match is held in his

home country, otherwise false.
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3.4.7 Age

del Corral and Prieto-Rodŕıguez [19] established that the age difference between players has

a pronounced effect on match outcomes. In particular, the probability of a higher-ranked

player’s victory decreases as this player competes against a younger player. It is noted that

when the higher-ranked player is 15 years younger than the lower-ranked player, his winning

probability is over 20% higher than when he plays against an opponent his own age. With

this in mind, the age of each player is also added as a feature for the model:

{Player1, P layer2} × {age} (3.9)

3.4.8 Best-Of-X

On the men’s tour, matches are played to either best-of-three or best-of-five sets. Up un-

til 2007, most Masters Series finals were played to best-of-five. Nowadays, all tournament

matches are played according to the best-of-3 format, with the exception of the Grand Slams,

were best-of-five sets is still played in every round.

As shown in Table 3.3, matches that are played to best-of-five sets are considerably more

predictable than best-of-three set matches. Intuitively this makes sense as longer matches

lower the influence of chance in the outcome of the match.

Table 3.3: Predictability of tour-level matches (2016-2019)

Best-Of ATP-Ranking Accuracy

3 62.65%

5 72.19%

The favorite of the match is not influenced by the length of the match, but certainly the

model should be more confident in its prediction for best-of-five matches. For this reason,

this information is added as an environment feature.

{bo} (3.10)
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3.4.9 Head-To-Head

A rather straightforward feature to add is the head-to-head of the competing players. It

speaks for itself that a particular playing style can have an inherent advantage over some

other playing style. Consequently, it makes sense that past performances against an opponent

can predict future performances. This feature is encoded as:

{Player1, P layer2} × {wins} (3.11)

Where wins of course only count the wins versus the current opponent. Losses need not be

encoded this time as they are always equal to the wins of the opponent.

3.4.10 Tournament

The same reasoning can also be applied to tournaments [6]. Previous success in a tournament

may make a player more determined in future editions of the same tournament. This feature

is added as:

{Player1, P layer2} × {wins, losses} (3.12)

Where only the wins and losses in previous editions of the tournament are taken into account.

3.4.11 Recent Matches

As in any sport, accumulated fatigue can have a detrimental effect on performance. In

tennis, skeletal muscle function has been reported to decrease after prolonged match-play

[20]. Furthermore, it is noted that these negative effects may be amplified with consecutive

days of match-play. We include this fatigue with the following feature:

{Player1, P layer2} × {#games in last 2 weeks} (3.13)

Although fatigue is undesirable, long periods of complete inactivity should also be avoided.

Figure 3.3 shows that up to three weeks of inactivity appear to be beneficial for a player’s

winning chances in his next match. This inactivity can be a much welcome break on the

densely packed tennis tour. Inactivity longer than this probably results in some rustiness,

leading to a worse performance down the line. Therefore, the amount of weeks since each
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player last competed is added:

{Player1, P layer2} × {#weeks inactive} (3.14)

Figure 3.3: Winning percentage over inactivity

Finally some notion of a winning and losing streak is added. Intuitively, players that are in a

winning mood are more likely to continue on their winning streak, while the opposite might

be true for players in a slump. This Information is added as:

{Player1, P layer2} × {consecutive wins, consecutive losses} (3.15)

3.4.12 Time

The final features are related to time. Tennis is an ever-changing sport so it might be the

case that the significance of features slightly changes with time. Therefore, a notion of time

is added to the features so the model can discern between different time periods. First of, the

year the match was played in is simply added as in integer:

{year} (3.16)

Then, the day of the year is added as a feature. This is encoded as a cyclical feature using

the sine and cosine functions:

{day cos, day sin} (3.17)
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With:

day cos(day) = cos(day ·
2π

365
)

day sin(day) = sin(day ·
2π

365
)

To demonstrate, these functions are plotted in Figure 3.4. The use of a cyclical encoding

instead of a simple integer will allow the model to better recognize that day 0 and 365 are

almost identical, while as in integer they would be furthest apart.

Figure 3.4: Day of year features

3.4.13 Summary

To summarize, all features are shown in Table 3.9 In total, the number of extracted features

per tennis match is 84, consisting of 76 player features and 8 environment features. These

extracted features and target (3.4.2) will be used as the input and output respectively of the

machine learning models in the next chapter.
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Table 3.4: All extracted features

Category Type Number of Extracted Features Representation

Wins & Losses Player 36 3.2

Rating Systems Player 6 3.5

Surface Environment 4 3.6

Surface Player 16 3.7

Home Advantage Player 2 3.8

Age Player 2 3.9

Best-Of-X Environment 1 3.10

Head-To-Head Player 2 3.11

Tournament Player 4 3.12

Recent Matches Player 8 3.13, 3.14, 3.15

Time Environment 3 3.16, 3.17

84
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Machine Learning Models

In this chapter different machine learning models will be implemented for the purpose of

predicting tennis matches. For now, the focus will be entirely on making good predictors

without considering the betting market. A better predictor will result in a better betting

model provided that the same betting strategy is used.

