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Abstract

In this dissertation, the DeGroot model, a long-standing and generally well-accepted model

for opinion formation, is used to evaluate the influence of opinion leaders with respect to

the opinion dynamics in social networks. To be able to identify these leaders, multiple

measures from graph theory are compared with the results of an experiment that evaluates

the influence of each node. Special attention is paid to how well these measures correlate

with the results of this experiment in both hierarchical and non-hierarchical environments.

By using the measure that showed the highest correlation with the experiment outcomes

for leadership identification, a set of experiments is conducted to test out how well a com-

bination of influential people can affect the opinion formation process of the rest of the

network by agreeing on an initial opinion. The results show that opinion leaders have a

non-negligible effect on the rest of the individuals in the network. These observations are

further confirmed when running additional experiments in which extra assumptions on the

opinion formation process are made, except for the case where nodes pay more attention

to individuals that have a similar opinion to their own.

Keywords: Opinion formation, consensus, opinion leadership, group decision making,
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Abstract— This paper researches the influence of opinion lead-
ers on the opinion dynamics in social networks. Special at-
tention is paid to the case where there is hierarchy present
in these networks. To model the process of group opinion
formation, different levels of abstractions are used. A study
is done to investigate the identification of opinion leaders based
on measures from graph theory. Afterwards the DeGroot model
is used to study the effect of these opinion leaders on the rest
of the network. This paper starts by introducing the current
methods used in opinion dynamics modelling, followed by an
overview of the setup that was used to simulate these models.
After that, the results of several experiments are discussed and
the case is made that opinion leaders can have a significant
effect on the group opinion.
Keywords—Opinion formation, consensus, opinion leadership,
group decision making, fusion rules

I. INTRODUCTION

While the concept of public opinion is universally known, the
processes at play behind the formation of this opinion are still not
fully understood. Group opinion formation is usually studied using
abstractions at the level of individuals. Conclusions are drawn
by running simulations and observing their development and
outcomes. In these simulations there is often no desired outcome.

This paper studies the effectiveness of opinion leaders in steering
the opinion of the group towards one side of the argument. To
identify these opinion leaders, multiple measures from graph theory
are compared against simulation results. Afterwards, using the
measure that showed the highest correlation with these simulations,
groups of opinion leaders are selected. They are given a strong
opinion with the goal to evaluate whether they have the capability
to direct the group opinion. This is initially done using the standard
version of a common model in opinion formation. Subsequently, the
conclusions drawn from these evaluations are tested further when
multiple small adaptations to this model are made.

II. OPINION FORMATION

Opinion formation is a complex process that differs from person
to person. Because of this, generalized abstractions are required
to keep simulations tractable. The current models on opinion
dynamics are usually composed of three main building blocks:
the opinion expression format, the opinion dynamics environment
and the fusion rules [1]. The combination of these three factors
determines which interactions will take place and how they are
handled.

In reality people generally express their opinions in the form of
language. Modelling this would add a large level of complexity
and is therefore usually not done [2]. Instead, numeric values [3]
or combinations thereof [4] are used to represent opinions. To
allow for nuanced opinions, this study uses a real-valued variable
between -1 and 1 as an opinion value. People with a negative

opinion are considered to be on one side of the argument and those
with a positive value on the other side. A value of zero indicates
that the person has no opinion on the matter at hand. The reason
for using an interval instead of the complete range of real numbers
is to prevent certain scenarios, where some individuals have such
extreme opinions compared to all others that they completely
determine the outcome of the experiment.

After having identified how a person expresses his opinion, the
next step is to determine which people can interact with each
other. Using a graph to model the opinion dynamics environment
is the most logical option, as it makes translation between reality
and the model straightforward [5]. In this graph structure the
nodes represent individuals and the edges represent connections
between two people. Based on the structure of popular online
social networks, the decision was made to use a directed graph [6].
Studying the structure and properties of these networks is out of
scope for this paper. Therefore different well-studied graphs, which
are argued to model society well, were investigated as options.
A common structure used as opinion dynamics environments are
scale-free graphs [7]. The main characteristic of these networks is
their power-law degree distribution. The problem with using them
in this study is that there is no way to control their hierarchality
during generation and changing the network afterwards could
destroy the scale-free property. Therefore the decision was
made to go with another option, being triadic graphs. These
triadic graphs are constructed from a set of triangular patterns.
The networks used in this study consist of a combination of
feed-forward and feedback loops. These triangular connections
are common in networks of communicating entities [8]. While
scale-free graphs did not allow to control the hierarchality,
triadic graphs do. This control is exercised by changing the
fractions of feed-forward and feedback loops in the network. To
verify this, the inherent directionality ξ was calculated for each
network, which can be seen as a measure for the hierarchality
of a network [9]. Figure 1 presents the result of this calculation.
Ns gives an indication of the amount of feed-forward loops
that are changed into feedback loops by switching connections
in the network. The downward trend shows that changing these
connections is a way to control the hierarchy present in the network.

The last element required for the opinion formation model is the
fusion rule. This models how the opinions received by a node are
used to form an updated opinion. Popular options for fusion rules
are the DeGroot model [10], the bounded confidence model [11]
and the voter model [12]. The voter model is based on random
actions and primarily used in research where a discrete opinion
expression format is adopted. The bounded confidence model makes
the assumption that people only interact with others when they
have similar opinions. The DeGroot model does not make this
assumption and is heavily used in research with continuous opinion
expression formats [13], for these reasons it is also used here. A
node using the DeGroot model will average the opinions of its peers



Fig. 1: Effect of switched connections on ξ

at each instant of time and use this average as its updated opinion.

III. SIMULATION SETUP

To gather data on the opinion formation process, simulations were
done. Because of the fusion rules, agent-based simulations are
the most suitable type of simulations. Therefore a simulator had
to be chosen that allows using this paradigm. The two explored
options were GAMA platform [14] and ARGoS simulator [15].
Since ARGoS simulator places a heavy focus on low-level
implementations, so that the code can also be ran on actual robots,
and GAMA platform focuses on high-level concepts instead, the
decision was made to use GAMA platform.

While the exact simulation to perform may differ, the general
setup to run and process it remains largely the same. Therefore
Python scripts were used for the pre- and post-processing of
simulations. These scripts generate the files and values required for
the simulation at hand, run the simulation and process the resulting
data afterwards.

IV. RESULTS

Before looking into the influence of opinion leaders, they had to be
identified first. In graph theory many measures have been proposed
to rank the nodes of a graph. The measures that try to do this based
on how well-connected the nodes are, are commonly referred to
as centrality measures. A simulation was set up to evaluate the
influence of each node in a network. It consists of giving all nodes
an opinion value of 0, except for the selected node, which is given
an opinion value of 1. This node is also made stubborn in the
sense that it does not update its own opinion. Tracking the average
final opinion of the network then allows a ranking of the nodes in
the network. By checking the Pearson and Spearman correlation
coefficients, ρp and ρs respectively, between these data points and
the results of calculating the centrality measures, an indication
of which measures are best suited to identify opinion leaders is
obtained.

The measures that were tested are the closeness centrality [16],
node level (obtained as one of the steps in the calculation of ξ),
the PageRank score [17], the HITS score (Hyperlink-Induced Topic
Search) [18] and the node out-degree. A sample of 22 networks was
used to evaluate their performance. These networks were selected in
such a way that different values of the inherent directionality ξ, their
main differentiating characteristic, were present in the sample. The

Fig. 2: Division of the selected networks across ξ values

Fig. 3: Correlation between experiment results and node out-
degree

division of these networks over the possible ξ values is presented
in Figure 2. Evaluating the correlation showed that while most
measures performed well for the networks with a low ξ value,
their performance significantly degraded when the networks became
more hierarchical. However, this was not the case for the HITS
score and the node out-degree. Between these two, the measure that
scored best when evaluated using the two correlation coefficients,
was the node out-degree. The correlation values obtained for this
measure are presented in Figure 3.

Having found a measure to identify opinion leaders in the network,
the influence of these leaders on the opinion of the entire popu-
lation could be investigated. Three different scenarios were used
to evaluate this, using the original DeGroot model for the fusion
rules. In each one, a group of opinion leaders is used to influence
the other nodes in the network. The results of these scenarios are
than averaged over all 5000 simulations performed, each using a
different network. In the first scenario, all nodes were given an
initial opinion value of 0, except the leader nodes which were given
an opinion of 1. These leader nodes also updated their opinion
according to the DeGroot model, similar to the non-leader nodes.
Figure 4 presents the results of this experiment. It was conducted for
multiple percentages of the nodes selected as leaders, as indicated
in the legend. As can be seen from the figure, selecting even a
small amount of nodes as leaders has a large impact on the average
percentage of positive nodes present in the network.

The same experiment was then conducted again with one
major difference, being that all other nodes now had uniformly
distributed initial opinions. The orange dots in Figure 5 show
the final percentage of positive nodes in this scenario, which
was again tested using multiple percentages of nodes selected as
opinion leaders. Compared to the scenario where all non-leader
nodes had an opinion value of 0 (indicated in blue), a decrease
in the average percentage of positive nodes is seen. However, this



Fig. 4: Average fraction of positive nodes throughout the
simulation

Fig. 5: Effect of number of opinion leaders

decrease becomes smaller when more leaders are added to the
selection.

A third scenario where the original DeGroot model was used, is
represented by the green dots in Figure 5. In this scenario all
non-leader nodes had an opinion value of -1, thus spreading the
exact opposite opinion of the leader nodes. This severely affected
the ability of the leader nodes to have an impact on the rest of
the network. Nonetheless, an increase in the average percentage
of positive nodes is seen when increasing the number of opinion
leaders, who have an initial opinion value of 1. The fact that
carefully selecting 35% of the nodes to counteract the strong
negative opinion of the other 65% works in more than 50% of the
cases, proves that the opinion leader selection is successful. It also
confirms the hypothesis that the opinion leaders can influence the
other nodes in the network by agreeing on an initial opinion.

Based on these results, the opinion leaders have shown to be
effective in influencing the opinion dynamics of the network when
using the standard DeGroot model. However, the DeGroot model is
a very general abstraction of the actual opinion formation process.
To investigate the robustness of these results, the impact of several
small changes to this model was evaluated. Adding self-confidence

Fig. 6: Average fraction of positive nodes throughout the
simulation

to the fusion rules, adding noise to the perceived opinions, placing
more weight on nodes higher in the hierarchy or with a higher out-
degree and placing more weight on nodes with similar opinions are
all scenarios that were simulated. All but one of these scenarios
showed similar results and trends when compared to the DeGroot
model without the adaptation. This confirmed that the selected
leader nodes have an effect on the group opinion formation process.
The only case where the opinion leaders were unsuccessful in their
attempts to have a significant effect on the network was when
nodes give more attention to their neighbors who have similar
opinions. The results of that experiment are shown in Figure 6.
Closer inspection of the simulations showed that the decrease in
the fraction of positive nodes seen in the figure can be explained
by the fact that, because nodes value opinions that are close to their
own more, a lot of nodes gradually move towards an opinion value
of 0.

V. CONCLUSION

This paper has investigated the effects of opinion leaders on the
opinion dynamics in social networks. Research has been done
towards measures that can identify these opinion leaders. The result
of this evaluation is that, while several measures perform well when
the network is not very hierarchical, the out-degree of a node is
the best indicator for opinion leadership in the majority of cases.
When a group of nodes is selected based on their out-degree and
initialized so that they favor one side of the argument, they can
have significant effects on the rest of the network. This has been
verified with simulations using the DeGroot model and simulations
where small adaptations to this model were made. However, there
is one scenario where this strategy failed. This happened when the
nodes pay more attention to others who have similar opinions. Other
strategies to influence the rest of the network should be explored
for this scenario in future work.
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Chapter 1

Introduction

Public opinion is a well-known concept used to indicate what the majority of people think.

However, the way in which each individual comes to its conclusion, called the opinion for-

mation process, is still not fully understood. This process varies from person to person,

making it difficult to study. Most research therefore focuses on using generally accepted

abstractions on the level of the individuals to evaluate hypotheses on the group opinion

formation. This evaluation happens through simulations. In these simulations there is

usually no desired outcome in mind. Instead, they are run and afterwards the outcome

is observed. In this study the goal is to identify global trends in the population when

individuals with a large influence are used to try to steer the opinions of the other people.

Current opinion dynamics models usually consist of a set of standard elements. In

chapter 2 these elements are explained in detail and the different options for each one

are evaluated. To gather data on how the selected options affect the opinion formation

process, simulations are done. The setup used to run and process these simulations is

explained in chapter 3. After explaining how the experimental setup is implemented, it is

used to evaluate multiple measures from graph theory on their effectiveness to identify key

individuals in the network, as explained in chapter 4. During this identification, special

attention is paid to their performance when there is a significant level of hierarchy present.

