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Abstract

English

With the explosion of biological data that has become available in recent years, there has been

an increasing interest in developing new tools to mine this data for new features and patterns.

Artificial neural networks (ANN) have the capacity to handle huge amounts of data and to un-

cover novel information that humans cannot identify. In this thesis, we used the results from

the wet-lab screening of hundreds of thousands of Escherichia coli (E. coli) colonies to evaluate

and optimise various ANN architectures for the classification of orthogonal and non-orthogonal

promoters.

Orthogonal promoters are heterologous promoter sequences that only interact with an RNA

Polymerase holoenzyme containing a specific, matched heterologous sigma factor. They are

widely used in Synthetic Biology to allow individual regulation of genes to, for example, fine-

tune the different steps of a new metabolic pathway.

In this thesis, we used ANNs to specifically identify motifs in the spacers of three promoters

PB , PF and PW of Bacillus subtilis that interact with sigma factors σB , σF and σW respectively.

These promoters are orthogonal in E. coli, but through random mutagenesis of the spacer se-

quence, a library of orthogonal and non-orthogonal promoter sequences was created. We

then trained and evaluated ANNs to classify the orthogonal and non-orthogonal promoter se-

quences and extracted learnt motifs that are available for further validation.

Specifically, our results suggest that a TATANT and TGN motif in the spacer is associated with

non-orthogonality of the PB and PW promoters, and a CWWT motif with non-orthogonality

of the PF promoter. Furthermore, despite the challenges of working with inherently noisy

and severely imbalanced datasets, we found that convolutional neural networks and fully-

connected artificial neural networks have comparable overall performance with our datasets,

and that an ANN that uses multi-task learning has many advantages.

v



Nederlands

Door de explosie van biologische data in recente jaren, is er een groeiende interesse in het

ontwikkelen van nieuwe tools die patronen kunnen vinden in deze data. Artificial neural net-

works (ANN) kunnen uit grote hoeveelheden data specifieke informatie halen die men anders

niet zou vinden. In deze thesis, gebruiken we de resultaten van de wet-lab screening van hon-

derden duizenden Escherichia coli (E. coli) kolonies voor het evalueren en optimalizeren van

verschillende ANN architecturen voor de classificatie van orthogonale en niet-orthogonale pro-

motoren.

Orthogonale promotoren zijn heterologe promotorsequenties die enkel interageren met een

RNA Polymerase holoenzyme dat een specifieke sigma factor bevat die past bij de heterologe

promotor. Orthogonale promotoren worden veel gebruikt in de Synthetische Biologie omdat

ze de individuele regulatie van genen toelaten, bijvoorbeeld wanneer men specifiek de ver-

schillende stappen in een metabolische pathway wil fijnstellen.

In deze thesis gebruiken we ANNs om motieven te identificeren in de spacers van drie promo-

toren PB , PF en PW afkomstig uit Bacillus subtilis. Deze promotoren zijn orthogonaal in E. coli,

maar door random mutagenese van de spacer sequentie werd een verzameling van orthogo-

nale en niet-orthogonale promotor sequenties bekomen. Vervolgens trainden en evalueerden

we verschillende ANNs voor het classificeren van deze promotor sequenties en extraheerden

we motieven uit de ANNs die beschikbaar zijn voor verdere wet-lab validatie.

Onze resultaten zijn, specifiek, dat een TATANT en TGN motief in de spacer van de PB en PW

promotoren geassocieerd zijn met niet-orthogonaliteit. Eveneens vonden we dat een CWWT

motief in de spacer van de PF promotor geassocieerd is met niet-orthogonaliteit. Verder, on-

danks de uitdagingen die komen kijken bij het werkenmet noisy en zeer ongebalanceerde data,

stelden we vast dat convolutional neural networks en fully-connected artificial neural networks

een vergelijkbare performantie hebben en dat een ANN die multi-task learning gebruikt veel

voordelen heeft.
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Introduction

In the first part of this introduction, the biological context of this thesis is outlined, which pri-

marily concerns the initiation of gene transcription in bacteria, with a particular focus on the

role of sigma factors and promoters. Next, a brief overview is given of methodologies used

in synthetic biology to produce reliable promoter strengths in bacteria. Then, basic Machine

Learning (ML) concepts are introduced together with the principles of artificial neural networks

before finally ending with a brief overview on theML algorithms that have been used to classify

different DNA sequences.

1.1 Initiation of gene transcription in Bacteria

Transcription is the process by which RNA transcripts are produced from a DNA template. Cen-

tral in this process is the RNA Polymerase (RNAP) holoenzyme, which is composed of a multi-

subunit core enzyme (α2ββ
′
ω) and a sigma factor. To initiate transcription, the core enzyme

first binds a sigma factor, which enables it to recognise and interact with a specific promoter

sequence (Figure 1.1).

1.1.1 Sigma factors

Sigma factors are proteins that are essential for the initiationof transcription in bacteria (Burgess

et al. 1969). This is because they dock the RNAP holoenzyme near genes by binding critical pro-

moter elements (Section 1.1.2). In addition, sigma factors facilitate the unwinding of double

stranded DNA around the Transcription Start Site (TSS) – the positionwhere transcription starts

at the 5’ end of a DNA sequence. In this way, a so-called “transcription bubble” of unwound

DNA is formed that allows the DNA template to become accessible to the RNAP holoenzyme

(Browning et al. 2004; Paget 2015).

Bacterial sigma factors regulatemany genes, and based on the type of genes that are regulated,

two types of sigma factors can be distinguished: primary and alternative sigma factors. All

bacteria have one essential primary sigma factor, which is responsible for the bulk of transcrip-

tion during normal growth. But many bacteria also contain multiple non-essential alternative

sigma factors (Wösten 1998). Escherichia coli (E. coli), for instance, has 1 primary sigma factor

σ70 and 6 alternative sigma factors (Keseler et al. 2016).

The number of alternative sigma factors varies between bacterial species, but it generally cor-

responds to the complexity of the environment. Bacteria living in a complex habitat, such as

soil, tend to have more alternative sigma factors than bacteria that are obligate pathogens
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Introduction

Figure 1.1: Schematic representation of the bacterial RNAP holoenzyme consisting of a core enzyme

(α2ββ
′
ω) and a sigma factor that is responsible for promoter recognition. The core enzyme can dock

at a specific promoter sequence after binding with a sigma factor. For this, the RNAP holoenzyme interacts

with the -35 box and -10 box promoter elements with consensus sequence TTGACA and TATAAT respectively.

In between these elements lies the spacer sequence. Ext represents the extended -10 region with consen-

sus sequence TGN, and UP represents the promoter element upstream from the -35 box. The Transcription

Start Site (TSS) marks the start of the region that is transcribed by the RNAP holoenzyme. Figure adapted

from Bervoets and Charlier (2019).

(Roberts et al. 2017). This is probably related to the role of sigma factors in the overall adapt-

ability of bacteria (Browning et al. 2004). In response to stress and environmental signals, sigma

factors act as global switches, enabling the cell to quickly change its global gene expression

program (Bervoets, Van Brempt, et al. 2018). For example, when E. coli is exposed to higher

temperatures, σ32 mediates the synthesis of heat-shock proteins and DNA-repair enzymes that

ultimately lead to the cell’s survival (Yura et al. 1999; Nonaka et al. 2006). In Bacillus subtilis (B.

subtilis), a more extreme response may be observed where a lack of nutrients triggers sporula-

tion and the creation of an environmentally-resistant spore in a process regulated by a cascade

of sigma factors (Haldenwang et al. 1981; Kroos et al. 1999).

1.1.2 Promoters

Bacterial promoters are regulatory regions of DNA situated immediately upstream of the TSS

of a gene (Figure 1.1). Their function is to bind the RNAP holoenzyme and to regulate initiation

of gene transcription. One of the defining characteristics of a promoter is its “strength”. Pro-

moter strength is a measure for the rate of transcription initiation of the associated gene. A

strong promoter produces many RNA transcripts, while a weak promoter produces few. Bacte-

rial promoter strength is mainly influenced by the DNA sequence (Li et al. 2014). Two promoter

elements, the -35 and -10 box, are especially critical in this aspect (DeMey et al. 2007). These 6-

nucleotide sequences are located upstream (towards the 5’ end of the DNA sequence) from the

TSS and interactwith the sigma factor of the RNAP holoenzyme. Inefficient binding of the sigma

factor to the -35 and -10 box has a significant effect on promoter strength for most bacteria

2
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(Jensen et al. 1998). For that reason, the sequence of these promoter elements is conserved.

For E. coli promoters binding the primary sigma factor, the -35 box and the -10 box have the

consensus sequence TTGACA and TATAAT respectively (Hawley et al. 1983). In general, promot-

ers that have near-consensus sequences for the -35 and -10 box are stronger, while promoters

that deviate significantly from this consensus are weaker (Browning et al. 2004).

The spacer sequence separates the -35 and -10 box, and eventhough it has no consensus se-

quence, its length and sequence still influence the promoter strength. However, this is to a

lesser extent than the -35 and -10 box (Li et al. 2014; Jensen et al. 1998).

Some bacterial promoters have two additional elements that can also interact with the RNAP

holoenzyme: the extended -10 region – a 3 bp motif with consensus sequence TGN (N being

any nucleotide) located immediately upstream of the -10 element, and the UP element – a 20

bp region located upstream of the -35 box (Figure 1.1).

In conclusion, sigma factors and promoters play a critical role in the initation of gene transcrip-

tion in bacteria. Both promoters and sigma factors determinewhich genes are transcribed, and

promoters specifically also determine how high the rate of initiation of gene transcription is.

This is largely determined by the -35 box and -10 box, but the spacer also has some influence.

1.2 Synthetic biology

Synthetic biology is an interdisciplinary field that combines elements of engineering andmolec-

ular biology to (re)design biological components that do not already exist in the natural world.

Improvements in the speed and cost of DNA synthesis enable researchers to create novel bi-

ological components such as promoters, ribosome binding sites or gene-encoding DNA se-

quences. The individual components are then combined with increasing complexity to form

circuits, pathways and systems that have real world applications including for example the cre-

ation of a renewable source of plastic (Yim et al. 2011), the production of biofuels (Atsumi et

al. 2008), the degradation of pollutants (Petänen et al. 2001; Cases et al. 2005), and the pro-

duction of medium-chain fatty acids (Liu et al. 2020).

1.2.1 Engineering bacterial promoters with reliable strength

Many synthetic biology applications require a specific level of gene expression. For example,

in the overexpression of a particular gene, there is a careful balance between too high ex-

pression so that resources for growth are used, and too low expression so that the effect of

overexpression is not visible. Since bacterial gene expression starts at the transcriptional level,

precise gene expression is most often managed using synthetic or heterologous promoters.

These promoters are then rationally designed to produce the desired level of gene expression.

However, unlike endogenous promoters, synthetic promoters have not had millions of years

of co-evolution with other cellular processes, and as a result, spurious interactions can occur

between the promoter and the RNAP holoenzyme of the bacterial host (Cardinale et al. 2012).

This crosstalk can lead to aberrant gene expression levels.

To design promoter sequences with reliable strength, three main strategies have been devel-

oped. The first strategy is to use robust promoters that arewell-characterised and standardised

(Mutalik et al. 2013) i.e. sequences that have been validated in many settings and conform to

specific standards.

3
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The second strategy is to use orthogonal promoters, which by definition are less dependent of

the host’s regulatory system (Lorenzo 2011). More specifically, in bacteria, orthogonal promot-

ers are promoters that do not bind with the host RNAP holoenzyme. They either bind with

an RNAP holoenzyme that contains a specific heterologous core enzyme such as the bacte-

riophage T7 core enzyme, or with an RNAP holoenzyme that contains a specific heterologous

sigma factor (Rong et al. 1998; Bervoets, Van Brempt, et al. 2018). In the latter case, bacterial

strains can then be engineered to express that heterologous sigma factor so that the gene con-

trolled by the orthogonal promoter is expressed independently.

Both standardised and orthogonal promoters can be found in the registry of standard biolog-

ical parts, a collection which counts over twenty thousand standardised and validated DNA

sequences (Knight 2003). To date, the registry has many contributors consisting of both estab-

lished labs and student teams participating in the annual International Genetically Engineered

Machine competition.

The third strategy to engineering reliable promoter strength ismore akin to a brute forcemethod

where a large part of the sequence space of a promoter is systematically searched. Rather

than elucidating the relationship between the sequence and function, a collection or “library”

of randomised promoter sequences is created and screened for promoters yielding the de-

sired level of gene expression. As is often the case with brute force methods, this method

suffers from combinatorial explosion: the longer the promoter sequence, the more possible

sequences there are. Therefore, rather than randomising the entire promoter sequence, ran-

domising particular regions can prove just as effective.