First, a logistic regression model will be fitted solely on ATP-ranking as a baseline. After-

wards, We will attempt to beat this baseline with a logistic regression model and a neural

network using the extracted features from last chapter. The different models will be evaluated

using the same testing strategy and metrics.

4.1 Symmetric Binary Probabilistic Classification

in Section 2.2.5 it was discussed that only predicting if a player will win or lose a match is not

enough for a smart betting model. As a result we will need to use machine learning models

which are capable of predicting a probability distribution for winning and losing. Ideally we

want to train our model on the true probability that a player wins a match. Sadly we only

know whether a player won or lost, not the true probability. Classifiers that give a probability

distribution over a set of classes are called probabilistic classifiers.

A classification problem with only two possible classes is called binary classification. A useful

property of binary problems is that it suffices to only predict the chance of winning p. The

chance of losing can then simply be derived as 1− p.
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To meet this requirement the model will also need to be symmetric. As previously shown in

Table 3.1, a tennis match can be represented in two different but equivalent ways by swapping

the player features. The original and swapped feature representation will from now on be

depicted by x1 and x2 respectively (and simply by x if it does not matter). The superscript

indicates for which player in the original representation the winning probability is predicted.

We call a model symmetric if for any given predicted winning probability p for Player1, the

predicted winning probability for Player2 equals 1− p. So:

hθ(x
1
(i)) = 1− hθ(x2(i)) (4.1)

for any match i where hθ(x) is the predicted winning probability of a given model with

parameters θ.

4.1.1 Loss Function

Machine learning algorithms try to minimize a loss function during the training process. For

our problem of probabilistic classification, logistic loss is the most logical choice, as it leads to

well-calibrated probabilistic outputs [21]. Logistic loss is expressed by the following function:

J(θ) = − 1

m

m∑
i=1

[
y(i) ln

(
hθ
(
x(i)
))

+
(
1− y(i)

)
ln
(
1− hθ

(
x(i)
))]

(4.2)

Where:

m = total amount of matches

y(i) = target of the match i as described in Section 3.4.2

The logistic loss is technically an unbounded positive real number. However, a reasonable

upper bound, known as the non-informative prior, is obtained by predicting 0.5 for both

classes of a binary classification problem, provided that the dataset is balanced. The upper

bound of the loss then becomes ln(0.5) ≈ 0.693. Note that the dataset can always be made

balanced since for every winner there is a loser, but the way in which it will be made balanced

will differ by model.
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4.1.2 Metrics

Evaluation metrics are a way to measure and compare the quality of machine learning models.

it is often desirable to use multiple evaluation metrics, because some models may score well

using one particular evaluation metric, but may perform poorly using another metric. The

logistic loss itself, albeit harder to interpret, is also very useful to compare between the models,

as minimizing a well chosen loss function should naturally improve the metrics.

The simplest metric for classification is accuracy. This measures the fraction of matches that

are correctly categorized as either a win or a loss. Accuracy has the advantage that is the

easiest to interpret, but unlike logistic loss, it does not take into account the confidence of

the predictions.

Another metric that will be used is calibration. In Section 2.2.4 the concept of probability

calibration was discussed in the context of betting odds. Similarly, it is desirable for a model’s

predictions to be reflective of the true underlying probability in a probabilistic classification

context. Minimizing logistic loss results in well calibrated results, so no postprossessing of

the predicted probabilities will be necessary.

4.2 Testing Strategy

To assess the generalization capacity of the trained models, a nested validation strategy is

used. Model hyperparameters will only be tuned in the inner validation loops, while an

unbiased error estimation can be made in the outer validation loop. This nested validation

strategy is illustrated in Figure 4.1

When dealing with time series data, precise care must be taken to avoid data leakage, which

would lead to an overly optimistic error estimation. In order to achieve this, the rolling origin

validation technique is used, wherein the training set for each testing set simply contains all

matches that chronologically occurred before all matches in the test set [22].

Concretely, the outer validation loop splits the dataset in four train-test sets resulting in

four test years: 2016, 2017, 2018 and 2019. Matches played in qualifying, Challengers and

Futures tournaments are filtered from the test sets, since we are only interested in predicting
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Figure 4.1: Testing strategy using nested validation

tour-level matches. Analyzing the performance on the different test years will give a better

understanding of how the models perform. To fairly compare the various models, these train-

test sets are kept constant, but the validation strategy used to tune the hyperparameters for

each training set may differ between models.