Evaluation of these measures will lead to a decision to use one of them to rank the nodes in

the network, with the goal of identifying opinion leaders. These leaders will then be used
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in the rest of chapter 4 to evaluate whether they have the ability to direct the rest of the

network by agreeing on an initial opinion. This is done for both initially unbiased networks

as well as networks where there is a preference for the non-goal opinion. Attention is also

paid to the correlation between the number of leaders used to influence the network and

the eventual outcome. Afterwards, in chapter 5, these results are compared to scenarios

where extra assumptions are made on the aspects playing a role in opinion formation.

These assumptions are translated into small adaptations to the original opinion dynamics

model used and their effect is evaluated. Based on the outcomes of the simulations, some

suggestions for future work are made. The results from all these experiments are then

bundled into the final conclusion.
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Chapter 2

Opinion formation

The dictionary defines an opinion as a view or judgment formed about something, not

necessarily based on fact or knowledge [11]. How this opinion is formed, is however not

further disclosed, the most likely reason being that it is a very complex process involving

multiple factors [54]. Nonetheless it has been the topic of numerous studies throughout

the years. In today’s society, interaction with other people is a major reason for changes

in opinions for most individuals [43]. This cause for a change in opinion is usually referred

to as social influence and plays a big role in many phenomena like the spreading of fear

during epidemics or the spreading of innovative ideas [43]. Factors playing a role in social

influence include group structures and personal characteristics of the individuals in those

groups [48, 6]. Because of the vital role it plays in fields like marketing and sociology, mul-

tiple models for social influence have been proposed and studied in earlier work [2, 10, 18].

The current models on opinion dynamics are usually composed of three main elements:

the opinion expression format, the fusion rules and the opinion dynamics environment [15].

The combination of these three factors affects the results of the simulations and should thus

be chosen carefully. The opinion expression format determines how each agent expresses

his opinion. This can be either a discrete variable, continuous variable or even a vector

depending on the goal of the research [60, 51, 55, 35]. The fusion rules determine how the

exchange of opinions is handled. Again, there is a lot of variability between models, as

some allow agents to share dishonest opinions or account for memory of an agent while
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others do not [3, 12, 10]. It is important to choose the fusion rules and opinion expression

format with respect to the research goal. The opinion dynamics environment also plays a

key role in the model as it determines between which individuals interaction is possible. In

the current scope, opinion dynamics environment refers to the network structure that fully

describes the relations between individuals. Unfortunately, there is a lack of empirical evi-

dence regarding the structure of real world influence networks [59]. The size and structure

of the opinion dynamics environment also depends on the circumstances under investiga-

tion. While some research focuses mainly on very hierarchical networks of agents, which

might resemble a workplace environment for example, others may have multiple levels of

networks taking into account both informal and formal connections between peers [55, 37].

In the current state-of-the-art the focus is mainly centered around the three possible

end scenarios: consensus, polarization and fragmentation. A consensus is reached when all

individuals in the network agree. The network is in a polarized state when the individuals

are divided into opposing subgroups. When more than two opinions are present, the

network is said to be fragmented. Because of the focus on the end scenarios, the simulations

are usually done without intervention or desired outcome in mind. The recent past has

shown that it might be interesting to examine how this opinion formation process can be

influenced and manipulated in order to prevent for example the spread of fake news. In

contrast, numerous preventive measures were taken in order to slow down the spread of

diseases based on epidemic modelling, which draws many parallels to opinion formation

models [16, 17]. For these reasons, the goal of this thesis is to look into ways to promote

or inhibit the opinion formation in a hierarchical social network. This chapter gives an

overview of opinion formation modelling with the intent of providing a solid base for the

further exploration of the topic in the next chapters.

2.1 Opinion expression format

While expressing an opinion comes naturally for most individuals in the form of language,

this is hard to model. Although there are models that use language to express opinions, it

is quite uncommon [14]. Nonetheless, when simulating opinion formation there is a need for
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a model for opinion expression. To overcome this obstacle, a level of abstraction is added

in the form of an opinion expression format. This format determines how each agent ex-

presses his opinion. In order to enable complex simulations using mathematical models

this expression of opinion is usually done with a numeric value [15]. As mentioned in the

introduction of this chapter, this numeric value can be discrete or continuous depending

the model and research goal. Discrete opinions have the advantage that the opinion of

every agent is very clearly expressed. The downside that comes with this, is that they do

not allow much room for nuance. They can also add a level of complexity to the fusion

rules, as the outcome of those rules needs to be one of the discrete options. The opposite is

true for continuous opinion expression formats. These allow individuals to express nuanced

opinions. The nuance can even be so large that an individual is no longer expressing an

opinion but instead expressing a doubt between the options. In some cases the opinion

expression format is chosen to be a vector [35]. This vector should then be interpreted

as a combination of discrete or continuous opinion values on different topics. This format

is usually only chosen when the goal of the study is to specifically explore the correlation

between opinion values in the opinion formation process.

Considering the fact that the goal of this thesis is to see how opinion leaders can in-

fluence the opinion dynamics, there is no need to simulate the effects of combinations of

opinions on different topics. Introducing this does not only make simulating the opinion

formation more computationally intensive, but it also introduces another level of control

parameters for the simulation, as the correlation between these opinions needs to be taken

into account. While this could be an interesting expansion, it is considered out of scope

in this study. Keeping in mind the possibility of expressing nuance, it was decided to use

a continuous variable for the opinion expression format. Without further consideration

of the opinion expression format, individuals could have opinion values ranging from −∞
to ∞. It is not hard to imagine the possibility that these extreme opinion values could

significantly influence the opinion formation process. Taking for instance a population of

individuals in which all but one individual have a low absolute opinion value and the only

other person has an extremely high opinion value. In that case, this one person would have

a powerful effect on all others and the result of the simulation would not be very useful.
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One could compare this scenario with a group of people having a civilized conversation

while one person is shouting above everyone else, thereby making it impossible for the

others to have any meaningful interaction. This problem can be mitigated by setting an

upper and lower limit on the possible opinion values. This is called a bounded continuous

opinion [34]. This type of opinion expression format has the advantage that, while it leaves

room for nuanced opinions and gradual change in opinion, there is a limit avoiding that a

single agent dominates the rest of the network.

2.2 Opinion dynamics environment

Another important role in the opinion formation process is played by the environment [15].

The environment dictates the possible interactions between individuals. As it tries to

model real networks of people, not every person is directly connected with every other

person. When trying to simulate social networks, the choice for a graph to model the

environment is the most logical as translation between reality and the model is straight-

forward [51, 59, 53, 36]. The graph structure represents the network of individuals and

their connections. Each node in the graph represents a person and each edge a connection

between two people. Direct interaction is only possible between nodes that are connected

by an edge. Here, it is important to make the distinction between undirected and directed

networks. In an undirected network edges do not have a direction, which implies that when

two persons are connected by an edge communication can happen in both directions. In di-

rected networks on the other hand, communication is only possible in one direction, which

is determined by the direction of the edge. When looking at popular online social networks,

this directed nature of influence is present in most cases and therefore directed networks

will be used during this thesis [44, 38]. Using Twitter as an example, it is clear that when

one user follows another this does not necessarily mean that the inverse is true [28, 21].

The study of the structure of these networks encompasses a whole area of research by itself.

Using well-studied networks allows to focus on the underlying dynamics.

Unfortunately, as mentioned in the introduction, empirical evidence regarding the struc-
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ture of real world influence networks is limited [59]. This suggests that an evaluation of

different options is needed. Based on the goal of this study, there are several requirements

for the opinion dynamics environment. First and foremost the goal is to model social net-

works. This implies that the chosen structure should exhibit characteristics of these social

networks. So an option has to be chosen from the ones that are argued to model society

well. Another requirement for the environment is that there is some form of hierarchy

present. Since this thesis investigates ways in which opinion leaders can influence the opin-

ion dynamics in hierarchical social networks, there needs to be a way to set up and control

this hierarchy. While some studies pay attention to the possible combination of multiple

levels of influence networks in the opinion formation process, this is not done here. The

main reason why this is sometimes done, is to model and evaluate the differences between

the different social circles an individual is part of and how these interact, which is not in

the scope of this thesis.

Keeping this decision in mind, there is still a multitude of options to choose from.

Over the years, multiple types of networks have been said to model society well. The

common theme in these networks is that they try to model the statistical properties of

society as a whole by manipulating the properties at the level of individual nodes. A type

of network commonly found in the literature is a so-called scale-free network [19]. The

defining characteristic of this type of network is the power-law degree distribution [45].

The degree distribution is the probability distribution over the number of connections that

a node in the network has. The number of connections of a node is also called the degree of

that node. A power-law degree distribution thus means that when the degree of the nodes

is plotted versus the amount of nodes with this degree the curve follows a power function

and the distribution can be written in the following form

P (k) ∼ k−γ

where γ is a constant and k is the node degree [45]. A network following this power-law

degree distribution consists of a minority of very well-connected nodes with a high degree

and a large number of nodes with few connections. A popular example of a network that

exhibits this property is the internet, where there are a few websites that are pointed
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towards by a large number of others, while the majority of websites only has a very small

number of other websites linking towards them. It is sometimes argued that this type of

network is also a good model for social contacts in society [23]. Looking at social media

again for an explanation, examining the number of followers or friends users have, shows a

similar trend, with a small number of users having up to millions of peers while most have

close to none in comparison. One of the algorithms that can be used to generate scale-free

networks is the Barabasi-Albert algorithm [1, 57]. This algorithm works in two phases:

1. Initialization phase: A set of m0 nodes is created that are fully interconnected by

adding one node at a time to the network and adding a connection from this node

to all other nodes already present in the network.

2. Growth phase: Every time a new node is added, it will have m (≤ m0) edges to

existing nodes. Choosing the nodes to connect with is done based on the degree of

these nodes such that the probability pi of connecting to node i with degree ki is

pi =
ki∑
j kj

Because of the use of this particular equation for pi, which determines the nodes to which

these new nodes are connected, the network ends up with the scale-free characteristic.

This way of adding connections is also called preferential attachment. The problem with

using scale-free networks here, lies in the fact that this thesis focuses on hierarchical social

networks. Note that scale-free networks can exhibit signs of the presence of a hierarchical

structure [50]. In this algorithm there is however no way to control the hierarchical nature

of the resulting network. Making changes after the generation could destroy the scale-free

property of the network and is therefore not advisable.

Because of this problem with the control of the hierarchality, the decision was made to

look for alternatives to scale-free networks. Specifically, the search focused on a type of

network that allows for controlling the hierarchy. An obvious answer to this problem would

be the use of networks based on line- or star-shaped patterns. These networks allow for hi-

erarchy to be clearly present as can be seen in Figure 2.1. In Figure 2.1a the leftmost node

is the highest in the hierarchy, followed by the middle and right node. In Figure 2.1b the
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(a) Line-shaped network

(b) Star-shaped network

Figure 2.1: Line- and star-shaped patterns

middle node is the leader, based on the structure of the network with all other nodes being

on the same but lower level in the hierarchy. The question here is whether or not these

networks are still a good representation of social networks. Even when expanding these

networks by adding more of the same patterns, they remain very simple. This simplicity of

course contradicts the presence of complex communication patterns in real social networks.

These are greatly reduced when compared with the scale-free networks inspected earlier.

The risk of using these networks is that, next to the opinion dynamics, the structure of the

network strongly determines the experiment outcome. To find a middle ground between

the possibility to control the hierarchy present in the network and how well they represent

social networks, triadic graphs were considered.

Similar to the networks evaluated in the previous paragraph, triadic graphs are con-

structed from a set of basic patterns [49]. These basic patterns, used to construct more

complex graphs, are called motifs. In the case of triadic graphs, these motifs are triangu-

lar. These triangular connections are prevalent in networks of communicating entities [49].

They also allow to control the hierarchy when creating the network. For these reasons it

was decided to use these triadic graphs for the opinion dynamics environment in this study.

To be able to verify the control on the level of hierarchy present in the network, a measure

is needed which indicates how hierarchical a network is. The next section deals with this
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measure and examines whether the statement that the level of hierarchy can be controlled

in triadic graphs is valid.

2.2.1 Inherent directionality as a hierarchy measure

To be able to judge whether hierarchy is present in a social network, a standardized way of

comparing graphs is needed. Ideally, an analytical measure should be set up which takes

the network as an input and returns a numeric output, indicating how hierarchical the

network is. Based on this output, a comparison between different graphs is done and a

well-grounded decision can be made on whether or not the network is considered hierar-

chical. Research on these measures has already been conducted with different strategies

and outcomes [42, 25, 13]. According to literature, a mathematically sound way of mea-

suring hierarchy, is by calculating the inherent directionality ξ of the network [13]. ξ gives

an indication of how well all nodes could be ordered along a one-dimensional axis, such

that the links existing between these nodes align as much as possible with respect to their

pointing direction. In this way, the existence of this inherent directionality is related to

the existence of a hierarchical structure in the network. A higher ξ value indicates a more

hierarchical network structure.

