# Predicting car sales with search trends data

# and Instagram data

# A case study in the Netherlands

Word count: 18,539

Jasper Verdonck

Student number: 01508185

Supervisor: Prof. dr. Dirk Van den Poel

Co-supervisor: Lisa Schetgen

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Business Engineering: Data Analytics

Academic year: 2019 - 2020



# PERMISSION

I declare that the content of this Master's Dissertation may be consulted and/or reproduced, provided that the source is referenced.

Name student: Jasper Verdonck

Signature:

Jasper Verdonck

# Foreword

I am delighted to end my five years of education with this master thesis. Furthermore, I would like to thank the following people for steering me through my master dissertation.

First of all, I would like to thank prof. dr. Van den Poel who provided me with the freedom to choose my own thesis subject, who scraped the Instagram data necessary for my research and who gave advice throughout this dissertation. Because of prof. dr. Van den Poel, I was able to combine my passion for data analytics with my affection for cars. Moreover, I am grateful for the initial guidance of Sarah Carron. Misses Carron found me a new mentor, Lisa Schetgen. I would like to express my gratitude towards misses Schetgen for giving me useful feedback and bringing new insights when I was facing difficulties. Last but not least, I would like to thank my family and friends for their unconditional support, for motivating me to get the best out of myself and for proofreading my master dissertation.

# Impact of the Covid-19 crisis

I hereby declare that the research conducted for my master dissertation did not suffer from the Covid-19 crisis. Due to the flexibility of my promotor prof. dr. Van den Poel and my mentor Lisa Schetgen, I was able to contact them via e-mail and online appointments when I faced difficulties.

However, it is possible that the actual car sales in the year 2020 of the car models used in this thesis are influenced by the Covid-19 crisis. As it is almost impossible to foresee the impact of this crisis on the car sales in the Netherlands, this was not captured by the forecasting algorithms. Consequently, the performance of these algorithms could be slightly altered due to the impact of the Covid-19 crisis.

# Table of contents

| 1 | INTRODUCTION                                                       | 1  |
|---|--------------------------------------------------------------------|----|
| 2 | LITERATURE REVIEW                                                  | 3  |
|   | 2.1 PREDICTION OF SOCIAL AND ECONOMIC TRENDS                       | 3  |
|   | 2.1.1 Prediction based on social media                             | 3  |
|   | 2.1.2 Prediction based on search trends data                       | 5  |
|   | 2.1.3 Prediction based on both social media and search trends data | 6  |
|   | 2.2 NATURAL LANGUAGE PROCESSING                                    | 9  |
|   | 2.2.1 Sentiment analysis                                           | 9  |
| 3 | RESEARCH QUESTIONS                                                 | 11 |
| 4 | DATA                                                               | 13 |
|   | 4.1 CAR SALES                                                      | 13 |
|   | 4.2 INSTAGRAM DATA                                                 | 13 |
|   | 4.2.1 Relevant variables                                           | 15 |
|   | 4.2.1.1 Ex-ante forecasting                                        | 16 |
|   | 4.2.1.2 Valence                                                    | 17 |
|   | 4.2.1.3 Illustration                                               | 18 |
|   | 4.3 SEARCH TRENDS DATA                                             | 18 |
|   | 4.3.1 Google Trends data                                           | 19 |
|   | 4.3.2 Data collection                                              | 20 |
| 5 | METHODOLOGY                                                        | 22 |
|   | 5.1 Clustering                                                     | 22 |
|   | 5.1.1 Sequence of twelve integer seasonality parameters            |    |
|   | 5.1.2 SAM                                                          |    |
|   | 5.1.2 SAW                                                          |    |
|   | 5.2 FORECASTING                                                    |    |
|   |                                                                    |    |
|   | 5.2.1 Forecasting algorithms                                       |    |
|   | 5.2.1.1 ARIMA                                                      |    |
|   | 5.2.1.2 LSTM                                                       |    |
|   |                                                                    |    |
|   | 5.2.2.1      Missing values        5.2.2.2      Multicollinearity  |    |
|   | 5.2.2.2 Multiconnearly                                             |    |
|   | 5.2.2.4 Scaling variables                                          |    |
|   | 5.2.2.4 Scamp variables                                            |    |
|   |                                                                    | V  |
|   |                                                                    | v  |

|   | 5.2.3.1         | LSTM network architecture                                                         | 35  |
|---|-----------------|-----------------------------------------------------------------------------------|-----|
|   | 5.2.3.2         | Hyperparameter tuning                                                             | 35  |
|   | 5.2.4 Imp       | lementation ARIMA                                                                 |     |
|   | 5.2.4.1         | Hyperparameter tuning                                                             | 37  |
|   | 5.3 PERFOR      | MANCE EVALUATION                                                                  |     |
|   | 5.3.1 RM        | SE                                                                                |     |
|   | 5.3.2 MA        | E                                                                                 |     |
|   | 5.4 CROSS-      | VALIDATION                                                                        |     |
|   | 5.5 Statist     | ICAL TESTING                                                                      | 40  |
| 6 | RESULTS         |                                                                                   | 42  |
|   | 6.1 Cluste      | RING                                                                              | 40  |
|   |                 | STING ALGORITHMS                                                                  |     |
|   |                 | lictions                                                                          |     |
|   |                 |                                                                                   |     |
|   |                 | istical testing                                                                   |     |
|   | 6.3 Discuss     | SION                                                                              | 54  |
| 7 | CONCLUSIO       | N                                                                                 | 56  |
|   | 7.1 LIMITAT     | IONS AND SUGGESTIONS FOR FUTURE RESEARCH                                          | 56  |
| D | EEEDENCES       |                                                                                   | EQ  |
|   |                 |                                                                                   |     |
| Α | PPENDICES       |                                                                                   | 68  |
|   | APPENDIX 1. 200 | CAR MODELS AND THEIR TOTAL SALES OF 2019                                          | 68  |
|   | APPENDIX 2. 200 | CAR MODELS AND THEIR RELATED HASHTAGS                                             | 75  |
|   | APPENDIX 3. 200 | CAR MODELS AND THEIR RELATED SEARCH TERMS                                         | 82  |
|   | Appendix 4. Clu | STERING: CAR SALES FROM JANUARY 2016 UNTIL DECEMBER 2019 OF THE CLUSTER CENTROIDS |     |
|   | APPENDIX 5. CLU | STERING: CLUSTER DISTRIBUTION OF THE CAR MODELS                                   | 91  |
|   | APPENDIX 6. VIF |                                                                                   | 95  |
|   | Appendix 7. Pea | RSON CORRELATION BETWEEN THE INSTAGRAM FEATURES                                   | 96  |
|   | APPENDIX 8. HYP | ERPARAMETERS OF <i>LSTM</i> USING DATASET 1                                       |     |
|   | Appendix 9. Hyp | ERPARAMETERS OF <i>LSTM</i> USING DATASET 2                                       |     |
|   | APPENDIX 10. H  | PERPARAMETERS OF <i>LSTM</i> USING DATASET 3                                      | 104 |
|   | APPENDIX 11. H  | PERPARAMETER VALUES OF <i>LSTM</i> USING DATASET 4                                |     |
|   | APPENDIX 12. H  | PERPARAMETER VALUES OF ARIMA USING DATASET 4                                      |     |
|   | APPENDIX 13. PE | RFORMANCE OF ARIMA USING DATASET 4                                                |     |
|   |                 | RFORMANCE OF <i>LSTM</i> USING DATASET 4                                          |     |
|   |                 |                                                                                   |     |
|   |                 | RFORMANCE OF <i>LSTM</i> USING DATASET 1                                          |     |
|   | Appendix 15. Pe | RFORMANCE OF <i>LSTM</i> USING DATASET 1                                          |     |

| Appendix 17. Performance of <i>LSTM</i> using dataset 3 |  |
|---------------------------------------------------------|--|
|                                                         |  |

# List of abbreviations

| ANNs   | Artificial neural networks                      |
|--------|-------------------------------------------------|
| API    | Application programming interface               |
| AR     | Autoregressive                                  |
| ARIMA  | Autoregressive Integrated Moving Average        |
| ARMA   | Autoregressive-moving-average                   |
| ARSA   | Autoregressive Sentiment-Aware                  |
|        | -                                               |
| ARSQA  | Autoregressive Sentiment and Quality Aware      |
| ATM    | Automated teller machines                       |
| DJIA   | Dow Jones Industrial Average                    |
| i.i.d. | Independent and identically distributed         |
| LSTM   | Long Short-Term Memory                          |
| MA     | Moving average                                  |
| MAE    | Mean absolute error                             |
| MAPE   | Mean Absolute Percentage Error                  |
| MSE    | Mean squared error                              |
| OLS    | Ordinary least squares                          |
| ReLu   | Rectified Linear Unit                           |
| RMSE   | Root Mean Squared Error                         |
| RNNs   | Recurrent neural networks                       |
| SAM    | Sequence-Alignment Method                       |
| tanh   | Hyperbolic tangent                              |
| URL    | Uniform Resource Locator                        |
| VADER  | Valence Aware Dictionary and sEntiment Reasoner |
| VIF    | Variance inflation factor                       |
| WOM    | Word-of-mouth                                   |
|        | •                                               |

# List of tables

| Table 1. Literature review                                                               | 8  |
|------------------------------------------------------------------------------------------|----|
| Table 2. Comments placed on an Instagram post                                            | 17 |
| Table 3. Instagram features of the hashtag '#8series'                                    | 18 |
| Table 4. Discretizing the monthly seasonality parameters of car model Audi A1            | 23 |
| Table 5. Discretized sequences of seasonality parameters                                 | 24 |
| Table 6. Datasets used to predict car sales of 2020                                      | 27 |
| Table 7. Overview models to forecast                                                     | 27 |
| Table 8. Dataset with the three types of data                                            | 33 |
| Table 9. Hyperparameters and search space LSTM                                           | 35 |
| Table 10. Hyperparameters and search space ARIMA                                         | 37 |
| Table 11. p-values Bonferroni-Dun post-hoc test using MAE as performance measure         | 54 |
| Table 12. p-values Bonferroni-Dun post-hoc test using <i>RMSE</i> as performance measure | 54 |

# List of figures

| Figure 1. Time window                                             | . 13 |
|-------------------------------------------------------------------|------|
| Figure 2. Public posts containing the hashtag '#arteon'           | . 14 |
| Figure 3. Public posts containing the hashtag '#volkswagenarteon' | . 15 |
| Figure 4. Google Trends time series                               | . 19 |
| Figure 5. Optimal distance threshold                              | . 26 |
| Figure 6. Multilayer feed-forward neural network                  | . 29 |
| Figure 7. Artificial neuron                                       | . 30 |
| Figure 8. Learning rate                                           | . 36 |
| Figure 9. Forward-chaining with fixed horizon of one month        | . 40 |
| Figure 10. Monthly seasonality values of the cluster centroids    | . 42 |
| Figure 11. Seasonality of cluster 1                               | . 43 |
| Figure 12. Seasonality of cluster 2                               | . 43 |
| Figure 13. Seasonality of cluster 3                               | . 44 |
| Figure 14. Seasonality of cluster 4                               | . 44 |
| Figure 15. Seasonality of cluster 5                               | . 44 |
| Figure 16. Seasonality of cluster 6                               | . 44 |
| Figure 17. Seasonality of cluster 7                               | 45   |
| Figure 18. Seasonality of cluster 8                               | . 45 |
| Figure 19. Seasonality of cluster 9                               | . 45 |
| Figure 20. Seasonality of cluster 10                              | . 45 |
| Figure 21. Seasonality of cluster 11                              | . 46 |
| Figure 22. Seasonality of cluster 12                              | . 46 |
| Figure 23. Predictions using dataset 1 for centroid 1             | . 49 |
| Figure 24. Predictions using dataset 1 for centroid 2             | . 49 |
| Figure 25. Predictions using dataset 1 for centroid 3             | . 49 |
| Figure 26. Predictions using dataset 1 for centroid 4             | . 49 |
| Figure 27. Predictions using dataset 1 for centroid 5             | . 49 |
| Figure 28. Predictions using dataset 1 for centroid 6             | . 49 |
| Figure 29. Predictions using dataset 1 for centroid 7             | . 49 |
| Figure 30. Predictions using dataset 1 for centroid 8             | . 49 |
| Figure 31. Predictions using dataset 1 for centroid 9             | . 49 |
| Figure 32. Predictions using dataset 1 for centroid 10            | . 49 |
|                                                                   |      |

| Figure 33. Predictions using dataset 1 for centroid 11 | 49 |
|--------------------------------------------------------|----|
| Figure 34. Predictions using dataset 1 for centroid 12 | 49 |
| Figure 35. Predictions using dataset 2 for centroid 1  | 50 |
| Figure 36. Predictions using dataset 2 for centroid 2  | 50 |
| Figure 37. Predictions using dataset 2 for centroid 3  | 50 |
| Figure 38. Predictions using dataset 2 for centroid 4  | 50 |
| Figure 39. Predictions using dataset 2 for centroid 5  | 50 |
| Figure 40. Predictions using dataset 2 for centroid 6  | 50 |
| Figure 41. Predictions using dataset 2 for centroid 7  | 50 |
| Figure 42. Predictions using dataset 2 for centroid 8  | 50 |
| Figure 43. Predictions using dataset 2 for centroid 9  | 50 |
| Figure 44. Predictions using dataset 2 for centroid 10 | 50 |
| Figure 45. Predictions using dataset 2 for centroid 11 | 50 |
| Figure 46. Predictions using dataset 2 for centroid 12 | 50 |
| Figure 47. Predictions using dataset 3 for centroid 1  | 51 |
| Figure 48. Predictions using dataset 3 for centroid 2  | 51 |
| Figure 49. Predictions using dataset 3 for centroid 3  | 51 |
| Figure 50. Predictions using dataset 3 for centroid 4  | 51 |
| Figure 51. Predictions using dataset 3 for centroid 5  | 51 |
| Figure 52. Predictions using dataset 3 for centroid 6  | 51 |
| Figure 53. Predictions using dataset 3 for centroid 7  | 51 |
| Figure 54. Predictions using dataset 3 for centroid 8  | 51 |
| Figure 55. Predictions using dataset 3 for centroid 9  | 51 |
| Figure 56. Predictions using dataset 3 for centroid 10 | 51 |
| Figure 57. Predictions using dataset 3 for centroid 11 | 51 |
| Figure 58. Predictions using dataset 3 for centroid 12 | 51 |
| Figure 59. Predictions using dataset 4 for centroid 1  | 52 |
| Figure 60. Predictions using dataset 4 for centroid 2  | 52 |
| Figure 61. Predictions using dataset 4 for centroid 3  | 52 |
| Figure 62. Predictions using dataset 4 for centroid 4  | 52 |
| Figure 63. Predictions using dataset 4 for centroid 5  | 52 |
| Figure 64. Predictions using dataset 4 for centroid 6  | 52 |
| Figure 65. Predictions using dataset 4 for centroid 7  | 52 |
| Figure 66. Predictions using dataset 4 for centroid 8  | 52 |
|                                                        | XI |

| Figure 67. Predictions using dataset 4 for centroid 9  | 52 |
|--------------------------------------------------------|----|
| Figure 68. Predictions using dataset 4 for centroid 10 | 52 |
| Figure 69. Predictions using dataset 4 for centroid 11 | 52 |
| Figure 70. Predictions using dataset 4 for centroid 12 | 52 |

# 1 Introduction

The car industry is characterized by high costs and uncertainties (Fantazzini & Toktamysova, 2015). In particular, it comes with extremely large development costs and intense competition (Dodourova & Bevis, 2014). On top of that, customers' expectations are high as they require more for the same price (Ili, Albers, & Miller, 2010). Consequently, it is of vital importance that car manufacturers are aware of the number of cars that will be sold in the future, as a shortage or an oversupply of vehicles may harm the firms' reputation as well as its financial health (Fantazzini & Toktamysova, 2015). Conducted research concerning the prediction of car sales concludes that traditional forecasting models, which are solely based on historical sales, give unreliable forecasts (Ahn & Spangler, 2014).

A potential explanation is that these models do not incorporate the influence of recent events on future sales. Such events can for instance exist of word-of-mouth (*WOM*) (Ahn & Spangler, 2014). *WOM* can be seen as the exchange of product information between customers (Chu & Kim, 2011). It plays a vital part in influencing the behavior of consumers towards goods and services. On top of that, *WOM* is considered more reliable than brand marketing. Hence, customers' attitude towards products are influenced by *WOM*. As a result of the rise of the internet, *WOM* gained popularity under the term electronic *WOM*, for which social media platforms such as Facebook, Twitter and Instagram serve as the ideal instrument (Chu & Kim, 2011). Consequently, information obtained from social media can be a valuable source to predict sales.

Instagram is a social media platform that has gained a lot of popularity during the past years. With more than one billion users, it is one of the most used social media networks (Clement, 2020). Nonetheless, as far as my knowledge extends, no research has studied the predictive power of Instagram features in terms of predicting sales.

Another interesting source of information that emerged since the rise of the internet is the search behavior of internet users. The prediction of forecasting sales by means of search queries data proved to be successful in the past, especially in regions where the amount of internet users is significantly large (Ginsberg et al., 2009). A possible reason why search queries data seems to be a better source of information than traditional macro-economic data, is that the former may provide a more rational picture about the things customers are interested in (Wu & Brynjolfsson, 2009).

Given the relevance of car manufacturers predicting future car sales as accurate as possible, the goal of this master thesis is to forecast the monthly car sales in the year 2020 of the most sold car models in the Netherlands. Considering the potential of Google Trends data and Instagram data to predict sales, I make use of three different datasets, on top of the historical car sales data, to forecast the aforementioned monthly car sales. Firstly, the predictive power of Google Trends data is examined. Secondly, the predictive power of Instagram-related features is investigated. Thirdly, the combination of Google Trends data and Instagram data is explored.

This master thesis is structured as follows. Chapter 2 summarizes the relevant literature about the prediction of trends based on social media and search trends data. It also covers relevant literature concerning natural language processing, or in particular, sentiment analysis. Chapter 3 consists of the proposed research questions, which are based on the literature in chapter 2. Chapter 4 describes the relevant data as well as the data collection. In chapter 5, the applied methodology is explained in five parts. The first part focuses on a clustering algorithm that places car models with similar sales patterns in the same group. The second part elaborates on the forecasting approach. More specifically, it comprises the forecasting algorithms utilized in this master dissertation, the data preparation prior to the implementation of the forecasting algorithms. Part four discusses a cross-validation technique in the context of time series. The statistical tests used to evaluate a potential significant difference between the performance of the forecasting techniques are mentioned in the final part of chapter 5. Chapter 6 discusses the results of the applied methodology. Finally, chapter 7 presents the conclusion of this master dissertation and deals with its limitations and suggestions for future research.

# 2 Literature review

In this chapter, an overview of the relevant literature is provided. Firstly, the prediction of social and economic trends is discussed, which is based on data derived from social media, search data and a combination of both. Additionally, an overview of the used literature is visualized in table 1. Secondly, a specific part of natural language processing, namely sentiment analysis, is described.

# 2.1 Prediction of social and economic trends

#### 2.1.1 Prediction based on social media

Since the rise of social media, several researchers have utilized data obtained from social media in order to predict the future. Predicting future social and economic trends by means of social media has been researched in a variety of domains, such as the movie sector (Asur & Huberman, 2010; Yu, Liu, Huang, & An, 2010), the financial sector (Bollen, Mao, & Zeng, 2011), the mobile industry (Lassen, Madsen, & Vatrapu, 2014), the car industry (Ahn & Spangler, 2014; Pai & Liu, 2018), etcetera.

Asur and Huberman (2010) made use of tweets to predict the box-office revenues gained by movies. The authors implemented a linear regression model based on the number of posted tweets concerning movie-related topics (Assur & Huberman, 2010). In addition, Yu et al. (2010) forecasted the box-office revenues of movies by deploying sentiment analysis on *IMDB* reviews. An Autoregressive Sentiment-Aware (*ARSA*) model was compared with Autoregressive (*AR*) models which do not include sentiment data. On top of that, a quality indicator was added to the *ARSA* model to specify the quality of the reviews, resulting in an Autoregressive Sentiment and Quality Aware (*ARSQA*) model (Yu et al., 2010). The abovementioned researches conclude that the predictive power is significantly improved by including sentiment analysis into the model (Asur & Huberman, 2010; Yu et al., 2010). Furthermore, Asur and Huberman (2010) observed that their model scored better in terms of accuracy in contrast to the Hollywood Stock Exchange.

Lassen et al. (2014) were able to forecast iPhone sales by analyzing tweets using a linear regression model. However, sentiment features only slightly enhance the performance of the model (Lassen et al., 2014). Furthermore, Ahn and Spangler (2014) studied the influence of data from multiple social media sources on car sales of two automobile brands. To realize this, an Autoregressive Integrated Moving Average *(ARIMA)* model was fit three times, each time on a different dataset. First, the model was solely fit on historical sales data. Second, the model was trained on historical sales data as well as sentiment data. The final fit was applied on historical sales data, sentiment data and topical keyword frequency. Overall, the incorporation of social media data significantly improves the predictions of car sales (Ahn & Sprangler, 2014). In order to predict car sales in the United States, Pai and Liu (2018) utilized stock market values and sentiment scores of tweets. The conclusion of the research is twofold. Firstly, both sentiment scores and stock market values improve the forecasting accuracy. Secondly, removing the seasonality from the explanatory variables as well as from the response variable seems to expand the forecasting power of the model (Pai & Liu, 2018).

Bollen et al. (2011) examined the usefulness of sentiment features obtained from Twitter data to estimate the Dow Jones Industrial Average (*DJIA*) by training a Self-Organizing Fuzzy Neural Network. More specifically, positive and negative sentiments along with six dimensions of mood (e.g. calm, alert, sure, vital, kind and happy) were extracted from tweets. In contrast to the previously mentioned studies, the researchers pointed out that sentiment as well as five out of six mood dimensions were not predictive of the *DJIA*, leaving the calmness of the public as the only significant variable (Bollen et al., 2011).

The literature mentioned above focuses on extracting features from text-based social media platforms, such as Twitter (Hu, Manikonda, & Kambhampati, 2014). However, image-based social media platforms, such as Instagram, also contain promising information (Colliander & Marder, 2018; Hu et al., 2014; Pittman & Reich, 2016).

Colliander and Marder (2018) examined the effects of the setting in which a picture is taken by a brand in terms of the perceived image of that brand by customers and the recommendation of that brand to others. The authors conclude that in case a brand posts pictures in a less professional setting, followers are more inclined to like the post of the brand, recommend it to their social environment and believe the brand to be more credible in contrast to professional pictures posted by the brand (Colliander & Marder, 2018). Moreover, Highfield and Leaver (2015) suggested to analyze Instagram data based on research concerning Twitter data, as both types of data make use of hashtags (Highfield & Leaver, 2015).

In order to perform supervised learning techniques on pictures, these should be annotated (LeCun, Bengio, & Hinton, 2015). As manually labeling thousands, let alone millions of pictures, can take quite some effort, automatically labeling images may be a faster and less labor-intensive alternative (Giannoulakis & Tsapatsoulis, 2015, 2016a). Giannoulakis and Tsapatsoulis (2015, 2016a) conducted several studies about hashtags associated with images posted on Instagram. In particular, the researchers investigated whether these hashtags could be used to label the related image. The results state that, on average, only 25 percent of the hashtags are directly related to the content of the image, whereas the remaining 75 percent are depicted as stophashtags (Giannoulakis & Tsapatsoulis, 2015, 2016a). Stophashtags include all hashtags that are not directly related to the image itself but are rather utilized to enhance the searchability of the image or as a form of metacommunication (Giannoulakis & Tsapatsoulis, 2016b).

4

In summary, the incorporation of sentiment features extracted from text-based social media generally significantly improves the model's predictive power in terms of forecasting vehicle sales. Although the extraction of useful information such as images and videos from an image-based social media platform such as Instagram seems promising (Colliander & Marder, 2018; Hu et al., 2014; Pittman & Reich, 2016), no literature has been written about the usage of Instagram data for the prediction of car sales, let alone the prediction of sales in general, as far as my knowledge extends.

#### 2.1.2 Prediction based on search trends data

The importance of web search behavior to predict social and economic trends has been studied extensively over the years, varying from predicting flu epidemics (Ginsberg et al., 2009; Polgreen, Chen, Pennock, Nelson, & Weinstein, 2008; Santillana, Nsoesie, Mekaru, Scales, & Brownstein, 2014; Santillana et al., 2015) to forecasting car sales (Barreira, Godinho, & Melo, 2013; Choi & Varian, 2009, 2012).

Ginsberg et al. (2009) mentioned that online search queries may offer a faster way to predict flu outbreaks in a certain region, especially when a large part of that region uses the internet, instead of the traditional approximations. A possible explanation is that these traditional approximations are typically published later in contrast to trends data (Santillana et al., 2015; Santillana et al., 2014).

As far as my knowledge extends, Choi and Varian (2009) were the first researchers that investigated the importance of Google Trends search data when predicting automotive sales. The authors conclude that non-complex *AR* models along with fixed effects models including Google Trends predictors appear to surpass models without these predictors in terms of performance (Choi & Varian, 2009).

Moreover, Seebach, Pahlke and Beck (2011) forecasted new car sales of Germany's two main car producers by using Google Trends data. The findings of the authors indicate that search trend-based models perform better than well-recognized benchmark models. Over the following years, other researchers have investigated the predictive power of Google Trends data in the context of German car sales as well (Fantazzini & Toktamysova, 2015). In particular, Fantazzini and Toktamysova (2015) executed multivariate models making use of economic variables and variables extracted from Google Trends in order to predict monthly car sales of ten German car brands, for different forecast horizons up to two years. The results show that, for most car brands and forecast horizons, models including data from Google's search engine significantly perform better than other models. This is especially the case in terms of forecast horizons above twelve months (Fantazzini & Toktamysova, 2015).

Carrière-Swallow and Labbé (2013) made use of Google Trends data to nowcast the car sales in Chile. More specifically, simple nowcasting models incorporating a self-made automotive index, which were implemented since Google did not provide search categories for Chile at that time, tend to outperform well-accepted benchmark models (Carrière-Swallow & Labbé, 2013). In contrast to the previously mentioned studies, research of Barreira et al. (2013) reveals that the inclusion of search queries does not always improve the forecasting power of models to predict car sales. By means of an autoregressive—moving-average (*ARMA*) model, the authors studied the impact of search data on the accuracy of nowcasting car sales for France, Portugal, Spain and Italy. The incorporation of Google Trends data only seemed to significantly improve the forecasting power in case of Portugal (Barreira et al., 2013). In a similar study, Tomczyk and Doligalski (2015) applied linear regression to Google Trends search data and a macroeconomic index to predict new car registrations in Poland. The findings of this study reveal that Google search data and the macroeconomic index statistically influence the vehicle registrations of five major car brands, at least for a one-month timeframe (Tomczyk & Doligalski, 2015).

More recently, Nymand-Andersen and Pantelidis (2018) examined the predictive power of Google search data on new car registrations in Europe (i.e. Belgium, Germany, Ireland, Spain, France, Italy, the Netherlands, Austria, Portugal and Slovenia). The *AR* models including search data seem to statistically outperform the baseline model as well as most of the equivalent *AR* models without Google search data (Nymand-Andersen & Pantelidis, 2018).

In summary, the inclusion of online search data significantly improves the forecasting of car sales. A possible explanation is that online internet searches indicate a more realistic view of customers' interests compared to traditional macro-economic variables (Wu & Brynjolfsson, 2009).

## 2.1.3 Prediction based on both social media and search trends data

Based on the previously mentioned literature, I can conclude that search engine data as well as features gathered from social media provide meaningful information in terms of the purchasing behavior of consumers. In this section, researchers that compared these two types of data and investigated the relevance of combining them, is discussed.

One of the first researches that implemented search queries data along with social media data to predict car sales is conducted by Geva, Oestreicher-Singer, Efron and Shimshoni (2013, 2015). The conclusion of the research is validated on both a linear regressor and a nonlinear neural network model. Firstly, the combination of forum data and Google Trends search data provides better results than utilizing only one of them. Secondly, search data is more informative than data extracted from forums (Geva et al., 2013, 2015).

Benthaus and Skodda (2015) further elaborated on the work of their colleagues Seebach et al. (2011) (see subsection 2.1.2), by also including blog data from Twitter. Linear regression models using both social media data and Google Trends data are better at predicting car sales than the same models using only one of these types of data (Benthaus & Skodda, 2015). Moreover, internet trends data and social media

data complement each other. Consequently, combining these two types of data provides a better result (Santillana et al., 2015; Geva et al., 2013, 2015).

To conclude, the combination of search trends data and social media data leads to a more informative data source. A possible explanation for this conclusion is given by Geva et al. (2013). When taking the nature of the two types of data into account, the authors observed a clear contrast between search trends data and social media data. More specifically, the first tends to capture the actual products customers are interested in without affecting the opinions of their social environment, while the latter plays an important role in the way others perceive products (Geva et al., 2013).

## Table 1. Literature review

| Study                                                 | Google<br>Trends | Twitter | Other | Content                                                                                                                                                                            |
|-------------------------------------------------------|------------------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ahn & Spangler, 2014                                  |                  |         | x     | Estimating monthly car sales of two car brands based on<br>sentiment data and topical key words extracted from social<br>media websites                                            |
| Asur & Huberman, 2010                                 |                  | х       |       | Forecasting box-office revenues for movies using Twitter data                                                                                                                      |
| Barreira, Godinho, & Melo,<br>2013                    | Х                |         |       | Studying the impact of Google search data on the predictive<br>power of nowcasting unemployment rates and car sales for<br>France, Italy, Portugal and Spain                       |
| Benthaus & Skodda, 2015                               | x                | x       |       | Nowcasting vehicle sales of two of the main German automobile manufacturers using Google Trends data and Twitter data                                                              |
| Bollen, Mao, & Zeng, 2011                             |                  | х       |       | Using Twitter mood to estimate the Dow Jones Industrial Average (DJIA)                                                                                                             |
| Carrière-Swallow & Labbé,<br>2013                     | X                |         |       | Nowcasting car sales in Chile utilizing macroeconomic variables and Google search data                                                                                             |
| Choi & Varian, 2009                                   | х                |         |       | Nowcasting automotive sales, travel destinations and house sales by means of Google Trends data                                                                                    |
| Fantazzini & Toktamysova,<br>2015                     | х                |         |       | Predicting car sales in Germany by means of Google Trends data and economic variables                                                                                              |
| Geva, Oestreicher-Singer,<br>Efron, & Shimshoni, 2013 | x                |         | х     | Analyzing the influence of sentiment derived from forum data as<br>well as the impact of Google Trends data on the prediction of<br>sales of new cars and light trucks in America. |
| Geva, Oestreicher-Singer,<br>Efron, & Shimshoni, 2015 | х                |         | х     | Analyzing the influence of sentiment derived from forum data as<br>well as the impact of Google Trends data on the prediction of<br>sales of new cars and light trucks in America. |
| Ginsberg et al., 2009                                 | х                |         |       | Predicting influenza epidemics based on Google Trends data                                                                                                                         |
| Lassen, Madsen, & Vatrapu,<br>2014                    |                  | x       |       | Forecasting quarterly iPhone sales by making use of Twitter                                                                                                                        |

| Nymand-Andersen &<br>Pantelidis, 2018                      | x |   |   | Approximating new car registrations in Europe by means of Google Trends data                                               |
|------------------------------------------------------------|---|---|---|----------------------------------------------------------------------------------------------------------------------------|
| Pai & Liu, 2018                                            |   | х |   | Utilizing stock market values and sentiment scores of Twitter data to forecast car sales in the USA on a monthly basis     |
| Santillana, Nsoesie, Mekaru,<br>Scales, & Brownstein, 2014 | х |   |   | Detecting influenza epidemics through Google Trends data.                                                                  |
|                                                            |   |   |   | Predicting influenza epidemics via Google Trends data, Twitter                                                             |
| Santillana et al., 2015                                    | х | Х | Х | data, Google Flu Trends data and macroeconomic variables                                                                   |
| Seebach, Pahlke, & Beck, 2011                              | x |   |   | Predicting new car sales of Germany's two largest car producing companies utilizing Google search data                     |
| Tomczyk & Doligalski, 2015                                 | x |   |   | Forecasting new vehicle registrations via a macroeconomic index and Google Trends index                                    |
| Wu & Brynjolfsson, 2009                                    | x |   |   | Forecasting house sales, the house price index and the demand for home appliances in the US by means of Google Trends data |
| Yu & Liu, 2012                                             |   |   | х | Forecasting box-office revenues for movies by making use of sentiment extracted from IMDB-reviews                          |

# 2.2 Natural language processing

# 2.2.1 Sentiment analysis

As most of the abovementioned literature conclude that the incorporation of sentiments extracted from social media improves the predictive power, further research concerning sentiment analysis is discussed below. Two main approaches to tackle sentiment analysis exist, namely lexicon-based techniques and machine learning methods (Dhaoui, Webster, & Tan, 2017; Gezici, Dehkharghani, Yanikoglu, Tapucu, & Saygin, 2013; Meire, Ballings, & Van den Poel, 2016; Mudinas, Zhang, & Levene, 2012; Ortigosa, Martín, & Carro, 2014; Zhang, Ghosh, Dekhil, Hsu, & Liu, 2011).

In case of the lexicon-based approach, a pretrained sentiment lexicon is utilized in order to give each word in the analyzed text a sentiment score (Ding, Liu, & Yu, 2008; Taboada, Brooke, Tofiloski, Voll & Stede, 2011). The given scores of all these words serve as input for a function that calculates the sentiment score of that text (Turney, 2002). A sentiment lexicon is a dictionary of words, in which each word is assigned a positive and a negative score (Bravo-Marquez, Mendoza, & Poblete, 2014). Alternatively, sentiment analysis can be approached by making use of machine learning methods, also called statistical methods (Taboada et al., 2011). In this approach, models are trained on a classified training set. Since this approach is supervised, the training data has to be labeled. The input of these classifiers implemented to predict the sentiment of text (Taboada et al., 2011) consists of features extracted from text, such as unigrams, bigrams, part-of-speech, etc. (Pang, Lee, & Vaithyanathan, 2002).

