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1 Introduction 

The car industry is characterized by high costs and uncertainties (Fantazzini & Toktamysova, 2015). In 

particular, it comes with extremely large development costs and intense competition (Dodourova & Bevis, 

2014). On top of that, customers’ expectations are high as they require more for the same price (Ili, Albers, 

& Miller, 2010). Consequently, it is of vital importance that car manufacturers are aware of the number 

of cars that will be sold in the future, as a shortage or an oversupply of vehicles may harm the firms’ 

reputation as well as its financial health (Fantazzini & Toktamysova, 2015). Conducted research 

concerning the prediction of car sales concludes that traditional forecasting models, which are solely 

based on historical sales, give unreliable forecasts (Ahn & Spangler, 2014). 

A potential explanation is that these models do not incorporate the influence of recent events on future 

sales. Such events can for instance exist of word-of-mouth (WOM) (Ahn & Spangler, 2014). WOM can be 

seen as the exchange of product information between customers (Chu & Kim, 2011). It plays a vital part 

in influencing the behavior of consumers towards goods and services. On top of that, WOM is considered 

more reliable than brand marketing. Hence, customers’ attitude towards products are influenced by 

WOM. As a result of the rise of the internet, WOM gained popularity under the term electronic WOM, for 

which social media platforms such as Facebook, Twitter and Instagram serve as the ideal instrument (Chu 

& Kim, 2011). Consequently, information obtained from social media can be a valuable source to predict 

sales. 

Instagram is a social media platform that has gained a lot of popularity during the past years. With more 

than one billion users, it is one of the most used social media networks (Clement, 2020). Nonetheless, as 

far as my knowledge extends, no research has studied the predictive power of Instagram features in terms 

of predicting sales. 

Another interesting source of information that emerged since the rise of the internet is the search 

behavior of internet users. The prediction of forecasting sales by means of search queries data proved to 

be successful in the past, especially in regions where the amount of internet users is significantly large 

(Ginsberg et al., 2009). A possible reason why search queries data seems to be a better source of 

information than traditional macro-economic data, is that the former may provide a more rational picture 

about the things customers are interested in (Wu & Brynjolfsson, 2009).   

Given the relevance of car manufacturers predicting future car sales as accurate as possible, the goal of 

this master thesis is to forecast the monthly car sales in the year 2020 of the most sold car models in the 

Netherlands. Considering the potential of Google Trends data and Instagram data to predict sales, I make 

use of three different datasets, on top of the historical car sales data, to forecast the aforementioned 
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monthly car sales. Firstly, the predictive power of Google Trends data is examined. Secondly, the 

predictive power of Instagram-related features is investigated. Thirdly, the combination of Google Trends 

data and Instagram data is explored.  

This master thesis is structured as follows. Chapter 2 summarizes the relevant literature about the 

prediction of trends based on social media and search trends data. It also covers relevant literature 

concerning natural language processing, or in particular, sentiment analysis. Chapter 3 consists of the 

proposed research questions, which are based on the literature in chapter 2. Chapter 4 describes the 

relevant data as well as the data collection. In chapter 5, the applied methodology is explained in five 

parts. The first part focuses on a clustering algorithm that places car models with similar sales patterns in 

the same group. The second part elaborates on the forecasting approach. More specifically, it comprises 

the forecasting algorithms utilized in this master dissertation, the data preparation prior to the 

implementation of the forecasting algorithms and the actual implementation of these algorithms. The 

third part of chapter five deals with the applied performance measures to determine the predictive power 

of the utilized forecasting algorithms. Part four discusses a cross-validation technique in the context of 

time series. The statistical tests used to evaluate a potential significant difference between the 

performance of the forecasting techniques are mentioned in the final part of chapter 5. Chapter 6 

discusses the results of the applied methodology. Finally, chapter 7 presents the conclusion of this master 

dissertation and deals with its limitations and suggestions for future research. 
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2 Literature review 

In this chapter, an overview of the relevant literature is provided. Firstly, the prediction of social and 

economic trends is discussed, which is based on data derived from social media, search data and a 

combination of both. Additionally, an overview of the used literature is visualized in table 1. Secondly, a 

specific part of natural language processing, namely sentiment analysis, is described. 

2.1 Prediction of social and economic trends 

2.1.1 Prediction based on social media 

Since the rise of social media, several researchers have utilized data obtained from social media in order 

to predict the future. Predicting future social and economic trends by means of social media has been 

researched in a variety of domains, such as the movie sector (Asur & Huberman, 2010; Yu, Liu, Huang, & 

An, 2010), the financial sector (Bollen, Mao, & Zeng, 2011), the mobile industry (Lassen, Madsen, & 

Vatrapu, 2014), the car industry (Ahn & Spangler, 2014; Pai & Liu, 2018), etcetera. 

Asur and Huberman (2010) made use of tweets to predict the box-office revenues gained by movies. The 

authors implemented a linear regression model based on the number of posted tweets concerning movie-

related topics (Assur & Huberman, 2010). In addition, Yu et al. (2010) forecasted the box-office revenues 

of movies by deploying sentiment analysis on IMDB reviews. An Autoregressive Sentiment-Aware (ARSA) 

model was compared with Autoregressive (AR) models which do not include sentiment data. On top of 

that, a quality indicator was added to the ARSA model to specify the quality of the reviews, resulting in an 

Autoregressive Sentiment and Quality Aware (ARSQA) model (Yu et al., 2010). The abovementioned 

researches conclude that the predictive power is significantly improved by including sentiment analysis 

into the model (Asur & Huberman, 2010; Yu et al., 2010). Furthermore, Asur and Huberman (2010) 

observed that their model scored better in terms of accuracy in contrast to the Hollywood Stock Exchange. 

Lassen et al. (2014) were able to forecast iPhone sales by analyzing tweets using a linear regression model. 

However, sentiment features only slightly enhance the performance of the model (Lassen et al., 2014). 

Furthermore, Ahn and Spangler (2014) studied the influence of data from multiple social media sources 

on car sales of two automobile brands. To realize this, an Autoregressive Integrated Moving Average 

(ARIMA) model was fit three times, each time on a different dataset. First, the model was solely fit on 

historical sales data. Second, the model was trained on historical sales data as well as sentiment data. The 

final fit was applied on historical sales data, sentiment data and topical keyword frequency. Overall, the 

incorporation of social media data significantly improves the predictions of car sales (Ahn & Sprangler, 

2014). 
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In order to predict car sales in the United States, Pai and Liu (2018) utilized stock market values and 

sentiment scores of tweets. The conclusion of the research is twofold. Firstly, both sentiment scores and 

stock market values improve the forecasting accuracy. Secondly, removing the seasonality from the 

explanatory variables as well as from the response variable seems to expand the forecasting power of the 

model (Pai & Liu, 2018). 

Bollen et al. (2011) examined the usefulness of sentiment features obtained from Twitter data to estimate 

the Dow Jones Industrial Average (DJIA) by training a Self-Organizing Fuzzy Neural Network. More 

specifically, positive and negative sentiments along with six dimensions of mood (e.g. calm, alert, sure, 

vital, kind and happy) were extracted from tweets. In contrast to the previously mentioned studies, the 

researchers pointed out that sentiment as well as five out of six mood dimensions were not predictive of 

the DJIA, leaving the calmness of the public as the only significant variable (Bollen et al., 2011). 

The literature mentioned above focuses on extracting features from text-based social media platforms, 

such as Twitter (Hu, Manikonda, & Kambhampati, 2014). However, image-based social media platforms, 

such as Instagram, also contain promising information (Colliander & Marder, 2018; Hu et al., 2014; 

Pittman & Reich, 2016).  

Colliander and Marder (2018) examined the effects of the setting in which a picture is taken by a brand in 

terms of the perceived image of that brand by customers and the recommendation of that brand to 

others. The authors conclude that in case a brand posts pictures in a less professional setting, followers 

are more inclined to like the post of the brand, recommend it to their social environment and believe the 

brand to be more credible in contrast to professional pictures posted by the brand (Colliander & Marder, 

2018). Moreover, Highfield and Leaver (2015) suggested to analyze Instagram data based on research 

concerning Twitter data, as both types of data make use of hashtags (Highfield & Leaver, 2015).  

In order to perform supervised learning techniques on pictures, these should be annotated (LeCun, 

Bengio, & Hinton, 2015). As manually labeling thousands, let alone millions of pictures, can take quite 

some effort, automatically labeling images may be a faster and less labor-intensive alternative 

(Giannoulakis & Tsapatsoulis, 2015, 2016a). Giannoulakis and Tsapatsoulis (2015, 2016a) conducted 

several studies about hashtags associated with images posted on Instagram. In particular, the researchers 

investigated whether these hashtags could be used to label the related image. The results state that, on 

average, only 25 percent of the hashtags are directly related to the content of the image, whereas the 

remaining 75 percent are depicted as stophashtags (Giannoulakis & Tsapatsoulis, 2015, 2016a). 

Stophashtags include all hashtags that are not directly related to the image itself but are rather utilized to 

enhance the searchability of the image or as a form of metacommunication (Giannoulakis & Tsapatsoulis, 

2016b).  



5 
 

In summary, the incorporation of sentiment features extracted from text-based social media generally 

significantly improves the model’s predictive power in terms of forecasting vehicle sales. Although the 

extraction of useful information such as images and videos from an image-based social media platform 

such as Instagram seems promising (Colliander & Marder, 2018; Hu et al., 2014; Pittman & Reich, 2016), 

no literature has been written about the usage of Instagram data for the prediction of car sales, let alone 

the prediction of sales in general, as far as my knowledge extends. 

2.1.2 Prediction based on search trends data 

The importance of web search behavior to predict social and economic trends has been studied 

extensively over the years, varying from predicting flu epidemics (Ginsberg et al., 2009; Polgreen, Chen, 

Pennock, Nelson, & Weinstein, 2008; Santillana, Nsoesie, Mekaru, Scales, & Brownstein, 2014; Santillana 

et al., 2015) to forecasting car sales (Barreira, Godinho, & Melo, 2013; Choi & Varian, 2009, 2012). 

Ginsberg et al. (2009) mentioned that online search queries may offer a faster way to predict flu outbreaks 

in a certain region, especially when a large part of that region uses the internet, instead of the traditional 

approximations. A possible explanation is that these traditional approximations are typically published 

later in contrast to trends data (Santillana et al., 2015; Santillana et al., 2014). 

As far as my knowledge extends, Choi and Varian (2009) were the first researchers that investigated the 

importance of Google Trends search data when predicting automotive sales. The authors conclude that 

non-complex AR models along with fixed effects models including Google Trends predictors appear to 

surpass models without these predictors in terms of performance (Choi & Varian, 2009). 

Moreover, Seebach, Pahlke and Beck (2011) forecasted new car sales of Germany’s two main car 

producers by using Google Trends data. The findings of the authors indicate that search trend-based 

models perform better than well-recognized benchmark models. Over the following years, other 

researchers have investigated the predictive power of Google Trends data in the context of German car 

sales as well (Fantazzini & Toktamysova, 2015). In particular, Fantazzini and Toktamysova (2015) executed 

multivariate models making use of economic variables and variables extracted from Google Trends in 

order to predict monthly car sales of ten German car brands, for different forecast horizons up to two 

years. The results show that, for most car brands and forecast horizons, models including data from 

Google’s search engine significantly perform better than other models. This is especially the case in terms 

of forecast horizons above twelve months (Fantazzini & Toktamysova, 2015). 

Carrière-Swallow and Labbé (2013) made use of Google Trends data to nowcast the car sales in Chile. 

More specifically, simple nowcasting models incorporating a self-made automotive index, which were 

implemented since Google did not provide search categories for Chile at that time, tend to outperform 

well-accepted benchmark models (Carrière-Swallow & Labbé, 2013). 
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In contrast to the previously mentioned studies, research of Barreira et al. (2013) reveals that the inclusion 

of search queries does not always improve the forecasting power of models to predict car sales. By means 

of an autoregressive–moving-average (ARMA) model, the authors studied the impact of search data on 

the accuracy of nowcasting car sales for France, Portugal, Spain and Italy. The incorporation of Google 

Trends data only seemed to significantly improve the forecasting power in case of Portugal (Barreira et 

al., 2013). In a similar study, Tomczyk and Doligalski (2015) applied linear regression to Google Trends 

search data and a macroeconomic index to predict new car registrations in Poland. The findings of this 

study reveal that Google search data and the macroeconomic index statistically influence the vehicle 

registrations of five major car brands, at least for a one-month timeframe (Tomczyk & Doligalski, 2015).  

More recently, Nymand-Andersen and Pantelidis (2018) examined the predictive power of Google search 

data on new car registrations in Europe (i.e. Belgium, Germany, Ireland, Spain, France, Italy, the 

Netherlands, Austria, Portugal and Slovenia). The AR models including search data seem to statistically 

outperform the baseline model as well as most of the equivalent AR models without Google search data 

(Nymand-Andersen & Pantelidis, 2018). 

In summary, the inclusion of online search data significantly improves the forecasting of car sales. A 

possible explanation is that online internet searches indicate a more realistic view of customers’ interests 

compared to traditional macro-economic variables (Wu & Brynjolfsson, 2009).   

2.1.3 Prediction based on both social media and search trends data 

Based on the previously mentioned literature, I can conclude that search engine data as well as features 

gathered from social media provide meaningful information in terms of the purchasing behavior of 

consumers. In this section, researchers that compared these two types of data and investigated the 

relevance of combining them, is discussed.  

One of the first researches that implemented search queries data along with social media data to predict 

car sales is conducted by Geva, Oestreicher-Singer, Efron and Shimshoni (2013, 2015). The conclusion of 

the research is validated on both a linear regressor and a nonlinear neural network model. Firstly, the 

combination of forum data and Google Trends search data provides better results than utilizing only one 

of them. Secondly, search data is more informative than data extracted from forums (Geva et al., 2013, 

2015). 

Benthaus and Skodda (2015) further elaborated on the work of their colleagues Seebach et al. (2011) (see 

subsection 2.1.2), by also including blog data from Twitter. Linear regression models using both social 

media data and Google Trends data are better at predicting car sales than the same models using only 

one of these types of data (Benthaus & Skodda, 2015). Moreover, internet trends data and social media 
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data complement each other. Consequently, combining these two types of data provides a better result 

(Santillana et al., 2015; Geva et al., 2013, 2015). 

To conclude, the combination of search trends data and social media data leads to a more informative 

data source. A possible explanation for this conclusion is given by Geva et al. (2013). When taking the 

nature of the two types of data into account, the authors observed a clear contrast between search trends 

data and social media data. More specifically, the first tends to capture the actual products customers are 

interested in without affecting the opinions of their social environment, while the latter plays an 

important role in the way others perceive products (Geva et al., 2013). 
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Table 1. Literature review 

Study 
Google 

Trends 
Twitter Other Content 

Ahn & Spangler, 2014   X 

Estimating monthly car sales of two car brands based on 

sentiment data and topical key words extracted from social 

media websites  

 
 

Asur & Huberman, 2010  X  
Forecasting box-office revenues for movies using Twitter data 

 
 

Barreira, Godinho, & Melo, 

2013 
X   

Studying the impact of Google search data on the predictive 

power of nowcasting unemployment rates and car sales for 

France, Italy, Portugal and Spain 

 
 

Benthaus & Skodda, 2015  X X  

Nowcasting vehicle sales of two of the main German automobile 

manufacturers using Google Trends data and Twitter data 

 
 

Bollen, Mao, & Zeng, 2011  X  

Using Twitter mood to estimate the Dow Jones Industrial 

Average (DJIA) 

 
 

Carrière-Swallow & Labbé, 

2013 
X   

Nowcasting car sales in Chile utilizing macroeconomic variables 

and Google search data 

 
 

Choi & Varian, 2009 X   

Nowcasting automotive sales, travel destinations and  

house sales by means of Google Trends data 

 
 

Fantazzini & Toktamysova, 

2015 
X   

Predicting car sales in Germany by means of Google Trends data 

and economic variables  

 
 

Geva, Oestreicher-Singer, 

Efron, & Shimshoni, 2013  
X  X 

Analyzing the influence of sentiment derived from forum data as 

well as the impact of Google Trends data on the prediction of 

sales of new cars and light trucks in America. 

 
 

Geva, Oestreicher-Singer, 

Efron, & Shimshoni, 2015 
X  X 

Analyzing the influence of sentiment derived from forum data as 

well as the impact of Google Trends data on the prediction of 

sales of new cars and light trucks in America. 

 
 

Ginsberg et al., 2009 X   
Predicting influenza epidemics based on Google Trends data 

 
 

Lassen, Madsen, & Vatrapu, 

2014 
 X  Forecasting quarterly iPhone sales by making use of Twitter 
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Nymand-Andersen & 

Pantelidis, 2018 
X   

Approximating new car registrations in Europe by means of 

Google Trends data 

 
 

Pai & Liu, 2018  X  

Utilizing stock market values and sentiment scores of Twitter 

data to forecast car sales in the USA on a monthly basis 

 
 

Santillana, Nsoesie, Mekaru, 

Scales, & Brownstein, 2014 
X   

Detecting influenza epidemics through Google Trends data. 

 
 

Santillana et al., 2015 X X X 

Predicting influenza epidemics via Google Trends data, Twitter 

data, Google Flu Trends data and macroeconomic variables 

 
 

Seebach, Pahlke, & Beck, 2011  X   

Predicting new car sales of Germany's two largest car producing 

companies utilizing Google search data 

 
 

Tomczyk & Doligalski, 2015 X   

Forecasting new vehicle registrations via a macroeconomic index 

and Google Trends index 

 
 

Wu & Brynjolfsson, 2009 X    

Forecasting house sales, the house price index and the demand 

for home appliances in the US by means of Google Trends data 

 
 

Yu & Liu, 2012     X 
Forecasting box-office revenues for movies by making use of 

sentiment extracted from IMDB-reviews 

 

2.2 Natural language processing 

2.2.1 Sentiment analysis  

As most of the abovementioned literature conclude that the incorporation of sentiments extracted from 

social media improves the predictive power, further research concerning sentiment analysis is discussed 

below. Two main approaches to tackle sentiment analysis exist, namely lexicon-based techniques and 

machine learning methods (Dhaoui, Webster, & Tan, 2017; Gezici, Dehkharghani, Yanikoglu, Tapucu, & 

Saygin, 2013; Meire, Ballings, & Van den Poel, 2016; Mudinas, Zhang, & Levene, 2012; Ortigosa, Martín, 

& Carro, 2014; Zhang, Ghosh, Dekhil, Hsu, & Liu, 2011). 

In case of the lexicon-based approach, a pretrained sentiment lexicon is utilized in order to give each word 

in the analyzed text a sentiment score (Ding, Liu, & Yu, 2008; Taboada, Brooke, Tofiloski, Voll & Stede, 

2011). The given scores of all these words serve as input for a function that calculates the sentiment score 

of that text (Turney, 2002). A sentiment lexicon is a dictionary of words, in which each word is assigned a 

positive and a negative score (Bravo-Marquez, Mendoza, & Poblete, 2014). Alternatively, sentiment 

analysis can be approached by making use of machine learning methods, also called statistical methods 
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(Taboada et al., 2011). In this approach, models are trained on a classified training set. Since this approach 

is supervised, the training data has to be labeled. The input of these classifiers implemented to predict 

the sentiment of text (Taboada et al., 2011) consists of features extracted from text, such as unigrams, 

bigrams, part-of-speech, etc. (Pang, Lee, & Vaithyanathan, 2002).  

The lexicon-based approach requires less time than the machine learning approach for the following 

reasons. Firstly, lexicon-based methods have the advantage of not needing an annotated training set 

(Ortigosa et al., 2014; Tan, Wang, & Cheng, 2008), whereas the training set of machine learning models is 

mostly labeled manually (Dhaoui et al., 2017). Manually labeling the training set is often time-consuming 

as it needs to be large enough to ensure a good classification accuracy (Dhaoui et al., 2017). Secondly, 

machine learning classifiers have to be trained before usage. Consequently, a significant amount of time 

is consumed (Chaovalit & Zhou, 2005). 

In general, the machine learning approach provides better results in contrast to lexicon-based techniques 

in terms of accuracy (Chaovalit & Zhou, 2005). However, in less domain specific contexts, lexicon-based 

techniques seem to outperform machine learning techniques (Ortigosa et al., 2014). Furthermore, a 

possible alternative for manually labelling the training set in order to use supervised machine learning 

techniques, is to automatically label the data based on sentiment lexicons (Zhang et al., 2011; Tan et al., 

2008). In recent research performed by Dhaoui et al. (2017), this hybrid approach outperformed both the 

lexical-based approach and the machine learning approach using manually labeled input data. 

As far as my knowledge extends, researches that made use of sentiment analysis to predict car sales, 

implemented a lexicon-based approach.  
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3 Research questions 

Social media already proved its usefulness in forecasting social and economic trends, at least in case of 

text-based social media (Hu et al., 2014). Sentiment-based features are prominent in predicting car sales 

by means of text-based social media. To the best of my knowledge, lexicon-based approaches are the only 

type of sentiment analysis methods utilized in the context of car sales, even though machine learning 

techniques generally seem to give more accurate results compared to lexicon-based techniques (Chaovalit 

& Zhou, 2005), especially in domain specific contexts (e.g. car industry) (Ortigosa et al., 2014). A potential 

explanation for this trend is the time efficiency of lexicon-based approaches, as it is not necessary to label 

the training sets (Ortigosa et al., 2014; Tan et al., 2008) and no machine learning classifiers are required 

to be trained prior to usage (Chaovalit & Zhou, 2005).  

Image-based social media platforms such as Instagram might also contain useful information (Colliander 

& Marder, 2018; Hu et al., 2014; Pittman & Reich, 2016). Nonetheless, to the best of my knowledge, no 

research has investigated the predictive power of Instagram data to predict sales. Consequently, it may 

be interesting to investigate whether features extracted from the image-based social media platform 

Instagram serve as a useful input to forecast car sales. Hence, this leads to the following research question: 

• Is it possible to predict car sales making use of Instagram features? 

The literature review of this master dissertation (see section 2.1.2) concludes that, in general, search 

trends data is a valuable source of information in addition to traditional macro-economic variables to 

predict vehicle sales. The previous may be clarified by the following reasons. Firstly, search trends data is 

typically published earlier than traditional approximations, resulting in search queries data to be more 

recent (Santillana et al., 2015; Santillana et al., 2014). Secondly, online search data may provide a more 

rational view of the interests of customers than traditional economic variables (Wu & Brynjolfsson, 2009). 

