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Abstract 

Introduction: To date, ischemic stroke (IS) remains to be one of the leading causes of death 

and long-term disability worldwide. Approximately 15 million stroke events occur on yearly 

basis which are associated with nearly 5 million deaths and 5 million cases of permanent 

disability worldwide. Rapid diagnosis and adequate management are crucial due to the 

narrow therapeutic time window. At this time, due to generally available diagnostic 

neuroimaging, diagnosing IS is most of the time straightforward. In cases where imaging 

resources and/or medical expertise is limited, a blood-based biomarker diagnostic panel 

would be valuable. The goal of this master dissertation is to analyse which biomarker(s) per 

group, could differentiate ischemic stroke patients from healthy controls.  

Methodology: A systematic literature research was conducted, searching all publications on 

blood biomarkers for IS diagnosis. In total 71 studies met the inclusion criteria for this review: 

7 studies on gene expression levels, 25 on miRNA expression levels, 33 on protein 

expression levels and 6 on metabolite expression levels. A meta-analysis was conducted on 

the protein subgroup using Review Manager 5.3. software. When studies did not report mean 

and standard deviation (SD) of protein biomarkers concentration the formulas of Wan et al 

and Hozo et al were used to make an estimate of the mean and SD. All data is reported as 

forest plots. The data yielded on other biomarker groups did not allow for meta-analysis.  

Results: In the gene subgroup matrix-metalloproteinase-9 and S100A12 seem to have the 

most potential for differentiating IS from healthy controls. These were the only genes 

reported to be consistently upregulated between IS patients and healthy controls in 3 

separate studies. In the miRNA subgroup miRNA-16, miRNA-30, miRNA-126 and miRNA-

221 seemed to a suitable potential biomarker. In the protein subgroup TNF-α, fibrinogen and 

folic acid were all reported in more than one study and had I² values of < 40 %, indicating 

these have the most potential. In the metabolite subgroup glycine and proline were the only 

biomarkers altered significantly, indicating these could be a potential candidate in this 

category.  

Conclusion: A simple blood test that could diagnose patients with IS would have the potential 

to significantly shorten the time-to-needle, especially in cases of remaining diagnostic 

uncertainty. However, considering the many limitations of this systematic review, we still are 

far away from a biomarker/biomarker panel for IS diagnosis would be available. More studies 

are needed with larger subject groups and lifelike control groups. Furthermore, a consensus 

needs to be established for a standardized detecting method for gene, miRNA and metabolite 

levels before introduction into clinical practice can occur.   
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Nederlandse samenvatting 

Introductie: Tot op heden blijft een ischemische beroerte (IB) één van de belangrijkste 

doodsoorzaken en oorzaak van langdurige invaliditeit. Ongeveer 15 miljoen beroertes doen 

zich voor per jaar die geassocieerd zijn met 5 miljoen doden en 5 miljoen gevallen van 

langdurige invaliditeit. Snelle diagnose en behandeling zijn van cruciaal belang door het 

nauwe therapeutische venster. Tegenwoordig is IB diagnose, met dank aan de 

wijdverspreide neurologische beeldvorming, meestal eenvoudig. In gevallen waar 

neurologische beeldvorming zijn gelimiteerd, of medische expertise beperkt is, kan een in 

bloed afgenomen biomarker diagnostisch panel een meerwaarde zijn. Het doel van deze 

master thesis is om te analyseren welke biomerker, per categorie, het best IB patiënten van 

gezonde controles kan onderscheiden.  

Methodologie: Een systematische literatuurstudie werd verricht om alle publicaties over 

bloed biomarkers voor IB diagnose te vinden. In totaal voldeden 71 studies aan de inclusie 

criteria voor deze review: 7 studies over gen expressie levels, 25 over miRNA expressie 

levels, 33 over proteïne expressie levels en 6 over metaboliet expressie levels. Een meta-

analyse werd uitgevoerd op de proteïne subgroep met gebruik van Review Manager 5.3. 

software. Wanneer studies hun concentraties niet uitdrukten als gemiddelde en standaard 

deviatie (SD) van de proteïne biomerker werden de formules van Wan et al en Hozo et al 

toegepast om een schatting te maken van het gemiddelde en de SD. Alle resultaten zijn 

weergegeven in forest plots. De data uit de andere groepen was niet voldoende om een 

meta-analyse op uit te voeren.  

Resultaten: In de gen subgroep lijken metalloproteinase-9 en S100A12 het meeste 

potentiaal te hebben om IB van gezonde controles te differentiëren. In de miRNA subgroep 

lijken miRNA-16 en miRNA-30, miRNA-126 en miRNA-221 het meeste potentieel te tonen. In 

de proteïne subgroep waren TNF-α, fibrinogeen en foliumzuur allemaal gerapporteerd in 

meer dan 1 studie en hadden I² waarden van < 40%, dit indiceert dat deze potentiële 

biomarkers zijn. In de metaboliet subgroep waren glycine en proline de enige biomarkers die 

significant afwijkend waren en zouden potentiële kandidaten zijn in deze categorie.  

Conclusie: Een simpele bloed test dat patiënten met een IB kan diagnosticeren heeft het 

potentieel om de “time-to-needle” significant te verkorten, vooral in gevallen waar er 

diagnostische onzekerheid is of wanneer minder ervaren medisch personeel de diagnose 

moeten stellen. Echter, rekening houdend met de vele beperkingen van deze systematische 

review, is er nog steeds een lange weg te gaan totdat een biomerker panel voor IB diagnose 

wijdverspreid beschikbaar zal zijn. Meer studies moeten uitgevoerd worden met grotere 

patiëntengroepen en levensechte controle groepen. Verder moet een consensus worden 

bereikt over een gestandaardiseerde detectiemethode voor gen-, miRNA- en 

metabolietniveaus vooraleer een introductie in de klinische praktijk kan plaatsvinden.  
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1. Introduction 

1.1. Definition 

Stroke is defined as a “neurological deficit attributed to an acute focal injury of the central 

nervous system by a vascular cause”(2). Several types of stroke exist, depending on their 

etiology. Stroke can be divided into two large subgroups, ischemic and haemorrhagic strokes 

(2, 3). Ischemic stroke (IS) accounts for approximately 87% of all stroke incidents, while 

haemorrhagic stroke accounts for the remaining 13% (4). Ischemic stroke occurs when flow in 

a vessel is compromised by atherosclerotic plaques on which thrombi form. Thrombi may also 

be produced elsewhere (for example, in the atria in patients with atrial fibrillation) and pass to 

the brain as emboli where they then lodge and interrupt the blood flow. Haemorrhagic stroke 

occurs when a cerebral artery or arteriole ruptures, sometimes but not always at the site of a 

small aneurysm (3). Based on where the blood vessel erupts, two kinds of haemorrhagic stroke 

can be differentiated: intracerebral haemorrhage (ICH) and subarachnoid haemorrhage (SAH). 

Haemorrhagic stroke can be further divided into different subtypes, based on the place where 

the bleeding occurs: intracerebral haemorrhage (ICH) and subarachnoid haemorrhage (SAH). 

The definitions given to the different kinds of stroke are as following:  

Definition of ischemic stroke: “An episode of neurological dysfunction caused by focal 

cerebral, spinal, or retinal infarction” (2). 

Definition of haemorrhagic stroke caused by intracerebral haemorrhage: “Rapidly 

developing clinical signs of neurological dysfunction attributable to a focal collection of blood 

within the brain parenchyma or ventricular system that is not caused by trauma” (2).     

Definition of haemorrhagic stroke caused by subarachnoid haemorrhage: “Rapidly 

developing signs of neurological dysfunction and/or headache because of bleeding into the 

subarachnoid space (the space between the arachnoid membrane and the pia mater of the 

brain or spinal cord), which is not caused by trauma” (2). 

 

These definitions are widely accepted and approved by the American Heart Association 

Science Advisory and Coordinating Committee and are being used by clinicians globally (2).  

 

Furthermore, in a clinical setting a stroke must be differentiated from a transient ischemic 

attack (TIA) and stroke mimics such as seizures, syncopes, brain tumours and intoxication (5). 

TIA’s are brief episodes of neurological dysfunction resulting from focal cerebral ischemia 

without permanent cerebral infarction. Historically, symptoms could last up to 24 hours after 

symptom onset and it would still be qualified as a TIA. Recent studies however have 

demonstrated that this threshold was too long. 30%-50% percent of classically defined TIA’s 
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show brain injury on diffusion-weighted magnetic resonance imaging (MRI) (6). Therefore, 

alternative definitions have been suggested that did not include the 24 hours time limit (7). 

1.2. Prevalence and incidence 

To this date, IS remains to be one of the leading causes of death and long-term disability 

worldwide. Approximately 15 million stroke events occur, per year which are associated with 

nearly 5 million deaths and 5 million cases of permanent disability worldwide (8). Case fatality 

rates after all stroke are about 15% at 1 month, 25% at 1 year and 50% at 5 years (9, 10). 

Based on recently published studies, the age-standardized (to European standard population) 

incidence of stroke in Europe at the beginning of the 21st century ranged from 95 to 290 / 

100.000 per year. A comparison of several studies indicated an East-West and North-South 

gradient, with higher incidence rates in eastern countries and lower rates in southern countries. 

These geographical variations could be related to environmental or genetic factors. 

Furthermore, incidence rates were 1,2 to 2 times higher in men than in women in all European 

countries. This can probably be attributed to the discrepancy in cardiovascular risk profile 

between men and women (9).   

According to projection studies conducted by the world health organisation (WHO), the future 

doesn’t look very brightly. Due to the current demographic shift in population (life expectancy 

keeps on increasing) the incidence of stroke will keep on rising, as the incidence of stroke is 

closely related to age. The absolute number of patients who will suffer a stroke each year will 

inevitably continue to rise over the next decades (9). Currently, the proportion of the population 

aged 65+ accounts for 20% of the total population. By 2050 the elderly will account for 35% of 

the population (10). 

 

1.3. Risk factors  

Risk factors for ischemic stroke can be divided into two groups. Risk factors are either 

modifiable, something can be done about the risk for stroke occurrence, or non-modifiable, the 

patient can’t change anything about it. 

 

1.3.1. Non-modifiable risk factors 

Non-modifiable risk factors for ischemic stroke are relatively well known, they include age, 

family history, personal history, sex and ethnicity. After the age of 55, the risk of suffering from 

a stroke more than doubles every decade (11, 12). Stroke risk also increases if a relative has 

been diagnosed with stroke at an early age and of course, if the patient already has suffered 

from an earlier stroke, acute myocardial infarction or a TIA, a recurrent stroke becomes more 

likely. Africans are twice as likely to die from a stroke as Caucasian people. This can be 
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explained by the higher incidence of modifiable risk factors in the African American population 

(11). 

   

1.3.2. Modifiable risk factors 

Modifiable risk factors can be further divided into lifestyle risk factors and medical risk factors. 

Lifestyle risk factors include: an unhealthy diet, sedimentary lifestyle, tobacco and alcohol 

abuse.   

While medical risk factors include: High blood pressure, atrial fibrillation, high cholesterol, 

diabetes, carotid stenosis and circulation problems. Medical risk factors are directly affected 

by lifestyle risk factors. For instance, if a person chooses to eat healthier, and stop smoking, 

this will have a positive effect on his high cholesterol and blood pressure (11). 

 

1.4. Acute stroke diagnosis and treatment 

This chapter of the master dissertation will discuss how to handle a patient with stroke like 

symptoms in the emergency department (ED). Diagnosing an ischemic stroke is a timely matter 

due to the narrow therapeutic window of 4,5 hours after symptom onset. However, 

misdiagnosing a patient could have tremendous consequences as well (13). First, we will 

discuss the initial assessment and differential diagnosis that needs to be considered when a 

patient with stroke like symptoms presents in the emergency department. Secondly, we will 

discuss an ideal patient flow. And lastly, we’ll discuss the management and therapy of the 

patient.    

  

1.4.1. Initial assessment and differential diagnosis 

Initial assessment of acute stroke patients should have two major objectives: first, other causes 

of stroke like symptoms must be ruled out, so called stroke mimics. Secondly, an estimate of 

the initial stroke onset time needs to be made. This is particularly important as the therapeutic 

window for ischemic stroke therapy is 4,5 hours (13, 14). To be sure both of these objectives 

are met, stroke evaluation has 3 important components: anamnesis, clinical assessment and 

thirdly, laboratory and imaging studies. Laboratory and imaging studies remain the most 

important diagnostic tool in stroke diagnosis. When an ischemic stroke is suspected, several 

laboratory and imaging studies are conducted routinely in the ED (13). These laboratory tests 

can be found in appendix 1. To this date, noncontrast computed tomography (NCCT) remains 

the cornerstone for suspected stroke patients in the acute setting. NCCT will rule out 

haemorrhagic stroke and lesions that might mimic acute ischemic stroke such as tumours. The 

availability and speed make it very useful in the initial evaluation of suspected stroke patients. 
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Nowadays newer generation multi-slice CT scanners are becoming more readily available, 

even in peripherally located hospitals. With the use of a rapid injection of intravenous contrast 

and thin-section helical CT images in the arterial phase, clear images of the cerebral blood 

vessels can be obtained. With this technique, areas of stenosis or occlusion can be visualised, 

and aneurysms or other vascular abnormalities can be diagnosed. Conventional brain MRI is 

impractical in the acute phase of stroke. The test can take up to one hour to complete, which 

is far too long if you take into consideration that intravenous recombinant tissue plasminogen 

activator (IV-RTPA) is only considered an effective treatment in the first 4,5 hours after stroke 

onset. MR diffusion testing however can be conducted within a 10-minute time span and has 

a better stroke detection rate than standard MRI. It can detect ischemic changes within minutes 

of stroke onset. A skilled neuroradiologist is often able to predict the progression rate and 

resolution of strokes with the help of MRI diffusion (15). 