As described earlier, the -35 and -10 promoter elements are essential for promoter strength,

which makes these sequences an attractive starting point for randomisation. However, pro-

moter strength for some bacteria – most notably E. coli – is much less dependent on these

conserved sequences than other prokaryotes (Jensen et al. 1998; De Mey et al. 2007). More-

over, since the -35 and -10 promoter elements bind the sigma factor, randomising these se-

quences can cause the promoter to lose specificity towards its native sigma factor (Bervoets,

Van Brempt, et al. 2018). Therefore, the spacer sequence – being of lesser importance to sigma

factor specificity – can be randomised and still produce a large variation in promoter strength

(Jensen et al. 1998).

In conclusion, standardised and orthogonal promoters are feasible options to attain reliable

promoter strength, provided they are available. Randomised promoter libraries can also be

used, but the design and screening of promoter libraries still requires considerable effort.

1.3 An introduction to Machine Learning

Machine Learning (ML) is a discipline that involves the study of algorithms that have the abil-

ity to learn without following explicitly programmed instructions (Samuel 1959). Rather than

being told what to learn, an ML algorithm learns by finding patterns and inferring relationships

from examples. Once available, a trained ML algorithm can be used for future prediction using

novel datasets.

The applications of ML algorithms are very diverse, ranging from simply detecting if an email is

spam to diagnosing patients (Christina et al. 2010). Diseases such as Alzheimer’s disease and

breast cancer – to name just a few – have been predicted with state-of-the-art performance

(Sarraf et al. 2016; Rakhlin et al. 2018). Through the use of medical records, it has even been
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X2

X1

Classification

Y

X3

Regression

Figure 1.2: Difference between a classification and a regression task. For the classification task, a model

(black line) is fitted that can seperate the labels (black, white) using samples containing the features X1 and

X2. For the regression task, a model (black line) is fitted that approximates the values of the labels Y using

X3.

possible to reliably assess the suicide risk of patients (T. Tran et al. 2014). Other applications

include the design of self-driving cars and improved quality control on assembly lines (Bojarski

et al. 2016).

Despite many good uses, ML also has the potential to be misused. Facial recognition provides

an easy-to-use biological pin-code, but it also poses a genuine threat to privacy as it further en-

ables the unsolicited monitoring of people. Additionally, the rise of synthetic videos generated

byMLmodels – so called “deepfakes” – add newmeaning to the term fake news (Suwajanakorn

et al. 2017). In the following Sections, the basic concepts of ML are introduced.

1.3.1 Supervised Learning

Supervised learning is the ML task of learning a function that maps an input to an output from

data consisting of example input-output pairs (Russell et al. 2010). In supervised learning, each

sample of a dataset is accompanied by a label and the goal is to predict the labels using the

samples.

Within the group of supervised learning algorithms, further distinction is made based on the

label (Figure 1.2). If the label is a continuous numerical variable, e.g. the price of a house, then

the supervised learning task is regression. If it is a discrete categorical variable, e.g. the colour

of a car, then the supervised learning task is classification. In this thesis, the labels are binary

(samples are either a positive sample or a negative sample) so the supervised learning task is

classification.

1.3.2 The bias-variance trade-off

In supervised learning, a model is created that estimates the true relationship between the

samples and the labels. The estimations or predictions of the model are dependent of how

accurate the model is: the closer the model is to the true relationship, the closer the predic-

tions will be to the true labels. The difference between the model and the true relationship is

therefore called the prediction error, and using the appropriate supervised learning algorithm

can reduce it. The prediction error determines largely* how close the predictions will be to the

*The predictions are also dependent on a noise term that is irreducible.
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Model Complexity

Error
variance

bias

prediction error

underfitting overfitting

Underfitting Optimal Complexity Overfitting

X1

X2

X1

X2

X1

X2

A

B

Figure 1.3: Overfitting and underfitting as a function of model complexity. (A) An increase in model com-

plexity causes an increase in variance and a decrease in bias. The dashed line represents the complexity of

the model with the lowest prediction error. Deviation from this optimum causes underfitting or overfitting.

(B) Theoretical dataset consisting of two variables (X1, X2) and two labels (black, white) is fitted with a theo-

retical model with increasing complexity from left to right. The left model is too simple, and can never cap-

ture the non-linear relationship between the two labels, while the right model is too complex and captures

the noise in the training set.

true labels and it can be decomposed into two sources of error: the bias and the variance.

But beforewe can elaborate on this, an important distinction has to bemade. In any supervised

learning task, the available dataset is always split into a training set (e.g. 80% of the available

data) and a testing set (e.g. 20% of the available data). The training set is used to build a

model, while the testing set is used to estimate its performance. The reason for this is further

explained in Section 1.3.3.

The bias of a model refers to how well a model is able to predict the labels from the training

set. A model with high bias pays very little attention to the training set and fails to capture

meaningful patterns. Such amodel is unable to generalise to other samples. This phenomenon

is called underfitting.

The variance of a model refers to the amount by which a model changes if a different training

set is used (James et al. 2013). If a model is sensitive to small changes in the training set, then

it has a high variance. A model with high variance is prone to capturing patterns and intricacies

– in essence noise – that is unique to that particular training set. This phenomenon is called

overfitting.

High bias is caused by a model that is too simple, while high variance is caused by a model that

is too complex (Figure 1.3). Reducing one error, will therefore cause the other one to increase.
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This tension is called the bias-variance trade-off. One of the main challenges in supervised

learning is finding a model that has both low bias and low variance. Essential to this, is how

the model is evaluated.

1.3.3 Performance Evaluation

Earlier, it was stated that the available data is split into a training set that is used to build a

model, and a testing set that is used to estimate its performance. Intuitively, it might seem

weird to make this split, considering that in doing so the model can not learn meaningful rela-

tions that are present only in the testing set. Nonetheless, this split is necessary as the perfor-

mance on the testing set provides an unbiased estimate of the generalisation capability of the

model towards unseen samples. If the model were to be evaluated on the same data that was

used to build it, the performance would be overestimated. For example, imagine that the ML

model is a student taking an exam: if questions on the exam (the testing set) are the same as

the questions in the textbook (the training set), then the student could just remember every

answer in the textbook and get a perfect score without truly learning anything.

Aside from a train-test split, often, an additional split of the available data is made to create

a validation set. The validation set is used to monitor the performance of the model during

training. Based on the performance on the validation set, certain parameters of the model can

be adjusted.

One downside from randomly splitting the dataset is that it can lead to unstable performance

on the testing set due to the absence or presence of certain samples in the training set. To com-

bat this effect, cross-validation can be used (Kohavi et al. 1995). Cross-validation is a perfor-

mance evaluationmethod that calculates a more reliable performance by averaging the results

ofmultiplemodels trained and tested ondifferent subsets of the data. In k-fold cross-validation,

the available data is split into a number of groups (k), and in an iterative process, each group is

used to test a model that was trained on the remaining groups until all groups have been used

as testing set.

Additionally, if the dataset is imbalanced, stratified k-fold cross validation splits in a stratified

manner so that each group has a similar ratio of labels. For example, if a dataset has 20%

positive samples and 80% negative samples, then stratified k-fold cross validation will split the

data into training and testing sets that each also have 20% positive samples and 80% negative

samples.

When evaluating the performance of a model on the testing set, different metrics can be used.

Depending on the dataset, some evaluation metrics are more appropriate than others. The

confusion matrix is a table that enables the visualisation of the performance of a supervised

learning algorithm on a classification task by showing the amount of correct and incorrect pre-

dictions for each class (Stehman 1997). In Figure 1.4, a confusion matrix is shown for a binary

classification problem. True positives (TP) and true negatives (TN) are samples that were cor-

rectly classified, while the false positives (FP) and false negatives (FN) are samples that were

incorrectly classified as the opposite class. Using the confusion matrix, different evaluation

metrics can be defined.

Accuracy, perhaps the most common evaluation metric for classification, can be defined as

the proportion of correct predictions among all predictions (Equation 1.1). However, accuracy

makes the assumption that false negatives and false positives are equally important, while in

many scenarios, it can be more important to minimise the number of false negatives than to

7



Introduction

True

positives

(TP)

False

negatives

(FN)

False

positives

(FP)

True

negatives

(TN)

Actual class

Predicted class

P N

P

N

Figure 1.4: Confusion matrix for binary classification. P is the positive class, N the negative class.

minimise the number of false positives. For example, when diagnosing patients, not classifying

a sick patient with a rare disease (FN), is much worse than classifying a healthy patient with a

hypothetical rare disease (FP). After all, the patientwith the rare diseasemight need treatment.

Moreover, for imbalanced datasets, i.e. datasets in which the number of positive samples is

much lower than the number of negative samples, accuracy can be misleading. For example, if

a disease is assumed to have a prevalence of 1%, amodel that classifies every patient as healthy

would achieve 99% accuracy even though it has no predictive power.

Accuracy =
TP + TN

TP + TN + FP + FN
(1.1)

The ReceiverOperating Characteristic (ROC) curve is a plot of the True Positive Rate (TPR) (Equa-

tion 1.2) in function of the False Positive Rate (FPR) (Equation 1.3) at different threshold set-

tings of a binary classification algorithm (Figure 1.5). The TPR defines the amount of correctly

classified positive samples among all positive samples, while the FPR defines the amount of in-

correctly classified positive samples among all negative samples.

TPR =
TP

TP + FN
(1.2)

FPR =
FP

TN + FP
(1.3)

Suppose that a binary classification model outputs a probability that a sample is positive. In-

tuitively, a value of 0.5 seems the most appropriate threshold for the probability that decides

whether or not a sample should be classified as a positive sample. Decreasing the threshold

of 0.5 to 0.4 increases the chance that a sample is classified as positive. In turn, less samples

will incorrectly be classified as negatives (FN), but more samples will be incorrectly classified as

positives (FP). Choosing a different threshold for classification thus enables more importance

to be assigned to either the false positives or false negatives. In a ROC plot, all the possible

values for the TPR and FPR of a model are plotted by shifting the probability threshold. There-

fore, in contrast to accuracy, the ROC plot gives an overall view of the predictive capability of a

model regardless of which threshold for classification is chosen.
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Figure 1.5: Theoretical Receiver Operating Characteristic (ROC) plot and Precision Recall (PR) plot. The

red dashed lines represent the ROC and PR curve for a model that classifies samples randomly. The ratio of

positive samples is 0.25, which serves as the baseline for the PR plot.

To compare the performance between two models using the ROC curve, the area under the

curve (AUC) of the ROC curve is used. The ROC AUC is a metric which indicates how well the

positive samples are separated from the negative samples across all thresholds. A model that

perfectly classifies all samples has a ROC AUC of 1, while a model that randomly classifies all

samples has a ROC AUC of 0.5.

In an imbalanced dataset with a minority of positive samples, the Precision Recall (PR) curve

can be more informative than the ROC curve (Saito et al. 2015). The PR curve is a plot of

the precision as a function of the recall. The recall is exactly the same as the TPR, and the

precision is the amount of correctly classified positive samples among all predicted positive

samples (Equation 1.4).

Precision =
TP

TP + FP
(1.4)

Similar to the ROC curve, the precision and recall of a model are plotted for all possible thresh-

olds and to compare the performance between models. Likewise, the AUC is also used and a

perfect model has a PR AUC of 1. Since the TPR and the recall are the same metric, the differ-

ence between the ROC and the PR is the precision and the FPR. The precision is informative

about the positive class, while the FPR is informative about the negative class. In a dataset

with a minority of positive samples, the FPR stays misleadingly small for more thresholds since

the amount of TN in the denominator is likely much higher than the FP. For this reason, the PR

AUC is preferred over the ROC AUC in imbalanced datasets.

One downside of this metric though is that it should always be compared with its “baseline”,

which is the ratio of positive samples. Therefore, it is difficult to compare PR AUC values be-

tween different datasets.

In conclusion, there are many metrics that can be used to define how good the predictions

of a model are. In this thesis, both the PR AUC and the ROC AUC are used. The PR AUC is

used because the data is imbalanced, and the ROC AUC is used to give an indication of the

performance of a model regardless of the ratio of positive samples.
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1.4 Artificial neural networks

Artificial neural networks (ANNs) are simultaneously one of the oldest and newest domains in

ML. Research beganmid-twentieth century when psychologist Frank Rosenblatt introduced the

perceptron, a binary classification algorithm based on the biological neuron (Rosenblatt 1957).

1.4.1 The Perceptron

Summarised in Equation 1.5 and Figure 1.6, the perceptron algorithm starts by initialising a

vector of weights ~w = (w1 w2 ... wp)
T and a bias* b with random values. Then, iteratively

for each sample ~x = (x1 x2 ... xp) of the training set X (with x1 x2 ... xp the features of ~x ), a
weighted sum is calculated by multiplying every feature from ~x with the corresponding weight

from ~w and summing the weighted inputs together. The weighted sum is then offset by the

bias b and this output is passed through an activation function that binarises the output ŷ .