4.3 Hyperparameter Tuning

Besides the model parameters, which are trained during the training process, most models

usually have some hyperparameters as well. These hyperparameters are set before the learn-

ing process begins and needs to be optimized separately. The best tuning technique for a

particular problem is mostly dependent on the amount of hyperparameters that need to be

tuned and the training time of the model. The three most used ways to tune hyperparameters

are explained below.

4.3.1 Grid Search

The conventional way of hyperparameter optimization is grid search. In grid search all com-

binations of hyperparameters are exhaustively tried. The combination that lead to the lowest

validation loss after training the model will be chosen as hyperparameter values.
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Since most hyperparameters are real unbounded variables, it is impossible to exhaustively

try all values of a hyperparameter, let alone all combinations. Instead, a subset of the

hyperparameter space needs to be specified so it becomes computationally feasible.

Still, a complete search over all hyperparameters quickly becomes impossible as the amount

of hyperparameters grow. This is why grid search is mostly used if there is a low amount of

hyperparameters that need to be tuned and the model has a fast training time.

4.3.2 Random Search

Contrary to grid search, random search does not exhaustively enumerate all hyperparameter

combinations, but instead samples the combinations randomly. It can greatly outperform

grid search when only a small subset of hyperparameters affect the result of the model.

The main advantage of random search is that it can be terminated at any time without leaving

big parts of the hyperparameter space unsearched. Hence, if it is not computationally feasible

to a full grid search, random search is preferred.

Random search is also sometimes performed as an initialization step for a full grid search.

The found hyperparameters of the random search can be used to set the subset of the hyper-

parameter space for the grid search.

A large amount of hyperparameters is no problem for random search. However, because of

the random sampling, it is only usable when the model has a short training time, so a lot of

parameter combinations can be tried. Otherwise Bayesian optimization becomes the better

choice.

4.3.3 Bayesian Optimization

Bayesian optimization is an optimization method that can be used on any black-box function

and is used when it is very expensive to search the parameter space due to a long training

time. Bayesian optimization fits an acquisition function (usually a Gaussian process) over

the evaluated hyperparameters and respective loss achieved after training the model. The

optimum of the acquisition function is then chosen as a new candidate for evaluation, after

which a new acquisition function is fit and the process repeats itself.
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In contrast to random search, a lot of effort is put into finding the next combination of

hyperparameters to try. Consequently, this method really shines when the time needed to

find the optimum of the acquisition function is low compared to training the model.

4.4 Logistic Regression

Logistic regression is a linear classifier that uses the logistic function to model a binary

dependent variable. Logistic regression is desirable for its fast training time and being less

prone to overfitting compared to more complex models, meaning that it usually generalizes

well to to unseen data.

Given n features x = {x1, x2, . . . , xn}, a logistic regression model consists of n+ 1 real-valued

model parameters or weights β = {β0, β1, . . . , βn}. A probabilistic prediction is then obtained

by computing:

hθ(x) = φ(β0 + β1x1 + · · ·+ βnxn) (4.3)

with φ(z) being the logistic function:

φ(z) =
1

1 + e−z
(4.4)

The logistic function from 4.4 squashes the unbounded result of the linear combination of

features to a value between 0 and 1 so it can be interpreted as a probability, as shown in

Figure 4.2.

Figure 4.2: The logistic function
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The β weights are optimized by minimizing the logistic loss on the predictions. For large

datasets this is generally done using gradient descent on the weights over the logistic loss. A

minima of the loss function is found by iteratively updating the model weights, taking steps

proportional to the negative of the gradient and the learning rate η.

βi = βi − η
∂J(θ)

∂βi
(4.5)

4.4.1 Model Simplifications

Because logistic regression is a linear model, the prediction only depends on a linear com-

bination of the input features. This property allows us to drastically reduce the number of

parameters of the logistic regression model. This reduction of parameters can be seen as a

form of regularization, meaning it will make the model less susceptible to overfitting to the

training data.

Intercept

The parameter β0 is known as the intercept. If no information about a match was known, the

input feature vector would become x = {}. Subsequently the predicted winning probability

would become φ(β0). Considering that the dataset is balanced and because there is no further

information about the match this probability should equal 0.5:

φ(β0) = 0.5⇔ β0 = 0 (4.6)

Therefore, to avoid training the intercept weight to noise, it can just be set to 0 in our case.

Environment Features

Environment features should also be ignored and the corresponding β weight can be set to 0.