However, the research of Barreira et al. (2013) illustrates that this is not always the case. 

To determine whether the inclusion of search trends data leads to better forecasts of car sales, I would 

like to provide an answer to the following research question: 

• Is it possible to predict car sales making use of Google Trends search data? 

It can be derived from the literature review of this master dissertation (see chapter 2) that both search 

trends data and features extracted from text-based social media such as Twitter contain valuable 

information to predict sales. Consequently, it is not surprising that some researchers investigated the 

combination of these two types of data sources. Benthaus and Skodda (2015) verified that linear 

regressors using both Google Trends search data and features from Twitter as input, managed to forecast 

car sales more accurately compared to linear regressors having only one of these types of data as input. 



12 
 

Geva et al. (2013, 2015) came to the same conclusion concerning both a linear model and a nonlinear 

neural network model. Additionally, in the context of forecasting car sales, the authors found that search 

data and forum data incorporate a significantly equivalent predictive power. In summary, both Benthaus 

and Skodda (2015) and Geva et al. (2013, 2015) conclude that search queries data and social media data 

complement one another. This conclusion can be declared by the difference in nature of the two types of 

data (Geva et al., 2013). 

Analogous to Benthaus and Skodda (2015) and Geva et al. (2013, 2015), I would like to investigate whether 

Instagram data and Google Trends data complement one another. As a consequence, the following 

research question is investigated: 

• Is a higher predictive performance present when combining Instagram features and Google 

Trends data to predict car sales? 

In order to provide an answer to the aforementioned research questions, I will predict the car sales of the 

most popular car models in the Netherlands in the months January to July of the year 2020. 
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4 Data 

This chapter covers the three types of data that were utilized in this master dissertation to predict the 

monthly sales of car models in the Netherlands of the year 2020. The first section provides information 

about the car sales dataset, i.e. the dependent variable, that is used in this master dissertation. The second 

section gives an overview of the data scraped from Instagram along with its relevant variables. In the third 

section, the search trends data of Google, i.e. Google Trends data, is discussed. The fourth section is 

dedicated to the imputation methodology used to handle missing values. 

4.1 Car sales  

The first dataset consists of the dependent variable, i.e. the monthly car sales of the 200 most sold car 

models in the Netherlands of the year 2019. From my own experience, Belgian car sales are solely 

available at the car brand level and not at the car model level, as is the case for Dutch car sales. 

Consequently, I decided to make use of Dutch car sales instead of Belgian car sales. The monthly car sales 

of 2019 are used as training set to forecast the monthly car sales of 2020. In figure 1, the training set is 

depicted as the ‘independent period’, whereas the ‘dependent period’ covers the months that will be 

predicted based on the training set. 

 

Figure 1. Time window 

The car sales data is gathered from https://www.autoweek.nl/verkoopcijfers/, which provides the 

monthly sales of new vehicles in the Netherlands. An overview of the 200 car models along with their 

total sales of 2019 is provided in appendix 1. 

4.2 Instagram data 

As suggested by Highfield and Leaver (2015), the usage of hashtags on Twitter is the main approach to 

find tweets related to a certain topic. The authors also advise to make use of hashtags to collect Instagram 

data associated to a particular topic. However, the work of Giannoulakis and Tsapatsoulis (2015, 2016a) 

state that, on average, only a quarter of the hashtags are directly linked to the content of the image. 

Consequently, to ensure that all images are directly associated to the desired hashtag or topic, one can 

manually filter out the so called stophashtags (Giannoulakis & Tsapatsoulis, 2015, 2016a). As this solution 

https://www.autoweek.nl/verkoopcijfers/
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is too time intensive, I decided to apply the following methodology, based on the proposition of Highfield 

and Leaver (2015). 

For each car model in appendix 1, a hashtag is used to scrape public Instagram posts related to that car 

model. The selection procedure of the hashtags was performed by manually choosing the hashtags that 

seemed to be representing a car model the most. If multiple candidate hashtags were found, the hashtag 

containing most public posts was chosen. For instance, in case of Volkswagen Arteon, I found two 

candidate hashtags, i.e. ‘#arteon’ and ‘#volkswagenarteon’. As depicted on figure 2, the hashtag ‘#arteon’ 

contained 102.218 public posts at the moment of choosing the hashtags, while the hashtag 

‘#volkswagenarteon’ contained 13.381 public posts at that moment (see figure 3). Hence, the public 

Instagram posts containing the hashtag ‘#arteon’ were selected to represent the public posts of the car 

model Volkswagen Arteon, as this hashtag was clearly more popular. Both hashtags, ‘#arteon’ and 

‘#volkswagenarteon’, can be accessed respectively by the following Uniform Resource Locators (URLs): 

https://www.instagram.com/explore/tags/volkswagenarteon/ and 

https://www.instagram.com/explore/tags/arteon/. 

 

Figure 2. Public posts containing the hashtag '#arteon' 

 

https://www.instagram.com/explore/tags/volkswagenarteon/
https://www.instagram.com/explore/tags/arteon/
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Figure 3. Public posts containing the hashtag '#volkswagenarteon' 

A table of the car models along with the hashtags used in this master dissertation to scrape the car related 

hashtags can be found in appendix 2. 

The Instagram data was scraped by my promotor, Prof. dr. Dirk Van den Poel, who made use of the UGent 

Instagram application programming interface (API). It is important to note that solely posts created in 

2019 are retained from the scraped Instagram data to ensure that the training set only contains data from 

the year 2019. 

4.2.1 Relevant variables 

For each hashtag, the following features were extracted from the scraped Instagram data and aggregated 

on a monthly level: (1) the total number of likes, (2) the total number of comments, (3) the total number 

of posts, (4) the total number of videos, (5) the total amount of views of these videos and (6) the average 

valence of the posts' captions. 

The choice of features is based on the research of Hoffman and Fodor (2010). Firstly, the number of likes 

on a post about a brand is an indicator of the WOM concerning that brand. Secondly, the number of 

comments on a post about a brand contributes towards the brand engagement. Thirdly, the total number 

of posts, the total number of videos, the total amount of views on these videos and the valence of posts’ 

captions of a brand are features that help measure the brand awareness (Hoffman and Fodor, 2010).  
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In subsection 4.2.1.1, the principle of ex-ante forecasts as well as its relevance to features (1), (2) and (5) 

are explained. The tool used to compute the valence of posts’ captions, i.e. Valence Aware Dictionary and 

sEntiment Reasoner (VADER) (Hutto & Gilbert, 2014), is described in subsection 4.2.1.2. Finally, the 

dataset of the Instagram features of the hashtag ‘#8series’ is provided as an illustration in subsection 

4.2.1.3.  

4.2.1.1 Ex-ante forecasting 

For each hashtag, I want to compute the abovementioned variables on a monthly basis. However, the 

point in time at which the Instagram posts are scraped has an influence on the number of likes, comments 

and views (in case the post contains a video). For instance, a post that is placed on January 2019 can have 

a different number of comments in the month January 2019 than in December 2019, i.e. the moment this 

post is scraped. In particular, the variables (1), (2) and (5) of posts created in the months previous to the 

month of scraping may contain information that was not yet available at the moment the posts were 

placed. Hence, forecasting car sales of February 2019 by means of the information related to a post placed 

in January 2019, which was scraped in December 2019, is called ex-post forecasting (Hyndman & 

Athanasopoulos, 2018). Consequently, to prevent this type of data leakage, only the information of a post 

available in the same month that the post was created needs to be retained as input to predict the future 

car sales (i.e. ex-ante forecasting) (Hyndman & Athanasopoulos, 2018).  

In practice, I was only able to perform ex-ante forecasting for the number of comments. The reason 

behind this is that solely the date a comment was placed is available, while the date of a given like or a 

video view is unknown. In what follows, an example of this methodology is provided.  

Table 2 represents a part of the information about the comments placed on a certain Instagram post that 

contains the hashtag ‘#arteon’. Each row represents a comment placed on the relevant Instagram post. 

Each comment or row has a unique id (i.e. column ‘id’). The column ‘created_at’ contains the timestamp 

a comment is placed, whereas the column ‘text’ stands for the content of the comment. The amount of 

likes a comment has gained at the time of scraping is represented by the column ‘likes_count’. Finally, the 

column ‘answers’ represents the content of the comments that are placed as a reply on the relevant 

comment. As can be seen in table 2, none of the comments was answered. 

The timestamp of the post itself equals 2019-05-14 22:51:54, indicating that the post is created at May 

2019. Only the comments that are placed starting from the creation of the post until the end of May 2019 

are considered to be known for the month May of the year 2019. Consequently, all comments of table 2 

are retained except for the comment created at timestamp 2019-06-29 00:54:25. Note that this 

information is only available in case a post contains at least one comment. 
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Table 2. Comments placed on an Instagram post 

id created_at text likes_count answers 

17906182294326122 2019-06-29 00:54:25 your snapshot is really GREAT :) 1 [] 

18032331400160622 2019-05-30 03:29:19 👍👍 1 [] 

18043555216188961 2019-05-27 05:57:43 

What an amazing shot! 😍 I think you might 

also like mine. 😉 1 [] 

17847324658451259 2019-05-24 20:41:38 Absolutky Amazing 🔥🔥🔥🔥 1 [] 

18046871983127800 2019-05-23 04:52:49 Hey Great Picture! 🔥👍 1 [] 

17866744912385419 2019-05-23 04:08:18 Amazing! 1 [] 

17891621935330411 2019-05-22 22:02:35 Jawdropping 1 [] 

17865958162379067 2019-05-19 11:06:27 Love the content 1 [] 

17850744163430639 2019-05-15 05:56:44 Nice! 2 [] 

 

4.2.1.2 Valence 

To be able to calculate the valence of a caption of an Instagram post, the lexicon-based and rule-based 

sentiment analysis tool VADER is utilized (Hutto & Gilbert, 2014). The lexicon consists of social media 

related features along with their valence or intensity, including a full list of Western-style emoticons, slang 

and acronyms. On top of that, VADER incorporates the following five heuristics that may influence the 

lexicon-based valence score. A first heuristic takes the presence of punctuations into account. For 

example, the inclusion of exclamation marks increases the absolute intensity value without changing the 

semantic orientation. Secondly, words in uppercase receive a higher absolute intensity value, with the 

semantic orientation remaining intact. Thirdly, if a sentence contains the conjunction ‘but’, it will receive 

the valence score of the words located after this conjunction. For instance, the sentence ‘This car’s 

acceleration is mind-blowing, but its fuel efficiency is bad.’ receives a negative valence score (i.e. the 

valence score of the sentence part ‘its fuel efficiency is bad.’). Fourthly, the presence of degree adverbs 

such as ‘very’ and ‘marginal’ are taken into account. The inclusion of the degree adverb ‘very’ in a sentence 

increases the absolute intensity value of the sentence, whereas the adverb ‘marginal’ decreases the 

sentence’s absolute intensity value. Fifthly, VADER analyzes each trigram (i.e. sequence of three words) 

prior to a sentiment-laden lexicon feature (i.e. word with a valence score different from zero). 

Consequently, VADER is able to detect 90 percent of the cases in which a negation changes the semantic 

orientation of a sentence (Hutto & Gilbert, 2014). 

Practically, a VADER sentiment analysis Python module (Hutto & Gilbert, 2014) was used to calculate the 

compound score. The compound score is formed by taking the sum of the valence scores of all words and 

normalizing this sum into a number within a continuum ranging from –1 (i.e. extremely negative valence) 

to +1 (i.e. extremely positive valence). A sentence containing a compound score of zero means that the 

sentence does not have any valence. A positive compound score indicates a positive valence, while a 



18 
 

negative compound score stands for a negative valence (Hutto & Gilbert, 2014). For example, the 

sentence ‘The car's comfort is really good.’, has a compound score of 0,69. When a negation is added to 

this sentence, for example ‘The car's comfort isn't really good.’, a compound score of -0,03 is assigned. In 

this case, VADER was able to detect the negation after the trigram ‘The car’s comfort’, which changes the 

semantic orientation of the sentence. 

4.2.1.3 Illustration 

Table 3 is an illustration of a dataset regarding the Instagram features extracted from the hashtag 

‘#8series’. Hence, this dataset includes the Instagram features of the car model ‘BMW 8-serie’. As already 

mentioned in section 4.2.1, the features are aggregated on a monthly level. The variables ‘nr_likes’, 

‘nr_comments’, ‘nr_posts’, ‘nr_videos’ and ‘video_view_count’ are aggregated by taking the monthly 

sum, whereas ‘polarity’ is aggregated by taking the monthly average. 

Table 3. Instagram features of the hashtag ‘#8series’ 

date nr_likes nr_comments nr_posts nr_videos video_view_count polarity 

2019-01-31 5.770.010 29.035 3.447 690 6.218.536 0,23178181 

2019-02-28 6.912.360 31.791 3.726 676 7.304.917 0,230466989 

2019-03-31 3.183.087 17.048 1.997 220 4.675.447 0,225629094 

2019-04-30 3.250.977 15.582 1.673 163 2.137.230 0,214542558 

2019-05-31 2.886.680 15.328 1.926 228 3.106.338 0,183578453 

2019-06-30 4.803.574 22.182 2.110 206 3.579.117 0,229742228 

2019-07-31 3.696.567 16.499 1.495 187 3.381.570 0,208475987 

2019-08-31 4.087.685 16.220 1.569 200 2.685.594 0,21575443 

2019-09-30 3.462.327 14.113 1.713 223 860.378 0,168648103 

2019-10-31 3.426.845 15.467 1.807 268 1.993.449 0,227137576 

2019-11-30 3.619.948 14.161 1.591 281 3.045.701 0,209352168 

2019-12-31 3.433.225 12.837 1.698 407 3.164.254 0,247837868 

 

4.3 Search trends data 

The majority of the literature in section 2.1 made use of data obtained from Google’s search engine. 

Furthermore, Google is the most popular search engine in the Netherlands, having a market share of 

almost 96 percent (de Best, 2020). Additionally, an API named ‘pytrends’ (General Mills, 2016) is available, 

making it possible to automatically extract the necessary Trends data (see subsection 4.3.2). Due to the 

beforementioned reasons, Google Trends data is an appropriate source of information and is therefore 

utilized in this master thesis. 



19 
 

4.3.1 Google Trends data 

Google Trends data represents people’s search interest in search queries over time (Rogers, 2016). Google 

makes it possible to easily extract this data for any period and desired region, starting from 2004. 

Moreover, search terms can be filtered based on different search categories such as ‘Autos & Vehicles’, 

‘Finance’, ‘Health’, etcetera (Rogers, 2016).  

To limit computational efforts, Google draws an unbiased sample of the full Google search dataset 

(Rogers, 2016). The yearly increase of search engine users makes it impossible to compare absolute search 

volumes at different points in time. On top of that, the absolute volumes also depend on the geographical 

region, which can be problematic when comparing searches in terms of location. To tackle these 

problems, Google normalizes the search volumes. More specifically, for a certain topic or search term, the 

absolute number of searches for that topic is divided by the total amount of searches on all topics in a 

specific region and time. In addition, Google scales the normalized data by giving each datapoint a number 

ranging from zero to 100. The datapoint with the largest search interest for the predefined time period 

and location is labeled as 100. Based on this datapoint, the other points receive a number in proportion 

to their relative search interest (Rogers, 2016).  

 

Figure 4. Google Trends time series 

To clarify the interpretation of Google Trends data, figure 4 is shown, which can be consulted through the 

following URL: https://trends.google.com/trends/explore?date=2019-01-01%202019-12-

31&geo=NL&q=renault%20clio,tesla%20model%203,tesla%20model%20x,volkswagen%20polo,bmw%20

https://trends.google.com/trends/explore?date=2019-01-01%202019-12-31&geo=NL&q=renault%20clio,tesla%20model%203,tesla%20model%20x,volkswagen%20polo,bmw%201%20serie
https://trends.google.com/trends/explore?date=2019-01-01%202019-12-31&geo=NL&q=renault%20clio,tesla%20model%203,tesla%20model%20x,volkswagen%20polo,bmw%201%20serie
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1%20serie. As depicted on figure 4, the Google Trends data is provided on a weekly basis for the following 

five search terms: ‘renault clio’, ‘tesla model 3’, ‘tesla model x’, ‘volkswagen polo’ and ‘bmw 1 serie’. The 

time period is set between 01-01-2019 and 31-12-2019, whereas the region is set to the Netherlands. The 

search term ‘tesla model 3’ is increasing in popularity on average and reaches its popularity peak at the 

week of September 29th to October fifth in the year 2019. As this is the most popular search term out of 

the five terms for the mentioned period and region, it is indexed at a value of 100. During that week, the 

search terms ‘renault clio’ and ‘volkswagen polo’ each had an index value of 25, indicating that their 

popularity is only one fourth of the popularity of ‘tesla model 3’. After this peak, the index value of ‘tesla 

model 3’ decreases. This decline reflects a reduction in popularity regarding other search terms but does 

not necessarily indicate an absolute decrease in the search volume of the respective term (Google News 

Initiative, n.d.).  

4.3.2 Data collection 

I was able to automatically collect the Google Trends data for all car models mentioned in appendix 1 by 

means of an API named ‘pytrends’ (General Mills, 2016). The region is limited to the Netherlands and the 

period is set between 01-01-2019 and 31-12-2019.  

The number of search terms that can be compared simultaneously for a given time period and region, is 

limited to five (Briggs, 2017). As only one search term is used for each car model, it is necessary to extract 

data for 200 terms. To deal with the limitation of only being able to compare five terms, Google Trends 

data needs to be scraped multiple times, for which each time different search terms are used. However, 

all extracted datasets need to have one search term in common to be able to contrast the different 

datasets. The common term can then be used as a reference to transform all datasets to the same scale 

(Briggs, 2017). 

The selection of the search terms is based on the work of Mavragani and Ochoa (2019). Even though 

Google Trends is not case sensitive, it is sensitive to accent marks and spelling errors. Consequently, it is 

almost impossible to cover all searches related to a certain topic. To partly solve this problem, Mavragani 

and Ochoa (2019) suggest adding multiple search terms to one query by using the ‘+’ sign. For example, 

the car model ‘Renault Mégane’ can be searched under the search term ‘Renault Mégane’ as well as under 

the term ‘Renault Megane’, i.e. without accent mark. To obtain the search interest of both search terms, 

the search query ‘Renault Mégane+Renault Megane’ is utilized. Considering the previous, each search 

term consists of the following structure. On the one hand, if the car brand does not contain accent marks, 

the car brand is followed by the Dutch model name with each word separated by a single space. 

Additionally, each word is put in lowercase. On the other hand, if a car brand does contain accent marks, 

the same structure is applied for both the car model written with accent marks and the car model written 

https://trends.google.com/trends/explore?date=2019-01-01%202019-12-31&geo=NL&q=renault%20clio,tesla%20model%203,tesla%20model%20x,volkswagen%20polo,bmw%201%20serie


21 
 

without accent marks. The search query is then formed by including both search terms separated by a ‘+’ 

sign. For example, the search query for the car model ‘Renault Mégane’ is annotated as ‘renault 

mégane+renault megane’, whereas the search query for the car model ‘Volkswagen Arteon’ is 

represented by ‘volkswagen arteon’. A list of the car models with their corresponding search terms can 

be consulted in appendix 3. 

Barreira et al. (2013) state that the use of queries without category constraints usually led to the best 

results in explaining and nowcasting car sales. However, to avoid ambiguity in the search terms, it is 

advised to limit the searches to a certain category (Mavragani & Ochoa, 2019). For instance, the word 

‘jaguar’ can refer to the car brand ‘Jaguar’, or it can refer to an animal. Consequently, for this master 

dissertation, the search terms are filtered by the category ‘Autos & Vehicles’ (Wachter, Widmer, & Klein, 

2019). 

As mentioned in subsection 4.3.1, Google only provides a sample of the search volume population 

(Rogers, 2016). Consequently, downloading data from Google Trends multiple times results in the 

occurrence of a small variation in the index values of the extracted data for each download (Barreira et 

al., 2013; Carrière‐Swallow & Labbé, 2013; Fantazzini & Toktamysova, 2015). Analogous to the 

aforementioned researchers, I took the average of the same data extracted at different moments in time 

to reduce this variance (Barreira et al., 2013; Carrière‐Swallow & Labbé, 2013; Fantazzini & Toktamysova, 

2015). 
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5 Methodology 

In this chapter, the methodology applied in this master thesis is discussed. Firstly, the implementation of 

the clustering algorithm based on the car sales is described. Secondly, the different forecasting algorithms 

are explained, followed by the necessary data preparation and the execution of these algorithms. Thirdly, 

an overview of the utilized performance measures is provided. Fourthly, cross-validation applied in the 

context of time series is explained in more detail. Lastly, the statistical tests that have the purpose of 

determining significant differences in model performance are covered. 

5.1 Clustering 

I decided to cluster the car models by making use of the Taylor-Butina algorithm since this results in a 

decrease of computational complexity (Butina, 1999; Venkatesh, Ravi, Prinzie and Van den Poel, 2014). In 

addition, I preferred to utilize the Sequence-Alignment Method (SAM) as a distance measure, which 

serves as input for the Taylor-Butina algorithm. The reason behind this is the ability of SAM to deal with 

sequential information (Levenshtein, 1966). The approach applied to cluster the car models is based on 

the research of Venkatesh et al. (2014). 

After clustering automated teller machines (ATMs) based on their similarity in day-of-the-week cash 

withdrawal patterns by implementing the Taylor-Butina algorithm, Venkatesh et al. (2014) forecasted the 

cash demand of ATM centers based on these clusters. Analogous to the work of Venkatesh et al. (2014), I 

grouped car models that have similar monthly sales patterns. A possible advantage of clustering the car 

models is the decrease in computational complexity, which in turn leads to a higher forecasting accuracy 

(Venkatesh et al., 2014). 

In what follows, the subsequent aspects will be explained: (1) the steps executed prior to the 

implementation of the SAM (Levenshtein, 1966), which is utilized to determine the distance or similarity 

between the car models (see subsection 5.1.1), (2) SAM as well as its implementation (see subsection 

5.1.2) and (3) the Taylor-Butina clustering algorithm, for which the SAM distances between the car models 

serve as input (Butina, 1999) (see subsection 5.1.3). 