ŷ =


1 if

p∑
j=1

wjxj + b ≥ 0

0 if

p∑
j=1

wjxj + b < 0
(1.5)

1

x1

x2

...

xp

Σ

b

w1

w2

wp

ŷ ∈ {0, 1}
input

bias

activation

function

Figure 1.6: Diagram of the perceptron. Each sample ~x = (x1 x2 ... xp) is multiplied by the corresponding

observation from weight vector ~w = (w1 w2 ... wp)
T . Then, the weighted inputs are summed and offset

by the bias b. Lastly, the weighted sum (Σ) is transformed to a binary output ŷ using the step function H .

The weights of the perceptron are a measure of the relevance of each input variable to the

classification of the training data – aweightwith a large absolute valuewill have a bigger impact

on the weighted sum (and the eventual label) than a weight with a smaller absolute value. The

activation function, as the name suggests, is a function that determines when the perceptron

*Not to be confused with the bias from the bias-variance trade-off
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activates – in this case, when the output is 1. If the input to this function is higher than the

threshold 0, then the perceptron activates, otherwise it does not (Figure 1.6). Before being

transformed by the activation function, the weighted sum is offset by the bias. The addition

of the bias to the weighted sum means that a higher bias value makes it more likely for the

perceptron to activate. The bias thus shifts the threshold for activation, and can be seen as a

parameter for the overall sensitivity to the input.

The perceptron algorithm updates the weights and the bias for every sample from the training

data based on whether or not the predicted label was true. After multiple passes of the entire

training set and many updates, the weights and the bias have converged to values that yield an

optimal classification of the labels of the training data. The perceptron thus learns by updating

its own parameters.

Initially, this algorithm seemed very promising: the New York Times even reported the percep-

tron as “The embryo of an electronic computer that the navy expects will be able to walk,

talk, see, write, reproduce itself and be conscious of its existence” (Olazaran 1996). These

high expectations were however never realised as it was proven that the perceptron can only

classify data that is linearly separable (Minsky et al. 2017). Interest was later renewed when

multilayer perceptrons were introduced together with the backpropagation algorithm as an ef-

ficient learning algorithm (Werbos 1974). This event marks the birth of modern ANNs, which

are essentially layers of perceptrons that feed into each other.

1.4.2 Layers of perceptrons

A biological neuron by itself does not provide the means for intelligence. Similarly, the percep-

tron by itself is too simple a model. However, when interconnected as neurons in a brain, a

network of perceptrons is capable of complex classification.

To do this, the nodes of an ANN are organised in distinct layers: there is one input layer, one

or more hidden layers and one output layer (Figure 1.7). These layers are also said to be fully

connectedi, that is, the output of each node is part of the input of all nodes of the next layer.

For the sake of clarity, in Figure 1.7, an ANN architecture is shown with only two input nodes,

three hidden nodes and two output nodes. However, in practice, it is not uncommon to see

multiple hidden layers with hundreds of nodes.

The output of a single node – from now on called the activation value – is still computed in

the same way as the perceptron, but for computational efficiency, the activation values are

computed per layer instead of per node. Weight vectors and biases are stacked vertically and

using matrix algebra, the activation values for every node in a layer are computed in one calcu-

lation. This can be seen in Figure 1.7, where the activation values a(2) for the hidden layer are

calculated. First the dot product of the activation values of the previous layer x and the weight

matrix of the current layer W (2) is calculated. This operation yields a vector of the weighted

sum for every node, which is then offset with the bias vector b(2) and transformed using the

activation function g .

The activation functions in an ANN differ from the one used in the perceptron. In the hidden

layers, a rectified linear unit function (ReLU) is typically used that sets negative input values to

zero while retaining positive input values. In the output layer, the softmax function is used that

transforms real values into probabilities that sum to one.
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x2

1
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(2)
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3
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(3)
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a
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2
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a(2) = g(W (2) · x + b(2))

Figure 1.7: Diagram of an artificial neural network. Samples are propagated through the network from the

input layer to the output layer. Connections coming from a 1 node are bias values since they are independent
from any activation or input. Activation values are calculated per layer instead of per node, as shown by the

equation for calculating the activation values a(2) of the hidden layer. Elements of this equation are color

coded using the corresponding elements of the diagram.

1.4.3 Gradient Descent

Similar to the perceptron, an ANN learns to classify a sample by updating its weights and biases.

However, unlike the perceptron with only a single weight vector and one bias value, an ANN

has many more parameters that need to be optimised. To calculate the change that needs to

occur for every weight and bias in the network, a loss function is defined that quantifies the

distance between a prediction and its label. A higher loss equals a worse prediction.

For a network with two output nodes that outputs classification probabilities in the output

layer, typically the log loss is used. As the predicted label moves further from the true label,

the log loss increases exponentially.

To minimise the loss function and thus increase the performance of the model, the partial

derivatives of the loss function are calculated with respect to all the weights and biases of

the ANN. This is because the derivative of a single parameter of the loss function describes

the slope of the loss function for that parameter. In turn, the slope is an indication of how

a parameter needs to change to minimise the loss function. So in other words, the partial

derivatives of the loss function with respect to all the weights and the biases are an indication

of how these parameters need to change so as to decrease the loss most rapidly. And since the

loss has to be minimised for all the training samples, the average of those partial derivatives is

calculated.

Gradient descent is the optimisation algorithm that does the aforementioned. It is so named

because the vector containing the partial derivatives for every parameter of an ANN is called

the gradient vector. Using that gradient vector, the loss of an ANN is minimised. Intuitively, the

process of updating the parameters of the ANN by calculating the gradient of the loss function

is analogous to a ball rolling down a valley (Figure 1.8). In this example, the value of θ that yields

12
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Gradient Descent

Loss

θ

Figure 1.8: Gradient descent as a ball rolling down a valley. The red ball represents a value of θ with a loss

as described by the function θ2 − 10θ + 25. At the current position of the ball, the slope (dashed blue line)

is calculated. The ball then rolls down the valley according to the slope. At that new position again the slope

is calculated and after multiple epochs (arrows) the ball stops at θ = 5, with a loss of 0.

the smallest loss is found by calculating the slope of the loss function for the current value of

θ (the position of the ball). According to the slope, the value of θ is adjusted and this process

continues until eventually a minimum loss is reached.

For a loss functionwith only one parameter, such as the one in Figure 1.8, calculating the deriva-

tive is straightforward. In reality, the loss function of a small ANN can have thousands ofweights

and biases per layer. Therefore, gradient descent uses the backpropagation algorithm to effi-

ciently calculate the gradient vector of all the ANN parameters.

Normal gradient descent uses all samples to calculate the average gradient vector. However,

since ANN applications often require many samples, calculating the average gradient vector

over all samples can be computationally expensive. Therefore, modern alterations of gradient

descent such as mini-batch stochastic gradient descent and Adaptive Moment Estimation cal-

culate the average gradient vector with small batches of samples (Bottou et al. 2008; Kingma

et al. 2014). In this way, accuracy of the average gradient vector is traded for computational

efficiency and speed.

1.4.4 Regularisation

To capture complex relationships, ANNs oftenhave thousands of parameters and, asmentioned

in Section 1.3.2, overly complex models can result in overfitting. To prevent overfitting for

ANNs, several specific regularisation methods have been developed. In this thesis, all of the

regularisation methods discussed below were used to combat overfitting.

The first, called early stopping, entails stopping the training process in time. During training,

the entire training set is propagated through the network multiple times in what is termed

epochs. The more epochs an ANN is trained for, the better it learns to classify the samples,

but conversely, the chance of overfitting is also increased. Therefore, the loss of an ANN is

monitored during training with a separate validation set and once the loss on the validation set

ceases to decrease, training is stopped.

The second method is called dropout. Nodes in an ANN learn based on the activations from

13
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standard ANN after applying dropout

Figure 1.9: Dropout removes a random fraction of nodes during training. Figure adapted from Srivastava

et al. (2014).

other nodes because samples are propagated from one layer to the next. This means that it is

possible for some nodes to learn to fix mistakes from nodes in prior layers. This effect is called

co-adaptation and it is computationally wasteful and often leads to overfitting. Dropout is a

regularisation method that, during training, temporarily removes a random fraction of nodes

along with their connections (Figure 1.9) (Srivastava et al. 2014). This has the effect of reducing

co-adaptation between nodes by making the presence of other nodes unreliable.

Finally, batch normalisation, which was originally developed to speed up training, also has a

regularisation effect (Ioffe et al. 2015). Batch normalisation is a transformation that is applied

to the activations (and inputs) of an ANN. In batch normalisation, each activation of a layer a(l)

is transformed to a
(l)
t per mini-batch by subtracting its mini-batch mean µB and dividing by the

mini-batch standard deviation
√

σ2
B (1.6).

a
(l)
t = γ(

a(l) − µB√
σ2
B

) + β (1.6)

In essence, this means that the input distribution of activations to a layer is scaled and shifted

to havemean 0 and variance 1 permini-batch in a processwhich is also calledwhitening of data.

Batch normalisation also provides two learnable parameters γ and β per layer that enablemini-

batch stochastic gradient descent to transform the normalised data into a more optimal distri-

bution.

1.4.5 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of regularised ANN that is specialised in clas-

sifying images (LeCun et al. 1995). In a standard fully connected ANN, images are flattened to

an array of pixels before being passed to the input layer. However, in a CNN, the input and the

first hidden layers of a CNN are 3-dimensional: they have a height, a width and a depth. Im-

ages can thus be passed to the input layer as is without losing any spatial information. Apart

from this attribute, the image-classifying properties of a CNN can be attributed to its use of

convolutional layers.
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Figure 1.10: Diagram of a convolutional layer and the architecture of a Convolutional Neural Network

(CNN). (A) The feature maps of a convolutional layer are constructed by convolving filters of weights over

the previous layer. (B) A CNN consists of an input layer followed by convolutional and pooling layers and

ends in fully-connected hidden layers (fc1, fc2) and one output layer. Figure adapted from https://towards-

datascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional layers are hidden layers that are connected to the previous layer by convolutions.

A convolution is an operation where a 3-dimensional volume of weights, called a filter, slides

over the nodes of the previous layer. For each volume of nodes that the filter slides across, one

activation value is calculated in the convolutional layer. After a complete convolution, one 2-

dimensional depth slice of nodes has been added to the convolutional layer. The convolution

of multiple filters ultimately results in a 3-dimensional volume of nodes.

A depth slice of the convolutional layer is called a feature map (Figure 1.10 A). This is because

the convolution of a filter corresponds to the detection of a feature. Filters are, in essence, fea-

ture detectors which by the convolution operation are used to scan an input image. Like the

weights in a standard ANN, filters are not meaningful before a CNN has been trained. However,

through gradient descent, filters are tuned so that they become meaningful feature detectors

such as edge or texture detectors. The feature maps of a convolutional layer are thus a repre-

sentation of those features that are important for classifying the input images. Themore filters

that are used, the more features that can be detected.

Convolutional layers also generally have fewer weights than a fully-connected layer. Through

convolution, each node in a feature map of the convolutional layer is only connected to the

previous layer via one filter of weights. Additionally, since the same filter is used to produce

all the activations in a feature map, the weights for an entire feature map are identical. This

drastically lowers the total number of weights, which in turn decreases the chance of a CNN to

overfit.

After a convolutional layer, a pooling layer is sometimes used to aggregate the information

contained in the feature maps. The pooling layer further downsizes the feature maps and re-

duces the number of weights. After a certain amount of convolutional and pooling layers, the

resulting feature maps are flattened and fed into one or more fully-connected layers, which are

connected to one output layer (Figure 1.10 B).

To make the distinction between a standard ANN and a CNN more clear, standard ANNs from

now on will be called fully-connected ANNs (fcANN).
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Figure 1.11: Example of one-hot encoding of a DNA sequence as input to a CNN or a fcANN. The one-hot

encoded sequence matrix is flattened before being passed as input to the fcANN.

1.5 The classification of DNA

The classification of DNA is a problem in computational biology that has been approached us-

ing a variety of methods. Initial DNA classification algorithms were based on intrinsic features,

specifically using the frequency of nucleotides per position in a DNA sequence to classify se-

quences (Pribnow 1975; Stormo et al. 1982).

Later, more sophisticated algorithms also used physicochemical and conformational features

such as DNA stability, the DNAmajor groove depth/width and the DNA propeller twist with the

aim of capturing more complex patterns (Bauer et al. 2010; Sonnenburg et al. 2006; T. Zhou et

al. 2015; Ghandi et al. 2014).