 

1.4.2. Overview on ideal patient flow 

The American stroke association (ASA) has released guidelines on the ideal patient timeline 

in the different stages of diagnosing acute stroke patients (13, 14): 

 

1.4.3. Initial management 

The first few hours after stroke symptom onset are of extreme importance. The goal at this 

time is to reduce infarct volume and to prevent disability or death (13). The focus of the therapy 

should be administering IV-RTPA in the narrow therapeutic time window, as neurological 

outcome may be improved by early recanalization therapy.  This is why neurologists and other 

emergency physicians came up with the catchphrase “Time is brain”, to inform the general 

population about the importance of acting fast (13, 16, 17). Unfortunately, only a small part of 

IS patients receive IV-RTPA therapy. Most patients with an AIS present later than 4,5 hours 

after symptom onset in the ED, or some patients have absolute contraindications for IV-RTPA. 

All these problems led to the development of multimodal intra-arterial thrombolysis (IAT) 

Assessment by the emergency 

department doctor 

Within 10 minutes after arrival 

Assessment by the stroke team Within 15 minutes 

Performance of CT scan/ MRI Within 25 min 

Interpretation of CT brain scan within 45 

min 

Within 45 min 

Start of thrombolytic therapy  Within 60 min 

Admission to stroke unit Within 3 hours 
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therapies. These IAT therapies include: chemical IAT, combined IV/IAT therapy and 

endovascular mechanical IAT (mechanical clot retrievers, thromboaspiration, stenting or 

balloon angioplasty) (13, 18-20). Figure 1 shows a complete algorithm for handling ischemic 

strokes in the ED.  

 

Figure 1: Algorithm for initial diagnosis and therapy for AIS (1) 
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1.4.4. Limitations of the current stroke management  

There are still several shortcomings in the current stroke care. For instance, patient transfer to 

the nearest hospital with adequate neuroimaging facilities can be rather time consuming. Two 

solutions have been suggested for this problem: Using mobile stroke units (MSU) to transport 

the patient (21) or initiating treatment without having a certain diagnosis (22). Administering 

IV-RTPA to a patient with an uncertain diagnosis is unethical. An ICH is an absolute 

contraindication for IV-RTPA, as this will only worsen the outcome.  

A second issue in the current approach to stroke diagnosis, is the fact that NCCT can only be 

used to rule out haemorrhagic stroke, but not diagnose IS. NCCT is unable to visualize 

vascular occlusion and the early signs of cerebral ischemia (23). MRI is a worthy alternative to 

NCCT. Unfortunately, MRI imaging isn’t widely available and differentiating ischemic stroke 

from certain stroke mimics may not be possible: other neurological diseases such as 

Creutzfeldt-Jakob disease or progressive multifocal leukodystrophy may also show high-

intensity lesions on diffuse weighted imaging MRI (DWI-MRI), making it impossible to diagnose 

an ischemic stroke (15, 24). These limitations suggest the need for a diagnostic alternative for 

ischemic stroke. 

 

1.5. Biomarkers 

The term biomarker can be defined as: “A physiological characteristic or substance that is 

objectively measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention“ (25, 26). This master 

dissertation focuses specifically on biomarkers for diagnosis of IS. Biomarkers are currently 

already being used in the diagnosis of other diseases, for example: human choriogonadotropin 

can diagnose a pregnancy and cardiac troponins can detect an acute myocardial infarction 

(27). Many hoped the implementation of troponin would lead the way for a potential stroke 

biomarker (28), however the brain is a much more complex organ than the heart muscle. 

Troponin release is directly correlated to the death of myocytes, but the brain consists of 

multiple kinds of tissue and has a far more complex anatomy than the heart (29). Also, in the 

differential diagnosis of patients presenting with symptoms of acute myocardial infarction, the 

others causes are mostly noncardiac conditions (musculoskeletal cause, gastro-intestinal 

reflux disease, psychological (30). This makes a rise in sudden serum troponins more likely to 

be caused by a myocardial infarction (27).  

Biomarkers aren’t only blood-borne substances. Other categories of stroke biomarkers include 

physical markers, imaging markers, histological markers, electrophysiological markers and 

neuronal markers. For instance, hypertension could be a potential physical biomarker to 
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include in a biomarker panel for stroke diagnosis (26). However, in this master dissertation we 

limited our search to blood-borne markers to include in our analysis.  

For a biomarker to be implemented in a clinical setting, it needs to fulfil a few criteria: it has to 

have an adequate sensitivity and specificity for diagnosing ischemic stroke, it needs to be cost 

effective, it needs to have an early and stable release, predictable clearance and measurement 

of the biomarker must be fast enough to be implemented in the narrow therapeutic time window 

(31-33). 

In the past, numerous substances have been investigated as possible diagnostic biomarkers 

for stroke. The earliest studies focused on single specific proteins, because these proteins 

have a known role in stroke pathophysiology. However, when the human genome was 

sequenced back in 2003, new diagnostic screening tests became available. These tests 

allowed a large quantity of molecules to be investigated at once instead of single specific 

markers (31, 34). Suddenly research is not hypothesis-driven, it becomes hypothesis-

generating (35). The most important tests are mass spectrometry (MS), microarray and 

polymerase chain reactions (PCR). MS analyses the masses within a tissue sample. By 

ionizing a sample, the tissue breaks down in charged fragments. These fragments are then 

ordered by their mass-to-charge ratio. Then, by accessing a database, these fragments can 

be identified by correlating them to known masses (36-38). Microarray can detect alterations 

in DNA sequences. The most common alterations in DNA sequence are single nucleotide 

polymorphisms (SNPs). SNPs can be the cause of genetic disorders and some of these 

disorders can cause a stroke (39). These advancements in detecting methods made it 

possible to investigate other compounds than proteins, such as ribonucleic acid (RNA), 

miRNA and metabolites. 

 

1.5.1. Genes 

Genes studies focuse on the total amount of RNA in a cell or organism. This includes protein-

coding, noncoding, alternatively spliced, polymorphic, sense, antisense and edited RNA 

transcripts. Concentration levels of the RNA transcripts reflect the actively expressed genes at 

that moment (39). Meta-analysis studies on gene expression profiles being able to diagnose 

different forms of cancer have already been published (40, 41). RNA levels are earlier 

measurable in blood than proteins. Minutes after the vessel occluded RNA expression levels 

are already increased (42). This makes gene expression levels potentially interesting 

biomarkers for stroke diagnosis as IS has such a narrow therapeutic window.  

 

1.5.2. MiRNA 

MiRNA are a specific subgroup of RNA molecules. Most of them are approximately 22 

nucleotides long, single-stranded strings. MiRNA strings play a silencing role in the regulation 
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of gene expression, they do not code for protein synthesis. Presumably, they regulate at least 

one-third of the human genome expression and play important roles in various physiologic 

processes, such as cell differentiation, development, metabolism and apoptosis. Literature 

suggests that 70 % of MiRNA are expressed in the brain, but only a small list of them is brain-

specific (43). .Several miRNA have already been identified as potential biomarkers for some 

forms of cancer (44-46). Numerous studies have been conducted to determine the value of 

miRNA as biomarkers for IS (47). 

 

1.5.3. Proteins 

Proteins are the most investigated group of molecules as potential biomarkers. As explained 

in section 1.4., stroke pathophysiology is well known on a protein level. The earliest studies for 

potential biomarkers were focused on single specific proteins, chosen because of their known 

role in stroke pathophysiology. The so called hypothesis-driven research method. These 

markers can be subdivided into brain specific markers, and non-brain specific markers. Brain 

specific markers include proteins involved in glial or neural cell degradation. Non-specific 

markers include hemostatic markers, (pro or anti)-inflammatory markers, markers of tissue 

destruction or indicators of oxidative stress  (26).  

With the advent of new diagnostic screening tests, a lot of proteins could be sequenced at 

once. The most important tests for protein testing include enzyme linked immune sorbent 

assays (ELISA), aptamer-based assays, MS, 2D gel electrophoresis (48).  

 

1.5.4. Metabolites 

Metabolites are substances that are intermediate- or end products of metabolic reactions. 

These substances are generally divided in hydrophilic compounds (sugars, carbohydrates, 

phosphorylated compounds, organic acids and amino acids) and hydrophobic compounds 

(fatty acids and membrane lipids). One of the attractive features of metabolite profiling in 

humans is the relatively small number of human metabolites. The human metabolome consists 

of approximately 5000 endogenous metabolites and up to 40000 exogenous (food, drugs, 

environmental contaminants, food additives, toxins and xenobiotics) (49). To put that into 

perspective, the human genome consists of 25000 genes and the proteome even consists of 

over 1 000 000 endogenous proteins (50). 

1.5.5. Biomarker panel 

At present, there is no single biomarker which clinically is useful as diagnostic test for IS. This  

is probably because of the heterogeneity of IS etiology and the involvement of several 

pathways in the pathophysiology (31). In addition, many biomarkers associated with ischemia 

are not stroke specific, and have been associated with other brain injuries or stroke mimics 
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(51). Therefore, a panel of biomarkers, that each represent a different pathophysiological 

pathway could be useful in stroke diagnosis (31). These biomarkers could provide information 

on atherosclerosis, thrombus formation, inflammation, oxidative stress, endothelial injury, 

blood brain barrier (BBB) disruption and cerebral ischemia (51). Earlier research on possible 

biomarker panels have shown improved sensitivity and specificity over single biomarkers.   

 

1.6. Essential steps in IS pathophysiology and potential sources of biomarkers 

The ischemic stroke pathophysiologic process encompasses a complex series of 

physiological, biochemical, molecular and genetic mechanisms (12). In this section of the 

master dissertation, certain essential steps in IS pathophysiology will be discussed and 

potential sources of biomarkers will be pointed out.  

 

1.6.1. Markers of neuronal cell damage 

The first step in ischemic stroke pathophysiology is a sudden drop in cerebral blood flow (CBF). 

In physiologic circumstances the brain receives 20% of the cardiac output at rest. Even a short 

period of ischemia can trigger a complex cascade that may result in permanent cerebral 

damage (33). Neurons deprived of oxygen and energy start showing signs of structural injury 

after only 2 minutes (52).  Possible biomarkers for IS could therefore be cytoplasmatic 

molecules that were able to enter the bloodstream through cracks in the neuronal membranes. 

A well-researched example is neuron specific enolase (NSE). During physiological 

circumstances, NSE is a cytoplasmatic molecule involved with regulating intraneuronal 

chloride levels during neural activity. However, during neuronal hypoxia, NSE is released 

extracellular, making it detectable in the bloodstream and a possible biomarker for neuronal 

cell membrane damage (53). Several MiRNAs have also been linked to neuronal cell death. 

By stimulating key regulators of apoptosis after DNA damage, MiRNAs are able to decrease 

(or increase in some cases) ischemic neuronal apoptosis (54).  

 

1.6.2. Markers of excitotoxicity 

Excitotoxicity is considered to be an essential step for neuronal cell death in stroke. It can be 

defined as cell death due to toxic actions of excitatory amino acids, primarily glutamate. 

Although cytotoxic effects of glutamate are mediated through all kinds of glutamate receptors, 

the N-methyl-d-aspartate (NMDA) glutamate receptors are believed to be the key mediators of 

cell death during an ischemic insult (55, 56). Activation of these receptors causes an influx of 

Ca2+ ions into the neuronal cells, causing even more depolarization. Cell depolarization causes 

voltage-dependent Ca2+ channels to become activated and even more intracellular Ca2+ and 

glutamate are being released, closing the positive feedback loop. Through the mechanisms of 
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osmosis, water molecules tend to follow the ions into the neuronal cells through aquaporins, 

causing swelling of all the cellular elements of the brain. This phenomenon is referred to as 

cytotoxic edema (57). Once too much Ca2+ ions accumulate inside the cells, certain proteases, 

lipases, phosphatases and endonucleases are overstimulated. These enzymes cause 

extensive cellular damage: cell membrane disruption, DNA fragmentation, mitochondrial 

dysfunction and oxidative stress (56, 57). MiRNA have been discovered that can influence this 

process. Previous rat model studies showed that MiRNA-125b targets the NR2A subunit of the 

NMDA receptors, and negatively regulates its expression level (58). Furthermore, metabolites 

of glutamate may be potential peripheral biomarkers for excitoxicity during stroke. Glutamate 

itself cannot easily cross the BB and affect plasma levels. Its metabolites however, such as 

proline and pyroglutamate, can cross the BBB freely. Studies have already been published 

that found significant levels of these metabolites in serum samples (59).  

 

1.6.3. Markers of oxidative stress 

Oxidative damage has been shown to be a fundamental mechanism of brain and neuronal 

damage during episodes of ischemia (60).  

It occurs when the critical balance between free radical production and endogenous 

scavenging capacity of cellular antioxidants is disrupted (33, 61). In physiological 

circumstances, neuronal cells are already prone to oxidative stress due to their high metabolic 

activity and oxygen consumption (56). In hypoxic circumstances high levels of reactive oxygen 

species (ROS) are produced  due to excitoxicity as explained in section 1.6.2, 

extramitochondrial enzymes such as NADPH and metabolism of arachidonic acid (56, 62). The 

most important ROS in ischemic stroke pathophysiology are the superoxide anion (O2
-) and 

the peroxynitrite radical (56, 57, 61). Once these compounds are produced, they promote lipid 

peroxidation, DNA damage, protein nitration and oxidation, depletion of antioxidant reserves 

and breakdown of the BBB (63). Studies have shown that genes encoding for antioxidant 

enzymes are upregulated at the gene level rodent brains under ischemic circumstances (64). 

Peroxidation of arachidonic acid, abundant in brain tissue, lead to the formation of F2-

isoprostanes (F2Ips) (65). 

During an ischemic event, glucose metabolism shifts into the anaerobic pathway. This should 

lead to an increased level hypoxanthine, pyruvate and uric acid (63).  

 

1.6.4. Markers of inflammation 

The inflammatory cascade starts almost immediately after stroke onset. A few minutes after 

the occlusion, the acute local damage is detected by pattern-recognition receptors (PRR). In 

response to these pathogen-associated molecular patterns (PAMPs), these receptors send 
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out host-derived danger signals, so called damage-associated molecular patterns (DAMPs). 