5.1.1 Sequence of twelve integer seasonality parameters 

Firstly, for each car model, a multiplicative time series model  

Y = T * S * C * I is fit, where T stands for the trend, S reflects the seasonality, C represents the cyclic 

movement and I serves as the time series’ irregular part of the model (Venkatesh et al., 2014). I made the 

assumption that the data contains neither cycles nor irregular components. To evaluate whether the 

previous assumption holds true, the car sales data of the formed cluster centroids are plotted in time. All 

plots can be consulted in appendix 4. Based on these plots, it is clear that solely a fixed frequency is 
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present in the fluctuations of the car sales data. As a result, only a seasonality is included in the data 

(Hyndman & Athanasopoulos, 2018). Hence, my assumption regarding the absence of cycles and irregular 

components in the data can be verified for all cluster centroids. Furthermore, an ordinary least squares 

(OLS) regression model is fit on the time series data to estimate the trend (Venkatesh et al., 2014). 

Afterwards, the seasonality part is acquired by dividing the time series data by its trend (Venkatesh et al., 

2014). 

In the second step, multiple years of car sales data are needed. As a consequence, I made use of data that 

comprises monthly car sales in the period from 01-01-2016 to 31-12-2019 (i.e. the sales of each car model 

are represented by a sequence of 48 monthly observations). However, in case of 54 out of the 200 car 

models, the sales data starting from the year 2016 was absent. The reason behind this is that either the 

car models were not yet available for sale in 2016 or that none of the car models were bought yet in the 

Netherlands. As a result, I decided to predict the car sales for the 146 car models that do have available 

data starting from 01-01-2016. Similar to Venkatesh et al. (2014), the 48 monthly observations for each 

car model are substituted by a sequence of twelve “month of the year” seasonality parameters. This is 

accomplished by averaging the seasonal values of each month, e.g. for the month January, the average 

seasonality of observation one, thirteen, twenty-five and thirty-seven is calculated. Next, each car model’s 

sequence of twelve continuous seasonality parameters is discretized to ease the clustering process. For 

each car model, the quartiles of the seasonality values are computed for each month of the year. 

Subsequently, each “month of the year” seasonality parameter is replaced by the number of the quartile 

it belongs to (Venkatesh et al., 2014). An example of discretizing the twelve continuous seasonality 

parameters of the car model Audi A1 is given in table 4.   

Table 4. Discretizing the monthly seasonality parameters of car model Audi A1 

Month  

1st 

quartile 

2nd 

quartile 

3rd 

quartile 

4th 

quartile 

continuous 

seasonality 

discrete 

seasonality 

January <1,51 1,51-1,54 1,54-1,61 >1,61 1,58 3 

February <0,82 0,82-0,83 0,83-0,94 >0,94 0,93 3 

March  <0,99 0,99-1,11 1,11-1,17 >1,17 1,05 2 

April <0,84 0,84-0,91 0,91-0,99 >0,99 0,93 3 

May <0,75 0,75-0,87 0,87-1,03 >1,03 0,90 3 

June <1,02 1,02-1,07 1,07-1,14 >1,14 1,09 3 

July <1,09 1,09-1,13 1,13-1,18 >1,18 1,14 3 

August <0,92 0,92-1,17 1,17-1,44 >1,44 1,18 3 

September <0,59 0,59-0,67 0,67-0,79 >0,79 0,71 3 
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October <0,91 0,91-1,11 1,11-1,26 >1,26 1,06 2 

November <0,90 0,90-1,02 1,02-1,26 >1,26 1,15 3 

December <0,18 0,18-0,20 0,20-0,31 >0,31 0,28 3 

 

5.1.2 SAM 

In the third step, Venkatesh et al. (2014) determined the similarity or distance between each pair of ATMs 

by means of the SAM, which was introduced by Levenshtein (1966). The original SAM determines the 

distance between two strings (i.e. the source string and the target string) as the minimum amount of 

operations (i.e. insertions, deletions and replacements) needed to transform the source string into the 

target string (Venkatesh et al., 2014). A benefit of SAM is its ability to deal with sequences of different 

lengths as well as to consider sequential information. Hence, the similarity between each pair of car 

models is illustrated by the minimum number of operations required to align their “month of the year” 

sequences with one another (Venkatesh et al., 2014). This implies that the original SAM can only take 

positive integer values. To further illustrate, the SAM distance between the car models Audi A1 and Alfa 

Romeo MiTo is provided in table 5.  

Table 5. Discretized sequences of seasonality parameters 

Car model Discretized sequence of seasonality parameters 

Audi A1 (Target) 3 3 2 3 3 3 3 3 3 2 3 3 

Alfa Romeo MiTo (Source)  2 2 2 3 3 3 2 3 2 2 2 2 

 

As shown in table 5, the distance between Audi A1 and Alfa Romeo MiTo amounts six since the six 

underlined numbers need to be replaced to align the sequences with one another. This distance is 

calculated for each pair of car models. All pairwise SAM distances of the car models are represented by a 

distance or dissimilarity matrix. In practice, the distance is calculated by means of the distance module of 

the Levenshtein package (Necas, 2014). 

5.1.3 Taylor-Butina algorithm 

Lastly, similar to Venkatesh et al. (2014), I utilized the Taylor-Butina clustering algorithm (Butina, 1999). 

In what follows, the algorithm is explained. Firstly, a threshold based nearest-neighbor table is created by 

means of the previously formed distance matrix (see subsection 5.1.2). This table or matrix contains one 

row for each car model. Each row includes the neighbors of the car model represented by that row. Two 

car models are considered neighbors of one another when their relative distance is below the predefined 

distance threshold. Secondly, all empty rows are withheld from the table as these rows represent the car 

models without any neighbor, based on the imposed distance threshold. These car models are labeled as 
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true singletons since they form a cluster on their own. Thirdly, the car model containing most neighbors 

for the predefined threshold is considered as a cluster centroid. As a result, this datapoint and its 

neighbors form a cluster. Fourthly, this row along with the datapoints belonging to this cluster are erased 

from all rows of the nearest-neighbor table. The third and fourth step are repeated on the updated 

nearest-neighbor table until the table consists of solely empty rows. Any leftover rows are labeled as false 

singletons. Even though false singletons have neighbors at the current distance threshold, all neighbors 

have been removed earlier by other datapoints having a larger number of neighbors. Hence, false 

singletons join the cluster of its nearest neighbor (Butina, 1999; Venkatesh et al., 2014). 

The statistical quality of this clustering algorithm can be derived as the number of cases the standard 

deviation for the monthly seasonality parameters within the clusters is lower than the standard deviation 

for the respective monthly seasonality parameters of the full dataset (see subsection 5.1.1) (Venkatesh et 

al., 2014).  

Practically, I made use of the Butina module from the rdkit.ML.Cluster package (Landrum, 2020). The 

hyperparameter to be tuned is the distance threshold of the threshold based nearest-neighbor table. I 

decided to determine the optimal distance threshold based on the aforementioned statistical quality of 

the Taylor-Butina algorithm. More specifically, I ran the clustering algorithm multiple times, for which 

each time a different distance threshold is used. In this research, the optimal distance threshold should 

be an integer value between one and five because of the following reasons. As mentioned in subsection 

5.1.2, the distance used in this research (i.e. the original SAM distance) can only take positive integer 

values. In addition, a distance threshold of zero causes each car model to be a true singleton since no car 

model seems to have the same sequence of seasonality parameters. On top of that, the maximum 

distance that occurred in the distance matrix is equal to five. Hence, in case the distance threshold lies 

above five, every car model would be a neighbor of one another, resulting into one cluster.  

A distance threshold of five leads to three clusters. For two of these clusters, the standard deviations of 

all twelve seasonality parameters are higher than for the full sample of car models. The remaining cluster 

has a lower standard deviation for all twelve seasonality parameters compared to the full sample. 

Consequently, for twelve out of 36 months or in 33,33 percent of the cases, the standard deviation within 

the clusters is lower than the standard deviation of the full dataset. The process of calculating the 

statistical quality is executed for all candidate distance thresholds. An overview of the thresholds along 

with their previously described statistical quality (denoted as ‘Percentage True’) is depicted in figure 5. 

The optimal distance threshold equals three, having a ‘Percentage True’ or statistical quality of 77,78 

percent. Based on this distance threshold, twelve clusters are formed. The distribution of the formed 
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clusters can be found in appendix 5. In appendix 5, the first element of each cluster is the cluster’s 

centroid.  

 

Figure 5. Optimal distance threshold 

5.2 Forecasting 

After clustering the car models in section 5.1, the car sales of these car models are forecasted making use 

of two popular forecasting algorithms, i.e. ARIMA (Box & Jenkins, 1970) and Long Short-Term Memory 

(LSTM) (Hochreiter & Schmidhuber, 1997) (see subsection 5.2.1). To be able to provide an answer to the 

research questions (see chapter 3), the forecasting algorithms need to predict the monthly car sales of 

2020 in the Netherlands multiple times, each time having a different dataset as input. More precisely, the 

four datasets in table 6 are utilized to predict the car sales of 2020. Dataset 1 only contains the car sales 

of 2019, whereas dataset 2 comprises the car sales of 2019 as well as the search trends of 2019. In 

addition, dataset 3 consists of the car sales of 2019 and the Instagram features (i.e. the total number of 

likes, the total number of comments, the total number of posts, the total number of videos, the total 

amount of views of these videos and the average valence of the posts' captions). Lastly, dataset 4 

incorporates the car sales of 2019, the search trends of 2019 and the Instagram features of 2019.  
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Table 6. Datasets used to predict car sales of 2020 

Dataset\Feature  car sales 2019 search trends 2019 Instagram features 2019 

1 x   

2 x x  

3 x  x 

4 x x x 

 

To determine which forecasting algorithm to use, the car sales of 2020 will be predicted by an ARIMA 

model as well as an LSTM model with both dataset 4 as input. The model with the best predictive power 

in terms of root mean squared error (RMSE) and mean absolute error (MAE) (see section 5.3) is then 

utilized to forecast the car sales of 2020 three more times, each time with one of the three remaining 

datasets (i.e. dataset 1, dataset 2 and dataset 3) as input. Note that the algorithms are trained to forecast 

the car sales one month ahead. 

Due to time limitations and limitations in computational power, the models are not trained on each of the 

146 car models but are fit on each of the twelve cluster centroids. Next, for each car model, the car sales 

of 2020 are predicted by using the model trained on the cluster centroid that represents the cluster to 

which the car model belongs. To summarize, five different models will be used to forecast the car sales of 

the Netherlands of 2020 (see table 7). 

Table 7. Overview models to forecast 

Forecasting algorithm Dataset 

ARIMA Dataset 4 
LSTM Dataset 4 
ARIMA or LSTM Dataset 1 
ARIMA or LSTM Dataset 2 
ARIMA or LSTM Dataset 3 

 

In what follows, subsection 5.2.1 covers the concepts of the ARIMA forecasting algorithm and the LSTM 

forecasting algorithm. Subsection 5.2.2 is devoted to the steps needed to prepare dataset 2, 3 and 4 of 

each car model to make forecasts. In subsection 5.2.3 and 5.2.4, the methodology applied to implement 

the ARIMA model and the LSTM model is explained respectively. 
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5.2.1 Forecasting algorithms 

In this subsection, two regression models are discussed. The first model, ARIMA (Box & Jenkins, 1970), 

represents a classical forecasting model. The second algorithm is denoted as LSTM (Hochreiter & 

Schmidhuber, 1997), which has been utilized in a wide range of domains such as speech recognition, 

natural language processing and time series (Cao, Li, & Li, 2019; Graves, Mohamed, & Hinton, 2013). 

5.2.1.1 ARIMA 

ARIMA (Box & Jenkins, 1970) models are one of the most popular and most used models to forecast time 

series (Siami-Namini & Namin, 2018). These types of models are AR models, meaning that the forecasts 

of a variable are based on the past values of that variable. In addition, financial and economic time series 

are typically not stationary (i.e. their statistical properties are not constant over time) (Ogasawara et al., 

2010). To make time series stationary, the sequential observations are subtracted from each other, which 

is called differencing (Hyndman & Athanasopoulos, 2018). On top of that, an ARIMA model also takes past 

error terms of the model into account by including a Moving Average (MA) model.  

A commonly used notation is ARIMA(p,d,q), where p stands for the number of lags considered by the AR 

part of the model, d implies the order of differencing and q represents the order of the MA part (Helmini, 

Jihan, Jayasinghe, & Perera, 2019; Siami-Namini & Namin, 2018). This model assumes that the time series 

data is non-seasonal. To handle seasonal time series data, a seasonal ARIMA(p,d,q)x(P,D,Q)S is preferred. 

The lowercase parameters p, d and q have the same meaning as the parameters of the non-seasonal 

ARIMA model and are therefore called non-seasonal parameters. The seasonal parameters P, D and Q are 

equivalent to their non-seasonal counterparts, except for the lags being used. More precisely, the lags for 

the seasonal parameters are multiples of the seasonality length or period S (Siami-Namini & Namin, 2018). 

Despite its popularity, ARIMA has difficulties to capture non-linear relationships between variables as the 

algorithm is based on linear regression (Siami-Namini & Namin, 2018).  

5.2.1.2 LSTM 

LSTM was first proposed by Hochreiter and Schmidhuber (1997) and updated over the years by several 

authors (Bayer, Wierstra, Togelius, & Schmidhuber, 2009; Graves, 2013; Schmidhuber, Wierstra, Gagliolo, 

& Gomez, 2007). In order to clarify the concept of LSTM, artificial neural networks (ANNs) as well as 

recurrent neural networks (RNNs) are first explained respectively. 

ANNs are based on the biological neural network situated in our brain (Kalogirou, 2000). This network 

consists of interconnected biological neurons that transmit information to and receive information from 

one another. Analogous to the biological neural network, ANNs consist of artificial neurons that are 

connected to each other. A typical ANN, i.e. a multilayer feed-forward neural network, is illustrated in 

figure 6. The neurons are visualized as nodes and the arrows serve as an information flow between the 
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neurons. The network consists of three types of layers, namely the input layer, the hidden layer and the 

output layer, with each layer defined as a collection of neurons. The input features of an observation are 

fed into the neurons of the input layer, which in turn extract information that seems relevant and transfer 

these features to the neurons of the next layer (i.e. the first hidden layer). In other words, the output of 

neurons belonging to a particular layer acts as input of the neurons of the subsequent layer. All layers 

situated between the input layer and the output layer are called hidden layers. The neurons of the output 

layer represent the predictions of the neural network (Kalogirou, 2000).  

 

Figure 6. Multilayer feed-forward neural network 

Note. Reprinted from “Applications of artificial neural-networks for energy systems”, by Kalogirou, S.A., 2000, 

Applied Energy, 67, 21. Copyright 2000 by Elsevier Inc.  

For each neuron, the importance of each input feature xt is determined by the weights Wij assigned to 

that feature (Kalogirou, 2000). In particular, as can be seen in figure 7, the following steps take place. First, 

each incoming feature xj is multiplied by a weight Wij, where features that are considered to be more 

important are assigned a higher weight. Next, the sum of these weighted values is computed. This 

weighted sum serves as input of an activation function, whose result determines the neuron’s output 

(Kalogirou, 2000).  
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Figure 7. Artificial neuron 

Note. Reprinted from “Applications of artificial neural-networks for energy systems”, by Kalogirou, S.A., 2000, 

Applied Energy, 67, 21. Copyright 2000 by Elsevier Inc.  

The learning phase of ANNs starts by initializing the weights (Kelleher, 2019). Next, for each observation 

of the training set, the features are fed into the network and outputs are generated. These outputs are 

contrasted to the actual values or labels to determine the error of the model. Based on the error, the 

weights are updated to minimize a certain cost function. A popular algorithm to update the weights is 

backpropagation (Rumelhart, Hinton, & Williams, 1986). The backpropagation algorithm works as follows. 

First, the gradient of the cost function (i.e. the local steepest slope) is calculated. Next, the weights of the 

output layer are updated in the opposite direction of the gradient (LeCun et al., 2015). The magnitude of 

the weights’ update depends on the learning rate (Murphy, 2012). After adjusting the weights of the 

output layer, the weights of the previous layer are adjusted by making use of the chain rule for derivatives. 

This process is iterated for the previous layers of the neural network, all the way back to the input layer 

(LeCun et al., 2015). Once all weights of all layers are updated, the features are inserted again into the 

model and a new error is calculated based on the generated outputs for each observation. This whole 

learning process is repeated until a certain condition, such as reaching a minimum in the cost function, is 

met (Kelleher, 2019). The moment the weights are updated can vary (Wilson & Martinez, 2003). During 

batch training, the weight changes take place after the model has seen the whole training set (i.e. after 

one epoch). In stochastic gradient descent, the weights are adapted after each training example (i.e. after 

one instance). Alternatively, the weights are adapted after a set of instances. This process is called mini-

batch training (Wilson & Martinez, 2003). When the neural network model is trained, the final weights 

are used to test the model’s performance on unseen data (Kalogirou, 2000). This very popular learning 

algorithm for ANNs is called gradient descent (Nielsen, 2015).  

RNNs are neural networks specialized in handling sequential data (Kelleher, 2019). An RNN processes the 

sequential data one by one, taking into account information from previous observations of the sequence. 

In other words, RNNs are capable of memorizing information of previously seen datapoints. This is realized 

by using the output of the previous observation along with the features of the current observation, as 
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input of the current observation (Kelleher, 2019). However, in general, RNNs struggle to remember long 

sequences of data (Siami-Namini & Namin, 2018) due to the problem of vanishing gradients (Bengio, 

Simard, & Frasconi, 1994). This problem states that the deeper the neural network, the closer the 

gradients of the loss function approximate zero. Consequently, training the network becomes less 

straightforward. The problem of vanishing gradients can be explained by activation functions, such as the 

sigmoid function, that transform the input space into a value between zero and one, making its derivative 

small as well (Wang, 2019). 

Due to this problem, Hochreiter and Schmidhuber (1997) proposed LSTM as a solution. An LSTM is a 

special type of RNN that outperforms other RNN models in terms of dealing with long range dependencies 

(Graves, 2013). Instead of sequentially remembering all information of previous observations, an LSTM is 

able to select which data from the past to convey and which to forget (Siami-Namini & Namin, 2018). This 

is accomplished by means of three types of gates, namely the forget gate, the memory gate and the output 

gate. The forget gate decides which information of the cell state (i.e. representation of all the 

remembered information of past observations and the current input) will be thrown away. This gate 

makes use of a sigmoid function that outputs values between zero and one, with zero meaning that the 

forget gate will fully forget the cell state and one causing the gate to remember the whole state of the 

cell. The second gate, the memory gate, decides which new information will be stored in the cell state. 

Finally, the output gate determines which part of the cell state will serve as output (Siami-Namini & 

Namin, 2018). The output of the LSTM model is also called the hidden state (Phi, 2018). In terms of 

predicting time series, LSTM is robust against outliers and change points (Guo et al., 2016). On top of that, 

in contrast to ARIMA,  deep learning models such as LSTM models are able to capture non-linear patterns 

as well as other complex relationships in the data (Siami-Namini & Namin, 2018). In general, LSTM seems 

an appropriate algorithm for the prediction of time series (Cao et al., 2019).  

5.2.2 Data preparation 

5.2.2.1 Missing values 

The Instagram dataset as well as the car sales dataset contain missing values for some car models. In case 

of the car sales dataset, a missing value indicates that zero new vehicles of that car model are sold during 

that month. Consequently, these missing values are imputed by zero. Similarly, the missing values of the 

Instagram dataset are imputed by zero as well, since this implies that there are no posts placed during 

that month for a certain hashtag. 

5.2.2.2 Multicollinearity 

An important assumption of regression is the absence of multicollinearity (Daoud, 2017). Multicollinearity 

indicates a linear relation between at least two independent variables (Alin, 2010). Violating this 
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assumption results in an unreliable regression model (Daoud, 2017). In order to identify multicollinearity, 

multiple techniques can be applied. First of all, the pairwise correlation between predictors may give an 

indication of multicollinearity (Alin, 2010; Daoud, 2017). A large correlation between predictors implies 

multicollinearity. However, multicollinearity does not always mean a high correlation, since 

multicollinearity can also exist in case of a low correlation (Alin, 2010). On top of that, a common threshold 

to indicate whether a correlation is considered as small or high does not exist (Daoud, 2017). Because of 

these drawbacks, a more popular approach, i.e. variance inflation factor (VIF), is utilized. The VIF of a 

predictor i is formulated as follows (Alin, 2010; Daoud, 2017): 

VIFi =
1

1 − Ri
2  for i = 1,2, … , k 

Where Ri
2

 stands for the coefficient of multiple determination of predictor i on the other k-1 predictors 

and k represents the number of predictors. 

A VIF of a predictor is considered large if it is above ten (Alin, 2010). Moreover, the average VIF also 

indicates whether multicollinearity is present or not. If the average VIF is above one, there is a high 

probability of multicollinearity (Alin, 2010). 

In this master thesis, I decided to analyze whether multicollinearity is present in the Instagram features 

by looking at the correlation as well as the VIF of the twelve cluster centroids.  

The VIF of the twelve car models can be consulted in appendix 6. Based on the average VIF, I observed 

that for each cluster centroid, a high probability of multicollinearity is present between the Instagram-

related variables.  

Based on the correlation matrices of all twelve cluster centroids in appendix 7, I concluded that for ten 

centroids all Instagram-related variables, with an exception of polarity, are highly correlated to one 

another (i.e. a correlation of one or close to one). In case of the cluster centroid ‘Land Rover Range Rover’, 

there is a high correlation between the variable ‘nr_comments’ and the variable ‘polarity’ and a rather 

low correlation between the variable ‘nr_comments’ and the other variables. In case of the remaining 

cluster centroid ‘Land Rover Range Rover Evoque’, the variable ‘polarity’ is highly correlated with the 

other Instagram-related variables. Nonetheless, the correlation between all variables, except for 

‘polarity’, is still higher.  

As in most cases all variables, except for polarity, are highly correlated, I decided to retain the variable 

polarity. On top of that, as proposed by Daoud (2017), multicollinearity is resolved by only keeping one of 

the highly correlated variables. Consequently, the variable ‘nr_comments’ is retained as this solves the 
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problem of multicollinearity as well as the problem of ex-ante forecasting mentioned in subsection 

4.2.1.1. 