In recent years, however, through technological advances in hardware and the use of Graphi-

cal Processing Units, fcANNs and CNNs have been applied successfully to sequence-based ge-

nomics problems (Cireşan et al. 2010; Yu et al. 2019). In particular, CNNs that were originally

used in computer vision, are now applied in state-of-the-art methods to classify sequences or

find motifs (J. Zhou et al. 2015; Alipanahi et al. 2015). This is because of their ability to extract

features that are encapsulated in the “raw” DNA sequence such as the presence ofmotifs (Zeng

et al. 2016). This is especially relevant in long DNA sequences where making a fully-connected

ANN would not be feasible due to the number of weights. CNNs thus reduce the chance of

overfitting by transforming the input DNA sequence to a collection of motifs.

To input a DNA sequence to an ANN, the sequence has to first be converted into numerical val-

ues. This is typically done with one-hot encoding (Figure 1.11). Here, each position in the DNA

sequence is converted into a vector of length four that indicates which nucleotide is present at

a particular position. For example, in Figure 1.11, the first position is represented by the vector

(0, 0, 1, 0). The 1 at the third position represents a G nucleotide. The matrix that is obtained

by stacking all these vectors can then be used as the input to a CNN or to a fcANN once it has

been flattened.
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2.1 Introduction

Genetically-engineered bacteria are used on an industrial scale for a wide range of purposes.

They have for example been used to sense and degrade pollutants (Petänen et al. 2001; Cases

et al. 2005), to create a renewable source of plastics (Yim et al. 2011), to produce biofuels (At-

sumi et al. 2008), to invade cancerous cells (Zu et al. 2014) and to cost-effectively synthesise

pharmaceuticals such as human insulin (Goeddel et al. 1979), ethionamin, a compound cyto-

toxic toMycobacterium tuberculosis (Weber et al. 2008), and artemisinin, an anti-malarial drug

(Martin et al. 2003; Ro et al. 2006).

Despite an overwhelming number of success stories, the engineering of novel functions in bac-

teria is hampered by an inability to ensure reliable (heterologous) gene expression. As dis-

cussed earlier in Section 1.2.1, synthetic promoters can have unwanted crosstalk with the bac-

terial RNAP holenzyme, which can lead to unexprected promoter strength and subsequently

aberrant gene expression levels (Cardinale et al. 2012). Orthogonal promoters, instead, pro-

vide more reliable gene expression as they only interact with an RNAP holoenzyme containing

a particular heterologous sigma factor.

To enable the use of different orthogonal promoters simultaneously and independently from

each other, orthogonal promoters can be engineered to ensure that they do not interact with

other heterologous sigma factors. Using such promoters, complex pathways can be uncoupled

in separate modules that are then regulated independently of each other by different sigma

factor-promoter pairs. This can, for example, give enhanced control over the synthesis of path-

way intermediates, which may increase overall production yield (Bervoets and Charlier 2019).
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2.2 Aims

In this thesis, we aim to provide insight in the optimal design of orthogonal promoters by un-

covering motifs in the spacers of synthetic promoters – derived from B. subtilis – that under-

lie orthogonality or non-orthogonality in E. coli. For this, we build and evaluate ML models to

carry out two classification tasks.

1. Todistinguish non-orthogonal promoter sequences fromorthogonal promoter sequences

in E. coli (Figure 2.1 A).

2. Todistinguish non-orthogonal promoter sequences fromorthogonal promoter sequences

that are independent as individual sigma factor-promoter pairs in E. coli . These orthog-

onal promoters only interact with one particular heterologous sigma factor (Figure 2.1

B).

Using feature visualisationmethods, learnt features can then be extracted from theseMLmod-

els.

σ70 σB

5

orthogonal

promoter DNA

E. coli primary

sigma factor

B. subtilis heterologous

sigma factor

E. coli
A

σ70 σB σF

5 5

orthogonal

promoter DNA

E. coli primary

sigma factor

B. subtilis heterologous

sigma factors

E. coli
B

Figure 2.1: Schematic representation of the orthogonal promoters that we aim to classify. In light gray

is the RNAP core enzyme, σB and σF are heterologous sigma factors from B. subtilis. (A) The orthogonal

promoter does not interact with the host primary sigma factor σ70, but it interacts with factor σB . (B)

The orthogonal promoter does not interact with the host sigma factor nor does it interact with an σB . It

only interacts with σF . In this example, σF and the orthogonal promoter are an independent sigma factor-

promoter pair that can be present in the cell together with σ70 and σB without any crosstalk.
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In this Section we describe the construction and evaluation of artificial neural networks (ANN)

to classify orthogonal promoters from non-orthogonal promoters in E. coli. This chapter starts

with an overview of how the nine datasets for this thesis were created. Then, the performance

of two types of ANNs: fully-connected ANNs (fcANN) and Convolution Neural Networks (CNN)

are compared. Next, some space is dedicated to exploring a specific subset of each dataset

that is supported by multiple observations, we investigate the use of multi-task learning to

improve performance, and finally an analysis of the best model is made, fromwhich we extract

the features that the model has learnt.

3.1 Data Generation

To train a classification algorithm, a dataset with labeled samples is needed. In this case, that

is a set of orthogonal and non-orthogonal promoters in E. coli. For this, three promoters PB ,

PF and PW were selected from B. subtilis. Each of the aforementioned promoters interacts

with its respective sigma factor σB , σF or σW , native to B. subtilis. However, PB , PF and PW

do not interact with σ70, the primary sigma factor of E. coli – and so, by definition, these pro-

moters are orthogonal in E. coli. The orthogonal nature of these B. subtilis promoters in E. coli

can be attributed mainly to their consensus sequence, which is significantly different from the

consensus sequence of σ70 (Bervoets, Van Brempt, et al. 2018).

For each of the orthogonal promoters, three synthetic promoter libraries were created with

Polymerase Chain Reaction to create a total of nine libraries (Figure 3.1). Using randomprimers,

the spacer sequence in between the -35 and -10 box of the promoter was randomised. By

only randomising the spacer region and not the -35 and -10 box of the orthogonal promot-

ers, the specificity of the synthetic promoters towards their native B. subtilis sigma factor was

conserved whilst simultaneously allowing these synthetic promoters to lose their orthogonal-

ity (Bervoets, Van Brempt, et al. 2018). This means that the randomised synthetic promoters

might interact with σ70 in E. coli even though the original promoters were orthogonal.

Next, the sequenceswere tested for orthogonality. For this, all nine synthetic promoter libraries

were cloned in fluorescent reporter plasmids and transformed into E. coli K12 MG1655 strains

expressing either the genes for σB , σF , σW or into the Wild Type (WT) strain. Red fluorescent

protein expression was used as a reporter to characterise library promoter expression, while

a constitutively expressed green fluorescent protein was used to correct for extrinsic factors.

The E. coli cells containing the different promoter sequences were then sorted into two bins

(positives and negatives) via Fluorescence Activated Cell Sorting (FACS) and sequenced using

Next Generation Sequencing (NGS) on an Illumina MiSeq system.
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Figure 3.1: Schematic overview of the experimental setup. Promoter libraries were made from promoters

PB , PF and PW . These promoter libraries were cloned in fluorescent reporter plasmids and transformed in

E. coli strains containing either the genes to express the B. subtilis sigma factors σB , σF , σW or in Wild Type

(WT) E. coli expressing only the primary sigma factor σ70. Lastly, the samples were sorted in a positive and a

negative bin based on the fluorescence from the red and green fluorescent proteins in the reporter plasmid

using FACS.

Ultimately, nine datasetswere created. Threedatasets containing synthetic promoter sequences

that were tested for orthogonality in WT E. coli: BWT , FWT , WWT and six datasets with syn-

thetic promoter sequences that were tested for orthogonality in an E. coli strain that expresses

both the genes encoding for theWT primary sigma factor σ70 as well as the genes encoding for

σB , σF or σW : BF , BW , FB , FW ,WB ,WF . Each dataset is denoted by a capital letter that refers

to the type of promoter library that was tested, and a subscript that refers to the E. coli strain

into which it was transformed.

For example, the BF dataset contains the synthetic promoter sequences that were initially de-

rived from the B. subtilis promoter PB and that were transformed in E. coli cells expressing the

genes encoding for σF . A positive sample in this dataset is thus a promoter sequence that in-

teracts with either σ70 and/or σF . A negative sample in this datasets is a promoter sequence

that interacts with neither of the two sigma factors. Negative samples from this dataset are

promoters that could be used together with σB as a separate sigma-factor promoter pair, even

in the presence of σF . E. coli naturally also has other alternative sigma factors, however the

genes encoding for these sigma factors were not expressed. This only occurs in response to

stress such as higher temperatures or malnutrition.
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Figure 3.2: The datasets are imbalancead. Counts are the number of samples rounded to the nearest 1000

(K).

3.2 Choosing the performance metrics

Before training anyMLalgorithms, an appropriate performancemetric has to be selected. Since

the classificiation of orthogonal promoters from non-orthogonal promoters is a binary predic-

tion problem, binary performance metrics such as the Receiver Operating Characteristic Area

Under Curve (ROC AUC) and Precision Recall Area Under Curve (PR AUC) can be used. In con-

trast with accuracy, these performance metrics give an overall view of the predictive capability

of a model that is independent of which probability threshold is chosen to distinguish positive

from negative samples.

The ROC AUC can be too optimistic if there are more negative than positive samples, but it has

the advantage that the baseline (i.e. the ROC AUC of a model that has no predictive capability)

is always 0.5. Conversely, the PR AUC is more informative in case the dataset is imbalanced,

but its baseline is the ratio of positive samples in the dataset – and thus the baseline varies

between datasets. Therefore, in this thesis we opt to use both performance metrics: the PR

AUC because all nine datasets are imbalanced (Figure 3.2) and the ROC AUC because it gives an

overall view of the predictive capability of a model regardless of the ratio of positive samples

in the dataset. A detailed comparison of the ROC AUC and PR AUC is provided in Section 1.3.3.

3.3 Comparison of fcANN and CNN architectures

ANNs have been used in many genomics classification problems, and in recent years, CNNs

specifically have proven to be very effective learning algorithms (Yu et al. 2019; Oubounyt et

al. 2019; Alipanahi et al. 2015; Zeng et al. 2016). In this thesis, both fcANNs and CNNs were

implemented, and in this Section they are compared to each other.

For both the fcANNs and the CNNs, every DNA sequence was one-hot encoded. An example

of this is provided in Figure 1.11 of the Introduction. The samples were also trimmed to only

contain the spacer sequence since the promoter sequence surrounding the spacerwas identical

for all samples within a dataset (Section 5.2).

After the samples were prepared, the parameters of the fcANNs and CNNs were optimised.

These parameters include the number of hidden layers, the size of each hidden layer, the num-

ber of convolutional filters and the presence of a pooling layer. A detailed overview of the pa-
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Table 3.1: Description of the ANN and CNN architectures that were explored during the parameter tuning

step. fc: fully-connected.

architecture description

fcANN_1HiddenLayer 1 fc hidden layer

fcANN_2HiddenLayer 2 fc hidden layers

fcANN_3HiddenLayer 3 fc hidden layers

CNN_NoPooling_1HiddenLayer 1 convolutional layer, 1 fc hidden layer

CNN_1HiddenLayer 1 convolutional layer, 1 pooling layer, 1 fc

hidden layer

rameter optimisation strategy is provided in Section 5.1. In short, each datasets was first split

into a training set and a separate testing set. Then, a random combination of parameters was

selected and the performance of amodel with those parameters was estimated using stratified

5-fold cross validation. Depending on which parameters were randomly selected, the model

was grouped into one of five different architectures to facilitate the practical implementation

(Table 3.1). The models that had the combination of parameters with the best mean perfor-

mance were then trained on the entire training set and tested on the separate testing set of

each dataset. The results for this analysis are laid out later in Section 3.5.3.

During the parameter optimisation step, two notable observations were made concerning the

different architectures.

Firstly, fcANNs and CNNs generally had the same mean performance within a dataset. Neither

of the two types of ANNs performed specifically better, suggesting that the use of a convolu-

tional layer does not have any benefits.

Secondly, some CNNs with the CNN_1HiddenLayer architecture (Table 3.1) showed exception-

ally low mean performance compared to other architectures. Specifically those CNNs with a

small filter had less than half the mean performance of the model with the best performing

parameters. CNNs with a small filter size but a different architecture did not show this discrep-

ancy in performance. Since the CNN_1HiddenLayer architecture is the only architecture that

contains a pooling layer, this suggest that pooling the feature maps obtained from a small filter

is detrimental to the performance.

3.4 Investigating a subset of the data that is supported bymore

observations

Each sample in each dataset consists of a DNA sequence and a label, either positive or negative.