Calculating ξ comes down to measuring the fraction of edges going in each direction of

the imaginary axis on which the nodes have been ordered. By taking the maximum of these

two fractions, a percentage between 50 and 100 is obtained. A ξ value of 50% indicates

that there is no apparent direction present for the communication in the network and thus

a relatively unhierarchical graph. A value of 100% indicates that all communication in the

network goes in the same direction. Evaluating ξ for the networks presented in Figure 2.1

gives ξ=100% for example, as all edges go from a higher level in the hierarchy to a lower

level. To evaluate whether an edge points up or down the hierarchy, the levels of the nodes

connected by this edge need to be known. By comparing these levels and the direction of

the edge, a decision is then made on whether it goes up or down the hierarchy. In order to

calculate the level lj of each node j a system of linear equations is set up. To understand

the equations, some definitions from graph theory need to be introduced first.
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Definition. In-degree and out-degree of a node

The in-degree and the out-degree of a node are, respectively, the number of incoming and

the number of outgoing connections at that node.

Definition. Adjacency matrix

The adjacency matrix of a graph with n nodes is an n-by-n matrix for which the entry at

row i and column j is 1 if there is a connection from node i to node j or 0 if there is not.

Definition. Basal node

A basal node is defined as a node with 0 in-degree and thus has no link pointing to it.

These nodes are also referred to as zealots.

Given these definitions, the set of equations used to calculate the level of each node in

the hierarchy can be formulated as [13]:lj = 1 + 1
kj
∗
∑n

i=0,i 6=j Aij ∗ li , non-basal node

lj = 0 , basal node
(2.1)

In equation 2.1 kj is the in-degree of node j, Aij is the entry in the adjacency matrix in

row i and column j and lj is the level of node j. Not every network necessarily has basal

nodes in it. This can cause the matrix describing this system of equations to be singular,

making the equations unsolvable because of the degrees of freedom present. To address

this issue, the least-squares method of solving linear systems of equations is used, which

results in each node getting a floating point number as a level. When the levels of all nodes

in the system have been identified using these equations, ξ can then be calculated easily by

iterating over the edges and checking their direction. To automate this calculation a script

was created in the Python programming language which takes a list of the adjacency lists

for each node as input. The adjacency list of a node is a list containing the numbers of

all the other nodes for which there is an edge pointing from the current node towards this

other node.
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(a) Feed-forward loop
(b) Feedback loop

Figure 2.2: Triagonal base patterns

Having identified a measure for checking whether a network structure contains hierar-

chy or not, the next question is whether the hierarchality can be controlled by the topology

of triadic graphs. As mentioned before, these triadic graphs consist of a combination of

triagonal patterns. The graphs used in this study are constructed from two specific kinds

of these triagonal patterns: the feed-forward loop and the feedback loop. These patterns

are shown in Figure 2.2. Calculating ξ on the basic patterns shows that the feed-forward

loop shown in Figure 2.2a is highly hierarchical as all edges go down the hierarchy while

the feedback loop shown in Figure 2.2b is not as there is no clear hierarchy present. Based

on these observations, the assumption is made that by combining a number of these pat-

terns, ξ values between 50% and 100% can be obtained. To evaluate this, a set of 5000

networks consisting of 343 nodes was used. This set was constructed using both networks

consisting of 343 and 686 of these triagonal patterns. For each of these two types, 50 seeds

for the random number generator were used to generate graphs. These initial 100 networks

consisted only of feed-forward loops. By reversing some connections in these networks and

thereby changing the feed-forward loops into feedback loops, additional networks were gen-

erated. For the networks consisting of 343 feed-forward loops, this reversal of connections

happened in steps of 7. For those having 686 initial feed-forward loops, a step-size of 14

was used. In this way 50 networks are generated for every seed, resulting in 5000 networks.

Revisiting the earlier hypothesis, the expected outcome of calculating ξ on each of these

networks should show that when the number of reversed connections increases, the value
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Figure 2.3: Effect of switched connections on inherent directionality ξ

for ξ decreases. Figure 2.3 shows that this indeed happens and thus confirms the hypothe-

sis. On the x-axis the number of switching events Ns is shown, being either 7 or 14 reversed

connections per step depending on the amount of triagonal patterns present in the graph.

On the y-axis the inherent directionality ξ is visualized. For each of these switching events,

the average ξ value and standard deviation were calculated across all 100 networks. The

figure shows a downward trend when Ns increases. Based on this observation, the choice

for triadic graphs as opinion dynamics environment is preferred as it allows controlling the

hierarchy and resembles realistic social structures. The slight increase between Ns=15 and

Ns=20 is due to the fact that around this point the occurrence of nodes with zero in-degree

disappears. This makes the calculation for ξ slightly imprecise.

2.3 Fusion rules

Within the context of opinion dynamics, individuals need to be able to share and change

their opinions. In reality, this is an extremely complex process for which there is no con-

sensus on how it works to date [39]. To enable simulation, levels of abstraction have been

created to model the different factors playing a role as shown in sections 2.1 and 2.2 for the
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opinion expression format and opinion dynamics environment respectively. While these are

important parameters, the real complexity lies in the fusion rules. The fusion rules deter-

mine how the exchange in opinions is handled for each agent. The term fusion rules comes

from the fact that each agent changes his opinion by fusion his current opinion with those

of his neighbors, using a set of mathematical rules. The fact that these rules are the same

for each agent in the simulation, is what makes agent-based simulations a popular strategy

for examining the opinion dynamics. Because the fusion rules deal with the incorporation

of the opinion of others into your own, they depend on the opinion expression format and

the opinion dynamics environment. The fact that there is a plethora of reasonable possi-

bilities to choose from for each of these three factors, is one of the reasons there are many

different possibilities being explored [15].

The opinion expression format has implications for the set of rules that determine how

the individual incorporates the opinions of his peers into his own because the mathematics

used for one format can not always be used for all formats. For instance, the dynamics

used for a discrete format can not in all cases be applied to a continuous format and vice

versa. On top of this, some models allow agents to share fake opinions and thus lie to

others or express uncertainty. There are also models which account for an agent’s memory

with respect to its own opinion. Each of these options calls for a change in the fusion rules.

In the current research however, the assumption is usually made that agents share honest

opinions and there is only one single form of opinion expression format used [15]. Because

of this immense option space, it is important to choose the fusion rules and opinion ex-

pression format with respect to the research goal. As mentioned in section 2.1, the opinion

expression format used here is a bounded continuous variable. Agents are also assumed

to share their opinion honestly. The opinion dynamics environment has an impact on the

fusion rules, because it determines which and how many other opinions need to be taken

into account when forming an updated opinion.

After deciding how each agent expresses its belief in the topic at hand and what the

network of agents looks like, it is important to delve deeper into the mathematical models

of social learning. Does an agent take into account its own previous opinion by having a
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certain degree of self-confidence? Are the opinions of all neighbors equally as important

or is there a way of classifying which neighbors have more importance? The question

studied in this thesis is in which way the answers to these questions impact the result of

the simulations and which conclusions can be drawn from this. In most studies one of three

basic fusion rules is chosen or an extension of these is used [15]. These three basic models

are the DeGroot model, the bounded confidence model and the voter model [10, 9, 8]. In

the voter model, all nodes are supposed to be ordered along a regular lattice. Each node

updates its opinion by choosing a direct neighbor randomly and adopting that neighbors

opinion. The opinions are usually binary variables indicating two possibilities to choose

from. This is where the name voter model originated from. Because of this model’s limits

regarding the possible interaction patterns, this raises the question of how representative it

is of real opinion dynamics. The bounded confidence model tries to be more representative

by taking into account psychological factors when an individual updates his opinion. The

name stems from the fact that an individual only pays attention to other opinions when

they are not too different from its own opinion. This is supposed to simulate the behavior

of individuals when the assumption is made that people are more likely to believe others

when these others confirm their beliefs. This is however a strong assumption to make.

The DeGroot model is a more generalized version of these models. In the DeGroot model,

the opinions of all peers of the node are taken into account when updating its opinion.

Different weights can be assigned to these opinions but in the most general version of the

model all weights are equal. These weights typically do not change over time. Because it

is a very general model and it has been studied for a long time, it is considered to be the

classic model in opinion dynamics [15]. Based on this information, it was decided to use the

DeGroot model throughout this thesis, starting with the most general version as a baseline

for further experiments. In these further experiments, assumptions are then made on the

distribution of the weights assigned to the opinions of neighbors and the effects of these

assumptions are evaluated. The following section presents a more detailed explanation of

this model.
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2.3.1 DeGroot model of social influencing

The DeGroot model of social influencing, named after Morris H. DeGroot, who first pro-

posed it in 1974, has been around for several decades [10]. Although it is not a very

sophisticated model at its core, that does not make it any less relevant as is proven by

the fact that after 46 years it is still actively used [15]. Especially in cases where the goal

is to analyze the theory behind network dynamics, its simplicity is helpful in gathering

insights in the processes going on in the networks. The key idea behind the model can be

summarized with the famous sentence ”you are the average of the 5 people you spend the

most time with” [24]. Translating this to a more formal description of the model means

that at every instant each node takes an average of the opinions of its peers. In the most

generic form of the model this is all there is to it. Since it has been around for such a

long time however, this version has been studied thoroughly and therefore in some studies,

instead of taking the normal average of the opinions of the peers, a weighted average is

used [10, 36, 26]. The weights assigned to the opinions of the peers can be changed de-

pending on the characteristics of the neighbor. This way, the weights represent the amount

of social influence between agents and each node can be assigned a certain level of impor-

tance. Without loss of generality, the version using weighted averages can be used to write

down the equations used by node j to calculate its new opinion oj, obtaining the following

results: oj,t+1 =
∑n

i=1,i 6=jWij ∗ Aij ∗ oi,t , in-degree > 0

oj,t+1 = oj,t , in-degree = 0
(2.2)

In equation 2.2 Wij is the importance node j attaches to the opinion of node i and Aij

is the entry in the adjacency matrix indicating whether there is a connection from node

i to node j. To obtain the normal version where there is no difference in weight between

neighbors, the non-zero entries in column i of the weight matrix W should equal 1
ki

where ki

is the in-degree of the node i. This equation is sometimes presented without the adjacency

matrix A. In this case, the adjacency is still implicitly present because an entry of 0 in W

indicates that there is no connection between these two nodes.

As mentioned in the previous paragraph, changing the weights can be interpreted as
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changing the social influence of a node. When making changes to these weights, special

attention is required to make sure that the sum of the weights assigned to all neighbors

of a node equals 1. If the sum of the weights is higher or lower, certain values for the

opinion are more likely to occur. When the sum is higher than 1, the fusion rules will favor

a higher absolute value of opinion, when the sum is lower the fusion rules will cause the

opinion to converge to 0. This causes the results to differ from the outcome of the opinion

dynamics and initialization and makes them unusable. As the goal is to study ways to

influence the opinion dynamics in a network using these interactions and initial opinions,

special attention needs to be paid to these types of small implementation errors, which

could determine the outcome of an experiment before it has even started. The specifics

of how and why weights should be changed between neighbors or simulation steps are

dependent on the specific scenario under evaluation and will be presented in chapter 5.
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Chapter 3

Setup of experiments

The goal of this study is to investigate the role opinion leaders play in opinion dynamics.

Before any statements can be made about the influence they have, data needs to be avail-

able from which these conclusions can be drawn. To generate this data, a set of scenarios

to be simulated is established. Based on these scenarios, a setup is constructed to run the

experiments as well as gather and process data in an efficient manner. Throughout the

different scenarios, the general setup remains largely the same across all simulations. The

goal of this chapter is to present an overview of this setup, explaining how simulations are

run, starting from the scenario that needs testing and concluding with the processing of

the simulation results.

The general outline of the setup is presented in Figure 3.1. As indicated, the first

step consists of defining the scenario that needs to be simulated. Once a scenario has

been worked out, the next step is to determine which input is required and generate this

necessary input for each of the cases to be run. For the implementation of the opinion

spreading simulations, the GAMA platform simulator was chosen [56]. GAMA is short for

GIS & Agent-based Modelling Architecture. The reasoning behind this decision, alongside

with the alternative that was considered, are explained in section 3.1. This simulator takes

an XML file as input, which defines the experiment-specific parameters. Apart from this

XML file, another file describing the opinion dynamics environment is also required in the

current context. The environment is described using a CSV file that contains a list of all
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Figure 3.1: Experiment pipeline

the edges in the social network. Each row in the file stores one edge as a combination of

the source and destination node number. In case additional edge parameters are required,

these can be stored in the same row. In these files the node numbers start at 1 and

go up to 343. In section 3.2 a more detailed explanation of how these files are built up

and generated automatically is presented. Given these two files, the experiments can be

carried out using the command line interface available for the simulator. The output of

the experiments is stored in a folder on the file system, again using the XML format. This

output contains the values for certain variables at each step of the simulation. These values

can be used for further processing and analysis of the results to then draw conclusions.

In the following sections the different stages of the simulation pipeline are explained in

greater detail, starting off with the central part, the simulator, as it determines the pre-

and post-processing steps.
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3.1 Simulator

As mentioned in the introduction, GAMA platform was chosen to run the simulations.

Before the decision was made to go with this simulator, other options were also explored.