Let us consider an environment feature xe, which naturally has the same value in its x1 and

x2 feature vector representation. If the corresponding weight βe is greater than 0, it would

indicate that this environment feature increases the chance of a win for Player1. However, it

would in turn also increase the chance for a Player2 win, which is a contradiction. The same

argument can be made for a negative βe. Environment features are thus not useful when

using logistic regression, but they will later be used by the neural network.
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Player Features

After removing the environment features, we are left with just 76 player features. Another

simplification follows from the observation that the weights for the same player feature of

both players should be equal in absolute value, but with opposite sign. Consider the player

features xp1 and xp2 with respective weights βp1 and βp2 . To fulfill the requirement for a

symmetric model (4.1), the following must be true:

φ(βp1xp1 + βp2xp2) = 1− φ(βp1xp2 + βp2xp1) (4.7)

Using a property of the logistic function:

φ(x) = 1− φ(−x)⇒ βp1xp1 + βp2xp2 = −(βp1xp2 + βp2xp1)

⇔ βp1(xp1 + xp2) = −βp2(xp1 + xp2)

⇔ βp1 = −βp2 (4.8)

With this in mind, βp1xp1 + βp2xp2 can simply be replaced by βp1(xp1 − xp2). This halves the

amount of features and consequently the model parameters to 38.

4.4.2 Balanced Dataset

In machine learning it is important that the desired targets of the training set are identically

distributed as in the real world. If this is not the case, the model will learn this bias in the

data and consequently make poor predictions.

Given a random match, with randomly assigned Player1 and Player2, there is an equal

chance of 0.5 for a win or a loss. Therefore, the training dataset should be made balanced as

well, containing an equal amount of losses and wins. This is achieved by randomly sampling

half of the dataset and setting the target to 0, while the other half is set to 1. Of course the

corresponding feature vector is also swapped between x1 and x2 if needed.

4.4.3 Inner Validation Strategy

Logistic regression itself only has one hyperparameter to be optimized, which controls the

amount of regularization. This regularization parameter penalizes large values of β by adding
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an L2 (alternatively L1) regularization term to the logistic loss function, like so:

J(θ) = − 1

m

m∑
i=1

[
y(i) ln

(
hθ
(
x(i)
))

+
(
1− y(i)

)
ln
(
1− hθ

(
x(i)
))]

+
λ

2m

n∑
j=1

|βj |2 (4.9)

This regularization simplifies the model by constraining the weights to a smaller range, re-

sulting in a model that is less likely to overfit. The degree of penalization is controlled by the

λ parameter and needs to be optimized. The possible values for λ are usually explored in a

logarithmic manner.

Another hyperparameter is whether train the model on all available matches in the train set

or only tour-level matches which more closely resemble the matches in the test set. This is a

boolean decision variable that can be optimized just like any other model hyperparameter.

The inner loop validation strategy used for the logistic regression model is equal to the outer

loop validation strategy. Concretely, each of the four training sets is divided in four train and

validation sets using the rolling origin validation technique. The validation sets are filtered

so they only contain tour-level matches just like the test sets. The validation loss of a set of

hyperparameters is then equal to the average loss of the four validation sets in a particular

test year. As a result of the model simplifications and fast training time, the two parameters

above can be optimized using grid search.

The resulting parameters are shown in Table 4.1. The optimal λ (often reported as 1
λ) for

every test year turns out to be rather small, so not much regularization is necessary for

our problem. It also stands out that the model scored better by training only on tour-level

matches as opposed to training on all data. This does not mean that the data from these

lower-level matches is not used at all, since they are in some way also included in the extracted

features of the the tour-level matches.

4.4.4 Preprocessing

Standardization of the input features is not an explicit requirement for logistic regression.

However, when using regularization it is strongly advised to do so anyway. Standardization

is the process of transforming the values of each feature in the training set to have mean 0

and variance 1 over all samples:

xi =
xi − x̄i
σ

(4.10)
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Table 4.1: Logistic regression hyperparameters for each test year

Test Year 1
λ All Matches?

2016 1000 No

2017 1000 No

2018 0.494 No

2019 0.869 No

Where:

x̄i = the average value of feature i over all training samples

σ = the standard deviation of feature i over all training samples

The feature values from the validation or test set are not used to determine the transformation

to avoid data leakage. The feature values in the validation or test set are then also transformed

using the same transformation, using x̄ and σ from the training set.

Standardization transforms all features to distributions with equal mean and standard devi-

ation so that all features are now equally penalized by the regularization parameter.

4.4.5 Baseline

Finally we will set a baseline for the full logistic model by first training a small logistic

model using only the ATP-ranking points of Player1 and Player2 as features. As discussed

in Section 4.4.1, in the case of logistic regression this can be represented by a single feature:

ratingp1−ratingp2 . In turn , the regularization hyperparameter does not need to be optimized,

because only one model parameter βrating needs to be trained.