5.2.2.3 Prediction of the external regressors  

The observations from January 2019 to December 2019 are utilized to train the ARIMA model and the 

LSTM model. However, in order to predict the monthly car sales of 2020 by means of dataset 2, dataset 

3, and dataset 4 (see table 6), the observations of the external regressors (i.e. the Google Trends data and 

the data extracted from the Instagram hashtags) of 2020 are also needed as input. As the purpose of this 

master thesis is to solely use data of 2019, the external regressors for the desired months of 2020 need 

to be predicted. More precisely, for each external regressor, the observations of the months January, 

February, March, April, May, June and July of 2020 are forecasted by an ARIMA model, using the 

observations from 2019 of the relevant external regressor as input. 

An overview of this dataset with the three types of data is represented in table 8. The first twelve 

observations of table 8, i.e. from t=1 until t =12, serve as training set. The test set is represented by the 

seven last rows of table 8, i.e. from t=13 until t=19. 

Table 8. Dataset with the three types of data 

Date car sales t Google Trends t Instagram features t 

31/01/2019 (t=1) car sales 1 Google Trends 1 IG features 1 

28/02/2019 (t=2) car sales 2 Google Trends 2 IG features 2 

31/03/2019 (t=3) car sales 3 Google Trends 3 IG features 3 

30/04/2019 (t=4) car sales 4 Google Trends 4 IG features 4 

31/05/2019 (t=5) car sales 5 Google Trends 5 IG features 5 

30/06/2019 (t=6) car sales 6 Google Trends 6 IG features 6 

31/07/2019 (t=7) car sales 7 Google Trends 7 IG features 7 

31/08/2019 (t=8) car sales 8 Google Trends 8 IG features 8 

30/09/2019 (t=9) car sales 9 Google Trends 9 IG features 9 

31/10/2019 (t=10) car sales 10 Google Trends 10 IG features 10 

30/11/2019 (t=11) car sales 11 Google Trends 11 IG features 11 

31/12/2019 (t=12) car sales 12 Google Trends 12 IG features 12 

31/01/2020 (t=13) Predicted car sales 13 Predicted Google Trends 13 Predicted IG features 13 
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29/02/2020 (t=14) Predicted car sales 14 Predicted Google Trends 14 Predicted IG features 14 

31/03/2020 (t=15) Predicted car sales 15 Predicted Google Trends 15 Predicted IG features 15 

30/04/2020 (t=16) Predicted car sales 16 Predicted Google Trends 16 Predicted IG features 16 

31/05/2020 (t=17) Predicted car sales 17 Predicted Google Trends 17 Predicted IG features 17 

30/06/2020 (t=18) Predicted car sales 18 Predicted Google Trends 18 Predicted IG features 18 

31/07/2020 (t=19) Predicted car sales 19 Predicted Google Trends 19 Predicted IG features 19 

 

5.2.2.4 Scaling variables 

It is advised to put the values of the different input variables at the same scale when training LSTM models, 

especially when the magnitude of the variables significantly differ from one another (Helmini et al., 2019). 

On top of that, transforming the input variables at the same scale forces the forecasting algorithms to 

treat each input variable with equal importance (Bollen et al., 2011). Consequently, the same scaled input 

features that serve as input for the LSTM model are also utilized as input for the ARIMA model. 

The features used in this work differ in scale, since the valence ranges between minus one and plus one 

while the monthly number of comments on the post of a hashtag can take values ranging from zero to 

values having an order of a magnitude of five. Hence, the values of the input features are scaled between 

zero and one by applying the following function on each input feature:   

𝑦𝑡   =  
(𝑥𝑡 − 𝑚𝑖𝑛)

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)
 

where yt represents the rescaled value of an input feature at time t, xt represents the original value of an 

input feature at time t, and min and max represent the lower bound and the upper bound of the input 

variable respectively. 

On the one hand, the bounds of the search trends index and the polarity are fixed in time, i.e. the search 

trends index ranges between zero and 100 whereas polarity can take values between minus one and plus 

one (see chapter 4). On the other hand, the remaining input features only have a lower bound of zero 

that is known a priori. For these features, the upper bound is set equal to its maximum value present in 

the training set. 

The scaling is realized by making use of the scikit-learn object MinMaxScaler 

(“sklearn.preprocessing.MinMaxScaler”, 2018).  
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5.2.3 Implementation LSTM 

In practice, the LSTM algorithm was employed by making use of the Keras (Chollet et al., 2015) library 

with TensorFlow (Abadi et al., 2016) as backend engine. In this section, the architecture of the LSTM model 

that is used to predict car sales will be discussed first (see subsection 5.2.3.1). Next, the LSTM model is 

optimized by tuning its hyperparameters (see subsection 5.2.3.2). 

5.2.3.1 LSTM network architecture 

The LSTM model utilized in this master thesis is a Vanilla LSTM (Brownlee, 2018). This consists of an input 

layer, an LSTM layer and an output layer which outputs the predicted number of cars sold in a certain 

month (Brownlee, 2018).   

5.2.3.2 Hyperparameter tuning 

To optimize the LSTM model, its hyperparameters need to be tuned. This can be done manually, but 

analogous to the work of Helmini et al. (2019), I decided to automate the finetuning of the model since 

an LSTM model has a lot of hyperparameters to be tuned. More specifically, the automation of the 

hyperparameter tuning is performed by means of a grid search algorithm. The validation of this algorithm 

is implemented by a time series cross-validation with ten splits (see section 5.4). The optimal values of 

the hyperparameters are determined by minimizing the mean squared error (MSE) on the validation set. 

After the optimal values are found, the model is trained on the full training set using these optimal values. 

The tuned hyperparameters along with its search space can be found in in table 9. In the next subsections 

(see subsection 5.2.3.2.1 – subsection 5.2.3.2.5), some important hyperparameters of LSTM are discussed. 

Table 9. Hyperparameters and search space LSTM 

Hyperparameter Search space 

Number of epochs {5} 

Learning rate {0.0001,0.001, 0.01, 0.1, 0.2, 0.3} 

Batch size {1,2,3,4,5,6,7,8,9,10,11,12} 

LSTM size {8,16,32,64,128} 

activation function of LSTM {ReLU} 

Optimization algorithm {adam} 

 

The optimal values of the hyperparameters for each cluster centroid  using dataset 1, 2, 3 and 4 can be 

found in appendix 8 to appendix 11 respectively.  

5.2.3.2.1 Learning rate 

As already mentioned in subsection 5.2.1.2, the learning rate determines the extent in which the weights 

of the loss function are updated (Murphy, 2012). The size of the learning rate has an influence on the 

convergence towards the minimum of the loss function. Suppose the learning rate is a constant. If the 
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learning rate is too small, a slow learning process takes place. If the learning rate is too high, the learning 

algorithm will take too large steps, which causes the algorithm to ‘jump’ over the minimum of the loss 

function. Consequently, the algorithm will never converge towards the minimum (Murphy, 2012). The 

effect of the learning rate on the convergence towards the minimum is depicted by figure 8. The horizontal 

axis represents the value of weight θ whereas J(θ) stands for the loss function. 

 

Figure 8. Learning rate 

Note. Adapted from “Setting the learning rate of your neural network.”, by Jordan, J., (2018, March 1). Retrieved 

from https://www.jeremyjordan.me/nn-learning-rate/ 

5.2.3.2.2 Number of epochs and batch size 

As already mentioned in subsection 5.2.1.2, an epoch represents the event where the model went 

through all training examples of the training set (Wilson & Martinez, 2003). The batch size indicates the 

amount of training examples the model needs to see before the weights of the loss function are updated 

(Wilson & Martinez, 2003).  

5.2.3.2.3 LSTM size 

The LSTM size of an LSTM layer equals the amount of LSTM cells the layer exists of. It is the number of 

hidden states an LSTM layer contains. In other words, this determines how many features the LSTM layer 

can remember (Phi, 2018). 

5.2.3.2.4 Activation function 

Currently, the most popular activation function is the rectangular linear unit (ReLu) function (Bingham, 

Macke, & Miikulainen, 2020). Other well-known activation functions such as the sigmoid function and the 

hyperbolic tangent (tanh) function cannot be utilized in deep neural networks due to the problem of 

vanishing gradients (see subsection 5.2.1.2). ReLu bypasses this problem because its derivative is either 

zero or one. Consequently, the model learns quicker and gives more accurate results (Brownlee, 2019). 

For this master dissertation, the ReLu activation function is applied because of its advantages. 
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5.2.3.2.5 Optimization algorithm 

The method used in this thesis to optimize the model is Adam optimizer (Kingma & Ba, 2014). It combines 

the advantages of two well-known optimizers: AdaGrad (Duchi, Hazan, & Singer, 2011) and RMSProp 

(Tieleman & Hinton, 2012). The algorithm is computationally efficient and can handle problems that have 

a large number of parameters. On top of that, Adam seems to better converge compared to other 

optimizers such as RMSProp and the previously described stochastic gradient descent (see subsection 

5.2.1.2) (Kingma & Ba, 2014).  

5.2.4 Implementation ARIMA 

To implement the ARIMA model, the auto.arima function from the R-package forecast (Hyndman & 

Khandakar, 2007) is utilized. The hyperparameter tuning of the ARIMA model is discussed in subsection 

5.2.4.1. 

5.2.4.1 Hyperparameter tuning 

As already mentioned in subsection 5.2.1.1, p represents the number of lags considered by the AR part of 

the model, d stands for the order of differencing and q serves as the order of the MA part (Helmini et al., 

2019; Siami-Namini & Namin, 2018). Based on the assumption that the data on which the ARIMA 

algorithm is trained contains seasonality (see subsection 5.1.1), the seasonal ARIMA algorithm is applied. 

Hence, the seasonal parameters P, D, Q and S are also activated. The minimum seasonality length S for 

seasonal data equals one, whereas the maximum seasonality length S in this case is twelve as the 

algorithm is trained on a dataset with twelve observations. Table 10 gives an overview of the tuned 

hyperparameters along with their search space. 

Table 10. Hyperparameters and search space ARIMA 

Hyperparameter Search space 

p {0,1,2,3,4,5} 

d {0,1,2,3,4,5} 

q {0,1,2,3,4,5} 

P {0,1,2,3,4,5} 

D {0,1,2,3,4,5} 

Q {0,1,2,3,4,5} 

S {1,2,3,4,5,6,7,8,9,10,11,12} 

 

The optimal values of the hyperparameters of each cluster centroid can be found in appendix 12.  

5.3 Performance evaluation 

To evaluate the different models and algorithms, the following performance measures are utilized, 

namely RMSE and MAE. 
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5.3.1 RMSE 

The most commonly used performance measure to forecast car sales is the Mean Absolute Percentage 

Error (MAPE) (Choi & Varian, 2009; Geva et al., 2013, 2015; Nymand-Andersen & Pantelidis, 2018; Pai & 

Liu, 2018; Tomczyk & Doligalski, 2015). However, if time series contain zero values, MAPE becomes infinite 

(Kreinovich, Nguyen, & Ouncharoen, 2014; Venkatesh et al., 2014). For this reason, the second most 

popular performance measure to forecast car sales is utilized in this dissertation, namely RMSE, which is 

defined as follows (Ahn & Spangler, 2014; Benthaus & Skodda, 2015; Nymand-Andersen & Pantelidis, 

2018; Seebach et al., 2011): 

𝑅𝑀𝑆𝐸 = √
1

n
∑(yt −  yt̂)2

n

t=1

 

where yt stands for the actual value at time t, ŷt stands for the forecasted value at time t and n represents 

the number of samples.  

RMSE measures the difference between the actual and the predicted values. The outcomes range from 

zero to infinite. An advantage of the measure is that it is represented in the same unit as the forecasts 

(Siami-Namini & Namin, 2018).  

5.3.2 MAE 

Another frequently used evaluation metric to forecast car sales is MAE (Benthaus & Skodda, 2015; Choi & 

Varian, 2009; Nymand-Andersen & Pantelidis, 2018; Seebach et al., 2011). MAE is calculated as below: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − 𝑦𝑡̂|2

𝑛

𝑡=1

 

where yt and ŷt serve as the actual observation and the predicted observation at time t respectively and n 

represents the number of samples. 

Similar to RMSE, MAE is a metric used to measure the difference between the true and the forecasted 

observations. Consequently, MAE can take values between zero and infinity as well. The major difference 

between RMSE and MAE is that the former is more sensitive to outliers (Benthaus & Skodda, 2015). 

5.4 Cross-validation 

The goal of regression is to fit a model that performs well on unseen data, or in other words, a model that 

generalizes well (Bergmeir & Benítez, 2012). This performance is validated on a validation set, which is 

usually excluded from the data on which the model is trained to ensure that the data of the validation set 

is unseen. Consequently, not all available training data is utilized to fit the model. This can be problematic, 
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especially when dealing with a small dataset. On top of that, only one performance output is generated, 

which makes the output sensitive to biases based on the chosen train/validate split. To overcome these 

problems, k-fold cross-validation can be applied. This algorithm randomly splits the training set into k 

parts or folds. Next, the model is trained on k-1 folds and validated on the remaining fold. This process is 

repeated k-1 times, at which each time another fold serves as validation set and the remaining k-1 folds 

as training set. In other words, each fold acts only once as validation set and k-1 times as training set. 

Hence, the full training set is utilized to train and validate. In addition, k validation scores are obtained. 

The final performance output is determined by averaging these k validation scores, resulting in a more 

robust measure (Bergmeir & Benítez, 2012).   

However, cross-validation comes with some complications when making use of time series data. First of 

all, cross-validation requires the data to be independent and identically distributed (i.i.d.) (Bergmeir & 

Benítez, 2012). This is often not the case for time series (Bergmeir & Benítez, 2012; Ogasawara et al., 

2010). As already mentioned in section 5.2.1, most financial and economic time series are not stationary, 

implying that the condition of being identically distributed is violated in this case (Ogasawara et al., 2010). 

On top of that, sequential data is often correlated in time (e.g. autoregression), indicating that data from 

subsequent time steps are not independent (Bergmeir & Benítez, 2012). Second, time series data cannot 

be shuffled, otherwise data leakage may occur (Cochrane, 2018). In other words, the time series data 

must retain its chronological order, meaning that the training set has to contain observations that 

occurred before the observations contained by the validation set (Cochrane, 2018).  

To reap the benefits of cross-validation without violating its fundamental assumptions (i.e. i.i.d.), forward-

chaining (Cochrane, 2018), also called rolling-origin evaluation (Tashman, 2000) or rolling-origin-

recalibration (Bergmeir & Benítez, 2012), is applied in this master thesis. This method works as follows. 

By utilizing the forward-chaining method on a training set consisting of twelve observations (i.e. twelve 

months of the year 2019) with a forecasting horizon of one month, eleven iterations take place (see figure 

9). In the first iteration (denoted in figure 9 as ‘CV iteration 1’), the first month serves as training set and 

the second month as validation set (Cochrane, 2018). Once the model has been trained and validated, the 

next iteration takes place. For this iteration, the validation set and the training set of the previous iteration 

now serves as training set, while the observation subsequent to the most recent training observation now 

acts as validation set. This step is repeated until there are no months left that can serve as validation set  

(in my case after eleven iterations). Finally, the output measure is gained by averaging the eleven 
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performance outputs of each iteration (Cochrane, 2018). 

 

Figure 9. Forward-chaining with fixed horizon of one month 

Note. Adapted from “Time Series Nested Cross-Validation”, by Cochrane, C., (2018, May 19). Retrieved from 

https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9 

In practice, the time series cross-validation in case of the LSTM algorithm is implemented by making use 

of the scikit-learn object TimeSeriesSplit (“sklearn.model_selection.TimeSeriesSplit”, 2020). In case of the 

ARIMA algorithm, the forecasting function tsCV from the R-package forecast (Hyndman, 2020) is applied. 

5.5 Statistical testing 

To verify whether a significant difference between the performance of the ARIMA algorithm and the LSTM 

algorithm is present, the pairwise statistical test, i.e. Wilcoxon signed-rank test, is applied (Wilcoxon, 

1946). The Wilcoxon signed-rank test is a non-parametric counterpart of the parametric paired Student’s 

t-test (Trawiński, Smętek, Telec, & Lasota, 2012; Wilcoxon, 1946).  

Based on previous research, an LSTM regressor seems to outperform an ARIMA regressor in terms of 

predicting time-series (Siami-Namini & Namin, 2018; Weytjens, Lohmann, & Kleinsteuber, 2019). 

Consequently, I believe that in case of this master thesis, the LSTM model also performed better than the 

ARIMA model. Hence, a one-tailed Wilcoxon signed-rank test with the following null hypothesis H0 and 

alternative hypothesis H1 is tested (Trawiński et al., 2012; Wilcoxon, 1946): 

H0: The performance of the ARIMA algorithm is significantly better than the performance of the 

LSTM algorithm 

https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9


41 
 

H1: The performance of the ARIMA algorithm is significantly worse than the performance of the 

LSTM algorithm 

As I utilized two performance measures, namely MAE and RMSE, the Wilcoxon signed-rank test is applied 

on both performance metrics. 

Once the best regressor for the dataset consisting of car sales, Google Trends and Instagram data is 

known, the car sales of 2020 are also forecasted by this regressor for the remaining three datasets (i.e. 

one model based on car sales, one model based on car sales and Google Trends data, and one model 

based on car sales and Instagram data). To detect significant differences between the four different 

models (i.e. one model based on car sales, one model based on car sales and Google Trends data, one 

model based on car sales and Instagram data, and one model based on car sales, Google Trends and 

Instagram data), the non-parametric equivalent of the repeated measures ANOVA test, i.e. the Friedman 

test (Friedman, 1940), is applied. The following null hypothesis H0 is tested: 

 H0: There is no significant difference in the performance of the four models 

The alternative hypothesis H1 states as follows: 

 H1: There is a significant difference in the performance between at least two of the four models 

This test is conducted once using MAE as performance measure and once utilizing RMSE as performance 

metric. If the performance of at least two out of four models significantly differ, the null hypothesis is 

rejected. To determine which pairs of models significantly differ with regard to their performance, the 

Bonferroni-Dunn post-hoc test is applied (Dunn, 1961).  
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6 Results 

In chapter 6, the results of the research conducted for this master dissertation are examined. In particular, 

section 6.1 discusses the formed clusters in more detail and evaluates whether the utilized clustering 

algorithm captured similar seasonality patterns in the same cluster. Next, section 6.2 assesses the 

performance of the ARIMA algorithm and the LSTM algorithm in terms of RMSE and MAE. More 

specifically, a comparison between the actual car sales and the forecasted car sales is made (see 

subsection 6.2.1), followed by the explanation of the outcomes of the applied statistical tests (see 

subsection 6.2.2). Lastly, all obtained results are discussed in section 6.3. 

6.1 Clustering 

The cluster distribution of the car models is given in appendix 5. The first car model of each cluster 

represents the cluster’s centroid. The cluster centroids of clusters one to twelve are ‘Land Rover Range 

Rover’, ‘Nissan Micra’, ‘Seat Leon’, ‘Peugeot 208’, ‘BMW X1’, ‘Mazda MX-5’, ‘Toyota RAV4’, ‘Land Rover 

Range Rover Evoque’, ‘Renault Captur’, ‘Volvo XC60’, ‘Toyota Auris’ and ‘Subaru Forester’ respectively. 

The first cluster contains 47 car models, the second cluster consists of 30 car models, the third cluster has 

seventeen car models, cluster four comprises fourteen car models, twelve car models belong to cluster 

five, cluster six includes seven car models, cluster seven and eight both incorporate five car models, cluster 

nine exists of three car models, and clusters ten, eleven and twelve each contain two car models.  

 

Figure 10. Monthly seasonality values of the cluster centroids 
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To verify whether there is a certain logic behind the distribution of the car models across the formed 

clusters, a plot of the monthly seasonality values of the twelve cluster centroids is illustrated in figure 10. 

As already mentioned in subsection 5.1.1, for each cluster centroid, the seasonality of a certain month is 

the average seasonality of the car sales in that month starting from 01-01-2016 to 31-12-2019. During the 

months January to June, all cluster centroids (with an exception of cluster six, cluster nine and cluster 

twelve) seem to follow a similar pattern in terms of seasonality. However, starting from the month July, 

all cluster centroids seem to show a different seasonality pattern. 

On top of that, for each cluster, I took a closer look at the seasonality of all car models belonging to that 

cluster. As a result, I was able to observe that the seasonality of the car models within the same cluster 

are similar. Figures 11 to 22 represent the monthly seasonality of the cars belonging to cluster one to 

twelve respectively. The x-axis shows each month starting from 01-2016 to 12-2019. The labels on the x-

axis are integers ranging from one to 48, with number one representing the first month of 2016 and 

number 48 the final month of 2019. The y-axis displays the monthly seasonality of all car models belonging 

to that cluster. 

Based on these insights I can derive that the car sales of the cluster centroids appear to have a different 

seasonality pattern. 

 

Figure 11. Seasonality of cluster 1 

 

Figure 12. Seasonality of cluster 2 
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Figure 13. Seasonality of cluster 3 

 

Figure 14. Seasonality of cluster 4 

 

Figure 15. Seasonality of cluster 5 

 

Figure 16. Seasonality of cluster 6 
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Figure 17. Seasonality of cluster 7 

 

Figure 18. Seasonality of cluster 8 

 

Figure 19. Seasonality of cluster 9 

 

Figure 20. Seasonality of cluster 10 
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Figure 21. Seasonality of cluster 11 

 

Figure 22. Seasonality of cluster 12 

6.2 Forecasting algorithms 

6.2.1 Predictions 

The outcomes of the performance of the ARIMA model based on dataset 4 in terms of MAE and RMSE is 

shown in appendix 13. In addition, the performance output in terms of MAE and RMSE of the four LSTM 

models, i.e. one model with dataset 4 as input, one model that used dataset 1 as input, one regressor that 

utilized dataset 2 as input and one model that made use of dataset 3 as input, can be consulted at 

appendix 14, 15, 16 and 17 respectively. Subsection 6.2.2 explains the reason behind the implementation 

of the LSTM algorithm based on dataset 1, dataset 2 and dataset 3 instead of the implementation of the 

ARIMA algorithm based on these datasets. 