The lexicon-based approach requires less time than the machine learning approach for the following reasons. Firstly, lexicon-based methods have the advantage of not needing an annotated training set (Ortigosa et al., 2014; Tan, Wang, & Cheng, 2008), whereas the training set of machine learning models is mostly labeled manually (Dhaoui et al., 2017). Manually labeling the training set is often time-consuming as it needs to be large enough to ensure a good classification accuracy (Dhaoui et al., 2017). Secondly, machine learning classifiers have to be trained before usage. Consequently, a significant amount of time is consumed (Chaovalit & Zhou, 2005).

In general, the machine learning approach provides better results in contrast to lexicon-based techniques in terms of accuracy (Chaovalit & Zhou, 2005). However, in less domain specific contexts, lexicon-based techniques seem to outperform machine learning techniques (Ortigosa et al., 2014). Furthermore, a possible alternative for manually labelling the training set in order to use supervised machine learning techniques, is to automatically label the data based on sentiment lexicons (Zhang et al., 2011; Tan et al., 2008). In recent research performed by Dhaoui et al. (2017), this hybrid approach outperformed both the lexical-based approach and the machine learning approach using manually labeled input data.

As far as my knowledge extends, researches that made use of sentiment analysis to predict car sales, implemented a lexicon-based approach.

# 3 Research questions

Social media already proved its usefulness in forecasting social and economic trends, at least in case of text-based social media (Hu et al., 2014). Sentiment-based features are prominent in predicting car sales by means of text-based social media. To the best of my knowledge, lexicon-based approaches are the only type of sentiment analysis methods utilized in the context of car sales, even though machine learning techniques generally seem to give more accurate results compared to lexicon-based techniques (Chaovalit & Zhou, 2005), especially in domain specific contexts (e.g. car industry) (Ortigosa et al., 2014). A potential explanation for this trend is the time efficiency of lexicon-based approaches, as it is not necessary to label the training sets (Ortigosa et al., 2014; Tan et al., 2008) and no machine learning classifiers are required to be trained prior to usage (Chaovalit & Zhou, 2005).

Image-based social media platforms such as Instagram might also contain useful information (Colliander & Marder, 2018; Hu et al., 2014; Pittman & Reich, 2016). Nonetheless, to the best of my knowledge, no research has investigated the predictive power of Instagram data to predict sales. Consequently, it may be interesting to investigate whether features extracted from the image-based social media platform Instagram serve as a useful input to forecast car sales. Hence, this leads to the following research question:

• Is it possible to predict car sales making use of Instagram features?

The literature review of this master dissertation (see section 2.1.2) concludes that, in general, search trends data is a valuable source of information in addition to traditional macro-economic variables to predict vehicle sales. The previous may be clarified by the following reasons. Firstly, search trends data is typically published earlier than traditional approximations, resulting in search queries data to be more recent (Santillana et al., 2015; Santillana et al., 2014). Secondly, online search data may provide a more rational view of the interests of customers than traditional economic variables (Wu & Brynjolfsson, 2009). However, the research of Barreira et al. (2013) illustrates that this is not always the case.

To determine whether the inclusion of search trends data leads to better forecasts of car sales, I would like to provide an answer to the following research question:

• Is it possible to predict car sales making use of Google Trends search data?

It can be derived from the literature review of this master dissertation (see chapter 2) that both search trends data and features extracted from text-based social media such as Twitter contain valuable information to predict sales. Consequently, it is not surprising that some researchers investigated the combination of these two types of data sources. Benthaus and Skodda (2015) verified that linear regressors using both Google Trends search data and features from Twitter as input, managed to forecast car sales more accurately compared to linear regressors having only one of these types of data as input.

Geva et al. (2013, 2015) came to the same conclusion concerning both a linear model and a nonlinear neural network model. Additionally, in the context of forecasting car sales, the authors found that search data and forum data incorporate a significantly equivalent predictive power. In summary, both Benthaus and Skodda (2015) and Geva et al. (2013, 2015) conclude that search queries data and social media data complement one another. This conclusion can be declared by the difference in nature of the two types of data (Geva et al., 2013).

Analogous to Benthaus and Skodda (2015) and Geva et al. (2013, 2015), I would like to investigate whether Instagram data and Google Trends data complement one another. As a consequence, the following research question is investigated:

• Is a higher predictive performance present when combining Instagram features and Google Trends data to predict car sales?

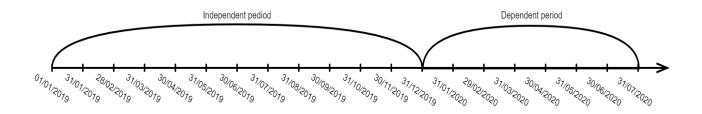
In order to provide an answer to the aforementioned research questions, I will predict the car sales of the most popular car models in the Netherlands in the months January to July of the year 2020.

# 4 Data

This chapter covers the three types of data that were utilized in this master dissertation to predict the monthly sales of car models in the Netherlands of the year 2020. The first section provides information about the car sales dataset, i.e. the dependent variable, that is used in this master dissertation. The second section gives an overview of the data scraped from Instagram along with its relevant variables. In the third section, the search trends data of Google, i.e. Google Trends data, is discussed. The fourth section is dedicated to the imputation methodology used to handle missing values.

# 4.1 Car sales

The first dataset consists of the dependent variable, i.e. the monthly car sales of the 200 most sold car models in the Netherlands of the year 2019. From my own experience, Belgian car sales are solely available at the car brand level and not at the car model level, as is the case for Dutch car sales. Consequently, I decided to make use of Dutch car sales instead of Belgian car sales. The monthly car sales of 2019 are used as training set to forecast the monthly car sales of 2020. In figure 1, the training set is depicted as the 'independent period', whereas the 'dependent period' covers the months that will be predicted based on the training set.



#### Figure 1. Time window

The car sales data is gathered from https://www.autoweek.nl/verkoopcijfers/, which provides the monthly sales of new vehicles in the Netherlands. An overview of the 200 car models along with their total sales of 2019 is provided in appendix 1.

### 4.2 Instagram data

As suggested by Highfield and Leaver (2015), the usage of hashtags on Twitter is the main approach to find tweets related to a certain topic. The authors also advise to make use of hashtags to collect Instagram data associated to a particular topic. However, the work of Giannoulakis and Tsapatsoulis (2015, 2016a) state that, on average, only a quarter of the hashtags are directly linked to the content of the image. Consequently, to ensure that all images are directly associated to the desired hashtag or topic, one can manually filter out the so called stophashtags (Giannoulakis & Tsapatsoulis, 2015, 2016a). As this solution

is too time intensive, I decided to apply the following methodology, based on the proposition of Highfield and Leaver (2015).

For each car model in appendix 1, a hashtag is used to scrape public Instagram posts related to that car model. The selection procedure of the hashtags was performed by manually choosing the hashtags that seemed to be representing a car model the most. If multiple candidate hashtags were found, the hashtag containing most public posts was chosen. For instance, in case of Volkswagen Arteon, I found two candidate hashtags, i.e. '#arteon' and '#volkswagenarteon'. As depicted on figure 2, the hashtag '#arteon' contained 102.218 public posts at the moment of choosing the hashtags, while the hashtag '#volkswagenarteon' contained 13.381 public posts at that moment (see figure 3). Hence, the public Instagram posts containing the hashtag '#arteon' were selected to represent the public posts of the car model Volkswagen Arteon, as this hashtag was clearly more popular. Both hashtags, '#arteon' and '#volkswagenarteon', can be accessed respectively by the following Uniform Resource Locators (*URLs*): https://www.instagram.com/explore/tags/volkswagenarteon/.

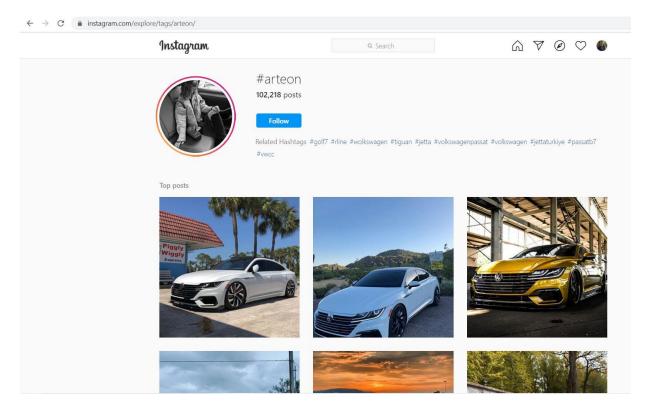
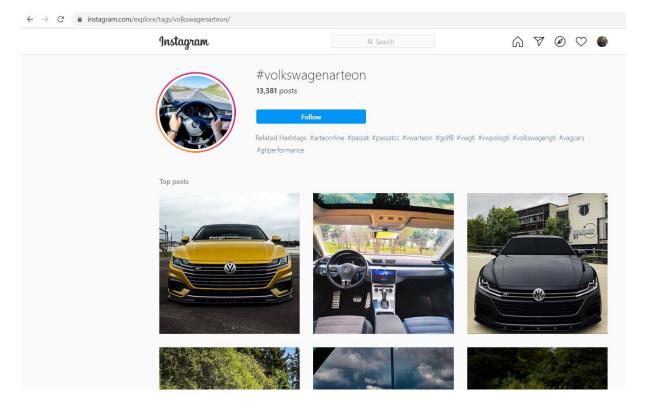
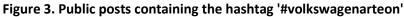


Figure 2. Public posts containing the hashtag '#arteon'





A table of the car models along with the hashtags used in this master dissertation to scrape the car related hashtags can be found in appendix 2.

The Instagram data was scraped by my promotor, Prof. dr. Dirk Van den Poel, who made use of the UGent Instagram application programming interface (*API*). It is important to note that solely posts created in 2019 are retained from the scraped Instagram data to ensure that the training set only contains data from the year 2019.

# 4.2.1 Relevant variables

For each hashtag, the following features were extracted from the scraped Instagram data and aggregated on a monthly level: (1) the total number of likes, (2) the total number of comments, (3) the total number of posts, (4) the total number of videos, (5) the total amount of views of these videos and (6) the average valence of the posts' captions.

The choice of features is based on the research of Hoffman and Fodor (2010). Firstly, the number of likes on a post about a brand is an indicator of the *WOM* concerning that brand. Secondly, the number of comments on a post about a brand contributes towards the brand engagement. Thirdly, the total number of posts, the total number of videos, the total amount of views on these videos and the valence of posts' captions of a brand are features that help measure the brand awareness (Hoffman and Fodor, 2010).

In subsection 4.2.1.1, the principle of ex-ante forecasts as well as its relevance to features (1), (2) and (5) are explained. The tool used to compute the valence of posts' captions, i.e. Valence Aware Dictionary and sEntiment Reasoner (*VADER*) (Hutto & Gilbert, 2014), is described in subsection 4.2.1.2. Finally, the dataset of the Instagram features of the hashtag '#8series' is provided as an illustration in subsection 4.2.1.3.

### 4.2.1.1 Ex-ante forecasting

For each hashtag, I want to compute the abovementioned variables on a monthly basis. However, the point in time at which the Instagram posts are scraped has an influence on the number of likes, comments and views (in case the post contains a video). For instance, a post that is placed on January 2019 can have a different number of comments in the month January 2019 than in December 2019, i.e. the moment this post is scraped. In particular, the variables (1), (2) and (5) of posts created in the months previous to the month of scraping may contain information that was not yet available at the moment the posts were placed. Hence, forecasting car sales of February 2019 by means of the information related to a post placed in January 2019, which was scraped in December 2019, is called ex-post forecasting (Hyndman & Athanasopoulos, 2018). Consequently, to prevent this type of data leakage, only the information of a post available in the same month that the post was created needs to be retained as input to predict the future car sales (i.e. ex-ante forecasting) (Hyndman & Athanasopoulos, 2018).

In practice, I was only able to perform ex-ante forecasting for the number of comments. The reason behind this is that solely the date a comment was placed is available, while the date of a given like or a video view is unknown. In what follows, an example of this methodology is provided.

Table 2 represents a part of the information about the comments placed on a certain Instagram post that contains the hashtag '#arteon'. Each row represents a comment placed on the relevant Instagram post. Each comment or row has a unique *id* (i.e. column '*id*'). The column 'created\_at' contains the timestamp a comment is placed, whereas the column 'text' stands for the content of the comment. The amount of likes a comment has gained at the time of scraping is represented by the column 'likes\_count'. Finally, the column 'answers' represents the content of the comments that are placed as a reply on the relevant comment. As can be seen in table 2, none of the comments was answered.

The timestamp of the post itself equals 2019-05-14 22:51:54, indicating that the post is created at May 2019. Only the comments that are placed starting from the creation of the post until the end of May 2019 are considered to be known for the month May of the year 2019. Consequently, all comments of table 2 are retained except for the comment created at timestamp 2019-06-29 00:54:25. Note that this information is only available in case a post contains at least one comment.

| id                | created_at          | text                                            | likes_count | answers |
|-------------------|---------------------|-------------------------------------------------|-------------|---------|
| 17906182294326122 | 2019-06-29 00:54:25 | your snapshot is really GREAT :)                | 1           | []      |
| 18032331400160622 | 2019-05-30 03:29:19 | 合合<br>What an amazing shot! 😌 I think you might | 1           | []      |
| 18043555216188961 | 2019-05-27 05:57:43 | also like mine. 🔄                               | 1           | []      |
| 17847324658451259 | 2019-05-24 20:41:38 | Absolutky Amazing 💫 💫 😓 😓                       | 1           | []      |
| 18046871983127800 | 2019-05-23 04:52:49 | Hey Great Picture! 🖏 👍                          | 1           | []      |
| 17866744912385419 | 2019-05-23 04:08:18 | Amazing!                                        | 1           | []      |
| 17891621935330411 | 2019-05-22 22:02:35 | Jawdropping                                     | 1           | []      |
| 17865958162379067 | 2019-05-19 11:06:27 | Love the content                                | 1           | []      |
| 17850744163430639 | 2019-05-15 05:56:44 | Nice!                                           | 2           | []      |

Table 2. Comments placed on an Instagram post

#### 4.2.1.2 Valence

To be able to calculate the valence of a caption of an Instagram post, the lexicon-based and rule-based sentiment analysis tool VADER is utilized (Hutto & Gilbert, 2014). The lexicon consists of social media related features along with their valence or intensity, including a full list of Western-style emoticons, slang and acronyms. On top of that, VADER incorporates the following five heuristics that may influence the lexicon-based valence score. A first heuristic takes the presence of punctuations into account. For example, the inclusion of exclamation marks increases the absolute intensity value without changing the semantic orientation. Secondly, words in uppercase receive a higher absolute intensity value, with the semantic orientation remaining intact. Thirdly, if a sentence contains the conjunction 'but', it will receive the valence score of the words located after this conjunction. For instance, the sentence 'This car's acceleration is mind-blowing, but its fuel efficiency is bad.' receives a negative valence score (i.e. the valence score of the sentence part 'its fuel efficiency is bad.'). Fourthly, the presence of degree adverbs such as 'very' and 'marginal' are taken into account. The inclusion of the degree adverb 'very' in a sentence increases the absolute intensity value of the sentence, whereas the adverb 'marginal' decreases the sentence's absolute intensity value. Fifthly, VADER analyzes each trigram (i.e. sequence of three words) prior to a sentiment-laden lexicon feature (i.e. word with a valence score different from zero). Consequently, VADER is able to detect 90 percent of the cases in which a negation changes the semantic orientation of a sentence (Hutto & Gilbert, 2014).

Practically, a *VADER* sentiment analysis Python module (Hutto & Gilbert, 2014) was used to calculate the compound score. The compound score is formed by taking the sum of the valence scores of all words and normalizing this sum into a number within a continuum ranging from -1 (i.e. extremely negative valence) to +1 (i.e. extremely positive valence). A sentence containing a compound score of zero means that the sentence does not have any valence. A positive compound score indicates a positive valence, while a

negative compound score stands for a negative valence (Hutto & Gilbert, 2014). For example, the sentence 'The car's comfort is really good.', has a compound score of 0,69. When a negation is added to this sentence, for example 'The car's comfort isn't really good.', a compound score of -0,03 is assigned. In this case, *VADER* was able to detect the negation after the trigram 'The car's comfort', which changes the semantic orientation of the sentence.

#### 4.2.1.3 Illustration

Table 3 is an illustration of a dataset regarding the Instagram features extracted from the hashtag '#8series'. Hence, this dataset includes the Instagram features of the car model 'BMW 8-serie'. As already mentioned in section 4.2.1, the features are aggregated on a monthly level. The variables 'nr\_likes', 'nr\_comments', 'nr\_posts', 'nr\_videos' and 'video\_view\_count' are aggregated by taking the monthly sum, whereas 'polarity' is aggregated by taking the monthly average.

| date       | nr_likes  | nr_comments | nr_posts | nr_videos | video_view_count | polarity    |
|------------|-----------|-------------|----------|-----------|------------------|-------------|
| 2019-01-31 | 5.770.010 | 29.035      | 3.447    | 690       | 6.218.536        | 0,23178181  |
| 2019-02-28 | 6.912.360 | 31.791      | 3.726    | 676       | 7.304.917        | 0,230466989 |
| 2019-03-31 | 3.183.087 | 17.048      | 1.997    | 220       | 4.675.447        | 0,225629094 |
| 2019-04-30 | 3.250.977 | 15.582      | 1.673    | 163       | 2.137.230        | 0,214542558 |
| 2019-05-31 | 2.886.680 | 15.328      | 1.926    | 228       | 3.106.338        | 0,183578453 |
| 2019-06-30 | 4.803.574 | 22.182      | 2.110    | 206       | 3.579.117        | 0,229742228 |
| 2019-07-31 | 3.696.567 | 16.499      | 1.495    | 187       | 3.381.570        | 0,208475987 |
| 2019-08-31 | 4.087.685 | 16.220      | 1.569    | 200       | 2.685.594        | 0,21575443  |
| 2019-09-30 | 3.462.327 | 14.113      | 1.713    | 223       | 860.378          | 0,168648103 |
| 2019-10-31 | 3.426.845 | 15.467      | 1.807    | 268       | 1.993.449        | 0,227137576 |
| 2019-11-30 | 3.619.948 | 14.161      | 1.591    | 281       | 3.045.701        | 0,209352168 |
| 2019-12-31 | 3.433.225 | 12.837      | 1.698    | 407       | 3.164.254        | 0,247837868 |

| Table | e 3. | Instagram f | features of | the | hashtag | ; '#8series' |
|-------|------|-------------|-------------|-----|---------|--------------|
|-------|------|-------------|-------------|-----|---------|--------------|

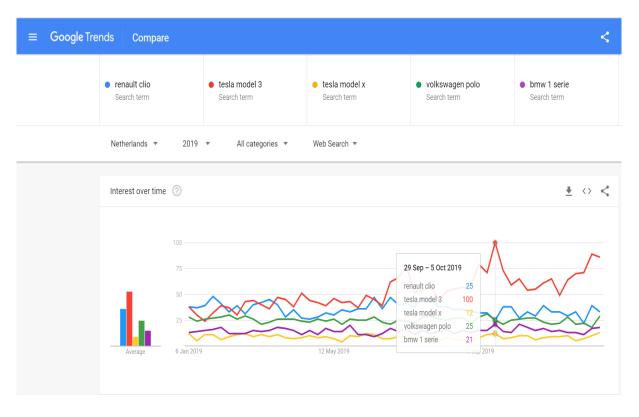
### 4.3 Search trends data

The majority of the literature in section 2.1 made use of data obtained from Google's search engine. Furthermore, Google is the most popular search engine in the Netherlands, having a market share of almost 96 percent (de Best, 2020). Additionally, an *API* named 'pytrends' (General Mills, 2016) is available, making it possible to automatically extract the necessary Trends data (see subsection 4.3.2). Due to the beforementioned reasons, Google Trends data is an appropriate source of information and is therefore utilized in this master thesis.

# 4.3.1 Google Trends data

Google Trends data represents people's search interest in search queries over time (Rogers, 2016). Google makes it possible to easily extract this data for any period and desired region, starting from 2004. Moreover, search terms can be filtered based on different search categories such as 'Autos & Vehicles', 'Finance', 'Health', etcetera (Rogers, 2016).

To limit computational efforts, Google draws an unbiased sample of the full Google search dataset (Rogers, 2016). The yearly increase of search engine users makes it impossible to compare absolute search volumes at different points in time. On top of that, the absolute volumes also depend on the geographical region, which can be problematic when comparing searches in terms of location. To tackle these problems, Google normalizes the search volumes. More specifically, for a certain topic or search term, the absolute number of searches for that topic is divided by the total amount of searches on all topics in a specific region and time. In addition, Google scales the normalized data by giving each datapoint a number ranging from zero to 100. The datapoint with the largest search interest for the predefined time period and location is labeled as 100. Based on this datapoint, the other points receive a number in proportion to their relative search interest (Rogers, 2016).



#### Figure 4. Google Trends time series

To clarify the interpretation of Google Trends data, figure 4 is shown, which can be consulted through thefollowingURL:https://trends.google.com/trends/explore?date=2019-01-01%202019-12-31&geo=NL&g=renault%20clio,tesla%20model%203,tesla%20model%20x,volkswagen%20polo,bmw%20

1%20serie. As depicted on figure 4, the Google Trends data is provided on a weekly basis for the following five search terms: 'renault clio', 'tesla model 3', 'tesla model x', 'volkswagen polo' and 'bmw 1 serie'. The time period is set between 01-01-2019 and 31-12-2019, whereas the region is set to the Netherlands. The search term 'tesla model 3' is increasing in popularity on average and reaches its popularity peak at the week of September 29<sup>th</sup> to October fifth in the year 2019. As this is the most popular search term out of the five terms for the mentioned period and region, it is indexed at a value of 100. During that week, the search terms 'renault clio' and 'volkswagen polo' each had an index value of 25, indicating that their popularity is only one fourth of the popularity of 'tesla model 3'. After this peak, the index value of 'tesla model 3' decreases. This decline reflects a reduction in popularity regarding other search terms but does not necessarily indicate an absolute decrease in the search volume of the respective term (Google News Initiative, n.d.).

#### 4.3.2 Data collection

I was able to automatically collect the Google Trends data for all car models mentioned in appendix 1 by means of an *API* named 'pytrends' (General Mills, 2016). The region is limited to the Netherlands and the period is set between 01-01-2019 and 31-12-2019.

The number of search terms that can be compared simultaneously for a given time period and region, is limited to five (Briggs, 2017). As only one search term is used for each car model, it is necessary to extract data for 200 terms. To deal with the limitation of only being able to compare five terms, Google Trends data needs to be scraped multiple times, for which each time different search terms are used. However, all extracted datasets need to have one search term in common to be able to contrast the different datasets. The common term can then be used as a reference to transform all datasets to the same scale (Briggs, 2017).

The selection of the search terms is based on the work of Mavragani and Ochoa (2019). Even though Google Trends is not case sensitive, it is sensitive to accent marks and spelling errors. Consequently, it is almost impossible to cover all searches related to a certain topic. To partly solve this problem, Mavragani and Ochoa (2019) suggest adding multiple search terms to one query by using the '+' sign. For example, the car model 'Renault Mégane' can be searched under the search term 'Renault Mégane' as well as under the term 'Renault Megane', i.e. without accent mark. To obtain the search interest of both search terms, the search query 'Renault Mégane+Renault Megane' is utilized. Considering the previous, each search term consists of the following structure. On the one hand, if the car brand does not contain accent marks, the car brand is followed by the Dutch model name with each word separated by a single space. Additionally, each word is put in lowercase. On the other hand, if a car brand does contain accent marks, the same structure is applied for both the car model written with accent marks and the car model written

without accent marks. The search query is then formed by including both search terms separated by a '+' sign. For example, the search query for the car model 'Renault Mégane' is annotated as 'renault mégane+renault megane', whereas the search query for the car model 'Volkswagen Arteon' is represented by 'volkswagen arteon'. A list of the car models with their corresponding search terms can be consulted in appendix 3.

Barreira et al. (2013) state that the use of queries without category constraints usually led to the best results in explaining and nowcasting car sales. However, to avoid ambiguity in the search terms, it is advised to limit the searches to a certain category (Mavragani & Ochoa, 2019). For instance, the word 'jaguar' can refer to the car brand 'Jaguar', or it can refer to an animal. Consequently, for this master dissertation, the search terms are filtered by the category 'Autos & Vehicles' (Wachter, Widmer, & Klein, 2019).

As mentioned in subsection 4.3.1, Google only provides a sample of the search volume population (Rogers, 2016). Consequently, downloading data from Google Trends multiple times results in the occurrence of a small variation in the index values of the extracted data for each download (Barreira et al., 2013; Carrière-Swallow & Labbé, 2013; Fantazzini & Toktamysova, 2015). Analogous to the aforementioned researchers, I took the average of the same data extracted at different moments in time to reduce this variance (Barreira et al., 2013; Carrière-Swallow & Labbé, 2013; Fantazzini & Toktamysova, 2015).

# 5 Methodology

In this chapter, the methodology applied in this master thesis is discussed. Firstly, the implementation of the clustering algorithm based on the car sales is described. Secondly, the different forecasting algorithms are explained, followed by the necessary data preparation and the execution of these algorithms. Thirdly, an overview of the utilized performance measures is provided. Fourthly, cross-validation applied in the context of time series is explained in more detail. Lastly, the statistical tests that have the purpose of determining significant differences in model performance are covered.

# 5.1 Clustering

I decided to cluster the car models by making use of the Taylor-Butina algorithm since this results in a decrease of computational complexity (Butina, 1999; Venkatesh, Ravi, Prinzie and Van den Poel, 2014). In addition, I preferred to utilize the Sequence-Alignment Method (*SAM*) as a distance measure, which serves as input for the Taylor-Butina algorithm. The reason behind this is the ability of *SAM* to deal with sequential information (Levenshtein, 1966). The approach applied to cluster the car models is based on the research of Venkatesh et al. (2014).

After clustering automated teller machines (*ATMs*) based on their similarity in day-of-the-week cash withdrawal patterns by implementing the Taylor-Butina algorithm, Venkatesh et al. (2014) forecasted the cash demand of *ATM* centers based on these clusters. Analogous to the work of Venkatesh et al. (2014), I grouped car models that have similar monthly sales patterns. A possible advantage of clustering the car models is the decrease in computational complexity, which in turn leads to a higher forecasting accuracy (Venkatesh et al., 2014).

In what follows, the subsequent aspects will be explained: (1) the steps executed prior to the implementation of the *SAM* (Levenshtein, 1966), which is utilized to determine the distance or similarity between the car models (see subsection 5.1.1), (2) *SAM* as well as its implementation (see subsection 5.1.2) and (3) the Taylor-Butina clustering algorithm, for which the *SAM* distances between the car models serve as input (Butina, 1999) (see subsection 5.1.3).

### 5.1.1 Sequence of twelve integer seasonality parameters

Firstly, for each car model, a multiplicative time series model Y = T \* S \* C \* I is fit, where T stands for the trend, S reflects the seasonality, C represents the cyclic movement and I serves as the time series' irregular part of the model (Venkatesh et al., 2014). I made the assumption that the data contains neither cycles nor irregular components. To evaluate whether the previous assumption holds true, the car sales data of the formed cluster centroids are plotted in time. All plots can be consulted in appendix 4. Based on these plots, it is clear that solely a fixed frequency is

present in the fluctuations of the car sales data. As a result, only a seasonality is included in the data (Hyndman & Athanasopoulos, 2018). Hence, my assumption regarding the absence of cycles and irregular components in the data can be verified for all cluster centroids. Furthermore, an ordinary least squares (*OLS*) regression model is fit on the time series data to estimate the trend (Venkatesh et al., 2014). Afterwards, the seasonality part is acquired by dividing the time series data by its trend (Venkatesh et al., 2014).

In the second step, multiple years of car sales data are needed. As a consequence, I made use of data that comprises monthly car sales in the period from 01-01-2016 to 31-12-2019 (i.e. the sales of each car model are represented by a sequence of 48 monthly observations). However, in case of 54 out of the 200 car models, the sales data starting from the year 2016 was absent. The reason behind this is that either the car models were not yet available for sale in 2016 or that none of the car models were bought yet in the Netherlands. As a result, I decided to predict the car sales for the 146 car models that do have available data starting from 01-01-2016. Similar to Venkatesh et al. (2014), the 48 monthly observations for each car model are substituted by a sequence of twelve "month of the year" seasonality parameters. This is accomplished by averaging the seasonal values of each month, e.g. for the month January, the average seasonality of observation one, thirteen, twenty-five and thirty-seven is calculated. Next, each car model's sequence of twelve continuous seasonality parameters is discretized to ease the clustering process. For each car model, the quartiles of the seasonality values are computed for each month of the year. Subsequently, each "month of the year" seasonality parameter is replaced by the number of the quartile it belongs to (Venkatesh et al., 2014). An example of discretizing the twelve continuous seasonality parameters is the twelve continuous seasonality parameters is discretizing the twelve continuous seasonality parameter is replaced by the number of the quartile it belongs to (Venkatesh et al., 2014). An example of discretizing the twelve continuous seasonality parameters is discretizing the twelve continuous seasonality parameters.

|           | 1st      | 2nd       | 3rd       | 4th      | continuous  | discrete    |
|-----------|----------|-----------|-----------|----------|-------------|-------------|
| Month     | quartile | quartile  | quartile  | quartile | seasonality | seasonality |
| January   | <1,51    | 1,51-1,54 | 1,54-1,61 | >1,61    | 1,58        | 3           |
| February  | <0,82    | 0,82-0,83 | 0,83-0,94 | >0,94    | 0,93        | 3           |
| March     | <0,99    | 0,99-1,11 | 1,11-1,17 | >1,17    | 1,05        | 2           |
| April     | <0,84    | 0,84-0,91 | 0,91-0,99 | >0,99    | 0,93        | 3           |
| May       | <0,75    | 0,75-0,87 | 0,87-1,03 | >1,03    | 0,90        | 3           |
| June      | <1,02    | 1,02-1,07 | 1,07-1,14 | >1,14    | 1,09        | 3           |
| July      | <1,09    | 1,09-1,13 | 1,13-1,18 | >1,18    | 1,14        | 3           |
| August    | <0,92    | 0,92-1,17 | 1,17-1,44 | >1,44    | 1,18        | 3           |
| September | <0,59    | 0,59-0,67 | 0,67-0,79 | >0,79    | 0,71        | 3           |

Table 4. Discretizing the monthly seasonality parameters of car model Audi A1

| October  | <0,91 | 0,91-1,11 | 1,11-1,26 | >1,26 | 1,06 | 2 |
|----------|-------|-----------|-----------|-------|------|---|
| November | <0,90 | 0,90-1,02 | 1,02-1,26 | >1,26 | 1,15 | 3 |
| December | <0,18 | 0,18-0,20 | 0,20-0,31 | >0,31 | 0,28 | 3 |

## 5.1.2 SAM

In the third step, Venkatesh et al. (2014) determined the similarity or distance between each pair of *ATMs* by means of the *SAM*, which was introduced by Levenshtein (1966). The original *SAM* determines the distance between two strings (i.e. the source string and the target string) as the minimum amount of operations (i.e. insertions, deletions and replacements) needed to transform the source string into the target string (Venkatesh et al., 2014). A benefit of *SAM* is its ability to deal with sequences of different lengths as well as to consider sequential information. Hence, the similarity between each pair of car models is illustrated by the minimum number of operations required to align their "month of the year" sequences with one another (Venkatesh et al., 2014). This implies that the original *SAM* can only take positive integer values. To further illustrate, the *SAM* distance between the car models Audi A1 and Alfa Romeo MiTo is provided in table 5.

#### Table 5. Discretized sequences of seasonality parameters

| Car model                | Discretized sequence of seasonality parameters  |
|--------------------------|-------------------------------------------------|
| Audi A1 (Target)         | <u>3</u> 32333 <u>3</u> 3 <u>3</u> 2 <u>3</u> 3 |
| Alfa Romeo MiTo (Source) | <u>22233322222</u>                              |

As shown in table 5, the distance between Audi A1 and Alfa Romeo MiTo amounts six since the six underlined numbers need to be replaced to align the sequences with one another. This distance is calculated for each pair of car models. All pairwise *SAM* distances of the car models are represented by a distance or dissimilarity matrix. In practice, the distance is calculated by means of the distance module of the Levenshtein package (Necas, 2014).

# 5.1.3 Taylor-Butina algorithm

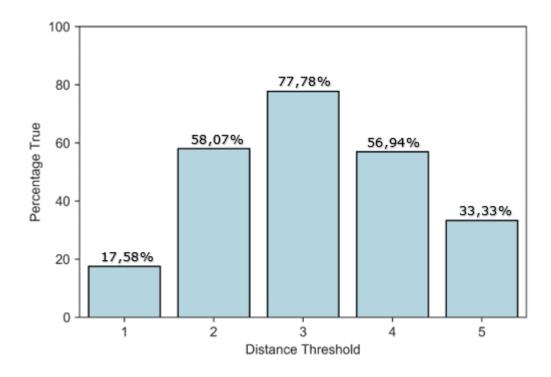
Lastly, similar to Venkatesh et al. (2014), I utilized the Taylor-Butina clustering algorithm (Butina, 1999). In what follows, the algorithm is explained. Firstly, a threshold based nearest-neighbor table is created by means of the previously formed distance matrix (see subsection 5.1.2). This table or matrix contains one row for each car model. Each row includes the neighbors of the car model represented by that row. Two car models are considered neighbors of one another when their relative distance is below the predefined distance threshold. Secondly, all empty rows are withheld from the table as these rows represent the car models without any neighbor, based on the imposed distance threshold. These car models are labeled as true singletons since they form a cluster on their own. Thirdly, the car model containing most neighbors for the predefined threshold is considered as a cluster centroid. As a result, this datapoint and its neighbors form a cluster. Fourthly, this row along with the datapoints belonging to this cluster are erased from all rows of the nearest-neighbor table. The third and fourth step are repeated on the updated nearest-neighbor table until the table consists of solely empty rows. Any leftover rows are labeled as false singletons. Even though false singletons have neighbors at the current distance threshold, all neighbors have been removed earlier by other datapoints having a larger number of neighbors. Hence, false singletons join the cluster of its nearest neighbor (Butina, 1999; Venkatesh et al., 2014).