4.4.6 Evaluation

The full logistic regression model is trained on the four training sets using the tuned hyper-

parameters from Table 4.1 and compared to the baseline in Figure 4.3 and Table 4.2. The

models were implemented using the scikit-learn logistic regression implementation [23] and

trained using the lbfgs solver.
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Figure 4.3: Comparison of the rank baseline with the logistic regression model

Table 4.2: Metrics averaged over all matches in the test sets

Model Logistic Loss Accuracy

Rank Baseline 0.646 64.5%

Logistic Regression 0.597 67.4%

The two upper plots compare the logistic loss between the two models, while the lower two

compare accuracy. The plots on the left contain the same information as the plots on the

right, but in a different format. The left plots are laid out by test year, while the plots on

the right evaluate the metrics using a central moving average with a window size of one year.

The table evaluates the metrics over all matches in the four test sets.

The full logistic regression model substantially outperforms the baseline in both metrics. We

can conclude that the extracted features are much more informative than ATP-ranking on its

own.
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There is a noticeable downwards trend in the predictability over the years for both models.

Since the baseline only uses ATP-rankings as a feature, we can conclude that the reason for

this is that upsets are getting more and more common in recent years.

Finally the calibration plot of the two models is compared in Figure 4.4. As expected, the

full logistic regression model is much better calibrated than the baseline. Both models have

a bias of underestimating the winning chances of the underdog, but the full logistic model to

a much lesser degree.

Figure 4.4: Calibration curves for the rank baseline and full logistic regression

4.5 Artificial Neural Network

Artificial neural networks are computing systems loosely based on biological neurons in the

brain. Neural networks are inherently more powerful classifiers than logistic regression since

they can compute predictions that can not be written as a linear combination of features. This

power to model non linear relationships comes at the cost of being more prone to overfiting,

more hyperparameters to tune and being computationally expensive.

A visualization of a fully connected feedforward neural network is shown in Figure 4.5. A

neural network always consists of at least an input layer and an output layer. In addition,
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the network can include a variable number of layers connecting the input and output layer.

These layers are called hidden layers.

Figure 4.5: Three layer fully connected feedforward neural network

A network is fully connected when all neurons in layer n are connected to all neurons in layer

n+1. In the figure these connections are depicted by arrows. Each connection between neuron

o and neuron p has an accompanying value or weight associated with it wo−p. A network is

considered feedforward if the connections between the neurons do not form a cycle.

Each layer consists of a set number of neurons. The number neurons in the input and output

layer depend on the problem at hand. For our problem, 84 input neurons are needed, one for

each feature extracted in the last chapter. The number of output neurons equals one, as only

the probability of a win needs to be predicted. On the other hand, the number of hidden

layers and the amount of hidden neurons are hyperparameters.

The values of the neurons in the input layer are equal to the corresponding feature. The

values of a neuron hj in the subsequent layer is computed as follows:

hj = φ(b+

84∑
i=1

xiwi−j) (4.11)

36



Chapter 4. Machine Learning Models

With:

b = trainable bias weight unique to every neuron

φ(x) = an activation function

The bias weight fulfills the same purpose as the intercept in logistic regression, so is not

strictly necessary for our problem. The activation function is used to introduce non-linearity.

Popular choices for activation functions are the logistic function (sigmoid), hyperbolic tangent

and the rectifier (ReLu) [24], [25].

By computing the value (4.11) for every neuron past the input layer, the neuron values are

propagated trough the network layers until they finally reach the output layer. The values of

the neurons in the output layer then form the predictions of the neural network. In the case of

binary probabilistic classification, one output neuron with the logistic function as activation

is used. During training, the network weights are optimized with a gradient descent method

using backpropagation to compute the gradients [26].

Notice that a neural network without a hidden layer is equivalent to logistic regression. It is

only by adding hidden layers to the network that it becomes capable of nonlinear classification.

In fact it has been shown that just one hidden layer with a finite number of neurons is needed

to approximate any continuous function. This notion is known as the universal approximation

theorem for neural networks [27].

4.5.1 Symmetric Neural Network

The simplifications made to the logistic regression model in Section 4.4.1 are not viable for

a neural network. The advantage is that the environment features can be used by the neural

network and that nonlinear relationships can be modeled. A drawback is that the model is

not inherently symmetric and will need to be trained on both representations of each match,

x1 and x2.