Damp signals activate the immune system element in various neuronal cells: vasoactive 

mediators, proteases, tumor necrosis factor alpha (TNF-α) and proinflammatory cytokines (i.e. 

IL-1, IL-6) are being released (66). Microglia transform into phagocytes and again release TNF-

α, interleukin-1β (IL-1β) and IL-6 Astrocytes also start secreting cytokines, chemokines and 

NO (67). These pro-inflammatory signals are key mediators in the BBB disruption. Beside 

matrix metalloproteinase-9 (MMP-9) and oxidative stress, the BBB is also disrupted by 

adhesion molecules, which are regulated by the proinflammatory cytokines. 3 different kinds 

of adhesion molecule families play a role in BBB dysfunction: selectins, the immunoglobulin 

superfamily and integrins (57). Subsequently, activated neutrophils, lymphocytes or 

monocytes transmigrate into the brain parenchyma. (68).  

At first, inflammation seems a negative thing due to neuronal death and BBB damage but at 

the same time, inflammation preserves brain tissue by auto limiting the pathological process 

and adapting the brain tissue after the insult (66).   

 

1.6.5. Markers of BBB dysfunction 

One of the hallmarks of ischemic stroke pathology is breakdown of the BBB. In physiological 

circumstances the BBB plays a vital role in maintaining the homeostatic environment of the 

brain. Under pathological conditions, the BBB can be disrupted. When the permeability of the 

BBB is increased, blood components can leak into the brain parenchyma (57, 69, 70). Matrix 

metalloproteinases, especially MMP-9, are activated by oxidative stress. These proteinases 

are capable of cleaving the tight junctions in the BBB (57, 68, 69).  

A second way the BBB permeability is increased is by integrin breakdown. Integrins are 

transmembrane glycoprotein receptors that interact with the basal membrane of the BBB. 

During ischemic stroke integrins are rapidly degraded, causing BBB dysfunction (68). The 

consequence of this dysfunction is vasogenic edema. The increased permeability allows high 

molecular weight molecules to enter the brain parenchyma, passively followed by water due 

to osmosis. Vasogenic edema can cause secondary damage through increased intracranial 

pressure (57, 69). The BBB breakdown also seems to be biphasic. The first breakdown, 

described above, occurs within the first hours after stroke onset. 24 – 72 hours after the insult, 

a second breakdown occurs. The inflammatory response to the stroke leads to the induction 

of matrix metalloproteinase-3 (MMP-3) and MMP-9 in neutrophils that transmigrated through 

the BBB (3, 57, 69).  

 

1.7. Goal of this master dissertation 

Up to now, stroke remains to be one of the leading causes of death and long-term disability 

worldwide. Rapid diagnosis and management decisions are crucial due to the narrow 
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therapeutic time window. At this time, due to generally available diagnostic neuroimaging, 

diagnosing IS is most of the time straightforward. In occasions where imaging resources are 

limited however, blood-based biomarkers for the diagnosis of stroke may be of value. Also, in 

prehospital settings a reliable blood-based test could be helpful to facilitate early diagnosis and 

triage patients appropriately, since anamnesis and physical examination alone cannot provide 

a reliable diagnosis. The goal of this master dissertation is to give an answer to the following 

research question:  

 

“Which biomarker(s) per group, show the most promise to differentiate IS patients from healthy 

controls?“  

Biomarker groups being genes, miRNA, proteins and metabolites. 
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2. Methodology 

2.1. Search strategy 

A systematic literature search was conducted from 01/01/2000 up to 31/07/2020. Several 

search strings were prepared in advance and conducted in four well-known medical 

databases. All search strings consisted of a combination of medical subject headings (MeSH) 

terms and keywords with appropriate Boolean operators. Medline, EMBASE, google scholar 

and Web of science were searched. In part 7. Supplementary data, all performed searches are 

described with their total yield.  

This first compilation of articles was purely based on title and abstract of the article, no articles 

were read in full at this moment. This preliminary search yielded in total 501 articles: Medline 

(n = 236), Embase (n = 42), Web of Science (n = 122), Google scholar (n = 101). After 

eliminating all doubles, 302 articles were read in full to check for eligibility for inclusion in the 

systematic review. The references of all papers were checked for potential studies that may 

have been eligible for inclusion as well, the so-called snowball method. In total 71 studies met 

the inclusion criteria and could be included in the systematic review.  

 

2.2. Inclusion criteria 

Studies were eligible to be included into this meta-analysis when they met following inclusion 

criteria: 

1. They had, at least a part, case-control design. Several studies had a section case-

control and a section case-mimics. These are included in this review, as long as data 

was extractable from the case-control section. 

2. Study population consisted of adult humans and not animals. 

3. Control population consisted of healthy individuals.  

4. Blood samples needed to be drawn within 24 hours of symptom onset. When blood was 

drawn at several timepoints, the results of the blood draws closest to 24 hours after 

symptom onset were chosen for analysis.  

5. Biomarkers needed to be used for diagnosis of ischemic stroke.  

When these inclusion criteria were applied to the 302 found papers, 71 could be used in the 

systematic review. 
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Figure 2: Prisma flowchart on article selection. 

 

Of these 71, 33 solely reported protein biomarker levels and therefore could be directly 

included in the protein meta-analysis. The remaining 38 studies mainly focused on gene, 

MiRNA or metabolite levels. 13 of these 38 studies also reported several proteins in their study. 

These protein markers were not the main focus of the study, they did report concentration 

levels of them rather as patient characteristics instead of actual potential biomarkers. 

Incorporating these 13 studies in the protein meta-analysis meant that 46 studies could be 

included.  
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2.3. Data extraction 

 

Once all studies that met the inclusion criteria had been identified, standardized forms were 

used to extract data. Each kind of biomarker had its specific form. Out of all studies following 

characteristics were extracted: Biomarker concentration levels, country of origin, sample size, 

method of ischemic stroke diagnosis, definition of healthy controls, exact time of blood draw, 

way of detecting biomarker levels and if applicable normalization/housekeeping genes. When 

certain data could not be extracted, or was only vaguely described, an attempt was made to 

contact the authors for clarification. Unfortunately, not all authors could be reached  or even 

answered our request and therefore and certain data are missing in the database. 

 

2.4. Quality assessment 

 

Quality of the included studies was assessed using the Newcastle-Ottowa Scale (NOS) for 

quality assessment. The NOS is specifically designed for assessing nonrandomized case-

control studies for systematic review/ meta-analysis inclusion. Its validity has been established 

based on a critical review of the items by several experts in the field who evaluated its clarity 

and completeness for the specific task of assessing the quality of studies to be used in a 

systematic review (71).  It evaluates three quality parameters: selection, comparability of 

patients and controls, and exposure/outcome. These parameters are evaluated on the basis 

of 8 questions. Each question is scored from one point. In normal circumstances, the maximum 

for each study is 9 points, however we choose not to include the question “Is the non-response 

rate equal for both groups?” as this is not applicable for our included studies. Therefore, the 

maximum total points a study can acquire is 8. A study that acquires less than 5 points is 

qualified as a study with high risk of bias (72). The form that was used to examine each study 

and the individual scores can be viewed in section 7.5 of this master dissertation.  

 

2.5. Statistical analysis 

 

Proteins were the only category of biomarker which had sufficient data for performing a meta-

analysis. All analyses were carried out by using Review Manager 5.3 (The Nordic Cochrane 

Centre, The Cochrane Collaboration, London, UK). All data was extracted using a 

predetermined form. Biomarker concentrations levels were treated as continuous outcomes. 

When biomarker levels were presented as medians and interquartile range, the formulas 

reported by Wan et al (73) were used to make an estimate of the mean and standard deviation 

(SD). When data was presented as median and range, the formulas reported by Hozo et al 

(74) were used to make an estimate of the mean and SD. Standard error of the mean was 
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converted to SD data with the help of the Revman calculator function. All biomarkers were 

converted to their SI-units through an online calculator. Because of this, the mean difference 

could be calculated as all studies use the same outcome measure for one biomarker, as well 

as a 95% confidence interval (CI). All analyses are depicted as forest plots, see figure 3 to 8. 

The x-axis forms the effect scale, plotted on the bottom of the plot. Each row represents a 

study’s effect size estimate in the form of a cube and the 95% CI. When the CI line does not 

cross the vertical line of no effect, the results can be considered as significant (75). The 95%CI 

generated by the combined studies is represented as a black diamond shape. The same 

principle applies here as in the individual studies. If the edges of the diamond do not cross the 

vertical line of no effect, the result can be considered as significant. For estimating the extent 

of heterogeneity between studies, the I² value was calculated. I² is a measure for the proportion 

of observed variance that reflects real differences in effect size (76). An I² value less of 40% is 

considered as an index for low heterogeneity. 40%-60% values are considered as moderate 

heterogeneity between studies and values over 60% represent a substantial amount of 

heterogeneity, according to the “Cochrane collaboration”. The protein biomarkers are further 

classified in different subgroups based on their function. 6 different groups could be identified: 

metabolic, brain specific, endocrine, inflammatory, hemostatic and other protein groups. 
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3. Results 

3.1. Genes 

3.1.1 Study characteristics of studies with main focus on gene expression  

Study characteristics of gene expression are summarized in table 1 below. The publication 

years ranged from 2006 to 2019. 4 studies were conducted in the USA (77-80), one in Europe 

(81) and two in Asia (82, 83). In total, gene expression profiles were examined from 203 IS 

patients and 131 healthy controls. Several different sorts of detecting and normalization 

methods have been used to determine the gene expression level: Microarrays, quantitative 

polymerase chain reaction (qPCR) and reverse transcriptase polymerase chain reaction (RT-

PCR) all have different ways of detecting gene levels. Stamova et al (79) tested the same 

genes discovered by Tang et al (80) in an effort to confirm their findings and improve the power 

of the research. They increased the cohort size of 15 AIS patients to 70 in which they 

determined the expression levels of the following genes: Hox 1.11, CKAP4, S100A9, MMP9, 

S100P, F5, FPR1, S100A12, RNASE2, ARG1,CA4, LY96, SLC16A6, HIST2HAA, ets-2, BCL6, 

PYGL and NPL. 

Stamova et al (79) and Tang et al  (80) were the only studies that drew blood samples at 

different timepoints within 24 hours after symptom onset. Most genes that differentiated AIS 

from HC at 3h after symptom onset, stayed differentially expressed at 24 hours after symptom 

onset.  

Only 1 study showed little risk of bias. All other studies showed significant risk of bias according 

to the modified NOS. The most frequent methodological shortcoming was failure to include 

consecutive stroke patients and community-based control group subjects. Oh  et al (82). was 

the only study to correct for age, gender and stroke risk factors between AIS and HC.  

 

Table 1: Main characteristics of 7 included studies on gene expression levels. 

Author Year Country Sample size Time 

since 

symptom 

onset 

Detecting 

method 

Specimen normalization Quality 

assessment Cases Controls 

Barr et al 

(77) 

 

2012 Maryland, 
USA 

39 24 <24 h Microarray 
qRT-PCR 

 

whole 
blood 

Beta-actin 3 

Grond-

Ginsbach 

et al (81) 

2008 Germany 20 15 <24 h microarray PBMC GC-RMA 4 

O’Connell 

et al (78) 

 

2016 Maryland, 
USA 

39 30 Median 
time 5.3 

h 

Microarray 
qPCR 

whole 
blood 

B2M, PPIB, 
ACTB 

3 

Oh et al 

(82) 

2012 Korea 12 12 <24 h Microarray 
RT-PCR 

whole 
blood 

quartile 
method 
18s rRNA 

6 

Pan et al 

(83)  

2019 China 8 4 4 h qRT-PCR Whole 
blood 

Beta-actin 3 

Stamova 

et al (79) 

2010 California, 

USA 

70 38 <3h, 5h 

and 24h 

microarray whole 

blood 

RMA 

internal-gene 

4 
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Tang et 

al (80) 

2006 California, 

USA 

15 8 <3h, 5h 

and 24h 

microarray whole 

blood 

RMA 

quantile 
method 

3 

Abbreviations: PBMC, peripheral blood mononuclear cells; GC-RMA, genechip robust multiarray averaging; 

B2m, βeta-2 microglobulin; PPIB, Peptidylprolyl Isomerase B; ACTB, actin beta; rRNA: ribosomal RNA; 

RMA, robust multi array averaging 

 

 

3.1.2. Gene expression levels 

The results of the systematic review of gene expression profiles is presented in table 2. 

Genes are ordered alphabetically. Only genes that were significantly differently expressed 

between groups in at least one study are represented. In total 63 genes were reported to be 

significantly up or downregulated. Of these 63 only 12 were reported in 2 different studies 

and 2 (MMP-9 and S100A12) were reported significantly in 3 studies. Relative expression 

ratios differed a lot between studies. No diagnostic accuracy testing was performed on single 

genes,  therefore no ROC, AUC, sensitivity or specificity data could be extracted.  
 

Table 2: Gene expression profile of single genes. 