The statistical quality of this clustering algorithm can be derived as the number of cases the standard deviation for the monthly seasonality parameters within the clusters is lower than the standard deviation for the respective monthly seasonality parameters of the full dataset (see subsection 5.1.1) (Venkatesh et al., 2014).

Practically, I made use of the Butina module from the rdkit.ML.Cluster package (Landrum, 2020). The hyperparameter to be tuned is the distance threshold of the threshold based nearest-neighbor table. I decided to determine the optimal distance threshold based on the aforementioned statistical quality of the Taylor-Butina algorithm. More specifically, I ran the clustering algorithm multiple times, for which each time a different distance threshold is used. In this research, the optimal distance threshold should be an integer value between one and five because of the following reasons. As mentioned in subsection 5.1.2, the distance used in this research (i.e. the original *SAM* distance) can only take positive integer values. In addition, a distance threshold of zero causes each car model to be a true singleton since no car model seems to have the same sequence of seasonality parameters. On top of that, the maximum distance that occurred in the distance matrix is equal to five. Hence, in case the distance threshold lies above five, every car model would be a neighbor of one another, resulting into one cluster.

A distance threshold of five leads to three clusters. For two of these clusters, the standard deviations of all twelve seasonality parameters are higher than for the full sample of car models. The remaining cluster has a lower standard deviation for all twelve seasonality parameters compared to the full sample. Consequently, for twelve out of 36 months or in 33,33 percent of the cases, the standard deviation within the clusters is lower than the standard deviation of the full dataset. The process of calculating the statistical quality is executed for all candidate distance thresholds. An overview of the thresholds along with their previously described statistical quality (denoted as 'Percentage True') is depicted in figure 5. The optimal distance threshold equals three, having a 'Percentage True' or statistical quality of 77,78 percent. Based on this distance threshold, twelve clusters are formed. The distribution of the formed

clusters can be found in appendix 5. In appendix 5, the first element of each cluster is the cluster's centroid.



### Figure 5. Optimal distance threshold

#### 5.2 Forecasting

After clustering the car models in section 5.1, the car sales of these car models are forecasted making use of two popular forecasting algorithms, i.e. *ARIMA* (Box & Jenkins, 1970) and Long Short-Term Memory (*LSTM*) (Hochreiter & Schmidhuber, 1997) (see subsection 5.2.1). To be able to provide an answer to the research questions (see chapter 3), the forecasting algorithms need to predict the monthly car sales of 2020 in the Netherlands multiple times, each time having a different dataset as input. More precisely, the four datasets in table 6 are utilized to predict the car sales of 2020. Dataset 1 only contains the car sales of 2019, whereas dataset 2 comprises the car sales of 2019 as well as the search trends of 2019. In addition, dataset 3 consists of the car sales of 2019 and the Instagram features (i.e. the total number of likes, the total number of comments, the total number of posts, the total number of videos, the total amount of views of these videos and the average valence of the posts' captions). Lastly, dataset 4 incorporates the car sales of 2019, the search trends of 2019 and the Instagram features of 2019.

| Dataset\Feature | car sales 2019 | search trends 2019 | Instagram features 2019 |  |
|-----------------|----------------|--------------------|-------------------------|--|
| 1               | x              |                    |                         |  |
| 2               | ×              | x                  |                         |  |
| 3               | х              |                    | x                       |  |
| 4               | х              | x                  | x                       |  |

Table 6. Datasets used to predict car sales of 2020

To determine which forecasting algorithm to use, the car sales of 2020 will be predicted by an *ARIMA* model as well as an *LSTM* model with both dataset 4 as input. The model with the best predictive power in terms of root mean squared error (*RMSE*) and mean absolute error (*MAE*) (see section 5.3) is then utilized to forecast the car sales of 2020 three more times, each time with one of the three remaining datasets (i.e. dataset 1, dataset 2 and dataset 3) as input. Note that the algorithms are trained to forecast the car sales one month ahead.

Due to time limitations and limitations in computational power, the models are not trained on each of the 146 car models but are fit on each of the twelve cluster centroids. Next, for each car model, the car sales of 2020 are predicted by using the model trained on the cluster centroid that represents the cluster to which the car model belongs. To summarize, five different models will be used to forecast the car sales of the Netherlands of 2020 (see table 7).

| Forecasting algorithm | Dataset   |
|-----------------------|-----------|
| ARIMA                 | Dataset 4 |
| LSTM                  | Dataset 4 |
| ARIMA or LSTM         | Dataset 1 |
| ARIMA or LSTM         | Dataset 2 |
| ARIMA or LSTM         | Dataset 3 |

| Table 7. Overview mode | els to | forecast |
|------------------------|--------|----------|
|------------------------|--------|----------|

In what follows, subsection 5.2.1 covers the concepts of the *ARIMA* forecasting algorithm and the *LSTM* forecasting algorithm. Subsection 5.2.2 is devoted to the steps needed to prepare dataset 2, 3 and 4 of each car model to make forecasts. In subsection 5.2.3 and 5.2.4, the methodology applied to implement the *ARIMA* model and *the LSTM* model is explained respectively.

#### 5.2.1 Forecasting algorithms

In this subsection, two regression models are discussed. The first model, *ARIMA* (Box & Jenkins, 1970), represents a classical forecasting model. The second algorithm is denoted as *LSTM* (Hochreiter & Schmidhuber, 1997), which has been utilized in a wide range of domains such as speech recognition, natural language processing and time series (Cao, Li, & Li, 2019; Graves, Mohamed, & Hinton, 2013).

#### 5.2.1.1 ARIMA

*ARIMA* (Box & Jenkins, 1970) models are one of the most popular and most used models to forecast time series (Siami-Namini & Namin, 2018). These types of models are *AR* models, meaning that the forecasts of a variable are based on the past values of that variable. In addition, financial and economic time series are typically not stationary (i.e. their statistical properties are not constant over time) (Ogasawara et al., 2010). To make time series stationary, the sequential observations are subtracted from each other, which is called differencing (Hyndman & Athanasopoulos, 2018). On top of that, an *ARIMA* model also takes past error terms of the model into account by including a Moving Average (*MA*) model.

A commonly used notation is ARIMA(p,d,q), where p stands for the number of lags considered by the AR part of the model, d implies the order of differencing and q represents the order of the MA part (Helmini, Jihan, Jayasinghe, & Perera, 2019; Siami-Namini & Namin, 2018). This model assumes that the time series data is non-seasonal. To handle seasonal time series data, a seasonal ARIMA(p,d,q)x(P,D,Q)S is preferred. The lowercase parameters p, d and q have the same meaning as the parameters of the non-seasonal ARIMA model and are therefore called non-seasonal parameters. The seasonal parameters P, D and Q are equivalent to their non-seasonal counterparts, except for the lags being used. More precisely, the lags for the seasonal parameters are multiples of the seasonality length or period S (Siami-Namini & Namin, 2018).

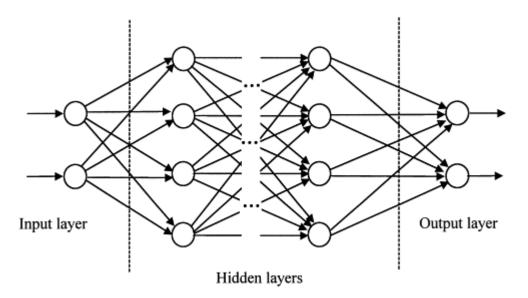
Despite its popularity, *ARIMA* has difficulties to capture non-linear relationships between variables as the algorithm is based on linear regression (Siami-Namini & Namin, 2018).

#### 5.2.1.2 LSTM

*LSTM* was first proposed by Hochreiter and Schmidhuber (1997) and updated over the years by several authors (Bayer, Wierstra, Togelius, & Schmidhuber, 2009; Graves, 2013; Schmidhuber, Wierstra, Gagliolo, & Gomez, 2007). In order to clarify the concept of *LSTM*, artificial neural networks (*ANN*s) as well as recurrent neural networks (*RNN*s) are first explained respectively.

*ANNs* are based on the biological neural network situated in our brain (Kalogirou, 2000). This network consists of interconnected biological neurons that transmit information to and receive information from one another. Analogous to the biological neural network, *ANNs* consist of artificial neurons that are connected to each other. A typical *ANN*, i.e. a multilayer feed-forward neural network, is illustrated in figure 6. The neurons are visualized as nodes and the arrows serve as an information flow between the

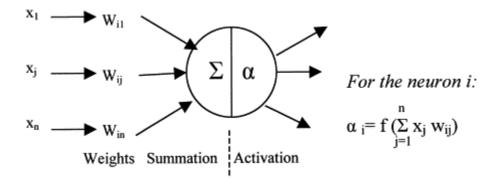
neurons. The network consists of three types of layers, namely the input layer, the hidden layer and the output layer, with each layer defined as a collection of neurons. The input features of an observation are fed into the neurons of the input layer, which in turn extract information that seems relevant and transfer these features to the neurons of the next layer (i.e. the first hidden layer). In other words, the output of neurons belonging to a particular layer acts as input of the neurons of the subsequent layer. All layers situated between the input layer and the output layer are called hidden layers. The neurons of the output layer represent the predictions of the neural network (Kalogirou, 2000).



#### Figure 6. Multilayer feed-forward neural network

*Note*. Reprinted from "Applications of artificial neural-networks for energy systems", by Kalogirou, S.A., 2000, *Applied Energy*, *67*, 21. Copyright 2000 by Elsevier Inc.

For each neuron, the importance of each input feature  $X_t$  is determined by the weights  $W_{ij}$  assigned to that feature (Kalogirou, 2000). In particular, as can be seen in figure 7, the following steps take place. First, each incoming feature  $X_j$  is multiplied by a weight  $W_{ij}$ , where features that are considered to be more important are assigned a higher weight. Next, the sum of these weighted values is computed. This weighted sum serves as input of an activation function, whose result determines the neuron's output (Kalogirou, 2000).



#### Figure 7. Artificial neuron

*Note*. Reprinted from "Applications of artificial neural-networks for energy systems", by Kalogirou, S.A., 2000, *Applied Energy*, *67*, 21. Copyright 2000 by Elsevier Inc.

The learning phase of ANNs starts by initializing the weights (Kelleher, 2019). Next, for each observation of the training set, the features are fed into the network and outputs are generated. These outputs are contrasted to the actual values or labels to determine the error of the model. Based on the error, the weights are updated to minimize a certain cost function. A popular algorithm to update the weights is backpropagation (Rumelhart, Hinton, & Williams, 1986). The backpropagation algorithm works as follows. First, the gradient of the cost function (i.e. the local steepest slope) is calculated. Next, the weights of the output layer are updated in the opposite direction of the gradient (LeCun et al., 2015). The magnitude of the weights' update depends on the learning rate (Murphy, 2012). After adjusting the weights of the output layer, the weights of the previous layer are adjusted by making use of the chain rule for derivatives. This process is iterated for the previous layers of the neural network, all the way back to the input layer (LeCun et al., 2015). Once all weights of all layers are updated, the features are inserted again into the model and a new error is calculated based on the generated outputs for each observation. This whole learning process is repeated until a certain condition, such as reaching a minimum in the cost function, is met (Kelleher, 2019). The moment the weights are updated can vary (Wilson & Martinez, 2003). During batch training, the weight changes take place after the model has seen the whole training set (i.e. after one epoch). In stochastic gradient descent, the weights are adapted after each training example (i.e. after one instance). Alternatively, the weights are adapted after a set of instances. This process is called minibatch training (Wilson & Martinez, 2003). When the neural network model is trained, the final weights are used to test the model's performance on unseen data (Kalogirou, 2000). This very popular learning algorithm for ANNs is called gradient descent (Nielsen, 2015).

*RNNs* are neural networks specialized in handling sequential data (Kelleher, 2019). An *RNN* processes the sequential data one by one, taking into account information from previous observations of the sequence. In other words, RNNs are capable of memorizing information of previously seen datapoints. This is realized by using the output of the previous observation along with the features of the current observation, as

input of the current observation (Kelleher, 2019). However, in general, *RNNs* struggle to remember long sequences of data (Siami-Namini & Namin, 2018) due to the problem of vanishing gradients (Bengio, Simard, & Frasconi, 1994). This problem states that the deeper the neural network, the closer the gradients of the loss function approximate zero. Consequently, training the network becomes less straightforward. The problem of vanishing gradients can be explained by activation functions, such as the sigmoid function, that transform the input space into a value between zero and one, making its derivative small as well (Wang, 2019).

Due to this problem, Hochreiter and Schmidhuber (1997) proposed LSTM as a solution. An LSTM is a special type of RNN that outperforms other RNN models in terms of dealing with long range dependencies (Graves, 2013). Instead of sequentially remembering all information of previous observations, an LSTM is able to select which data from the past to convey and which to forget (Siami-Namini & Namin, 2018). This is accomplished by means of three types of gates, namely the forget gate, the memory gate and the output gate. The forget gate decides which information of the cell state (i.e. representation of all the remembered information of past observations and the current input) will be thrown away. This gate makes use of a sigmoid function that outputs values between zero and one, with zero meaning that the forget gate will fully forget the cell state and one causing the gate to remember the whole state of the cell. The second gate, the memory gate, decides which new information will be stored in the cell state. Finally, the output gate determines which part of the cell state will serve as output (Siami-Namini & Namin, 2018). The output of the LSTM model is also called the hidden state (Phi, 2018). In terms of predicting time series, LSTM is robust against outliers and change points (Guo et al., 2016). On top of that, in contrast to ARIMA, deep learning models such as LSTM models are able to capture non-linear patterns as well as other complex relationships in the data (Siami-Namini & Namin, 2018). In general, LSTM seems an appropriate algorithm for the prediction of time series (Cao et al., 2019).

#### 5.2.2 Data preparation

#### 5.2.2.1 Missing values

The Instagram dataset as well as the car sales dataset contain missing values for some car models. In case of the car sales dataset, a missing value indicates that zero new vehicles of that car model are sold during that month. Consequently, these missing values are imputed by zero. Similarly, the missing values of the Instagram dataset are imputed by zero as well, since this implies that there are no posts placed during that month for a certain hashtag.

#### 5.2.2.2 Multicollinearity

An important assumption of regression is the absence of multicollinearity (Daoud, 2017). Multicollinearity indicates a linear relation between at least two independent variables (Alin, 2010). Violating this

assumption results in an unreliable regression model (Daoud, 2017). In order to identify multicollinearity, multiple techniques can be applied. First of all, the pairwise correlation between predictors may give an indication of multicollinearity (Alin, 2010; Daoud, 2017). A large correlation between predictors implies multicollinearity. However, multicollinearity does not always mean a high correlation, since multicollinearity can also exist in case of a low correlation (Alin, 2010). On top of that, a common threshold to indicate whether a correlation is considered as small or high does not exist (Daoud, 2017). Because of these drawbacks, a more popular approach, i.e. variance inflation factor (*VIF*), is utilized. The *VIF* of a predictor *i* is formulated as follows (Alin, 2010; Daoud, 2017):

$$VIF_i = \frac{1}{1 - R_i^2}$$
 for  $i = 1, 2, ..., k$ 

Where  $R_i^2$  stands for the coefficient of multiple determination of predictor *i* on the other *k*-1 predictors and *k* represents the number of predictors.

A *VIF* of a predictor is considered large if it is above ten (Alin, 2010). Moreover, the average *VIF* also indicates whether multicollinearity is present or not. If the average *VIF* is above one, there is a high probability of multicollinearity (Alin, 2010).

In this master thesis, I decided to analyze whether multicollinearity is present in the Instagram features by looking at the correlation as well as the *VIF* of the twelve cluster centroids.

The *VIF* of the twelve car models can be consulted in appendix 6. Based on the average *VIF*, I observed that for each cluster centroid, a high probability of multicollinearity is present between the Instagram-related variables.

Based on the correlation matrices of all twelve cluster centroids in appendix 7, I concluded that for ten centroids all Instagram-related variables, with an exception of polarity, are highly correlated to one another (i.e. a correlation of one or close to one). In case of the cluster centroid 'Land Rover Range Rover', there is a high correlation between the variable 'nr\_comments' and the variable 'polarity' and a rather low correlation between the variable 'nr\_comments' and the other variables. In case of the remaining cluster centroid 'Land Rover Range Rover Evoque', the variable 'polarity' is highly correlated with the other Instagram-related variables. Nonetheless, the correlation between all variables, except for 'polarity', is still higher.

As in most cases all variables, except for polarity, are highly correlated, I decided to retain the variable polarity. On top of that, as proposed by Daoud (2017), multicollinearity is resolved by only keeping one of the highly correlated variables. Consequently, the variable 'nr\_comments' is retained as this solves the

problem of multicollinearity as well as the problem of ex-ante forecasting mentioned in subsection 4.2.1.1.

## 5.2.2.3 Prediction of the external regressors

The observations from January 2019 to December 2019 are utilized to train the *ARIMA* model and the *LSTM* model. However, in order to predict the monthly car sales of 2020 by means of dataset 2, dataset 3, and dataset 4 (see table 6), the observations of the external regressors (i.e. the Google Trends data and the data extracted from the Instagram hashtags) of 2020 are also needed as input. As the purpose of this master thesis is to solely use data of 2019, the external regressors for the desired months of 2020 need to be predicted. More precisely, for each external regressor, the observations of the months January, February, March, April, May, June and July of 2020 are forecasted by an *ARIMA* model, using the observations from 2019 of the relevant external regressor as input.

An overview of this dataset with the three types of data is represented in table 8. The first twelve observations of table 8, i.e. from t=1 until t =12, serve as training set. The test set is represented by the seven last rows of table 8, i.e. from t=13 until t=19.

| Date              | car sales t            | Google Trends t            | Instagram features t     |
|-------------------|------------------------|----------------------------|--------------------------|
| 31/01/2019 (t=1)  | car sales 1            | Google Trends 1            | IG features 1            |
| 28/02/2019 (t=2)  | car sales 2            | Google Trends 2            | IG features 2            |
| 31/03/2019 (t=3)  | car sales 3            | Google Trends 3            | IG features 3            |
| 30/04/2019 (t=4)  | car sales 4            | Google Trends 4            | IG features 4            |
| 31/05/2019 (t=5)  | car sales 5            | Google Trends 5            | IG features 5            |
| 30/06/2019 (t=6)  | car sales 6            | Google Trends 6            | IG features 6            |
| 31/07/2019 (t=7)  | car sales 7            | Google Trends 7            | IG features 7            |
| 31/08/2019 (t=8)  | car sales 8            | Google Trends 8            | IG features 8            |
| 30/09/2019 (t=9)  | car sales 9            | Google Trends 9            | IG features 9            |
| 31/10/2019 (t=10) | car sales 10           | Google Trends 10           | IG features 10           |
| 30/11/2019 (t=11) | car sales 11           | Google Trends 11           | IG features 11           |
| 31/12/2019 (t=12) | car sales 12           | Google Trends 12           | IG features 12           |
| 31/01/2020 (t=13) | Predicted car sales 13 | Predicted Google Trends 13 | Predicted IG features 13 |

Table 8. Dataset with the three types of data

| 29/02/2020 (t=14) | Predicted car sales 14 | Predicted Google Trends 14 | Predicted IG features 14 |
|-------------------|------------------------|----------------------------|--------------------------|
| 31/03/2020 (t=15) | Predicted car sales 15 | Predicted Google Trends 15 | Predicted IG features 15 |
| 30/04/2020 (t=16) | Predicted car sales 16 | Predicted Google Trends 16 | Predicted IG features 16 |
| 31/05/2020 (t=17) | Predicted car sales 17 | Predicted Google Trends 17 | Predicted IG features 17 |
| 30/06/2020 (t=18) | Predicted car sales 18 | Predicted Google Trends 18 | Predicted IG features 18 |
| 31/07/2020 (t=19) | Predicted car sales 19 | Predicted Google Trends 19 | Predicted IG features 19 |

#### 5.2.2.4 Scaling variables

It is advised to put the values of the different input variables at the same scale when training *LSTM* models, especially when the magnitude of the variables significantly differ from one another (Helmini et al., 2019). On top of that, transforming the input variables at the same scale forces the forecasting algorithms to treat each input variable with equal importance (Bollen et al., 2011). Consequently, the same scaled input features that serve as input for the *LSTM* model are also utilized as input for the *ARIMA* model.

The features used in this work differ in scale, since the valence ranges between minus one and plus one while the monthly number of comments on the post of a hashtag can take values ranging from zero to values having an order of a magnitude of five. Hence, the values of the input features are scaled between zero and one by applying the following function on each input feature:

$$y_t = \frac{(x_t - min)}{(max - min)}$$

where  $y_t$  represents the rescaled value of an input feature at time t,  $x_t$  represents the original value of an input feature at time t, and min and max represent the lower bound and the upper bound of the input variable respectively.

On the one hand, the bounds of the search trends index and the polarity are fixed in time, i.e. the search trends index ranges between zero and 100 whereas polarity can take values between minus one and plus one (see chapter 4). On the other hand, the remaining input features only have a lower bound of zero that is known a priori. For these features, the upper bound is set equal to its maximum value present in the training set.

The scaling is realized by making use of the scikit-learn object MinMaxScaler ("sklearn.preprocessing.MinMaxScaler", 2018).

## 5.2.3 Implementation LSTM

In practice, the *LSTM* algorithm was employed by making use of the Keras (Chollet et al., 2015) library with TensorFlow (Abadi et al., 2016) as backend engine. In this section, the architecture of the *LSTM* model that is used to predict car sales will be discussed first (see subsection 5.2.3.1). Next, the *LSTM* model is optimized by tuning its hyperparameters (see subsection 5.2.3.2).

## 5.2.3.1 LSTM network architecture

The *LSTM* model utilized in this master thesis is a Vanilla *LSTM* (Brownlee, 2018). This consists of an input layer, an *LSTM* layer and an output layer which outputs the predicted number of cars sold in a certain month (Brownlee, 2018).

## 5.2.3.2 Hyperparameter tuning

To optimize the *LSTM* model, its hyperparameters need to be tuned. This can be done manually, but analogous to the work of Helmini et al. (2019), I decided to automate the finetuning of the model since an *LSTM* model has a lot of hyperparameters to be tuned. More specifically, the automation of the hyperparameter tuning is performed by means of a grid search algorithm. The validation of this algorithm is implemented by a time series cross-validation with ten splits (see section 5.4). The optimal values of the hyperparameters are determined by minimizing the mean squared error (*MSE*) on the validation set. After the optimal values are found, the model is trained on the full training set using these optimal values. The tuned hyperparameters along with its search space can be found in in table 9. In the next subsections (see subsection 5.2.3.2.1 – subsection 5.2.3.2.5), some important hyperparameters of *LSTM* are discussed.

## Table 9. Hyperparameters and search space LSTM

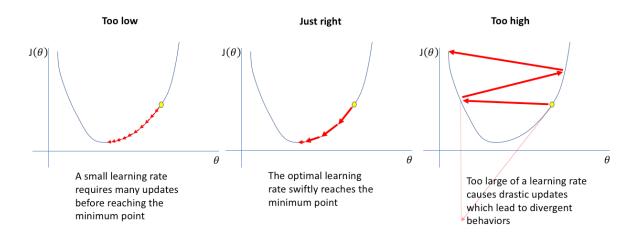
| Hyperparameter              | Search space                             |  |
|-----------------------------|------------------------------------------|--|
| Hyperparameter              | Search space                             |  |
| Number of epochs            | {5}                                      |  |
| Learning rate               | $\{0.0001, 0.001, 0.01, 0.1, 0.2, 0.3\}$ |  |
| Batch size                  | {1,2,3,4,5,6,7,8,9,10,11,12}             |  |
| <i>LSTM</i> size            | {8,16,32,64,128}                         |  |
| activation function of LSTM | {ReLU}                                   |  |
| Optimization algorithm      | {adam}                                   |  |

The optimal values of the hyperparameters for each cluster centroid using dataset 1, 2, 3 and 4 can be found in appendix 8 to appendix 11 respectively.

## 5.2.3.2.1 Learning rate

As already mentioned in subsection 5.2.1.2, the learning rate determines the extent in which the weights of the loss function are updated (Murphy, 2012). The size of the learning rate has an influence on the convergence towards the minimum of the loss function. Suppose the learning rate is a constant. If the

learning rate is too small, a slow learning process takes place. If the learning rate is too high, the learning algorithm will take too large steps, which causes the algorithm to 'jump' over the minimum of the loss function. Consequently, the algorithm will never converge towards the minimum (Murphy, 2012). The effect of the learning rate on the convergence towards the minimum is depicted by figure 8. The horizontal axis represents the value of weight  $\theta$  whereas J( $\theta$ ) stands for the loss function.



#### Figure 8. Learning rate

*Note*. Adapted from "Setting the learning rate of your neural network.", by Jordan, J., (2018, March 1). Retrieved from https://www.jeremyjordan.me/nn-learning-rate/

## 5.2.3.2.2 Number of epochs and batch size

As already mentioned in subsection 5.2.1.2, an epoch represents the event where the model went through all training examples of the training set (Wilson & Martinez, 2003). The batch size indicates the amount of training examples the model needs to see before the weights of the loss function are updated (Wilson & Martinez, 2003).

## 5.2.3.2.3 *LSTM* size

The *LSTM* size of an *LSTM* layer equals the amount of *LSTM* cells the layer exists of. It is the number of hidden states an *LSTM* layer contains. In other words, this determines how many features the *LSTM* layer can remember (Phi, 2018).

#### 5.2.3.2.4 Activation function

Currently, the most popular activation function is the rectangular linear unit (*ReLu*) function (Bingham, Macke, & Miikulainen, 2020). Other well-known activation functions such as the sigmoid function and the hyperbolic tangent (*tanh*) function cannot be utilized in deep neural networks due to the problem of vanishing gradients (see subsection 5.2.1.2). *ReLu* bypasses this problem because its derivative is either zero or one. Consequently, the model learns quicker and gives more accurate results (Brownlee, 2019). For this master dissertation, the *ReLu* activation function is applied because of its advantages.

## 5.2.3.2.5 Optimization algorithm

The method used in this thesis to optimize the model is Adam optimizer (Kingma & Ba, 2014). It combines the advantages of two well-known optimizers: AdaGrad (Duchi, Hazan, & Singer, 2011) and RMSProp (Tieleman & Hinton, 2012). The algorithm is computationally efficient and can handle problems that have a large number of parameters. On top of that, Adam seems to better converge compared to other optimizers such as RMSProp and the previously described stochastic gradient descent (see subsection 5.2.1.2) (Kingma & Ba, 2014).

## 5.2.4 Implementation ARIMA

To implement the *ARIMA* model, the auto.arima function from the R-package forecast (Hyndman & Khandakar, 2007) is utilized. The hyperparameter tuning of the *ARIMA* model is discussed in subsection 5.2.4.1.

## 5.2.4.1 Hyperparameter tuning

As already mentioned in subsection 5.2.1.1, *p* represents the number of lags considered by the *AR* part of the model, *d* stands for the order of differencing and *q* serves as the order of the *MA* part (Helmini et al., 2019; Siami-Namini & Namin, 2018). Based on the assumption that the data on which the *ARIMA* algorithm is trained contains seasonality (see subsection 5.1.1), the seasonal *ARIMA* algorithm is applied. Hence, the seasonal parameters *P*, *D*, *Q* and *S* are also activated. The minimum seasonality length *S* for seasonal data equals one, whereas the maximum seasonality length *S* in this case is twelve as the algorithm is trained on a dataset with twelve observations. Table 10 gives an overview of the tuned hyperparameters along with their search space.

| Hyperparameter | Search space                 |  |
|----------------|------------------------------|--|
| p              | {0,1,2,3,4,5}                |  |
| d              | {0,1,2,3,4,5}                |  |
| q              | {0,1,2,3,4,5}                |  |
| Р              | {0,1,2,3,4,5}                |  |
| D              | {0,1,2,3,4,5}                |  |
| Q              | {0,1,2,3,4,5}                |  |
| S              | {1,2,3,4,5,6,7,8,9,10,11,12} |  |

| Table 10. Hyperparameters and | search space ARIMA |
|-------------------------------|--------------------|
|-------------------------------|--------------------|

The optimal values of the hyperparameters of each cluster centroid can be found in appendix 12.

## 5.3 Performance evaluation

To evaluate the different models and algorithms, the following performance measures are utilized, namely *RMSE* and *MAE*.

#### 5.3.1 RMSE

The most commonly used performance measure to forecast car sales is the Mean Absolute Percentage Error (*MAPE*) (Choi & Varian, 2009; Geva et al., 2013, 2015; Nymand-Andersen & Pantelidis, 2018; Pai & Liu, 2018; Tomczyk & Doligalski, 2015). However, if time series contain zero values, *MAPE* becomes infinite (Kreinovich, Nguyen, & Ouncharoen, 2014; Venkatesh et al., 2014). For this reason, the second most popular performance measure to forecast car sales is utilized in this dissertation, namely *RMSE*, which is defined as follows (Ahn & Spangler, 2014; Benthaus & Skodda, 2015; Nymand-Andersen & Pantelidis, 2018; Seebach et al., 2011):

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y_t})^2}$$

where  $y_t$  stands for the actual value at time t,  $\hat{y}_t$  stands for the forecasted value at time t and n represents the number of samples.

*RMSE* measures the difference between the actual and the predicted values. The outcomes range from zero to infinite. An advantage of the measure is that it is represented in the same unit as the forecasts (Siami-Namini & Namin, 2018).

### 5.3.2 MAE

Another frequently used evaluation metric to forecast car sales is *MAE* (Benthaus & Skodda, 2015; Choi & Varian, 2009; Nymand-Andersen & Pantelidis, 2018; Seebach et al., 2011). *MAE* is calculated as below:

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |y_t - \hat{y_t}|^2$$

where  $y_t$  and  $\hat{y}_t$  serve as the actual observation and the predicted observation at time *t* respectively and *n* represents the number of samples.

Similar to *RMSE*, *MAE* is a metric used to measure the difference between the true and the forecasted observations. Consequently, *MAE* can take values between zero and infinity as well. The major difference between *RMSE* and *MAE* is that the former is more sensitive to outliers (Benthaus & Skodda, 2015).

#### 5.4 Cross-validation

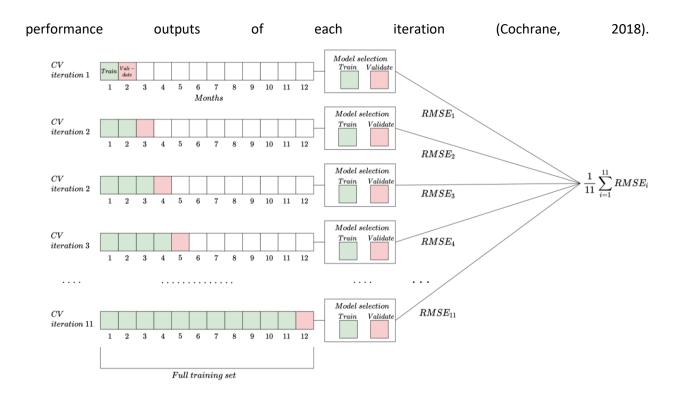
The goal of regression is to fit a model that performs well on unseen data, or in other words, a model that generalizes well (Bergmeir & Benítez, 2012). This performance is validated on a validation set, which is usually excluded from the data on which the model is trained to ensure that the data of the validation set is unseen. Consequently, not all available training data is utilized to fit the model. This can be problematic,

especially when dealing with a small dataset. On top of that, only one performance output is generated, which makes the output sensitive to biases based on the chosen train/validate split. To overcome these problems, k-fold cross-validation can be applied. This algorithm randomly splits the training set into k parts or folds. Next, the model is trained on k-1 folds and validated on the remaining fold. This process is repeated k-1 times, at which each time another fold serves as validation set and the remaining k-1 folds as training set. In other words, each fold acts only once as validation set and k-1 times as training set. Hence, the full training set is utilized to train and validate. In addition, k validation scores are obtained. The final performance output is determined by averaging these k validation scores, resulting in a more robust measure (Bergmeir & Benítez, 2012).

However, cross-validation comes with some complications when making use of time series data. First of all, cross-validation requires the data to be independent and identically distributed (*i.i.d.*) (Bergmeir & Benítez, 2012). This is often not the case for time series (Bergmeir & Benítez, 2012; Ogasawara et al., 2010). As already mentioned in section 5.2.1, most financial and economic time series are not stationary, implying that the condition of being identically distributed is violated in this case (Ogasawara et al., 2010). On top of that, sequential data is often correlated in time (e.g. autoregression), indicating that data from subsequent time steps are not independent (Bergmeir & Benítez, 2012). Second, time series data cannot be shuffled, otherwise data leakage may occur (Cochrane, 2018). In other words, the time series data must retain its chronological order, meaning that the training set has to contain observations that occurred before the observations contained by the validation set (Cochrane, 2018).

To reap the benefits of cross-validation without violating its fundamental assumptions (i.e. *i.i.d.*), forwardchaining (Cochrane, 2018), also called rolling-origin evaluation (Tashman, 2000) or rolling-originrecalibration (Bergmeir & Benítez, 2012), is applied in this master thesis. This method works as follows.

By utilizing the forward-chaining method on a training set consisting of twelve observations (i.e. twelve months of the year 2019) with a forecasting horizon of one month, eleven iterations take place (see figure 9). In the first iteration (denoted in figure 9 as 'CV iteration 1'), the first month serves as training set and the second month as validation set (Cochrane, 2018). Once the model has been trained and validated, the next iteration takes place. For this iteration, the validation set and the training set of the previous iteration now serves as training set, while the observation subsequent to the most recent training observation now acts as validation set. This step is repeated until there are no months left that can serve as validation set (in my case after eleven iterations). Finally, the output measure is gained by averaging the eleven



## Figure 9. Forward-chaining with fixed horizon of one month

*Note*. Adapted from "Time Series Nested Cross-Validation", by Cochrane, C., (2018, May 19). Retrieved from https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9

In practice, the time series cross-validation in case of the *LSTM* algorithm is implemented by making use of the scikit-learn object TimeSeriesSplit ("sklearn.model\_selection.TimeSeriesSplit", 2020). In case of the *ARIMA* algorithm, the forecasting function tsCV from the R-package forecast (Hyndman, 2020) is applied.