To make the network symmetric, the predictions for a Player1 and Player2 win in match i
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are computed as:

h
′
θ(x

1
(i)) =

hθ(x
1
(i)) + (1− hθ(x2(i)))

2

h
′
θ(x

2
(i)) =

hθ(x
2
(i)) + (1− hθ(x1(i)))

2

Intuitively this means that the predicted winning percentage of a player equals the average of

that player’s predicted winning chances in both feature representations. We verify that the

requirement for a symmetric model (4.1) is now fulfilled:

h
′
θ(x

1
(i))

?
= 1− h′θ(x2(i))

⇔
hθ(x

1
(i)) + (1− hθ(x2(i)))

2

?
= 1−

hθ(x
2
(i)) + (1− hθ(x1(i)))

2

⇔ hθ(x
1
(i)) + (1− hθ(x2(i)))

?
= 2− [hθ(x

2
(i)) + (1− hθ(x1(i)))]

⇔ 1 + hθ(x
1
(i))− hθ(x

2
(i))

?
= 1 + hθ(x

1
(i))− hθ(x

2
(i))

⇔ 1 = 1

Another requirement was that the dataset is balanced. By training on both feature represen-

tations this is indeed the case.

4.5.2 Inner Validation Strategy

The complexity of neural networks results in quite a bit more hyperparameters to tune com-

pared to logistic regression. It is infeasible to tune every single component of a neural network

architecture, so some assumptions are made about the optimal architecture for our problem.

Specifically, it is assumed that an architecture with one hidden layer using the rectifier as

activation function can lead to satisfactory results.

Furthermore, for computational reasons the neural network hyperparameters are only tuned

once and kept constant for all test years. To do this, for each candidate of hyperparameters,

a network is trained on all matches before 2014 and validated on all tennis matches in 2014

and 2015. The long training time of the neural network makes Bayesian optimization the

logical choice to guide the hyperparameter search.

The resulting tuned hyperparameters are outlined in Table 4.3. The meaning of these hyper-

parameters is briefly explained below.
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Table 4.3: Neural network tuned hyperparameters

Hidden Neurons Dropout Batch Size Epochs Learning Rate All Matches?

256 0.45 5696 59 0.00045 Yes

Hidden Neurons

The amount of neurons in the hidden layer. More neurons allow the network to model more

complex functions, but also increase the risk of overfitting.

Dropout

Dropout is one of the several options to regularize a neural network. For each training sample,

the output of a fraction of neurons in the layer where dropout is applied is set to 0. This

forces each neuron to be significant and not depend on other neurons. Dropout was only

added to the hidden layer neurons.

Batch Size

Batch size defines how many training samples are used to compute the gradients and update

the network weights. A bigger batch size makes the gradients less noisy, but some noisiness

can be useful to escape from local minima.

Epochs

The amount of times the training set is fully traversed in the training process. When the

amount of epochs is too high the network can overfit to to the training data. If it is too low

it might underfit the data.

Learning Rate

Defines the magnitude of the weight updates after after each batch. A learning rate that is

set too high will jump over the minima. On the other hand, a low learning rate can get stuck

in a local minima.
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All Matches?

Whether to use matches from all tournament levels in the training set. Unlike logistic re-

gression, the neural network performed significantly better when trained on matches from all

levels of tournaments. This is probably because the nonlinear decision function defined by

the neural network can properly discern and learn from the huge amount of low-level matches

(Figure 3.1) without negatively affecting prediction for tour-level matches.

4.5.3 Preprocessing

Just like in logistic regression the input features are standardized before training. Standard-

ization is not a requirement for training neural networks, but it often leads to faster training

times and better results.

4.5.4 Evaluation

The neural network is trained on the four training sets using the tuned hyperparameters from

Table 4.3 and compared to the logistic regression model in Figure 4.6 and Table 4.4. The

neural network was implemented using Keras [28] and trained with the Adam optimizer [29].

Table 4.4: Metrics averaged over all matches in the test sets

Model Logistic Loss Accuracy

Logistic Regression 0.597 67.4%

Neural Network 0.592 68.2%

The neural network outperforms logistic regression in both accuracy and logistic loss. While

the improvement might seem marginal, it can have a substantial impact in the context of

betting.

The calibration plot of the two models is compared in Figure 4.7. The two models have an

almost identical calibration, with the logistic regression model having a very slight edge. Just

like the baseline and logistic model, the neural network has a slight bias of underestimating

the winning chances of the underdog. Overall, the neural network appears to be the best

model, as it outperforms logistic regression in two of the three metrics.
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Figure 4.6: Comparison of the logistic regression model with the neural network

Figure 4.7: Calibration curves for the logistic regression model and neural network
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Results and Experiments

In this chapter we will attempt to make the trained neural network from last chapter profitable

in the online betting market. Several betting strategies will be applied to the predictions of

the network over all matches in the test years.

The logistic regression model will not be evaluated to avoid the data snooping bias. Consider

for example the case where a high quantity of subpar models are evaluated. Due to some

randomness in the betting market, it is likely that we could at least make one of these models

profitable. However, it would be unreasonable to assume that this model would be profitable

in the real world.