The label is, however, derived from twodifferent features of a sample: observations clustered in

the positive bin and observations clustered in the negative bin. As it turns out, some sequences

in a promoter library occurred more than once in the data generation step, and they were

sorted in the two bins more than once by FACS resulting in multiple observations per sample.
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Table 3.2: Example of samples with different support values. The label of a sample corresponds to the bin

with the most observations. Label 0, sample is a negative. Label 1, sample is a positive. Sample 1 is a low

support sample because it has support = 1. Sample 2 is a high support sample because it has support ≥
2. Sample 3 is not reliable because it has observations in both the negative and positive bin. This sample is

removed from the dataset.

sample spacer label positive bin negative bin support

1 AAGTC... 0 0 1 1

2 TAGCT... 1 2 0 2

3 AGTTA... 0 1 2 3

In the data cleaning step (Section 5.2), the samples that had observations in both the positive

bin and negative binwere removed. After all, such samples are not trustworthy since theywere

sorted in two bins and thus have conflicting evidence for a label. Naturally, it can then also be

said that samples with multiple observations in only one of the two bins are more reliable and

trustworthy than samples with just one observation since the labels are supported by more

evidence.

In this Section, we investigate whether or not samples with labels supported by more observa-

tions constitute a subset of samples that is more reliable. To do this, a new feature is defined

called the “support”, which is the total number of observations per sample. The majority of

the samples for all datasets have a support of 1 and are called low support samples. A minority

of samples has a support of 2 or higher and are called high support samples. Figure 3.2 shows

an example of the different types of samples that were present in the datasets.

Initial tests showed that subsetting the datasets to only contain high support samples (samples

supported by more observations) increased the performance on the testing sets. Moreover,

the performance increased when the threshold for high support samples was also increased

(i.e. high support samples have support ≥ 3). This suggests that by subsetting the data, a

better model can be made.

However, one important aspect that was overlooked in these initial tests was that aside from

the training sets, the testing sets were also subsetted to only contain high support samples. If

the models are both tested on different testing sets, then it is not possible to conclude which

model is better. For that reason, a more complicated setup was required.

The setup for this analysis involved models* that were trained and evaluated with different

subsets of the data – as explained in Figure 3.3. Because a distinction is made in the train and

validation set versus the testing set, it is possible to evaluate if training only on high support

samples improves performance.

Figure 3.4 shows the results of this analysis for each of the nine datasets. The ROC AUC was

used instead of the PR AUC since the PR AUC would have to be reported together with the

ratio of positive samples for every subset. Since in this analysis the difference between the test

performances is more important than the value of the performance itself, it suffices to use the

ROC AUC.

The ROC AUC of models that were tested on the same subset of data are grouped by colour

corresponding with the colours used in Figure 3.3. Generally, the ROC AUC of the models with

the same colour was very similar, which means that the most important factor contributing to

*These models are the same models from earlier
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all on all all on high all on low

high on all high on high high on low

low on all low on high low on low

high (≥2)

low (=1)

support

training and

validation set

testing set

Figure 3.3: Schematic depiction of dataset subsets used to investigate if high support samples are more

reliable. Left: a dataset can be presented as a box containing all the samples. Inside the box, samples are

sorted according to their support value: a small subset of samples with a high support (two or higher) are

grouped at the top of the box, while the majority of the samples with a low support (one) are grouped at

the bottom. The box is split in two, which represents the split made when creating a train and validation set

and a testing set. Though this is not depicted for the sake of clarity, the train and validation set is further

split in a separate training set and a separate validation set. Right: Data subsets that were used to train and

evaluate the models. Subsets contain either all support samples (all), only high support samples (high) or

only low support samples (low). For example, the “high on low” model is a model trained and validated on

the high support train and validation set, and tested on the low support testing set.
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Figure 3.4: Performance in ROC AUC of models trained and evaluated with different subsets of data for

each dataset. On the x-axis is the performance in ROC AUC, on the y-axis are the models trained and tested

with different subsets of a dataset. Figure 3.3 explains the naming of themodels on the y-axis. It can be seen

that across all datasets, the ROC AUC (in orange) of themodels tested on high support samples (all/high/low

on high) is significantly higher than the performance of the other models. This shows that the high sup-

port samples are less noisy. Similarly, it can be seen that the ROC AUC (in green) of the models tested on

low support samples (all/high/low on low) is significantly lower than the performance of the other models,

indicating that low support samples are more noisy.
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the differences in performance was the testing set and not the training and validation set. This

observation reiterates our earlier notion that to compare models, it is essential that they are

tested on the same data.

If high support samples are more reliable, it can be expected that the performance of models

tested on high support samples (in orange) is higher than the performance of models tested

on all the samples (in blue) or the performance of models tested on low support samples (in

green) . Indeed, across all datasets, the performance ofmodels tested on high support samples

was significantly higher than the performance of models tested on all samples or low support

samples.

Averaged across all datasets, the ROC AUC of amodel trained on all support samples and tested

on high support samples (all on high), was 0.06 higher than the same model tested on all sam-

ples (all on all) and 0.10 higher than a model tested on low support samples (all on low) (Figure

3.4). This suggests that the high support samples are less noisy, and that the low support sam-

ples are more noisy.

Knowing that the low support samples are more noisy might lead to the conclusion that this

subset should be removed. However, the noisy data still contains useful information. This is

because models that were trained on all support data (all on all/high/low) generally had the

highest performance. In Figure 3.4, this can be seen by comparing the performances in any

dataset of the same colour.

For example, in the FB dataset, the model trained on all support samples and tested on all sup-

port samples (all on all), has higher performance than the model trained on high support sam-

ples and tested on all support samples (high on all). For this reason, the low support samples

should be retained and not removed.

In conclusion, our results indicate that high support samples are more reliable than low sup-

port samples, since for all datasets the performance on this specific subset is higher than on

the samples containing both low and high support samples. However, contrary to what our ini-

tial tests seemed to suggest, it is not necessary to remove the low support samples from the

datasets.

3.5 Improving performance with multi-task learning

In total, nine individual models were created – one for each dataset. Each model required a

parameter optimisation step and a training process. Depending on the size of the training set,

this was both computationally intensive and time consuming.

As an alternative strategy, fcANNs were trained on multiple training sets at once allowing the

samples of multiple testing sets to be classified in parallel. This is called multi-task learning and

has the advantage that multiple tasks (i.e. datasets) are learnt by one model.

3.5.1 Creating multi-label datasets

To create a singlemodel for application across distinct datasets, we first need to determine how

the datasets can be combined. One obvious similarity is that the datasets that were derived

from the same initial promoter sequence share the same nucleotide sequence surrounding the

randomised spacer (Section 5.2).
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Figure 3.5: Venn diagrams showing the intersections of identical sequences between the individual

datasets. Each subset of the Venn diagrams is annotated with the number of samples it contains.

Thus, three new datasets could be created from the individual nine datasets:

• B containing BF , BW and BWT

• F containing FB , FW and FWT

• W containingWB ,WF andWWT

In the new combined datasets, a promoter sequence can occur more than once across the

individual datasets. The intersections of the individual datasets within the new datasets show

that the individual datasets share a significant amount of sequences (Figure 3.5). As a result,

samples from the new combined datasets can have one, two or three labels corresponding

to the three original datasets. These labels are semantically different because they pertain to

a specific sigma factor. For example, a negative sample in the BF dataset is not the same as

a negative sample in the BW dataset. The former represents no interaction with σ70 nor σF ,

while the latter represents no interaction with σ70 nor σW . For that reason, the B , F and W
datasets are multi-label datasets.

3.5.2 Training multi-task ANNs

To train a multi-task ANN on a multi-label dataset, three adjustments had to be made. First,

the number of output nodes was increased. For a binary prediction problem, a standard fcANN

most often contains two output nodes – one node that outputs the probability that the sample

is a positive and one that outputs the probability that the sample is a negative. However, for a

multi-task fcANN, the probabilities of the output nodes correspond only to the positive samples

of the different tasks†. Therefore, the number of output nodes has to correspond to thenumber

of individual datasets (three) within the multi-label datasets.

The second adjustment was to the activation function in the output layer. Instead of a softmax

activation function, a sigmoid function was used. The softmax function calculates a probability

for each output node so that the sum of the probabilities is one. Since a sample in a multi-label

dataset can have multiple labels, the softmax function cannot be used anymore. The sigmoid

†The probability that a sample is a negative sample is then one minus the output probability.
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function squishes the activation values into a range between 0 and 1 independently of the other

labels.

Finally, the loss function was also altered. For a multi-task fcANN, gradient descent has to

minimise the loss for each of the tasks instead of for just one. To accomplish this, the sum of

the losses of the individual datasets was minimised. Furthermore, the loss also has to be able

to disregard outputs and labels in the loss calculation that correspondwith a non-existing label.

This is because not all samples are shared between the three individual datasets of the multi-

label datasets. Regardless of the number of labels that a sample actually has, amulti-task fcANN

will always output a probability for each label. However, if a label is missing, it is not possible to

calculate the loss for that label. After all, trying to determine how far off the output probability

for a label is compared to a missing value does not make any sense. Therefore, the predicted

probability was disregarded in the calculation of the total loss for samples with missing labels.

This was accomplished specifically by applying a Boolean mask to the output and labels before

the loss was calculated. The boolean mask is a function that removes probabilities and labels

that do not meet a certain criterion, which was in this case: “is there a label?”

Similar to the analysis for the individual datasets, the ANN architecture that was selected to

classify the multi-label datasets was obtained through parameter optimisation. This time, CNN

architectureswere not included though, since the analyses conductedwith the individual datasets

demonstrated that they did not show any significant improvement over fcANNs.

From the parameter optimisation, only fcANN_3HiddenLayer architectures (Table 3.1) were se-

lected for all three multi-label datasets which shows that for the multi-label dataset, a more

complexmodel is needed. Themulti-taskmodels with the parameter combination that yielded

the bestmean performancewere then trained on the entiremulti-label training sets and tested

on the separate testing sets. Overall, themulti-taskmodels showed slightly better performance

on the separate testing sets than the individual models. The results for this analysis are de-

scribed below, where the final model is also introduced.

3.5.3 One multi-task model for all datasets

The increased performance on the separate testing sets that was accomplished by combining

datasets into multi-label datasets and training multi-task models proved that it was beneficial

to have a single model carry out multiple, related tasks. With this in mind, a new and bigger

multi-label dataset was created using all datasets.

A fcANN has a fixed number of input neurons, and as a consequence, the length of all input

sequences has to be the same. The spacer sequence for BF , BW and BWT were only 12 bp

long, while for the other datasets the sequences were 16 bp long. Therefore, instead of using

just the spacer sequence, the entire promoter sequence of length 50 bp‡ was used.

Apart from a longer input layer, the length of the output layer was also changed to output

nine probabilities instead of three – one for each individual dataset. The batch size was also

increased to accommodate the larger dataset, and finally, the loss function was modified to

minimise the sum of the nine individual losses.

From the results with the multi-task models, it was determined that for the classification of a

multi-label dataset, a more complex model was required. Therefore, the parameter optimisa-

‡Promoters from the the BF , BW , BWT ,WB ,WF andWWT datasets were actually 51 bp long, but here the

trailing nucleotide was removed.
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Table 3.3: The performance on the separate testing sets is highest for the full multi-task model. For each

dataset, the performance on a separate testing sets is given for three types of models in PR AUC and ROC

AUC. The individual model is a model that was trained only on the training data of its corresponding dataset.

The multi-task model is trained on the training sets of the datasets that share the same promoter sequence

surrounding the randomised spacer. The full multi-task model is trained on the training sets of all datasets.

PR AUC

BF BW BWT FB FW FWT WB WF WWT

individual models 0.46 0.39 0.47 0.32 0.20 0.18 0.04 0.05 0.07

multi-task models 0.47 0.41 0.49 0.34 0.22 0.19 0.05 0.05 0.08

full multi-task model 0.46 0.41 0.49 0.34 0.22 0.19 0.08 0.08 0.09

ROC AUC

BF BW BWT FB FW FWT WB WF WWT

individual models 0.70 0.70 0.67 0.63 0.66 0.64 0.55 0.62 0.63

multi-task models 0.71 0.70 0.68 0.67 0.65 0.64 0.63 0.64 0.65

full multi-task model 0.71 0.71 0.68 0.67 0.65 0.65 0.63 0.65 0.66

Table 3.4: Ratio of positive samples in the separate testing sets.

BF BW BWT FB FW FWT WB WF WWT

ratio of positive samples 0.14 0.11 0.21 0.13 0.07 0.05 0.03 0.03 0.04

tion algorithm was allowed to select layers with more nodes and an architecture with four hid-

den layers. From this optimisation step, a model with four fully-connected hidden layers and

many nodes per layer was selected.