## 5.5 Statistical testing

To verify whether a significant difference between the performance of the *ARIMA* algorithm and the *LSTM* algorithm is present, the pairwise statistical test, i.e. Wilcoxon signed-rank test, is applied (Wilcoxon, 1946). The Wilcoxon signed-rank test is a non-parametric counterpart of the parametric paired Student's t-test (Trawiński, Smętek, Telec, & Lasota, 2012; Wilcoxon, 1946).

Based on previous research, an *LSTM* regressor seems to outperform an *ARIMA* regressor in terms of predicting time-series (Siami-Namini & Namin, 2018; Weytjens, Lohmann, & Kleinsteuber, 2019). Consequently, I believe that in case of this master thesis, the *LSTM* model also performed better than the *ARIMA* model. Hence, a one-tailed Wilcoxon signed-rank test with the following null hypothesis  $H_0$  and alternative hypothesis  $H_1$  is tested (Trawiński et al., 2012; Wilcoxon, 1946):

 $H_0$ : The performance of the ARIMA algorithm is significantly better than the performance of the LSTM algorithm

*H*<sub>1</sub>: The performance of the ARIMA algorithm is significantly worse than the performance of the LSTM algorithm

As I utilized two performance measures, namely *MAE* and *RMSE*, the Wilcoxon signed-rank test is applied on both performance metrics.

Once the best regressor for the dataset consisting of car sales, Google Trends and Instagram data is known, the car sales of 2020 are also forecasted by this regressor for the remaining three datasets (i.e. one model based on car sales, one model based on car sales and Google Trends data, and one model based on car sales and Instagram data). To detect significant differences between the four different models (i.e. one model based on car sales, one model based on car sales and Google Trends data, one model based on car sales and Instagram data, and one model based on car sales and Instagram data, and one model based on car sales, Google Trends data, one model based on car sales and Instagram data, and one model based on car sales, Google Trends and Instagram data), the non-parametric equivalent of the repeated measures ANOVA test, i.e. the Friedman test (Friedman, 1940), is applied. The following null hypothesis *H*<sup>0</sup> is tested:

## $H_0$ : There is no significant difference in the performance of the four models

The alternative hypothesis  $H_1$  states as follows:

## *H*<sub>1</sub>: There is a significant difference in the performance between at least two of the four models

This test is conducted once using *MAE* as performance measure and once utilizing *RMSE* as performance metric. If the performance of at least two out of four models significantly differ, the null hypothesis is rejected. To determine which pairs of models significantly differ with regard to their performance, the Bonferroni-Dunn post-hoc test is applied (Dunn, 1961).

## 6 Results

In chapter 6, the results of the research conducted for this master dissertation are examined. In particular, section 6.1 discusses the formed clusters in more detail and evaluates whether the utilized clustering algorithm captured similar seasonality patterns in the same cluster. Next, section 6.2 assesses the performance of the *ARIMA* algorithm and the *LSTM* algorithm in terms of *RMSE* and *MAE*. More specifically, a comparison between the actual car sales and the forecasted car sales is made (see subsection 6.2.1), followed by the explanation of the outcomes of the applied statistical tests (see subsection 6.2.2). Lastly, all obtained results are discussed in section 6.3.

## 6.1 Clustering

The cluster distribution of the car models is given in appendix 5. The first car model of each cluster represents the cluster's centroid. The cluster centroids of clusters one to twelve are 'Land Rover Range Rover', 'Nissan Micra', 'Seat Leon', 'Peugeot 208', 'BMW X1', 'Mazda MX-5', 'Toyota RAV4', 'Land Rover Range Rover Evoque', 'Renault Captur', 'Volvo XC60', 'Toyota Auris' and 'Subaru Forester' respectively. The first cluster contains 47 car models, the second cluster consists of 30 car models, the third cluster has seventeen car models, cluster four comprises fourteen car models, twelve car models belong to cluster five, cluster six includes seven car models, cluster seven and eight both incorporate five car models, cluster nine exists of three car models, and clusters ten, eleven and twelve each contain two car models.

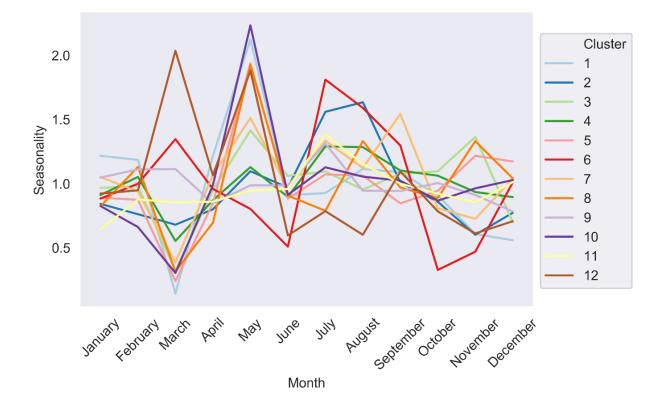


Figure 10. Monthly seasonality values of the cluster centroids

To verify whether there is a certain logic behind the distribution of the car models across the formed clusters, a plot of the monthly seasonality values of the twelve cluster centroids is illustrated in figure 10. As already mentioned in subsection 5.1.1, for each cluster centroid, the seasonality of a certain month is the average seasonality of the car sales in that month starting from 01-01-2016 to 31-12-2019. During the months January to June, all cluster centroids (with an exception of cluster six, cluster nine and cluster twelve) seem to follow a similar pattern in terms of seasonality. However, starting from the month July, all cluster centroids seem to show a different seasonality pattern.

On top of that, for each cluster, I took a closer look at the seasonality of all car models belonging to that cluster. As a result, I was able to observe that the seasonality of the car models within the same cluster are similar. Figures 11 to 22 represent the monthly seasonality of the cars belonging to cluster one to twelve respectively. The x-axis shows each month starting from 01-2016 to 12-2019. The labels on the x-axis are integers ranging from one to 48, with number one representing the first month of 2016 and number 48 the final month of 2019. The y-axis displays the monthly seasonality of all car models belonging to that cluster.

Based on these insights I can derive that the car sales of the cluster centroids appear to have a different seasonality pattern.

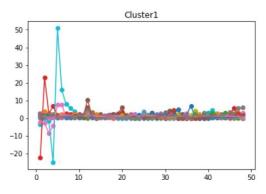


Figure 11. Seasonality of cluster 1

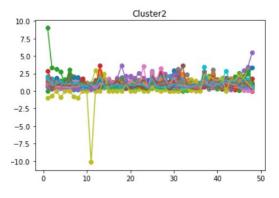


Figure 12. Seasonality of cluster 2

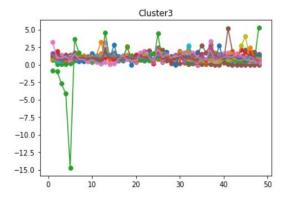


Figure 13. Seasonality of cluster 3

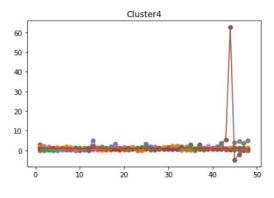


Figure 14. Seasonality of cluster 4

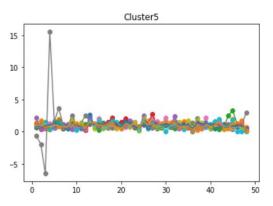


Figure 15. Seasonality of cluster 5

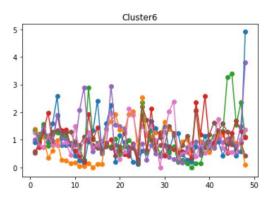


Figure 16. Seasonality of cluster 6

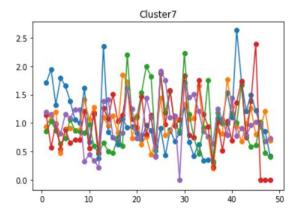


Figure 17. Seasonality of cluster 7

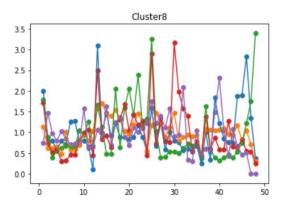


Figure 18. Seasonality of cluster 8

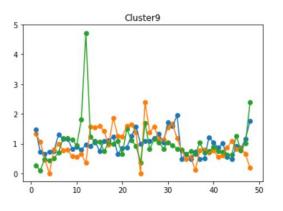


Figure 19. Seasonality of cluster 9

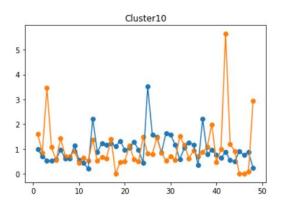


Figure 20. Seasonality of cluster 10

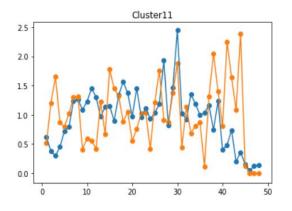


Figure 21. Seasonality of cluster 11

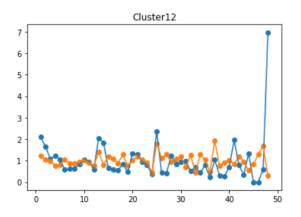


Figure 22. Seasonality of cluster 12

## 6.2 Forecasting algorithms

### 6.2.1 Predictions

The outcomes of the performance of the *ARIMA* model based on dataset 4 in terms of *MAE* and *RMSE* is shown in appendix 13. In addition, the performance output in terms of *MAE* and *RMSE* of the four *LSTM* models, i.e. one model with dataset 4 as input, one model that used dataset 1 as input, one regressor that utilized dataset 2 as input and one model that made use of dataset 3 as input, can be consulted at appendix 14, 15, 16 and 17 respectively. Subsection 6.2.2 explains the reason behind the implementation of the *LSTM* algorithm based on dataset 1, dataset 2 and dataset 3 instead of the implementation of the *ARIMA* algorithm based on these datasets.

Figures 23 to 70 depict the actual car sales (represented by a full blue line) and the predicted car sales (represented by a dotted orange line) of the twelve cluster centroids in the year 2020, which were forecasted by an *LSTM* model that either used dataset 1, dataset 2, dataset 3 or dataset 4 as input. Additionally, I noticed that some predictions of the sales of certain car models are negative, which should not possible. The previous is also reflected in the predictions of the sales of 'Toyota Yaris' by the *LSTM* model using dataset 2 (see figure 45), of 'Nissan Micra' by the model using dataset 3 (see figure 48) and of 'Mazda MX-5' by the *LSTM* model using dataset 4 (see figure 64).

The predicted car sales of the *LSTM* model based on dataset 1 (i.e. only car sales) are shown in figures 23 to 34. The graphs imply that the model did not grasp any trends nor seasonality of the car sales for all cluster centroids, with an exception of the car models 'Land Rover Range Rover' (see figure 23), 'Seat Leon' (see figure 25), 'BMW X1' (see figure 27), and 'Volvo XC60' (see figure 32). The slightly better performance of these four cluster centroids is also represented in their performance in terms of *MAE* and *RMSE* (see appendix 15), as these measures are rather low considering the number of actual sales in 2020.

Figures 35 to 46 represent the car sales of the twelve cluster centroids in 2020 that are predicted by the *LSTM* model using dataset 2 (i.e. car sales data and Google Trends data) as input. The interpretation of the forecasted sales is similar to the interpretation of the *LSTM* model based on dataset 1. More specifically, the *LSTM* model based on dataset 2 predicted approximately a constant in time for all cluster centroids except for 'Nissan Micra' (see figure 36), 'Seat Leon' (see figure 37), ' BMW X1' (see figure 39) and 'Volvo XC60' (see figure 44). This insight seems to be reflected in the performance of 'Seat Leon', 'BMW X1' and 'Volvo XC60' in terms of *MAE* and *RMSE* (see appendix 16). However, in case of 'Nissan Micra', this is not represented since the output of the *MAE* and *RMSE* are rather high taking into account the actual car sales.

The actual monthly car sales and the car sales for each cluster centroid in 2020 predicted by the *LSTM* model based on dataset 3 (i.e. car sales data and Instagram data) are visualized in figures 47 to 58. Most of the predictions appear to be approximately a constant, with an exception of 'BMW X1' (see figure 51), 'Land Rover Range Rover Evoque' (see figure 54) and 'Toyota Auris' (see figure 57). The predicted sales of 'BMW X1' and 'Land Rover Range Rover Evoque' seem to capture most of the increases and decreases of the actual car sales. The previous is also present in the performance in terms of *RMSE* and *MAE*, since both seem to perform approximately well related to the actual car sales (see appendix 17). Unfortunately, the predictions of the sales of 'Toyota Auris' are characterized by a number of decreases and increases while the actual car sales are close to zero, which is reflected in the rather low performance of the *LSTM* model in terms of *RSME* and *MAE*.

An overview of the car sales of 2020 predicted by the *LSTM* model that utilized dataset 4 (i.e. car sales, Google Trends data and Instagram data) as input and the actual car sales of the twelve cluster centroids is given by figures 59 to 70. The *LSTM* model seemed able to capture the trends or seasonality of the sales of the car models 'Nissan Micra' (see figure 60), 'BMW X1' (see figure 63), 'Toyota RAV4' (see figure 65) and 'Renault Captur' (see figure 67). Again, the predictions of the sales of 'Toyota Auris' (see figure 69) do not seem to reflect the actual car sales close to zero. Both of these insights also seem to be present in the performance in terms of *MAE* and *RMSE* of the *LSTM* model based on dataset 4 considering the actual car

sales (see appendix 14). The predictions of the car sales of the other cluster centroids are approximately a constant.

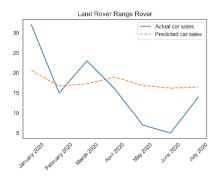


Figure 23. Predictions using dataset 1 for centroid 1

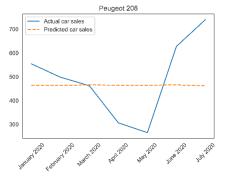


Figure 26. Predictions using dataset 1 for centroid 4

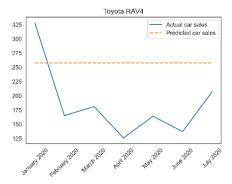


Figure 29. Predictions using dataset 1 for centroid 7

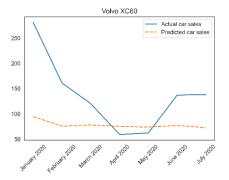


Figure 32. Predictions using dataset 1 for centroid 10

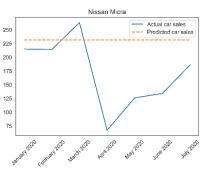


Figure 24. Predictions using dataset 1 for centroid 2

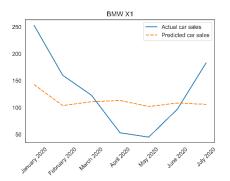


Figure 27. Predictions using dataset 1 for centroid 5

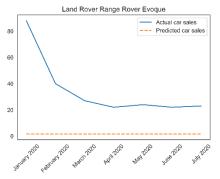


Figure 30. Predictions using dataset 1 for centroid 8

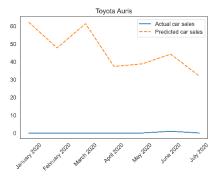


Figure 33. Predictions using dataset 1 for centroid 11

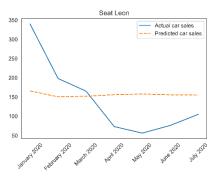


Figure 25. Predictions using dataset 1 for centroid 3

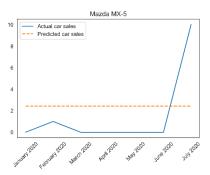


Figure 28. Predictions using dataset 1 for centroid 6

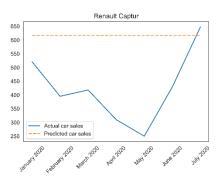


Figure 31. Predictions using dataset 1 for centroid 9

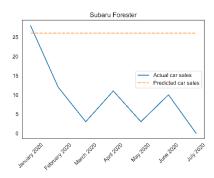


Figure 34. Predictions using dataset 1 for centroid 12

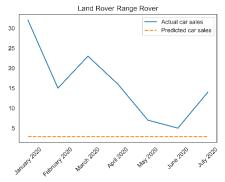


Figure 35. Predictions using dataset 2 for centroid 1

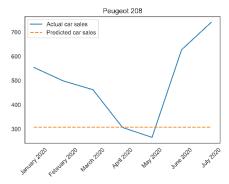


Figure 38. Predictions using dataset 2 for centroid 4

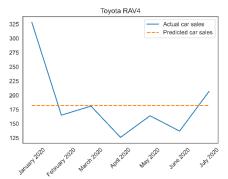


Figure 41. Predictions using dataset 2 for centroid 7

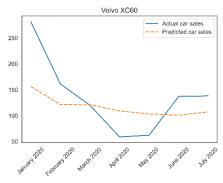


Figure 44. Predictions using dataset 2 for centroid 10

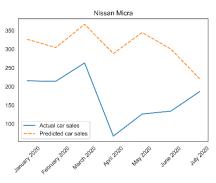


Figure 36. Predictions using dataset 2 for centroid 2

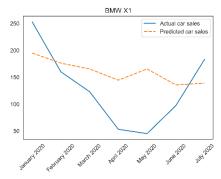


Figure 39. Predictions using dataset 2 for centroid 5

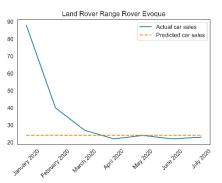


Figure 42. Predictions using dataset 2 for centroid 8

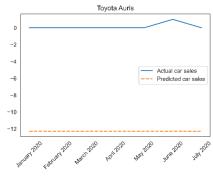


Figure 45. Predictions using dataset 2 for centroid 11

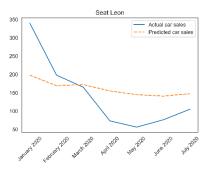


Figure 37. Predictions using dataset 2 for centroid 3

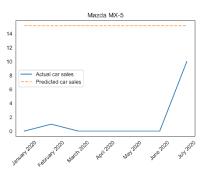


Figure 40. Predictions using dataset 2 for centroid 6

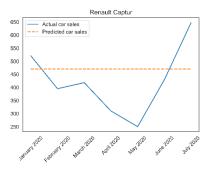


Figure 43. Predictions using dataset 2 for centroid 9

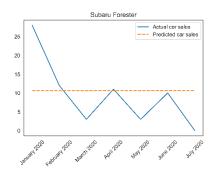


Figure 46. Predictions using dataset 2 for centroid 12

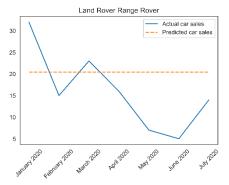


Figure 47. Predictions using dataset 3 for centroid 1

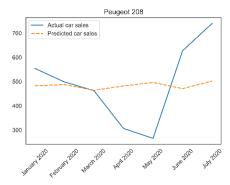


Figure 50. Predictions using dataset 3 for centroid 4

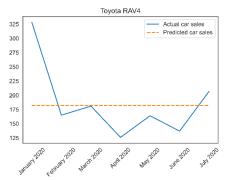


Figure 53. Predictions using dataset 3 for centroid 7

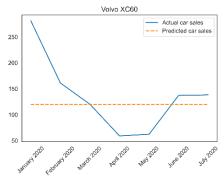


Figure 56. Predictions using dataset 3 for centroid 10

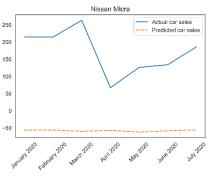


Figure 48. Predictions using dataset 3 for centroid 2

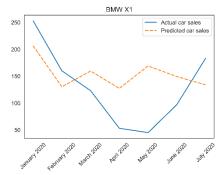


Figure 51. Predictions using dataset 3 for centroid 5

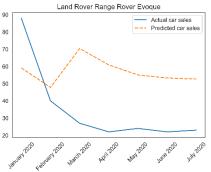
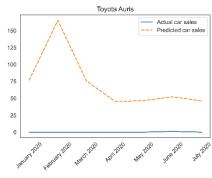


Figure 54. Predictions using dataset 3 for centroid 8



Predictions Figure 57. using dataset 3 for centroid 11

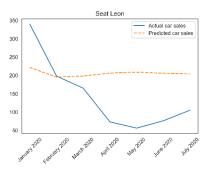


Figure 49. Predictions using dataset 3 for centroid 3

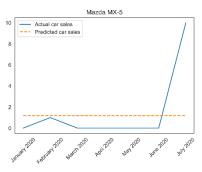


Figure 52. Predictions using dataset 3 for centroid 6

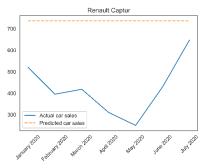


Figure 55. Predictions using dataset 3 for centroid 9

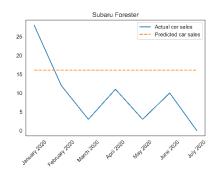


Figure 58. Predictions using dataset 3 for centroid 12

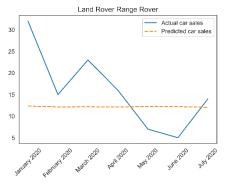


Figure 59. Predictions using dataset 4 for centroid 1

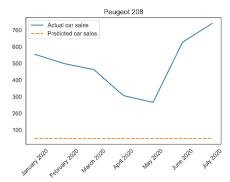


Figure 62. Predictions using dataset 4 for centroid 4

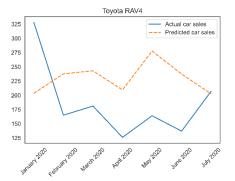


Figure 65. Predictions using dataset 4 for centroid 7

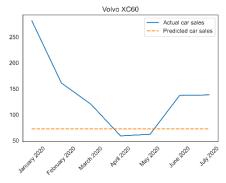


Figure 68. Predictions using dataset 4 for centroid 10

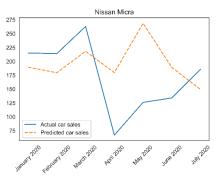


Figure 60. Predictions using dataset 4 for centroid 2

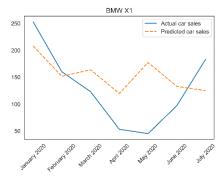


Figure 63. Predictions using dataset 4 for centroid 5

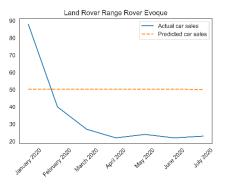


Figure 66. Predictions using dataset 4 for centroid 8

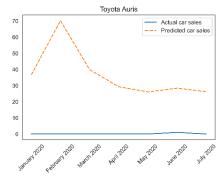


Figure 69. Predictions using dataset 4 for centroid 11

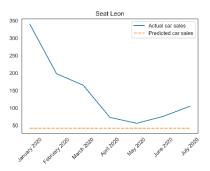


Figure 61. Predictions using dataset 4 for centroid 3

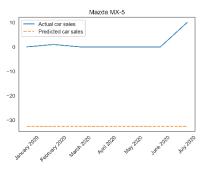


Figure 64. Predictions using dataset 4 for centroid 6

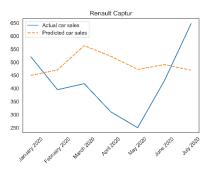


Figure 67. Predictions using dataset 4 for centroid 9

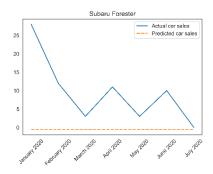


Figure 70. Predictions using dataset 4 for centroid 12

#### 6.2.2 Statistical testing

To statistically determine which of the two regressors (i.e. *ARIMA* and *LSTM*) performed best in terms of predicting the car sales of 2020 utilizing dataset 4 as input, two one-tailed Wilcoxon signed-rank tests were applied (Wilcoxon, 1946). The first test is used to determine the best regressor in terms of *RMSE*, while the second test is executed to find the best regressor in terms of *MAE*. The outcomes of the performance of the *ARIMA* model and the *LSTM* model utilizing dataset 4 as input can be consulted in appendix 13 and appendix 14 respectively.

The first test has a p-value of 0,0329. Consequently, it can be rejected that the performance of the *ARIMA* algorithm in terms of *RMSE* is significantly better than the performance of the *LSTM* algorithm at the five percent level of significance. The null hypothesis of the second test is also rejected at the five percent level of significance since the p-value equals 0,0150. As a result, it can be rejected that the performance of the *LSTM* algorithm in terms of *MAE* is significantly better than the performance of the *LSTM* algorithm in terms of *MAE* is significantly better than the performance of the *LSTM* algorithm at the five percent level of significance since the p-value equals 0,0150. As a result, it can be rejected that the performance of the *LSTM* algorithm in terms of *MAE* is significantly better than the performance of the *LSTM* algorithm at the five percent level of significance.

In summary, the *LSTM* algorithm statistically outperforms the *ARIMA* algorithm in predicting car sales based on the combination of car sales data, Google Trends data and Instagram data. As a consequence, the *LSTM* algorithm is implemented to predict the monthly car sales in the year 2020 based on solely the car sales (i.e. dataset 1), based on car sales and Google Trends data (i.e. dataset 2) and based on car sales and Instagram data (i.e. dataset 3). The performance outcomes of the *LSTM* model in terms of *RMSE* and *MAE* are represented in appendix 15, 16 and 17 respectively.

Next, the outcomes of the performance of the *LSTM* model based on dataset 1, dataset 2, dataset 3 and dataset 4 are statistically compared to each other. More specifically, as already mentioned in section 5.5, the Friedman test is utilized to statistically detect whether there are significant differences in the four *LSTM* models in terms of *MAE* and *RMSE* (Friedman, 1940). Based on the *MAE* output of the four models, the p-value of the Friedman test is equal to 1,1043\*10<sup>-10</sup>. This value implies that the null hypothesis 'there are no significant differences between the performance of any of the four models in terms of *MAE*' can be rejected at the five percent level of significance. When comparing the models' performance in terms of *RMSE*, the p-value equals 8,8785\*10<sup>-12</sup>. This indicates that the hypothesis 'there are no significance in terms of *RMSE*, the p-value equals 8,8785\*10<sup>-12</sup>. This indicates that the hypothesis 'there are no significant differences between the performance of any of the four models in terms of *RMSE*' can be rejected at the five percent level of significance. In order to determine which models significantly differ from one another, the Bonferroni-Dunn post-hoc test is applied (Dunn, 1961). Table 11 summarizes the p-values of this post-hoc test utilizing *MAE* as performance measure, whereas table 12 gives an overview of the p-values where *RMSE* serves as performance measure. Both tables indicate that the models using dataset 1, dataset 2 and dataset 3 as input do not significantly differ from one another at the five percent level of significance, in given and the serves and the five percent level of significantly differ from one another at the five percent level of significance.

whereas the model that utilized dataset 4 as input significantly differs from the other three models at the five percent level of significance, as its p-values are smaller than 0,05.

|           | Dataset 1              | Dataset 2              | Dataset 3              | Dataset 4              |
|-----------|------------------------|------------------------|------------------------|------------------------|
| Dataset 1 | 1,00                   | 1,00                   | 0.705                  | 0,657*10 <sup>-5</sup> |
| Dataset 2 | 1,00                   | 1,00                   | 0.194                  | 0,305*10 <sup>-6</sup> |
| Dataset 3 | 0,705                  | 0,194                  | 1,00                   | 0,563*10 <sup>-2</sup> |
| Dataset 4 | 0,657*10 <sup>-5</sup> | 0,305*10 <sup>-6</sup> | 0,563*10 <sup>-2</sup> | 1,00                   |

Table 11. p-values Bonferroni-Dun post-hoc test using MAE as performance measure

Table 12. p-values Bonferroni-Dun post-hoc test using RMSE as performance measure

|           | Dataset 1              | Dataset 2              | Dataset 3               | Dataset 4              |
|-----------|------------------------|------------------------|-------------------------|------------------------|
| Dataset 1 | 1,00                   | 1,00                   | 0.811                   | 0,672*10 <sup>-5</sup> |
| Dataset 2 | 1,00                   | 1,00                   | 0.351                   | 0,834*10 <sup>-6</sup> |
| Dataset 3 | 0,811                  | 0,351                  | 1,00                    | 0,443*10 <sup>-2</sup> |
| Dataset 4 | 0,672*10 <sup>-5</sup> | 0,834*10 <sup>-6</sup> | 0. 443*10 <sup>-2</sup> | 1,00                   |

Considering appendices 14, 15, 16 and 17, I determined the percentage of the predictions of the car sales for which the *LSTM* model that utilized dataset 4 as input outperforms the other *LSTM* models. It seems that, on average, in 38,58 percent of the cases the *LSTM* model trained on dataset 4 performs better than the other three *LSTM* models in terms of *MAE*. More specifically, in 36,30 percent; 35,61 percent and 43,84 percent of the cases, the *LSTM* model fit on dataset 4 performed better than the *LSTM* model fit on dataset 2 and the *LSTM* model trained on dataset 3 respectively. In terms of *RMSE*, the *LSTM* model trained on dataset 2 and the *LSTM* model fit on dataset 1, the *LSTM* model trained on dataset 4, the *LSTM* model trained on dataset 3 in 30,82 percent; 33,56 percent and 44,52 percent of the cases respectively. Hence, on average, the *LSTM* model fit on dataset 4 outperformed the other three LSTM models in 36,30 percent of the cases in terms of *RMSE*.

## 6.3 Discussion

This section provides some possible insights for the results obtained in section 6.2.

First of all, the better performance of the *LTSM* algorithm in comparison to the *ARIMA* model based on dataset 4 could be explained by the ability of the *LSTM* algorithm to find non-linear patterns and other complex relationships between the variables (i.e. the car sales, Google Trends, number of comments and polarity), that the *ARIMA* model was not capable to capture (Siami-Namini & Namin, 2018).

Secondly, no significant difference is determined between the performance of the *LSTM* model trained on historical car sales, the *LSTM* model trained on historical car sales and Google Trends data and the *LSTM* model trained on historical car sales and Instagram data. Hence, Google Trends data and Instagram data are equally informative. This finding is surprising as the research of Geva et al. (2013, 2015) found that models based on search trends data statistically outperformed models based on forum data.

Thirdly, the *LSTM* model utilizing the historical car sales data, Google Trends data and Instagram data as input significantly outperformed the other *LSTM* models, on average, in 38,57 percent of the cases in terms of *MAE* and in 36,30 percent of the cases in terms of *MSE*. This could be clarified by the fact that search trends data and social media data complement one another due to their difference in nature (Santillana et al., 2015; Geva et al., 2013, 2015). More specifically, search trends data tends to reveal the true interests of the customers while not affecting the mindset of others, whereas social media exposes the interests of customers to their social environment and consequently affecting the social environment's purchasing behavior (Geva et al., 2013).

Finally, for some car models, the different *LSTM* models predicted negative car sales. This mostly occurred when the actual car sales of the models are close to or equal to zero. Hence, a potential explanation for this phenomenon is that, since an *LSTM* model is not aware that car sales cannot be negative, the models predicted a decrease in car sales causing predictions close to zero to become negative over time.

# 7 Conclusion

As it is of crucial importance for car manufacturers to know the future sales of car models (Fantazzini & Toktamysova, 2015), the purpose of this master thesis is to determine whether the incorporation of Google Trends data and Instagram data in a model based on historical car sales data improves the model's forecasting accuracy.

To conclude this research, I will provide an answer to my proposed research questions.

• Is it possible to predict car sales making use of Instagram features?

Firstly, I found that the inclusion of Instagram features does not significantly improve the model's predictive power to forecast car sales, both in terms of *MAE* and *RMSE*.

• Is it possible to predict car sales making use of Google Trends search data?

Secondly, based on the results of this research, Google Trends data does not significantly enhance the forecasting power of the model to predict car sales, both in terms of *MAE* and *RMSE*.

• Is a higher predictive performance present when combining Instagram features and Google Trends data to predict car sales?

Thirdly, I conclude that the predictive performance of the forecasting algorithm using a combination of historical car sales data, Instagram data and Google Trends data is, on average, significantly higher in 38,58 percent of the cases in terms of *MAE* and in 36,30 percent of the cases in terms of *RMSE* than the forecasting algorithms using either historical car sales data, both car sales data and Google Trends data or both car sales data and Instagram data.

## 7.1 Limitations and suggestions for future research

This section covers the encountered limitations of this master thesis and provides some suggestions for further research.

In this research, some limitations in terms of collecting the relevant data are present. Firstly, on average, 75 percent of all hashtags that are present in the caption of a picture are not directly related to the content of that picture (i.e. stophashtags) (Giannoulakis and Tsapatsoulis, 2015, 2016a). Since the collection of Instagram data in this master thesis is based on hashtags, a high probability exists that not all collected Instagram posts are directly related to the relevant hashtag. Secondly, as Google Trends is sensitive to accent marks and spelling errors, the search queries utilized in this dissertation to find all search data related to a car model is not exhaustive (Mavragani & Ochoa, 2019). Thirdly, a drawback of car sales data is the relatively large granularity compared to the Google Trends data and the Instagram

data. More precisely, the car sales data is available at a monthly level, whereas Google Trends data is available at a weekly basis and Instagram data at the level of seconds. Hence, I was forced to aggregate the Google Trends data and the Instagram data at a monthly basis. Consequently, the number of training observations is reduced to twelve (i.e. one observation for each month). Furthermore, the forecasting models were allowed to predict negative car sales. In order to solve this, the car sales can undergo a logarithmic transformation (Hyndman & Athanasopoulos, 2018).