Figures 23 to 70 depict the actual car sales (represented by a full blue line) and the predicted car sales 

(represented by a dotted orange line) of the twelve cluster centroids in the year 2020, which were 

forecasted by an LSTM model that either used dataset 1, dataset 2, dataset 3 or dataset 4 as input. 

Additionally, I noticed that some predictions of the sales of certain car models are negative, which should 

not possible. The previous is also reflected in the predictions of the sales of ‘Toyota Yaris’ by the LSTM 

model using dataset 2 (see figure 45), of ‘Nissan Micra’ by the model using dataset 3 (see figure 48) and 

of ‘Mazda MX-5’ by the LSTM model using dataset 4 (see figure 64). 
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The predicted car sales of the LSTM model based on dataset 1 (i.e. only car sales) are shown in figures 23 

to 34. The graphs imply that the model did not grasp any trends nor seasonality of the car sales for all 

cluster centroids, with an exception of the car models ‘Land Rover Range Rover’ (see figure 23), ‘Seat 

Leon’ (see figure 25), ‘BMW X1’ (see figure 27), and ‘Volvo XC60’ (see figure 32). The slightly better 

performance of these four cluster centroids is also represented in their performance in terms of MAE and 

RMSE (see appendix 15), as these measures are rather low considering the number of actual sales in 2020. 

Figures 35 to 46 represent the car sales of the twelve cluster centroids in 2020 that are predicted by the 

LSTM model using dataset 2 (i.e. car sales data and Google Trends data) as input. The interpretation of 

the forecasted sales is similar to the interpretation of the LSTM model based on dataset 1. More 

specifically, the LSTM model based on dataset 2 predicted approximately a constant in time for all cluster 

centroids except for ‘Nissan Micra’ (see figure 36), ‘Seat Leon’ (see figure 37), ‘ BMW X1’ (see figure 39) 

and ‘Volvo XC60’ (see figure 44). This insight seems to be reflected in the performance of ‘Seat Leon’, 

‘BMW X1’ and ‘Volvo XC60’ in terms of MAE and RMSE (see appendix 16). However, in case of ‘Nissan 

Micra’, this is not represented since the output of the MAE and RMSE are rather high taking into account 

the actual car sales. 

The actual monthly car sales and the car sales for each cluster centroid in 2020 predicted by the LSTM 

model based on dataset 3 (i.e. car sales data and Instagram data) are visualized in figures 47 to 58. Most 

of the predictions appear to be approximately a constant, with an exception of ‘BMW X1’ (see figure 51), 

‘Land Rover Range Rover Evoque’ (see figure 54) and ‘Toyota Auris’ (see figure 57). The predicted sales of 

‘BMW X1’ and ‘Land Rover Range Rover Evoque’ seem to capture most of the increases and decreases of 

the actual car sales. The previous is also present in the performance in terms of RMSE and MAE, since 

both seem to perform approximately well related to the actual car sales (see appendix 17). Unfortunately, 

the predictions of the sales of ‘Toyota Auris’ are characterized by a number of decreases and increases 

while the actual car sales are close to zero, which is reflected in the rather low performance of the LSTM 

model in terms of RSME and MAE. 

An overview of the car sales of 2020 predicted by the LSTM model that utilized dataset 4 (i.e. car sales, 

Google Trends data and Instagram data) as input and the actual car sales of the twelve cluster centroids 

is given by figures 59 to 70. The LSTM model seemed able to capture the trends or seasonality of the sales 

of the car models ‘Nissan Micra’ (see figure 60), ‘BMW X1’ (see figure 63), ‘Toyota RAV4’ (see figure 65) 

and ‘Renault Captur’ (see figure 67). Again, the predictions of the sales of ‘Toyota Auris’ (see figure 69) do 

not seem to reflect the actual car sales close to zero. Both of these insights also seem to be present in the 

performance in terms of MAE and RMSE of the LSTM model based on dataset 4 considering the actual car 
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sales (see appendix 14). The predictions of the car sales of the other cluster centroids are approximately 

a constant.  
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Figure 23. Predictions using dataset 

1 for centroid 1 

 
Figure 24. Predictions using 

dataset 1 for centroid 2 

 
Figure 25. Predictions using 

dataset 1 for centroid 3 

 
Figure 26. Predictions using dataset 

1 for centroid 4 

 
Figure 27. Predictions using 

dataset 1 for centroid 5 

 
Figure 28. Predictions using 

dataset 1 for centroid 6 

 
Figure 29. Predictions using dataset 

1 for centroid 7 

 
Figure 30. Predictions using 

dataset 1 for centroid 8 

 
Figure 31. Predictions using 

dataset 1 for centroid 9 

 
Figure 32. Predictions using dataset 

1 for centroid 10 

 
Figure 33. Predictions using 

dataset 1 for centroid 11 

 
Figure 34. Predictions using 

dataset 1 for centroid 12 
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Figure 35. Predictions using dataset 

2 for centroid 1 

 
Figure 36. Predictions using 

dataset 2 for centroid 2 

 
Figure 37. Predictions using 

dataset 2 for centroid 3 

 
Figure 38. Predictions using dataset 

2 for centroid 4 

 
Figure 39. Predictions using 

dataset 2 for centroid 5 

 
Figure 40. Predictions using 

dataset 2 for centroid 6 

 
Figure 41. Predictions using dataset 

2 for centroid 7 

 
Figure 42. Predictions using 

dataset 2 for centroid 8 

 
Figure 43. Predictions using 

dataset 2 for centroid 9 

 
Figure 44. Predictions using dataset 

2 for centroid 10 

 
Figure 45. Predictions using 

dataset 2 for centroid 11 

 
Figure 46. Predictions using 

dataset 2 for centroid 12 
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Figure 47. Predictions using dataset 

3 for centroid 1 

 
Figure 48. Predictions using 

dataset 3 for centroid 2 

 
Figure 49. Predictions using 

dataset 3 for centroid 3 

 
Figure 50. Predictions using dataset 

3 for centroid 4 

 
Figure 51. Predictions using 

dataset 3 for centroid 5 

 
Figure 52. Predictions using 

dataset 3 for centroid 6 

 
Figure 53. Predictions using dataset 

3 for centroid 7 

 
Figure 54. Predictions using 

dataset 3 for centroid 8 

 
Figure 55. Predictions using 

dataset 3 for centroid 9 

 
Figure 56. Predictions using dataset 

3 for centroid 10 

 
Figure 57. Predictions using 

dataset 3 for centroid 11 

 
Figure 58. Predictions using 

dataset 3 for centroid 12 
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Figure 59. Predictions using dataset 

4 for centroid 1 

 
Figure 60. Predictions using 

dataset 4 for centroid 2 

 
Figure 61. Predictions using 

dataset 4 for centroid 3 

 
Figure 62. Predictions using dataset 

4 for centroid 4 

 
Figure 63. Predictions using 

dataset 4 for centroid 5 

 
Figure 64. Predictions using 

dataset 4 for centroid 6 

 
Figure 65. Predictions using dataset 

4 for centroid 7 

 
Figure 66. Predictions using 

dataset 4 for centroid 8 

 
Figure 67. Predictions using 

dataset 4 for centroid 9 

 
Figure 68. Predictions using dataset 

4 for centroid 10 

 
Figure 69. Predictions using 

dataset 4 for centroid 11 

 
Figure 70. Predictions using 

dataset 4 for centroid 12 
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6.2.2 Statistical testing 

To statistically determine which of the two regressors (i.e. ARIMA and LSTM) performed best in terms of 

predicting the car sales of 2020 utilizing dataset 4 as input, two one-tailed Wilcoxon signed-rank tests 

were applied (Wilcoxon, 1946). The first test is used to determine the best regressor in terms of RMSE, 

while the second test is executed to find the best regressor in terms of MAE. The outcomes of the 

performance of the ARIMA model and the LSTM model utilizing dataset 4 as input can be consulted in 

appendix 13 and appendix 14 respectively. 

The first test has a p-value of 0,0329. Consequently, it can be rejected that the performance of the ARIMA 

algorithm in terms of RMSE is significantly better than the performance of the LSTM algorithm at the five 

percent level of significance. The null hypothesis of the second test is also rejected at the five percent 

level of significance since the p-value equals 0,0150. As a result, it can be rejected that the performance 

of the ARIMA algorithm in terms of MAE is significantly better than the performance of the LSTM 

algorithm at the five percent level of significance. 

In summary, the LSTM algorithm statistically outperforms the ARIMA algorithm in predicting car sales 

based on the combination of car sales data, Google Trends data and Instagram data. As a consequence, 

the LSTM algorithm is implemented to predict the monthly car sales in the year 2020 based on solely the 

car sales (i.e. dataset 1), based on car sales and Google Trends data (i.e. dataset 2) and based on car sales 

and Instagram data (i.e. dataset 3). The performance outcomes of the LSTM model in terms of RMSE and 

MAE are represented in appendix 15, 16 and 17 respectively. 

Next, the outcomes of the performance of the LSTM model based on dataset 1, dataset 2, dataset 3 and 

dataset 4 are statistically compared to each other. More specifically, as already mentioned in section 5.5, 

the Friedman test is utilized to statistically detect whether there are significant differences in the four 

LSTM models in terms of MAE and RMSE (Friedman, 1940). Based on the MAE output of the four models, 

the p-value of the Friedman test is equal to 1,1043*10-10. This value implies that the null hypothesis ‘there 

are no significant differences between the performance of any of the four models in terms of MAE’ can 

be rejected at the five percent level of significance. When comparing the models’ performance in terms 

of RMSE, the p-value equals 8,8785*10-12. This indicates that the hypothesis ‘there are no significant 

differences between the performance of any of the four models in terms of RMSE’ can be rejected at the 

five percent level of significance. In order to determine which models significantly differ from one another, 

the Bonferroni-Dunn post-hoc test is applied (Dunn, 1961). Table 11 summarizes the p-values of this post-

hoc test utilizing MAE as performance measure, whereas table 12 gives an overview of the p-values where 

RMSE serves as performance measure. Both tables indicate that the models using dataset 1, dataset 2 and 

dataset 3 as input do not significantly differ from one another at the five percent level of significance, 
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whereas the model that utilized dataset 4 as input significantly differs from the other three models at the 

five percent level of significance, as its p-values are smaller than 0,05. 

Table 11. p-values Bonferroni-Dun post-hoc test using MAE as performance measure 

  Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Dataset 1 1,00 1,00 0.705 0,657*10-5 

Dataset 2 1,00 1,00 0.194 0,305*10-6 

Dataset 3 0,705 0,194 1,00 0,563*10-2 

Dataset 4 0,657*10-5 0,305*10-6 0,563*10-2 1,00 

 

Table 12. p-values Bonferroni-Dun post-hoc test using RMSE as performance measure 

  Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Dataset 1 1,00 1,00 0.811 0,672*10-5 

Dataset 2 1,00 1,00 0.351 0,834*10-6 

Dataset 3 0,811 0,351 1,00 0,443*10-2 

Dataset 4 0,672*10-5 0,834*10-6 0. 443*10-2 1,00 

 
Considering appendices 14, 15, 16 and 17, I determined the percentage of the predictions of the car sales 

for which the LSTM model that utilized dataset 4 as input outperforms the other LSTM models. It seems 

that, on average, in 38,58 percent of the cases the LSTM model trained on dataset 4 performs better than 

the other three LSTM models in terms of MAE. More specifically, in 36,30 percent; 35,61 percent and 

43,84 percent of the cases, the LSTM model fit on dataset 4 performed better than the LSTM model fit on 

dataset 1, the LSTM model fit on dataset 2 and the LSTM model trained on dataset 3 respectively. In terms 

of RMSE, the LSTM model trained on dataset 4 outperformed the LSTM model fit on dataset 1, the LSTM 

model fit on dataset 2 and LSTM the model fit on dataset 3 in 30,82 percent; 33,56 percent and 44,52 

percent of the cases respectively. Hence, on average, the LSTM model fit on dataset 4 outperformed the 

other three LSTM models in 36,30 percent of the cases in terms of RMSE. 

6.3 Discussion 

This section provides some possible insights for the results obtained in section 6.2. 

First of all, the better performance of the LTSM algorithm in comparison to the ARIMA model based on 

dataset 4 could be explained by the ability of the LSTM algorithm to find non-linear patterns and other 

complex relationships between the variables (i.e. the car sales, Google Trends, number of comments and 

polarity), that the ARIMA model was not capable to capture (Siami-Namini & Namin, 2018).  
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Secondly, no significant difference is determined between the performance of the LSTM model trained 

on historical car sales, the LSTM model trained on historical car sales and Google Trends data and the 

LSTM model trained on historical car sales and Instagram data. Hence, Google Trends data and Instagram 

data are equally informative. This finding is surprising as the research of Geva et al. (2013, 2015) found 

that models based on search trends data statistically outperformed models based on forum data. 

Thirdly, the LSTM model utilizing the historical car sales data, Google Trends data and Instagram data as 

input significantly outperformed the other LSTM models, on average, in 38,57 percent of the cases in 

terms of MAE and in 36,30 percent of the cases in terms of MSE. This could be clarified by the fact that 

search trends data and social media data complement one another due to their difference in nature 

(Santillana et al., 2015; Geva et al., 2013, 2015). More specifically, search trends data tends to reveal the 

true interests of the customers while not affecting the mindset of others, whereas social media exposes 

the interests of customers to their social environment and consequently affecting the social 

environment’s purchasing behavior (Geva et al., 2013). 

Finally, for some car models, the different LSTM models predicted negative car sales. This mostly occurred 

when the actual car sales of the models are close to or equal to zero. Hence, a potential explanation for 

this phenomenon is that, since an LSTM model is not aware that car sales cannot be negative, the models 

predicted a decrease in car sales causing predictions close to zero to become negative over time. 
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7 Conclusion  

As it is of crucial importance for car manufacturers to know the future sales of car models (Fantazzini & 

Toktamysova, 2015), the purpose of this master thesis is to determine whether the incorporation of 

Google Trends data and Instagram data in a model based on historical car sales data improves the model’s 

forecasting accuracy. 

To conclude this research, I will provide an answer to my proposed research questions. 

• Is it possible to predict car sales making use of Instagram features? 

Firstly, I found that the inclusion of Instagram features does not significantly improve the model’s 

predictive power to forecast car sales, both in terms of MAE and RMSE. 

• Is it possible to predict car sales making use of Google Trends search data? 

Secondly, based on the results of this research, Google Trends data does not significantly enhance the 

forecasting power of the model to predict car sales, both in terms of MAE and RMSE. 

• Is a higher predictive performance present when combining Instagram features and Google 

Trends data to predict car sales? 

Thirdly, I conclude that the predictive performance of the forecasting algorithm using a combination of 

historical car sales data, Instagram data and Google Trends data is, on average, significantly higher in 

38,58 percent of the cases in terms of MAE and in 36,30 percent of the cases in terms of RMSE than the 

forecasting algorithms using either historical car sales data, both car sales data and Google Trends data 

or both car sales data and Instagram data. 

7.1 Limitations and suggestions for future research 

This section covers the encountered limitations of this master thesis and provides some suggestions for 

further research. 

In this research, some limitations in terms of collecting the relevant data are present. Firstly, on average, 

75 percent of all hashtags  that are present in the caption of a picture are not directly related to the 

content of that picture (i.e. stophashtags) (Giannoulakis and Tsapatsoulis, 2015, 2016a). Since the 

collection of Instagram data in this master thesis is based on hashtags, a high probability exists that not 

all collected Instagram posts are directly related to the relevant hashtag. Secondly, as Google Trends is 

sensitive to accent marks and spelling errors, the search queries utilized in this dissertation to find all 

search data related to a car model is not exhaustive (Mavragani & Ochoa, 2019). Thirdly, a drawback of 

car sales data is the relatively large granularity compared to the Google Trends data and the Instagram 
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data. More precisely, the car sales data is available at a monthly level, whereas Google Trends data is 

available at a weekly basis and Instagram data at the level of seconds. Hence, I was forced to aggregate 

the Google Trends data and the Instagram data at a monthly basis. Consequently, the number of training 

observations is reduced to twelve (i.e. one observation for each month). Furthermore, the forecasting 

models were allowed to predict negative car sales. In order to solve this, the car sales can undergo a 

logarithmic transformation (Hyndman & Athanasopoulos, 2018). 

For further research, features extracted from images and videos by means of deep learning techniques 

such as convolutional neural networks might be an interesting variable to extract from Instagram posts 

(LeCun et al., 2015; Paolanti, Kaiser, Schallner, Frontoni, & Zingaretti, 2017). On top of that, other 

forecasting algorithms such as an ensemble of ARIMA and LSTM could be utilized to test whether this 

model leads to better forecasts. Moreover, a different algorithm than ARIMA can be applied to predict 

the external regressors, such as LSTM  or an ensemble of ARIMA and LSTM. On top of that, training the 

LSTM and ARIMA algorithm on all 146 car models instead of solely on the twelve training observations 

might improve the forecasting power of these algorithms. Lastly, an alternative performance measure 

that does not depend on the magnitude of the car sales, such as the symmetric mean absolute percentage 

error, could be utilized since it could make the forecasting accuracy more easily to compare (Venkatesh 

et al., 2014).  
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Appendices 

Appendix 1. 200 car models and their total sales of 2019 

Rank Car model Total sales 

1 Tesla Model 3 29.948 

2 Volkswagen Polo 12.964 

3 Ford Focus 10.517 

4 Volkswagen Golf 9.296 

5 Kia Niro 9.249 

6 Renault Clio 9.056 

7 Ford Fiesta 8.945 

8 Toyota Aygo 8.659 

9 Peugeot 108 8.434 

10 Kia Picanto 8.014 

11 Opel Karl 7.991 

12 Hyundai Kona 7.153 

13 Volkswagen Up 7.153 

14 Opel Crossland X 6.182 

15 Toyota Yaris 6.084 

16 Skoda Octavia 6.023 

17 Opel Astra 5.963 

18 Volkswagen Tiguan 5.871 

19 Volkswagen T-Roc 5.734 

20 Renault Captur 5.733 

21 Nissan Qashqai 5.725 

22 Peugeot 208 5.144 

23 BMW 3-serie 5.092 

24 Toyota Corolla 4.816 

25 Peugeot 3008 4.811 

26 Hyundai i10 4.712 

27 Citroën C1 4.637 

28 Opel Grandland X 4.553 

29 Volvo XC40 4.461 

30 Volvo V40 4.432 
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(Continued)   

Rank Car model Total sales 

31 Mini Mini 4.268 

32 Mercedes-Benz A-klasse 4.264 

33 Audi E-tron 4.119 

34 Mazda CX-5 4.101 

35 Citroën C3 3.966 

36 Nissan Leaf 3.817 

37 Peugeot 308 3.787 

38 Renault Mégane 3.775 

39 Toyota C-HR 3.673 

40 Volvo V60 3.650 

41 Volkswagen T-Cross 3.644 

42 Opel Corsa 3.413 

43 Seat Ibiza 3.240 

44 Skoda Fabia 3.216 

45 Nissan Micra 3.205 

46 Skoda Kodiaq 3.191 

47 Peugeot 5008 3.190 

48 Audi A3 3.124 

49 Fiat 500 2.899 

50 BMW 1-serie 2.888 

51 Mercedes-Benz C-klasse 2.867 

52 BMW i3 2.861 

53 Peugeot 2008 2.771 

54 Kia Ceed 2.759 

55 Suzuki Swift 2.746 

56 Mitsubishi Space Star 2.665 

57 Toyota RAV4 2.532 

58 Skoda Karoq 2.511 

59 Ford EcoSport 2.510 

60 Mazda 2 2.494 

61 BMW 5-serie 2.448 

62 Mercedes-Benz B-klasse 2.385 
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(Continued)   

Rank Car model Total sales 

63 Seat Arona 2.303 

64 Mercedes-Benz CLA 2.299 

65 Audi A1 2.254 

66 Renault Zoe 2.210 

67 Citroën C5 Aircross 2.178 

68 Suzuki Ignis 2.152 

69 Seat Ateca 2.100 

70 Kia Stonic 2.081 

71 Renault Twingo 2.058 

72 Hyundai Ioniq 2.056 

73 Mitsubishi Outlander 2.003 

74 Hyundai i20 1.977 

75 Mazda CX-3 1.933 

76 Seat Leon 1.923 

77 BMW X1 1.878 

78 Mercedes-Benz Sprinter 1.849 

79 Audi A4 1.824 

80 Volvo XC60 1.698 

81 Citroën C3 Aircross 1.696 

82 Mini Countryman 1.690 

83 Renault Kadjar 1.645 

84 BMW 2-serie Tourer 1.641 

85 Suzuki Celerio 1.554 

86 Opel Insignia 1.512 

87 Mercedes-Benz E-klasse 1.511 

88 Skoda Superb 1.501 

89 Volkswagen Passat 1.413 

90 Renault Scénic 1.404 

91 Suzuki Vitara 1.380 

92 Citroën C4 Cactus 1.332 

93 Audi Q2 1.288 

94 Peugeot 508 1.269 
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(Continued)   

Rank Car model Total sales 

95 BMW 4-serie 1.211 

96 Mazda 3 1.202 

97 Ford Kuga 1.180 

98 Skoda Scala 1.159 

99 Mercedes-Benz Vito 1.155 

100 Mini Clubman 1.140 

101 BMW X3 1.123 

102 Skoda Citigo 1.120 

103 Citroën C4 SpaceTourer 1.081 

104 Audi A5 1.079 

105 Dacia Duster 1.056 

106 Dacia Sandero 1.056 

107 Kia Sportage 1.048 

108 MG ZS 1.020 

109 Mercedes-Benz GLC 964 

110 Jeep Compass 960 

111 Mercedes-Benz GLA 925 

112 Hyundai Tucson 920 

113 Mitsubishi Eclipse Cross 920 

114 Audi Q3 903 

115 Kia Rio 899 

116 Audi A6 884 

117 Opel Ampera-e 882 

118 Mitsubishi ASX 880 

119 Dacia Logan 805 

120 BMW X5 798 

121 Ford Mondeo 772 

122 Jaguar I-Pace 770 

123 Mazda CX-30 770 

124 Seat Mii 720 

125 Opel Mokka 703 

126 Volvo V90 698 
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(Continued)   

Rank Car model Total sales 

127 Toyota Auris 658 

128 Kia Proceed 656 

129 Hyundai i30 651 

130 Opel Adam 619 

131 Suzuki S-Cross 605 

132 Ford Transit Custom 603 

133 Volvo S60 591 

134 Volvo XC90 575 

135 BMW X2 572 

136 Volkswagen Transporter 546 

137 Seat Tarraco 527 

138 Tesla Model S 527 

139 Honda Jazz 504 

140 Volkswagen Touran 468 

141 Tesla Model X 467 

142 Volkswagen Arteon 467 

143 Ford Ka+ 455 

144 Nissan Juke 435 

145 Fiat 500X 413 

146 Mazda 6 411 

147 Jeep Renegade 398 

148 Honda CR-V 390 

149 Fiat Panda 383 

150 Porsche Macan 382 

151 DS 7 Crossback 373 

152 Porsche 911 367 

153 Land Rover Range Rover Evoque 343 

154 Skoda Rapid 341 

155 Nissan X-Trail 336 

156 Land Rover Range Rover Sport 332 

157 Porsche Cayenne 331 

158 Mercedes-Benz V-klasse 325 
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(Continued)   

Rank Car model Total sales 

159 Ford C-MAX 315 

160 DS 3 Crossback 313 

161 BMW X4 311 

162 Renault Talisman 311 

163 Honda HR-V 307 

164 Subaru Forester 298 

165 BMW Z4 288 

166 Smart Forfour 285 

167 Alfa Romeo Giulia 274 

168 Kia Optima 272 

169 BMW 2-serie 266 

170 Lexus CT 265 

171 Lexus UX 263 

172 Honda Civic 259 

173 Volkswagen Golf Sportsvan 256 

174 Land Rover Range Rover Velar 234 

175 Suzuki Baleno 234 

176 Volkswagen Caddy 222 

177 Audi Q5 221 

178 Volvo S90 221 

179 Land Rover Range Rover 214 

180 BMW 7-serie 211 

181 Alfa Romeo Mito 210 

182 Toyota Proace 208 

183 Porsche Panamera 206 

184 Mazda MX-5 186 

185 Mercedes-Benz GLE 180 

186 Renault Espace 180 

187 Fiat Tipo 177 

188 Suzuki Jimny 171 

189 Peugeot Rifter 168 

190 Alfa Romeo Stelvio 163 
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(Continued)   

Rank Car model Total sales 

191 Lexus ES 159 

192 Land Rover Discovery Sport 156 

193 Toyota Prius 156 

194 BMW 8-serie 150 

195 Mercedes-Benz S-klasse 150 

196 BMW 6-serie GT 147 

197 Opel Movano 145 

198 Subaru XV 142 

199 Dacia Lodgy 140 

200 Jaguar XE 140 
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Appendix 2. 200 car models and their related hashtags  