In Table 3.3, the PR AUC and ROC AUC on the separate testing sets of every dataset is shown for

all three types of models. Averaged across all datasets, the multi-task model has an increase in

PR AUC of 0.008 compared to the individual models. For the full multi-task model, the increase

in PRAUC is on average across all datasets 0.02 higher than the PRAUCof the individualmodels.

Compared to the multi-task model, the full multi-task model does not have an increase in PR

AUC for most testing sets. However, for theWB ,WF andWWT testing sets, there is an increase

in PR AUC of 0.01 to 0.03. The same trends are seen for the ROC AUC on the separate testing

sets, though less pronounced.

The ROCAUC reveals that the performance of the full multi-taskmodel on theBF is the highest,

and the performance on theWB testing sets is the lowest

In conclusion, considering the ease of use and the overall performance on all testing sets, we

demonstrate that the fullmulti-taskmodel gives the best results. In the next Section, thismodel

is analysed in more detail.
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Figure 3.6: Histograms of the output probabilities generated by the full multi-task model for the BF and

WB testing sets. Probability is the output probability and Counts the frequency of samples. The testing sets

are split for the positive samples (positives) and negative samples (negatives) to highlight the difference in

the distributions.

3.6 Analysing the full multi-task model

3.6.1 Visualising the output probabilities

The output probabilities of an ANN describe how confident the model is in its prediction. For

the full multi-task model, the output of a specific node is the probability that a sample is a

positive sample for the dataset corresponding to that node. A perfect multi-task model would

thus output a probability of 1 for all positive samples, and a probability of 0 for all negative

samples. Plotting the distributions of the output probabilities gives an understanding of how

well the model performs that is more intuitive to understand than performance metrics such

as the PR AUC or the ROC AUC.

In Figure 3.6, the distribution of probabilities generated by the full multi-task model is plotted

for the BF testing set and the WB testing set. It can be seen that for both testing sets, the

output probabilities of the positive and negative samples are low, which shows that the model

classifies most samples as a negative and thus struggles to recognise positive samples. This is

probably because the training sets for both models contained far fewer positive samples than

negative samples. The BF training set has 14% positive samples, and theWB training set only

3%.

These distributions also show why the performance on the BF testing set is so much higher

than the performance on theWB testing set. The output probabilities for the positive samples

of the BF testing set are on average 0.19 higher than the output probabilities for the negative

samples, while for the WB testing set, there is on average no difference between the output

probabilities of the positive and negative samples.

3.6.2 Extracting features

To gain a deeper understanding of the trained models, it is useful to see which positions in the

input promoter sequence have the most impact on classification. There are many methods to
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Figure 3.7: Schematic representation of the sliding window approach that was used to generate samples

that are occluded at different positions. Samples for the full multi-task model are represented as 3 bp

sequences for the sake of simplicity. First, the sequence of the sample is one-hot encoded. Then, a window

(in red) slides over each position in the sequence matrix and sets all values of that position to zero, thus

occluding that part of the sequence.

do this, but in this thesis, we used occlusion maps. An occlusion map is a representation of the

relevance of each position in a sample, here, it shows specifically the performance of the full

multi-task model on the separate testing sets after each position in the spacer is systematically

occluded (hidden). Positions that show a drop in performance in the occlusion map compared

to the performance of the unoccluded samples are likely to be important to the model for

correct classification.

For DNA sequences, occluding a specific position corresponds with setting the column corre-

sponding to that position to all zeros in the one-hot encoded sequence matrix. Using a sliding

window approach, all positions in a sequence can then be iteratively occluded (Figure 3.7). In

Figure 3.8, occlusion maps are shown for all testing sets using the full multi-task model.

As mentioned earlier, the input to the full multi-task model was the complete promoter se-

quence of 50 bp. In preliminary testing, occluding the positions surrounding the spacer showed

to have no impact on the PR AUC when occluded. For that reason, these results were omitted

from Figure 3.8 and only the spacer is shown.

From the scatter plots on the left, it can be seen that for all testing sets, the PR AUC decreases

when positions are occluded compared to the PR AUC of the unoccluded samples (red dashed

line). This was to be expected since information that can aid classification of the samples is

removed when a position is occluded.

On a side note, for theWF andWWT testing sets it might seem as though the PR AUC of some

positions in the scatter plot is higher than the PR AUC of the unoccluded samples. However, for

these testing sets specifically, occluding the positions of the spacer does not have a big impact

in general. The positions that seem to have a higher PR AUC (1, 2, 13, 14, 16 inWWT and 3 in

WF ) are actually less than 0.005 higher, which is not significant and probably due to rounding

down of the PR AUC of the unoccluded samples.

The heatmaps on the right in Figure 3.8 are a more in-depth version of the scatter plots. They

highlight which nucleotides are responsible for the PR AUC at any particular position. A sin-

gle square in the heatmap represents the PR AUC of all test samples. However, the samples

containing the nucleotide at the position corresponding with the square in the heatmap were

occluded. Yellow squares represent relatively high PR AUC values, while purple squares repre-

sent relatively low PR AUC values.

For the BF , BW and BWT testing sets, all positions in the spacer are relevant to the full multi-
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Figure 3.8: Occlusion maps of all testing sets generated using the full multi-task model. Left: Scatter plots

depicting the change in PR AUC caused by occluding a position in the spacer for all samples in the testing

set. The red dashed line is the PR AUC of the unoccluded test samples, and is used as a reference. Right: An

in-depth version of the scatter plots on the left, depicting the change in PR AUC per nucleotide. The value

of each square was calculated using all test samples, but the samples corresponding with the nucleotide at

a certain position were occluded. Yellow squares have relatively high PR AUC and are not as important to

classification, while dark purple squares have relatively low PR AUC and are important to classification.
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BF BW BWT

FB FW FWT

WB WF WWT

Figure 3.9: Sequence logos of the positive samples with the 5% highest output probabilities for the full

multi-task model. The size of the letters represents the frequency of occurrence.

task model. Specifically, ATT at positions 1, 2 and 3 seems to be themost important, along with

TATA at positions 5, 6, 7 and 8 and a T at position 10. In the entire spacer sequence, the C and

G nucleotides have noticeably less importance.

For the FB , FW and FWT testing sets, the positions at the beginning of the spacer are most

relevant to the full multi-taskmodel, especially CWWT (whereW represents A or T) at positions

1 to 4. After that, a T at position 13 seems to also have a significant impact when occluded.

For the WB , WF and WWT testing sets, TA at position 5 and 6 is the most important together

with a T at position 10.

One disadvantage of this method is that the effect of the occlusion of a particular nucleotide

on the PR AUC might not be visible if only few samples contain the nucleotide at that position.

The interpretation of these results should thus be seen as an indication of importance and not

as conclusive evidence.

From the output probabilities of the full multi-task model in Section 3.6.1, we concluded that

the model classifies most samples as negatives. Therefore, a misclassified sample is likely to be

a positive sample, and the features elucidated in Figure 3.8 are likely to pertain only to positive

samples.

To investigate this, sequence logos were created from the positive samples in each testing set

that had the 5% highest output probabilities (Figure 3.9). By using only those samples that the

model classifiedmost confidently, we ensured that themost important features were captured

in the sequence logos. As can be seen, the majority of the features described in the occlusion

maps were also recovered in the sequence logos.
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3.6.3 Investigating the effect of Multi-task Learning

Many of the features extracted from the individual testing sets appear to be similar. In particu-

lar those features that were extracted from the datasets that were derived from the same ini-

tial promoter (i.e. datasets that were derived from the same initial promoter sequence). Even

features extracted from the seemingly unrelated testing sets BF , BW , BWT ,WB ,WF andWWT

share a TATANT motif at positions 5 to 10 (Figure 3.9). To quantify the similarity between the

features, the performance of the different testing sets was measured using the output proba-

bility for other testing sets (Supplementary Table S1). For example, instead of using the output

probability for BF to predict BF (as should be normally done), the output probabilities for the

other testing sets were also used to predict BF . If the performance of the full multi-task model

on a particular testing set is high using the output probabilities for a different testing set, then

this indicates that the model learnt similar features to classify the samples of both datasets.

It was found that the performance of the full multi-task model is identical on testing sets de-

rived from the same initial promoter. For example, the PR AUC of the full multi-task model on

the BF testing set is 0.46. But by using the output probabilities for the BW testing set, also a

performance of 0.46 was found. This confirms that the classification of positive and negative

samples is less related to the heterologous sigma factor that was expressed in the E. coli cells.

Instead, it seems to be only related to the initial promoter sequence that the datasets were de-

rived from. Furthermore, the performance of the full multi-task model on the BF , BW and

BWT testing sets was only slightly lower when the output probabilities for the WB , WF and

WWT testing sets were used, than if the correct output probabilities were used. All in all, these

observations suggest that the full multi-task model learnt general features that are applicable

to more than one individual dataset.

To confirm that multi-task learning is the reason for these shared features, sequence logos and

occlusion maps were also created using the individual models (Supplementary Figures S1, S2).

For the FB , FW and FWT testing sets, the general features found in the full multi-task model

are very apparent in the individual models, while for the BF , BW and BWT testing sets, the

general features are less defined, and in comparison, for the WB , WF and WWT testing sets,

the general features are not at all visible. Multi-task learning is thus somewhat responsible

for these general features since they are more apparent in the full multi-task model than for

the individual models. However, even in the individual models shared features are apparent,

which suggests that the full multi-task model enhances these features, but they are genuinely

important and not just a relic of multi-task learning.
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In this chapter, we discuss the results and end with an overall conclusion and future perspec-

tives. But before this, a brief recap is provided of the goal of this thesis, and of the data gener-

ation procedure as this is important to interpret the results. For a more in-depth description,

refer to Section 2.2 and 3.1.

4.1 Recap

In this thesis, we aimed to provide insight in the optimal design of orthogonal promoters by

uncovering features in promoters that are responsible for orthogonality or non-orthogonality in

E. coli . For this, we built and evaluated ML models that are able to distinguish non-orthogonal

promoters from orthogonal promoters in E. coli, and we extracted learnt features.

To train such ML models, nine datasets titled BF , BW , BWT , FB , FW , FWT ,WB ,WF andWWT

were generated with each containing non-orthogonal and orthogonal promoter sequences.

Each dataset was derived from one of three native B. subtilis promoters: PB , PF and PW that

are orthogonal in E. coli –meaning that they only interact with their respective B. subtilis sigma

factors σB , σF or σW and not with σ70, the primary sigma factor of E. coli.

For each B. subtilis promoter, three libraries of promoter sequences with randomised spacers

were created. By randomising the spacer of the B. subtilis promoters, the promoters could

lose their orthogonality. Each library was thus a collection of orthogonal and non-orthogonal

promoters.

To test the orthogonality of the promoters, all libraries were cloned into a reporter plasmid and

transformed into different E. coli K12 MG1655 strains. Three libraries were transformed into

Wild Type (WT) E. coli, and six libraries were transformed into an E. coli strain expressing the

B. subtilis genes encoding for σB , σF or σW .

The promoter sequences in the libraries were then classified as orthogonal or non-orthogonal

by FACS and sequenced. Ultimately, this resulted in the nine aforementioned datasets. Each

dataset is denoted by a capital letter that refers to the original B. subtilis promoter that the

promoter library was derived from and a subscript that refers to the E. coli strain into which it

was transformed.

For example, the BF dataset contains the synthetic promoter sequences that were initially de-

rived from the B. subtilis promoter PB and that were transformed into E. coli cells expressing

the genes for σF . A positive sample in this dataset is thus a promoter sequence that interacts

with either σ70 and/or σF . A negative sample in this dataset is a promoter sequence that inter-

acts with neither of the two sigma factors. Such a promoter sequence can be used as a separate
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sigma factor-promoter pair with σB even in the presence of σF .

4.2 fcANNs and CNNs have similar performance

One important conclusion from this thesis is that despite the fact that state-of-the art classifi-

cation algorithms primarily use Convolutional Neural Networks (CNN) to classify sequences (Yu

et al. 2019; Oubounyt et al. 2019; Alipanahi et al. 2015; Zeng et al. 2016; Umarov et al. 2017),

we demonstrate that for our datasets, both fully-connected artificial neural networks (fcANN)

and CNNs have a comparable overall performance.

One possible reason that CNNs did not out-perform fcANNs is that the input DNA sequences to

the CNNs were very short. In the literature, CNNs are mainly used with longer input promoter

sequences. For example, Zeng et al. (2016) used a chromatin immunoprecipitation sequencing

dataset with a sequence length of 101 bp, and Rizzo et al. (2015) use 16S gene fragments with

a sequence length of 500 bp.