For further research, features extracted from images and videos by means of deep learning techniques such as convolutional neural networks might be an interesting variable to extract from Instagram posts (LeCun et al., 2015; Paolanti, Kaiser, Schallner, Frontoni, & Zingaretti, 2017). On top of that, other forecasting algorithms such as an ensemble of *ARIMA* and *LSTM* could be utilized to test whether this model leads to better forecasts. Moreover, a different algorithm than *ARIMA* can be applied to predict the external regressors, such as *LSTM* or an ensemble of *ARIMA* and *LSTM*. On top of that, training the *LSTM* and *ARIMA* algorithm on all 146 car models instead of solely on the twelve training observations might improve the forecasting power of these algorithms. Lastly, an alternative performance measure that does not depend on the magnitude of the car sales, such as the symmetric mean absolute percentage error, could be utilized since it could make the forecasting accuracy more easily to compare (Venkatesh et al., 2014).

## References

- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467.*
- Ahn, H. I., & Spangler, W. S. (2014, April). Sales prediction with social media analysis. In 2014 Annual SRII Global Conference (pp. 213-222). IEEE.
- Alin, A. (2010). Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 370-374.
- Asur, S., & Huberman, B. A. (2010, August). Predicting the future with social media. In *Proceedings of the* 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01 (pp. 492-499). IEEE Computer Society.
- Barreira, N., Godinho, P., & Melo, P. (2013). Nowcasting unemployment rate and new car sales in southwestern Europe with Google Trends. *NETNOMICS: Economic Research and Electronic Networking*, 14(3), 129-165.
- Bayer, J., Wierstra, D., Togelius, J., & Schmidhuber, J. (2009, September). Evolving memory cell structures for sequence learning. In *International Conference on Artificial Neural Networks* (pp. 755-764). Springer, Berlin, Heidelberg.
- Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. *IEEE transactions on neural networks*, *5*(2), 157-166.
- Benthaus, J., & Skodda, C. (2015). Investigating consumer information search behavior and consumer emotions to improve sales forecasting.
- Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. *Information Sciences*, *191*, 192-213.
- Bingham, G., Macke, W., & Miikkulainen, R. (2020). Evolutionary optimization of deep learning activation functions. *arXiv preprint arXiv:2002.07224*.
- Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. *Journal of computational science*, *2*(1), 1-8.
- Box, G. E., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control Holden-Day. San Francisco, 498.

- Bravo-Marquez, F., Mendoza, M., & Poblete, B. (2014). Meta-level sentiment models for big social data analysis. *Knowledge-based systems*, *69*, 86-99.
- Briggs, J. (2017, July 10). How do you compare large numbers of items in Google Trends? Retrieved from https://digitaljobstobedone.com/2017/07/10/how-do-you-compare-large-numbers-of-items-ingoogle-trends/
- Brownlee, J. (2018, November 14). How to Develop LSTM Models for Time Series Forecasting. Retrieved from https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-seriesforecasting/
- Brownlee, J. (2019, January 9). A Gentle Introduction to the Rectified Linear Unit (ReLU). Retrieved from https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learningneural-networks/
- Butina, D. (1999). Unsupervised data base clustering based on daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets. *Journal of Chemical Information and Computer Sciences*, *39*(4), 747-750.
- Cao, J., Li, Z., & Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM. *Physica A: Statistical Mechanics and its Applications*, *519*, 127-139.
- Carrière-Swallow, Y., & Labbé, F. (2013). Nowcasting with Google Trends in an emerging market. *Journal of Forecasting*, *32*(4), 289-298.
- Chaovalit, P., & Zhou, L. (2005, January). Movie review mining: A comparison between supervised and unsupervised classification approaches. In *Proceedings of the 38th annual Hawaii international conference on system sciences* (pp. 112c-112c). IEEE.

Choi, H., & Varian, H. (2009). Predicting initial claims for unemployment benefits. *Google Inc*, 1-5.

Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic record, 88, 2-9.

Chollet, F. et al. (2015). Keras. Retrieved from https://keras.io.

Chu, S. C., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. *International journal of Advertising*, *30*(1), 47-75.

- Clement, J. (2020, July 24). Instagram: distribution of global audiences 2020, by age group. Retrieved from https://www.statista.com/statistics/325587/instagram-global-age-group/
- Cochrane, C. (2018, May 19). Time Series Nested Cross-Validation. Retrieved from https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9
- Colliander, J., & Marder, B. (2018). 'Snap happy'brands: Increasing publicity effectiveness through a snapshot aesthetic when marketing a brand on Instagram. *Computers in Human Behavior, 78*, 34-43.
- Daoud, J. I. (2017, December). Multicollinearity and regression analysis. In *Journal of Physics: Conference Series* (Vol. 949, No. 1, p. 012009). IOP Publishing.
- de Best, R., (2020, March 4). Market share distribution of search engines in the Netherlands from 2009 to 2019. Retrieved from https://www.statista.com/statistics/688737/market-shares-of-searchengines-in-the-netherlands/
- Dhaoui, C., Webster, C. M., & Tan, L. P. (2017). Social media sentiment analysis: lexicon versus machine learning. *Journal of Consumer Marketing*.
- Ding, X., Liu, B., & Yu, P. S. (2008, February). A holistic lexicon-based approach to opinion mining. In *Proceedings of the 2008 international conference on web search and data mining* (pp. 231-240).
- Dodourova, M., & Bevis, K. (2014). Networking innovation in the European car industry: Does the Open Innovation model fit?. *Transportation Research Part A: Policy and Practice, 69*, 252-271.
- Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, *12*(7).
- Dunn, O. J. (1961). Multiple comparisons among means. *Journal of the American statistical association*, *56*(293), 52-64.
- Fantazzini, D., & Toktamysova, Z. (2015). Forecasting German car sales using Google data and multivariate models. *International Journal of Production Economics*, *170*, 97-135.
- Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. *The Annals of Mathematical Statistics*, *11*(1), 86-92.

- General Mills (2016). Pseudo API for Google Trends. Retrieved from: https://github.com/GeneralMills/pytrends
- Geva, T., Oestreicher-Singer, G., Efron, N., & Shimshoni, Y. (2013). Do customers speak their minds? using forums and search for predicting sales.
- Geva, T., Oestreicher-Singer, G., Efron, N., & Shimshoni, Y. (2015, November). Using forum and search data for sales prediction of high-involvement products. In *Tomer Geva, Gal Oestreicher-Singer, Niv Efron, Yair Shimshoni." Using Forum and Search Data for Sales Prediction of High-Involvement Products"-MIS Quarterly, Forthcoming.*
- Gezici, G., Dehkharghani, R., Yanikoglu, B., Tapucu, D., & Saygin, Y. (2013, June). Su-sentilab: A classification system for sentiment analysis in twitter. In Second Joint Conference on Lexical and Computational Semantics (\* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013) (pp. 471-477).
- Giannoulakis, S., & Tsapatsoulis, N. (2015, September). Instagram hashtags as image annotation metadata. In *IFIP International Conference on Artificial Intelligence Applications and Innovations* (pp. 206-220). Springer, Cham.
- Giannoulakis, S., & Tsapatsoulis, N. (2016a). Evaluating the descriptive power of Instagram hashtags. *Journal of Innovation in Digital Ecosystems*, *3*(2), 114-129.
- Giannoulakis, S., & Tsapatsoulis, N. (2016b, October). Defining and identifying stophashtags in instagram. In INNS Conference on Big Data (pp. 304-313). Springer, Cham.
- Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. *Nature*, *457*(7232), 1012-1014.

Google Trends (2020). Google Trends. Retrieved from: https://www.google.com/trends

Google Trends: Understanding the data. (n.d.). *Google News Initiative*. Retrieved from https://newsinitiative.withgoogle.com/training/lesson/4876819719258112?image=trends&tool =Google%20Trends

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.

- Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In *2013 IEEE international conference on acoustics, speech and signal processing* (pp. 6645-6649). IEEE.
- Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., & Funaya, K. (2016, October). Robust online time series prediction with recurrent neural networks. In *2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)* (pp. 816-825). Ieee.
- Helmini, S., Jihan, N., Jayasinghe, M., & Perera, S. (2019). Sales forecasting using multivariate long short term memory network models. *PeerJ PrePrints*, 7, e27712v1.
- Highfield, T., & Leaver, T. (2015). A methodology for mapping Instagram hashtags. *First Monday, 20*(1), 1-11.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
- Hoffman, D. L., & Fodor, M. (2010). Can you measure the ROI of your social media marketing?. *MIT Sloan* management review, 52(1), 41.
- Hu, Y., Manikonda, L., & Kambhampati, S. (2014, May). What we instagram: A first analysis of instagram photo content and user types. In *Eighth International AAAI conference on weblogs and social media*.
- Hutto, C. J., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In *Eighth international AAAI conference on weblogs and social media*.
- Hyndman, R. J. (2020). Forecasting Functions for Time Series and Linear Models. Retrieved from https://cran.r-project.org/web/packages/forecast/forecast.pdf

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

- Hyndman, R. J., & Khandakar, Y. (2007). *Automatic time series for forecasting: the forecast package for R* (No. 6/07). Clayton VIC, Australia: Monash University, Department of Econometrics and Business Statistics.
- Ili, S., Albers, A., & Miller, S. (2010). Open innovation in the automotive industry. *R&d Management*, *40*(3), 246-255.

- Jordan, J. (2018, March 1). Setting the learning rate of your neural network. Retrieved from Jeremy Jordan: https://www.jeremyjordan.me/nn-learning-rate/
- Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. *Applied energy*, *67*(1-2), 17-35.
- Kelleher, J. D. (2019). Deep Learning. Mit Press.
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Kreinovich, V., Nguyen, H. T., & Ouncharoen, R. (2014). How to estimate forecasting quality: a systemmotivated derivation of symmetric mean absolute percentage error (SMAPE) and other similar characteristics.
- Landrum, G. (2020). rdkit.ML.Cluster.Butina module. Retrieved from https://www.rdkit.org/docs/source/rdkit.ML.Cluster.Butina.html
- Lassen, N. B., Madsen, R., & Vatrapu, R. (2014, September). Predicting iphone sales from iphone tweets.
  In 2014 IEEE 18th International Enterprise Distributed Object Computing Conference (pp. 81-90). IEEE.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
- Levenshtein, V. I. (1966, February). Binary codes capable of correcting deletions, insertions, and reversals. In *Soviet physics doklady* (Vol. 10, No. 8, pp. 707-710).
- Mavragani, A., & Ochoa, G. (2019). Google Trends in infodemiology and infoveillance: methodology framework. *JMIR public health and surveillance*, *5*(2), e13439.
- Meire, M., Ballings, M., & Van den Poel, D. (2016). The added value of auxiliary data in sentiment analysis of Facebook posts. *Decision Support Systems*, *89*, 98-112.
- Mudinas, A., Zhang, D., & Levene, M. (2012, August). Combining lexicon and learning based approaches for concept-level sentiment analysis. In *Proceedings of the first international workshop on issues of sentiment discovery and opinion mining* (pp. 1-8).
- Murphy, K. P. (2012). A Probabilistic Perspective. Text book.
- Necas, D. (2014). python-Levenshtein. Retrieved from https://pypi.org/project/python-Levenshtein/

- Nielsen, M. A. (2015). *Neural networks and deep learning* (Vol. 2018). San Francisco, CA: Determination press.
- Nymand-Andersen, P., & Pantelidis, E. (2018). *Google econometrics: nowcasting euro area car sales and big data quality requirements* (No. 30). ECB Statistics Paper.
- Ogasawara, E., Martinez, L. C., De Oliveira, D., Zimbrão, G., Pappa, G. L., & Mattoso, M. (2010, July). Adaptive normalization: A novel data normalization approach for non-stationary time series. In *The 2010 International Joint Conference on Neural Networks (IJCNN)* (pp. 1-8). IEEE.
- Ortigosa, A., Martín, J. M., & Carro, R. M. (2014). Sentiment analysis in Facebook and its application to e-learning. *Computers in human behavior*, *31*, 527-541.
- Pai, P. F., & Liu, C. H. (2018). Predicting vehicle sales by sentiment analysis of Twitter data and stock market values. *IEEE Access*, *6*, 57655-57662.
- Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. In *Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10* (pp. 79-86). Association for Computational Linguistics.
- Paolanti, M., Kaiser, C., Schallner, R., Frontoni, E., & Zingaretti, P. (2017, September). Visual and textual sentiment analysis of brand-related social media pictures using deep convolutional neural networks. In *International Conference on Image Analysis and Processing* (pp. 402-413). Springer, Cham.
- Phi, M., (2018, September 24). Illustrated Guide to LSTM's and GRU's: A step by step explanation. Retrieved from https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-bystep-explanation-44e9eb85bf21
- Pittman, M., & Reich, B. (2016). Social media and loneliness: Why an Instagram picture may be worth more than a thousand Twitter words. *Computers in Human Behavior*, *62*, 155-167.
- Polgreen, P. M., Chen, Y., Pennock, D. M., Nelson, F. D., & Weinstein, R. A. (2008). Using internet searches for influenza surveillance. *Clinical infectious diseases*, *47*(11), 1443-1448.
- Rogers, S., (2016, July 1). What is Google Trends data and what does it mean? Retrieved from https://medium.com/google-news-lab/what-is-google-trends-data-and-whatdoes-it-mean-b48f07342ee8

- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. *nature*, *323*(6088), 533-536.
- Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. *PLoS computational biology*, *11*(10).
- Santillana, M., Nsoesie, E. O., Mekaru, S. R., Scales, D., & Brownstein, J. S. (2014). Using clinicians' search query data to monitor influenza epidemics. *Clinical infectious diseases:* an official publication of the Infectious Diseases Society of America, 59(10), 1446.
- Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F. (2007). Training recurrent networks by evolino. *Neural computation*, *19*(3), 757-779.
- Scikit-learn: sklearn.preprocessing.MinMaxScaler (2018). Retrieved from https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
- Scikit-learn: sklearn.model\_selection.TimeSeriesSplit (2020). Retrieved from https://scikitlearn.org/stable/modules/generated/sklearn.model\_selection.TimeSeriesSplit.html
- Seebach, C., Pahlke, I., & Beck, R. (2011). Tracking the digital footprints of customers: How firms can improve their sensing abilities to achieve business agility.
- Siami-Namini, S., & Namin, A. S. (2018). Forecasting economics and financial time series: ARIMA vs. LSTM. *arXiv preprint arXiv:1803.06386*.
- Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. *Computational linguistics*, *37*(2), 267-307.
- Tan, S., Wang, Y., & Cheng, X. (2008, July). Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In *Proceedings of the* 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 743-744).
- Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. *International journal of forecasting*, *16*(4), 437-450.
- Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. *COURSERA: Neural networks for machine learning*, *4*(2), 26-31.

65

- Tomczyk, E., & Doligalski, T. (2015). Predicting new car registrations: nowcasting with Google search and macroeconomic data. E. Tomczyk, T. Doligalski, Predicting New Car Registrations: Nowcasting with Google Search and Macroeconomic Data,[in:] Sł. Partycki (ed.), E-społeczeństwo w Europie Środkowej i Wschodniej. Teraźniejszość i perspektywy rozwoju, Wydawnictwo KUL, Lublin, 2015, 228-236.
- Trawiński, B., Smętek, M., Telec, Z., & Lasota, T. (2012). Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. *International Journal of Applied Mathematics and Computer Science*, 22(4), 867-881.
- Turney, P. D. (2002, July). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In *Proceedings of the 40th annual meeting on association for computational linguistics* (pp. 417-424). Association for Computational Linguistics.
- Venkatesh, K., Ravi, V., Prinzie, A., & Van den Poel, D. (2014). Cash demand forecasting in ATMs by clustering and neural networks. *European Journal of Operational Research*, 232(2), 383-392.
- Wachter, P., Widmer, T., & Klein, A. (2019, September). Predicting Automotive Sales using Pre-Purchase Online Search Data. In 2019 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 569-577). IEEE.
- Wang, C. F., (2019, January 8). The Vanishing Gradient Problem: The Problem, Its Causes, Its Significance,andItsSolutions.Retrievedfrom https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
- Weytjens, H., Lohmann, E., & Kleinsteuber, M. (2019). Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet. *Electronic Commerce Research*, 1-21.
- Wilcoxon, F. (1946). Individual comparisons of grouped data by ranking methods. *Journal of economic entomology*, *39*(2), 269-270.
- Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for gradient descent learning. *Neural networks*, *16*(10), 1429-1451.
- Wu, L., & Brynjolfsson, E. (2009). The future of prediction: how Google searches foreshadow housing prices and quantities. *ICIS 2009 Proceedings*, 147.

- Yu, X., Liu, Y., Huang, X., & An, A. (2010). Mining online reviews for predicting sales performance: A case study in the movie domain. *IEEE Transactions on Knowledge and Data engineering*, *24*(4), 720-734.
- Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., & Liu, B. (2011). Combining lexicon-based and learning-based methods for Twitter sentiment analysis. *HP Laboratories, Technical Report HPL-2011, 89*.

# Appendices

| Rank | Car model         | Total sales |
|------|-------------------|-------------|
| 1    | Tesla Model 3     | 29.948      |
| 2    | Volkswagen Polo   | 12.964      |
| 3    | Ford Focus        | 10.517      |
| 4    | Volkswagen Golf   | 9.296       |
| 5    | Kia Niro          | 9.249       |
| 6    | Renault Clio      | 9.056       |
| 7    | Ford Fiesta       | 8.945       |
| 8    | Toyota Aygo       | 8.659       |
| 9    | Peugeot 108       | 8.434       |
| 10   | Kia Picanto       | 8.014       |
| 11   | Opel Karl         | 7.991       |
| 12   | Hyundai Kona      | 7.153       |
| 13   | Volkswagen Up     | 7.153       |
| 14   | Opel Crossland X  | 6.182       |
| 15   | Toyota Yaris      | 6.084       |
| 16   | Skoda Octavia     | 6.023       |
| 17   | Opel Astra        | 5.963       |
| 18   | Volkswagen Tiguan | 5.871       |
| 19   | Volkswagen T-Roc  | 5.734       |
| 20   | Renault Captur    | 5.733       |
| 21   | Nissan Qashqai    | 5.725       |
| 22   | Peugeot 208       | 5.144       |
| 23   | BMW 3-serie       | 5.092       |
| 24   | Toyota Corolla    | 4.816       |
| 25   | Peugeot 3008      | 4.811       |
| 26   | Hyundai i10       | 4.712       |
| 27   | Citroën C1        | 4.637       |
| 28   | Opel Grandland X  | 4.553       |
| 29   | Volvo XC40        | 4.461       |
| 30   | Volvo V40         | 4.432       |

# Appendix 1. 200 car models and their total sales of 2019

| Rank | Car model              | Total sales |
|------|------------------------|-------------|
| 31   | Mini Mini              | 4.268       |
| 32   | Mercedes-Benz A-klasse | 4.264       |
| 33   | Audi E-tron            | 4.119       |
| 34   | Mazda CX-5             | 4.101       |
| 35   | Citroën C3             | 3.966       |
| 36   | Nissan Leaf            | 3.817       |
| 37   | Peugeot 308            | 3.787       |
| 38   | Renault Mégane         | 3.775       |
| 39   | Toyota C-HR            | 3.673       |
| 40   | Volvo V60              | 3.650       |
| 41   | Volkswagen T-Cross     | 3.644       |
| 42   | Opel Corsa             | 3.413       |
| 43   | Seat Ibiza             | 3.240       |
| 44   | Skoda Fabia            | 3.216       |
| 45   | Nissan Micra           | 3.205       |
| 46   | Skoda Kodiaq           | 3.191       |
| 47   | Peugeot 5008           | 3.190       |
| 48   | Audi A3                | 3.124       |
| 49   | Fiat 500               | 2.899       |
| 50   | BMW 1-serie            | 2.888       |
| 51   | Mercedes-Benz C-klasse | 2.867       |
| 52   | BMW i3                 | 2.861       |
| 53   | Peugeot 2008           | 2.771       |
| 54   | Kia Ceed               | 2.759       |
| 55   | Suzuki Swift           | 2.746       |
| 56   | Mitsubishi Space Star  | 2.665       |
| 57   | Toyota RAV4            | 2.532       |
| 58   | Skoda Karoq            | 2.511       |
| 59   | Ford EcoSport          | 2.510       |
| 60   | Mazda 2                | 2.494       |
| 61   | BMW 5-serie            | 2.448       |
| 62   | Mercedes-Benz B-klasse | 2.385       |

| (Cor | ntinu | ed) |
|------|-------|-----|
|      |       |     |

| (continueu) |                        |             |
|-------------|------------------------|-------------|
| Rank        | Car model              | Total sales |
| 63          | Seat Arona 2.3         |             |
| 64          | Mercedes-Benz CLA 2.2  |             |
| 65          | Audi A1                | 2.254       |
| 66          | Renault Zoe            | 2.210       |
| 67          | Citroën C5 Aircross    | 2.178       |
| 68          | Suzuki Ignis           | 2.152       |
| 69          | Seat Ateca             | 2.100       |
| 70          | Kia Stonic             | 2.081       |
| 71          | Renault Twingo         | 2.058       |
| 72          | Hyundai Ioniq          | 2.056       |
| 73          | Mitsubishi Outlander   | 2.003       |
| 74          | Hyundai i20            | 1.977       |
| 75          | Mazda CX-3             | 1.933       |
| 76          | Seat Leon              | 1.923       |
| 77          | BMW X1                 | 1.878       |
| 78          | Mercedes-Benz Sprinter | 1.849       |
| 79          | Audi A4                | 1.824       |
| 80          | Volvo XC60             | 1.698       |
| 81          | Citroën C3 Aircross    | 1.696       |
| 82          | Mini Countryman        | 1.690       |
| 83          | Renault Kadjar         | 1.645       |
| 84          | BMW 2-serie Tourer     | 1.641       |
| 85          | Suzuki Celerio         | 1.554       |
| 86          | Opel Insignia          | 1.512       |
| 87          | Mercedes-Benz E-klasse | 1.511       |
| 88          | Skoda Superb           | 1.501       |
| 89          | Volkswagen Passat      | 1.413       |
| 90          | Renault Scénic         | 1.404       |
| 91          | Suzuki Vitara          | 1.380       |
| 92          | Citroën C4 Cactus      | 1.332       |
| 93          | Audi Q2                | 1.288       |
| 94          | Peugeot 508            | 1.269       |
|             |                        |             |

(Continued)

| Rank | Car model                | Total sales |
|------|--------------------------|-------------|
| 95   | BMW 4-serie              | 1.211       |
| 96   | Mazda 3 1.               |             |
| 97   | Ford Kuga                | 1.180       |
| 98   | Skoda Scala              | 1.159       |
| 99   | Mercedes-Benz Vito       | 1.155       |
| 100  | Mini Clubman             | 1.140       |
| 101  | BMW X3                   | 1.123       |
| 102  | Skoda Citigo             | 1.120       |
| 103  | Citroën C4 SpaceTourer   | 1.081       |
| 104  | Audi A5                  | 1.079       |
| 105  | Dacia Duster             | 1.056       |
| 106  | Dacia Sandero            | 1.056       |
| 107  | Kia Sportage             | 1.048       |
| 108  | MG ZS                    | 1.020       |
| 109  | Mercedes-Benz GLC        | 964         |
| 110  | Jeep Compass             | 960         |
| 111  | Mercedes-Benz GLA        | 925         |
| 112  | Hyundai Tucson           | 920         |
| 113  | Mitsubishi Eclipse Cross | 920         |
| 114  | Audi Q3                  | 903         |
| 115  | Kia Rio                  | 899         |
| 116  | Audi A6                  | 884         |
| 117  | Opel Ampera-e            | 882         |
| 118  | Mitsubishi ASX           | 880         |
| 119  | Dacia Logan              | 805         |
| 120  | BMW X5                   | 798         |
| 121  | Ford Mondeo              | 772         |
| 122  | Jaguar I-Pace            | 770         |
| 123  | Mazda CX-30              | 770         |
| 124  | Seat Mii                 | 720         |
| 125  | Opel Mokka               | 703         |
| 126  | Volvo V90                | 698         |
|      |                          |             |

(Continued)

| Rank | Car model                     | Total sales |  |
|------|-------------------------------|-------------|--|
| 127  | Toyota Auris                  | 658         |  |
| 128  | Kia Proceed                   | 656         |  |
| 129  | Hyundai i30                   | 651         |  |
| 130  | Opel Adam                     | 619         |  |
| 131  | Suzuki S-Cross                | 605         |  |
| 132  | Ford Transit Custom           | 603         |  |
| 133  | Volvo S60                     | 591         |  |
| 134  | Volvo XC90                    | 575         |  |
| 135  | BMW X2                        | 572         |  |
| 136  | Volkswagen Transporter        | 546         |  |
| 137  | Seat Tarraco                  | 527         |  |
| 138  | Tesla Model S                 | 527         |  |
| 139  | Honda Jazz                    | 504         |  |
| 140  | Volkswagen Touran             | 468         |  |
| 141  | Tesla Model X                 | 467         |  |
| 142  | Volkswagen Arteon             | 467         |  |
| 143  | Ford Ka+                      | 455         |  |
| 144  | Nissan Juke                   | 435         |  |
| 145  | Fiat 500X                     | 413         |  |
| 146  | Mazda 6                       | 411         |  |
| 147  | Jeep Renegade                 | 398         |  |
| 148  | Honda CR-V                    | 390         |  |
| 149  | Fiat Panda                    | 383         |  |
| 150  | Porsche Macan                 | 382         |  |
| 151  | DS 7 Crossback                | 373         |  |
| 152  | Porsche 911                   | 367         |  |
| 153  | Land Rover Range Rover Evoque | 343         |  |
| 154  | Skoda Rapid                   | 341         |  |
| 155  | Nissan X-Trail                | 336         |  |
| 156  | Land Rover Range Rover Sport  | 332         |  |
| 157  | Porsche Cayenne               | 331         |  |
| 158  | Mercedes-Benz V-klasse        | 325         |  |
|      |                               |             |  |

(Continued)

| (continued) |                              |             |
|-------------|------------------------------|-------------|
| Rank        | Car model                    | Total sales |
| 159         | Ford C-MAX                   | 315         |
| 160         | DS 3 Crossback               | 313         |
| 161         | BMW X4                       |             |
| 162         | Renault Talisman             | 311         |
| 163         | Honda HR-V                   | 307         |
| 164         | Subaru Forester              | 298         |
| 165         | BMW Z4                       | 288         |
| 166         | Smart Forfour                | 285         |
| 167         | Alfa Romeo Giulia            | 274         |
| 168         | Kia Optima                   | 272         |
| 169         | BMW 2-serie                  | 266         |
| 170         | Lexus CT                     | 265         |
| 171         | Lexus UX                     | 263         |
| 172         | Honda Civic                  | 259         |
| 173         | Volkswagen Golf Sportsvan    | 256         |
| 174         | Land Rover Range Rover Velar | 234         |
| 175         | Suzuki Baleno                | 234         |
| 176         | Volkswagen Caddy             | 222         |
| 177         | Audi Q5                      | 221         |
| 178         | Volvo S90                    | 221         |
| 179         | Land Rover Range Rover       | 214         |
| 180         | BMW 7-serie                  | 211         |
| 181         | Alfa Romeo Mito              | 210         |
| 182         | Toyota Proace                | 208         |
| 183         | Porsche Panamera             | 206         |
| 184         | Mazda MX-5                   | 186         |
| 185         | Mercedes-Benz GLE            | 180         |
| 186         | Renault Espace               | 180         |
| 187         | Fiat Tipo                    | 177         |
| 188         | Suzuki Jimny                 | 171         |
| 189         | Peugeot Rifter               | 168         |
| 190         | Alfa Romeo Stelvio           | 163         |
|             |                              |             |

| Rank | Car model                  | Total sales |
|------|----------------------------|-------------|
| 191  | Lexus ES                   | 159         |
| 192  | Land Rover Discovery Sport | 156         |
| 193  | Toyota Prius               | 156         |
| 194  | BMW 8-serie                | 150         |
| 195  | Mercedes-Benz S-klasse     | 150         |
| 196  | BMW 6-serie GT             | 147         |
| 197  | Opel Movano                | 145         |
| 198  | Subaru XV                  | 142         |
| 199  | Dacia Lodgy                | 140         |
| 200  | Jaguar XE                  | 140         |

| Car model           | Hashtags                |
|---------------------|-------------------------|
| Alfa Romeo Giulia   | #alfaromeogiulia        |
| Alfa Romeo Mito     | #alfaromeomito          |
| Alfa Romeo Stelvio  | #stelvio                |
| Audi A1             | #audia1                 |
| Audi A3             | #audia3                 |
| Audi A4             | #audia4                 |
| Audi A5             | #audia5                 |
| Audi A6             | #audia6                 |
| Audi E-tron         | #etron                  |
| Audi Q2             | #audiq2                 |
| Audi Q3             | #audiq3                 |
| Audi Q5             | #audiq5                 |
| BMW 1-serie         | #bmw1series             |
| BMW 2-serie         | #bmw2                   |
| BMW 2-serie Tourer  | #bmw2seriesactivetourer |
| BMW 3-serie         | #bmw3series             |
| BMW 4-serie         | #4series                |
| BMW 5-serie         | #5series                |
| BMW 6-serie GT      | #bmw6gt                 |
| BMW 7-serie         | #7series                |
| BMW 8-serie         | #8series                |
| BMW i3              | #bmwi3                  |
| BMW X1              | #bmwx1                  |
| BMW X2              | #bmwx2                  |
| BMW X3              | #bmwx3                  |
| BMW X4              | #bmwx4                  |
| BMW X5              | #bmwx5                  |
| BMW Z4              | #bmwz4                  |
| Citroën C3 Aircross | #c3aircross             |
| CitroënC1           | #citroenc1              |
| CitroënC3           | #citroenc3              |
|                     |                         |