Car model Hashtags 

Alfa Romeo Giulia #alfaromeogiulia 

Alfa Romeo Mito #alfaromeomito 

Alfa Romeo Stelvio #stelvio 

Audi A1 #audia1 

Audi A3 #audia3 

Audi A4 #audia4 

Audi A5 #audia5 

Audi A6 #audia6 

Audi E-tron #etron 

Audi Q2 #audiq2 

Audi Q3 #audiq3 

Audi Q5 #audiq5 

BMW 1-serie #bmw1series 

BMW 2-serie #bmw2 

BMW 2-serie Tourer #bmw2seriesactivetourer 

BMW 3-serie #bmw3series 

BMW 4-serie #4series 

BMW 5-serie #5series 

BMW 6-serie GT #bmw6gt 

BMW 7-serie #7series 

BMW 8-serie #8series 

BMW i3 #bmwi3 

BMW X1 #bmwx1 

BMW X2 #bmwx2 

BMW X3 #bmwx3 

BMW X4 #bmwx4 

BMW X5 #bmwx5 

BMW Z4 #bmwz4 

Citroën C3 Aircross #c3aircross 

CitroënC1 #citroenc1 

CitroënC3 #citroenc3 
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(Continued)  

Car model Hashtags 

CitroënC4 Cactus #c4cactus 

CitroënC4 SpaceTourer #c4spacetourer 

CitroënC5 Aircross #c5aircross 

Dacia Duster #daciaduster 

Dacia Lodgy #lodgy 

Dacia Logan #dacialogan 

Dacia Sandero #daciasandero 

DS3 Crossback #ds3crossback 

DS7 Crossback #ds7crossback 

Fiat 500 #fiat500 

Fiat 500X #fiat500x 

Fiat Panda #fiatpanda 

Fiat Tipo #fiattipo 

Ford C-MAX #fordcmax 

Ford EcoSport #ecosport 

Ford Fiesta #fordfiesta 

Ford Focus #fordfocus 

Ford Ka+ #fordkaplus 

Ford Kuga #fordkuga 

Ford Mondeo #fordmondeo 

Ford Transit Custom #transitcustom 

Honda Civic #hondacivic 

Honda CR-V #hondacrv 

Honda HR-V #hondahrv 

Honda Jazz #hondajazz 

Hyundai i10 #hyundaii10 

Hyundai i20 #hyundaii20 

Hyundai i30 #hyundaii30 

Hyundai Ioniq #ioniq 

Hyundai Kona #hyundaikona 

Hyundai Tucson #hyundaitucson 

Jaguar I-Pace #ipace 
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(Continued)  

Car model Hashtags 

Jaguar XE #jaguarxe 

Jeep Compass #jeepcompass 

Jeep Renegade #jeeprenegade 

Kia Ceed #kiaceed 

Kia Niro #kianiro 

Kia Optima #kiaoptima 

Kia Picanto #kiapicanto 

Kia Proceed #kiaproceed 

Kia Rio #kiario 

Kia Sportage #kiasportage 

Kia Stonic #stonic 

Land Rover Discovery Sport #landroverdiscoverysport 

Land Rover Range Rover #landroverrangerover 

Land Rover Range Rover Evoque #evoque 

Land Rover Range Rover Sport #rangeroversport 

Land Rover Range Rover Velar #velar 

Lexus CT #lexusct 

Lexus ES #lexuses 

Lexus UX #lexusux 

Mazda 2 #mazda2 

Mazda 3 #mazda3  

Mazda 6 #mazda6 

Mazda CX-3 #mazdacx3 

Mazda CX-30 #cx30 

Mazda CX-5 #mazdacx5 

Mazda MX-5 #mazdamx5 

Mercedes-Benz A-klasse #mercedesaclass 

Mercedes-Benz B-klasse #mercedesbclass 

Mercedes-Benz C-klasse #cclass 

Mercedes-Benz CLA #mercedescla 

Mercedes-Benz E-klasse #eclass 

Mercedes-Benz GLA #mercedesgla 
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(Continued)  

Car model Hashtags 

Mercedes-Benz GLC #mercedesglc 

Mercedes-Benz GLE #gle 

Mercedes-Benz S-klasse #mercedessclass 

Mercedes-Benz Sprinter #mercedessprinter 

Mercedes-Benz Vito #mercedesvito 

Mercedes-Benz V-klasse #mercedesvclass 

MG ZS #mgzs 

Mini Clubman #miniclubman 

Mini Countryman #minicountryman 

Mini Mini #minicooper 

Mitsubishi ASX #mitsubishiasx 

Mitsubishi Eclipse Cross #eclipsecross 

Mitsubishi Outlander #mitsubishioutlander 

Mitsubishi Space Star #mitsubishispacestar 

Nissan Juke #nissanjuke 

Nissan Leaf #nissanleaf 

Nissan Micra #nissanmicra 

Nissan Qashqai #nissanqashqai 

Nissan X-Trail #nissanxtrail 

Opel Adam #opeladam 

Opel Ampera-e #amperae 

Opel Astra #opelastra 

Opel Corsa #opelcorsa 

Opel Crossland X #crosslandx 

Opel Grandland X #grandlandx 

Opel Insignia #opelinsignia 

Opel Karl #opelkarl 

Opel Mokka #opelmokka 

Opel Movano #opelmovano 

Peugeot 108 #peugeot108 

Peugeot 2008 #peugeot2008 

Peugeot 208 #peugeot208 
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(Continued)  

Car model Hashtags 

Peugeot 3008 #peugeot3008 

Peugeot 308 #peugeot308 

Peugeot 5008 #peugeot5008 

Peugeot 508 #peugeot508 

Peugeot Rifter #rifter 

Porsche 911 #porsche911 

Porsche Cayenne #cayenne 

Porsche Macan #porschemacan 

Porsche Panamera #panamera 

Renault Captur #renaultcaptur 

Renault Clio #renaultclio 

Renault Espace #renaultespace 

Renault Kadjar #kadjar 

Renault Mégane #renaultmegane 

Renault Scénic #renaultscenic 

Renault Talisman #renaulttalisman 

Renault Twingo #renaulttwingo 

Renault Zoe #renaultzoe 

Seat Arona #seatarona 

Seat Ateca #seatateca 

Seat Ibiza #seatibiza 

Seat Leon #seatleon 

Seat Mii #seatmii 

Seat Tarraco #seattarraco 

Skoda Citigo #skodacitigo 

Skoda Fabia #skodafabia 

Skoda Karoq #karoq 

Skoda Kodiaq #kodiaq 

Skoda Octavia #skodaoctavia 

Skoda Rapid #skodarapid 

Skoda Scala #skodascala 

Skoda Superb #skodasuperb 
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(Continued)  

Car model Hashtags 

Smart Forfour #smartforfour 

Subaru Forester #subaruforester 

Subaru XV #subaruxv 

Suzuki Baleno #suzukibaleno 

Suzuki Celerio #celerio 

Suzuki Ignis #suzukiignis 

Suzuki Jimny #jimny 

Suzuki S-Cross #suzukiscross 

Suzuki Swift #suzukiswift 

Tesla Model 3 #teslamodel3 

Tesla Model S #teslamodels 

Tesla Model X #modelx 

Toyota Auris #toyotaauris 

Toyota Aygo #toyotaaygo 

Toyota C-HR #toyotachr 

Toyota Corolla #Corolla 

Toyota Prius #prius 

Toyota Prius+ #priusplus 

Toyota Proace #proace 

Toyota RAV4 #toyotarav4 

Toyota Yaris #toyotayaris 

Volkswagen Arteon #arteon 

Volkswagen Caddy #vwcaddy 

Volkswagen Golf #volkswagengolf 

Volkswagen Golf Sportsvan #golfsportsvan 

Volkswagen Passat #passat 

Volkswagen Polo #volkswagenpolo 

Volkswagen T-Cross #tcross 

Volkswagen Tiguan #volkswagentiguan 

Volkswagen Touran #volkswagentouran 

Volkswagen Transporter #volkswagentransporter 

Volkswagen T-Roc #troc 
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(Continued)  

Car model Hashtags 

Volkswagen Up #volkswagenup 

Volvo S60 #s60 

Volvo S90 #s90 

Volvo V40 #volvov40 

Volvo V60 #volvov60 

Volvo V90 #volvov90 

Volvo XC40 #volvoxc40 

Volvo XC60 #xc60 

Volvo XC90 #volvoxc90 
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Appendix 3. 200 car models and their related search terms 

Car model Search term 

Alfa Romeo Giulia alfa romeo giulia 

Alfa Romeo Mito alfa romeo mito 

Alfa Romeo Stelvio alfa romeo stelvio 

Audi A1 audi a1 

Audi A3 audi a3 

Audi A4 audi a4 

Audi A5 audi a5 

Audi A6 audi a6 

Audi E-tron audi e-tron 

Audi Q2 audi q2 

Audi Q3 audi q3 

Audi Q5 audi q5 

BMW 1-serie bmw 1-serie 

BMW 2-serie bmw 2-serie 

BMW 2-serie Tourer bmw 2-serie tourer 

BMW 3-serie bmw 3-serie 

BMW 4-serie bmw 4-serie 

BMW 5-serie bmw 5-serie 

BMW 6-serie GT bmw 6-serie gt 

BMW 7-serie bmw 7-serie 

BMW 8-serie bmw 8-serie 

BMW i3 bmw i3 

BMW X1 bmw x1 

BMW X2 bmw x2 

BMW X3 bmw x3 

BMW X4 bmw x4 

BMW X5 bmw x5 

BMW Z4 bmw z4 

Citroën C3 Aircross 
citroën c3 aircross+citroen c3 

aircross 

Citroën C1 citroën c1+citroen c1 
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(Continued)  

Car model Search term 

Citroën C3 citroën c3+citroen c3 

Citroën C4 Cactus 
citroën c4 cactus+citroen c4 

cactus 

Citroën C4 SpaceTourer 
citroën c4 space tourer 

+citroen c4 space tourer 

Citroën C5 Aircross 
citroën c5 aircross+citroen c5-

aircross 

Dacia Duster dacia duster 

Dacia Lodgy dacia lodgy 

Dacia Logan dacia logan 

Dacia Sandero dacia sandero 

DS3 Crossback ds3 crossback 

DS7 Crossback ds7 crossback 

Fiat 500 fiat 500 

Fiat 500X fiat 500x 

Fiat Panda fiat panda 

Fiat Tipo fiat tipo 

Ford C-MAX ford c-max 

Ford EcoSport ford ecosport 

Ford Fiesta ford fiesta 

Ford Focus ford focus 

Ford Ka+ ford ka+ 

Ford Kuga ford kuga 

Ford Mondeo ford mondeo 

Ford Transit Custom ford transit custom 

Honda Civic honda civic 

Honda CR-V honda cr-v 

Honda HR-V honda hr-v 

Honda Jazz honda jazz 

Hyundai i10 hyundai i10 

Hyundai i20 hyundai i20 

Hyundai i30 hyundai i30 
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(Continued)  

Car model Search term 

Hyundai Ioniq hyundai ioniq 

Hyundai Kona hyundai kona 

Hyundai Tucson hyundai tucson 

Jaguar I-Pace jaguar i-pace 

Jaguar XE jaguar xe 

Jeep Compass jeep compass 

Jeep Renegade jeep renegade 

Kia Ceed kia ceed 

Kia Niro kia niro 

Kia Optima kia optima 

Kia Picanto kia picanto 

Kia Proceed kia proceed 

Kia Rio kia rio 

Kia Sportage kia sportage 

Kia Stonic kia stonic 

Land Rover Discovery Sport land rover discovery sport 

Land Rover Range Rover land rover range rover 

Land Rover Range Rover Evoque land rover range rover evoque 

Land Rover Range Rover Sport land rover range rover sport 

Land Rover Range Rover Velar land rover range rover velar 

Lexus CT lexus ct 

Lexus ES lexus es 

Lexus UX lexus ux 

Mazda 2 mazda 2 

Mazda 3 mazda 3 

Mazda 6 mazda 6 

Mazda CX-3 mazda cx-3 

Mazda CX-30 mazda cx-30 

Mazda CX-5 mazda cx-5 

Mazda MX-5 mazda mx-5 

Mercedes-Benz A-klasse mercedes-benz a-klasse 

Mercedes-Benz B-klasse mercedes-benz b-klasse 
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(Continued)  

Car model Search term 

Mercedes-Benz C-klasse mercedes-benz c-klasse 

Mercedes-Benz CLA mercedes-benz cla 

Mercedes-Benz E-klasse mercedes-benz e-klasse 

Mercedes-Benz GLA mercedes-benz gla 

Mercedes-Benz GLC mercedes-benz glc 

Mercedes-Benz GLE mercedes-benz gle 

Mercedes-Benz S-klasse mercedes-benz s-klasse 

Mercedes-Benz Sprinter mercedes-benz sprinter 

Mercedes-Benz Vito mercedes-benz vito 

Mercedes-Benz V-klasse mercedes-benz v-klasse 

MG ZS mg zs 

Mini Clubman mini clubman 

Mini Countryman mini cooper 

Mini Mini mini countryman 

Mitsubishi ASX mitsubishi asx 

Mitsubishi Eclipse Cross mitsubishi eclipse cross 

Mitsubishi Outlander mitsubishi outlander 

Mitsubishi Space Star mitsubishi space star 

Nissan Juke nissan juke 

Nissan Leaf nissan leaf 

Nissan Micra nissan micra 

Nissan Qashqai nissan qashqai 

Nissan X-Trail nissan x-trial 

Opel Adam opel adam 

Opel Ampera-e opel ampera-e 

Opel Astra opel astra 

Opel Corsa opel corsa 

Opel Crossland X opel crossland x 

Opel Grandland X opel grandland 

Opel Insignia opel insignia 

Opel Karl opel karl 

Opel Mokka opel mokka 
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(Continued)  

Car model Search term 

Opel Movano opel movano 

Peugeot 108 peugeot 108 

Peugeot 2008 peugeot 2008 

Peugeot 208 peugeot 208 

Peugeot 3008 peugeot 3008 

Peugeot 308 peugeot 308 

Peugeot 5008 peugeot 5008 

Peugeot 508 peugeot 508 

Peugeot Rifter peugeot rifter 

Porsche 911 porsche 911 

Porsche Cayenne porsche cayenne 

Porsche Macan porsche macan 

Porsche Panamera porsche panamera 

Renault Captur renault captur 

Renault Clio renault clio 

Renault Espace renault espace 

Renault Kadjar renault kadjar 

Renault Mégane 
renault mégane+renault 

megane 

Renault Scénic Renault scénic+renault scenic 

Renault Talisman renault talisman 

Renault Twingo renault twingo 

Renault Zoe renault zoe 

Seat Arona seat arona 

Seat Ateca seat ateca 

Seat Ibiza seat ibiza 

Seat Leon seat leon 

Seat Mii seat mii 

Seat Tarraco seat tarraco 

Skoda Citigo skoda citigo 

Skoda Fabia skoda fabia 

Skoda Karoq skoda karoq 
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(Continued)  

Car model Search term 

Skoda Kodiaq skoda kodiaq 

Skoda Octavia skoda octavia 

Skoda Rapid skoda rapid 

Skoda Scala skoda scala 

Skoda Superb skoda superb 

Smart Forfour smart forfour 

Subaru Forester subaru forester 

Subaru XV subaru xv 

Suzuki Baleno suzuki baleno 

Suzuki Celerio suzuki celerio 

Suzuki Ignis suzuki ignis 

Suzuki Jimny suzuki jimny 

Suzuki S-Cross suzuki s-cross 

Suzuki Swift suzuki swift 

Tesla Model 3 tesla model 3 

Tesla Model S tesla model s 

Tesla Model X tesla model x 

Toyota Auris toyota auris 

Toyota Aygo toyota aygo 

Toyota C-HR toyota c-hr 

Toyota Corolla toyota corolla 

Toyota Prius toyota prius 

Toyota Prius+ toyota prius s+ 

Toyota Proace toyota proace 

Toyota RAV4 toyota rav4 

Toyota Yaris toyota yaris 

Volkswagen Arteon volkswagen arteon 

Volkswagen Caddy volkswagen caddy 

Volkswagen Golf volkswagen golf 

Volkswagen Golf Sportsvan volkswagen golf sportsvan 

Volkswagen Passat volkswagen passat 

Volkswagen Polo volkswagen polo 
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(Continued)  

Car model Search term 

Volkswagen T-Cross volkswagen t-cross 

Volkswagen Tiguan volkswagen tiguan 

Volkswagen Touran volkswagen touran 

Volkswagen Transporter volkswagen transporter 

Volkswagen T-Roc volkswagen t-roc 

Volkswagen Up volkswagen up 

Volvo S60 volvo s60 

Volvo S90 volvo s90 

Volvo V40 volvo v40 

Volvo V60 volvo v60 

Volvo V90 volvo v90 

Volvo XC40 volvo xc40 

Volvo XC60 volvo xc60 

Volvo XC90 volvo xc90 
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Appendix 4. Clustering: Car sales from January 2016 until December 2019 of the cluster 

centroids 
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Appendix 5. Clustering: Cluster distribution of the car models 

Cluster number Car model 

1 Land Rover Range Rover 

1 Audi A1 

1 Audi A3 

1 Audi A6 

1 Audi Q3 

1 BMW 2-serie 

1 BMW 3-serie 

1 BMW 7-serie 

1 BMW X4 

1 BMW Z4 

1 Citroën C4 Cactus 

1 Dacia Lodgy 

1 Dacia Sandero 

1 Ford Fiesta 

1 Ford Kuga 

1 Hyundai i10 

1 Kia Optima 

1 Kia Sportage 

1 Land Rover Range Rover Sport 

1 Mazda 2 

1 Mazda 3 

1 Mazda CX-3 

1 Mazda CX-5 

1 Mercedes-Benz Vito 

1 Mini Countryman 

1 Mitsubishi Outlander 

1 Nissan Leaf 

1 Nissan Qashqai 

1 Opel Adam 

1 Opel Astra 

1 Peugeot 308 

1 Peugeot 508 

1 Porsche Cayenne 

1 Renault Mégane 

1 Renault Talisman 

1 Seat Ibiza 

1 Skoda Octavia 

1 Smart Forfour 

1 Subaru XV 

1 Tesla Model S 

1 Toyota Aygo 

1 Volkswagen Golf 

1 Volkswagen Passat 

1 Volkswagen Polo 

1 Volkswagen Transporter 
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(Continued)  

Cluster number Car model 

1 Volvo V40 

1 Volvo XC90 

2 Nissan Micra 

2 Audi A4 

2 Toyota Prius 

2 Volkswagen Caddy 

2 Audi Q5 

2 BMW 2-serie Tourer 

2 Volkswagen Touran 

2 BMW X3 

2 Volvo V60 

2 Fiat 500X 

2 Ford Focus 

2 Ford Mondeo 

2 Honda CR-V 

2 Kia Ceed 

2 Land Rover Discovery Sport 

2 Mazda 6 

2 Mercedes-Benz A-klasse 

2 Mercedes-Benz CLA 

2 Mercedes-Benz GLC 

2 Mercedes-Benz S-klasse 

2 Mercedes-Benz V-klasse 

2 Mitsubishi ASX 

2 Nissan X-Trail 

2 Porsche Macan 

2 Renault Scénic 

2 Renault Twingo 

2 Skoda Citigo 

2 Suzuki Celerio 

2 Suzuki Jimny 

2 Suzuki Vitara 

3 Seat Leon 

3 Mercedes-Benz C-klasse 

3 Volkswagen Tiguan 

3 Mini Clubman 

3 BMW 4-serie 

3 Volvo S60 

3 BMW X5 

3 Fiat Panda 

3 Ford C-MAX 

3 Renault Clio 

3 Honda Jazz 

3 Renault Kadjar 

3 Renault Zoe 

3 Seat Mii 
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(Continued)  

Cluster number Car model 

3 Skoda Fabia 

3 Skoda Rapid 

3 Suzuki Swift 

4 Peugeot 208 

4 Ford EcoSport 

4 Audi A5 

4 Toyota Yaris 

4 Porsche Panamera 

4 Volkswagen Golf Sportsvan 

4 Honda Civic 

4 Renault Espace 

4 Hyundai i20 

4 Kia Picanto 

4 Citroën C1 

4 Dacia Duster 

4 Lexus CT 

4 Peugeot 108 

5 BMW X1 

5 Mercedes-Benz B-klasse 

5 Mercedes-Benz GLA 

5 BMW 5-serie 

5 Volkswagen Up 

5 Mini Mini 

5 Mitsubishi Space Star 

5 BMW i3 

5 Opel Corsa 

5 Opel Mokka 

5 Fiat 500 

5 Peugeot 2008 

6 Mazda MX-5 

6 Peugeot 5008 

6 Mercedes-Benz GLE 

6 Honda HR-V 

6 Mercedes-Benz Sprinter 

6 Skoda Superb 

6 Dacia Logan 

7 Toyota RAV4 

7 Jeep Renegade 

7 Opel Insignia 

7 Opel Karl 

7 Hyundai i30 

8 Land Rover Range Rover Evoque 

8 Citroën C3 

8 Hyundai Tucson 

8 Suzuki S-Cross 

8 Jaguar XE 
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(Continued)  

Cluster number Car model 

9 Renault Captur 

9 Kia Rio 

9 Mercedes-Benz E-klasse 

10 Volvo XC60 

10 Nissan Juke 

11 Toyota Auris 

11 Alfa Romeo Mito 

12 Subaru Forester 

12 BMW 1-serie 
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Appendix 6. VIF 
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Appendix 7. Pearson correlation between the Instagram features 