An important factor to consider was the fact that the simulator needed to lend itself for

agent-based simulations, as multi-agent systems are more suitable to investigate this type

of social behavior [40]. Based on available experience, the current state of the art and

trends found in other research, there were two options: GAMA platform and ARGoS

simulator [47]. Both of these simulators focus on agent-based simulations. Each of these

simulators therefore allows to write the simulation code in line with this paradigm, meaning

that the code specifies the exact behavior of each agent but not the behavior of the group.

For GAMA platform this is done using a custom language while the ARGoS simulator uses

C++. The reason why C++ is used is that the code written for ARGoS simulations is

meant to be run on a specific kind of physical robots. Although this can be an advantage

in some studies, it does not benefit the current goal. GAMA platform on the other hand

focuses on more abstract, high-level concepts in the simulations. The consequence of this

different focus is that the custom language used in this simulator provides many features

for modelling these high-level concepts out-of-the-box. In fact, it has built-in support for

network structures defining the environment in which the agents are placed. GAMA plat-

form also has extensive documentation publicly available on its website. For these reasons,

GAMA platform was used as the simulation tool within the framework of this thesis.

The custom modelling language used in GAMA platform is called GAML, an abbrevia-

tion of GAma Modelling Language. It is easy to learn for someone with previous program-

ming experience and there is a full tutorial available on their website. In this tutorial the

capabilities of the simulator are introduced, alongside the syntax of GAML, implementing

increasingly complex experiment definitions along the way. As indicated previously, the

simulator also comes with an implementation of certain high-level concepts from graph

theory such as nodes and edges, which enabled writing clean code for the simulations

used in this study. Graph structures are available as a standard datatype in GAML. This

datatype comes with a set of operations which greatly reduce the time needed to program
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experiments involving graphs. Especially useful in this regard was the use of the procedure

to find neighbors of nodes. Because of the DeGroot model, this is a very common operation

in the simulations. The simulator has a separate view that is used when an experiment is

running. In this view, figures can be constructed to allow tracking of important experiment

variables in real time and visual debugging of simulation setups. This makes the task of

setting up new experiments a lot simpler as there is no need to go through the remainder

of the pipeline when trying to find small errors in only one part of it. Furthermore, this

also allows for quick prototyping of new simulations to test out hypotheses.

Although the graphing and data-gathering tools present in the simulator are adequate

for quick analysis and debugging in separate instances of an experiment, this is inconvenient

for larger experiment definitions possibly involving different networks. When the goal is

to run a single experiment on thousands of graphs, a systematic way to set everything

up and store the resulting data to be processed later is required. GAMA platform allows

this because it has a command line interface. This interface permits running experiments

in a headless mode, meaning that no window has to be opened when a simulation is

started. This makes the process of running multiple simulations significantly faster as it

greatly reduces the overhead of starting and stopping the program every time a new one is

started. When running experiments from the command line, XML files, which describe the

experiment, are needed as input. In non-headless mode, all variables can be declared in

the program itself using the GAML file. When using the headless mode however, the new

values need to be defined in the XML input file so that the simulator knows how to change

these between different instances of the simulations. As mentioned before, a CSV file is also

used to define the opinion dynamics environment. The location of this file on the system

is an example of the variables that need to be changed in between simulations and is thus

present in the XML input file. One of the first steps in all the simulations is to use this CSV

file to set up the network of agents, as described in chapter 2. Once the agents are created,

an iteration over the CSV file with all the edges is performed, adding them one by one

using the standard operators present in the GAML language. Simulations generate XML

files which contain the values of a set of tracked variables at every step of the simulation.

If required, the simulator still provides a way to capture images of the simulations when
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it is used in headless mode. This allows closer inspection of the simulation in instances

where visual confirmation of the results might be required, while still enabling the efficient

running of multiple simulation instances in a row.

3.2 Pre- and post-processing

As indicated in section 3.1, a lot of files need to be created and processed for execution

and processing of the simulations. While reuse of some of these is possible, in a lot of cases

an automated mechanism is required to take care of the others. Fortunately, these files are

highly structured, so scripts can be written to carry out this task. Because of the immense

library of publicly available modules and based on previous experience, it was opted to use

Python as the programming language in which to write these scripts. Another advantage

of using Python is that it enables the execution of command line tasks from within the

Python code. This means that running simulations in headless mode can be started within

a script.

3.2.1 Preprocessing

For every simulation two files are required: one describing the opinion dynamics environ-

ment (the network of agents) and another containing the values for the variables that differ

between simulation instances. Initially, each graph describing a network was defined in a

separate text file. However, iterating over CSV files is more convenient in the simulator

compared to text files. Because of this, the initial files had to be converted. To do this

conversion in an efficient way, a script was written which generates a CSV file for each

network, containing a list of edges labeled by the number of their source and destination

nodes, based on the text files. This CSV file with the network structure can be reused

and only had to be converted once. The information defining the network as a whole is

encoded in the file name so it can still be used when needed and no information is lost in

the process. Depending on the scenario under test, it is possible that extra parameters for

the edges are required. In these cases, an iteration over all the network files is required to

calculate and add these parameters.
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The second file that is required in order to run an experiment in headless mode, is the

XML file with the specific values for simulation variables. One of these variables is the

location of the CSV file defining the opinion dynamics environment. Because this differs for

every instance, this implies that for every scenario to be tested 5000 different simulation

definitions have to created. Using the Python core XML processing module an experi-

ment definition template file is copied, changing the values of the required parameters to

the ones to be used in the simulation. These simulation definitions are then combined in

one file, which is then passed to the program as a command line argument. The reason

why they were all combined into one file is that the simulator allows this, with the goal

of running them one after the other without having to start and stop the program every

time. Apart from the location of the CSV file containing the network structure, another

important variable to be changed between instances of the experiment is the seed for the

random number generator used by the simulator. Since certain aspects of the simulations,

such as the initial opinions of nodes, are generated using the built-in pseudorandom num-

ber generator, it is important to change the seed of this generator between experiments so

that the results are not dependent on its value, keeping in mind that results need to be

replicable later. If the same seed would be used for all instances of the experiment, the

observations obtained from the experiments could be dominated by random fluctuations,

hiding the more insightful fundamental system behavior. To ensure both replicability and

the use of different seeds, the same distribution of random seeds was used for the original

generation of the networks. The seeds used for the generation of these graphs were encoded

in their filenames and thus available to be used during the setup of the experiment. In this

way 50 different seeds are used across the experiments, ensuring that any conclusions stem

from the actual implementation of an experiment instead of random chance. The last vari-

able that was important in every single one of the scenarios was the experiment ID. This

was of no importance for the experiment itself. Instead, it was important out of practical

considerations, since this variable determines the name of the output file generated by the

simulator. Being able to trace results back to the network and experiment from which they

originate, allows for investigation of possible inconsistencies and debugging of simulations.

Further variables depended on the experiment at hand, but were added to the definition
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template and script using the same process.

3.2.2 Postprocessing

When using the simulator in headless mode, the output of simulations is stored in XML

format. For every simulation, a new file is created in the same folder that has the simulation

ID in the filename. This folder is passed to the simulator as a command line argument.

These files contain the values for certain variables at every step of the simulation and are

structured based on these time steps. Indicating that a variable should be tracked in the

output is done by changing the GAML file in which the simulation is defined. Since not all

variables are important for the analysis, this limits the size of the output files and allows

for clean processing code. A benefit of tracking each of these variables step by step, is the

fact that no experiment has to be repeated in case the value at earlier instants in time is

required. As the values are grouped per time instant, processing is intuitive. Using the

Python module for processing XML files, these values could be translated into variables in

the script. Based on the goal of the experiment, these are then used for further analysis

and the generation of graphs.
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Chapter 4

Influencing the network using

opinion leaders

Now that an overview has been given on the current state of the art in opinion forma-

tion research, the base model for this study has been chosen and a system for running

simulations has been set up and discussed, the following step is to define the experiment

scenarios. Based on these scenarios, the influence of opinion leaders on the rest of the net-

work can be investigated. The eventual goal is to derive a general set of rules, formed from

the experiment results, that determine how the effectiveness of these opinion leaders in

changing the opinion dynamics can be estimated. In section 4.1 an evaluation of the term

opinion leadership is given, explaining how it is interpreted and calculated in this study.

Afterwards in section 4.2, the opinion leaders, identified using the results from section 4.1,

are put to the test. This is done by placing them in a series of scenarios where the other

nodes are progressively more biased against the opinion leaders.

4.1 Opinion leaders

What makes someone an opinion leader? The term opinion leadership stems from the

two-step flow of communication model [30]. As the name suggests, this model assumes

that communication and thus influence happens in two steps. In the original study, the

origin of all information is assumed to be mass-media. The hypothesis is then that this



CHAPTER 4. INFLUENCING THE NETWORK USING OPINION LEADERS 26

information flows through opinion leaders, who interpret it and put it into context. The

general public uses this interpretation and forms its opinion based on how the opinion

leaders have interpreted the information and in which context it has been placed by them.

In today’s world however, one could make the argument that opinion formation would

follow a one-step flow of communication. This is because a large percentage of people

get their information from one source, being social media [31]. With the rise of big data

analysis, more and more of this information is tailored to each person separately, seemingly

cutting out a step in the two-step flow of communication model. Nonetheless, when looking

at the structure of popular social networks, it is clear that a lot of people still follow so-

called influencers. Studies examining whether this model is still valid today have found

that, when analyzing the nature of communication flows via the digital platform Twitter,

long-standing communication theories, like the two-step flow model, are still valid while

direct one-step flows and more complex network flows are also present [27, 7]. Taking this

into account, an opinion leader is defined as follows:

Definition. Opinion leader

An opinion leader can be characterized as an individual who presents a version of infor-

mation in the form of an opinion to a number of peers. Those peers pay attention to this

information and use it in their own opinion formation process. By doing so, the opinion

leader has a non-negligible impact on the opinion formation process of the network as a

whole.

4.1.1 Translating opinion leadership to networks

The definition of the term opinion leadership implies that there are both nodes that spread

opinions and nodes that receive these opinions. In this study, all edges in the network are

directed with the underlying implication that influence does not necessarily have to go

both ways, as explained earlier in section 2.2. Based on this, the definition of an opinion

spreader and an opinion follower as used in this thesis can be given as follows:

Definition. Opinion spreader

An opinion spreader is a node in the network that has an out-degree higher than 0.
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Definition. Opinion follower

An opinion follower is a node in the network that has an in-degree higher than 0.

It is clear that these are not mutually exclusive. In fact, most nodes will be both an

opinion spreader and an opinion follower, as they have both outgoing and incoming con-

nections. The distinction between an opinion spreader and an opinion leader lies in the

fact that even though a node might spread its opinion to a peer, this does not necessarily

mean it does so in a way that has a non-negligible impact on the network as a whole. While

the influence of opinion spreaders plays a big part in the result of the opinion dynamics in

the network, the importance of opinion followers should also not be disregarded. Studies

have shown that for influential individuals to have an effect on the network there needs to

be a critical mass of opinion followers present [59].

Judging by the density of the nodes and the direction of the connections, a person could

intuitively sense which nodes might be more important than others just by looking at the

graph. However, since computers lack this visual intuition, the question remains how to

translate this to an approach that can be followed by a computer. In graph theory there are

many measures to calculate the influence of nodes, e.g. by considering so called ”centrality

measures”. In section 4.1.2 a selection of these measures is presented. An evaluation of

these measures is done to check which give a good indication of opinion leadership. For

each measure, an experiment is performed to gather data to investigate its effectiveness as

an indicator for opinion leadership.

4.1.2 Centrality measures

It is important to know which nodes play a critical role in the network. Could there be a

way to rank all the nodes in the network, with the first being the most important and the

last being the least important? This question of course largely depends on what is meant

with importance. Multiple approaches with the goal of ranking the nodes in a network

have already been explored to great detail in different contexts [46, 33, 20]. In graph theory

there are multiple metrics to measure the centrality of the nodes for example [45]. The

centrality gives an indication of the distance to all other nodes in the network, making it
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a good start for identifying the important nodes in the current context. The core question

is thus which existing measures could be used to assess the influence of a node in the sim-

ulations carried out in this study. The goal of this leadership identification is to discover

a set of opinion leaders. Using this set of nodes, the influence of opinion leaders on the

network as a whole can then be explored in further simulations.

As the goal is to identify which nodes carry importance during the simulations, it makes

sense to use the simulations to find a reference point, using the opinion dynamics described

in chapter 2. Having this reference, a comparison between the measures can be carried out

to eventually find the measure with the highest correlation with the influence of a node.

The goal of these reference simulations would be to measure how much each node can

influence the rest of the network by itself. Because the communication between all nodes

in a network can be complex, the interactions between all nodes not involving or caused

by the node under investigation should be limited as much as possible. This is the only

way to obtain an objective indication of the influence of this single node. To accomplish

these goals, an experiment has been set up with the specific goal being to determine the

influence each single node has on the network as a whole. In this experiment every node

in the network has an opinion value of 0 initially, except for the node under examination,

which has an opinion value of 1. As all other nodes are initially unopinionated, meaningful

interactions can only be caused by the one node that has a different initial opinion. Be-

cause of the overwhelming amount of initially unopinionated nodes, there is a risk that the

node under investigation has no chance to spread its opinion, but instead immediately gets

influenced by its peers instead. To prevent this and actually gather useful data, this one

node is also made stubborn in the sense that it does not update its own opinion like the

rest of the nodes do. Instead it just keeps spreading its opinion value of 1 at every step.