## Appendix 2. 200 car models and their related hashtags

| Car model             | Hashtags       |
|-----------------------|----------------|
| CitroënC4 Cactus      | #c4cactus      |
| CitroënC4 SpaceTourer | #c4spacetourer |
| CitroënC5 Aircross    | #c5aircross    |
| Dacia Duster          | #daciaduster   |
| Dacia Lodgy           | #lodgy         |
| Dacia Logan           | #dacialogan    |
| Dacia Sandero         | #daciasandero  |
| DS3 Crossback         | #ds3crossback  |
| DS7 Crossback         | #ds7crossback  |
| Fiat 500              | #fiat500       |
| Fiat 500X             | #fiat500x      |
| Fiat Panda            | #fiatpanda     |
| Fiat Tipo             | #fiattipo      |
| Ford C-MAX            | #fordcmax      |
| Ford EcoSport         | #ecosport      |
| Ford Fiesta           | #fordfiesta    |
| Ford Focus            | #fordfocus     |
| Ford Ka+              | #fordkaplus    |
| Ford Kuga             | #fordkuga      |
| Ford Mondeo           | #fordmondeo    |
| Ford Transit Custom   | #transitcustom |
| Honda Civic           | #hondacivic    |
| Honda CR-V            | #hondacrv      |
| Honda HR-V            | #hondahrv      |
| Honda Jazz            | #hondajazz     |
| Hyundai i10           | #hyundaii10    |
| Hyundai i20           | #hyundaii20    |
| Hyundai i30           | #hyundaii30    |
| Hyundai Ioniq         | #ioniq         |
| Hyundai Kona          | #hyundaikona   |
| Hyundai Tucson        | #hyundaitucson |
| Jaguar I-Pace         | #ipace         |
|                       |                |

| Car model                     | Hashtags                 |
|-------------------------------|--------------------------|
| Jaguar XE                     | #jaguarxe                |
| Jeep Compass                  | #jeepcompass             |
| Jeep Renegade                 | #jeeprenegade            |
| Kia Ceed                      | #kiaceed                 |
| Kia Niro                      | #kianiro                 |
| Kia Optima                    | #kiaoptima               |
| Kia Picanto                   | #kiapicanto              |
| Kia Proceed                   | #kiaproceed              |
| Kia Rio                       | #kiario                  |
| Kia Sportage                  | #kiasportage             |
| Kia Stonic                    | #stonic                  |
| Land Rover Discovery Sport    | #landroverdiscoverysport |
| Land Rover Range Rover        | #landroverrangerover     |
| Land Rover Range Rover Evoque | #evoque                  |
| Land Rover Range Rover Sport  | #rangeroversport         |
| Land Rover Range Rover Velar  | #velar                   |
| Lexus CT                      | #lexusct                 |
| Lexus ES                      | #lexuses                 |
| Lexus UX                      | #lexusux                 |
| Mazda 2                       | #mazda2                  |
| Mazda 3                       | #mazda3                  |
| Mazda 6                       | #mazda6                  |
| Mazda CX-3                    | #mazdacx3                |
| Mazda CX-30                   | #cx30                    |
| Mazda CX-5                    | #mazdacx5                |
| Mazda MX-5                    | #mazdamx5                |
| Mercedes-Benz A-klasse        | #mercedesaclass          |
| Mercedes-Benz B-klasse        | #mercedesbclass          |
| Mercedes-Benz C-klasse        | #cclass                  |
| Mercedes-Benz CLA             | #mercedescla             |
| Mercedes-Benz E-klasse        | #eclass                  |
| Mercedes-Benz GLA             | #mercedesgla             |
|                               |                          |

| Car model                | Hashtags             |
|--------------------------|----------------------|
| Mercedes-Benz GLC        | #mercedesglc         |
| Mercedes-Benz GLE        | #gle                 |
| Mercedes-Benz S-klasse   | #mercedessclass      |
| Mercedes-Benz Sprinter   | #mercedessprinter    |
| Mercedes-Benz Vito       | #mercedesvito        |
| Mercedes-Benz V-klasse   | #mercedesvclass      |
| MG ZS                    | #mgzs                |
| Mini Clubman             | #miniclubman         |
| Mini Countryman          | #minicountryman      |
| Mini Mini                | #minicooper          |
| Mitsubishi ASX           | #mitsubishiasx       |
| Mitsubishi Eclipse Cross | #eclipsecross        |
| Mitsubishi Outlander     | #mitsubishioutlander |
| Mitsubishi Space Star    | #mitsubishispacestar |
| Nissan Juke              | #nissanjuke          |
| Nissan Leaf              | #nissanleaf          |
| Nissan Micra             | #nissanmicra         |
| Nissan Qashqai           | #nissanqashqai       |
| Nissan X-Trail           | #nissanxtrail        |
| Opel Adam                | #opeladam            |
| Opel Ampera-e            | #amperae             |
| Opel Astra               | #opelastra           |
| Opel Corsa               | #opelcorsa           |
| Opel Crossland X         | #crosslandx          |
| Opel Grandland X         | #grandlandx          |
| Opel Insignia            | #opelinsignia        |
| Opel Karl                | #opelkarl            |
| Opel Mokka               | #opelmokka           |
| Opel Movano              | #opelmovano          |
| Peugeot 108              | #peugeot108          |
| Peugeot 2008             | #peugeot2008         |
| Peugeot 208              | #peugeot208          |
|                          |                      |

| Peugeot 3008#peugeot 3008Peugeot 308#peugeot 308Peugeot 5008#peugeot 5008Peugeot 5008#peugeot 5008Peugeot 8ifter#rifterPorsche 911#porsche911Porsche 911#porsche911Porsche Cayenne#cayennePorsche Macan#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Clio#renaultespaceRenault Kadjar#kadjarRenault Kadjar#renaultmeganeRenault Scénic#renaulttaismanRenault Talisman#renaulttaismanRenault Zoe#renaulttwingoRenault Zoe#seataronaSeat Arona#seatalecaSeat Mili#seatalecaSeat Mili#seatafoaSeat Ateca#seataronaSeat Tarraco#seataracoSkoda Citigo#skodacitigoSkoda Karoq#karoqSkoda Cotavia#skodacraviaSkoda Cotavia#skodarapidSkoda Scala#skodascalaSkoda Superb#skodascala | Car model        | Hashtags         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| Peugeot 5008#peugeot 5008Peugeot 508#peugeot 5008Peugeot Rifter#rifterPorsche 911#porsche911Porsche Oaran#porsche911Porsche Cayenne#cayennePorsche Macan#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Cio#renaultespaceRenault Kadjar#kadjarRenault Kadjar#renaultmeganeRenault Scénic#renaultmeganeRenault Talisman#renaulttaismanRenault Zoe#renaulttwingoRenault Zoe#seataronaSeat Arona#seataronaSeat Ateca#seataronaSeat Ateca#seataronaSeat Ateca#seataronaSeat Tarraco#seataracoSkoda Citigo#skodacitigoSkoda Karoq#karoqSkoda Karapi#skodacataviaSkoda Karapi#skodarapidSkoda Rapid#skodarapidSkoda Rapid#skodarapid                                                 | Peugeot 3008     | #peugeot3008     |
| Peugeot 508#peugeot 508Peugeot Rifter#rifterPorsche 911#porsche911Porsche Oayenne#cayennePorsche Cayenne#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Espace#renaultespaceRenault Kadjar#kadjarRenault Scénic#renaulttaismanRenault Twingo#renaulttaismanRenault Twingo#renaulttwingoRenault Twingo#seataronaSeat Acona#seataronaSeat Ateca#seatalonaSeat Ibiza#seatalonaSeat Tarraco#seatarracoSkoda Citigo#skodarabiaSkoda Karoq#kadiaqSkoda Karoq#skodarabiaSkoda Rapid#skodarapidSkoda Rapid#skodarapidSkoda Scala#skodarapid                                                                                                                                            | Peugeot 308      | #peugeot308      |
| Peugeot Rifter#rifterPeugeot Rifter#rifterPorsche 911#porsche911Porsche Cayenne#cayennePorsche Macan#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Clio#renaultespaceRenault Kadjar#kadjarRenault Kadjar#kadjarRenault Kadjar#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttaismanRenault Zoe#renaultwingoRenault Zoe#renaultwingoRenault Zoe#seataronaSeat Arona#seatalecaSeat Ateca#seatleonSeat Leon#seatligaSeat Tarraco#seatligaSkoda Citigo#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#kadiaqSkoda Kodiaq#skodarapidSkoda Rapid#skodarapid                                                                                                             | Peugeot 5008     | #peugeot5008     |
| Porsche 911#porsche911Porsche Cayenne#cayennePorsche Macan#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Clio#renaultcapturRenault Espace#renaultespaceRenault Kadjar#kadjarRenault Kadjar#renaultmeganeRenault Scénic#renaulttalismanRenault Talisman#renaulttoeRenault Talisman#renaultzoeSeat Arona#seataronaSeat Ateca#seataronaSeat Ateca#seataronaSeat Leon#seatarracoSkoda Citigo#skodafabiaSkoda Karoq#karoqSkoda Karoq#karoqSkoda Karoq#skodarapidSkoda Rapid#skodarapidSkoda Scala#skodarapidSkoda Scala#skodarapid                                                                                                                                                 | Peugeot 508      | #peugeot508      |
| Porsche Cayenne#cayennePorsche Macan#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Clio#renaultcapturRenault Espace#renaultespaceRenault Kadjar#kadjarRenault Kadjar#renaultmeganeRenault Scénic#renaulttalismanRenault Talisman#renaultzoeRenault Twingo#renaultzoeSeat Arona#seataronaSeat Ateca#seataleanSeat Ateca#seataleanSeat Leon#seatleonSeat Tarraco#seatlarracoSkoda Citigo#skodafabiaSkoda Karoq#karoqSkoda Karoq#karoqSkoda Karoq#skodarapidSkoda Rapid#skodarapidSkoda Scala#skodarapid                                                                                                                                                                         | Peugeot Rifter   | #rifter          |
| Porsche Macan#porschemacanPorsche Panamera#panameraRenault Captur#renaultcapturRenault Clio#renaultcapturRenault Espace#renaultespaceRenault Kadjar#kadjarRenault Mégane#renaultmeganeRenault Scénic#renaulttalismanRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Toingo#renaulttalismanSeat Arona#seataronaSeat Ateca#seatalecaSeat Ibiza#seatibizaSeat Cligo#seatigianSkoda Citigo#seataracoSkoda Karoq#karoqSkoda Kodiaq#karoqSkoda Rapid#skodarapidSkoda Scala#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                | Porsche 911      | #porsche911      |
| Porsche Panamera#panameraRenault Captur#renaultcapturRenault Clio#renaultclioRenault Space#renaultespaceRenault Kadjar#kadjarRenault Mégane#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Zoe#renaultwingoSeat Arona#seataronaSeat Ateca#seatalecaSeat Ateca#seatalecaSeat Leon#seatalecaSkoda Citigo#skodacitigoSkoda Fabia#skodarapiaSkoda Kodiaq#karoqSkoda Nodiaq#skodarapidSkoda Rapid#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                                              | Porsche Cayenne  | #cayenne         |
| Renault Captur#renaultcapturRenault Clio#renaultcapturRenault Espace#renaultespaceRenault Kadjar#kadjarRenault Mégane#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Twingo#renaulttwingoSeat Arona#seataronaSeat Ateca#seatalecaSeat Ateca#seatleonSeat Leon#seatleonSeat Tarraco#seataracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Kodiaq#karoqSkoda Octavia#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                                                                 | Porsche Macan    | #porschemacan    |
| Renault Clio#renaultclioRenault Espace#renaultespaceRenault Kadjar#kadjarRenault Mégane#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Ateca#seatatecaSeat Ibiza#seatibizaSeat Leon#seatalonSeat Tarraco#seatmiiSkoda Citigo#skodaritigoSkoda Fabia#skodarabiaSkoda Karoq#karoqSkoda Kodiaq#skodarapidSkoda Octavia#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                                                                                | Porsche Panamera | #panamera        |
| Renault Espace#renaultespaceRenault Kadjar#kadjarRenault Mégane#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttalismanRenault Twingo#renaulttwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Ateca#seatatecaSeat Leon#seatleonSeat Tarraco#seattarracoSkoda Citigo#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Octavia#skodaoctaviaSkoda Rapid#skodascala                                                                                                                                                                                                                                                                                   | Renault Captur   | #renaultcaptur   |
| Renault Kadjar#kadjarRenault Mégane#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Ateca#seatibizaSeat Ateca#seatibizaSeat Leon#seatibizaSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Cotavia#skodactaviaSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                        | Renault Clio     | #renaultclio     |
| Renault Mégane#renaultmeganeRenault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Twingo#renaulttwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Ateca#seatatecaSeat Ateca#seatibizaSeat Leon#seatibizaSeat Tarraco#seatmiiSeat Tarraco#seataronaSkoda Citigo#skodacitigoSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Octavia#skodactaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                         | Renault Espace   | #renaultespace   |
| Renault Scénic#renaultscenicRenault Talisman#renaulttalismanRenault Twingo#renaulttwingoRenault Twingo#renaulttwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Ateca#seatatecaSeat Ateca#seatibizaSeat Leon#seatleonSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodacitigoSkoda Karoq#karoqSkoda Kodiaq#skodaoctaviaSkoda Octavia#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                                                                                                                                                  | Renault Kadjar   | #kadjar          |
| Renault Talisman#renaulttalismanRenault Twingo#renaultwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Ateca#seatatecaSeat Ateca#seatibizaSeat Leon#seatleonSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodarabiaSkoda Karoq#karoqSkoda Kodiaq#karoqSkoda Cotavia#skodacaviaSkoda Scala#skodarapid                                                                                                                                                                                                                                                                                                                                                                                   | Renault Mégane   | #renaultmegane   |
| Renault Twingo#renaultwingoRenault Zoe#renaultzoeSeat Arona#seataronaSeat Arona#seataronaSeat Ateca#seatatecaSeat Ateca#seatibizaSeat Ibiza#seatibizaSeat Leon#seatleonSeat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodacitigoSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Cctavia#skodactaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                  | Renault Scénic   | #renaultscenic   |
| Renault Zoe#renaultzoeRenault Zoe#seataronaSeat Arona#seataronaSeat Ateca#seatatecaSeat Ibiza#seatibizaSeat Leon#seatleonSeat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Karoq#karoqSkoda Nodiaq#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                                                                                                                                                                                                                                    | Renault Talisman | #renaulttalisman |
| Seat Arona#seataronaSeat Ateca#seatatecaSeat Ateca#seatibizaSeat Ibiza#seatibizaSeat Leon#seatleonSeat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#skodactaviaSkoda Actiapia#skodactaviaSkoda Scala#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                  | Renault Twingo   | #renaulttwingo   |
| Seat Ateca#seatatecaSeat Ibiza#seatibizaSeat Leon#seatleonSeat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#kadactaviaSkoda Citigo#skodactaviaSkoda Scala#skodarapidSkoda Scala#skodarapid                                                                                                                                                                                                                                                                                                                                                                                                                                             | Renault Zoe      | #renaultzoe      |
| Seat Ibiza#seatibizaSeat Leon#seatleonSeat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Fabia#karoqSkoda Karoq#karoqSkoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seat Arona       | #seatarona       |
| Seat Leon#seatleonSeat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seat Ateca       | #seatateca       |
| Seat Mii#seatmiiSeat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Fabia#karoqSkoda Karoq#kadaqSkoda Cotavia#skodaoctaviaSkoda Octavia#skodaoctaviaSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seat Ibiza       | #seatibiza       |
| Seat Tarraco#seattarracoSkoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seat Leon        | #seatleon        |
| Skoda Citigo#skodacitigoSkoda Fabia#skodafabiaSkoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seat Mii         | #seatmii         |
| Skoda Fabia #skodafabia<br>Skoda Karoq #karoq<br>Skoda Kodiaq #kodiaq<br>Skoda Octavia #skodaoctavia<br>Skoda Rapid #skodarapid<br>Skoda Scala #skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Seat Tarraco     | #seattarraco     |
| Skoda Karoq#karoqSkoda Kodiaq#kodiaqSkoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Skoda Citigo     | #skodacitigo     |
| Skoda Kodiaq#kodiaqSkoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skoda Fabia      | #skodafabia      |
| Skoda Octavia#skodaoctaviaSkoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Skoda Karoq      | #karoq           |
| Skoda Rapid#skodarapidSkoda Scala#skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Skoda Kodiaq     | #kodiaq          |
| Skoda Scala #skodascala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Skoda Octavia    | #skodaoctavia    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skoda Rapid      | #skodarapid      |
| Skoda Superb #skodasuperb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skoda Scala      | #skodascala      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skoda Superb     | #skodasuperb     |

| Car model                 | Hashtags               |
|---------------------------|------------------------|
| Smart Forfour             | #smartforfour          |
| Subaru Forester           | #subaruforester        |
| Subaru XV                 | #subaruxv              |
| Suzuki Baleno             | #suzukibaleno          |
| Suzuki Celerio            | #celerio               |
| Suzuki Ignis              | #suzukiignis           |
| Suzuki Jimny              | #jimny                 |
| Suzuki S-Cross            | #suzukiscross          |
| Suzuki Swift              | #suzukiswift           |
| Tesla Model 3             | #teslamodel3           |
| Tesla Model S             | #teslamodels           |
| Tesla Model X             | #modelx                |
| Toyota Auris              | #toyotaauris           |
| Toyota Aygo               | #toyotaaygo            |
| Toyota C-HR               | #toyotachr             |
| Toyota Corolla            | #Corolla               |
| Toyota Prius              | #prius                 |
| Toyota Prius+             | #priusplus             |
| Toyota Proace             | #proace                |
| Toyota RAV4               | #toyotarav4            |
| Toyota Yaris              | #toyotayaris           |
| Volkswagen Arteon         | #arteon                |
| Volkswagen Caddy          | #vwcaddy               |
| Volkswagen Golf           | #volkswagengolf        |
| Volkswagen Golf Sportsvan | #golfsportsvan         |
| Volkswagen Passat         | #passat                |
| Volkswagen Polo           | #volkswagenpolo        |
| Volkswagen T-Cross        | #tcross                |
| Volkswagen Tiguan         | #volkswagentiguan      |
| Volkswagen Touran         | #volkswagentouran      |
| Volkswagen Transporter    | #volkswagentransporter |
| Volkswagen T-Roc          | #troc                  |
|                           |                        |

| Car model     | Hashtags      |
|---------------|---------------|
| Volkswagen Up | #volkswagenup |
| Volvo S60     | #s60          |
| Volvo S90     | #s90          |
| Volvo V40     | #volvov40     |
| Volvo V60     | #volvov60     |
| Volvo V90     | #volvov90     |
| Volvo XC40    | #volvoxc40    |
| Volvo XC60    | #xc60         |
| Volvo XC90    | #volvoxc90    |

| Car model           | Search term                    |  |
|---------------------|--------------------------------|--|
| Alfa Romeo Giulia   | alfa romeo giulia              |  |
| Alfa Romeo Mito     | alfa romeo mito                |  |
| Alfa Romeo Stelvio  | alfa romeo stelvio             |  |
| Audi A1             | audi a1                        |  |
| Audi A3             | audi a3                        |  |
| Audi A4             | audi a4                        |  |
| Audi A5             | audi a5                        |  |
| Audi A6             | audi a6                        |  |
| Audi E-tron         | audi e-tron                    |  |
| Audi Q2             | audi q2                        |  |
| Audi Q3             | audi q3                        |  |
| Audi Q5             | audi q5                        |  |
| BMW 1-serie         | bmw 1-serie                    |  |
| BMW 2-serie         | bmw 2-serie                    |  |
| BMW 2-serie Tourer  | bmw 2-serie tourer             |  |
| BMW 3-serie         | bmw 3-serie                    |  |
| BMW 4-serie         | bmw 4-serie                    |  |
| BMW 5-serie         | bmw 5-serie                    |  |
| BMW 6-serie GT      | bmw 6-serie gt                 |  |
| BMW 7-serie         | bmw 7-serie                    |  |
| BMW 8-serie         | bmw 8-serie                    |  |
| BMW i3              | bmw i3                         |  |
| BMW X1              | bmw x1                         |  |
| BMW X2              | bmw x2                         |  |
| BMW X3              | bmw x3                         |  |
| BMW X4              | bmw x4                         |  |
| BMW X5              | bmw x5                         |  |
| BMW Z4              | bmw z4                         |  |
| Citroön C2 Aircross | citroën c3 aircross+citroen c3 |  |
| Citroën C3 Aircross | aircross                       |  |
| Citroën C1          | citroën c1+citroen c1          |  |
|                     |                                |  |

### Appendix 3. 200 car models and their related search terms

(Continued)

| (continued)            |                                 |
|------------------------|---------------------------------|
| Car model              | Search term                     |
| Citroën C3             | citroën c3+citroen c3           |
| Citroën C4 Cactus      | citroën c4 cactus+citroen c4    |
| Citroen c4 cactus      | cactus                          |
| Citroën C4 SpaceTourer | citroën c4 space tourer         |
|                        | +citroen c4 space tourer        |
| Citroën C5 Aircross    | citroën c5 aircross+citroen c5- |
| Citroen CS Ancross     | aircross                        |
| Dacia Duster           | dacia duster                    |
| Dacia Lodgy            | dacia lodgy                     |
| Dacia Logan            | dacia logan                     |
| Dacia Sandero          | dacia sandero                   |
| DS3 Crossback          | ds3 crossback                   |
| DS7 Crossback          | ds7 crossback                   |
| Fiat 500               | fiat 500                        |
| Fiat 500X              | fiat 500x                       |
| Fiat Panda             | fiat panda                      |
| Fiat Tipo              | fiat tipo                       |
| Ford C-MAX             | ford c-max                      |
| Ford EcoSport          | ford ecosport                   |
| Ford Fiesta            | ford fiesta                     |
| Ford Focus             | ford focus                      |
| Ford Ka+               | ford ka+                        |
| Ford Kuga              | ford kuga                       |
| Ford Mondeo            | ford mondeo                     |
| Ford Transit Custom    | ford transit custom             |
| Honda Civic            | honda civic                     |
| Honda CR-V             | honda cr-v                      |
| Honda HR-V             | honda hr-v                      |
| Honda Jazz             | honda jazz                      |
| Hyundai i10            | hyundai i10                     |
| Hyundai i20            | hyundai i20                     |
| Hyundai i30            | hyundai i30                     |
|                        |                                 |

| Car model                     | Search term                   |
|-------------------------------|-------------------------------|
| Hyundai Ioniq                 | hyundai ioniq                 |
| Hyundai Kona                  | hyundai kona                  |
| Hyundai Tucson                | hyundai tucson                |
| Jaguar I-Pace                 | jaguar i-pace                 |
| Jaguar XE                     | jaguar xe                     |
| Jeep Compass                  | jeep compass                  |
| Jeep Renegade                 | jeep renegade                 |
| Kia Ceed                      | kia ceed                      |
| Kia Niro                      | kia niro                      |
| Kia Optima                    | kia optima                    |
| Kia Picanto                   | kia picanto                   |
| Kia Proceed                   | kia proceed                   |
| Kia Rio                       | kia rio                       |
| Kia Sportage                  | kia sportage                  |
| Kia Stonic                    | kia stonic                    |
| Land Rover Discovery Sport    | land rover discovery sport    |
| Land Rover Range Rover        | land rover range rover        |
| Land Rover Range Rover Evoque | land rover range rover evoque |
| Land Rover Range Rover Sport  | land rover range rover sport  |
| Land Rover Range Rover Velar  | land rover range rover velar  |
| Lexus CT                      | lexus ct                      |
| Lexus ES                      | lexus es                      |
| Lexus UX                      | lexus ux                      |
| Mazda 2                       | mazda 2                       |
| Mazda 3                       | mazda 3                       |
| Mazda 6                       | mazda 6                       |
| Mazda CX-3                    | mazda cx-3                    |
| Mazda CX-30                   | mazda cx-30                   |
| Mazda CX-5                    | mazda cx-5                    |
| Mazda MX-5                    | mazda mx-5                    |
| Mercedes-Benz A-klasse        | mercedes-benz a-klasse        |
| Mercedes-Benz B-klasse        | mercedes-benz b-klasse        |

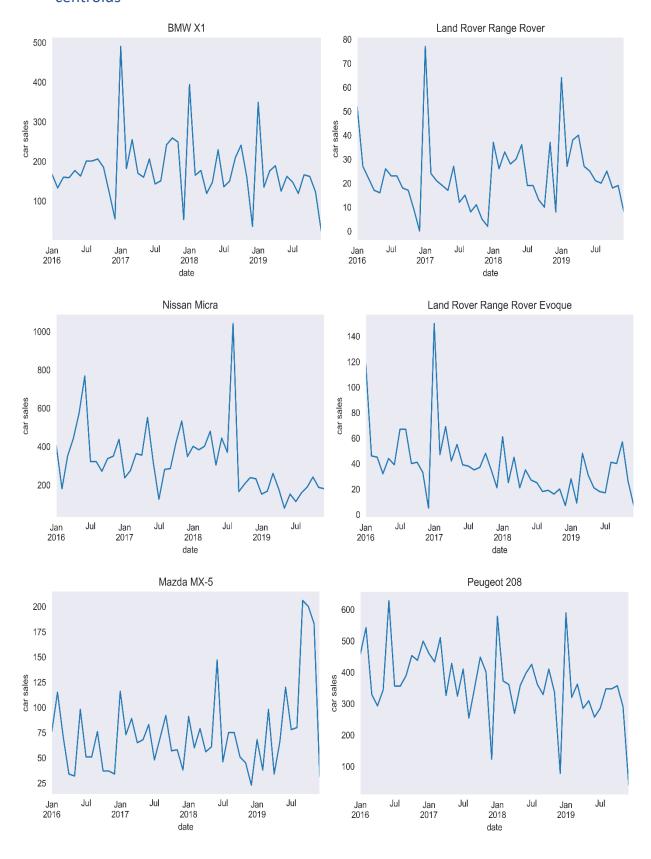
| Car model                | Search term              |
|--------------------------|--------------------------|
| Mercedes-Benz C-klasse   | mercedes-benz c-klasse   |
| Mercedes-Benz CLA        | mercedes-benz cla        |
| Mercedes-Benz E-klasse   | mercedes-benz e-klasse   |
| Mercedes-Benz GLA        | mercedes-benz gla        |
| Mercedes-Benz GLC        | mercedes-benz glc        |
| Mercedes-Benz GLE        | mercedes-benz gle        |
| Mercedes-Benz S-klasse   | mercedes-benz s-klasse   |
| Mercedes-Benz Sprinter   | mercedes-benz sprinter   |
| Mercedes-Benz Vito       | mercedes-benz vito       |
| Mercedes-Benz V-klasse   | mercedes-benz v-klasse   |
| MG ZS                    | mg zs                    |
| Mini Clubman             | mini clubman             |
| Mini Countryman          | mini cooper              |
| Mini Mini                | mini countryman          |
| Mitsubishi ASX           | mitsubishi asx           |
| Mitsubishi Eclipse Cross | mitsubishi eclipse cross |
| Mitsubishi Outlander     | mitsubishi outlander     |
| Mitsubishi Space Star    | mitsubishi space star    |
| Nissan Juke              | nissan juke              |
| Nissan Leaf              | nissan leaf              |
| Nissan Micra             | nissan micra             |
| Nissan Qashqai           | nissan qashqai           |
| Nissan X-Trail           | nissan x-trial           |
| Opel Adam                | opel adam                |
| Opel Ampera-e            | opel ampera-e            |
| Opel Astra               | opel astra               |
| Opel Corsa               | opel corsa               |
| Opel Crossland X         | opel crossland x         |
| Opel Grandland X         | opel grandland           |
| Opel Insignia            | opel insignia            |
| Opel Karl                | opel karl                |
| Opel Mokka               | opel mokka               |
|                          |                          |

| Car model        | Search term                   |
|------------------|-------------------------------|
| Opel Movano      | opel movano                   |
| Peugeot 108      | peugeot 108                   |
| Peugeot 2008     | peugeot 2008                  |
| Peugeot 208      | peugeot 208                   |
| Peugeot 3008     | peugeot 3008                  |
| Peugeot 308      | peugeot 308                   |
| Peugeot 5008     | peugeot 5008                  |
| Peugeot 508      | peugeot 508                   |
| Peugeot Rifter   | peugeot rifter                |
| Porsche 911      | porsche 911                   |
| Porsche Cayenne  | porsche cayenne               |
| Porsche Macan    | porsche macan                 |
| Porsche Panamera | porsche panamera              |
| Renault Captur   | renault captur                |
| Renault Clio     | renault clio                  |
| Renault Espace   | renault espace                |
| Renault Kadjar   | renault kadjar                |
| Ponoult Mégano   | renault mégane+renault        |
| Renault Mégane   | megane                        |
| Renault Scénic   | Renault scénic+renault scenic |
| Renault Talisman | renault talisman              |
| Renault Twingo   | renault twingo                |
| Renault Zoe      | renault zoe                   |
| Seat Arona       | seat arona                    |
| Seat Ateca       | seat ateca                    |
| Seat Ibiza       | seat ibiza                    |
| Seat Leon        | seat leon                     |
| Seat Mii         | seat mii                      |
| Seat Tarraco     | seat tarraco                  |
| Skoda Citigo     | skoda citigo                  |
| Skoda Fabia      | skoda fabia                   |
| Skoda Karoq      | skoda karoq                   |
|                  |                               |

| (Continued)               |                           |
|---------------------------|---------------------------|
| Car model                 | Search term               |
| Skoda Kodiaq              | skoda kodiaq              |
| Skoda Octavia             | skoda octavia             |
| Skoda Rapid               | skoda rapid               |
| Skoda Scala               | skoda scala               |
| Skoda Superb              | skoda superb              |
| Smart Forfour             | smart forfour             |
| Subaru Forester           | subaru forester           |
| Subaru XV                 | subaru xv                 |
| Suzuki Baleno             | suzuki baleno             |
| Suzuki Celerio            | suzuki celerio            |
| Suzuki Ignis              | suzuki ignis              |
| Suzuki Jimny              | suzuki jimny              |
| Suzuki S-Cross            | suzuki s-cross            |
| Suzuki Swift              | suzuki swift              |
| Tesla Model 3             | tesla model 3             |
| Tesla Model S             | tesla model s             |
| Tesla Model X             | tesla model x             |
| Toyota Auris              | toyota auris              |
| Toyota Aygo               | toyota aygo               |
| Toyota C-HR               | toyota c-hr               |
| Toyota Corolla            | toyota corolla            |
| Toyota Prius              | toyota prius              |
| Toyota Prius+             | toyota prius s+           |
| Toyota Proace             | toyota proace             |
| Toyota RAV4               | toyota rav4               |
| Toyota Yaris              | toyota yaris              |
| Volkswagen Arteon         | volkswagen arteon         |
| Volkswagen Caddy          | volkswagen caddy          |
| Volkswagen Golf           | volkswagen golf           |
| Volkswagen Golf Sportsvan | volkswagen golf sportsvan |
| Volkswagen Passat         | volkswagen passat         |
| Volkswagen Polo           | volkswagen polo           |
|                           |                           |

| Car model              | Search term            |
|------------------------|------------------------|
| Volkswagen T-Cross     | volkswagen t-cross     |
| Volkswagen Tiguan      | volkswagen tiguan      |
| Volkswagen Touran      | volkswagen touran      |
| Volkswagen Transporter | volkswagen transporter |
| Volkswagen T-Roc       | volkswagen t-roc       |
| Volkswagen Up          | volkswagen up          |
| Volvo S60              | volvo s60              |
| Volvo S90              | volvo s90              |
| Volvo V40              | volvo v40              |
| Volvo V60              | volvo v60              |
| Volvo V90              | volvo v90              |
| Volvo XC40             | volvo xc40             |
| Volvo XC60             | volvo xc60             |
| Volvo XC90             | volvo xc90             |

Appendix 4. Clustering: Car sales from January 2016 until December 2019 of the cluster centroids





| Cluster number | Car model                          |
|----------------|------------------------------------|
| 1              | Land Rover Range Rover             |
| 1              | Audi A1                            |
| 1              | Audi A3                            |
| 1              | Audi A6                            |
| 1              | Audi Q3                            |
| 1              | BMW 2-serie                        |
| 1              | BMW 3-serie                        |
| 1              | BMW 7-serie                        |
| 1              | BMW X4                             |
| 1              | BMW Z4                             |
| 1              | Citroën C4 Cactus                  |
| 1              | Dacia Lodgy                        |
| 1              | Dacia Sandero                      |
| 1              | Ford Fiesta                        |
| 1              | Ford Kuga                          |
| 1              | Hyundai i10                        |
| 1              | Kia Optima                         |
| 1              | Kia Sportage                       |
| 1              | Land Rover Range Rover Sport       |
| -              | Mazda 2                            |
| 1              | Mazda 3                            |
| 1              | Mazda CX-3                         |
| 1              | Mazda CX-5                         |
| 1              | Mercedes-Benz Vito                 |
| 1              | Mini Countryman                    |
| 1              | Mitsubishi Outlander               |
| 1              | Nissan Leaf                        |
| 1              | Nissan Qashqai                     |
| 1              | Opel Adam                          |
| 1              | •                                  |
| 1              | Opel Astra<br>Peugeot 308          |
| 1              | Peugeot 508                        |
| 1              | -                                  |
| 1              | Porsche Cayenne                    |
| _              | Renault Mégane<br>Renault Talisman |
| 1              |                                    |
| 1              | Seat Ibiza                         |
| 1              | Skoda Octavia                      |
| 1              | Smart Forfour                      |
| 1              | Subaru XV                          |
| 1              | Tesla Model S                      |
| 1              | Toyota Aygo                        |
| 1              | Volkswagen Golf                    |
| 1              | Volkswagen Passat                  |
| 1              | Volkswagen Polo                    |
| 1              | Volkswagen Transporter             |

## Appendix 5. Clustering: Cluster distribution of the car models

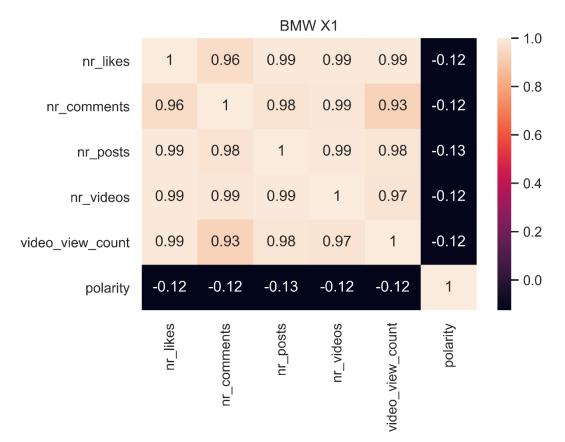
| Cluster number | Car model                  |
|----------------|----------------------------|
| 1              | Volvo V40                  |
| 1              | Volvo XC90                 |
| 2              | Nissan Micra               |
| 2              | Audi A4                    |
| 2              | Toyota Prius               |
| 2              | ,<br>Volkswagen Caddy      |
| 2              | Audi Q5                    |
| 2              | BMW 2-serie Tourer         |
| 2              | Volkswagen Touran          |
| 2              | BMW X3                     |
| 2              | Volvo V60                  |
| 2              | Fiat 500X                  |
| 2              | Ford Focus                 |
| 2              | Ford Mondeo                |
| 2              | Honda CR-V                 |
| 2              | Kia Ceed                   |
| 2              | Land Rover Discovery Sport |
| 2              | Mazda 6                    |
| 2              | Mercedes-Benz A-klasse     |
| 2              | Mercedes-Benz CLA          |
| 2              | Mercedes-Benz GLC          |
| 2              | Mercedes-Benz S-klasse     |
| 2              | Mercedes-Benz V-klasse     |
| 2              | Mitsubishi ASX             |
| 2              | Nissan X-Trail             |
| 2              | Porsche Macan              |
| 2              | Renault Scénic             |
| 2              |                            |
|                | Renault Twingo             |
| 2              | Skoda Citigo               |
| 2              | Suzuki Celerio             |
| 2              | Suzuki Jimny               |
| 2              | Suzuki Vitara              |
| 3              | Seat Leon                  |
| 3              | Mercedes-Benz C-klasse     |
| 3              | Volkswagen Tiguan          |
| 3              | Mini Clubman               |
| 3              | BMW 4-serie                |
| 3              | Volvo S60                  |
| 3              | BMW X5                     |
| 3              | Fiat Panda                 |
| 3              | Ford C-MAX                 |
| 3              | Renault Clio               |
| 3              | Honda Jazz                 |
| 3              | Renault Kadjar             |
| 3              | Renault Zoe                |
| 3              | Seat Mii                   |

| (Continued)    |                               |
|----------------|-------------------------------|
| Cluster number | Car model                     |
| 3              | Skoda Fabia                   |
| 3              | Skoda Rapid                   |
| 3              | Suzuki Swift                  |
| 4              | Peugeot 208                   |
| 4              | Ford EcoSport                 |
| 4              | Audi A5                       |
| 4              | Toyota Yaris                  |
| 4              | Porsche Panamera              |
| 4              | Volkswagen Golf Sportsvan     |
| 4              | Honda Civic                   |
| 4              | Renault Espace                |
| 4              | Hyundai i20                   |
| 4              | Kia Picanto                   |
| 4              | Citroën C1                    |
| 4              | Dacia Duster                  |
| 4              | Lexus CT                      |
| 4              | Peugeot 108                   |
| 5              | BMW X1                        |
| 5              | Mercedes-Benz B-klasse        |
| 5              | Mercedes-Benz GLA             |
| 5              | BMW 5-serie                   |
| 5              | Volkswagen Up                 |
| 5              | Mini Mini                     |
| 5              | Mitsubishi Space Star         |
| 5              | BMW i3                        |
| 5              | Opel Corsa                    |
| 5              | Opel Mokka                    |
| 5              | Fiat 500                      |
| 5              | Peugeot 2008                  |
| 6              | Mazda MX-5                    |
| 6              | Peugeot 5008                  |
| 6              | Mercedes-Benz GLE             |
| 6              | Honda HR-V                    |
| 6              | Mercedes-Benz Sprinter        |
| 6              | Skoda Superb                  |
| 6              | Dacia Logan                   |
| 7              | Toyota RAV4                   |
| ,<br>7         | Jeep Renegade                 |
| ,<br>7         | Opel Insignia                 |
| 7              | Opel Karl                     |
| 7              | Hyundai i30                   |
| 8              | Land Rover Range Rover Evoque |
|                |                               |
| 8              | Citroën C3<br>Hyundai Tuccon  |
| 8              | Hyundai Tucson                |
| 8              | Suzuki S-Cross                |
| 8              | Jaguar XE                     |

| (Continued)    |                        |
|----------------|------------------------|
| Cluster number | Car model              |
| 9              | Renault Captur         |
| 9              | Kia Rio                |
| 9              | Mercedes-Benz E-klasse |
| 10             | Volvo XC60             |
| 10             | Nissan Juke            |
| 11             | Toyota Auris           |
| 11             | Alfa Romeo Mito        |
| 12             | Subaru Forester        |
| 12             | BMW 1-serie            |
|                |                        |

| Car model                     | <i>VIF</i><br>nr_likes | VIF<br>nr_comments | VIF<br>nr_posts | <i>VIF</i><br>nr_videos | <i>VIF</i><br>video_view_count | <i>VIF</i><br>polarity | Average<br>VIF |
|-------------------------------|------------------------|--------------------|-----------------|-------------------------|--------------------------------|------------------------|----------------|
| BMW X1                        | 460,67                 | 305,25             | 178,78          | 778,12                  | 354,58                         | 1,02                   | 346,40333      |
| Land Rover Range Rover        | 8                      | 8                  | 8               | 8                       | 8                              | 8                      | 8              |
| Land Rover Range Rover Evoque | 8                      | 8                  | 8               | 8                       | 8                              | 150,94                 | 8              |
| Mazda MX-5                    | 39516                  | 2072               | 5980            | 13404                   | 200                            | 1,04                   | 10195,507      |
| Nissan Micra                  | 8                      | 8                  | 8               | 8                       | 8                              | 8                      | 8              |
| Peugeot 208                   | 12895290               | 1238991            | 1323633         | 4940351                 | 205208,9                       | 1,29                   | 3433912,5      |
| Renault Captur                | 8                      | 8                  | 8               | 8                       | 8                              | 8                      | 8              |
| Seat Leon                     | 8                      | 8                  | 8               | 8                       | 8                              | 8                      | 8              |
| Subaru Forester               | 86835                  | 8                  | 87186           | 8                       | 8                              | 5,53                   | 8              |
| Toyota Auris                  | 268,8                  | 263,7              | 1517,51         | 1945,21                 | 42,46                          | 1,06                   | 673,12333      |
| Toyota RAV4                   | 8145433                | 1738018            | 2014538         | 9475561                 | 666342,7                       | 1,18                   | 3673315,6      |
| Volvo XC60                    | 8                      | 8                  | 8               | 8                       | 8                              | 8                      | 8              |