Genes RER* AUC (95%CI) Sensitivity Specificity Study 

    

ACSL1 2.19    Oh et al (82) 

AKT2 0.93    Pan et al (83) 

ANTXR2 1.2    O’Connell et al (78) 

APLP2 6.31    Grond-Ginsbach et al (81) 

ARG1 3.5    Barr et al (77) 

3.3    Tang et al (80) 

BCL6 5.01    Grond-Ginsbach et al (74) 

2.5    Tang et al (80) 

BIRC1 2.51    Grond-Ginsbach et al (81) 

C19orf59 3.83    Oh et al (82) 

C21orf45 0.16    Grond-Ginsbach et al (81) 

C5orf21 0.251    Grond-Ginsbach et al (81) 

CA4 2.12    Barr et al (77) 

2.3    Tang et al (80) 

CCR7 0.48    Barr et al (77) 

CCRL2 1.03    Pan et al (83) 

CCL3 1.76    Pan et al (83) 

CCL3L3 2.14    Pan et al (83) 

CD151 7.94    Grond-Ginsbach et al (81) 

CD163 3.98    Grond-Ginsbach et al (81) 

1.9    O’Connell et al (78) 

CD36 6.31    Grond-Ginsbach et al (81) 

CKAP4 2.0    Tang et al (80) 

CLC 0.25    Grond-Ginsbach et al (81) 

COL4A4 0.22    Pan et al (83) 

CSPG2 2.09    Barr et al (77) 

2.51    Grond-Ginsbach et al (81) 

CTSZ 1.3    O’Connell et al (78) 

CXCL2 1.48    Pan et al (83) 

CYBB 7.94    Grond-Ginsbach et al (81) 

EGR1 2.03    Pan et al (83) 

EGR2 2.98    Pan et al (83) 

EOMES 0.45    Oh et al (82) 

Ets-2 2.1    Tang et al (80) 

F5 1.99    Grond-Ginsbach et al (81) 

2.0    Tang et al (80) 

FCGR1A 7.94    Grond-Ginsbach et al (81) 

FLJ22662 1.58    Grond-Ginsbach et al (81) 

FPR1 2.1    Tang et al (80) 

GNLY 0.45    Oh et al (82) 

GNG12 2.05    Pan et al (83) 

GRAP 0.71    O’Connell et al (78) 

GUCY1B3 19.95    Grond-Ginsbach et al (81) 

HIST2H2A 1.9    Tang et al (80) 

Hox 1.11 2.4    Tang et al (80) 

ID3 0.63    O’Connell et al (78) 

IL18R1 2.11    Oh et al (82) 

IL18RAP 3.40    Oh et al (82) 

IL1R2 3.21    Oh et al (82) 

IL3RA 1.68    Pan et al (83) 

IQGAP1 2.03    Barr et al (77) 

JUN 1.32    Pan et al (83) 

KIF1B 1.6    O’Connell et al (78) 

LOC642103 2.54    Oh et al (82) 

LTA4H 1.99    Grond-Ginsbach et al (81) 

LY96 1.8    Barr et al (77) 

3.6    Tang et al (80) 

MAL 0.71    O’Connell et al (78) 

MGAM 2.48    Oh et al (82) 

MMP9 2,64    Barr et al (77) 
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3.40    Oh et al (82) 

2.00    Tang et al (80) 

NKG7 2.05    Oh et al (82) 

NPL 5.01    Grond-Ginsbach et al (81) 

2.2    Tang et al (80) 

ORM1 2.27    Barr et al (77) 

PDE4D 0.25    Grond-Ginsbach et al (81) 

PDK4 1.7    O’Connell et al (78) 

PPP2CA 0.72    Pan et al (83) 

PRUNE 5.01    Grond-Ginsbach et al (81) 

PYGL 2.51    Grond-Ginsbach et al (81) 

3.9    Tang et al (80) 

RNALSE2 7.94    Grond-Ginsbach et al (81) 

2.8    Tang et al (80) 

S100A9 1.9    Tang et al (80) 

S100A12 2.35    Barr et al (77) 

2.51    Grond-Ginsbach et al (81) 
2.9    Tang et al (80) 

SIRPA 3.98    Grond-Ginsbach et al (81) 

SLC16A6 1.9    Tang et al (80) 

STK3 1.5    O’Connell et al (78) 

TJP2 7.94    Grond-Ginsbach et al (81) 

TLR2 5.01    Grond-Ginsbach et al (81) 

TRAPPC6 0.20    Grond-Ginsbach et al (81) 

VASP 0.86    Pan et al (83) 

XCL1 2.10    Pan et al (83) 

Abbreviations: RER, relative expression ratio 

*Relative expression ratios are calculated as AIS patients over healthy controls. 

 

MMP-9 was consistently reported as upregulated by Barr et al (77) (Fold change = 2.7), oh et al (82) 

(Fold change = 3.4) and Tang et al (80) (Fold change = 2). Tang et al drew blood at 3h, 5h and 24 

hours after symptom onset. In all 3 data sets, MMP-9 stayed consistently upregulated (fold change 3h 

= 3.2, 5h = 3.7, 24h = 2.7). Quality assessment of these 3 studies showed that only oh et al (82) had a 

low risk of bias according to the NOS (6/8). Tang et al (3/8) and Barr et al (3/8) both showed a large 

risk for possible bias.  

S100A12 also was reported as upregulated by 3 independent studies: Barr et al (Fold change = 2.35), 

Grond-Ginsbach et al (81) (Fold change = 2.51) and Tang et al (80) (Fold change = 2.9). It stayed 

consistently upregulated withing the first 24h at 3h (Fold change = 2.2), 5h (Fold change = 3.1) and 

24h (Fold change = 2.9). Quality assessment of these 3 studies showed that all three had a large risk 

of bias. Tang et al (3/8), Barr et al (3/8) and Grond-Ginsbach et al (4/8) all had scores lower than 5/9.  

Several studies tested gene panels as diagnostic tool. These results are presented in table 3 

below. no cutoff or AUC values were presented, only sensitivity/ specificity was extractable.   

 

Table 3: gene expression profile of gene panels. 

Gene Panel RER* AUC Sensitivity specificity Study 

10 gene panel (NTXR2, 

STK3, PDK4, CD163,MAL, 

GRAP, ID3, CTSZ, KIF1B 

and PLXDC2) 

  92.3% 100% O’Connell et al (78) 

18 gene panel (Hox 1.11, 
CKAP4, S100A9, MMP9, 

S100P, F5, FPR1, 
S100A12, RNASE2, 
ARG1,CA4, LY96, 

SLC16A6, HIST2HAA, ets-
2, BCL6, PYGL and NPL) 

  88.9% 100% Tang et al (80) 

34 gene panel (OSBPL1, 
PHTF1, CKLF, RRAGD, 
CLEC4E, CKLF, FGD4, 

CPEB2, LOC100, 
UBXN2B, ENTPD1, BST1, 

LTB4R, F5, IFRD1, 
KIAA031, CHMP1B, 

MCTP1, VNN3, AMN1, 
LAMP2, FCH02, ZNF608, 

REM2, QKI, RBM25, 
FAR2,ST3GAL, NRNPH, 

GAB1, UBR5,VAPA, 
THBD) 

  87.7% 94.7% Stamova et al (79) 

Abbreviations: RER, relative expression ratio 

*Relative expression ratios are calculated as AIS patients over healthy controls. 
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3.2. MicroRNA 

3.2.1. Study characteristics of studies with main focus on miRNA expression levels 

A summary of the characteristics of the cases and controls included in the 25 studies is 

presented in table 4. The publication years of these records ranged from 2013 to 2020. In total, 

miRNA expression levels were examined from 2258 AIS patients and 1526 HC. Most of the 

studies were conducted in China. Only two studies conducted outside Asia met the inclusion 

criteria (84) (85). Because of this the dominant ethnicity of patients was Asian. The expression 

level of miRNA was usually detected by quantitative real-time polymerase chain reaction (qRT-

PCR) or microarray. When both microarray and qRT-PCR data were available both were 

reported. The specimen in which expression levels were determined varied between studies. 

10 studies detected expression levels in plasma, 12 in serum, 2 in whole blood and 1 in serum 

exosomes. Different normalization genes were used to normalise the expression levels. The 

most common used gene was snRNA-U6. One study conducted by Leung et al used a different 

format for detecting expression levels. Instead of using a normalization gene they reported 

their findings in copy number variants (CNV), also known as absolute quantification (86). 5 

studies had an inclusion criteria of blood draw within 6 hours after symptom onset (87-91). 15 

out of the 25 studies had an NOS score of at least 5/8, indicating a small risk of bias. 

 

Table 4: Main characteristics of 25 included studies on microRNA expression levels. 

Author Year Country Sample size Time since 

symptom 

onset 

Detecting 

method 

Specimen normalization Quality 

assessment Cases Controls 

Chen et al 
(92) 

2018 China 30 30 <24h qRT-PCR Serum snRNA-U6 6 

Cheng et al 
(87) 

2018 China 77 42 <6h qRT-PCR Serum snRNA-U6 5 

Giordano et al 2019 Italy 18 20 <24h qRT-PCR Plasma syn-cel-lin-39 3 

Gui et al (93) 2019 China 87 13 <24h qRT-PCR Serum snRNA-U6 6 

Huang et al 
(94) 

2016 China 346 346 <12h qRT-PCR Serum Beta-actin 6 

Ji et al (95) 2016 China 65 66 +-16,5h qRT-PCR Serum 
exosomes 

cel-mir-39 3 

Jia et al (96) 2015 China 146 96 <24h qRT-PCR Serum snRNA-U6 5 

Leung et al 
(86) 

2014 Japan 74 23 <24h qRT-PCR Plasma N/A, absolute 
quantification 

4 

Li et al (97) 2015 China 53 50 <24h Microarray 
qRT-PCR 

Whole 
blood 

syn-cel-lin-39 6 

Long et al (98) 2013 China 197 50 24h qRT-PCR Plasma snRNA-U6 6 

Ma et al (88) 2018 China 33 20 <6h qRT-PCR Plasma snRNA-U6 5 

Peng et al 
(99) 

2015 China 72 51 4,5h < 24h qRT-PCR Serum 18S rRNA 4 

Sepramamiam 
et al (100) 

2014 singapore 68 24 <24h Microarray 
qPCR 

Whole 
blood 

snRNA-U6 3 

Tian et al (89) 2016 China 33 23 <6h Microarray 

qRT-PCR 

Plasma cel-mir-54 5 

Tiedt et al (84) 2017 Germany 40 40 <24h microarray 
qRT-PCR 

Plasma DESeq2 and 
EdgeR 

5 

Wang et al 
(101) 

2014 China 76 116 <24h Microarray 
qRT-PCR 

Plasma snRNA-U6 4 
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Wang et al 
(90) 

2017 China 78 39 <6h qRT-PCR Serum snRNA-U6 5 

Wang et al 
(91) 

2018 china 143 24 <6h qRT-PCR Plasma snRNA-U6 4 

Wang et al 
(102) 

2019 China 40 40 <24h qRT-PCR Serum snRNA-U6 4 

Wu et al (103) 2015 China 106 120 <24h qRT-PCR Serum snRNA-U6 6 

Wu et al (104) 2017 China 50 50 <24h TLDA 
qRT-PCR 

Serum let-7d/g/i 5 

Yang et 

al(105) 

2016 China 114 58 <24h qRT-PCR Plasma snRNA-U6 6 

Yang et al 

(106) 

2020 China 76 60 <24h qRT-PCR Serum snRNA-U6 3 

Zhao et al 

(107) 

2016 China 168 104 <24h qRT- PCR Serum Cel-mir-39 4 

Zhang et al 

(108) 

2014 China 68 21 <24h RT-PCR 
qRT-PCR 

Plasma snRNA-U6  
cel-mir-39 

5 

          

 

3.2.2. MiRNA expression levels 

The miRNAs identified as differentially expressed between controls and stroke patients differs 

greatly among the studies and are summarized in table 5. 59 miRNAs were reported as 

significantly differentially expressed of which 18 recurred in at least 2 separate studies. 11 

were reported to be strictly downregulated, 41 strictly upregulated and 7 were reported as both. 

Mir-let-7b, mir-let-7e, mir-16, mir-17-5p, mir-30a, mir-126 and mir-221 were the only miRNA 

significantly different expressed in 3 separates studies.  

20 of the included studies conducted receiver operator characteristic (ROC) analyses to 

examine the diagnostic potential of several miRNAs. ROC analyses plot sensitivity versus 1-

specificity across varying cut-offs generating a curve. This curve is called the ROC curve. The 

area under the curve (AUC) is an effective and combined measure of sensitivity and specificity 

that describes the inherent validity of diagnostic tests (109). If AUC = 1, this means that the 

diagnostic test is perfect in differentiating between the stroke patients and healthy controls 

(110).  
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Table 5: MicroRNA expression levels of single microRNA 

miRNA RER* AUC (95%CI) Sensitivity Specificity Study 

Let-7b 3.34 0.93 (0.879-0.98) 84% 92% Long et al (98) 

0.70 0.83 (0.76-0.93)  83% 85% Gui et al (93) 

0.46  Chen et al (92) 

Let-7d 1.83    Tiedt et al (84) 

Let-7i-5p 1.58    Tiedt et al (84) 

Let-7e 1.36 0.92 (0.86-1)  89% 90% Gui et al (93) 

UP 0.74 (0.70-0.78)   Huang et al (94) 

UP 0.86 (0.75-0.97) 82.8% 73.4% Peng et al (99) 

7-2-3p 2.12 0.87 (0.80-0.95)   Gui et al (93) 

2.05 0.85 (0.78-0.92)   Gui et al (93) 

9-3p 4.09 0.80 (0.72-0.89)   Ji et al (95) 

15a 8.3 0.70 (0.559-0.837)   Wu et al (103) 

0.57  Chen et al (92) 

16 1.33    Leung et al (86) 

UP 0.78 69.7% 87% Tian et al (89) 

4.2 0.82 (0.71-0.931)   Wu et al (103) 

1.32 Chen et al (92) 

17-5p 1.77    Tiedt et al (84) 

9.9 0.78 (0.666-0.903)   Wu et al (103) 

0.93  Chen et al (92) 

21 9.85    Chen et al (92) 

21-5p 1.77 0.73 (0.667-0.801)   Wu et al (104) 

0.252    Zhang et al (108) 

23a 0.33    Chen et al (92) 

0.13   Jia et al (96) 

23b-3p 2.45 0.851(0.802-0.899)   Wu et al (104) 

24-3p 0.29    Zhang et al (108) 

27a 3.75 0.89 (0.77-1.01)   Sepramaniam et al (100) 

27b-3p UP 0.67 (0.53-0.80) 50% 79% Cheng et al (87) 

29b 6.0629    Chen et al (92) 

29b-3p 1.66 0.79 (0.734-0.848)   Wu et al (104) 