97 
 

 



98 
 

 



99 
 

 



100 
 

 



101 
 

 

  



102 
 

Appendix 8. Hyperparameters of LSTM using dataset 1 

Car model 
LSTM 
size 

Batch 
size 

Learning 
rate 

BMW X1 128 10 0,01 

Land Rover Range Rover 32 11 0,1 

Land Rover Range Rover 
Evoque 

128 11 0,3 

Mazda MX-5 32 10 0,3 

Nissan Micra 64 8 0,3 

Peugeot 208 8 8 0,2 

Renault Captur 64 2 0,3 

Seat Leon 64 6 0,1 

Subaru Forester 64 10 0,2 

Toyota Auris 64 6 0,1 

Toyota RAV4 128 4 0,2 

Volvo XC60 64 11 0,01 
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Appendix 9. Hyperparameters of LSTM using dataset 2 

Car model 
LSTM 
size 

Batch 
size 

Learning 
rate 

BMW X1 128 4 0,01 

Land Rover Range Rover 32 11 0,01 

Land Rover Range Rover 
Evoque 

64 8 0,3 

Mazda MX-5 32 6 0,3 

Nissan Micra 128 10 0,01 

Peugeot 208 64 10 0,3 

Renault Captur 128 4 0,3 

Seat Leon 128 2 0,01 

Subaru Forester 64 6 0,3 

Toyota Auris 128 11 0,2 

Toyota RAV4 64 2 0,3 

Volvo XC60 32 10 0,01 
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Appendix 10. Hyperparameters of LSTM using dataset 3 

Car model 
LSTM 
size 

Batch 
size 

Learning 
rate 

BMW X1 128 4 0,01 

Land Rover Range Rover 16 1 0,3 

Land Rover Range Rover 
Evoque 

128 10 0,3 

Mazda MX-5 128 11 0,01 

Nissan Micra 128 10 0,3 

Peugeot 208 64 6 0,1 

Renault Captur 64 2 0,3 

Seat Leon 128 4 0,1 

Subaru Forester 32 10 0,3 

Toyota Auris 8 8 0,2 

Toyota RAV4 32 2 0,3 

Volvo XC60 8 1 0,1 
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Appendix 11. Hyperparameter values of LSTM using dataset 4 

Car model LSTM size Batch size Learning rate 

BMW X1 32 10 0,01 

Land Rover Range Rover 8 11 0,2 

Land Rover Range Rover Evoque 8 4 0,2 

Mazda MX-5 128 8 0,3 

Nissan Micra 16 10 0,01 

Peugeot 208 128 11 0,3 

Renault Captur 64 8 0,01 

Seat Leon 8 1 0,3 

Subaru Forester 128 8 0,2 

Toyota Auris 32 8 0,1 

Toyota RAV4 16 1 0,01 

Volvo XC60 8 2 0,2 
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Appendix 12. Hyperparameter values of ARIMA using dataset 4 

Car model p d q P D Q S 

BMW X1 0 0 4 0 0 0 12 

Land Rover Range Rover 0 1 4 0 0 0 12 

Land Rover Range Rover Evoque 0 0 1 0 0 0 12 

Mazda MX-5 0 0 2 0 0 0 12 
Nissan Micra 0 0 2 2 0 0 12 

Peugeot 208 0 0 2 1 0 0 12 

Renault Captur 0 0 4 1 0 0 12 

Seat Leon 0 0 4 1 0 0 12 

Subaru Forester 0 0 2 1 0 0 12 

Toyota Auris 0 0 2 1 0 0 12 

Toyota RAV4 0 0 1 1 0 0 12 

Volvo XC60 0 0 4 0 0 0 12 
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Appendix 13. Performance of ARIMA using dataset 4 

Car model MAE RMSE 

Alfa Romeo Mito 19,16853172 22,34119731 

Audi A1 194,1533983 202,8615189 

Audi A3 289,6633451 309,1393044 

Audi A4 104,7231532 130,8617898 

Audi A5 63,41043571 71,73124888 

Audi A6 62,46635613 65,59004511 

Audi Q3 102,8930959 112,5473266 

Audi Q5 10,77308993 14,61737087 

BMW 1-serie 226,1861641 327,0372408 

BMW 2-serie 183,0399817 223,5389284 

BMW 2-serie Tourer 134,5714374 144,3875082 

BMW 3-serie 508,3445333 540,6804823 

BMW 4-serie 125,6340427 152,5337587 

BMW 5-serie 84,8719619 115,4167834 

BMW 7-serie 31,51195183 33,42349353 

BMW i3 233,2069107 276,8032271 

BMW X1 71,33924742 98,50176561 

BMW X3 93,22553438 112,3767811 

BMW X4 46,90825169 47,82254301 

BMW X5 87,07650069 103,4034488 

BMW Z4 31,84770371 34,4652456 

Citroën C1 296,1351136 316,8682532 

Citroën C3 301,5684126 325,4519842 

Citroën C4 Cactus 100,4886157 104,4615617 

Dacia Duster 35,43454848 38,16553228 

Dacia Lodgy 27,51198711 36,41816541 

Dacia Logan 47,21845584 54,45667754 

Dacia Sandero 65,27454375 73,03058197 

Fiat 500 151,8675098 159,1802365 

Fiat 500X 28,89106003 36,16898168 

Fiat Panda 37,46257288 40,04095575 

Ford C-MAX 32,96078725 36,86690155 

Ford EcoSport 161,7236138 177,9296782 

Ford Fiesta 440,7832187 476,4513299 

Ford Focus 547,8002065 632,249468 

Ford Kuga 194,4268719 233,1514893 

Ford Mondeo 50,0833382 63,09055427 

Honda Civic 23,16998816 26,93175883 

Honda CR-V 26,20418096 30,81760668 

Honda HR-V 11,34166064 12,79806021 

Honda Jazz 33,877479 37,19406495 

Hyundai i10 291,4215878 311,8247219 

Hyundai i20 71,94433854 87,54348718 

Hyundai i30 23,4269263 27,43991866 

Hyundai Tucson 44,37953861 50,23041206 
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(Continued)   

Car model MAE RMSE 

Jaguar XE 47,54191897 52,51981798 

Jeep Renegade 23,23111851 26,90513538 

Kia Ceed 78,44299831 90,24839851 

Kia Optima 16,78751766 17,91127041 

Kia Picanto 416,6565639 453,9355596 

Kia Rio 27,58697269 33,10486987 

Kia Sportage 73,99810536 77,79544467 

Land Rover Discovery Sport 14,09672525 16,23540032 

Land Rover Range Rover 26,99986161 27,41557107 

Land Rover Range Rover 
Evoque 

20,31601088 23,86092923 

Land Rover Range Rover Sport 44,98492433 45,94577144 

Lexus CT 12,22097778 12,77982885 

Mazda 2 119,2154326 128,5892136 

Mazda 3 470,5681897 488,8941561 

Mazda 6 22,70726438 25,26311878 

Mazda CX-3 91,01085062 96,71093583 

Mazda CX-5 240,4380848 266,3165611 

Mazda MX-5 31,82571822 36,58866692 

Mercedes-Benz A-klasse 197,9752424 216,9813042 

Mercedes-Benz B-klasse 123,6711832 145,6182171 

Mercedes-Benz C-klasse 174,0605579 202,3312826 

Mercedes-Benz CLA 222,086651 254,478744 

Mercedes-Benz E-klasse 90,71128063 107,7487898 

Mercedes-Benz GLA 77,13471361 92,83731777 

Mercedes-Benz GLC 104,5142247 121,84759 

Mercedes-Benz GLE 12,68447644 14,48842655 

Mercedes-Benz S-klasse 10,96008656 12,32091849 

Mercedes-Benz Sprinter 222,2083296 269,9203353 

Mercedes-Benz Vito 84,43076626 89,57106866 

Mercedes-Benz V-klasse 27,10034029 33,57686821 

Mini Clubman 85,1739881 87,86848917 

Mini Countryman 130,075961 138,2402435 

Mini Mini 482,225687 500,1651878 

Mitsubishi ASX 102,7979573 113,0824645 

Mitsubishi Outlander 139,3636966 147,3932941 

Mitsubishi Space Star 207,3825288 252,1205745 

Nissan Juke 134,5656761 185,8592069 

Nissan Leaf 365,4289525 400,5364058 

Nissan Micra 130,3432677 166,8618044 

Nissan Qashqai 317,60721 331,3906167 

Nissan X-Trail 86,5161861 93,4818119 

Opel Adam 20,72524221 21,8966095 

Opel Astra 527,020403 544,7990999 

Opel Corsa 381,5613907 548,1569909 

Opel Insignia 84,86815133 111,450964 
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(Continued)   

Car model MAE RMSE 

Opel Karl 864,3713517 956,7801923 

Opel Mokka 47,83843529 53,5993458 

Peugeot 108 242,1370701 251,1754272 

Peugeot 2008 128,8142961 149,0660777 

Peugeot 208 252,9264603 310,3709046 

Peugeot 308 321,0525247 332,5626342 

Peugeot 5008 95,20939502 109,6367186 

Peugeot 508 114,0597086 122,0022336 

Porsche Cayenne 128,6617192 135,3254443 

Porsche Macan 29,76015708 32,75428485 

Porsche Panamera 9,352680199 10,57829367 

Renault Captur 213,6749532 226,602179 

Renault Clio 395,0786074 417,8878398 

Renault Espace 21,34685334 24,29798228 

Renault Kadjar 104,4474314 119,9625419 

Renault Mégane 504,1651816 523,5489815 

Renault Scénic 178,5556877 187,1531867 

Renault Talisman 25,48134956 26,26134362 

Renault Twingo 68,5633706 82,59673654 

Renault Zoe 422,3714671 483,8970022 

Seat Ibiza 285,6774014 315,8210385 

Seat Leon 92,3749165 116,4846271 

Seat Mii 45,52908142 54,01599965 

Skoda Citigo 117,7238578 134,5341166 

Skoda Fabia 127,1105967 147,0934892 

Skoda Octavia 408,0426298 441,0062598 

Skoda Rapid 120,0361673 125,8495408 

Skoda Superb 108,1459177 129,7859829 

Smart Forfour 10,91598457 13,54845944 

Subaru Forester 9,839618325 13,96594052 

Subaru XV 18,19094107 19,66285211 

Suzuki Celerio 104,3484629 109,5642289 

Suzuki Jimny 10,58940349 11,24286401 

Suzuki S-Cross 25,57311865 26,70148501 

Suzuki Swift 215,7222323 248,9347383 

Suzuki Vitara 108,0561684 117,5168063 

Tesla Model S 80,44138209 86,95895153 

Toyota Auris 83,22829917 96,20070796 

Toyota Aygo 384,7403244 420,432586 

Toyota Prius 10,3993055 12,27903311 

Toyota RAV4 98,93312961 133,5903332 

Toyota Yaris 263,3555295 326,4607498 

Volkswagen Caddy 13,20125891 16,65051964 

Volkswagen Golf 827,6115503 882,1248339 

Volkswagen Golf Sportsvan 38,8258068 47,92690208 

Volkswagen Passat 138,2141561 146,8705081 
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(Continued)   

Car model MAE RMSE 

Volkswagen Polo 1057,942127 1188,999481 

Volkswagen Tiguan 189,3592443 213,9525843 

Volkswagen Touran 64,41230759 72,62153602 

Volkswagen Transporter 28,06357695 29,13653872 

Volkswagen Up 192,0766684 260,2010248 

Volvo S60 82,92702978 101,419722 

Volvo V40 232,583158 239,7532243 

Volvo V60 303,2876938 366,069724 

Volvo XC60 46,75268932 51,55668035 

Volvo XC90 62,32995786 68,2144774 
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Appendix 14. Performance of LSTM using dataset 4 

Car model MAE RMSE 

Alfa Romeo Mito 14,18421091 14,27467563 

Audi A1 2938,825203 3324,412212 

Audi A3 5942,981112 6609,593559 

Audi A4 65,52638899 86,63387187 

Audi A5 97,9489054 106,4257609 

Audi A6 1392,948948 1473,578589 

Audi Q3 1799,658427 2016,213934 

Audi Q5 13,58637265 19,0874545 

BMW 1-serie 183,2910287 254,2004322 

BMW 2-serie 2909,843779 3398,266546 

BMW 2-serie Tourer 53,53282057 62,06899571 

BMW 3-serie 8005,098479 8916,845161 

BMW 4-serie 65,19615609 76,06384901 

BMW 5-serie 75,50079673 88,23740067 

BMW 7-serie 417,920574 466,6234094 

BMW i3 165,2157963 169,9885922 

BMW X1 55,36737497 65,09913562 

BMW X3 50,09640884 67,43720522 

BMW X4 903,520528 1012,295362 

BMW X5 52,89320265 60,15825583 

BMW Z4 333,7894315 447,9190103 

Citroën C1 98,61852417 103,5698710 

Citroën C3 78,18916516 83,41857158 

Citroën C4 Cactus 87,58447889 90,21878855 

Dacia Duster 48,68768338 53,62624995 

Dacia Lodgy 23,51698161 27,51684135 

Dacia Logan 88,65372031 90,1823326 

Dacia Sandero 2010,500968 2196,947324 

Fiat 500 154,0091313 164,0397316 

Fiat 500X 10,69517463 12,67864487 

Fiat Panda 13,48250798 19,52295791 

Ford C-MAX 30,73572677 30,73707763 

Ford EcoSport 130,010182 137,6288065 

Ford Fiesta 8063,974533 9060,252248 

Ford Focus 239,7298933 341,7330373 

Ford Kuga 2863,685569 3314,678366 

Ford Mondeo 33,04763086 40,85174966 

Honda Civic 29,79306902 30,69392053 

Honda CR-V 7,669060843 12,17882602 

Honda HR-V 36,1406814 37,16689093 

Honda Jazz 18,82625634 22,14920847 

Hyundai i10 5831,248004 6479,135834 

Hyundai i20 97,86691965 102,7410219 

Hyundai i30 18,02723503 19,690104 

Hyundai Tucson 55,37755694 55,60655519 
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(Continued)   

Car model MAE RMSE 

Jaguar XE 24,46841235 27,00351952 

Jeep Renegade 12,06595148 12,99693378 

Kia Ceed 78,4548645 81,94568771 

Kia Optima 713,9807797 778,7415105 

Kia Picanto 773,0930808 789,0340724 

Kia Rio 16,5106005 19,15536213 

Kia Sportage 2117,948752 2241,783355 

Land Rover Discovery Sport 5,763035502 7,614565388 

Land Rover Range Rover 461,9728074 521,9942632 

Land Rover Range Rover 
Evoque 

16,15034703 22,58209836 

Land Rover Range Rover Sport 577,9698432 646,2863913 

Lexus CT 16,62481577 18,06791694 

Mazda 2 2977,651978 3447,701166 

Mazda 3 158,4168167 163,1861797 

Mazda 6 7,074017797 8,902396565 

Mazda CX-3 3385,956611 3786,863324 

Mazda CX-5 6572,968284 7332,914418 

Mazda MX-5 36,70963124 36,87216036 

Mercedes-Benz A-klasse 160,9297682 196,1310323 

Mercedes-Benz B-klasse 89,35169656 92,44159185 

Mercedes-Benz C-klasse 62,028365 75,77321246 

Mercedes-Benz CLA 98,99502128 122,9266234 

Mercedes-Benz E-klasse 67,37234497 71,41614165 

Mercedes-Benz GLA 55,04215676 57,10969978 

Mercedes-Benz GLC 32,91017696 39,14264388 

Mercedes-Benz GLE 58,39907728 61,46267938 

Mercedes-Benz S-klasse 2,285565649 2,793358856 

Mercedes-Benz Sprinter 289,5207193 290,5141852 

Mercedes-Benz Vito 2811,166915 3184,739372 

Mercedes-Benz V-klasse 8,622075626 8,882771014 

Mini Clubman 41,919087 53,70159048 

Mini Countryman 2183,230652 2431,444541 

Mini Mini 205,0560897 216,6989354 

Mitsubishi ASX 47,00187683 57,45933913 

Mitsubishi Outlander 2929,374709 3266,873618 

Mitsubishi Space Star 148,1788755 203,3997226 

Nissan Juke 73,1383885 97,21238683 

Nissan Leaf 11137,4118 12559,98494 

Nissan Micra 56,01877485 63,01354836 

Nissan Qashqai 5626,308051 6257,224691 

Nissan X-Trail 23,15698448 27,18981614 

Opel Adam 716,0447946 768,1382171 

Opel Astra 10909,42035 12011,72433 

Opel Corsa 281,1054077 445,711355 

Opel Insignia 56,92158944 64,20774531 
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(Continued)   

Car model MAE RMSE 

Opel Karl 545,1723393 572,6695218 

Opel Mokka 45,90787724 46,91425858 

Peugeot 108 418,9368635 457,7387421 

Peugeot 2008 100,0821915 121,8015907 

Peugeot 208 440,164517 467,0329556 

Peugeot 308 6607,494727 7135,526095 

Peugeot 5008 405,5892639 417,3899491 

Peugeot 508 1919,900652 2128,662358 

Porsche Cayenne 2043,878148 2329,291373 

Porsche Macan 7,393605777 11,27077133 

Porsche Panamera 22,8273934 23,86632638 

Renault Captur 120,9352984 134,9056668 

Renault Clio 239,9393572 275,7086584 

Renault Espace 10,6605602 10,68356302 

Renault Kadjar 71,06450326 75,69921483 

Renault Mégane 230,1851897 238,5168161 

Renault Scénic 112,1531867 119,1118197 

Renault Talisman 502,2468778 567,5936972 

Renault Twingo 43,72544752 55,84813581 

Renault Zoe 379,1947981 383,8624787 

Seat Ibiza 5278,086549 5858,5138 

Seat Leon 79,89526585 95,39480204 

Seat Mii 36,71216856 40,288824 

Skoda Citigo 77,83329882 100,4189481 

Skoda Fabia 53,61403329 65,74163633 

Skoda Octavia 9505,384782 11132,83532 

Skoda Rapid 73,356587 73,35747035 

Skoda Superb 170,1550075 176,0099973 

Smart Forfour 302,0158697 342,1596145 

Subaru Forester 23,51180458 33,68430487 

Subaru XV 294,7640996 328,896411 

Suzuki Celerio 38,44147164 41,29478708 

Suzuki Jimny 4,609247753 7,243615488 

Suzuki S-Cross 21,15579987 23,09259417 

Suzuki Swift 88,002485 104,5800432 

Suzuki Vitara 41,15616817 46,15618674 

Tesla Model S 2308,111238 2733,653037 

Toyota Auris 40,70228222 45,59281234 

Toyota Aygo 205,6161667 220,0561767 

Toyota Prius 3,712707179 5,235451835 

Toyota RAV4 72,09261867 80,70056301 

Toyota Yaris 326,816449 362,5970444 

Volkswagen Caddy 5,018622194 5,897803841 

Volkswagen Golf 19586,04347 22360,26377 

Volkswagen Golf Sportsvan 25,42108318 25,53242917 

Volkswagen Passat 2452,198201 2828,677397 
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Car model MAE RMSE 

Volkswagen Polo 21624,64921 23811,85491 

Volkswagen Tiguan 167,7158726 195,3738879 

Volkswagen Touran 18,3382661 23,16679017 

Volkswagen Transporter 874,557939 939,0207043 

Volkswagen Up 242,4616394 267,0642826 

Volvo S60 39,26424408 45,01797082 

Volvo V40 5989,441515 6553,654205 

Volvo V60 107,8541456 134,0949344 

Volvo XC60 50,11415427 69,96114212 

Volvo XC90 1222,111625 1341,048627 
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Appendix 15. Performance of LSTM using dataset 1 