### Appendix 6. VIF

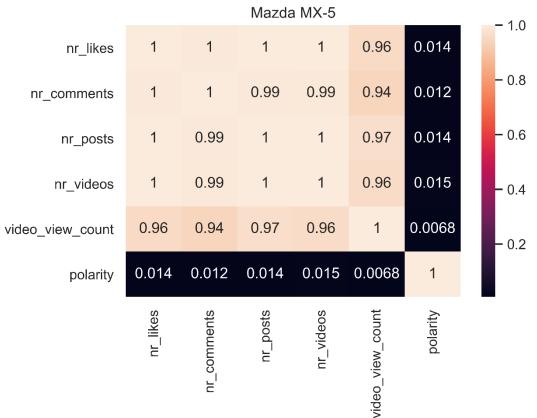


#### Appendix 7. Pearson correlation between the Instagram features

Land Rover Range Rover

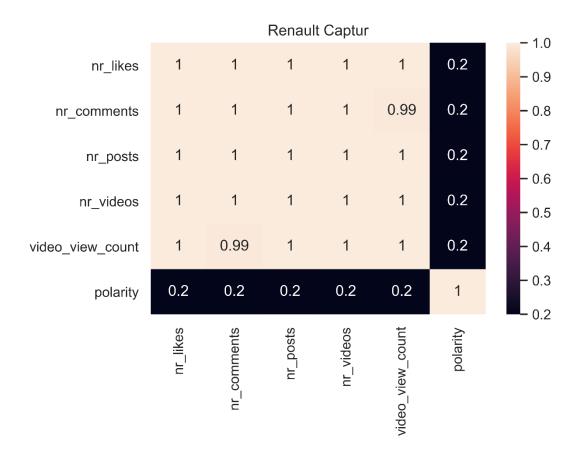
|                  |          | Land        | Rover    | Range R   | over             |          |   | - 1.0 |
|------------------|----------|-------------|----------|-----------|------------------|----------|---|-------|
| nr_likes         | 1        | 0.71        | 0.98     | 0.97      | 0.97             | 0.27     |   | 1.0   |
| nr_comments      | 0.71     | 1           | 0.55     | 0.52      | 0.52             | 0.87     |   | - 0.8 |
| nr_posts         | 0.98     | 0.55        | 1        | 1         | 1                | 0.062    |   | - 0.6 |
| nr_videos        | 0.97     | 0.52        | 1        | 1         | 1                | 0.032    |   | - 0.4 |
| video_view_count | 0.97     | 0.52        | 1        | 1         | 1                | 0.032    |   | - 0.2 |
| polarity         | 0.27     | 0.87        | 0.062    | 0.032     | 0.032            | 1        |   | - 0.2 |
|                  | nr_likes | nr_comments | nr_posts | nr_videos | video_view_count | polarity | _ |       |

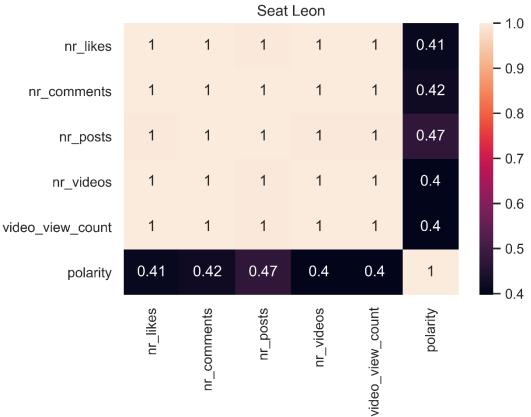


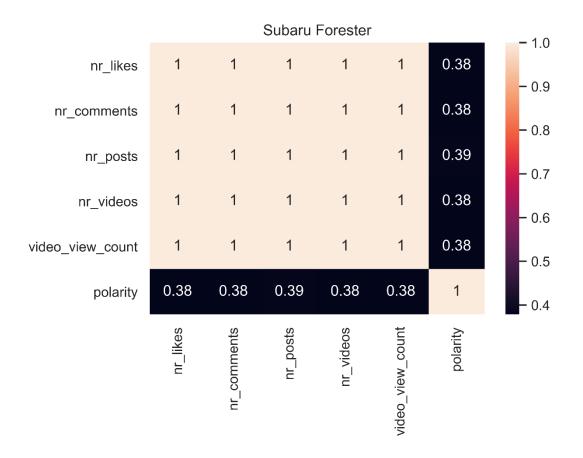


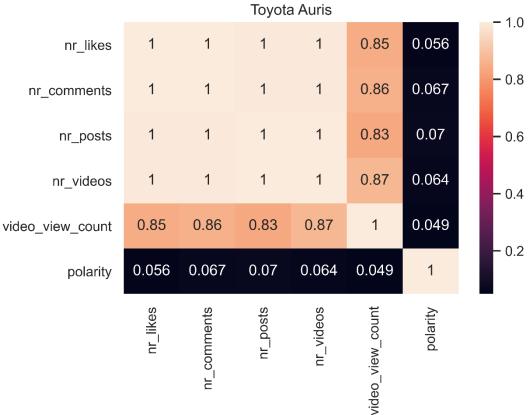
|                  |          |             | Nissar   | n Micra   |                  |          | - 1.0 |
|------------------|----------|-------------|----------|-----------|------------------|----------|-------|
| nr_likes         | 1        | 1           | 1        | 0.99      | 0.94             | 0.0026   | - 1.0 |
| nr_comments      | 1        | 1           | 1        | 0.99      | 0.94             | 0.0011   | - 0.8 |
| nr_posts         | 1        | 1           | 1        | 0.99      | 0.94             | 0.0058   | - 0.6 |
| nr_videos        | 0.99     | 0.99        | 0.99     | 1         | 0.97             | 0.0034   | - 0.4 |
| video_view_count | 0.94     | 0.94        | 0.94     | 0.97      | 1                | 0.0067   | - 0.2 |
| polarity         | 0.0026   | 0.0011      | 0.0058   | 0.0034    | 0.0067           | 1        |       |
|                  | nr_likes | nr_comments | nr_posts | nr_videos | video_view_count | polarity | _     |

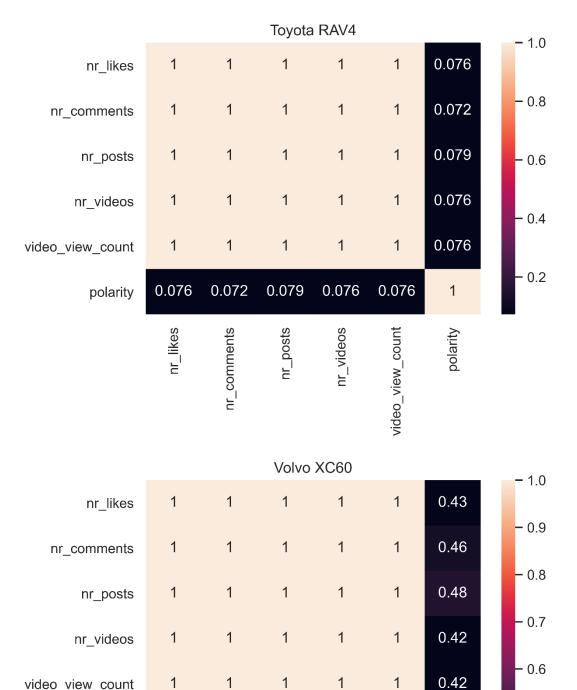
|                  |          |             | Peuge    | ot 208    |                  |          | - 1.0 |
|------------------|----------|-------------|----------|-----------|------------------|----------|-------|
| nr_likes         | 1        | 1           | 1        | 1         | 1                | 0.021    | 1.0   |
| nr_comments      | 1        | 1           | 1        | 1         | 0.99             | 0.022    | - 0.8 |
| nr_posts         | 1        | 1           | 1        | 1         | 1                | 0.021    | - 0.6 |
| nr_videos        | 1        | 1           | 1        | 1         | 1                | 0.021    | - 0.4 |
| video_view_count | 1        | 0.99        | 1        | 1         | 1                | 0.021    | - 0.2 |
| polarity         | 0.021    | 0.022       | 0.021    | 0.021     | 0.021            | 1        |       |
|                  | nr_likes | nr_comments | nr_posts | nr_videos | video_view_count | polarity |       |











0.42

nr\_videos

0.42

video\_view\_count

video\_view\_count

polarity

0.43

nr\_likes

0.46

nr\_comments

0.48

nr\_posts

- 0.5

polarity

1

101

|                        |      | -     |          |
|------------------------|------|-------|----------|
| Car model              | LSTM | Batch | Learning |
|                        | size | size  | rate     |
| BMW X1                 | 128  | 10    | 0,01     |
| Land Rover Range Rover | 32   | 11    | 0,1      |
| Land Rover Range Rover | 128  | 11    | 0,3      |
| Evoque                 | 120  |       | 0,0      |
| Mazda MX-5             | 32   | 10    | 0,3      |
| Nissan Micra           | 64   | 8     | 0,3      |
| Peugeot 208            | 8    | 8     | 0,2      |
| Renault Captur         | 64   | 2     | 0,3      |
| Seat Leon              | 64   | 6     | 0,1      |
| Subaru Forester        | 64   | 10    | 0,2      |
| Toyota Auris           | 64   | 6     | 0,1      |
| Toyota RAV4            | 128  | 4     | 0,2      |
| Volvo XC60             | 64   | 11    | 0,01     |

## Appendix 8. Hyperparameters of *LSTM* using dataset 1

| Car model                        | LSTM | Batch | Learning |
|----------------------------------|------|-------|----------|
|                                  | size | size  | rate     |
| BMW X1                           | 128  | 4     | 0,01     |
| Land Rover Range Rover           | 32   | 11    | 0,01     |
| Land Rover Range Rover<br>Evoque | 64   | 8     | 0,3      |
| Mazda MX-5                       | 32   | 6     | 0,3      |
| Nissan Micra                     | 128  | 10    | 0,01     |
| Peugeot 208                      | 64   | 10    | 0,3      |
| Renault Captur                   | 128  | 4     | 0,3      |
| Seat Leon                        | 128  | 2     | 0,01     |
| Subaru Forester                  | 64   | 6     | 0,3      |
| Toyota Auris                     | 128  | 11    | 0,2      |
| Toyota RAV4                      | 64   | 2     | 0,3      |
| Volvo XC60                       | 32   | 10    | 0,01     |

## Appendix 9. Hyperparameters of *LSTM* using dataset 2

| Car model                        | LSTM | Batch | Learning |
|----------------------------------|------|-------|----------|
|                                  | size | size  | rate     |
| BMW X1                           | 128  | 4     | 0,01     |
| Land Rover Range Rover           | 16   | 1     | 0,3      |
| Land Rover Range Rover<br>Evoque | 128  | 10    | 0,3      |
| Mazda MX-5                       | 128  | 11    | 0,01     |
| Nissan Micra                     | 128  | 10    | 0,3      |
| Peugeot 208                      | 64   | 6     | 0,1      |
| Renault Captur                   | 64   | 2     | 0,3      |
| Seat Leon                        | 128  | 4     | 0,1      |
| Subaru Forester                  | 32   | 10    | 0,3      |
| Toyota Auris                     | 8    | 8     | 0,2      |
| Toyota RAV4                      | 32   | 2     | 0,3      |
| Volvo XC60                       | 8    | 1     | 0,1      |

# Appendix 10. Hyperparameters of *LSTM* using dataset 3

| Car model                     | LSTM size | Batch size | Learning rate |
|-------------------------------|-----------|------------|---------------|
| BMW X1                        | 32        | 10         | 0,01          |
| Land Rover Range Rover        | 8         | 11         | 0,2           |
| Land Rover Range Rover Evoque | 8         | 4          | 0,2           |
| Mazda MX-5                    | 128       | 8          | 0,3           |
| Nissan Micra                  | 16        | 10         | 0,01          |
| Peugeot 208                   | 128       | 11         | 0,3           |
| Renault Captur                | 64        | 8          | 0,01          |
| Seat Leon                     | 8         | 1          | 0,3           |
| Subaru Forester               | 128       | 8          | 0,2           |
| Toyota Auris                  | 32        | 8          | 0,1           |
| Toyota RAV4                   | 16        | 1          | 0,01          |
| Volvo XC60                    | 8         | 2          | 0,2           |

## Appendix 11. Hyperparameter values of *LSTM* using dataset 4

| Car model                     | р | d | q | Р | D | Q | 5  |
|-------------------------------|---|---|---|---|---|---|----|
| BMW X1                        | 0 | 0 | 4 | 0 | 0 | 0 | 12 |
| Land Rover Range Rover        | 0 | 1 | 4 | 0 | 0 | 0 | 12 |
| Land Rover Range Rover Evoque | 0 | 0 | 1 | 0 | 0 | 0 | 12 |
| Mazda MX-5                    | 0 | 0 | 2 | 0 | 0 | 0 | 12 |
| Nissan Micra                  | 0 | 0 | 2 | 2 | 0 | 0 | 12 |
| Peugeot 208                   | 0 | 0 | 2 | 1 | 0 | 0 | 12 |
| Renault Captur                | 0 | 0 | 4 | 1 | 0 | 0 | 12 |
| Seat Leon                     | 0 | 0 | 4 | 1 | 0 | 0 | 12 |
| Subaru Forester               | 0 | 0 | 2 | 1 | 0 | 0 | 12 |
| Toyota Auris                  | 0 | 0 | 2 | 1 | 0 | 0 | 12 |
| Toyota RAV4                   | 0 | 0 | 1 | 1 | 0 | 0 | 12 |
| Volvo XC60                    | 0 | 0 | 4 | 0 | 0 | 0 | 12 |

## Appendix 12. Hyperparameter values of ARIMA using dataset 4

| Car model          | MAE         | RMSE        |
|--------------------|-------------|-------------|
| Alfa Romeo Mito    | 19,16853172 | 22,34119731 |
| Audi A1            | 194,1533983 | 202,8615189 |
| Audi A3            | 289,6633451 | 309,1393044 |
| Audi A4            | 104,7231532 | 130,8617898 |
| Audi A5            | 63,41043571 | 71,73124888 |
| Audi A6            | 62,46635613 | 65,59004511 |
| Audi Q3            | 102,8930959 | 112,5473266 |
| Audi Q5            | 10,77308993 | 14,61737087 |
| BMW 1-serie        | 226,1861641 | 327,0372408 |
| BMW 2-serie        | 183,0399817 | 223,5389284 |
| BMW 2-serie Tourer | 134,5714374 | 144,3875082 |
| BMW 3-serie        | 508,3445333 | 540,6804823 |
| BMW 4-serie        | 125,6340427 | 152,5337587 |
| BMW 5-serie        | 84,8719619  | 115,4167834 |
| BMW 7-serie        | 31,51195183 | 33,42349353 |
| BMW i3             | 233,2069107 | 276,8032271 |
| BMW X1             | 71,33924742 | 98,50176561 |
| BMW X3             | 93,22553438 | 112,3767811 |
| BMW X4             | 46,90825169 | 47,82254301 |
| BMW X5             | 87,07650069 | 103,4034488 |
| BMW Z4             | 31,84770371 | 34,4652456  |
| Citroën C1         | 296,1351136 | 316,8682532 |
| Citroën C3         | 301,5684126 | 325,4519842 |
| Citroën C4 Cactus  | 100,4886157 | 104,4615617 |
| Dacia Duster       | 35,43454848 | 38,16553228 |
| Dacia Lodgy        | 27,51198711 | 36,41816541 |
| Dacia Logan        | 47,21845584 | 54,45667754 |
| Dacia Sandero      | 65,27454375 | 73,03058197 |
| Fiat 500           | 151,8675098 | 159,1802365 |
| Fiat 500X          | 28,89106003 | 36,16898168 |
| Fiat Panda         | 37,46257288 | 40,04095575 |
| Ford C-MAX         | 32,96078725 | 36,86690155 |
| Ford EcoSport      | 161,7236138 | 177,9296782 |
| Ford Fiesta        | 440,7832187 | 476,4513299 |
| Ford Focus         | 547,8002065 | 632,249468  |
| Ford Kuga          | 194,4268719 | 233,1514893 |
| Ford Mondeo        | 50,0833382  | 63,09055427 |
| Honda Civic        | 23,16998816 | 26,93175883 |
| Honda CR-V         | 26,20418096 | 30,81760668 |
| Honda HR-V         | 11,34166064 | 12,79806021 |
| Honda Jazz         | 33,877479   | 37,19406495 |
| Hyundai i10        | 291,4215878 | 311,8247219 |
| Hyundai i20        | 71,94433854 | 87,54348718 |
| Hyundai i30        | 23,4269263  | 27,43991866 |
| Hyundai Tucson     | 44,37953861 | 50,23041206 |

## Appendix 13. Performance of *ARIMA* using dataset 4

| (Continued)                  |             |             |
|------------------------------|-------------|-------------|
| Car model                    | MAE         | RMSE        |
| Jaguar XE                    | 47,54191897 | 52,51981798 |
| Jeep Renegade                | 23,23111851 | 26,90513538 |
| Kia Ceed                     | 78,44299831 | 90,24839851 |
| Kia Optima                   | 16,78751766 | 17,91127041 |
| Kia Picanto                  | 416,6565639 | 453,9355596 |
| Kia Rio                      | 27,58697269 | 33,10486987 |
| Kia Sportage                 | 73,99810536 | 77,79544467 |
| Land Rover Discovery Sport   | 14,09672525 | 16,23540032 |
| Land Rover Range Rover       | 26,99986161 | 27,41557107 |
| Land Rover Range Rover       | 20,31601088 | 23,86092923 |
| Evoque                       |             |             |
| Land Rover Range Rover Sport | 44,98492433 | 45,94577144 |
| Lexus CT                     | 12,22097778 | 12,77982885 |
| Mazda 2                      | 119,2154326 | 128,5892136 |
| Mazda 3                      | 470,5681897 | 488,8941561 |
| Mazda 6                      | 22,70726438 | 25,26311878 |
| Mazda CX-3                   | 91,01085062 | 96,71093583 |
| Mazda CX-5                   | 240,4380848 | 266,3165611 |
| Mazda MX-5                   | 31,82571822 | 36,58866692 |
| Mercedes-Benz A-klasse       | 197,9752424 | 216,9813042 |
| Mercedes-Benz B-klasse       | 123,6711832 | 145,6182171 |
| Mercedes-Benz C-klasse       | 174,0605579 | 202,3312826 |
| Mercedes-Benz CLA            | 222,086651  | 254,478744  |
| Mercedes-Benz E-klasse       | 90,71128063 | 107,7487898 |
| Mercedes-Benz GLA            | 77,13471361 | 92,83731777 |
| Mercedes-Benz GLC            | 104,5142247 | 121,84759   |
| Mercedes-Benz GLE            | 12,68447644 | 14,48842655 |
| Mercedes-Benz S-klasse       | 10,96008656 | 12,32091849 |
| Mercedes-Benz Sprinter       | 222,2083296 | 269,9203353 |
| Mercedes-Benz Vito           | 84,43076626 | 89,57106866 |
| Mercedes-Benz V-klasse       | 27,10034029 | 33,57686821 |
| Mini Clubman                 | 85,1739881  | 87,86848917 |
| Mini Countryman              | 130,075961  | 138,2402435 |
| Mini Mini                    | 482,225687  | 500,1651878 |
| Mitsubishi ASX               | 102,7979573 | 113,0824645 |
| Mitsubishi Outlander         | 139,3636966 | 147,3932941 |
| Mitsubishi Space Star        | 207,3825288 | 252,1205745 |
| Nissan Juke                  | 134,5656761 | 185,8592069 |
| Nissan Leaf                  | 365,4289525 | 400,5364058 |
| Nissan Micra                 | 130,3432677 | 166,8618044 |
| Nissan Qashqai               | 317,60721   | 331,3906167 |
| Nissan X-Trail               | 86,5161861  | 93,4818119  |
| Opel Adam                    | 20,72524221 | 21,8966095  |
| Opel Astra                   | 527,020403  | 544,7990999 |
| Opel Corsa                   | 381,5613907 | 548,1569909 |
| Opel Insignia                | 84,86815133 | 111,450964  |
|                              |             |             |

| Car model                 | MAE         | RMSE                |
|---------------------------|-------------|---------------------|
| Opel Karl                 | 864,3713517 | 956,7801923         |
| Opel Mokka                | 47,83843529 | 53 <i>,</i> 5993458 |
| Peugeot 108               | 242,1370701 | 251,1754272         |
| Peugeot 2008              | 128,8142961 | 149,0660777         |
| Peugeot 208               | 252,9264603 | 310,3709046         |
| Peugeot 308               | 321,0525247 | 332,5626342         |
| Peugeot 5008              | 95,20939502 | 109,6367186         |
| Peugeot 508               | 114,0597086 | 122,0022336         |
| Porsche Cayenne           | 128,6617192 | 135,3254443         |
| Porsche Macan             | 29,76015708 | 32,75428485         |
| Porsche Panamera          | 9,352680199 | 10,57829367         |
| Renault Captur            | 213,6749532 | 226,602179          |
| Renault Clio              | 395,0786074 | 417,8878398         |
| Renault Espace            | 21,34685334 | 24,29798228         |
| Renault Kadjar            | 104,4474314 | 119,9625419         |
| Renault Mégane            | 504,1651816 | 523,5489815         |
| Renault Scénic            | 178,5556877 | 187,1531867         |
| Renault Talisman          | 25,48134956 | 26,26134362         |
| Renault Twingo            | 68,5633706  | 82,59673654         |
| Renault Zoe               | 422,3714671 | 483,8970022         |
| Seat Ibiza                | 285,6774014 | 315,8210385         |
| Seat Leon                 | 92,3749165  | 116,4846271         |
| Seat Mii                  | 45,52908142 | 54,01599965         |
| Skoda Citigo              | 117,7238578 | 134,5341166         |
| Skoda Fabia               | 127,1105967 | 147,0934892         |
| Skoda Octavia             | 408,0426298 | 441,0062598         |
| Skoda Rapid               | 120,0361673 | 125,8495408         |
| Skoda Superb              | 108,1459177 | 129,7859829         |
| Smart Forfour             | 10,91598457 | 13,54845944         |
| Subaru Forester           | 9,839618325 | 13,96594052         |
| Subaru XV                 | 18,19094107 | 19,66285211         |
| Suzuki Celerio            | 104,3484629 | 109,5642289         |
| Suzuki Jimny              | 10,58940349 | 11,24286401         |
| Suzuki S-Cross            | 25,57311865 | 26,70148501         |
| Suzuki Swift              | 215,7222323 | 248,9347383         |
| Suzuki Vitara             | 108,0561684 | 117,5168063         |
| Tesla Model S             | 80,44138209 | 86,95895153         |
| Toyota Auris              | 83,22829917 | 96,20070796         |
| Toyota Aygo               | 384,7403244 | 420,432586          |
| Toyota Prius              | 10,3993055  | 12,27903311         |
| Toyota RAV4               | 98,93312961 | 133,5903332         |
| Toyota Yaris              | 263,3555295 | 326,4607498         |
| Volkswagen Caddy          | 13,20125891 | 16,65051964         |
| Volkswagen Golf           | 827,6115503 | 882,1248339         |
| Volkswagen Golf Sportsvan | 38,8258068  | 47,92690208         |
| Volkswagen Passat         | 138,2141561 | 146,8705081         |

| (Continued)            |             |             |
|------------------------|-------------|-------------|
| Car model              | MAE         | RMSE        |
| Volkswagen Polo        | 1057,942127 | 1188,999481 |
| Volkswagen Tiguan      | 189,3592443 | 213,9525843 |
| Volkswagen Touran      | 64,41230759 | 72,62153602 |
| Volkswagen Transporter | 28,06357695 | 29,13653872 |
| Volkswagen Up          | 192,0766684 | 260,2010248 |
| Volvo S60              | 82,92702978 | 101,419722  |
| Volvo V40              | 232,583158  | 239,7532243 |
| Volvo V60              | 303,2876938 | 366,069724  |
| Volvo XC60             | 46,75268932 | 51,55668035 |
| Volvo XC90             | 62,32995786 | 68,2144774  |

| Car model          | MAE         | RMSE             |
|--------------------|-------------|------------------|
| Alfa Romeo Mito    | 14,18421091 | 14,27467563      |
| Audi A1            | 2938,825203 | 3324,412212      |
| Audi A3            | 5942,981112 | 6609,593559      |
| Audi A4            | 65,52638899 | 86,63387187      |
| Audi A5            | 97,9489054  | 106,4257609      |
| Audi A6            | 1392,948948 | 1473,578589      |
| Audi Q3            | 1799,658427 | 2016,213934      |
| Audi Q5            | 13,58637265 | 19,0874545       |
| BMW 1-serie        | 183,2910287 | 254,2004322      |
| BMW 2-serie        | 2909,843779 | 3398,266546      |
| BMW 2-serie Tourer | 53,53282057 | 62,06899571      |
| BMW 3-serie        | 8005,098479 | 8916,845161      |
| BMW 4-serie        | 65,19615609 | 76,06384901      |
| BMW 5-serie        | 75,50079673 | 88,23740067      |
| BMW 7-serie        | 417,920574  | 466,6234094      |
| BMW i3             | 165,2157963 | 169,9885922      |
| BMW X1             | 55,36737497 | 65,09913562      |
| BMW X3             | 50,09640884 | 67,43720522      |
| BMW X4             | 903,520528  | 1012,295362      |
| BMW X5             | 52,89320265 | 60,15825583      |
| BMW Z4             | 333,7894315 | ,<br>447,9190103 |
| Citroën C1         | 98,61852417 | 103,5698710      |
| Citroën C3         | 78,18916516 | 83,41857158      |
| Citroën C4 Cactus  | 87,58447889 | 90,21878855      |
| Dacia Duster       | 48,68768338 | 53,62624995      |
| Dacia Lodgy        | 23,51698161 | 27,51684135      |
| Dacia Logan        | 88,65372031 | 90,1823326       |
| Dacia Sandero      | 2010,500968 | 2196,947324      |
| Fiat 500           | 154,0091313 | 164,0397316      |
| Fiat 500X          | 10,69517463 | 12,67864487      |
| Fiat Panda         | 13,48250798 | 19,52295791      |
| Ford C-MAX         | 30,73572677 | 30,73707763      |
| Ford EcoSport      | 130,010182  | 137,6288065      |
| Ford Fiesta        | 8063,974533 | 9060,252248      |
| Ford Focus         | 239,7298933 | 341,7330373      |
| Ford Kuga          | 2863,685569 | 3314,678366      |
| Ford Mondeo        | 33,04763086 | 40,85174966      |
| Honda Civic        | 29,79306902 | 30,69392053      |
| Honda CR-V         | 7,669060843 | 12,17882602      |
| Honda HR-V         | 36,1406814  | 37,16689093      |
| Honda Jazz         | 18,82625634 | 22,14920847      |
| Hyundai i10        | 5831,248004 | 6479,135834      |
| Hyundai i20        | 97,86691965 | 102,7410219      |
| Hyundai i30        | 18,02723503 | 102,7410219      |
| •                  |             |                  |
| Hyundai Tucson     | 55,37755694 | 55,60655519      |
|                    |             |                  |