Nodes with this kind of behavior are called zealots in literature and posses the potential

of having a big influence on the opinion dynamics in the network [58, 36]. By letting the

simulation run for a predetermined amount of steps, the rest of the nodes in the network,

using the DeGroot model, will determine their new opinion at each time instance. At first,

only small changes will occur on the network level because only one node actually has

”something to share”. As time progresses however, and based on how well connected this
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initial node is, more and more nodes will start receiving meaningful updates from their

neighbors and have opinion values ranging between 0 and 1. Thus, by tracking the average

opinion of the entire network after this predetermined amount of steps, a data point is

obtained to compare the other measures with. A starting node with more influence will

result in a higher average opinion than a starting node with zero to no influence. This

should also be reflected in the results of the calculation of the measures.

In theory it would be possible to run these experiments for every node in every network

used. The data obtained from all these simulations could then be used to construct the

set of opinion leaders and further explore how these nodes can influence the rest of the

network in more realistic scenarios where the entire network is opinionated for example.

A big downside to this approach is the amount of time it would take to run all these

experiments. In order to have a faster way of identifying opinion leaders, an exploration

into existing, analytical measures was done. Using these measures, an explanation of how

an opinion leader can be identified using the network characteristics can also be derived.

The outcomes from running the experiment described above on the nodes of a selected

set of networks can be compared to the results obtained by calculating existing measures

on these nodes with the hopes of finding similarity. Once such measures are found, the

leadership identification can then happen by calculation of this measure instead of having

to run a large number of simulations.

To identify opinion leaders, a measure is needed on the node level that approximates

the results of the simulations. Both in graph theory and sociology, a lot of effort was

invested into determining ways to identify the most important nodes in a network [20].

The wording used may differ but the core question remains the same: which nodes are

more important than others in relation to the experiment outcome of the network as a

whole? The importance of nodes in these scenarios stems from their ability to distribute

information or opinions. The existing measures that fall into this category are commonly

grouped under the name centrality measures. The next paragraphs provide a definition

and explanation of the tested measures. The results of the comparison between these

measures and the average final opinion of the network is also presented. The evaluation
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of these centrality measures is done by putting them side by side with the results of the

simulations with a single, stubborn, opinionated node. To measure the relation between the

simulation results and the calculated measure, the correlation between the two is calculated

for a subset of the networks. A sufficiently high correlation indicates that the simulations

could be replaced by calculation of the measure under investigation and produce a similar

set of opinion leaders. The specific correlation coefficients used to compare the two results

for each node are the Pearson correlation coefficient ρp and the Spearman rank correlation

coefficient ρs [5, 61]. ρp is defined as

ρp =

∑
i(xi − x̄) ∗ (y − ȳ)

(n− 1) ∗ s(x) ∗ s(y)

where x̄ indicates the average of all x values, s(x) their standard deviation and n the

amount of data points. xi and yi are the results of both measures calculated on the same

data point i. The reason why these two correlation coefficients are used is that, while the

Pearson coefficient gives an indication of correlation, the results can be affected by the

presence of outliers [32]. To prevent possible outliers from impacting the results too much,

it was decided to add another correlation measure which is not dependent on the actual

values: the Spearman rank correlation coefficient ρs. To calculate ρs the results are first

sorted and the resulting ranks are then compared for each node, resulting in the formula

ρs = 1− 6 ∗
∑

i(ri − si)2

n ∗ (n2 − 1)

where n stands for the number of data points again and ri and si are the rank of the result

when the measure is calculated on data point i. Each centrality measure is evaluated

against the average final opinion of the network on a set of 22 networks. These networks

are selected such that different values of ξ -their main differentiating characteristic- are

present in the test set, so that the results are more representative for the complete set

of networks. Recall that ξ is the inherent directionality of the network, as introduced in

section 2.2.1. In Figure 4.1 this division of the selected networks over the possible values

for ξ can be seen.
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Figure 4.1: Division of selected networks across ξ values

Closeness centrality

Closeness centrality is a measure originating from graph theory. It is designed to provide

an indication of how far the other nodes in the network are on average from the node

for which it is calculated. This makes it a popular way of identifying central, important

nodes in a graph and also a good first candidate to identify opinion leaders in the scenarios

examined in this thesis. It is defined as follows in the literature:

Definition. Closeness centrality

In a connected graph, closeness centrality (or closeness) of a node is a measure of centrality

based on the connections of this node. It is high when the node has a short average distance

to all other nodes in the network. [52, 4].

Based on the way the closeness centrality of a node is calculated, a higher closeness

centrality should indicate that the node has a more central position in the network as the

distance to other nodes is shorter than for a node with a lower closeness centrality. Since

the closeness centrality of a node is generally dependent on the amount of nodes present

in the network, the value is usually normalized, leading to the following formula

Ci =
N∑N

j=1,j 6=i d(i, j)

for each node i [52]. In this formula, N stands for the total amount of nodes in the network

and d(i, j) for the shortest distance between node i and j. This normalization enables com-

parison of the values across different networks. Trying to extend this interpretation into

opinion dynamics, the assumption could be made that a node with high closeness centrality

should influence the network as a whole more quickly. The main questions are thus if the
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Figure 4.2: Correlation between average final opinion and closeness centrality

assumption that influencing all other nodes happens through the shortest distance paths

is valid and if the speed of this influencing is the only factor needed to determine whether

a node will have a high or low influence on its peers.

In Figure 4.2 the results of the evaluation of the closeness centrality as a replacement

for the simulations are plotted. The inherent directionality ξ is plotted on the x-axis to be

able to assess whether the correlation is high enough for the selected set of test networks,

as indicated in Figure 4.1. The correlation is plotted on the y-axis. In the figure, the

values obtained for ρp are shown. It is clear that while the correlation is quite positive

for networks with a low directionality, this does not hold when checking networks with

a higher ξ. Plotting the rank correlation as well, shows that the results are not heavily

influenced by outliers. This leads to the conclusion that this measure could hold up as

an approximation of the influence of a node in networks where no significant hierarchy

is present. In more hierarchical networks, it cannot be used to replace the simulation

results. When looking for an explanation as to why this measure does not correspond as

well with the simulation results in highly directional networks, a possible answer could be

found in the way these networks are built up. Because these networks are built up from

a combination of mainly feed-forward loops, there is a chance that certain nodes are not
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Figure 4.3: Correlation between simulation results and node level

able to reach each other. In the closeness centrality calculation, these combinations are

left out of the equation and therefore they do not really have an effect on the result of the

calculation. This is in sharp contrast with the result for the average opinion in the network

when running the simulations, as the nodes that are not reachable will keep their initial

opinion of 0 and lower the average final opinion in the network.

Node level

A logical example of a measure that has values that are strongly correlated to ξ is the

node level. The calculation of this level has been presented in section 2.2.1 as a step in

the calculation of the inherent directionality of the network. When the network is more

directional in nature, it would seem reasonable to assume that a node that has a higher

level can influence more nodes than a node further down in the hierarchy. The question

here is thus how high this correlation between the node level and the simulation output

-being the average final opinion- is.

As Figure 4.3 shows, this question seems to have a clear answer: the level of a node

does not have a high correlation with the results from the simulations. Both the Pearson

and Spearman correlation coefficients show that in most cases, especially the ones with a
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high ξ, the correlation is centered around 0 and whenever it does have a higher absolute

value it is negative. Judging by these results, it is clear that the node level cannot be used

as an approximation of the influence a node has on the rest of the network. A reason for

this result could be that, because the used triadic graphs are constructed from feedback

and feed-forward loops, the distance between most nodes is not that high. Because of this,

the node levels can lie very close together, while the simulation results may show more

variation. A possible explanation for the negative values is found in the algorithm that

calculates ξ. The algorithm gives basal nodes, characterized by an in-degree of 0, a level

of 0 [13]. The other nodes are then given a higher value for their level. When looking at

Figure 2.1a as an example, this means that the left node would get a level of 0 and the

node levels increase when moving to the right in the graph. Levels calculated in this way

are also called trophic levels. This name stems from the study of animal food chains [13].

This result for node level might seem counter-intuitive, because the nodes that are highest

in the hierarchy get the lowest level. However, this does not make a difference for the

calculation of ξ, as only the fractions of edges going in either direction matter. Reversing

the node levels to make them more intuitive would therefore give the exact same result.

However, it does give an explanation for the anti-correlation seen in Figure 4.3.

PageRank

Because the main characteristic of a node related to the hierarchy present in the network

does not offer a solution to the problem that closeness centrality does not perform well in

networks with high directionality, the search continued for a measure that performs well

in all cases. Another popular way of ranking the nodes in a network was devised in 1998

in the form of the PageRank algorithm [46]. The original purpose of this algorithm was

to web pages for search engines. Because of its success, the algorithm has gained a lot of

popularity. Since its inception, it has been applied in other areas as well, including opinion

formation [22, 29]. The definition of the algorithm goes as follows:

Definition. PageRank

PageRank is a centrality measure that calculates a score for the nodes in a graph using the

structure of the incoming links. The underlying assumption is that more important nodes
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Figure 4.4: Correlation between simulation results and PageRank

are likely to have more incoming links [46].

Basing the ranking of the nodes on the incoming links makes sense when ranking web

pages, the question is whether this also proves to be a good strategy for opinion leadership.

Keeping in mind the fact that more hierarchical networks are built up from a higher share

of feed-forward loops, the expectation is that for these networks PageRank might have

trouble ranking the nodes correctly. The reason behind this statement is that in feed-

forward loops the nodes with a higher in-degree reach fewer nodes than the others. As can

be seen in Figure 4.4, this assumption appears to be confirmed by the results. Similar to

the closeness centrality, PageRank performs very well in graphs with a low ξ value, but

falls off when the inherent directionality gets higher. When looking at the networks with a

high value for ξ, the correlation is definitely an indication that interchanging the simulation

results with the results from the PageRank calculation is not a useful approach.

Hyperlink-Induced Topic Search (HITS)

Having studied a measure based on the structure of the incoming links, the next logical

step was to study one based on the outgoing links. HITS analysis, or hubs and author-

ities analysis as it is often referred to, is another algorithm used to rank the nodes in a
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Figure 4.5: Correlation between simulation results and HITS

graph [33]. Similar to PageRank, it was originally constructed as a way to rank web pages.

As the name suggests, it considers two ways in which a node can be important: as a hub

or as an authority. Authorities are nodes that are assumed to have some form of inherent

importance and hubs are nodes that have importance because they have information on

where these authorities can be found [45]. Thus each node gets not one but two centrality

scores during the analysis. A node with a high authority centrality can be characterized

by the fact that it is pointed to by a lot of nodes with a high hub centrality. A high hub

centrality is achieved by pointing to a lot of nodes with a high authority centrality on the

other hand. The calculation of these centrality values is done using only the links of the

network as input. Similar to PageRank, it works for directional networks only. Because the

current goal is to identify a measure that correlates well with the influence a node has on

the network, the centrality score used here is the hub centrality. As a hub is characterized

by having connections pointing towards high influence nodes, the conjecture is made that

it could correlate well with the values obtained trough the simulations.

When calculating and comparing these hub centrality scores to the output of the sim-

ulations, it can be seen that the correlation is indeed high. As Figure 4.5 shows, the

effectiveness of this measure also holds up for networks with a higher ξ, which is in sharp
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Figure 4.6: Correlation between simulation results and node out-degree

contrast with the measures tested out so far.

Node out-degree

Based on how well the hub centrality score performed when comparing it with the sim-

ulation results, another measure based on the structure of the outgoing links was tested.

This measure is the out-degree of the nodes. The hub centrality of a node increases with

increasing out-degree, but the difference is that the out-degree does not make an extra

distinction based on which node is pointed towards. This makes it easy to understand

conceptually and also very fast to calculate. Generally a higher out-degree should mean

that the node is a better at spreading its own opinion, as it influences a larger amount of

nodes faster. The question is whether this simple characteristic of the node is able to give

a good indication of opinion leadership, as measured through the simulations.

Figure 4.6 shows that this characteristic indeed seems to be a very promising measure.

Node out-degree correlates well with the simulation results across all values for the inherent

directionality, similar to the hubs and authorities analysis. Therefore, it can be concluded

that the influence of a node increases together with its out-degree.
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Selection of a centrality measure

Based on the results obtained from the simulations and the calculation of the metrics on

the networks, two conclusions on node leadership can be drawn:

1. A single node is usually not enough to have a significant impact on the network if it

is not stubborn.

2. Opinion leadership is strongly correlated with the number of connections a node has

to others. The fewer steps it takes to reach a high number of nodes, the higher the

influence.

The first conclusion was derived from the observation that when a focal node in is not ex-

plicitly made stubborn, it has little to no effect on the group opinion. Instead the opinion

of this node converges to 0 very fast, leading to all nodes having an opinion of 0. This

suggests that zealots have a higher impact on an initially unbiased network when using the

DeGroot model, compared to nodes that update their own beliefs.