Apart from testing our tennis match prediction model on the online betting market, we

could also evaluate it by comparing the performance to other approaches explained in Section

2.1. However, the observed variance in model performance over different test years makes

comparing models impossible if they are not trained and tested on the exact same data.

With this in mind, evaluating the model by betting market simulations seemed like the fairest

approach.

5.1 Market Simulations

Using the Pinnacle closing odds obtained in Section 3.2, the online tennis betting market can

be simulated. Each simulation will be run starting from 2016 until the end of 2019, for a total

of 10099 matches.
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5.1.1 Static Strategy Unit Betting

As a baseline, the performance of two static betting strategies is plotted in Figure 5.1. These

strategies are considered static because they follow a static betting rule: always unit betting

on the favorite or underdog respectively.

Figure 5.1: Static betting strategies

Unit betting means that the same amount of money is wagered on each bet, namely one unit.

it is generally accepted that a unit is equal to approximately 0.5-3% of the current bankroll.

In our simulations, one unit is set to 1%.

As expected, these strategies lose almost all of their starting bankroll over a period of four

years. Consistently betting on the favorite has slightly better results than betting on the

underdog. This is because most of the bookmaker’s margin is usually applied to the underdog’s

winning odds. This phenomenon is known as the favorite-longshot bias [30]. Bookmakers

exploit the fact that on average, bettors tend to overvalue underdogs and undervalue favorites,

but it also serves as protection against better informed insiders.

5.1.2 Unit Betting With Model

A first improvement over the static betting strategies is to use the neural network’s predictions

to decide which player to bet on. If the model’s winning probability prediction is higher than
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the implied probability of the odd, according to the model this bet is profitable. So a bet is

made on Playeri if:

hθ(x
i) >

1

bi
(5.1)

With:

bi = Odds for a Playeri win in decimal format

The simulation for this strategy is plotted in Figure 5.2. While it is a definite improvement

over the static betting strategies, it still loses most of the bankroll over the four years.

Figure 5.2: Neural network unit betting

Notice when using this betting rule it is possible the model won’t bet on either player. This

is desirable because when the closing odds are very efficient, which is quite likely as discussed

in Chapter 2, betting on that match will always result in an expected loss due to the applied

margin. Still, the neural network thinks a profitable bet can be made in 85.6% of matches,

which is probably a bit optimistic. The main flaw of this betting strategy is not the model

betting on so many matches, but more so betting the same amount each time, regardless of

confidence. The Kelly criterion offers a way so solve this problem.
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5.1.3 Kelly Criterion

The Kelly criterion is a formula for bet sizing that leads to optimal expected return as the

number of bets tends to infinity [31]. Instead of wagering one unit on the bet, a fraction f∗

of the bankroll is wagered:

f∗ =
hθ(x

i) · bi − 1

bi − 1
(5.2)

This strategy places a bet only if f∗ is strictly positive. This is the case when:

hθ(x
i) · bi − 1 > 0⇔ hθ(x

i) >
1

bi

So the same amount of bets are placed as in the last section.

The performance for this betting strategy is depicted in Figure 5.3. Even though the Kelly

criterion should in theory maximize the bankroll, it has the worst results of all previously

tried betting strategies. This is because Kelly’s promise of optimal bankroll growth relies on

the assumption that hθ(x
i) equals the true probability of Playeri winning the match, which

is of course too optimistic since the neural network predictions are only an estimate.

Figure 5.3: Kelly criterion Simulation

5.1.4 Fractional Kelly

A way to protect the model against its own optimism and reduce the volatility is to only

bet a fixed fraction f of the amount proposed by the Kelly criterion f∗. This is known as
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fractional Kelly [32].

f∗ = f ·
hθ(x

i) · bi − 1

bi − 1
(5.3)

This approach is plotted for four different fraction values in Figure 5.4. All four simulations

lead to a profit over the starting bankroll. Choosing an appropriate fraction value is mainly

dependent on the amount of volatility the bettor is willing to tolerate, as higher values for f

lead to the highest highs as well as the lowest lows.