## Appendix 14. Performance of *LSTM* using dataset 4

| (Continued)                  |             |             |
|------------------------------|-------------|-------------|
| Car model                    | MAE         | RMSE        |
| Jaguar XE                    | 24,46841235 | 27,00351952 |
| Jeep Renegade                | 12,06595148 | 12,99693378 |
| Kia Ceed                     | 78,4548645  | 81,94568771 |
| Kia Optima                   | 713,9807797 | 778,7415105 |
| Kia Picanto                  | 773,0930808 | 789,0340724 |
| Kia Rio                      | 16,5106005  | 19,15536213 |
| Kia Sportage                 | 2117,948752 | 2241,783355 |
| Land Rover Discovery Sport   | 5,763035502 | 7,614565388 |
| Land Rover Range Rover       | 461,9728074 | 521,9942632 |
| Land Rover Range Rover       | 16,15034703 | 22,58209836 |
| Evoque                       |             |             |
| Land Rover Range Rover Sport | 577,9698432 | 646,2863913 |
| Lexus CT                     | 16,62481577 | 18,06791694 |
| Mazda 2                      | 2977,651978 | 3447,701166 |
| Mazda 3                      | 158,4168167 | 163,1861797 |
| Mazda 6                      | 7,074017797 | 8,902396565 |
| Mazda CX-3                   | 3385,956611 | 3786,863324 |
| Mazda CX-5                   | 6572,968284 | 7332,914418 |
| Mazda MX-5                   | 36,70963124 | 36,87216036 |
| Mercedes-Benz A-klasse       | 160,9297682 | 196,1310323 |
| Mercedes-Benz B-klasse       | 89,35169656 | 92,44159185 |
| Mercedes-Benz C-klasse       | 62,028365   | 75,77321246 |
| Mercedes-Benz CLA            | 98,99502128 | 122,9266234 |
| Mercedes-Benz E-klasse       | 67,37234497 | 71,41614165 |
| Mercedes-Benz GLA            | 55,04215676 | 57,10969978 |
| Mercedes-Benz GLC            | 32,91017696 | 39,14264388 |
| Mercedes-Benz GLE            | 58,39907728 | 61,46267938 |
| Mercedes-Benz S-klasse       | 2,285565649 | 2,793358856 |
| Mercedes-Benz Sprinter       | 289,5207193 | 290,5141852 |
| Mercedes-Benz Vito           | 2811,166915 | 3184,739372 |
| Mercedes-Benz V-klasse       | 8,622075626 | 8,882771014 |
| Mini Clubman                 | 41,919087   | 53,70159048 |
| Mini Countryman              | 2183,230652 | 2431,444541 |
| Mini Mini                    | 205,0560897 | 216,6989354 |
| Mitsubishi ASX               | 47,00187683 | 57,45933913 |
| Mitsubishi Outlander         | 2929,374709 | 3266,873618 |
| Mitsubishi Space Star        | 148,1788755 | 203,3997226 |
| Nissan Juke                  | 73,1383885  | 97,21238683 |
| Nissan Leaf                  | 11137,4118  | 12559,98494 |
| Nissan Micra                 | 56,01877485 | 63,01354836 |
| Nissan Qashqai               | 5626,308051 | 6257,224691 |
| Nissan X-Trail               | 23,15698448 | 27,18981614 |
| Opel Adam                    | 716,0447946 | 768,1382171 |
| Opel Astra                   | 10909,42035 | 12011,72433 |
| Opel Corsa                   | 281,1054077 | 445,711355  |
| Opel Insignia                | 56,92158944 | 64,20774531 |
|                              |             |             |

| Car model                | MAE         | RMSE        |
|--------------------------|-------------|-------------|
| Opel Karl                | 545,1723393 | 572,6695218 |
| )pel Mokka               | 45,90787724 | 46,91425858 |
| eugeot 108               | 418,9368635 | 457,7387421 |
| eugeot 2008              | 100,0821915 | 121,8015907 |
| eugeot 208               | 440,164517  | 467,0329556 |
| eugeot 308               | 6607,494727 | 7135,526095 |
| eugeot 5008              | 405,5892639 | 417,3899491 |
| eugeot 508               | 1919,900652 | 2128,662358 |
| orsche Cayenne           | 2043,878148 | 2329,291373 |
| orsche Macan             | 7,393605777 | 11,27077133 |
| orsche Panamera          | 22,8273934  | 23,86632638 |
| enault Captur            | 120,9352984 | 134,9056668 |
| Renault Clio             | 239,9393572 | 275,7086584 |
| enault Espace            | 10,6605602  | 10,68356302 |
| enault Kadjar            | 71,06450326 | 75,69921483 |
| enault Mégane            | 230,1851897 | 238,5168161 |
| enault Scénic            | 112,1531867 | 119,1118197 |
| enault Talisman          | 502,2468778 | 567,5936972 |
| enault Twingo            | 43,72544752 | 55,84813581 |
| enault Zoe               | 379,1947981 | 383,8624787 |
| eat Ibiza                | 5278,086549 | 5858,5138   |
| eat Leon                 | 79,89526585 | 95,39480204 |
| eat Mii                  | 36,71216856 | 40,288824   |
| koda Citigo              | 77,83329882 | 100,4189481 |
| koda Fabia               | 53,61403329 | 65,74163633 |
| koda Octavia             | 9505,384782 | 11132,83532 |
| koda Rapid               | 73,356587   | 73,35747035 |
| koda Superb              | 170,1550075 | 176,0099973 |
| mart Forfour             | 302,0158697 | 342,1596145 |
| ubaru Forester           | 23,51180458 | 33,68430487 |
| ubaru XV                 | 294,7640996 | 328,896411  |
| uzuki Celerio            | 38,44147164 | 41,29478708 |
| uzuki Jimny              | 4,609247753 | 7,243615488 |
| uzuki S-Cross            | 21,15579987 | 23,09259417 |
| uzuki Swift              | 88,002485   | 104,5800432 |
| uzuki Vitara             | 41,15616817 | 46,15618674 |
| esla Model S             | 2308,111238 | 2733,653037 |
| oyota Auris              | 40,70228222 | 45,59281234 |
| oyota Aygo               | 205,6161667 | 220,0561767 |
| oyota Prius              | 3,712707179 | 5,235451835 |
| oyota RAV4               | 72,09261867 | 80,70056301 |
| oyota Yaris              | 326,816449  | 362,5970444 |
| 'olkswagen Caddy         | 5,018622194 | 5,897803841 |
| olkswagen Golf           | 19586,04347 | 22360,26377 |
| olkswagen Golf Sportsvan | 25,42108318 | 25,53242917 |
| olkswagen Passat         | 2452,198201 | 2828,677397 |
| 1.5wagen i assat         | 2732,130201 | 2020,077397 |

| Car model              | MAE         | RMSE        |
|------------------------|-------------|-------------|
| Volkswagen Polo        | 21624,64921 | 23811,85491 |
| Volkswagen Tiguan      | 167,7158726 | 195,3738879 |
| Volkswagen Touran      | 18,3382661  | 23,16679017 |
| Volkswagen Transporter | 874,557939  | 939,0207043 |
| Volkswagen Up          | 242,4616394 | 267,0642826 |
| Volvo S60              | 39,26424408 | 45,01797082 |
| Volvo V40              | 5989,441515 | 6553,654205 |
| Volvo V60              | 107,8541456 | 134,0949344 |
| Volvo XC60             | 50,11415427 | 69,96114212 |
| Volvo XC90             | 1222,111625 | 1341,048627 |

| Car model          | MAE         | RMSE        |
|--------------------|-------------|-------------|
| Alfa Romeo Mito    | 13,04574476 | 13,28216294 |
| Audi A1            | 53,81411525 | 75,40800398 |
| Audi A3            | 98,66697475 | 131,6456515 |
| Audi A4            | 70,10183934 | 78,4512519  |
| Audi A5            | 34,74183982 | 42,08114087 |
| Audi A6            | 21,71595274 | 26,17565058 |
| Audi Q3            | 36,56094197 | 48,59290814 |
| Audi Q5            | 16,48588617 | 17,93188687 |
| BMW 1-serie        | 196,4476798 | 273,407109  |
| BMW 2-serie        | 84,12002019 | 105,6159586 |
| BMW 2-serie Tourer | 56,44673593 | 68,93746724 |
| BMW 3-serie        | 181,2630702 | 222,0271421 |
| BMW 4-serie        | 49,5364794  | 58,44868038 |
| BMW 5-serie        | 64,84209115 | 74,32113375 |
| BMW 7-serie        | 11,50038637 | 14,55422516 |
| BMW i3             | 152,6302774 | 153,2988343 |
| BMW X1             | 52,93919155 | 58,96806817 |
| BMW X3             | 55,5774231  | 56,59793104 |
| BMW X4             | 10,59222821 | 11,79644356 |
| BMW X5             | 45,48638153 | 56,61358344 |
| BMW Z4             | 10,30439159 | 13,01523411 |
| Citroën C1         | 116,5308862 | 131,8160985 |
| Citroën C3         | 105,5587456 | 112,5684818 |
| Citroën C4 Cactus  | 35,15984523 | 38,15169812 |
| Dacia Duster       | 20,69557517 | 22,70437273 |
| Dacia Logan        | 26,9008097  | 28,84574582 |
| Dacia Logan        | 13,28531756 | 16,71144019 |
| Dacia Sandero      | 33,31715993 | 36,66191997 |
| Fiat 500           | 149,869097  | 160,0877505 |
| Fiat 500X          | 20,53969029 | 24,0214694  |
| Fiat Panda         | 14,02920641 | 22,72562385 |
| Ford C-MAX         | 25,39542852 | 25,4311133  |
| Ford EcoSport      | 51,15391432 | 60,42270794 |
| Ford Fiesta        | 188,0981184 | 189,5572822 |
| Ford Focus         | 353,3388149 | 397,5658118 |
| Ford Kuga          | 77,56768908 | 98,2820399  |
| Ford Mondeo        | 33,13828823 | 37,1146283  |
| Honda Civic        | 7,333491462 | 8,471816131 |
| Honda CR-V         | 19,34591184 | 20,29973819 |
| Honda HR-V         | 7,460623877 | 10,57166992 |
| Honda Jazz         | 17,72272709 | 20,05261692 |
| Hyundai i10        | 114,6760864 | 129,7180069 |
| Hyundai i20        | 43,60012163 | 51,9055736  |
| Hyundai i30        | 27,65292249 | 30,84743831 |
| Hyundai Tucson     | 30,72879342 | 31,18499067 |

## Appendix 15. Performance of *LSTM* using dataset 1

| (Continued)                |             |             |
|----------------------------|-------------|-------------|
| Car model                  | MAE         | RMSE        |
| laguar XE                  | 26,71618318 | 34,13186137 |
| leep Renegade              | 13,40250887 | 16,94170532 |
| Kia Ceed                   | 29,05846732 | 33,96506142 |
| Kia Optima                 | 15,87169266 | 15,92748665 |
| Kia Picanto                | 124,324864  | 177,0532707 |
| Kia Rio                    | 26,9191731  | 35,81183539 |
| Kia Sportage               | 21,35994829 | 24,60491411 |
| Land Rover Discovery Sport | 8,443043845 | 9,000472508 |
| Land Rover Range Rover     | 5,744615419 | 7,46782072  |
| Land Rover Range Rover     |             |             |
| Evoque                     | 36,66895933 | 42,95037866 |
| Land Rover Range Rover     |             |             |
| Sport                      | 12,44972338 | 16,36630284 |
| Lexus CT                   | 6,608043943 | 7,531169771 |
| Mazda 2                    | 61,65457589 | 65,1825212  |
| Mazda 3                    | 142,1313138 | 150,6167967 |
| Mazda 6                    | 14,39043835 | 15,46388699 |
| Mazda CX-3                 | 106,9745952 | 107,6504072 |
| Mazda CX-5                 | 119,0191084 | 126,6412823 |
| Mazda MX-5                 | 7,450141089 | 7,860369127 |
| Mercedes-Benz A-klasse     | 150,3157218 | 156,4155018 |
| Mercedes-Benz B-klasse     | 91,12888009 | 92,1535697  |
| Mercedes-Benz C-klasse     | 125,1859785 | 141,3916408 |
| Mercedes-Benz CLA          | 135,3659624 | 162,1198479 |
| Mercedes-Benz E-klasse     | 45,12987954 | 53,99973457 |
| Mercedes-Benz GLA          | 51,72367096 | 52,39865533 |
| Mercedes-Benz GLC          | 101,1408648 | 108,2016496 |
| Mercedes-Benz GLE          | 13,15707833 | 21,09126994 |
| Vercedes-Benz S-klasse     | 13,12612179 | 13,39392079 |
| Mercedes-Benz Sprinter     | 106,8198874 | 109,2236113 |
| Mercedes-Benz Vito         | 53,83792332 | 55,16658335 |
| Mercedes-Benz V-klasse     | 40,66754314 | 41,19753415 |
| Mini Clubman               | 42,8634807  | 51,84057524 |
| Mini Countryman            | 50,4250303  | 57,70814877 |
| Mini Mini                  | 403,0316187 | 415,1316177 |
| Mitsubishi ASX             | 82,33903503 | 89,12099546 |
| Mitsubishi Outlander       | 55,76971    | 62,35345285 |
| Mitsubishi Space Star      | 153,8360334 | 199,0634099 |
| Nissan Juke                | 96,06704003 | 127,6561862 |
| Nissan Leaf                | 217,5877816 | 226,6114476 |
| Nissan Micra               | 103,2179217 | 120,2690036 |
| Nissan Qashqai             | 98,90263585 | 102,2086298 |
| Nissan X-Trail             | 38,13817962 | 42,13131861 |
|                            | 37,70580782 | 37,8639686  |
| Opel Adam                  | 37,70300702 | 0,,00000000 |
| Opel Adam<br>Opel Astra    | 77,69032942 | 93,19771499 |

| Car model                 | MAE                  | RMSE        |
|---------------------------|----------------------|-------------|
| Opel Insignia             | 85,7742048           | 91,70087755 |
| Opel Karl                 | 1037,366577          | 1037,366577 |
| Opel Mokka                | 47,47164045          | 47,84917535 |
| Peugeot 108               | 155,4722159          | 194,1248799 |
| Peugeot 2008              | 87,93117196          | 105,2488235 |
| Peugeot 208               | 152,8841553          | 175,6210706 |
| Peugeot 308               | 71,28131321          | 95,67176046 |
| Peugeot 5008              | 67,36982073          | 75,24532275 |
| Peugeot 508               | 39,90973009          | 54,16424627 |
| Porsche Cayenne           | 38,02423695          | 57,64946067 |
| Porsche Macan             | 24,00990132          | 25,96510308 |
| Porsche Panamera          | 5,941364152          | 7,285163542 |
| Renault Captur            | 101,4264657          | 123,777663  |
| Renault Clio              | 223,1019897          | 268,5626146 |
| Renault Espace            | 11,10181277          | 11,1235543  |
| Renault Kadjar            | 52,65994372          | 60,09760084 |
| Renault Mégane            | 135,1316817          | 145,1786167 |
| Renault Scénic            | 46,13817962          | 48,41935642 |
| Renault Talisman          | 6,897852216          | 8,602472159 |
| Renault Twingo            | 54,37437657          | 63,21601769 |
| Renault Zoe               | 279,0239999          | 285,8545198 |
| Seat Ibiza                | 115,1118338          | 145,6005474 |
| Seat Leon                 | 77,25710188          | 91,48558739 |
| Seat Mii                  | 31,10953304          | 36,81172785 |
| Skoda Citigo              | 87,24642726          | 93,65176747 |
| Skoda Fabia               | 46,65025766          | 59,37964108 |
| Skoda Octavia             | 142,6173662          | 155,8926976 |
| Skoda Rapid               | 59 <i>,</i> 38590949 | 59,52035392 |
| Skoda Superb              | 51,43120575          | 57,12068746 |
| Smart Forfour             | 9,447419303          | 10,36943383 |
| Subaru Forester           | 22,17838832          | 23,8114037  |
| Subaru XV                 | 6,506807055          | 8,46536836  |
| Suzuki Celerio            | 74,51723371          | 82,91298207 |
| Suzuki Jimny              | 7,765205656          | 8,35237375  |
| Suzuki S-Cross            | 36,24038778          | 42,7801498  |
| Suzuki Swift              | 74,22402518          | 84,86121489 |
| Suzuki Vitara             | 54,51618617          | 59,13818617 |
| Tesla Model S             | 50,72352764          | 51,45432492 |
| Toyota Auris              | 48,05579921          | 50,24428302 |
| Toyota Aygo               | 207,3634469          | 227,8660964 |
| Toyota Prius              | 6,198393277          | 7,360368013 |
| Toyota RAV4               | 110,3444301          | 116,38193   |
| Toyota Yaris              | 149,3300999          | 157,2395612 |
| Volkswagen Caddy          | 15,40779631          | 16,7615992  |
| Volkswagen Golf           | 285,7545253          | 331,426012  |
| Volkswagen Golf Sportsvan | 27,04748726          | 27,15170869 |

| (Continued)            |             |             |
|------------------------|-------------|-------------|
| Car model              | MAE         | RMSE        |
| Volkswagen Passat      | 44,9344417  | 58,02378233 |
| Volkswagen Polo        | 432,113351  | 504,627605  |
| Volkswagen Tiguan      | 144,9880415 | 186,4225542 |
| Volkswagen Touran      | 37,06947654 | 37,5656041  |
| Volkswagen Transporter | 28,98089681 | 29,3223127  |
| Volkswagen Up          | 227,2401341 | 250,3953866 |
| Volvo S60              | 36,23841095 | 45,22248567 |
| Volvo V40              | 140,8342002 | 147,0576504 |
| Volvo V60              | 220,7438224 | 247,8844427 |
| Volvo XC60             | 69,33938599 | 90,55775709 |
| Volvo XC90             | 24,96082306 | 30,12847411 |

| Appendix 1 | 6. Performance | of LSTM | using dat | aset 2 |
|------------|----------------|---------|-----------|--------|
|            |                |         |           |        |

| Car model          | MAE      | RMS          |
|--------------------|----------|--------------|
| Alfa Romeo Mito    | 2,688583 | 2,68858      |
| Audi A1            | 64,44721 | 95,3971      |
| Audi A3            | 84,13389 | 142,389      |
| Audi A4            | 60,96253 | 79,6999      |
| Audi A5            | 29,65709 | 47,3452      |
| Audi A6            | 18,7694  | 22,7365      |
| Audi Q3            | 34,05237 | 51,1161      |
| Audi Q5            | 14,03098 | 15,7669      |
| BMW 1-serie        | 197,0688 | 271,851      |
| BMW 2-serie        | 72,5132  | 112,689      |
| BMW 2-serie Tourer | 40,62655 | 53,6224      |
| BMW 3-serie        | 198,7831 | 250,790      |
| BMW 4-serie        | 63,3826  | 69,4109      |
| BMW 5-serie        | 68,05129 | 81,1337      |
| BMW 7-serie        | 13,50888 | 17,1388      |
| BMW i3             | 216,3146 | 224,424      |
| BMW X1             | 63,62419 | ,<br>72,1170 |
| BMW X3             | 47,54658 | 49,1816      |
| BMW X4             | 7,210617 | 12,5122      |
| BMW X5             | 41,69908 | 46,1295      |
| BMW Z4             | 11,82601 | 16,2585      |
| Citroën C1         | 102,1729 | 146,470      |
| Citroën C3         | 87,56841 | 92,5961      |
| Citroën C4 Cactus  | 28,56158 | 30,1256      |
| Dacia Duster       | 21,17318 | 23,3242      |
| Dacia Lodgy        | 15,51616 | 18,1978      |
| Dacia Logan        | 13,23084 | 16,6603      |
| Dacia Sandero      | 16,43485 | 17,1916      |
| Fiat 500           | 147,0093 | 154,815      |
| Fiat 500X          | 25,98377 | 28,9966      |
| Fiat Panda         | 12,82912 | 24,3055      |
| Ford C-MAX         | 29,64483 | 30,1405      |
| Ford EcoSport      | 40,24256 | 46,1326      |
| Ford Fiesta        | 186,6624 | 204,805      |
| Ford Focus         | 399,0624 | 442,085      |
| Ford Kuga          | 93,78203 | 115,950      |
| Ford Mondeo        | 43,03595 | 50,6635      |
| Honda Civic        | 5,6724   | 7,64590      |
| Honda CR-V         | 22,82723 | 24,0692      |
| Honda HR-V         | 8,519448 | 9,43087      |
| Honda Jazz         | 17,08253 | 20,2846      |
| Hyundai i10        | 101,3954 | 145,355      |
| Hyundai i20        | 31,81335 | 35,2917      |
| Hyundai i30        | 27,82206 | 31,0516      |
| Hyundai Tucson     | 21,24901 | 21,9035      |

| (Continued)                  |          |                   |
|------------------------------|----------|-------------------|
| Car model                    | MAE      | RMSE              |
| Jaguar XE                    | 27,05618 | 34,51318          |
| Jeep Renegade                | 13,53488 | 17,0548           |
| Kia Ceed                     | 47,14359 | 47,83989          |
| Kia Optima                   | 8,957    | 9,109629          |
| Kia Picanto                  | 213,738  | 259 <i>,</i> 0746 |
| Kia Rio                      | 21,11834 | 24,49567          |
| Kia Sportage                 | 8,716058 | 14,08022          |
| Land Rover Discovery Sport   | 5,264362 | 6,037593          |
| Land Rover Range Rover       | 8,290458 | 9,752539          |
| Land Rover Range Rover       |          |                   |
| Evoque                       | 32,85374 | 39,7449           |
| Land Rover Range Rover Sport | 18,42941 | 21,83057          |
| Lexus CT                     | 5,136916 | 7,136537          |
| Mazda 2                      | 20,80032 | 23,46062          |
| Mazda 3                      | 131,1158 | 139,1617          |
| Mazda 6                      | 15,1841  | 16,81205          |
| Mazda CX-3                   | 57,04478 | 58,85998          |
| Mazda CX-5                   | 71,01367 | 74,59172          |
| Mazda MX-5                   | 7,58839  | 8,034631          |
| Mercedes-Benz A-klasse       | 119,8251 | 133,5454          |
| Mercedes-Benz B-klasse       | 108,1716 | 111,2092          |
| Mercedes-Benz C-klasse       | 121,7616 | 137,115           |
| Mercedes-Benz CLA            | 129,5531 | 159,5014          |
| Mercedes-Benz E-klasse       | 122,15   | 125,6976          |
| Mercedes-Benz GLA            | 68,60766 | 73,13294          |
| Mercedes-Benz GLC            | 54,25956 | 63,06613          |
| Mercedes-Benz GLE            | 11,89405 | 18,2835           |
| Mercedes-Benz S-klasse       | 8,478099 | 8,629187          |
| Mercedes-Benz Sprinter       | 48,39575 | 54,02215          |
| Mercedes-Benz Vito           | 27,67499 | 33,39242          |
| Mercedes-Benz V-klasse       | 20,03458 | 21,30748          |
| Mini Clubman                 | 37,37487 | 47,358            |
| Mini Countryman              | 52,62479 | 64,25598          |
| Mini Mini                    | 235,1318 | 247,2138          |
| Mitsubishi ASX               | 60,54032 | 71,50249          |
| Mitsubishi Outlander         | 46,42804 | 55,14323          |
| Mitsubishi Space Star        | 178,3516 | 221,9411          |
| Nissan Juke                  | 80,85658 | 105,7359          |
| Nissan Leaf                  | 114,5547 | 129,3314          |
| Nissan Micra                 | 138,3892 | 151,8273          |
| Nissan Qashqai               | 103,9173 | 120,9023          |
| Nissan X-Trail               | 25,51687 | 31,18967          |
| Opel Adam                    | 26,05911 | 26,21847          |
| Opel Astra                   | 75,68004 | 93 <i>,</i> 9193  |
| Opel Corsa                   | 305,2893 | 398,7424          |
| Opel Insignia                | 86,41822 | 92,30355          |
|                              |          |                   |

| (Continued)<br>Car model           | MAE      | RMSE                 |
|------------------------------------|----------|----------------------|
| Opel Karl                          | 1042,481 | 1042,481             |
| Opel Mokka                         | 57,79114 | 58,13851             |
| Peugeot 108                        | 181,047  | 222,9352             |
| Peugeot 2008                       | 84,85755 | 96,65757             |
| Peugeot 2008                       | 180,5065 | 212,6137             |
| Peugeot 308                        | 76,65357 | 89,92483             |
| Peugeot 5008                       | 84,3123  | 93,70316             |
| Peugeot 508                        | 40,71768 | 55,4674              |
| Porsche Cayenne                    | 48,83382 | 70,07252             |
| Porsche Macan                      | 19,83115 | 21,21637             |
| Porsche Panamera                   | 5,292277 | 7,362578             |
|                                    | 208,7354 | 236,6985             |
| Renault Captur<br>Renault Clio     | 261,1806 | 297,8567             |
| Renault Espace                     | 7,171917 |                      |
| •                                  | 59,42975 | 7,205983<br>66,43659 |
| Renault Kadjar                     | 168,1387 |                      |
| Renault Mégane                     |          | 189,1784             |
| Renault Scénic<br>Renault Talisman | 56,55878 | 61,62017             |
|                                    | 7,483475 | 8,303945             |
| Renault Twingo                     | 44,75843 | 52,72337             |
| Renault Zoe                        | 223,9118 | 236,3358             |
| Seat Ibiza                         | 107,6013 | 147,754              |
| Seat Leon                          | 71,0994  | 80,62947             |
| Seat Mii                           | 28,55696 | 35,04404             |
| Skoda Citigo                       | 95,64382 | 99,80271             |
| Skoda Fabia                        | 72,70835 | 85,0424              |
| Skoda Octavia                      | 104,2369 | 129,0473             |
| Skoda Rapid                        | 67,00157 | 69,68484             |
| Skoda Superb                       | 35,77036 | 46,77087             |
| Smart Forfour                      | 5,689032 | 6,168331             |
| Subaru Forester                    | 22,98502 |                      |
| Subaru XV                          | 5,607011 | 9,133027             |
| Suzuki Celerio                     | 75,90133 |                      |
| Suzuki Jimny                       | 7,97228  | -                    |
| Suzuki S-Cross                     | 32,4223  | -                    |
| Suzuki Swift                       | 88,56063 | 108,6709             |
| Suzuki Vitara                      | 90,20458 | 96,20471             |
| Tesla Model S                      | 21,373   | 24,17678             |
| Toyota Auris                       | 11,04252 | 11,04806             |
| Toyota Aygo                        | 195,1929 | 232,2701             |
| Toyota Prius                       | 6,365475 | 7,346896             |
| Toyota RAV4                        | 111,073  | 117,2423             |
| Toyota Yaris                       | 141,0294 | 169,6728             |
| Volkswagen Caddy                   | 13,81324 | 14,59705             |
| Volkswagen Golf                    | 156,2064 | 185,6134             |
| Volkswagen Golf Sportsvan          | 17,59109 | 17,75162             |
| Volkswagen Passat                  | 40,41972 | 61,63801             |

| (Continued)            |          |                   |
|------------------------|----------|-------------------|
| Car model              | MAE      | RMSE              |
| Volkswagen Polo        | 345,8267 | 509,9328          |
| Volkswagen Tiguan      | 198,1432 | 214,2131          |
| Volkswagen Touran      | 32,71026 | 36,21219          |
| Volkswagen Transporter | 16,70208 | 17,43886          |
| Volkswagen Up          | 253,7589 | 264,8143          |
| Volvo S60              | 45,56316 | 57,48711          |
| Volvo V40              | 88,07135 | 93 <i>,</i> 95093 |
| Volvo V60              | 251,9011 | 264,3223          |
| Volvo XC60             | 41,57621 | 49,83735          |
| Volvo XC90             | 23,60211 | 32,43746          |

| Car model          | MAE         | RMSI        |
|--------------------|-------------|-------------|
| Alfa Romeo Mito    | 28,03453772 | 28,29747184 |
| Audi A1            | 59,30181449 | 79,90967735 |
| Audi A3            | 133,6413116 | 150,8481866 |
| Audi A4            | 201,8428879 | 215,3842358 |
| Audi A5            | 41,86387416 | 43,82503623 |
| Audi A6            | 30,06414141 | 33,25902536 |
| Audi Q3            | 42,03370013 | 50,06521113 |
| Audi Q5            | 44,52331189 | 47,10340954 |
| BMW 1-serie        | 221,8140368 | 314,3542924 |
| BMW 2-serie        | 94,02648272 | 106,58113   |
| BMW 2-serie Tourer | 181,8901585 | 187,835607  |
| BMW 3-serie        | 159,1227679 | 203,283270  |
| BMW 4-serie        | 72,53446851 | 83,6981052  |
| BMW 5-serie        | 66,91522544 | 76,5605401  |
| BMW 7-serie        | 10,99936513 | 13,3689293  |
| BMW i3             | 218,1783077 | 220,835904  |
| BMW X1             | 58,93859972 | 65,9187948  |
| BMW X3             | 175,4547751 | 180,932614  |
| BMW X4             | 18,1548451  | 18,7771352  |
| BMW X5             | 51,48788221 | 63,9790573  |
| BMW Z4             | 11,26231303 | 11,9186683  |
| Citroën C1         | 131,7294684 | 153,544266  |
| Citroën C3         | 78,98741988 | 83,5198198  |
| Citroën C4 Cactus  | 26,32473293 | 27,8399399  |
| Dacia Duster       | 22,36405509 | 25,3770356  |
| Dacia Lodgy        | 9,156181897 | 11,1891967  |
| Dacia Logan        | 17,78648458 | 23,8078276  |
| Dacia Sandero      | 55,42976815 | 57,36159152 |
| Fiat 500           | 148,2042236 | 159,053577  |
| Fiat 500X          | 49,57370867 | 51,0977691  |
| Fiat Panda         | 16,11390959 | 20,0261202  |
| Ford C-MAX         | 31,86434071 | 36,0728730  |
| Ford EcoSport      | 74,49839347 | 83,9480444  |
| Ford Fiesta        | 178,8004499 | 195,31655   |
| Ford Focus         | 789,5180817 | 856,396605  |
| Ford Kuga          | 77,55841173 | 95,6112456  |
| Ford Mondeo        | 79,02397891 | 86,22922653 |
| Honda Civic        | 11,08812441 | 13,1832401  |
| Honda CR-V         | 30,61502429 | 32,71367563 |
| Honda HR-V         | 11,19886017 | 14,151735   |
| Honda Jazz         | 21,10467584 | 25,6916723  |
| Hyundai i10        | 130,7270508 | 152,3758452 |
| Hyundai i20        | 63,91493007 | 72,2123108  |
| Hyundai i30        | 12,97887502 | 16,4280588  |
| Hyundai Tucson     | 26,34238979 | 26,88088574 |
| riyunda rucson     | 20,34230373 | 20,00000074 |
|                    |             |             |

## Appendix 17. Performance of *LSTM* using dataset 3

| (Continued)                |             |             |  |
|----------------------------|-------------|-------------|--|
| Car model                  | MAE         | RMSE        |  |
| Jaguar XE                  | 18,81635175 | 20,89846153 |  |
| Jeep Renegade              | 9,363180161 | 10,42749515 |  |
| Kia Ceed                   | 247,8188771 | 249,9541937 |  |
| Kia Optima                 | 21,55479622 | 21,58503113 |  |
| Kia Picanto                | 141,4568743 | 174,013833  |  |
| Kia Rio                    | 26,76263537 | 28,32320258 |  |
| Kia Sportage               | 37,94270434 | 38,95838627 |  |
| Land Rover Discovery Sport | 17,13441672 | 18,80889573 |  |
| Land Rover Range Rover     | 8,467437472 | 9,628853353 |  |
| Land Rover Range Rover     |             |             |  |
| Evoque                     | 13,74039323 | 26,24730186 |  |
| Land Rover Range Rover     |             |             |  |
| Sport                      | 10,99915341 | 14,16933999 |  |
| Lexus CT                   | 8,210710253 | 8,971395821 |  |
| Mazda 2                    | 94,39704023 | 96,00523572 |  |
| Mazda 3                    | 103,368784  | 105,5171476 |  |
| Mazda 6                    | 26,54301616 | 28,11148387 |  |
| Mazda CX-3                 | 153,3298623 | 153,3551042 |  |
| Mazda CX-5                 | 190,65305   | 198,8579046 |  |
| Mazda MX-5                 | 2,119197709 | 3,481787733 |  |
| Mercedes-Benz A-klasse     | 325,9608962 | 361,7734183 |  |
| Mercedes-Benz B-klasse     | 88,92342159 | 89,59840218 |  |
| Mercedes-Benz C-klasse     | 193,7445352 | 209,9528636 |  |
| Mercedes-Benz CLA          | 282,4592198 | 300,9469923 |  |
| Mercedes-Benz E-klasse     | 169,0221601 | 171,6034846 |  |
| Mercedes-Benz GLA          | 68,30402483 | 71,5989832  |  |
| Mercedes-Benz GLC          | 125,8544906 | 131,6536866 |  |
| Mercedes-Benz GLE          | 21,52999292 | 28,83007541 |  |
| Mercedes-Benz S-klasse     | 13,24842112 | 13,53379009 |  |
| Mercedes-Benz Sprinter     | 16,70989663 | 26,18476179 |  |
| Mercedes-Benz Vito         | 87,53380149 | 88,23995929 |  |
| Mercedes-Benz V-klasse     | 32,75618281 | 33,41038161 |  |
| Mini Clubman               | 46,56174251 | 56,16670026 |  |
| Mini Countryman            | 52,57182748 | 62,91611352 |  |
| Mini Mini                  | 176,5698785 | 183,8603246 |  |
| Mitsubishi ASX             | 114,7009054 | 130,5615402 |  |
| Mitsubishi Outlander       | 83,48927307 | 89,05232732 |  |
| Mitsubishi Space Star      | 149,9023743 | 196,2264646 |  |
| Nissan Juke                | 70,45472935 | 95,96470562 |  |
| Nissan Leaf                | 374,0402483 | 377,6984707 |  |
| Nissan Micra               | 229,942918  | 238,0335542 |  |
| Nissan Qashqai             | 103,1677115 | 124,5075214 |  |
| Nissan X-Trail             | 25,36587412 | 28,31875268 |  |
| Opel Adam                  | 48,18303898 | 48,18446013 |  |
| Opel Astra                 | 134,8716431 | 151,7110647 |  |
| Opel Corsa                 | 294,4757342 | 412,0913083 |  |
|                            |             |             |  |

| Car model                 | MAE         | RMS         |
|---------------------------|-------------|-------------|
| Opel Insignia             | 34,10938699 | 38,49193151 |
| Opel Karl                 | 520,8504028 | 520,8504028 |
| Opel Mokka                | 53,52324731 | 54,39070712 |
| Peugeot 108               | 162,6549334 | 186,598587  |
| Peugeot 2008              | 80,74891881 | 97,5945017  |
| Peugeot 208               | 126,479187  | 156,116309  |
| Peugeot 308               | 113,5682504 | 130,854966  |
| Peugeot 5008              | 67,14009094 | 79,29846267 |
| Peugeot 508               | 44,82866124 | 54,83839255 |
| Porsche Cayenne           | 39,89826311 | 53,14363462 |
| Porsche Macan             | 45,57215663 | 47,31228302 |
| Porsche Panamera          | 8,58794839  | 9,254455924 |
| Renault Captur            | 312,3425816 | 335,1367837 |
| Renault Clio              | 614,3728894 | 689,2687729 |
| Renault Espace            | 14,82035092 | 14,88264212 |
| Renault Kadjar            | 91,04626029 | 96,97734234 |
| Renault Mégane            | 157,5161878 | 164,1378417 |
| Renault Scénic            | 45,51806182 | 47,56692772 |
| Renault Talisman          | 9,423491887 | 11,85912872 |
| Renault Twingo            | 129,3013706 | 139,4728815 |
| Renault Zoe               | 401,3578273 | 406,641650  |
| Seat Ibiza                | 144,8355495 | 169,329629  |
| Seat Leon                 | 95,57633318 | 108,7721484 |
| Seat Mii                  | 46,60770965 | 63,78899198 |
| Skoda Citigo              | 175,7082923 | 195,6233354 |
| Skoda Fabia               | 83,09729222 | 96,70076373 |
| Skoda Octavia             | 212,2143555 | 243,3544076 |
| Skoda Rapid               | 83,37601689 | 83,89370804 |
| Skoda Superb              | 41,28479549 | 60,2713211  |
| Smart Forfour             | 13,8525922  | 14,48632093 |
| Subaru Forester           | 9,88269043  | 10,81155433 |
| Subaru XV                 | 8,427301543 | 9,218856210 |
| Suzuki Celerio            | 91,73179626 | 99,3679889  |
| Suzuki Jimny              | 18,20040934 | 19,49795903 |
| Suzuki S-Cross            | 21,63759477 | 26,30738373 |
| Suzuki Swift              | 112,9540471 | 132,4769599 |
| Suzuki Vitara             | 75,55168797 | 81,1387981  |
| Tesla Model S             | 89,26063429 | 89,70559339 |
| Toyota Auris              | 72,27409799 | 82,57626574 |
| Toyota Aygo               | 208,1712472 | 232,4095386 |
| Toyota Prius              | 15,20323767 | 15,91503582 |
| Toyota RAV4               | 43,94570269 | 62,93389676 |
| Toyota Yaris              | 161,9802464 | 170,2252983 |
| Volkswagen Caddy          | 17,34218543 | 18,5372676  |
| Volkswagen Golf           | 528,8858468 | 573,0611442 |
| Volkswagen Golf Sportsvan | 38,28487778 | 38,46050905 |

| (Continued)            |             |             |
|------------------------|-------------|-------------|
| Car model              | MAE         | RMSE        |
| Volkswagen Passat      | 65,1451961  | 71,65901109 |
| Volkswagen Polo        | 557,3013742 | 592,8137664 |
| Volkswagen Tiguan      | 160,4805908 | 196,6107186 |
| Volkswagen Touran      | 44,99356297 | 52,00636283 |
| Volkswagen Transporter | 42,41757802 | 42,46421192 |
| Volkswagen Up          | 285,1771153 | 301,7969445 |
| Volvo S60              | 46,97207642 | 54,45141659 |
| Volvo V40              | 175,3874294 | 184,906637  |
| Volvo V60              | 410,1526685 | 436,0215503 |
| Volvo XC60             | 50,84819903 | 70,99824166 |
| Volvo XC90             | 29,20094844 | 34,796187   |