30a 0.28 0.91 (0.869-0.979) 80% 94% Long et al (98) 

0.60    Gui et al (93) 

5.7 0.83(0.665-0.998)   Wang et al (91) 

32-3p 1.57    Li et al (97) 

 0.57 Chen et al (92) 

93 DOWN    Ma et al (88) 

106-5p 1.74    Li et al (97) 

UP 0.96 (0.93-0.99)   Wang et al(101) 

107 2.78 0.97 (0.929-0.991) 94% 92% Yang et al (105) 

124-3p 12.05 0.70(0.6506-0.7895)   Ji et al (95) 

5.09    Wang et al (102) 

125a 1.36 0.87 (0.80-0.96) 87% 82% Gui et al (93) 

125a-5p 1.8    Tiedt et al (84) 

125-b 1.372 0.91 (0.89-0.96) 86% 87% Gui et al (93) 

125b-5p 2.54    Tiedt et al (84) 

125b-2 1.80 0.95 (0.89-1.02)   Sepramaniam et al (100) 

126 0.06 0.92 (0.879-0.978) 84% 92% Long et al (98) 

0.54    Gui et al (93) 

0.54  Chen et al (92) 

126-5p 1.99    Tiedt et al (84) 

128b 1.83 0.90 (0.853-0.953) 73% 92% Yang et al (105) 

130a-5p 3.73    Tiedt et al (84) 

134 DNE 0.83 (0.88-0.97)   Zhou et al (111) 

135b 4.2 0.78 (0.69-0.87)  79% 65% Yang et al (106) 

143-3p 1.44    Tiedt et al (84) 

145 5.28    Chen et al (92) 

3.48   Jia et al (96) 

146b 13.93 0.78 (0.628-0.813)   Chen et al (92) 

148b-3p DOWN 0.66 (0.49-0.84) 51% 80% Cheng et al (87) 

151b UP 0.69 (0.54-0.83) 43% 93% Cheng et al (87) 

153  2.13 0.89 (0.837-0.950) 91% 74% Yang et al (105) 

181a-5p 1.39    Tiedt et al (84) 

1.45 0.68 (0.608-0.76)   Wu et al (104) 

195-5p 4.59    Giordano et al (85) 

221 0.14    Chen et al (92) 

0.07    Jia et al (96) 
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DNE 0.81 (0.73-0.90) Wang et al (90) 

320d 0.07 0.99 (0.972-1)   Wang et al(101) 

320e 0.13 0.98 (0.963-1)   Wang et al(101) 

335 DOWN 0.90 (0.86-0.93) 97.6% 69.2% Zhao et al (107) 

0.26    Gui et al (93) 

378a-3p 1.23    Tiedt et al (84) 

382-5p DNE 0.75 (0.63-0.87)   Wang et al (101) 

0.53    Gui et al (93) 

422a 0.002 0.92 (0.82-1.02)   Sepramaniam et al (100) 

423-3p 2.14    Tiedt et al (84) 

451 7.06    Giordano et al (85) 

488 2.12 0.87 (0.75-1)   Sepramaniam et al (100) 

532-5p 0.37    Li et al (97) 

1.54    Tiedt et al (84) 

627 3.99 0.54 (0.7-0.98)   Sepramaniam et al (100) 

920 3.48 0.81 (0.68-0.94)   Sepramaniam et al (100) 

1246 1.93    Li et al (97) 

1908 0.386 0.81 (0.73-0.88)    Gui et al (93) 

0.653 0.79 (0.72-0.87)    Gui et al (93) 

Abbreviations: RER, relative expression ratio; AUC, area under curve 

*Relative expression ratios are calculated as AIS patients over healthy controls. 

 

Mir-let-7b expression levels were reported as significantly by three independent studies ((92, 

93, 98), twice downregulated and once as upregulated. Quality assessment of these studies 

showed that all 3 had a low risk for potential bias: long et al 6/8, Huang et al 6/8 and Peng et 

al 6/8 as well.  

Mir-let-7e expression levels were reported as significantly by three independent studies (93, 

94, 99), three times as upregulated. All three studies also performed ROC analysis, reported 

AUC values of 0.92, 0.74 and 0.86. Average time of blood draw was less than <12 hours in 

the study conducted by Huang et al, which shows that mir-let-7e is consistently elevated in the 

first 24 hours. Unfortunately, no study has expression levels earlier than 12 hours after 

symptom onset. Quality assessment of these studies showed that 2 of these had low risk and 

1 had high risk of bias: Gui et al 6/8, Huang et al 6/8 and Peng et al 4/8.  

Mir-16 expression levels were reported as significantly by four independent studies 

(80)(84)(86)(92), four times as upregulated. Two of these studies also performed ROC 

analysis, reporting AUC values of 0.78 and 0.82. Average time of blood draw was less than 6 

hours in the study conducted by Tian et al, which suggest mir-16 might be a potential biomarker 

to use in clinical practice within the therapeutic window. Quality assessment of these studies 

showed that 3 of these had low risk and 1 had high risk of bias: Chen et al 6/8, Leung et al 4/8, 

Tian et al 5/8, and Wu et al 6/8.  

Mir-17-5p expression levels were reported as significantly by three independent studies 

(85)(86)(92). Two times as upregulated, one time as downregulated. No explanation could be 

found why this differed between studies. One study performed ROC analysis, reporting an 

AUC value of 0.78. Quality assessment of these studies showed that 2 of these had low risk 

and 1 had high risk of bias: Chen et al 6/8,  Tiedt 5/8 and Wu et al 6/8.  

Mir-30a expression levels were reported as significantly by three independent studies (98) (93) 

(91). Two times as downregulated, one time as upregulated. Wang et al (91) drew blood at <6 
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hours since symptom onset, and at 24h-72h. In these samples mir-30a was also 

downregulated instead of up. Possibly, upregulation of mir-30a is specific for the first few hours 

after stroke onset. Two studies performed ROC analysis, reporting AUC values of 0.91 and 

0.83. Quality assessment of these studies showed that 2 of these had low risk and 1 had high 

risk of bias: long et al 6/8, Gui et al 6/8 and Wang 4/8.  

Mir-126 expression levels were reported as significantly by three independent studies (98) (92, 

93), three times as downregulated. One study performed ROC analysis, reporting an AUC 

value of 0.92. Quality assessment of these studies showed that all 3 of these had low risk of 

bias: long et al 6/8, Gui et al 6/8 and Chen 6/8. 

Mir-221 expression levels were reported as significantly by three independent studies (90, 92, 

96), three times as downregulated. One study performed ROC analysis, reporting an AUC 

value of 0.92. Average time of blood draw was less than 6 hours in the study conducted by 

Wang et al, which suggest mir-221 might be a potential biomarker to use in clinical practice 

within the therapeutic window. Quality assessment of these studies showed that all 3 of these 

had low risk of bias: Chen et al 6/8, Jia et al 5/8 and Wang et al 5/8.  

3 of the included studies conducted ROC analyses on panels of miRNA biomarkers. These 

results can be found in table 6. Tiedt et al (84) reported results on 2 different panels. The first 

panel consisted of mir-125a-5p, mir-125b-5p and mir-143-3p. These 3 miRNAs were earlier 

identified as significantly different expressed in the discovery step of the study. This biomarker 

panel was able to distinguish patients from controls with an AUC of 0.927. The second panel 

consisted of the same 3 miRNA + mir-let7d-3p + mir-126-5p + mir-423-3p. the biomarker panel 

had an AUC value of 0.834. Wu et al tested a different 3 miRNA panel. First, they tested the 

miRNA individually, this yielded AUC values of 0.698, 0.82 and 0.784 for mir-15a, mir-16 and 

mir-17-5p respectively. When combined, a synergistic effect could be observed: the panel had 

an AUC value of 0.845. Wu et al (104) tested a panel that consisted of mir-23b-3p + mir 29b-

3p + mir-181a-5p + 21-5p. They reported an AUC of 0.883. Furthermore, Chen et al tested 

several combinations of mir-148b, mir-27-3p and 151b (92).  
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Table 6: MicroRNA expression profile of microRNA panels. 

3.3. Proteins 

3.3.1. Study characteristics of studies with main focus on protein expression levels 

Study characteristics of studies with the main focus on proteins are summarized in table 7 

below. In total 46 studies are included in the meta-analysis, however 13 of them were focusing 

other groups of biomarkers and therefore their study characteristics are discussed elsewhere.  

Using the mean and standard deviation (SD) of each reported biomarker, a meta-analysis 

could be performed. The publication years ranged from 2001 to 2020. 13 studies were 

conducted in Europe, 13 in Asia, 2 in South-America, 2 in Africa  and 3 in North-America. In 

total, protein expression levels were examined from 4139 IS patients and 3371 healthy 

controls. As all proteins were detected using specific analyzers, ELISA techniques or 

immunoassays, there was no need for normalization genes.  

Several studies measured certain protein biomarkers several times within 24 hours after 

symptom onset to evaluate the progression within the first few hours (112-115).  

19 of the 33 studies showed little risk of bias according to the modified NOS (113, 114, 116-

132). The most common shortcoming was failure to include consecutive stroke patients. Alfieri 

et al (117), Kelly et al(114) and Ning et al(113) showed almost no risk of bias according to the 

NOS.  

 

Table 7: Main characteristics of 33 included studies on protein expression levels. 

Author Year Country Sample size Time 

since 

symptom 

onset 

Detecting 

method 

Specimen normalization Quality 

assessment Cases Controls 

Ageno et al 

(133) 
2002 Italy 26 21 <24h D-dimer assay Plasma  3 

Alfieri et al 

(117) 
2020 Brazil 176 176 <24h ELISA/ auto-

analyzers 
Serum  7 

Algin et al 

(116) 
2019 Turkey 75 28 <4h ELISA Serum  5 

miRNA

  

AUC (95%CI),  Sensitivity specificity Study 

125a-5p +125b-5p + 143-3p  0.927   Tiedt et al (84)  

125a-5p +125b-5p + 143-3p + let-7d-3p + 
126-5p + 423-3p 

0.834   Tiedt et al (84) 

15a +16+17-5p 0.845(0.74-0.949)   Wu et al (104) 

23b-3p + 29b-3p + 181a-5p + 21-5p 0.883 (0.84-0.93)   Wu et al (104)  

148b + 151b 0.73 (0.59-0.87)   Cheng et al (87) 

148b+27b-3p 0.81 (0.70-0.92)   Cheng et al (87) 

151b+27b-3p 0.7143 (0.58-
0.85) 

  Cheng et al (87) 

148b+151b+27b-3p 0.77 (0.65-0.89)   Cheng et al (87) 
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Allard et al 

(118) 
2004 Switzerland 26 12 +- 3h nanoLC-ESI- 

MS/MS 
ELISA 

Plasma  5 

Alvarez-

Perez et al 

(134) 

2011 Spain 200 50 <24h immunoassay Plasma  4 

Augello et 

al (119) 
2018 USA 24 26 <24h ELISA Plasma  5 

Ben-

assayag et 

al (120) 

2010 Israel 264 264 <24h ELISA Plasma  5 

Can et al 

(135) 
2015 Turkey 50 34 <12h ELISA Serum  4 

Cano et al 

(136) 
2001 Venezuela 15 15 <24h Colorimetric 

assay 
Serum  4 

Castellanos 

et al (137) 
2002 Spain 113 43 <24h ELISA Plasma  3 

Cha et al 

(138) 
2002 Korea 45 24 <24h Flow cytometry Serum  4 

Dambinova 

et al (139) 
2003 Russia 31 230 <24h ELISA Serum  4 

De Marchis 

et al (140) 

2019 Switzerland 783 359 <24h ELISA Plasma  4 

Demir et al 

(115) 
2012 Turkey 32 30 0-6h 

12-24h 

ELISA Plasma  4 

Eldeeb et 

al (121) 

2020 Egypt 60 30 <24h ELISA Serum  6 

Fan et al 

(122) 
2017 China 197 192 <24h Immunoassay Serum  5 

Kelly  et al 

(114) 
2007 Ireland 52 27 <8h 

<24h 

ELISA Plasma  7 

Kim et al 

(123) 
2010 Korea 139 57 +- 6h immunoassay Plasma  5 

Kuwashiro 

et al (124) 
2014 Japan 171 171 <24h Multiplex 

immunoassays 
Plasma  5 

Lu et al 

(141) 

2009 Taiwan 120 120 <24h ELISA Plasma  3 

Ma et al 

(125) 

2020 China 288 300 <24u ELISA Serum  6 

Mazzotta et 

al (142) 

2004 Italy 18 25 <24u ELISA Plasma  2 

Menon et al 

(126) 

2020 India 100 100 <24u FRAP assay Serum  5 

Nadar et al 

(127) 

2004 United 
Kingdom 

59 51 <24h ELISA Plasma  5 

Ning et al 

(113) 

2006 Boston, 
USA 

52 26 <8h 
<24h 

ELISA Plasma  7 

Oraby et al 

(143) 

2019 Egypt 50 50 <24h ELISA Serum  4 

Perini et al 

(128) 

2001 Italy 42 39 <24h ELISA Serum  5 

Rajeshwar 

et al (144) 

2012 India 581 575 <24h ELISA Serum  4 

Ren et al 

(129) 

2016 China 79 57 <24h ELISA Serum  5 

Shenhar-

Tsarfaty et 

al (130) 

2008 Israel 196 196 <24h Several 
analysers 

Plasma  6 

Waje-

Adreassen 

et al (112) 

2005 Norway 11 9 <4h 

<8h 
<12h 
<24h 

ELISA Serum  4 

Walsh et al 

(131) 

2016 Ohio, USA 14 14 <12h Multiplex 
assays 
ELISA 

Plasma  6 
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Youssef et 

al (132) 

2007 Kuwait 50 20 <24h immunoassay Plasma  6 

3.3.2. Meta-analysis on protein biomarkers 

3.3.2.1. Metabolic protein biomarkers 

In figure 3 the forest plot of metabolic biomarkers is illustrated.  These are substances that play 

a role in the human metabolism, not to be confused with metabolites (substances that are 

intermediate- or end products of metabolic reactions). 11 Different biomarkers could be 

included in the meta-analysis: creatinine, adiponectin, HbA1c, total cholesterol levels, HDL, 

LDL, triglycerides, glucose, ApoA1, ApoB and LpA.  ApoB and adiponectin were only reported 

in one study, therefore no meta-analysis could be conducted. Most lipids enlisted in this meta-

analysis were not investigated as potential biomarkers, but rather reported as patient 

characteristics by the studies (82, 89, 90, 97, 98, 101, 103, 104, 145, 146).  