Car model MAE RMSE 

Alfa Romeo Mito 13,04574476 13,28216294 

Audi A1 53,81411525 75,40800398 

Audi A3 98,66697475 131,6456515 

Audi A4 70,10183934 78,4512519 

Audi A5 34,74183982 42,08114087 

Audi A6 21,71595274 26,17565058 

Audi Q3 36,56094197 48,59290814 

Audi Q5 16,48588617 17,93188687 

BMW 1-serie 196,4476798 273,407109 

BMW 2-serie 84,12002019 105,6159586 

BMW 2-serie Tourer 56,44673593 68,93746724 

BMW 3-serie 181,2630702 222,0271421 

BMW 4-serie 49,5364794 58,44868038 

BMW 5-serie 64,84209115 74,32113375 

BMW 7-serie 11,50038637 14,55422516 

BMW i3 152,6302774 153,2988343 

BMW X1 52,93919155 58,96806817 

BMW X3 55,5774231 56,59793104 

BMW X4 10,59222821 11,79644356 

BMW X5 45,48638153 56,61358344 

BMW Z4 10,30439159 13,01523411 

Citroën C1 116,5308862 131,8160985 

Citroën C3 105,5587456 112,5684818 

Citroën C4 Cactus 35,15984523 38,15169812 

Dacia Duster 20,69557517 22,70437273 

Dacia Logan 26,9008097 28,84574582 

Dacia Logan 13,28531756 16,71144019 

Dacia Sandero 33,31715993 36,66191997 

Fiat 500 149,869097 160,0877505 

Fiat 500X 20,53969029 24,0214694 

Fiat Panda 14,02920641 22,72562385 

Ford C-MAX 25,39542852 25,4311133 

Ford EcoSport 51,15391432 60,42270794 

Ford Fiesta 188,0981184 189,5572822 

Ford Focus 353,3388149 397,5658118 

Ford Kuga 77,56768908 98,2820399 

Ford Mondeo 33,13828823 37,1146283 

Honda Civic 7,333491462 8,471816131 

Honda CR-V 19,34591184 20,29973819 

Honda HR-V 7,460623877 10,57166992 

Honda Jazz 17,72272709 20,05261692 

Hyundai i10 114,6760864 129,7180069 

Hyundai i20 43,60012163 51,9055736 

Hyundai i30 27,65292249 30,84743831 

Hyundai Tucson 30,72879342 31,18499067 



116 
 

(Continued)   

Car model MAE RMSE 

Jaguar XE 26,71618318 34,13186137 

Jeep Renegade 13,40250887 16,94170532 

Kia Ceed 29,05846732 33,96506142 

Kia Optima 15,87169266 15,92748665 

Kia Picanto 124,324864 177,0532707 

Kia Rio 26,9191731 35,81183539 

Kia Sportage 21,35994829 24,60491411 

Land Rover Discovery Sport 8,443043845 9,000472508 

Land Rover Range Rover 5,744615419 7,46782072 
Land Rover Range Rover 
Evoque 36,66895933 42,95037866 
Land Rover Range Rover 
Sport 12,44972338 16,36630284 

Lexus CT 6,608043943 7,531169771 

Mazda 2 61,65457589 65,1825212 

Mazda 3 142,1313138 150,6167967 

Mazda 6 14,39043835 15,46388699 

Mazda CX-3 106,9745952 107,6504072 

Mazda CX-5 119,0191084 126,6412823 

Mazda MX-5 7,450141089 7,860369127 

Mercedes-Benz A-klasse 150,3157218 156,4155018 

Mercedes-Benz B-klasse 91,12888009 92,1535697 

Mercedes-Benz C-klasse 125,1859785 141,3916408 

Mercedes-Benz CLA 135,3659624 162,1198479 

Mercedes-Benz E-klasse 45,12987954 53,99973457 

Mercedes-Benz GLA 51,72367096 52,39865533 

Mercedes-Benz GLC 101,1408648 108,2016496 

Mercedes-Benz GLE 13,15707833 21,09126994 

Mercedes-Benz S-klasse 13,12612179 13,39392079 

Mercedes-Benz Sprinter 106,8198874 109,2236113 

Mercedes-Benz Vito 53,83792332 55,16658335 

Mercedes-Benz V-klasse 40,66754314 41,19753415 

Mini Clubman 42,8634807 51,84057524 

Mini Countryman 50,4250303 57,70814877 

Mini Mini 403,0316187 415,1316177 

Mitsubishi ASX 82,33903503 89,12099546 

Mitsubishi Outlander 55,76971 62,35345285 

Mitsubishi Space Star 153,8360334 199,0634099 

Nissan Juke 96,06704003 127,6561862 

Nissan Leaf 217,5877816 226,6114476 

Nissan Micra 103,2179217 120,2690036 

Nissan Qashqai 98,90263585 102,2086298 

Nissan X-Trail 38,13817962 42,13131861 

Opel Adam 37,70580782 37,8639686 

Opel Astra 77,69032942 93,19771499 

Opel Corsa 296,7270115 411,773543 
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(Continued)   

Car model MAE RMSE 

Opel Insignia 85,7742048 91,70087755 

Opel Karl 1037,366577 1037,366577 

Opel Mokka 47,47164045 47,84917535 

Peugeot 108 155,4722159 194,1248799 

Peugeot 2008 87,93117196 105,2488235 

Peugeot 208 152,8841553 175,6210706 

Peugeot 308 71,28131321 95,67176046 

Peugeot 5008 67,36982073 75,24532275 

Peugeot 508 39,90973009 54,16424627 

Porsche Cayenne 38,02423695 57,64946067 

Porsche Macan 24,00990132 25,96510308 

Porsche Panamera 5,941364152 7,285163542 

Renault Captur 101,4264657 123,777663 

Renault Clio 223,1019897 268,5626146 

Renault Espace 11,10181277 11,1235543 

Renault Kadjar 52,65994372 60,09760084 

Renault Mégane 135,1316817 145,1786167 

Renault Scénic 46,13817962 48,41935641 

Renault Talisman 6,897852216 8,602472159 

Renault Twingo 54,37437657 63,21601769 

Renault Zoe 279,0239999 285,8545198 

Seat Ibiza 115,1118338 145,6005474 

Seat Leon 77,25710188 91,48558739 

Seat Mii 31,10953304 36,81172785 

Skoda Citigo 87,24642726 93,65176747 

Skoda Fabia 46,65025766 59,37964108 

Skoda Octavia 142,6173662 155,8926976 

Skoda Rapid 59,38590949 59,52035392 

Skoda Superb 51,43120575 57,12068746 

Smart Forfour 9,447419303 10,36943383 

Subaru Forester 22,17838832 23,81140377 

Subaru XV 6,506807055 8,465368365 

Suzuki Celerio 74,51723371 82,91298207 

Suzuki Jimny 7,765205656 8,35237375 

Suzuki S-Cross 36,24038778 42,7801498 

Suzuki Swift 74,22402518 84,86121489 

Suzuki Vitara 54,51618617 59,13818617 

Tesla Model S 50,72352764 51,45432492 

Toyota Auris 48,05579921 50,24428301 

Toyota Aygo 207,3634469 227,8660964 

Toyota Prius 6,198393277 7,360368013 

Toyota RAV4 110,3444301 116,38191 

Toyota Yaris 149,3300999 157,2395612 

Volkswagen Caddy 15,40779631 16,7615992 

Volkswagen Golf 285,7545253 331,426011 

Volkswagen Golf Sportsvan 27,04748726 27,15170869 
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Car model MAE RMSE 

Volkswagen Passat 44,9344417 58,02378233 

Volkswagen Polo 432,113351 504,627605 

Volkswagen Tiguan 144,9880415 186,4225542 

Volkswagen Touran 37,06947654 37,5656041 

Volkswagen Transporter 28,98089681 29,3223127 

Volkswagen Up 227,2401341 250,3953866 

Volvo S60 36,23841095 45,22248567 

Volvo V40 140,8342002 147,0576504 

Volvo V60 220,7438224 247,8844427 

Volvo XC60 69,33938599 90,55775709 

Volvo XC90 24,96082306 30,12847411 
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Appendix 16. Performance of LSTM using dataset 2 

Car model MAE RMSE 

Alfa Romeo Mito 2,688583 2,688583 

Audi A1 64,44721 95,39719 

Audi A3 84,13389 142,3894 

Audi A4 60,96253 79,69995 

Audi A5 29,65709 47,34523 

Audi A6 18,7694 22,73658 

Audi Q3 34,05237 51,11616 

Audi Q5 14,03098 15,76699 

BMW 1-serie 197,0688 271,8514 

BMW 2-serie 72,5132 112,6891 

BMW 2-serie Tourer 40,62655 53,62244 

BMW 3-serie 198,7831 250,7908 

BMW 4-serie 63,3826 69,41096 

BMW 5-serie 68,05129 81,13371 

BMW 7-serie 13,50888 17,13884 

BMW i3 216,3146 224,4241 

BMW X1 63,62419 72,11706 

BMW X3 47,54658 49,18165 

BMW X4 7,210617 12,51222 

BMW X5 41,69908 46,12957 

BMW Z4 11,82601 16,25857 

Citroën C1 102,1729 146,4705 

Citroën C3 87,56841 92,59616 

Citroën C4 Cactus 28,56158 30,12568 

Dacia Duster 21,17318 23,32426 

Dacia Lodgy 15,51616 18,19781 

Dacia Logan 13,23084 16,66036 

Dacia Sandero 16,43485 17,19168 

Fiat 500 147,0093 154,8158 

Fiat 500X 25,98377 28,99668 

Fiat Panda 12,82912 24,30557 

Ford C-MAX 29,64483 30,14054 

Ford EcoSport 40,24256 46,13266 

Ford Fiesta 186,6624 204,8056 

Ford Focus 399,0624 442,0851 

Ford Kuga 93,78203 115,9505 

Ford Mondeo 43,03595 50,66352 

Honda Civic 5,6724 7,645909 

Honda CR-V 22,82723 24,06925 

Honda HR-V 8,519448 9,430871 

Honda Jazz 17,08253 20,28467 

Hyundai i10 101,3954 145,3559 

Hyundai i20 31,81335 35,29173 

Hyundai i30 27,82206 31,05168 

Hyundai Tucson 21,24901 21,90355 
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(Continued)   

Car model MAE RMSE 

Jaguar XE 27,05618 34,51318 

Jeep Renegade 13,53488 17,0548 

Kia Ceed 47,14359 47,83989 

Kia Optima 8,957 9,109629 

Kia Picanto 213,738 259,0746 

Kia Rio 21,11834 24,49567 

Kia Sportage 8,716058 14,08022 

Land Rover Discovery Sport 5,264362 6,037593 

Land Rover Range Rover 8,290458 9,752539 
Land Rover Range Rover 
Evoque 32,85374 39,7449 

Land Rover Range Rover Sport 18,42941 21,83057 

Lexus CT 5,136916 7,136537 

Mazda 2 20,80032 23,46062 

Mazda 3 131,1158 139,1617 

Mazda 6 15,1841 16,81205 

Mazda CX-3 57,04478 58,85998 

Mazda CX-5 71,01367 74,59172 

Mazda MX-5 7,58839 8,034631 

Mercedes-Benz A-klasse 119,8251 133,5454 

Mercedes-Benz B-klasse 108,1716 111,2092 

Mercedes-Benz C-klasse 121,7616 137,115 

Mercedes-Benz CLA 129,5531 159,5014 

Mercedes-Benz E-klasse 122,15 125,6976 

Mercedes-Benz GLA 68,60766 73,13294 

Mercedes-Benz GLC 54,25956 63,06613 

Mercedes-Benz GLE 11,89405 18,2835 

Mercedes-Benz S-klasse 8,478099 8,629187 

Mercedes-Benz Sprinter 48,39575 54,02215 

Mercedes-Benz Vito 27,67499 33,39242 

Mercedes-Benz V-klasse 20,03458 21,30748 

Mini Clubman 37,37487 47,358 

Mini Countryman 52,62479 64,25598 

Mini Mini 235,1318 247,2138 

Mitsubishi ASX 60,54032 71,50249 

Mitsubishi Outlander 46,42804 55,14323 

Mitsubishi Space Star 178,3516 221,9411 

Nissan Juke 80,85658 105,7359 

Nissan Leaf 114,5547 129,3314 

Nissan Micra 138,3892 151,8273 

Nissan Qashqai 103,9173 120,9023 

Nissan X-Trail 25,51687 31,18967 

Opel Adam 26,05911 26,21847 

Opel Astra 75,68004 93,9193 

Opel Corsa 305,2893 398,7424 

Opel Insignia 86,41822 92,30355 
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(Continued)   

Car model MAE RMSE 

Opel Karl 1042,481 1042,481 

Opel Mokka 57,79114 58,13851 

Peugeot 108 181,047 222,9352 

Peugeot 2008 84,85755 96,65757 

Peugeot 208 180,5065 212,6137 

Peugeot 308 76,65357 89,92483 

Peugeot 5008 84,3123 93,70316 

Peugeot 508 40,71768 55,4674 

Porsche Cayenne 48,83382 70,07252 

Porsche Macan 19,83115 21,21637 

Porsche Panamera 5,292277 7,362578 

Renault Captur 208,7354 236,6985 

Renault Clio 261,1806 297,8567 

Renault Espace 7,171917 7,205983 

Renault Kadjar 59,42975 66,43659 

Renault Mégane 168,1387 189,1784 

Renault Scénic 56,55878 61,62017 

Renault Talisman 7,483475 8,303945 

Renault Twingo 44,75843 52,72337 

Renault Zoe 223,9118 236,3358 

Seat Ibiza 107,6013 147,754 

Seat Leon 71,0994 80,62947 

Seat Mii 28,55696 35,04404 

Skoda Citigo 95,64382 99,80271 

Skoda Fabia 72,70835 85,0424 

Skoda Octavia 104,2369 129,0473 

Skoda Rapid 67,00157 69,68484 

Skoda Superb 35,77036 46,77087 

Smart Forfour 5,689032 6,168331 

Subaru Forester 22,98502 24,56447 

Subaru XV 5,607011 9,133027 

Suzuki Celerio 75,90133 84,62069 

Suzuki Jimny 7,97228 8,334592 

Suzuki S-Cross 32,4223 39,60693 

Suzuki Swift 88,56063 108,6709 

Suzuki Vitara 90,20458 96,20471 

Tesla Model S 21,373 24,17678 

Toyota Auris 11,04252 11,04806 

Toyota Aygo 195,1929 232,2701 

Toyota Prius 6,365475 7,346896 

Toyota RAV4 111,073 117,2423 

Toyota Yaris 141,0294 169,6728 

Volkswagen Caddy 13,81324 14,59705 

Volkswagen Golf 156,2064 185,6134 

Volkswagen Golf Sportsvan 17,59109 17,75162 

Volkswagen Passat 40,41972 61,63801 
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Car model MAE RMSE 

Volkswagen Polo 345,8267 509,9328 

Volkswagen Tiguan 198,1432 214,2131 

Volkswagen Touran 32,71026 36,21219 

Volkswagen Transporter 16,70208 17,43886 

Volkswagen Up 253,7589 264,8143 

Volvo S60 45,56316 57,48711 

Volvo V40 88,07135 93,95093 

Volvo V60 251,9011 264,3223 

Volvo XC60 41,57621 49,83735 

Volvo XC90 23,60211 32,43746 
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Appendix 17. Performance of LSTM using dataset 3 

Car model MAE RMSE 

Alfa Romeo Mito 28,03453772 28,29747184 

Audi A1 59,30181449 79,90967735 

Audi A3 133,6413116 150,8481866 

Audi A4 201,8428879 215,3842358 

Audi A5 41,86387416 43,82503623 

Audi A6 30,06414141 33,25902536 

Audi Q3 42,03370013 50,06521113 

Audi Q5 44,52331189 47,10340954 

BMW 1-serie 221,8140368 314,3542924 

BMW 2-serie 94,02648272 106,581135 

BMW 2-serie Tourer 181,8901585 187,8356071 

BMW 3-serie 159,1227679 203,2832705 

BMW 4-serie 72,53446851 83,69810528 

BMW 5-serie 66,91522544 76,56054019 

BMW 7-serie 10,99936513 13,36892938 

BMW i3 218,1783077 220,835904 

BMW X1 58,93859972 65,91879485 

BMW X3 175,4547751 180,9326141 

BMW X4 18,1548451 18,77713525 

BMW X5 51,48788221 63,97905731 

BMW Z4 11,26231303 11,91866831 

Citroën C1 131,7294684 153,5442662 

Citroën C3 78,98741988 83,51981981 

Citroën C4 Cactus 26,32473293 27,83993994 

Dacia Duster 22,36405509 25,37703569 

Dacia Lodgy 9,156181897 11,18919679 

Dacia Logan 17,78648458 23,80782768 

Dacia Sandero 55,42976815 57,36159152 

Fiat 500 148,2042236 159,0535772 

Fiat 500X 49,57370867 51,09776919 

Fiat Panda 16,11390959 20,0261201 

Ford C-MAX 31,86434071 36,07287302 

Ford EcoSport 74,49839347 83,94804447 

Ford Fiesta 178,8004499 195,316559 

Ford Focus 789,5180817 856,3966052 

Ford Kuga 77,55841173 95,61124564 

Ford Mondeo 79,02397891 86,22922653 

Honda Civic 11,08812441 13,18324017 

Honda CR-V 30,61502429 32,71367563 

Honda HR-V 11,19886017 14,1517353 

Honda Jazz 21,10467584 25,69167236 

Hyundai i10 130,7270508 152,3758452 

Hyundai i20 63,91493007 72,21231086 

Hyundai i30 12,97887502 16,42805887 

Hyundai Tucson 26,34238979 26,88088574 
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(Continued)   

Car model MAE RMSE 

Jaguar XE 18,81635175 20,89846153 

Jeep Renegade 9,363180161 10,42749515 

Kia Ceed 247,8188771 249,9541937 

Kia Optima 21,55479622 21,58503113 

Kia Picanto 141,4568743 174,013833 

Kia Rio 26,76263537 28,32320258 

Kia Sportage 37,94270434 38,95838627 

Land Rover Discovery Sport 17,13441672 18,80889573 

Land Rover Range Rover 8,467437472 9,628853353 
Land Rover Range Rover 
Evoque 13,74039323 26,24730186 
Land Rover Range Rover 
Sport 10,99915341 14,16933999 

Lexus CT 8,210710253 8,971395821 

Mazda 2 94,39704023 96,00523572 

Mazda 3 103,368784 105,5171476 

Mazda 6 26,54301616 28,11148387 

Mazda CX-3 153,3298623 153,3551042 

Mazda CX-5 190,65305 198,8579046 

Mazda MX-5 2,119197709 3,481787733 

Mercedes-Benz A-klasse 325,9608962 361,7734183 

Mercedes-Benz B-klasse 88,92342159 89,59840218 

Mercedes-Benz C-klasse 193,7445352 209,9528636 

Mercedes-Benz CLA 282,4592198 300,9469923 

Mercedes-Benz E-klasse 169,0221601 171,6034846 

Mercedes-Benz GLA 68,30402483 71,5989832 

Mercedes-Benz GLC 125,8544906 131,6536866 

Mercedes-Benz GLE 21,52999292 28,83007541 

Mercedes-Benz S-klasse 13,24842112 13,53379009 

Mercedes-Benz Sprinter 16,70989663 26,18476179 

Mercedes-Benz Vito 87,53380149 88,23995929 

Mercedes-Benz V-klasse 32,75618281 33,41038161 

Mini Clubman 46,56174251 56,16670026 

Mini Countryman 52,57182748 62,91611352 

Mini Mini 176,5698785 183,8603246 

Mitsubishi ASX 114,7009054 130,5615402 

Mitsubishi Outlander 83,48927307 89,05232732 

Mitsubishi Space Star 149,9023743 196,2264646 

Nissan Juke 70,45472935 95,96470562 

Nissan Leaf 374,0402483 377,6984707 

Nissan Micra 229,942918 238,0335542 

Nissan Qashqai 103,1677115 124,5075214 

Nissan X-Trail 25,36587412 28,31875268 

Opel Adam 48,18303898 48,18446013 

Opel Astra 134,8716431 151,7110647 

Opel Corsa 294,4757342 412,0913083 
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(Continued)   

Car model MAE RMSE 

Opel Insignia 34,10938699 38,49193151 

Opel Karl 520,8504028 520,8504028 

Opel Mokka 53,52324731 54,39070712 

Peugeot 108 162,6549334 186,598587 

Peugeot 2008 80,74891881 97,5945017 

Peugeot 208 126,479187 156,116309 

Peugeot 308 113,5682504 130,854966 

Peugeot 5008 67,14009094 79,29846267 

Peugeot 508 44,82866124 54,83839255 

Porsche Cayenne 39,89826311 53,14363462 

Porsche Macan 45,57215663 47,31228302 

Porsche Panamera 8,58794839 9,254455924 

Renault Captur 312,3425816 335,1367837 

Renault Clio 614,3728894 689,2687729 

Renault Espace 14,82035092 14,88264212 

Renault Kadjar 91,04626029 96,97734234 

Renault Mégane 157,5161878 164,1378417 

Renault Scénic 45,51806182 47,56692771 

Renault Talisman 9,423491887 11,85912872 

Renault Twingo 129,3013706 139,4728815 

Renault Zoe 401,3578273 406,6416507 

Seat Ibiza 144,8355495 169,3296295 

Seat Leon 95,57633318 108,7721484 

Seat Mii 46,60770965 63,78899198 

Skoda Citigo 175,7082923 195,6233354 

Skoda Fabia 83,09729222 96,70076371 

Skoda Octavia 212,2143555 243,3544076 

Skoda Rapid 83,37601689 83,89370804 

Skoda Superb 41,28479549 60,27132111 

Smart Forfour 13,8525922 14,48632093 

Subaru Forester 9,88269043 10,81155433 

Subaru XV 8,427301543 9,218856216 

Suzuki Celerio 91,73179626 99,3679889 

Suzuki Jimny 18,20040934 19,49795901 

Suzuki S-Cross 21,63759477 26,30738373 

Suzuki Swift 112,9540471 132,4769599 

Suzuki Vitara 75,55168797 81,13879815 

Tesla Model S 89,26063429 89,70559339 

Toyota Auris 72,27409799 82,57626574 

Toyota Aygo 208,1712472 232,4095386 

Toyota Prius 15,20323767 15,91503581 

Toyota RAV4 43,94570269 62,93389676 

Toyota Yaris 161,9802464 170,2252983 

Volkswagen Caddy 17,34218543 18,5372676 

Volkswagen Golf 528,8858468 573,0611441 

Volkswagen Golf Sportsvan 38,28487778 38,46050905 
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Volkswagen Passat 65,1451961 71,65901109 

Volkswagen Polo 557,3013742 592,8137664 

Volkswagen Tiguan 160,4805908 196,6107186 

Volkswagen Touran 44,99356297 52,00636283 

Volkswagen Transporter 42,41757802 42,46421192 

Volkswagen Up 285,1771153 301,7969445 

Volvo S60 46,97207642 54,45141659 

Volvo V40 175,3874294 184,906637 

Volvo V60 410,1526685 436,0215503 

Volvo XC60 50,84819903 70,99824166 

Volvo XC90 29,20094844 34,796187 

 