Figure 5.4: Fractional Kelly simulations

Perhaps a better way to visualize how the fraction influences the resulting bankroll is portrayed

in figure 5.5. In this graph the resulting bankroll after four years is computed as a function

over the chosen Kelly fraction. The simulation reaches break-even with a fraction of 1
14.9 and

optimal bankroll growth is achieved with f = 1
30 resulting in a profit of 14.2% (depicted by a

red dot). Analyzing the graph we can conclude that it is worthwhile to be very conservative

in setting the Kelly fraction. When setting the fraction lower than optimal, profit will slowly

diminish, but the bankroll will always remain greater than 1. On the other hand, setting the

fraction higher than the break even value quickly leads to the risk of losing all money.
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Figure 5.5: Ending bankroll as a function over 1
f

5.1.5 Uncertainty Shrinkage

Researchers have attempted to tackle the problem of uncertainty in hθ(x) trough a more

systematic approach. Baker and McHale [33] propose a modified Kelly criterion based on the

error variance of the predictions instead of the ad-hoc method used in fractional Kelly, which

has no theoretical basis. they suggest to bet a fraction f∗ of the bankroll:

f∗ =
(hθ(x

i) · bi − 1)3

(bi − 1)[(hθ(xi) · bi − 1)2 + bi2σ2]
(5.4)

Where again a bet is only made if f∗ > 0, which again is the case when hθ(x
i) > 1

bi
.

The σ2 parameter can be interpreted as the error variance of the predictions by the neural

network. Consequently, The bets sizes are shrunk proportionally to this uncertainty σ2. The

authors acknowledge it is very hard to directly quantify an optimal σ2 theoretically, so instead

we will run simulations on matches from 2016 and select the σ2 that leads to optimal bankroll

growth. Under the assumption that the uncertainty of the model stays roughly the same, the

selected σ2 should also lead to good results in matches from 2017-2019. This process of

selecting σ2 is shown in Figure 5.6. Indeed we find that the optimal σ2 for matches in 2016

is close to the optimum for the rest of the matches.

The resulting simulation is depicted in Figure 5.7 leading to a profit of 119.6%. We see that

the bankroll seems to follow a rather similar trajectory to the fractional Kelly models, but it
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Figure 5.6: Ending bankroll as a function over σ2

appears to better maximize the gains in the 2017 season while minimizing the loss thereafter.

The bet sizing of this model is also shown in Figure 5.8. Due to the shrinkage, the betting

model becomes rather conservative in the bet sizing compared to naive unit betting on every

match. Instead of betting 1% of the bankroll every match, the betting model now bets less

than 1% in 88% of matches and less than 0.5% in roughly 80% of matches. The shrinkage

thus limits the model to only bet large fractions of the bankroll when it is most certain in its

predictions, which was ultimately the goal, as discussed in Section 2.2.5.
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Figure 5.7: Kelly shrinkage simulation

Figure 5.8: Bet sizing
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Conclusion

The goal of this thesis was to build on the current state-of-the-art in pre-match tennis pre-

diction and attempt to turn a profit in the online betting market.

Using open-source data from all levels of professional tennis, an extensive list of features

were extracted based on previous research and data analysis. Afterwards a logistic regression

model was trained on these features and tested over four seasons significantly outperforming

a baseline based on the official ATP-ranking over all metrics: accuracy, logistic loss, and

calibration. Seeking further improvement a single hidden layer neural network was trained and

compared to the logistic regression model. We found that the neural network further exceeded

the performance in logistic loss and accuracy, with only a slight decrease in calibration. For

our purpose of predicting tour-level matches, logistic regression attained better results by

only training on tour-level matches. On the other hand, the neural network performed better

when trained on matches from both tour-level and lower level tournaments.

Finally, the neural network’s predictions are made profitable in the online betting market

by systematically improving betting strategies. As expected, unit betting and full Kelly bet

sizing were incapable of turning a profit due to the efficiency of the closing odds and margin.

As hypothesized in Chapter 2, a successful betting model should bet conservatively and only

when it has high confidence over the closing odds. With this in mind, fractional Kelly was

tried leading to some marginal success with a profit up to 14.2%. Ultimately, the best results

were obtained by applying the bet sizing model proposed by Baker and McHale [33] which

shrinks the bet size proportionally to the prediction uncertainty, resulting in a profit of 119%
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over three tennis seasons (2017-2019).

6.1 Future Work

Some suggestions for future work are given below.

6.1.1 Deeper Neural Network

During tuning of the neural network architecture, the assumption was made that one hidden

layer would result in a sufficiently strong classifier. While satisfactory results were obtained

using only one hidden layer, adding additional layers could perhaps result in an even better

model. This option was not explored in this thesis due to the high computation cost of

training deep neural networks.

6.1.2 Match Statistics

Sipko [10] obtained good results by mainly using aggregated match statistics of previous

matches as features (e.g. aces, winners, unforced errors, . . . ). We neglected these kind

of features because they are not available for most matches in the raw Sackmann dataset.

Adding these features to the current feature set might improve performance, but it would

require a richer dataset.

6.1.3 bias

The calibration curves show that all trained models inexplicably exhibit a slight bias of

underestimating the winning chances of the underdog. It might be useful to investigate if this

bias also exists in other research and if so, how to effectively solve it.
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[27] B. C. Csáji, “Approximation with Artificial Neural Networks Huub ten Eikelder,” Ph.D.
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