Creatinine and HDL were the only metabolic protein markers reported as statistically significant 

(p<0.05).  However, only creatinine has an I² of below 60% representing moderate 

heterogeneity. While HDL has an I² of over 90% indicating substantial heterogeneity between 

studies.  No combination of studies could be made to lower the heterogeneity to acceptable 

levels for HDL. The I² value of creatinine dropped to 4% when the study of Lu et al (141) was 

excluded. When examined closer, a human error is most likely the cause for the divergent 

results presented by Lu et al (141). They reported IS creatinine levels with a mean of 114.9 

mmol/L and standard deviation of 114.9 as well. Of the 5 studies that reported creatinine levels, 

3 had a low risk of bias (122, 146) (89) and 2 had a high risk of bias (145) (141).  

 

Figure 3: forest plot on metabolic protein markers. 
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3.3.2.2. Brain specific protein biomarkers 

Figure 4 below shows the forest plot depicting brain specific protein biomarkers. S100β, 

myelin basic protein (MBP), glial fibrillary acidic protein (GFAP) and brain derived 

neurotrophic factor (BDNF) are the only brain specific protein biomarkers that could be 

included in this meta-analysis. All 4 biomarkers were only reported once, each by a different 

study (117, 123, 129, 135). Because of this no heterogeneity analysis could be performed.  

 

Figure 4: forest plot on brain specific protein biomarkers. 
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3.3.2.3. Endocrine protein biomarkers 

In this category cortisol, insulin, brain natriuretic peptide (BNP) and copeptin were studied as 

potential biomarkers. Figure 5 depicts a forest plot of the concentration levels of these 

biomarkers. Although all 4 had significant results, no statement can be made as all 4 were only 

reported once. No heterogeneity analysis could be conducted.  

 

Figure 5: forest plot on endocrine protein biomarkers 

 

3.3.2.4. Inflammatory protein biomarkers 

Figure 6 below depicts the forest plot of the inflammatory protein biomarkers. 12 different 

inflammatory biomarkers could be included in this meta-analysis: IL-10, IL-1β, (hs)CRP, ESR, 

white blood cell count (WBCC), Tumor necrosis factor alpha (TNF-α), nitric oxide, Matrix 

metalloproteinase-9 (MMP-9), Intercellular Adhesion Molecule-1 (ICAM-1), homocysteine 

(hcy) and P-selectin. Icam-1 was only reported in one study, therefore heterogeneity studies 

could not be conducted. 2 studies reported their findings on P-selectin expression levels but 

used different detecting techniques which are not compatible for comparison. Nadar et al (127) 

conducted an ELISA based research and reported expression levels in ng/mL, while Cha et al 

(138) conducted a flow cytometry based research and reported their findings in mean 

fluorescence intensity (MFI). Because of these differences in reporting, further analysis could 

not be performed.  

8 inflammatory biomarkers yielded significant p-values: CRP (p < 0.0001), WBCC (p < 

0.00001), ESR (p < 0.00001), TNF-α (p < 0.00001), IL-6 (p = 0.006), nitric oxide (p = 0.01) 

MMP-9 (p = 0.005) and Hcy (P < 0.00001). Of these 8 biomarkers, only TNF- α and ESR 

showed low I² value (I² = 7% and 39%). All others showed a substantial amount of 

heterogeneity between studies (I²> 60%). 
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TNF-α concentration levels were reported by 4 different studies (125, 137, 141, 142). Three of 

these were assessed as high risk of bias in the quality assessment study (137, 141) (142), only 

Ma et al (125) had an NOS score of 6/8, indicating low risk of bias. 

ESR were reported by 4 different studies (117, 120) (130, 134). Only one of these were 

assessed as high risk of bias in the quality assessment study (134). Alfieri et al (117), 

Assayag et al (120) and Shenhar-Tsarfaty et al (130) had scores of 7/8, 5/8 and 6/8 

respectively. 

 

Figure 6: forest plot on inflammatory protein biomarkers 
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3.3.2.5. Hemostatic protein biomarkers 

Figure 7 depicts hemostatic protein biomarker levels. 4 hemostatic biomarker levels were 

investigated.  ischemia-modified albumin (IMA) levels was only reported in 1 study, therefore 

no further analysis could be conducted. The other markers yielded the following p-values: 

Platelets (p = 0.15), fibrinogen (p < 0.00001), D-dimers (DD) (p = 0.08). Platelet count and DD 

did not yield a statistically significant result. Fibrinogen was the only marker with a small level 

of heterogeneity between studies (I² = 0%). DD and platelets, had I²-values of 100% and 98%. 

Fibrinogen is therefore the only hemostatic biomarker that’s significantly expressed and has 

low heterogeneity between studies.  

Fibrinogen levels were reported by 5 separate studies (89, 120, 122, 130, 134). 4 of these had 

a low level of bias according to the NOS: Ben Assayag et al (120) 5/8, Fan et al (122) 5/8, 

Shenhar-Tsarfaty et al (130) 6/8 and Tian et al (89) 5/8. Only Alvarez-Perez et al (134) had a 

score of 4/8.  

 

Figure 7: forest plot on hemostatic protein biomarkers 

 

  



 

39 
 

3.3.2.6. Other protein biomarkers 

The forest plot below, figure 8, depicts all protein biomarkers that don’t clear cut belong to a 

specific subgroup of biomarkers. These include: Ubiquitin carboxy-terminal hydrolase L1 

(UCH-LI), visfatin, F2-isoprostanes, vit B12, folic acid, tissue inhibitor of metalloproteinase 1 

(TIMP-1), serum amyloid A (SAA), NMDA receptors 2A over NMDA receptor 2B ratio 

(NR2A/2B), VILIP-1 and thioredoxin. All of these biomarkers, except for folic acid, were only 

reported in one study. Its p-value was highly significant at p < 0.00001. The I² analysis showed 

no statistical heterogeneity between the two studies (I² = 0%).  Quality assessment of these 

studies showed one with low risk of bias (fan et al (122)) and one with high risk (Jiang et al 

(145)).  

 

Figure 8: forest plot on other protein biomarkers. 
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3.4. Metabolites 

3.4.1. Study characteristics of studies with main focus on metabolite expression 

levels  

Table 8 shows all metabolite studies that met the inclusion criteria for inclusion in the 

systematic review. Most of them were conducted in China, only one was conducted in Europe 

(147). The publication years ranged from 2011 to 2020.  In total 625 AIS patients and 407 

healthy controls were included. 2 Studies were conducted on dried blood (148, 149), 2 on 

serum (145, 146) and one in plasma (150). 4 different ways of detecting metabolite 

concentration levels were used in the studies. Hu et al (148) and Zhang et al (149) both used 

a direct injection mass spectrometry approach, while Jiang et al (145) and Schneider et al 

(147) used an ultra-performance liquid chromatography. Liu et al (146) used gas 

chromatography–mass spectrometry (GC-MS) for detecting metabolite biomarkers expression 

levels, and Peng et al (150) used Micellar electrokinetic chromatography (MEKC) as detecting 

method. All of these methods did not require normalization or housekeeping genes.  

Only 2 studies were classified as low risk of bias: Liu et al (146) and Peng et al (150).  

 

Table 8: Study characteristics of 6 studies with main focus on metabolite expression levels.  

Author Year Country Sample size Time 

since 

symptom 

onset 

Detecting 

method 

Specimen normalization Quality 

assessment Cases Controls 

Hu et al 

(148) 

2016 China 129 98 <12h Direct 

injection 
MS 

Dried 

blood 

 3 

Jiang et al 

(145) 

2011 China 67 62 <6h UPLC-

MS/MS 
 

Serum  4 

Liu et al 

(146) 

2017 China 40 40 <9h GC-MS 

LC-MS 

Serum  5 

Peng et al 

(150) 

2012 China 64 42 <8h MEKC Plasma  5 

Schneider 

et al (147) 

2020 Germany 196 100 <24h LC-MS Plasma  4 

Zhang et al 

(149) 

2017 China 129 65 2h-12h Direct 
injection 

MS 

Dried 
blood 

 4 

 

3.4.2. Metabolite expression levels 

Table 9 shows al metabolites who were reported as significantly expressed in at least 1 study. 

In some studies, exact values were not extractable. Instead, “DOWN” or “UP” is listed for down 

or upregulated metabolite levels. 76 metabolites were reported as statistically significant in at 

least 1 study. Only 7 of which were statistically significant in 2 studies. Betanin, Alanine, 

Aspartate and Ornithine were all reported as upregulated in one study, while being reported 

as downregulated in the second study. Only Glycine and Proline were both twice reported as 

downregulated. ROC analysis was only performed on 5 metabolite biomarkers: Serine, 
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isoleucine, betanin, phosphatidylcholine (PC) PC (5:0/5:0) and lysophosphatidylethanolamine. 

PC (5:0/5:0) reported the highest AUC of these 5 with a value of 0.927.  

 

Table 9: Metabolite expression levels of single microRNA 

Metabolite (s) RER* AUC (95%CI) Sensitivity specificity study 

Acetylcarnitine 1.45    Liu et al (146) 

Adenosine 0.11    Jiang et al (145) 

Alanine 0.78    Liu et al (146) 

UP Hu et al (148) 

Aldosterone 0.01    Jiang et al (145) 

Arginine 1.74    Zhang et al (149) 

Asparagine 0.86    Zhang et al (149) 

Aspartate 0.73    Liu et al (146) 

1.37 Zhang et al (149) 

Betanin 1.66 0.723    Liu et al (146)  

0.32 Jiang et al (120) 

C0 0.86    Zhang et al (149) 

C2 0.70    Zhang et al (149) 

C2/C0 ratio 0.8    Zhang et al (149) 

C3 0.79    Zhang et al (149) 

C3/C16 ratio 0.81    Zhang et al (149) 

C3DC 0.73    Zhang et al (149) 

C3DC/C10 ratio 2.13    Zhang et al (149) 

C4-OH 0.80    Zhang et al (149) 

C4DC 0.86    Zhang et al (149) 

C4/C8 1.82    Zhang et al (149) 

C5 1.38    Zhang et al (149) 

C5:1 0.67    Zhang et al (149) 

C5-OH UP    Hu et al (148) 

C5-OH/C0 ratio UP    Hu et al (148) 

C5-OH/C8 ratio UP 

1.88 

   Hu et al (148) 

    Zhang et al (149) 

C5/C3 ratio 2    Zhang et al (149) 

C5DC 0.50    Zhang et al (149) 

C5DC/C5-OH ratio 0.54    Zhang et al (149) 

C5DC/C16 ratio 0.6    Zhang et al (149) 

C8 0.62    Zhang et al (149) 

C8/C10 ratio 1.34    Zhang et al (149) 

C10 0.43    Zhang et al (149) 

C10:1 0.62    Zhang et al (149) 

C10:2 0.67    Zhang et al (149) 

C10:2/C10 ratio 1.87    Zhang et al (149) 

C14:2 0.71    Zhang et al (149) 

C16-OH 2.12    Zhang et al (149) 

C16-OH/C16 ratio 2.5    Zhang et al (149) 

C18 0.83    Zhang et al (149) 

C22 0.78    Zhang et al (149) 

C24 0.67    Zhang et al (149) 

Carnitine 1.67    Liu et al (146) 

Cit/Arg 0.62    Zhang et al (149) 

Citrulline UP    Hu et al (148) 

cysteine c 10.58    Jiang et al (145) 

Deoxocathasterone 0.29    Jiang et al (145) 

Galactose 1.22    Liu et al (146) 

Glycine 0.69    Liu et al (146) 

0.87 Zhang et al (149) 

glycine/alanine ratio 0.83    Zhang et al (149) 

Hydroxyeicosatetraenoic acid 1.49    Jiang et al (145) 

Hydroxyoctadecadienoic acid 64.52    Jiang et al (145) 

Isoleucine 0.61 0.832    Liu et al (146)  

Leucine 0.90    Zhang et al (149) 

L-isoleucyl-L-proline 1.44    Liu et al (146) 

Lysine 0.65    Liu et al (146) 

Lysophosphatidylethanolamine 1.74 0.785    Liu et al (146)  

Mannose 1.27    Liu et al (146) 

https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
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Ornithine 0.66    Liu et al (146) 

3.82 Zhang et al (149) 

Ornithin/Cit 2.82    Zhang et al (149) 

Oxidized glutathione 3.32    Jiang et al (145) 

PA(18:3/0:0) 0.43    Liu et al (146) 

PC(1:0/16:0) 0.78    Liu et al (146) 

PC(5:0/5:0) 0.42 0.927    Liu et al (146)  

Phenine/tyrosine ratio 0.73    Zhang et al (149) 

PI(22:2/0:0) 0.35    Liu et al (146) 

Proline 0.8    Liu et al (146) 

 0.61    Zhang et al (149) 

Putrescine UP    Peng et al (123) 

S-Adenosyl-homocysteine 1.48    Jiang et al (145) 

Serine 0.61 0.823    Liu et al (146)  

Spermine DOWN    Peng et al (123) 

Spermidine DOWN    Peng et al (123) 

Sucrose 6-phosphate 0.34    Jiang et al (145) 

Tetrahydrofolate 0.18    Jiang et al (145) 

Threonine 0.78    Liu et al (146) 

TMAO 1.29    Schneider et al 

(147) 

Tricarballylic acid 0.68    Liu et al (146) 

Trihydroxy palmitic acid 0.63    Liu et al (146) 

Tryptophan 0.90    Zhang et al (149) 

Valine 0.91    Zhang et al (149) 

 

  

https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
https://www.sciencedirect.com/science/article/pii/S0039914011000476?via%3Dihub#tblfn0020
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4. Discussion 

4.1. Genes 

Many genes have been reported to be significantly expressed, but most of them only once. As 

single genes, S100A12 and MMP-9 seem to have the most diagnostic potential.  