By comparison, in this thesis, very short spacer sequenceswith a length of only 12 to 16 bpwere

used. With longer input sequences, CNNs have the advantage over fcANNs, in the sense that

they can extract motifs using convolutional layers and these motifs can then subsequently be

used as input for fully-connected hidden layers instead of the entire input sequence. As a result,

CNNs generally have fewerweights than fcANNS, which decreases the chance of overfitting and

speeds up training. For short sequences, however, extracting motifs is less beneficial because

the number of weights is already small.

In addition, it was demonstrated that a pooling layer following a convolutional layer with small

filters is detrimental to the overall performance of a CNN.More specifically, the pooling layer is

a global max-pooling layer that outputs the maximum value of the feature maps of the convo-

lutional layer. Hereby, the global max-pooling layer further reduces the number of weights in a

CNN. Since the feature maps contain information about the location of the extracted motifs, a

global max-pooling layer specifically reduces the locational information about the motif in the

input sequence to “present” or “not present” (Zeng et al. 2016).

The adverse effects of a pooling layer following a convolutional layer with small filters can po-

tentially be understood as a consequence of the relative importance of locational information

in a CNN with small filters, as compared to a CNN with large filters. For example, a small filter

that extracts a 3 bp motif from the 12 bp long input sequence has 10 possible positions, while

a 10 bp motif only has 3 possible positions. Therefore, a smaller motif without locational infor-

mation is much more ambiguous than a longer motif.

In conclusion, irrespective of the algorithms andmethods that have been used in the literature,

it is more important to adapt the model to the characteristics of the datasets at hand. In this

case, CNNs and fcANNs have similar performance because the benefits of a CNN are lost on

short input sequences, and in a CNN with small filters, it is essential that the locational infor-

mation is conserved because small motifs without locational information are more ambiguous.

4.3 High support samples are more reliable

Each sample in each dataset consists of a promoter sequence and an associated label, either

positive or negative. The label of a sample was derived from the clustering during FACS. Here,
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promoter sequences were sorted into either the positive bin or negative bin based on the fluo-

rescence of the reporter plasmid. However, a minority of promoter sequences were present in

a promoter library more than once. We suspect that this is due to a bias in the PCR step, which

caused some sequences to be present more than others. These duplicate promoter sequences

were sorted more than once, and thus their labels were supported by one or more observa-

tions in the negative or positive bin.

Some samples had observations in both the positive and negative bin. These samples were

deemed unreliable and they were removed from the datasets during the data cleaning step,

since the labels of such samples are essentially supported by conflicting observations. Con-

versely, samples with multiple observations in either the positive or negative bin can be seen

as more reliable, since their labels are supported by more non-conflicting observations.

To test the hypothesis that samples with labels supported by multiple observations are more

reliable, we defined the “support” of a sample as the total number of observations in the neg-

ative or positive bin. Samples with a support of two or more are called high support samples,

while samples with a support of just one are called low support samples. We then compared

the performance of models trained and tested on different subsets of data. More specifically,

models were trained on low support, high support or all support samples (both low and high

support) and tested on low support, high support or all support samples. From these analyses,

three important conclusions were made.

Firstly, when determining which model is best, it is essential that the models are tested on the

same data. From the analyses we can conclude that this is not possible when the models are

tested on different testing sets, since the most important factor contributing to the differences

in performance was not the data that was used to train themodel, but rather the data that was

used to test the model.

Secondly, high support samples are indeedmore reliable. The performance on the high support

samples was significantly higher than the performance on the all support samples or the low

support samples. More specifically, the ROC AUC averaged across all datasets of a model that

was trained on all support samples and tested on high support samples was 0.06 higher than

the samemodel tested on all support samples, and 0.10 higher than the samemodel tested on

low support samples. We hypothesise that this is because, overall, the datasets are quite noisy,

but the high support samples are less noisy than the low support samples. This seems logical

considering the fact that high support samples with conflicting evidence (i.e. observations in

both the negative and positive bin) were removed during the data cleaning step. Therefore,

high support samples are more reliable and less noisy because it was possible to detect and

remove these noisy samples during the data cleaning step. Likewise, the low support samples

are noisier because it was not possible to detect and remove the noisy samples.

Finally, removing the noisy low support samples from the dataset does not necessarily result

in a better model, since the performance of the model across all datasets was highest when

trained on all support samples. In other words, the noisy low support samples still contain

some useful information.

It could be argued that training a model on only high support samples is a good alternative to

training on all support samples when training speed is essential because the subset of samples

with high support is smaller, yet such a model has a comparable performance.

In conclusion, we reiterated the importance of testing various models on the same testing set

when determining which model is best, we confirmed our intuition that high support samples

aremore reliable, we proved that the datasets are noisy, and we provided an alternative subset
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of the data that can be used for training when training speed is important.

4.4 The advantages of multi-task learning

The final model (the full multi-task model) is a multi-task model that was trained on all nine

training sets . Averaged across all datasets, the PR AUC of this model was 0.02 higher than the

average PR AUC of the individual models.

From a practical point of view, the full multi-task model is computationally more efficient than

nine individual models since it has fewer weights in total. A multi-task model is also biased

to learn features for one task (i.e. dataset) which may be of use in other tasks (Dahl et al.

2014; Angermueller et al. 2016). This is called representation bias and it makes the model less

complex, which in turn prevents overfitting.

To determine if the full multi-task model learnt general features (i.e. features common tomore

than one dataset), we extracted and compared features of the different datasets. The use of

two complementary visualisation methods (occlusion maps and sequence logos) revealed that

there are many similarities between the features of the different datasets, and further that the

extractedmotifs are almost identical for those datasets that were derived from the same initial

promoter sequence.

To confirm that representation bias is indeed the reason these general features were identi-

fied, features were also extracted from the individual models that were each trained on only

one individual training set. Once more, the extracted features were found to be similar to

each other, yet to a lesser extent than the features extracted from the full multi-task model.

Therefore, we can conclude that general features are important for classification even for the

individual models, and that the full multi-task model enhances the general features because of

multi-task learning.

Overall, the full multi-task model is a better model because it is both computationally more

efficient and because it is biased to learn general features.

4.5 The datasets are imbalanced and need more positive sam-

ples

The performance of the full multi-task model on certain testing sets is markedly lower than the

performance on other testing sets. This is because for all testing sets, the model classified

most positive samples as negative samples, which is a consequence of the imbalance of the

datasets (i.e. all datasets have far more negative than positive samples). The datasets that

are most imbalanced are then also those for which the full multi-task model was least able to

correctly classifying the samples in the testing sets. It is known that classification algorithms

used with imbalanced datasets will typically over-classify the majority group (in this case the

negative samples) due to its increased prior probability (J. M. Johnson et al. 2019).

Common techniques to combat imbalanced datasets revolve around balancing the training

sets. This includes the oversampling of positive samples, the undersampling of negative sam-

ples and synthetic minority oversampling (Chawla et al. 2002). However, none of these tech-

niques contribute unique information to the model and oversampling can even lead to over-
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fitting. Although not specifically reported in the results, balancing the training sets using the

aforementioned techniques did not increase performance of the full multi-task model on the

testing sets.

Therefore, we suggest that simply introducing more positive samples in the data generation

step might prove beneficial for future studies. One way this could be done is by introduc-

ing a bias in the randomised spacers of the promoter libraries to generate more positive (i.e.

non-orthogonal) samples. For instance, by deliberately avoiding spacer sequences in the data

generation step that are similar to the spacer sequence of the orthogonal B. subtilis promoters

PB , PF or PW .

4.6 The extracted features might bemotifs for interactionwith

σ70

In this Section, we discuss the potential biological relevance of the features extracted from the

fullmulti-taskmodel. Note that the extracted features only apply to the positive samples, which

means that the features are potential motifs in the promoter required for interaction with a

sigma factor. This is again a relic from the imbalance of the datasets, which caused the models

to only learn to distinguish positive samples.

Since the extracted features are general features that are shared betweenmultiple datasets, we

hypothesise that they are motifs that are specifically required for the interaction of promoters

with σ70 in E. coli. For the BWT , FWT andWWT datasets, this is a given considering that σ70 is

the only sigma factor that is expressed (during normal growth) inWT E. coli. But for theBF and

BW datasets, for example, we might expect to identify different features since these datasets

were derived from E. coli promoter libraries where σF and σW were also expressed in addition

to σ70. Positive samples could thus be caused by the interaction of the promoter with σ70

or with a heterologous B. subtilis sigma factor. However, somewhat surprisingly, the features

extracted from the BF and BW datasets are almost identical to those from the BWT dataset.

Likewise, all datasets that were derived from the same initial promoter sequence have almost

identical features.

To understand whether the extracted features are motifs for interaction with σ70, we can com-

pare the extractedmotifswithmotifs known to be involved in interactionswithσ70. The TATANT

motif at positions 5 to 10 in the spacer sequence was extracted for six out of nine datasets,

namely BF , BW , BWT ,WB ,WF andWWT . This motif is very similar to the consensus sequence

of the -10 box in E. coli (TATAAT), and together with a -35 box, this could explain the interaction

with σ70. However, the consensus sequence or any sequence close to the -35 box (TTGACA)

was not extracted from the spacer nor was it detected in the promoter sequence surrounding

the spacer for any of the datasets (Section 5.2). Nonetheless, it is known that E. coli promoters

that do not contain a -35 box can still interact with σ70, provided that they contain an extended

-10 element (TGN) (Bervoets and Charlier 2019; Roberts et al. 2017; Browning et al. 2004). The

extended -10 element is located immediately upstream of the -10 box and stabilises the tran-

scription bubble that is formed when the RNAP holoenzyme binds the promoter to such an

extent that the -35 box is not required (X. B. Johnson et al. 2006). The extended -10 element

seems to be present in the WB , WF and WWT datasets, however for the BF , BW and BWT

datasets, this promoter element was not found.

In the FB , FW and FWT datasets, a leading CWWT motif was extracted along with a trailing K

39



Discussion

(where W represent A or T, and K represent T or G). The trailing K is a relic of the design of

the spacers for the FB , FW and FWT datasets. This nucleotide in the spacer is conserved and

essential for recognition of σF , however, the CWWT motif was not found to be meaningful for

interaction with σ70.

Overall, we can see that there are biologically meaningful explanations for some of the ex-

tracted motifs, which strengthens the idea that these features are relevant. On the one hand,

the observation that the features are shared as well as the presence of a TATANT motif and an

extended -10 motif for some datasets corroborate our hypothesis that the extracted features

are motifs for interaction with σ70. On the other hand, not all features can readily be explained

and are possibly only present by chance. Therefore, it will be necessary to confirm the biolog-

ical relevance of these motifs in follow-up experiments.

4.7 Overall conclusions and future perspectives

Overall, we can see thatwe succeeded in our goal of building and evaluatingMLmodels that are

able to distinguish non-orthogonal from orthogonal promoters in E. coli. From these models

we were able to extract motifs from the spacers of the promoters that we suspect cause non-

orthogonality due to the interaction with σ70.

While the performance of the final model may not be particularly high, we have shown that

this is mainly due to the inherent noisiness present in the datasets. Hereby, we reiterate the old

maxim that flawed data produces flawed results. In the future, it will be necessary to determine

why some samples can have conflicting observations from the wet-lab and to see if this process

can be improved.

Furthermore, we highlight the importance of choosing the most suitable algorithm for an ML

task and we demonstrate that multi-task learning has several advantages over normal super-

vised learning.

Finally, weprovide a biological interpretationof the features extracted from thebestmodel. We

hypothesise that the model contains mainly learnt features that are important for interaction

with σ70 of E. coli. Since many of the datasets are also associated with the expression of a

specific heterologous sigma factor, the model was expected to have learnt distinct features for

each dataset. Surprisingly, this was not the case.

We showed that the general features between the datasets are present in part due to the

representation bias from multi-task learning, but also because they are genuinely important.

In the future, it may be easier to extract specific features for datasets that are associated with

the expression of an additional heterologous sigma factor by preventing the primary sigma

factor from interacting with the promoters. Perhaps this could be accomplished by short-term

overexpression of Rsd, an anti-sigma factor for σ70 in E. coli that inhibits the formation of an

RNAP holoenzyme containing σ70. However, this may cause undesired side effects since σ70 is

a housekeeping sigma factor that is essential for normal growth in E. coli.

Whether the extracted features are, from a biological perspective, genuinely the most impor-

tant features present in the datasets, or only what the models “thinks” is important remains

an open question, but the fact that there is some support suggests that it will be worthwhile

following up on the motifs identified here.

Additionally, only those features that are important for interaction with σ70 were extracted be-
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cause there were far more negative than positive samples. To extract features that specifically

define orthogonal promoters, we suggest that more positive samples are created. This may

be accomplished by biasing the random spacers in the data generation step to not include se-

quences that are similar to the spacer sequence of the original B. subtilis promoters, which are

orthogonal.