The second conclusion is drawn from the results of the comparison between the differ-

ent measures and the output of the simulations. An interesting remark here is that the

assumption that the ρp values would be affected by outliers, seems to be unfounded in

this case. ρp and ρs show similar results for each of the measures investigated. Of these

measures, the node level, PageRank score and closeness centrality have a correlation value

close to zero in a large portion of the test cases. For the node level, this indicates that,

although there may be a strong hierarchy present in the network, the node level by itself is

not a sufficient characteristic for opinion leadership in all networks. Compared to the node

level, the PageRank algorithm and closeness centrality both scored similar on average.

These measures have a high correlation with the results of the simulations that decreases

very quickly when ξ increases. This problem is not encountered when evaluating the HITS

analysis and node out-degree as possible indicators for node leadership. Both of these show

similar correlation values across all tested networks. Because the results are comparable

and the performance of node out-degree as a benchmark for opinion influence is intuitively

more straightforward, it was decided to use this as an indicator of opinion leadership.
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Figure 4.7: Number of zealots in the networks

4.2 Influence using opinion leaders

Now that a measure has been found to identify the opinion leaders in the network, the

next step is to use these leaders to try to change the opinion dynamics in the network as

a whole. The way the opinion leaders are used to achieve this goal, is by giving them an

opinion value of 1 during the initialization of the experiment. The opinion leaders also

update their opinion according to the DeGroot model, similar to all other nodes in the

network. The goal of each experiment is to have the network reach a consensus on the

positive side of the opinion space, which is limited by -1 on one side and by 1 on the other

side. The experiment is considered to be a success if by the end 90% of the nodes are

on the same side as the leader nodes were in the beginning. The reason behind using a

percentage of the nodes instead of all of them, is that in a subset of the networks, there

are zealots present in the form of nodes with zero in-degree. These nodes do not change

their opinion. It is therefore not in every case possible to have the leader nodes influence

all other nodes in the network. In Figure 4.7 the number of zealots is plotted versus the

percentage of networks where this occurs. As can be seen in Figure 4.7, the number of

zealots is usually small, except in a tiny percentage of the networks.
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(a) Number of positive nodes versus time (b) Effect of number of opinion leaders

Figure 4.8: Evolution of the fraction of positive opinions in an initially unopinionated

network

4.2.1 Unopinionated environment

The first conducted experiment had the goal to see whether a small selection of nodes

actually has the capacity to get all other nodes on their side of the argument when this

set of nodes is carefully selected. The idea for this experiment came from the conclusion

that a single node does not have the power to change the outcome of the opinion dynamics

process in the network when it is not stubborn. As mentioned above, the selected nodes

are given an opinion value of 1. In this experiment, the nodes that are not selected as

leaders have an opinion value of 0 and are thus considered to be unopinionated. This ex-

periment has many similarities with the one used to measure a node’s influence presented

in section 4.1.2. The main difference between these experiments is the fact that there are

more nodes that are given an opinion value of 1 and that they are selected based on the

out-degree (which is indicative of opinion leadership, as discussed in section 4.1.2). These

opinion leaders are also no longer explicitly made stubborn, but instead update their own

opinion using the DeGroot model based on the structure of the network. The question is

thus if this group of nodes with a high opinion leadership value is able to influence the rest

of the network or whether they are influenced by the rest of the network instead.

To investigate this, the simulations described in the previous paragraph are run. To

check whether the rest of the nodes in the network update their opinion values to a positive
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value, the average number of nodes with a positive opinion is plotted versus the simulation

step. This number is averaged across all 5000 networks and thus also across all values of

the inherent directionality ξ. The plot in question is shown in Figure 4.8a and shows that

carefully selecting the nodes does enable the combination of them to convince the rest of

the network to make a change to their opinion value. On average, almost 80% of the nodes

have a positive opinion by the end and this in the most prudent case. This influencing also

happens very fast, as can be seen by the very steep initial rise in nodes with a positive

opinion. The experiment has been carried out with different numbers of nodes selected as

leaders. Because this selection is based on the out-degree, all nodes that are among the

1% of nodes with highest out-degree, are also within the highest 3% and so on. For each

of these percentages, a different line is drawn with a different color, as indicated in the

legend. In all cases, it is clear that the group opinion converges very quickly. When 1%

of nodes are selected as leaders, the number of cases where the majority of nodes ends up

with a positive opinion is significantly lower than for the scenarios where more nodes are

selected as leaders. Figure 4.8b plots the final percentage of nodes with a positive opinion

versus the percentage of nodes that have been selected as leaders. Judging from this figure,

increasing the amount of nodes selected as opinion leaders also comes with an increase of

the average number of nodes with a positive opinion in the final step of the simulation.

The fact that there seems to be a limit on the percentage of positively opinionated nodes

that is lower than 100%, can be explained by the presence of zealots in some networks.

These do not adopt a positive opinion when they are not selected as a leader node. This

could explain why the average percentage of positive nodes is lower in the case where only

1% of the population is selected as leaders. This 1% corresponds to 3 of the 343 nodes.

When increasing the percentage of nodes selected as leaders, it is assumed that more of

the networks zealots will be present in the selection. This is because the data shows that

the correlation between the node in-degree and out-degree is very weak. This has a double

effect on the result. They help spreading the positive opinions, similar to the other leader

nodes, but adding a zealot to the selection also means that one fewer zealot will be con-

stantly counteracting the efforts of the leader nodes in influencing the rest of the network.

While Figure 4.8 shows that the number of nodes with a positive value for their opinion
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generally increases fast and to a high percentage of the total nodes, it does not give an

indication on how positive the resulting value actually is. As the DeGroot model constantly

takes averages of opinions and in this experiment a fairly low amount of nodes is selected

as opinion leader, the expectation was that the resulting average opinion would not be very

high. Especially in the case where only 3 nodes are given an initially positive opinion, this is

expected. It would however be interesting to see how this average final opinion moves when

the number of nodes selected as leaders increases. Figure 4.9 gives an indication of this

movement. As expected, the average final opinion is low when only 1% of nodes are selected

as leaders. There does appear to be a correlation between the two percentages. When the

percentage of nodes used as opinion leaders increases, the average final opinion tends to

increase as well. Keeping in mind that opinion values are bounded by 1, these averages

are not negligible compared to the fraction of nodes that is opinionated. The standard

deviation also increases with an increase in the amount of leader nodes, indicating that

there is also a higher variation in the final opinion. Aside from this increase in standard

deviation, the trend of the mean value is still upwards. The conclusion can thus be drawn

that when the rest of the network is initially unopinionated, increasing the amount of nodes

that agree on an initial opinion generally leads to both an increase in the number of nodes

that move towards this opinion and an increase in the extend to which they move their

opinion.

4.2.2 Environment with uniformly distributed opinions

While testing the effect the opinion leaders have on an unopinionated network is a good

starting point, this scenario does not represent the majority of real cases. Usually indi-

viduals already have an opinion on the matter, which is unlikely to be as extreme as -1 or

1. The next experiment was designed with this in mind. In this scenario, every node is

given a random opinion distributed uniformly between -1 and 1, except the nodes selected

as leaders which still get an opinion value of 1. The goal of this scenario is to investigate

whether the influence of the leaders shows similar trends as in the scenario where the rest

of the network is unopinionated. In the latter case, nodes only had the option of either

staying unopinionated or having a positive opinion. However, now there is the possibil-
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Figure 4.9: Effect of number of leaders on final opinion in the network

ity that the network reaches a consensus on a negative opinion. Since the other nodes

have both positive and negative values for their opinion initially, it remained to be seen

whether the non-leader nodes cancel out each other’s opinion or whether the combination

of leader nodes with a very positive opinion and other nodes that randomly have a positive

opinion actually provides a boost to the leaders, helping them to convince other nodes

faster. Based on the results of the experiment done in section 4.2.1, the expectation is

that increasing the number of leader nodes will again have a positive effect on the average

number of positive nodes in the network. However, this difference is presumed to be less

extreme, as the leaders now have to cope with the fact that on average half the network is

initially spreading a negative opinion.

Figure 4.10 presents the average percentage of positive nodes throughout the simulation

and the effect the number of opinion leaders has on this percentage, as it was done for the

previous scenario. Because of the uniformly distributed initial opinions, the network starts

with approximately 50% of the nodes having a positive opinion on average, not counting

the leader nodes. The experiment is also conducted with no nodes selected as leaders to

have a reference case. When the mean outcome of this reference case is calculated over

all 5000 networks, the result is that on average a little more than half the nodes have
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(a) Number of positive nodes versus time (b) Effect of number of opinion leaders

Figure 4.10: Evolution of the fraction of positive opinions in an initially uniformly dis-

tributed network

a positive opinion. This should be interpreted as the network reaching a consensus on

a negative opinion 50% of the time and a consensus on a positive opinion in the other

cases. The fact that it is not exactly 50% is attributed to random chance. As can be

seen in Figure 4.10a, when nodes are selected as leaders, this percentage increases with the

percentage of nodes selected as leaders, similar to the scenario where non-leader nodes were

initially unopinionated. Figure 4.10b plots the density of positive final opinion. While the

increase in average percentage of nodes with a positive opinion was very large in Figure 4.8b,

it is more moderate here. The graph also shows that while adding more nodes to the

selection of leaders will increase the average percentage of positive nodes, the effectiveness

drops with the amount of leader nodes. As there are more cases where no consensus on

a positive opinion is reached, it might be interesting to investigate in greater detail any

cases where this does not happen.

Evaluation of unsuccessful experiments

As mentioned in the introduction of section 4.2, an experiment is considered to be unsuc-

cessful if in the end less than 90% of the individuals have a positive opinion value. In the

more realistic case of starting out with a uniformly distributed opinion space, there are

much more simulations where this occurs, as indicated by the difference in percentages be-

tween Figure 4.8b and 4.10b. Therefore, further investigation of the experiments is needed
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Figure 4.11: Relation between ξ and simulation success

to find out what might happen in these unsuccessful simulations.

In Figure 4.11 the success rate of the simulations is plotted against the inherent direc-

tionality ξ for multiple percentages of nodes selected as leaders. In each of the cases, there

is a clear downward trend. On the x-axis the number of samples over which the average

is taken is indicated. Even though there are more network samples with a low ξ value,

there are still 188 instances with an inherent directionality value between 0.8 and 0.9 which

allows to draw statistically relevant conclusions. The results for networks with a ξ value

above 0.9 have been omitted, as their number is too low to get meaningful results. These

outcomes indicate that networks in which a significant level of hierarchy is present are

harder to fully convince. A possible reason might be the combination of the fact that these

networks have a higher chance of containing zealots and the fact that the majority of the

edges go along the same direction in the hierarchy. When a zealot is present at some level

in the hierarchy, the fact that most nodes point along the same direction will cause that

all nodes beneath this zealot are harder to influence. The conclusion can thus be drawn

that the presence of zealots, who can keep counteracting the influence of the selected opin-
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(a) Network initially unopinionated (b) Uniformly distributed initial opinions

Figure 4.12: Simulation outcomes when 10% of nodes are selected as leaders

ion leaders, presents an obstacle for changing the opinion dynamics using this set of leaders.

To further analyze the outcome of these simulations, the individual results of the simu-

lations with 10% of the nodes selected as leaders are given in Figure 4.12 for both the case

where the nodes are initially unopinionated and the case where the opinions are distributed

uniformly. As Figure 4.12a shows, in the unopinionated scenario the majority of the nodes

has a positive opinion value in all the networks. There is however still a decline in the

percentage with increasing ξ value. When the inherent directionality is low, a fraction of

the simulations reach a state where 100% of the nodes have a positive opinion. This state

is never reached for networks with a higher ξ. This confirms the decline in the percentage

for networks with a higher ξ value, as seen in Figure 4.11. This decline is still present in

the graph on the right. While the bulk of the cases still shows a clear majority of nodes

having a positive opinion, there are also other outcomes present. A percentage of the

simulations reaches a consensus on a negative opinion value, as is indicated by the number

of dots at the bottom of the graph. This is to be expected because of the randomization

of the opinions. In some cases, the majority of nodes has a negative opinion from the

start which makes convincing the rest of the network significantly harder for the opinion

leaders. This scenario is further explored in section 4.2.3. More interesting are the cases

where the final percentage of positive nodes is between 25% and 75%. In these cases,

the number of nodes not having a positive opinion cannot be solely caused by zealots or a
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large number of nodes with an initially negative opinion. Therefore, a different explanation

may be plausible. Inspecting the data more closely shows that, for the experiment which

is plotted in Figure 4.12b, 82 simulations end with both more than a 100 nodes with a

positive opinion and more than a 100 nodes with a negative opinion. These simulations

thus reach a polarized final state. In this polarized state there is a large concentration

of nodes on the two opposing sides. These concentrations are also called echo chambers,

suggesting that the nodes within an echo chamber reinforce their own opinions, while not

being influenced by the others.