MMP-9 gene was consistently highly expressed in the blood of IS patients. The protein MMP-

9 is also known as gelatinase B. It’s part of the matrix metalloproteinase family, which are 

proteases responsible for extracellular matrix degradation and activation of cytokines and 

chemokines to regulate tissue remodelling. It plays a vital role in the degradation of 

atherosclerotic plaques (151). In this meta-analysis we showed that MMP-9 is substantially 

upregulated in the first few hours after IS. As it is capable of degrading almost all components 

of the extracellular matrix and basal lamina, MMP-9 is a major attributing factor for BBB 

breakdown and cerebral ischemia (152). Therefore, it does not only have a possible diagnostic 

value, but a therapeutic value as well. Pharmaceutical MMP-9 inhibitors in the first few hours 

after symptom onset may perhaps cause a prolongation of the current narrow therapeutic 

window, as they could possibly slow down BBB breakdown (153).  

S100A12 also had stable relative expression ratio’s (2.35, 2.51, 2.9). It codes for S100 calcium-

binding protein A12, also known as calgranulin C. It mainly has an anti-infectious and 

antibacterial role related to its ability to uptake ions. However, in ischemic circumstances, it 

expression leads to cytokine production, chemotaxis and eventually oxidative stress (154). A 

study conducted by Stone et al found that it’s correlated with the prognosis of stroke in that a 

high level of calgranulin C is associated with a poor outcome of recovery after IS (155).  

However, several limitations need to be addressed. First of all, the study sample size for RNA 

expression was small in all studies. The largest study only had 70 IS patients, causing the 

power of the studies to be rather small.  

Secondly, quality assessment of the studies revealed that only one of the included gene 

expression studies had a low risk of bias. All others failed to achieve a score of 5/8 in the NOS.  

And thirdly, a commercially available platform capable of rapid nucleic acid quantification with 

high enough fidelity to detect relatively modest level of differential expression needs to be 

developed before a gene panel can be used in clinical practice.  

 

4.2. MicroRNA  

Recently, circulating miRNAs are found to be stable, reproducible and have already been 

proposed as novel non-invasive biomarkers for the diagnosis of many neurodegenerative 

disorders. In recent years, several studies have been conducted in search of potential stroke 

microRNA biomarkers.  
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Mir-let-7b  seems to have a wide array of binding sites in humans (156) (157). The exact 

mechanism or explanation why it’s consistently upregulated in IS patients cannot be explained 

at this time. Not much is known about its function. It seems to be able to differentiate large-

vessel atherosclerosis from other causes of IS (98).  

Mir-let-7e seems to regulate CASP3 and NLK expression levels, according to bioinformatics 

prediction performed by Huang et al(94). By regulating these pathways, it may have a 

neuroprotective effect by negatively regulating the expression of TLR4. 

Mir-16 seems to target genes for cell differentiation. It belongs to cluster miR-15/16 that has a 

well-known function in cell apoptosis and p53 signalling pathway (89). Rainer et al investigated 

mir-16 as a potential biomarker for stroke prognosis. They concluded that it might be a suitable 

marker for long term outcome as well (158). Tian et al (89) also concluded that higher levels 

of mir-16 correlates with worse stroke prognosis. In this systematic review, it was significantly 

upregulated in 4 studies, of which 3 had a low risk of bias. It was significant in the first 6 hours 

after stroke onset, making it a promising microRNA for possible implementation in clinical 

practice.  

Mir-17-5p is a key regulator of the G1/S phase cell cycle transition (159). It appears to play a 

critical role in post-stroke adult neurogenesis (160).  

Mir-30a is involved in cancer cell growth inhibition (161). In this systematic review, it was 

significantly upregulated in the first 6 hours after symptom onset, then seemed to be 

downregulated at 6-24 hours after symptom onset. This makes it a promising microRNA for 

possible implementation in clinical practice.  

Mir-126 is considered one of the most important miRNA’s for maintaining vascular integrity 

(162). It seems to play more of a role in stroke prognosis as it can enhance stroke recovery 

after an ischemia reperfusion injury (163). Long et al reported that mir-126 stayed down 

regulated for as long as 24 weeks after the ischemic event (98).  

Mir-221 seems to target genes involved in cerebral ischemia. The exact pathway of 

interference with IS is not well known yet (164).  

4.3. Proteins 

The protein subgroup was the only category of biomarker that yielded enough data to conduct 

a meta-analysis on.  

In the metabolic subgroup creatinine seemed to have the most diagnostic potential. It was 

reported in 5 independent studies, and, when 1 study was excluded, showed low heterogeneity 

between the 4 remaining studies. Unfortunately, no study with blood draw earlier then <24 

reported creatinine levels. High creatinine level at admission have been reported to be 

prognostic factor for mortality for IS patients (165). However, patients with high creatinine 

levels tend to have other illnesses. Higher creatinine is not a direct consequence of IS.  
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In the brain specific protein subgroup, no protein could be identified as potential biomarker for 

IS, as no biomarker was investigated in more than 1 study. S100β has been investigated in IS 

versus stroke mimics or haemorrhagic stroke patients where it was able to differentiate IS 

patients (166) (167).  

In the endocrine subgroup no protein could be identified as potential biomarker for IS, as no 

biomarker was investigated in more than 1 study. 

In the inflammatory subgroup TNF-α and ESR seemed to have the most diagnostic potential. 

Both had significant p-values and low heterogeneity between studies. Studies have already 

been published about differences in TNF-α concentrations between IS patients and stroke 

mimics or haemorrhagic stroke patients. These concluded that TNF-α was not able to 

differentiate IS from HS (168).  

In the hemostatic subgroup fibrinogen seemed to have the most diagnostic potential. It was 

reported in 5 independent studies and showed low heterogeneity between studies. 

Unfortunately, no studies drew blood earlier than <24 hours after symptom onset. Fibrinogen 

seems to be more of value as a prognostic biomarker rather than diagnostic marker. Several 

studies have reported that higher fibrinogen level at admission correlates with stroke severity 

and by extension mortality and functional outcome (169) (170).  

In the ‘other protein’ subgroup folic acid seemed to have the most diagnostic potential. It was 

reported in 2 independent studies and showed low heterogeneity between studies. Folic acid 

seems to have a protective effect on stroke risk. Several studies have shown the benefit of 

folic acid supplements in stroke risk reduction (171).  

However, these “significant results” in protein biomarker mean very little in the current clinical 

practice. If we take a look at the absolute numbers, the difference between an AIS and HC is 

on average 3.24 mg/dL fibrinogen vs 2.88 mg/dL fibrinogen. This means nothing and is at the 

moment not useable in the ED. However, in the future, fibrinogen can become a parameter in 

a panel of biomarkers, consisting of biomarkers that represent different pathways of IS.  

4.4. Metabolites 

Only 6 studies could be included that reported metabolite biomarkers, of which only one was 

classified as low risk of bias. This suggests that potential metabolites to diagnose IS remains 

poorly investigated. Only Glycine and Proline were reported as significantly downregulated in 

2 separate studies.  

Glycine is an inhibitor of proinflammatory activity. It suppresses Hif-1α by inhibiting the 

upregulation of NF-κB p65, making it a neuroprotective compound after reperfusion (172). A 

recent study published by Chen et al (173) found an alternate pathway how glycine might have 

a neuroprotective effect. According to their research, glycine is a potential miRNA-19 inhibitor. 

MiRNA-19 is a known proinflammatory miRNA, which could accelerate nerve damage in IS. 

However, in our section on miRNA, none of the included studies showed an upregulation or 
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downregulation of miRNA-19 in the first 24 hours after symptom onset. Glycine may be more 

suited as therapeutical intervention to prevent further neuronal damage, instead of diagnostic 

biomarker (174) (175).  

Proline is a direct metabolite of glutamate. As glutamate can’t cross the BBB, proline 

concentration is an indirect measurement of glutamate excitotoxicity in the brain (176).  

Diagnostic potential of the reported metabolites is difficult to assess because only 1 of the 

included studies performed ROC analysis (146). The highest AUC was reported by PC 

(5:0/5:0), a key component in neuronal cell membrane integrity. Other studies found decreased 

levels of PC in patients with Alzheimer’s disease and mild cognitive impairment (177) (178). 

Making this a possible candidate to differentiate IS and Alzheimer’s disease, a well-known 

stroke mimic.  

 

4.5. Limitations 

Several limitations of this study must be pointed out. First of all, it was only possible to conduct 

a meta-analysis in the protein subgroup. The amount of data in the gene, MiRNA and 

metabolite subgroups was not sufficient to perform a meta-analysis. A consensus needs to be 

made for a standardized detecting method and data reporting on biomarker concentration 

levels. Meta-analysis on MiRNA data is possible, as shown by several other publication, 

provided that mean and SD levels are given of all individual biomarkers (69,70). 

Secondly, to be able to conduct a protein meta-analysis, all data had to be converted to mean 

and SD. Several studies presented their results as medians with interquartile range instead. 

When this was the case, the formulas of Wan et al (73) were used to make an estimate of the 

mean and SD. When data was presented as median with minimum and maximum value the 

formula formed by Hozo et al (74) was used. Using these formulas made it possible to include 

these studies into the analysis, however doing so increased heterogeneity as these values 

remained an estimate of the mean and SD. 

Thirdly, to be able to inquire more studies in the review, we set the limit for blood drawn at a 

maximum of 24 hours after symptom onset instead of the therapeutic window of 4,5 hours. 

Biomarkers reported as significant at 24 hours after symptom onset might not be at 3 hours. A 

good comparison for this problem is the biomarkers used in acute coronary events. Troponin 

I, creatine kinase, LDH and aspartate transferase each have their own time window in which 

they are relevant to be determined (179). Several studies drew blood at earlier points in time 

but, when able, we choose to include the results of blood drawn at 24 hours instead of earlier. 

This decision was made to reduce the amount of heterogeneity. In a clinical setting however, 

blood draw needs to happen as soon as possible after admission in the ED.  

Fourthly, different definitions of healthy controls were used in the included studies. For 

example, Allard et al (118) enlisted patients from the orthopaedics department as healthy 
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controls, as they clinically had no neurologic or cardiovascular symptoms. Walsh et al (131) 

used hospital staff volunteers as healthy controls. We tried to combat this issue by 

implementing a quality assessment in the shape of the NOS.  

 

5. Conclusion 

 

The quest for the ideal biomarker for IS diagnosis started over 20 years ago and is still ongoing. 

Diagnosing and treating AIS within the therapeutic window of 4,5 hours can be a challenge in 

the ED. A simple blood test that could diagnose patients with IS has the potential to significantly 

shorten the time-to-needle, especially in cases of remaining diagnostic uncertainty or when 

less experienced health-care providers have to make the diagnosis.  

However, considering the many limitations of this systematic review, the widespread use of a 

biomarker panel for IS diagnosis will not be soon available. More studies have to be conducted 

with larger sample sizes and lifelike control groups to obtain reliable conclusions.  

The goal of this master dissertation was to provide an answer to the following research 

question:  

“Which biomarker(s) per group, show the most promise to differentiate IS patients from healthy 

controls? Biomarker groups being genes, miRNA, proteins and metabolites.” 

 

The answer to that question is as follows:  

In the gene’s subgroup S100A12 and MMP-9 seem to display the most promising 

discriminatory capacity.  

In the miRNA group miRNA-16 and miRNA-30a, miRNA-126 and miRNA-221 were the most 

promising, especially miRNA-16, miRNA-30a and miRNA-221 in the first 6 hours after stroke 

onset.  

In the protein group our meta-analysis revealed that creatinin, TNF-α, fibrinogen and folic acid 

have the most discriminatory capacity.  

In the metabolite group the diagnostic potential is difficult to assess. No real metabolite 

biomarker was promising. Only glycine and proline displayed an altered expression in 2 

independent studies.   
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7. Supplementary data 

7.1 Search string used for the Web Of Science database search.  

# Search Number of results 

1 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular Accident) AND TOPIC:  (biomarker* 

OR biomarker panel) AND TOPIC:  ("Gene profiling" OR "rna expression" OR "rna") 
83 

2 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular Accident) AND TOPIC:  (biomarker* 

OR biomarker panel) AND TOPIC:  (diagnos*)  

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2001-2020 

 

626 

3 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular 

Accident) AND TOPIC:  (metabonomics OR metabolomics) AND TOPIC:  (diagnos*)  

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2001-2020 

 

33 

4 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular Accident) AND TOPIC:  (lipid* OR 

lipoprotein* or glycolipid* OR fatty* OR glyceride) AND TOPIC:  (diagnos*)  

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2001-2020 

 

305 

5 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular Accident) AND TOPIC: (diagnos*) 33 

6 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular Accident) AND TOPIC:  (biomarker* 

or biomarker panel) AND TOPIC:  (diagnos*)  

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2001-2020 

 

626 

7 TITLE:  (stroke OR cerebral infarction OR Cerebrovascular Accident) AND TOPIC:  (biomarker* 

OR "Gene profiling" OR "rna expression")  

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2001-2020 

 

2387 

8 #7 OR # 6 OR # 5 OR #4 OR #3 OR #2 OR #1 

 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2001-2020 

 

2647 

 

7.2. Search string used for the EMBASE database search.  
# Search Number of results 

1 ('brain ischemia':ti,ab,kw OR 'brain infarction':ti,ab,kw OR 'cerebrovascular accident':ab,ti OR 'middle 

cerebral artery occlusion':ti,ab,kw) AND [2001-2020]/py 

26839 

2 'biological marker':ti,ab,kw OR 'genetic marker':ti,ab,kw 10207 

3 'diagnostic procedure':ti,ab,kw OR diagnosis:ti,ab,kw OR 'diagnostic test':ti,ab,kw 2300051 

4 'genetic profile':ti,ab,kw OR rna:ti,ab,kw OR 'messenger rna':ti,ab,kw 614462 

5 microrna:ti,ab,kw OR 'genetic transcription':ti,ab,kw OR epigenetics:ti,ab,kw 103759 

6 'metabolic regulation':ti,ab,kw OR 'metabolic fingerprinting':ti,ab,kw OR metabolomics:ti,ab,kw 33877 

7 'protein metabolism':ti,ab,kw OR proteins:ti,ab,kw OR 'protein fingerprinting':ti,ab,kw 

OR proteomics:ti,ab,kw 

1393627 

8 #1 AND #2 AND #3 3* 

9 #1 AND #4 

 

518* 

10 #1 AND #5 

 

254* 

11 #1 AND #6 

 

49* 

12 #1 AND #6 AND ('controlled study'/de OR 'human'/de OR 'in vivo study'/de) 

 

39* 

*Only combined searches were examined in detail. 
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7.3. Search string used for Google Scholar database search.  

# Search Number of results 
1 ("ischemic stroke" OR "cerebral infarction" OR "cerebral hypoxia" OR "apoplexy" OR "MCAO" OR 

"cerebrovascular accident" OR "CVA") AND ("biomarker" OR "biomarker panel" OR "clinical marker" 

OR "serum marker") AND ("gene expression" OR "*RNA" OR "gene profil*”).   

15200* 

2 ("ischemic stroke" OR "cerebral infarction" OR "cerebral hypoxia" OR "apoplexy" OR "MCAO" OR 

"cerebrovascular accident" OR "CVA") AND ("biomarker" OR "biomarker panel" OR "clinical marker" 

OR "serum marker") AND (“microRNA” OR “epigenetics” or “M*RNA” OR MiR-*)  

6870* 

3 ("ischemic stroke" OR "cerebral infarction" OR "cerebral hypoxia" OR "apoplexy" OR "MCAO" OR 

"cerebrovascular accident" OR "CVA") AND ("biomarker" OR "biomarker panel" OR "clinical marker" 

OR "serum marker") AND (“protein*” OR “proteomic*”) 

18100* 

4 ("ischemic stroke" OR "cerebral infarction" OR "cerebral hypoxia" OR "apoplexy" OR "MCAO" OR 

"cerebrovascular accident" OR "CVA") AND ("biomarker" OR "biomarker panel" OR "clinical marker" 

OR "serum marker") AND (“metabolomic*” OR “metabonomic*” OR “metabolite*”) 

1940* 

* Sorted on relevance, only first 500 results were examined.  

 

7.4. search strings used for medline (pubmed) database search.  

# Search Number of results 

1 TS=(ischemic stroke OR cerebral infarction OR Cerebrovascular Accident OR CVA OR apoplexy OR 

MCAO) AND TS(=biomarker* OR biomarker panel OR microRNA OR MiRNA OR serum marker OR 

laboratory marker OR gene profiling OR rna expression OR rna OR lipid* OR lipoprotein* or 

metabolomics OR metabonomics OR protein* OR metabolites) 

113 

2 (((((a genes[MeSH Terms]) ) OR ("gene expression profile")) OR ("gene expression"[Title/Abstract])) 

AND (((ischemic stroke[MeSH Terms]OR (ischemic stroke[Title/Abstract])) AND ((biomarkers[MeSH 

Terms]) OR (biomarkers, pharmacological[MeSH Terms]))) 

74 

3 (((mirna[MeSH Terms]) OR (mir-[Title/Abstract])) OR (MicroRNA-[Title/Abstract])) AND (((ischemic 

stroke[MeSH Terms]OR (ischemic stroke[Title/Abstract])) AND ((biomarkers[MeSH Terms]) OR 

(biomarkers, pharmacological[MeSH Terms]))) 

106 

4 (((protein*[Title/Abstract]) OR (proteomics[Title/Abstract])) OR (proteomic[MeSH Terms])) AND 

(((ischemic stroke[MeSH Terms]OR (ischemic stroke[Title/Abstract])) AND ((biomarkers[MeSH 

Terms]) OR (biomarkers, pharmacological[MeSH Terms]))) Filters: from 2001 - 2020 

1025 

5 ((((metabolite[Title/Abstract]) OR (metabolite[MeSH Terms])) OR (metabolomic[Title/Abstract])) OR 

(metabonomic[Title/Abstract])) AND (((ischemic stroke[MeSH Terms]OR (ischemic 

stroke[Title/Abstract])) AND ((biomarkers[MeSH Terms]) OR (biomarkers, pharmacological[MeSH 

Terms]))) Filters: from 2001 - 2020 

47 

6 (((((metabolite[Title/Abstract]) OR (metabolite[MeSH Terms])) OR (metabolomic[Title/Abstract])) OR 

(metabonomic[Title/Abstract])) AND (((ischemic stroke[MeSH Terms]OR (ischemic 

stroke[Title/Abstract])) AND (2001:2020[pdat])) AND ((diagnosis[MeSH Terms]) OR prognosis[mesh 

Terms]) 

82 

7 ( "Stroke/diagnosis"[Mesh] OR "Stroke/enzymology"[Mesh] OR "Stroke/etiology"[Mesh] OR 

"Stroke/genetics"[Mesh] OR "Stroke/pathology"[Mesh] OR "Stroke/physiopathology"[Mesh] ) AND 

(((metabolite[Title/Abstract]) OR (metabolite[MeSH Terms])) OR (metabolomics[Title/Abstract])) OR 

(metabolomics[Title/Abstract]))) 

239 

8 ( "Stroke/diagnosis"[Mesh] OR "Stroke/enzymology"[Mesh] OR "Stroke/etiology"[Mesh] OR 

"Stroke/genetics"[Mesh] OR "Stroke/pathology"[Mesh] OR "Stroke/physiopathology"[Mesh] ) AND 

(( "Biomarkers/blood"[Mesh] OR  "Biomarkers/genetics"[Mesh] )) 

395 

 

7.5. Modified Newcastle Ottowa scale for quality assessment:  

7.5.1.Selection 

1. Patient selection 

a. Yes, CT/ MRI cases of acute ischemic stroke patients confirmed by radiologist (one 

star) 

b. No description 

2. Representativeness of the cases:  

a. Consecutive or obviously representative series of cases stated in the full text (one 

star) 

b. Potential for selection biases or not stated 

3. Selection of healthy controls: 

a. Community controls stated in the full text (one star) 

b. Hospital controls 
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c. No description 

4. Definition of controls:  

a. No history of stroke or relevant co-morbidities (one star) 

b. No description of source 

7.5.2. Comparability 

1. Comparability of cases and controls on the basis of the design or analysis controlled for 

confounders: 

a. The study controls for age and gender (one star) 

b. Study matches controls with patients for other factors well-known IS risk factors 

(hypertension, hyperlipemia, diabetes) (one star) 

c. Cohorts are not comparable on the basis of the design or analysis controlled for 

confounders 

7.5.3. Exposure  

1. Ascertainment of exposure 

a. Secure record (one star) 

2. Same method of ascertainment for cases and controls: 

a. Not applicable 

3. Non-response rate:  

a. Not applicable 

7.5.4. Interpretation 

Interpretation:  

1. 5 or more: satisfactory or low risk of bias 

2. <5 stars: unsatisfactory or high risk of bias 

7.5.5. NOS per biomarker group 
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Genes 

 

  

Study Selection Comparability Exposure Total 

Patient 

selection 

Representativeness 

of the cases 

Selection 

of HC 

Definition 

of 

controls 

Controlled 

for age 

and 

gender 

Adjusts 

for most 

important 

risk 

factors 

Data in 

secured 

record?  

Samples 

equal 

between 

groups?  

 

Barr et al (77) 1 0 0 0 0 0 1 1 3 

Grond-Ginsbach et 

al (81) 

1 0 0 1 0 0 1 1 4 

O’Connell et al (78) 1 0 0 0 0 0 1 1 3 

Oh et al (82) 1 0 0 1 1 1 1 1 6 

Pan et al (83) 1 0 0 0 0 0 1 1 3 

Stamova et al (79) 1 0 0 0 0 1 1 1 4 

Tang et al (80) 1 0 0 0 0 0 1 1 3 
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MiRNA 

Study Selection Comparability Exposure Total 

Patient 

selection 

Representativeness 

of the cases 

Selection 

of HC 

Definition 

of 

controls 

Adjust for 

age and 

gender 

The study 

controls 

for most 

important 

risk 

factors 

Data in 

secured 

record?  

Samples 

equal 

between 

groups?  

 

Chen et al (92) 1 1 0 1 1 0 1 1 6 

Cheng et al (87) 1 0 0 1 1 0 1 1 5 

Giordano et al (85) 1 0 0 0 0 0 1 1 3 

Gui et al (93) 1 0 0 1 1 1 1 1 6 

Huang et al (94) 1 1 0 1 1 0 1 1 6 

Ji et al (95) 1 0 0 0 0 0 1 1 3 

Jia et al (96) 1 0 0 1 1 0 1 1 5 

Leung et al (86) 1 0 0 0 1 0 1 1 4 

Li et al (97) 1 0 0 1 1 1 1 1 6 

Long et al (98) 1 0 0 1 1 1 1 1 6 

Ma et al (88) 1 0 0 0 1 1 1 1 5 

Peng et al (99) 1 0 0 0 1 0 1 1 4 

Sepramamiam et al 

(100) 

1 0 0 0 0 0 1 1 3 

Tian et al (89) 0 1 0 0 1 0 1 1 5 
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Tiedt et al (84) 1 0 0 0 1 1 1 1 5 

Wang et al (101) 1 1 0 0 0 0 1 1 4 

Wang et al (90) 1 0 0 0 1 0 1 1 5 

Wang et al (91) 1 0 0 0 1 0 1 1 5 

Wang et al (102) 1 0 0 0 1 0 1 1 4 

Wu et al (103) 1 0 0 1 1 1 1 1 6 

Wu et al (104) 1 0 0 0 1 1 1 1 5 

Yang et al (105) 1 1 1 1 1 0 1 1 6 

Yang et al (106) 1 0 0 0 0 0 1 1 3 

Zhao et al (107) 1 1 0 0 0 0 1 1 4 

Zhang et al (108) 1 1 0 0 1 0 1 1 5 
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Proteins 

Study Selection Comparability Exposure Total 

Patient 

selection 

Representativ

eness of the 

cases 

Selection 

of HC 

Definition 

of 

controls 

Age and 

gender 

matched 

controls 

The study 

controls for 

most important 

risk factors 

Data in 

secured 

record?  

Samples 

equal 

between 

groups?  

 

Ageno et al (133) 1 0 0 0 0 0 1 1 3 

Alfieri et al (117) 1 1 1 1 0 1 1 1 7 

Algin et al (116) 1 0 0 1 0 1 1 1 5 

Allard et al (118) 1 1 0 1 0 0 1 1 5 

Alvarez-Perez et al 

(134) 

1 0 0 0 1 0 1 1 4 

Augello et al (119) 1 0 0 1 1 0 1 1 5 

Ben-assayag et al 

(120) 

1 0 0 1 1 0 1 1 5 

Can et al (135) 1 0 1 0 0 0 1 1 4 

Cano et al (136) 1 0 0 0 1 0 1 1 4 

Castellanos et al 

(137) 

1 0 0 0 0 0 1 1 3 

Cha et al (138) 1 0 0 1 0 0 1 1 4 

Dambinova et al 

(139) 

1 0 0 0 1 0 1 1 4 
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De Marchis et al 

(140) 

1 1 0 0 0 0 1 1 4 

Demir et al (115) 1 0 0 0 1 0 1 1 4 

Eldeeb et al (121) 1 0 0 1 1 1 1 1 6 

Fan et al (122) 1 0 0 1 1 0 1 1 5 

Kelly  et al (114) 1 1 1 1 1 0 1 1 7 

Kim et al (123) 1 1 0 1 0 0 1 1 5 

Kuwashiro et al 

(124) 

1 0 0 1 1 0 1 1 5 

Lu et al (141) 1 0 0 0 0 0 1 1 3 

Ma et al (125) 1 1 0 1 1 0 1 1 6 

Mazzotta et al (142) 0 0 0 0 0 0 1 1 2 

Menon et al (126) 1 1 0 0 1 0 1 1 5 

Nadar et al (127) 1 0 0 1 1 0 1 1 5 

Ning et al (113) 1 1 1 1 1 0 1 1 7 

Oraby et al (143) 1 0 0 0 1 0 1 1 4 

Perini et al (128) 1 1 0 1 0 0 1 1 5 

Rajeshwar et al 

(144) 

1 0 1 0 0 0 1 1 4 

Ren et al (129) 1 0 0 0 1 1 1 1 5 

Shenhar-Tsarfaty et 

al (130) 

1 0 0 1 1 1 1 1 6 

Waje-Adreassen et 

al (112) 

1 1 0 0 0 0 1 1 4 

Walsh et al (131) 1 1 0 1 1 0 1 1 6 
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Metabolites 

Youssef et al (132) 1 0 0 1 1 1 1 1 6 

Study Selection Comparability Exposure Total 

Patient 

selection 

Representati

veness of the 

cases 

Selection 

of HC 

Definition 

of 

controls 

Adjust for 

age and 

gender 

The study 

controls for most 

important risk 

factors 

Data in 

secured 

record?  

Samples 

equal 

between 

groups?  

 

Hu et al (148) 1 0 0 0 0 0 1 1 3 

Jiang et al (145) 1 0 0 0 1 0 1 1 4 

Liu et al (146) 1 0 0 1 1 0 1 1 5 

Peng et al (150) 1 1 0 0 1 0 1 1 5 

Schneider et al 

(147) 

1 0 0 0 1 0 1 1 4 

Zhang et al (149) 1 0 0 0 1 0 1 1 4 
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