4.2.3 Environment with negative opinions

Now that two scenarios have been explored in which the rest of the network is more or less

neutral initially, either because the individuals are unopinionated or because the opinions

were uniformly distributed, another interesting case would be to see what happens when

the rest of the network is strongly inclined towards a certain opinion. Suppose the network

already has a consensus on a positive opinion nothing too interesting would happen. Se-

lecting opinion leaders and giving them an extreme positive opinion would only reinforce

this consensus. Having the network start with a consensus on a negative value instead, is

more interesting. As a test of the effectiveness of identification of opinion leaders and their

influence, in this scenario each node in the network is given an opinion value of -1 except

the leaders, who still get an opinion of 1. The question then becomes whether careful

selection of these leaders, using the measure found in section 4.1, can lead to a convergence

on a positive value when less than 50% of the nodes have been selected as leaders.

Figure 4.13 shows the results of this experiment. As expected, choosing a low amount

of nodes as leaders does not have a significant effect on the simulation. When 1% of

individuals gets an opinion value of 1 and the other 99% have an opinion of -1, these 3

selected nodes are unable to convince the rest of the network, because there are both so

many nodes to convince and they are on the complete opposite side of the opinion value

spectrum. Shifting this ratio brings considerable changes to this outcome however. When

10% of the nodes are selected as opinion leaders, the experiment is expected to still be
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(a) Number of positive nodes versus time (b) Effect of number of opinion leaders

Figure 4.13: Evolution of positive opinions in an initially very negative network

very likely to terminate with all nodes negative. Looking at the average over all 5000

results, over 10% of the nodes end up with a positive opinion in this case. So on average

an increase in the amount of positive nodes is obtained already. Adding more leaders to

the selection makes this increase higher and higher. When the network is initially perfectly

balanced, with half of the nodes having a positive opinion and half of the nodes having a

negative opinion, on average over 80% of the nodes end up with a positive opinion. This

is an indication that the approach of carefully assessing the importance of the nodes as

opinion leaders and selecting them using the results is working.
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Chapter 5

Special cases

In chapter 4, a measure was identified to assess opinion leadership and using this measure

different sized groups of leaders were set up. Using these groups, the influence of the

opinion leaders on the rest of the network was evaluated for different scenarios. In each

of these scenarios, the standard version of the DeGroot model was employed as the fusion

rule. In this chapter some special scenarios are explored. Each of these cases makes a small

modification to the general DeGroot model. The goal of these adaptations is to explore

certain extra parameters or assumptions that could be argued to have an influence on the

opinion dynamics in a social network setting. In each of these experiments, the rest of

the network gets uniformly distributed random opinions between -1 and 1, except for the

scenario described in section 5.4.

5.1 Self-confidence

In the original DeGroot model, each node uses the average opinion of its neighbors as its

updated opinion. As this version has not been refuted, this is not a bad assumption to

make. Even though individuals can value the opinion of others greatly, they usually also

value their own opinion. This notion led to the idea of testing whether the opinion leaders

still have a similar effect as in chapter 4, when self-confidence is added to the fusion rules.

Based on the structure of the network there are already nodes that actually have self-
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confidence. Zealots could be seen as nodes with 100% self-confidence instead of as nodes

which do not receive updates. It has already been shown during the process of trying to

identify the measure for opinion leadership, that these nodes can have an impact on the

network. The question is thus whether more nodes with a certain level of self-confidence

will have a significant impact on the ability of opinion leaders to convince the rest of the

network. In this experiment the nodes not selected as leaders have uniformly distributed

random opinions between -1 and 1.

To model this adaptation of the standard DeGroot model, a new mathematical descrip-

tion of the fusion rules is needed. Similar to the normal version, an average of the opinions

of the neighbors of a node is calculated. Subsequently, a weighted average of this average

and the current opinion of the node is computed and this weighted average is then used as

a new opinion. This leads to the following formula:oj,t+1 = s ∗ oj,t + (1− s) ∗
∑n

i=1,i 6=jWij ∗ Aij ∗ oi,t , in-degree > 0

oj,t+1 = oj,t , in-degree = 0
(5.1)

for the new opinion. The parameter s is a floating point number between 0 and 1 in-

dicating the self-confidence level of the nodes. The other parameters are the same as in

equation 2.2. One expected change in the results is a delay in the evolution of the system.

Having self-confidence means that more importance will be given to the initialization of

the system and it will therefore take longer for the effects of this initialization to fade away.

Figure 5.1 shows the evolution of the fraction of positive nodes through time. In the left

graph, this evolution is shown when the nodes have a self-confidence s of 0.5, in the right

graph the self-confidence is 0.8. The experiment is again done for multiple percentages

of nodes selected as leaders. When comparing the two graphs, it is clear that the self-

confidence adds a delay to the opinion formation in the network. What is also apparent,

is that there is little difference in the end results between the two cases. This is confirmed

by Figure 5.2, which plots the final average number of positive nodes versus the number

of nodes selected as opinion leaders. In this graph, the results for the same experiment

with no explicit self-confidence are also added. The figure shows that there is indeed little
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(a) 50% self-confidence (b) 80% self-confidence

Figure 5.1: Effect of self-confidence on opinion dynamics

to no difference between the case with s equal to 0.5 and the case with 0.8. Judging from

the graph, adding self-confidence actually increases the percentage of positive nodes in

the network. This seems surprising at first, because adding self-confidence should mean

that nodes are harder to convince, as is confirmed by the slowdown in changes. However,

self-confidence also implies that the leader nodes keep their strong opinions longer. How-

ever, because these initial opinions of leader nodes are so strong compared to the random

opinions of the nodes the leader nodes have more time to convey their strong opinions and

Figure 5.2: Effect of number of opinion leaders
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(a) 50% self-confidence (b) 80% self-confidence

Figure 5.3: Simulation outcomes when 10% of nodes are selected as leaders

thus have an increased effect on the network.

Figure 5.3 shows the exact outcomes of the simulations for the instances where 10% of

the nodes have been selected as opinion leaders. Comparing these outcomes to the ones

shown in Figure 4.12b, shows that there are fewer cases where the network has no nodes

with a positive opinion in the end. A noteworthy difference between the left and the right

graph is that while the self-confidence increases there are fewer networks that end up in a

polarized state. For the scenario where nodes have a self-confidence s of 0.8, only 24 of the

5000 simulations end up with more than 100 nodes on either side. This is a 71% decrease

from the 82 simulations where the nodes did not have an explicit level of self-confidence

and is again an indication that the self-confidence of the leaders helps them convince the

rest of the network.

5.2 Increasing importance of leaders

A second adaptation made to the original model is based on the assumption that people

pay more attention to the opinion of leader figures. In many cases these leaders speak

from a position of authority they attained because of their credibility in the matter. In

this network-based approach for the simulations, there are two possible ways to change the

DeGroot model with the goal of giving more importance to the opinion of the leaders:
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1. Base weights on hierarchy

2. Base weights on leadership measure

In sections 5.2.1 and 5.2.2 these scenarios are further explored.

5.2.1 Weight based on hierarchy

In this scenario, the weights used in the DeGroot model are based on the direction of the

edges in the hierarchy. When a node has an incoming edge that points downward in the

hierarchy, this means that the source node has a higher position in this hierarchy. Therefore

more attention should be given to his opinion. Inversely, when the incoming connection

is pointing upwards in the hierarchy, less importance should be attached to the opinion of

the source node. Enforcing these different weights in the fusion rules is done as follows:

1. Increase the number of perceived incoming edges by adding a number of non-existing

edges f

2. The weight wd used for the connections coming from nodes lower in the hierarchy is

then calculated as wd=
1

d+u+f
. Where d stands for the number of connections coming

from a node downwards in the hierarchy and u for the number of connections for

which the source node is higher in the hierarchy.

3. The weight wu used for the connections coming from nodes that have a higher position

in the hierarchy equals wu=wd + f
u
∗ wd

Using these formulas, more importance will be attached to opinions of nodes that are higher

in the hierarchy. It can also be confirmed that the sum of all weights is one by calculating

it:

u ∗ wu + d ∗ wd = u ∗ (wd +
f

u
∗ wd) + d ∗ wd

= wd ∗ (u+ f + d)

=
1

d+ u+ f
∗ (u+ f + d)

= 1
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How much more importance is given to nodes more upwards in the hierarchy, can be

controlled by changing the parameter f . In the experiments done here, f is set as d d
u
e.

The reasoning behind using this instead of a constant number, is to make sure that a node

pays extra attention to its neighbors with a higher level when this node has few of those

neighbors. If all incoming connections have the same direction, no difference in weighting

is applied. The assumption is that, because more attention is paid to nodes higher in the

hierarchy, the network will converge faster.

Figure 5.4 shows the development of the average fraction of positive nodes throughout

the simulations. Adjusting the weights based on the direction of the connection in the

hierarchy seems to not have a big influence on the final outcome of the experiment compared

to the case where no difference in weighting is applied shown in Figure 4.10. Also the speed

at which nodes are convinced is not significantly affected, judging by the similar initial

increase in percentage. Checking whether the inherent directionality affects the success

rate also shows similar results as in the case where equal weights are used, because there is

still a decline in success rate with increasing ξ. The reason for these minor differences could

be that the leader selection is not based on the position in the hierarchy. Changing the

leader selection to take this into account, with the goal of improving the success percentage

in more hierarchical networks, is unlikely to work. This is because the results in section 4.1.2

did not show a high correlation between node level and influence.

5.2.2 Weight based on out-degree

Another way to increase the importance of possible leadership figures is to use the leader-

ship measure identified in section 4.1.2 as a reference to base weight on. In this scenario,

each node checks the out-degree of all its neighbors when initializing the weights. Because

the network is static, this only has to be done once. To make sure the sum of the weights

remains one, these out-degrees are normalized leading to the following formula

wi =
di∑
j dj
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(a) Number of positive nodes versus time (b) Effect of number of opinion leaders

(c) Relation between ξ and simulation success

Figure 5.4: Effect of hierarchy-based weighting on opinion dynamics

for the weight used for the opinion of node j’s neighbor i. In this formula di indicates the

out-degree of neighbor i and the sum is taken over all neighbors of node j. The expected

result of using this weighted average as a new opinion, is an increase in the speed at which

the leader nodes convince the rest of the network. Because the weight is based on the

same measure as the one used to select leader nodes, more attention will be given to them.

Therefore they should have a stronger ability to convince other nodes.
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(a) Number of positive nodes versus time (b) Effect of number of opinion leaders

Figure 5.5: Effect of out-degree-based weighting on opinion dynamics

Analyzing the results of the experiment shown in Figure 5.5 shows that the speed at

which the network changes opinion is indeed very high. An interesting behavior that can

be seen in Figure 5.5a, is the slight drop in the average number of positive nodes after

the first few steps. A cause for this might be the presence of zealots in the networks.

After the first couple of steps, the effect of the increased weight put on the opinion of the

leader nodes decreases. This is because these leader nodes also take part in the opinion

formation process and will start spreading opinions closer to the average opinion of the

network. Because the weights are based on the out-degree, they are however more effective

in the first steps of the simulation. Therefore, their initial influence might spread further

than in the case where all weights are uniform. Nodes that change opinion because of this

extra reach will not have large absolute values for their opinion and can be converted again

more easily as well. In the end, the average number of positive nodes in the simulations

is slightly higher than in the scenario where equal weights are used across neighbors. This

indicates that even though this strategy is effective in influencing the opinion dynamics,

its effects are only minor compared to adding extra leader nodes to the selection.

5.3 Weight based on similarity of opinion

Another adaptation is based on the intuition that many people prefer to hear their own

beliefs get confirmed by others. Based on this fact, the idea was to adjust the weights
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used in the DeGroot model based on the opinion of the neighbors of the node. This is

not a new idea, as variations of it have already been studied in the past. A well-known

implementation is called the bounded confidence model, introduced earlier in section 2.3.

The main difference between this model and the DeGroot model, is the fact that not all the

opinions of the neighbors are taken into account [41]. Because this study uses the DeGroot

model for the fusion rules, a middle ground between these two models is implemented in

which all opinions are taken into account. However, the weights vary depending on how

similar the opinions are between the two neighboring nodes. Because the weight needs to

increase when the difference in opinion becomes smaller, the inverse of this difference is the

basis on which the weights are distributed. To make sure the sum of all weights remains

one, a normalization factor is needed. Taking this into account, the following formula is

obtained for the weight wi used for neighbor i of node k:

wi =
1

di
∗
∏

j dj∑
j dj

, di = max(0.05, |ok − oi|)

where di indicates the difference in opinion value between the current node and its neighbor

i and oj indicates the opinion of node j. The summation and product are taken over all

neighbors of the node. To make sure that no weights of infinity are obtained by dividing by

zero in case of extremely similar opinions, a minimum of 0.05 is placed on the value of di.

This way, all individuals in the network will keep paying attention to all their neighbors,

possibly using different weights.

This appears to be a significant adjustment to the standard version of the model which

takes unweighted averages at every step of the simulation. In this new version, all the

weights have to be calculated again at every step, before evaluating the new opinion value.

As a consequence of the way this change is implemented, there is also the possibility of

having large differences in weights. This can severely affect the effectiveness of the opinion

leaders in changing the opinion dynamics of the network. The big problem is that these

opinion leaders are given a very high initial opinion to spread their belief on that side of

the argument. However, the fact that these opinions are so high might work against them

in this case as this could have the effect that most nodes pay more attention to other

non-leader nodes.
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(a) Number of positive nodes versus time (b) Effect of number of opinion leaders

Figure 5.6: Effect of weighting based on similarity of opinion on opinion dynamics

The results of the simulations seem to confirm that many nodes pay less attention to the

opinion leaders as Figure 5.6b shows that the final average percentage of positive nodes lies

around 50%. This remains the case when the number of leaders in the network is increased.

The conclusion to draw from this result would be that the majority of nodes pays almost

no attention to the selected nodes. This is however contradicted by Figure 5.6a. In this

figure, it is clearly indicated that at some point in the simulation, there is on average a

clear majority of nodes on the positive side of the argument. The question is thus what

causes the fact that the majority of the nodes does not end up with a positive opinion in

the end. Figure 5.7 shows the individual end results of the simulations where 10% of the

nodes have been chosen as opinion leaders. It shows that in most networks there is still

quite a large percentage of positive nodes present at the final step. All cases where more

than 80% of the nodes in the network ended up with a positive opinion value are shown

in green. The simulations where more than 80% of the nodes have a negative opinion are

shown in red. In case less than 25% of the nodes have an opinion value different from zero

they are plotted in orange. All cases where no 80% majority is attained on either side, but

more than a quarter of the nodes have an opinion are indicated in blue. The amount of

blue points is an indication of the formation of echo chambers. The fact that these echo

chambers form is not necessarily a surprise, as this scenario facilitates their formation.

Especially at higher inherent directionality values, the formation of these echo chambers is
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Figure 5.7: Simulation outcomes versus ξ

present. An explanation for this can be found in the fact that when ξ increases, the network

resembles a tree structure more. If one node in the tree has a negative opinion, it will keep

sharing this negative opinion with all nodes that are lower in the tree. Because there

are very few edges going in the opposite direction, a disagreement in an upper level can

cause the formation of these echo chambers. Closer inspection of the individual simulation

results shows that, apart from reaching a consensus and the formation of echo chambers, the

opposite extreme is also present. In this extreme, practically all nodes converge to a opinion

value of approximately zero. There are almost no opinionated nodes left in the simulation

and the network thus ends up in an unopinionated state. This could also be caused by the

fact that this adaptation of the DeGroot model makes the nodes more inclined to agree

with their neighbors who have similar opinions. When a node has an average opinion

close to zero, neighbors on both sides of the argument will value this opinion more than

opinions that are contradictory to their own. This increased importance of nodes which

are unopinionated enables the simulations to converge on an opinion value of 0. Based on

these results and the scenario itself, an arguably more effective strategy to influence the

network as an opinion leader would be to have a more moderate initial opinion and slowly

increase the opinion value as the simulation goes on.



CHAPTER 5. SPECIAL CASES 60

5.4 Noisy opinions

A last adaptation made to the standard DeGroot model is based on the consideration that

people do not always clearly state their opinion on certain matters. The opinion expres-

sion format is an abstraction because individuals do not express their opinion as a floating

point number in real life. Instead they usually express these opinions in the form of a

verbal or written statement. There is not always a clear scale on which these statements

can be scored to indicate the underlying opinion. Because of this vagueness, there is often

room for interpretation and discussion. This observation is the inspiration for this scenario,

where random noise is added to the opinions received from neighbors. As mentioned in the

introduction, in this scenario the non-leader nodes are initially unopinionated. The goal

is to check whether the selected set of nodes still has a similar capacity of influencing the

rest of the network when there is a random factor affecting the expressed opinions.

The noise factor added to the opinion values received from the neighboring nodes is

sampled from a normally distributed variable centered around zero. To evaluate the impact

of this noise, the experiment is run with different values for the standard deviation σ on

the noise. It is also ran with both 1% of nodes and 5% of nodes selected as opinion leaders.

This way a comparison can be made on the effect of the level of noise on the opinions and

the number of leader nodes present in the network. Adding noise changes the fusion rules

so that the following equation is obtained:oj,t+1 =
∑n

i=1,i 6=jWij ∗ Aij ∗ (oi,t +N (0, σ2)) , in-degree > 0

oj,t+1 = oj,t , in-degree = 0
(5.2)

Considering how effective selecting even a very small percentage of the nodes as opinion

leaders was in an unopinionated environment without noise, adding noise is expected to

not have a significant effect on the final results as on average this noise should cancel

out. A certain slowdown in the process is expected however, because the noise introduces

variation in the received opinions, which makes it possible that the leader nodes spread

less extreme opinions, thus having a weaker effect.

Figure 5.8 shows the outcome of these experiments. As can be seen from the graph, the
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(a) 1% of nodes selected as leaders (b) 5% of nodes selected as leaders

Figure 5.8: Effect of noise on opinion dynamics

results do not agree with the expectations. There is no perceivable slowdown in the process.

Similar to the other scenarios, adding leader nodes increases the fraction of positive nodes

present in the network. A result that is clear from both figures, is that adding noise

lowers the average number of positive nodes. In the case where 1% of the nodes have

been selected as opinion leaders, it lowers the percentage from around 80% to around

60%. An explanation for this phenomenon can be obtained by comparing this graph to

Figure 4.10a. When looking at the results with noise, a similar final result is achieved as

in section 4.2.2 where there was no noise, but opinions were initially uniformly distributed.

A similar comparison can be made for the graph in Figure 5.8b. Because it takes time for

the opinion of the leader node to spread throughout the network, in the beginning only the

noisy opinions are being spread between most nodes. This might cause the network to be

close to uniformly distributed in opinion by the time the opinion of the leader node reaches

most nodes, therefore increasing the difficulty for the leader nodes to influence other nodes.
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Chapter 6

Future work

Although this thesis has investigated multiple scenarios in the field of opinion formation

in social networks, there is a lot left to explore. Studies are still being conducted on both

the sociological aspects as well as on simulation and modelling of these aspects. Because

the processes impacting opinion formation are very complex, levels of abstraction need

to be implemented to keep the simulations tractable. These abstractions result in gener-

ally accepted frameworks, which combine theories on opinion dynamics into mathematical

equations. Since generalization of the results is an important factor in most studies, most

focus is usually placed on identifying large trends in the data, as has been done in this thesis.

Based on the results of this study, one possible next step could be to investigate the

leader identification measures further. Here, only one measure was deemed most correct

in characterizing opinion leadership, while in reality a combination of factors could be at

play. On top of this, all nodes were made stubborn in the reference simulations to ensure

their impact could be measured. In the other simulations this was usually not the case.

Investigating the relationship between zealotry and opinion leadership could therefore pro-

vide a finer understanding of the characteristics found in influential individuals. Another

possible next step is making more assumptions on opinion formation and adapting the

DeGroot model accordingly. One example of such an adaptation could be to have hetero-

geneous levels of self-confidence across the nodes in the network. Another possibility is

investigating how the combination of several of these assumptions affects the simulation
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outcomes and draw conclusions based on these results. One adaptation of the DeGroot

model impacted the effectiveness of the leader nodes, who try to force the network to

change opinions with their extreme opinions, heavily. This adaptation is when individuals

pay more attention to others with similar beliefs. Leaving the resulting model unchanged,

other strategies could be explored to steer the global opinion of the network in this scenario.

Another possible route to take is making more severe changes to the fusion rules or

opinion dynamics environment. In this study, the focus has been on scenarios where all

individuals spread their opinion constantly and are connected only to other people. Two

interesting changes to these scenarios could be to change the fusion rules so that not every

node in the network makes its opinion known at every point in time or adding very well-

connected mass media agents. The first possible change is inspired by the SIR model used

to simulate the spread of diseases in animal populations. In this model, a node can be in

one of three states being susceptible, infected or recovered. These states are also where

the name of the model comes from. Translating this to opinion dynamics, it would mean

that a node is either:

• not spreading an opinion but paying attention to the opinion of others

• spreading an opinion while also paying some attention to the network

• convinced of an opinion and is no longer spreading nor paying attention to others

This third option would be a direct translation of the recovered state of the original SIR

model. It is however not intuitive that nodes stop both sharing and taking in opinions.

Therefore an existing different version of this model could be used instead. In this version,

called the SIS model, no state of immunity exists. For the case of opinion dynamics,

this would mean that all nodes still pay attention to their neighbors who are spreading

their opinions, but not always have to spread their own. Making a change to the opinion

dynamics environment is also a possibility. With the advance of mass media in recent years,

an interesting addition to this environment might be to add a mass media agent that is

connected to the majority of the nodes. The effectiveness in influencing the network using
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this agent could then be compared to the case where such an agent is not present, but a

collection of opinion leaders is used instead.
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Chapter 7

Conclusion

In chapter 2 the different parts of opinion formation models have been described. For

each of these parts, a decision has been made on which option to use after explaining the

differences and analyzing which one fits the current goal best. Subsequently, an illustration

of the experimental setup used to simulate the opinion dynamics was given in chapter 3.

This setup was used to implement different scenarios with the goal of studying the influ-

ence of opinion leaders on the rest of the network. In section 4.1 an investigation into

characterizing opinion leaders was discussed. From this investigation multiple conclusions

were drawn. First of all, it was determined that a single node does not have the poten-

tial to make significant changes to the opinion dynamics in the network when this node

participates in the opinion formation process himself using the DeGroot model. Instead,

nodes had to be made stubborn, so that their effect on the remaining, unopinionated,

network could be measured and compared to the results of several mathematical measures

originating from graph theory. Apart from this, comparing the different measures with

the simulation results showed that the most effective measure to characterize opinion lead-

ers was the out-degree of the individual. While several other properties performed well

for leadership identification, their correlation to the final average opinion usually falls off

when there is a higher level of hierarchy present in the network.

Using the out-degree as a leadership measure, groups of nodes were identified and used

to try to achieve a consensus on a chosen side of the argument when these nodes all par-
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take in the opinion formation process. The results from these experiments showed that the

initial opinion of the non-leader nodes in the network plays an important role in whether

or not the selected set of opinion leaders will be capable to convince them. When all

individuals that have not been selected have no opinion initially, only a small selection of

nodes is needed to pull the rest of the network to one side. In the case where the other

nodes in the network have uniformly distributed random opinions, the network as a whole

becomes harder to convince and a higher number of nodes has to be selected as opinion

leaders to achieve comparable results. As a definitive test of the success in selecting im-

portant nodes, an extra experiment was done. In this experiment, every node that is not

selected as an opinion leader starts with a negative opinion, while the leader nodes try to

spread a positive opinion. In this scenario, the out-degree proved to be an effective measure

for opinion leadership. Normally, one would expect the outcome of the experiment to be

equally divided between converging on a positive or a negative opinion when the initial

distribution of these opinions is also equal. This is however already the case when only 35%

of the nodes are selected using their out-degree and given a positive opinion. The data

also confirms the intuition that having more nodes agree on an opinion initially, makes

the network more likely to converge on this opinion and also influences how strongly the

individuals in the network adopt this opinion.

Having identified a leadership measure and a general testing strategy with reference

cases, the conclusions drawn in chapter 4 are put to the test. This test is in the form

of the adaptations made to the DeGroot model chapter 5. Adding uniform levels of self-

confidence to the model makes it harder to influence nodes in the beginning, but does not

affect the number of cases in which a consensus is reached. Having the individuals pay

more attention to leader figures also has no significant impact on these results. The leader

nodes still have a significant impact on the network, but are not capable of convincing the

remaining nodes. These results show the robustness of the DeGroot model. However, when

basing the importance nodes give to their peers on the opinions of these peers or when

adding noise to the opinions of neighbors, notably different results are perceived. This

form of weighting has many similarities with the bounded confidence model for opinion

dynamics. Because nodes pay more attention to nodes that confirm their own beliefs, the
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leader nodes, which are initially given an extreme opinion, are less effective in convincing

the rest of the network. In this case, a better strategy would be to have the leaders start

out with a more moderate opinion and increment their opinion values throughout time.

This way, their peers would value their input more on average. The last adaptation made

to the DeGroot model, was adding noise to the opinion values a node receives from its

neighbors. This change to the model was tested with all non-leader nodes having an ini-

tially unbiased opinion. Compared to the same experiment without the added noise, the

leader nodes are less successful in convincing the rest of the network to move towards the

goal opinion. In fact, adding a little bit of normally distributed noise leads to the same

outcome as if the other nodes in the network would have had uniformly distributed opinions.

Based on the results of these experiments, the case is made that opinion leaders have

the potential of changing the opinion dynamics, simulated using the DeGroot model, in

both hierarchical as well as non-hierarchical social networks. This remains true as long as

there is a certain threshold of them present. Another condition is that the weights placed

on their opinion by their neighbors is not disproportionately small compared to the weights

used for other peers. The results also show that this influence is less strong in networks

where there is a significant level of hierarchy present.
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