In conclusion, orthogonal promoters are a widely used tool in Synthetic Biology to provide

reliable gene expression. In this thesis, we have identified motifs in the spacers of synthetic

promoters derived from B. subtilis promoters that might underly non-orthogonality in E. coli.

Most importantly, a TATANT and TGN motif for promoters PB and PW , and the CWWT motif

for promoter PF . With this thesis, we hope to have to have shed some light on the design

of orthogonal promoters, and to have demonstrated the usefulness of ANNs to classify DNA

sequences.
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5.1 Parameter optimisation and model evaluation

All the models in this thesis – the individual models, the multi-task models and the full multi-

taskmodel – were optimised using random search. Random search is a parameter optimisation

strategy that selects the best combination of parameters from a predefined set by iteratively

testing the performance of a model with a random combination of parameters. In Figure 5.1,

this strategy is outlined for the individual models.

First, a separate testing set was created with 20% of the total data in the individual dataset.

Then, a set of values was predefined for every parameter of the model and a random combi-

nation of those parameter values was selected. Following that, the performance of the combi-

nation of parameters was estimated using stratified 5-fold cross validation.

Cross validation provides a more reliable performance estimate of the model. Here, the per-

formance estimate is the average of five different models that were each tested on different

testing sets. In this way, the effect of the absence or presence of certain samples in the testing

set is mitigated.

The combination of parameters that yielded the best mean PR AUC and the fewest number of

weights was then used to train and validate a final model with all data (apart from the separate

testing set). This model was then tested on the separate testing set to create the final perfor-

mance values that are also provided in Table 3.3.

For the multi-task models and the full multi-task model, the parameter optimisation strategy

was very similar. However, instead of starting with a complete multi-label dataset and then

splitting it into a training set and a separate testing set, the training sets of the individualmodels

were merged to form the multi-label training sets. Because the same testing sets were used,

the performance of the multi-task and full multi-task models could then be compared with

the performance of the individual models. It should be noted however that the percentage of

samples in each subset as depicted in Figure 5.1 for the individual datasets was different for

the multi-label datasets because the individual datasets share sequences.

Table 5.1 shows the range of possible parameter values per parameter and per model. The

learning rate, the batch size and the type of Gradient Descent algorithm were not optimised

using random search, since this would be too time consuming. Instead, preliminary testing

showed that the ADAM Gradient Descent algorithm with a learning rate of 0.001 and a batch

size of 100 were sufficient parameters for training. The batch size was only changed from 100

for the individual and multi-task models to 1000 for the full multi-task model to accommodate

for the much larger dataset. For the individual models, at least 30 combinations of parameters
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complete individual dataset (100%)

train and validate (80%) test (20%)

1. Create a separate testing set

test (16%) train (48%) + validate (16%)Split 1

2. Select a random

combination of parameters

Split 2

Split 3

Split 4

Split 5

3. Calculate mean performance using

stratified 5-fold cross validation

4. Repeat step 2 and 3 for all iterations

train (70%) + validate (10%)

5. Choose best performing combination of parameters and

calculate performance on separate testing set.

Figure 5.1: Schematic depiction of the parameter optimisation and model evaluation strategy for the

individual models. All the splits were done in in a stratified manner so that each subset of the data (train,

validate or test) contained a similar ratio of labels. Each subset of the data is annotated with the percentage

of samples in that subset.
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Table 5.1: Possible parameter values. For the individual models, if the ANN contained convolutional layers,

maximum two fully-connected hidden layers were possible. Based on the dataset, the convolutional filter

sizewas also restricted to the size of the spacer sequence (12 forBF ,BW andBWT , 16 for the other datasets).

individual models

parameter possible values

number of fully-connected hidden layers {1, 2} or {1, 2, 3}
fully-connected hidden layer size {48, 52 ... 384}
fully-connected hidden layer dropout chance {0.0, 0.1 ... 0.6}
number of convolutional filters {48, 64 ... 1536}
convolutional filter size {2, 3 ... 12} or {2, 3 ... 16}
pooling layer {True, False}

multi-task models

parameter possible values

number of fully-connected hidden layers {1, 2, 3}
fully-connected hidden layer size {48, 52 ... 384}
fully-connected hidden layer dropout chance {0.0, 0.1 ... 0.6}

full multi-task model

parameter possible values

number of fully-connected hidden layers {3, 4}
fully-connected hidden layer size {48, 52 ... 768}
fully-connected hidden layer dropout chance {0.0, 0.1 ... 0.6}

were explored, while for the multi-task models and the full multi-task model, only 15 combi-

nations were explored.

All models during parameter optimisation and model evaluation were trained for a maximum

of 35 epochs, but with the constraint that if the loss on the validation set did not decrease for

three consecutive epochs, training was stopped early. This is a regularisation method which

is always used to prevent ANNs from overfitting (Section 1.4.4). After every epoch, the model

was saved if the loss decreased. This enabled the model to be reverted to the state in the third

to last epoch, where it had the smallest loss.

5.2 Data Cleaning

Before any of the models were constructed, the data was first cleaned. This entailed removing

all erroneous sequences – which were present, in large, due to PCR errors. Table 5.2 shows the

standard sequence of the promoters in each promoter library. All samples that did not match

these sequences were removed.

The trailing K at position 16 in the spacer of promoter library PF is a degenerate nucleotide (A

or T) that is essential to recognition of σF . Although over 99% of samples in the FB , FW and

FWT individual datasets had this feature, some samples that did not have it were mistakenly

not removed.
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Table 5.2: Sequence of promoters in each promoter library. In bold and underlined is the -35 and -10 box

of the promoters. N represent any nucleotide, and K represents T or G.

promoter

library

DNA sequence (5’ to 3’)

PB TGTCGGAGAACGTGTTTATNNNNNNNNNNNNGGGTATGTAACTTGTAGGGC

-35 -10

PF TTCTGCGATGTTTANNNNNNNNNNNNNNNKCTCATAATAGTAGAAACAGG

-35 -10

PW TATAAAAAAATTGAAACNNNNNNNNNNNNNNNNCGTATACATACAGAGGGC

-35 -10

Erroneous sequences were also a product of contamination. During the data generation, some

libraries were likely contaminated with samples from other libraries, which caused sequences

to be present in the wrong datasets. These sequences were added to a blacklist and removed

from all datasets. Finally, as explained in Section 3.4, sequences with a support higher than

one and observations in both the positive and negative bin were also removed.

In total, a significant amount of samples (16% to 41%) were removed for each dataset (Sup-

plementary Table S2). This also slightly lowered the ratio of positive samples in the individual

datasets up to a maximum decrease of 0.02.

5.3 Data Generation

The protocols for the generation of the different datasets were carried out before the start of

this thesis, and thus we will only briefly summarise this.

All DNA fragments from the nine promoter libraries were amplified using PrimeSTAR HS DNA

polymerase and purified using the innuPREP PCRpure Kit. The DNA fragments were cloned into

reporter plasmids using electrocompetent E. coli Top10 cells, which were grown in Lysogeny

Broth supplemented with kanamycin. The construction of the reporter plasmid (pLibrary) and

its complete annotated DNA sequence is described in detail in Bervoets, Van Brempt, et al.

(2018). Reporter plasmids were transformed into Wild Type E. coli K12 MG1655 cells or E. coli

K12 MG1655 cells encoding the genes for the B. subtilis sigma factors. These cells were grown

onComplexmedium supplementedwith kanamycin. FluorescenceActivatedCell Sorting (FACS)

was used to sort cells into two separate bins: positives and negatives. Positives containing the

cells with high red fluorescent protein expression (mKate2), and negatives those with low ex-

pression. Constitutive expression of green fluorescent protein (sfGFP) was taken into account

for bin selection to exclude artifacts. The sorted cells were subsequently grown overnight in

Complex medium with kanamycin, and plasmid DNA was isolated for all individual bins using a

Qiagen Plasmid Mini Kit. The sorted plasmid DNA samples were prepared for sequencing with

a workflow adapted from the “16S Metagenomic Sequencing Library Preparation” protocol (Il-

lumina Inc.). Ultimately, all samples were sequenced and controlled for quality by the NXTGNT

lab (Faculty of Pharmaceutical Sciences, Ugent) using a dual-index, single-read 50bp sequenc-

ing Illumina MiSeq system.
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5.4 Implementation

All code was written in Python 3.6.5, making use of the Python libraries PyTorch 1.0.1.post2,

NumPy 1.16.2, Scikit-learn 0.21.3, pandas 0.24.2 and matplotlib 3.0.3. The main analyses are

uploaded as jupyter notebooks to Github at https://github.com/ldaveyl/master-thesis-lucas-

davey together with text files and plots documenting the parameter optimisation, training and

testing of all models that were reported. Furthermore, the data before and after cleaning is

also available, and the individual models, multi-task models and full multi-task model were

also saved as PyTorch state dictionaries, allowing them to be reanalysed at any time.

All results were obtained using the KERMIT research unit GPU server, consisting of one Nvidia

Tesla K40c graphics card, and two Nvidia GTX 1080 graphics cards.
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Supplementary Material

BF BW BWT

FB FW FWT

WB WF WWT

Figure S1: Sequence logos of the positive samples with the 5% highest output probabilities for the indi-

vidual models. The size of the letters represents the frequency of occurrence.
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Figure S2: Occlusion maps of all testing sets using the individual models (continued on the following

page). Left: Scatter plots depicting the change in PR AUC caused by occluding a position in the spacer for all

samples in the testing set. The red dashed line is the PR AUC of the unoccluded test samples, and is used as

a reference.
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Figure S2: Right: An in-depth version of the scatter plots on the left, depicting the change in PR AUC per

nucleotide. The value of every square was calculated using all test samples, but the samples corresponding

with the nucleotide at a certain position were occluded. Yellow squares have relatively high PR AUC and are

not as important to classification, while dark purple squares have relatively low PR AUC and are important

to classification.

Table S1: Performance on every testing setwith different output probabilities of the full multi-taskmodel.

The rows correspond to the testing set and the columns to which output probabilities were used. The value

in rowBWT and columnBW represents the performance (PR AUC or ROC AUC) on theBWT testing set using

the output probabilities for the BW testing set. Highlighted in yellow are the performance values that are

sufficiently above the baseline: 0.5 for the ROC AUC, and the ratio of positive samples for the PR AUC.

PR AUC

BF BW BWT FB FW FWT WB WF WWT

BF 0.46 0.46 0.47 0.10 0.11 0.11 0.40 0.40 0.41

BW 0.40 0.41 0.40 0.08 0.08 0.09 0.34 0.34 0.35

BWT 0.49 0.49 0.49 0.16 0.17 0.18 0.44 0.44 0.45

FB 0.19 0.20 0.18 0.34 0.34 0.34 0.14 0.27 0.25

FW 0.08 0.09 0.08 0.22 0.22 0.22 0.08 0.16 0.15

FWT 0.06 0.07 0.06 0.19 0.19 0.19 0.06 0.13 0.11

WB 0.03 0.03 0.02 0.02 0.02 0.02 0.08 0.08 0.08

WF 0.03 0.04 0.02 0.02 0.02 0.02 0.08 0.08 0.08

WWT 0.05 0.05 0.03 0.03 0.03 0.03 0.09 0.09 0.09

ROC AUC

BF BW BWT FB FW FWT WB WF WWT

BF 0.71 0.71 0.71 0.33 0.35 0.37 0.70 0.71 0.71

BW 0.71 0.71 0.71 0.34 0.36 0.39 0.69 0.70 0.70

BWT 0.68 0.68 0.68 0.36 0.37 0.40 0.67 0.67 0.68

FB 0.53 0.55 0.52 0.67 0.66 0.66 0.45 0.62 0.61

FW 0.50 0.51 0.48 0.64 0.67 0.65 0.48 0.63 0.62

FWT 0.49 0.51 0.47 0.64 0.64 0.65 0.46 0.63 0.62

WB 0.50 0.48 0.52 0.37 0.39 0.39 0.63 0.62 0.62

WF 0.50 0.49 0.52 0.37 0.39 0.39 0.65 0.65 0.65

WWT 0.49 0.46 0.41 0.35 0.36 0.36 0.65 0.65 0.66
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Table S2: Size of dataset and ratio of positives before and after cleaning for each dataset. Each dataset was

cleaned to remove samples with erroneous sequences (PCR errors), samples that were in the wrong dataset

(contamination), or samples that had labels supported by conflicting observations (observations in both the

positive and negative bin). For all datasets, a significant amount of samples were removed. size: number of

samples before cleaning, size cl: number of samples after cleaning, size cl %: percentage of samples after

cleaning, pos ratio: ratio of positive samples, pos ratio cl: ratio of positive samples after cleaning.

size size cl size cl % pos ratio pos ratio cl

BF 188949 142697 76 0.16 0.14

BW 204843 155983 76 0.12 0.11

BWT 187289 135267 72 0.22 0.21

FB 103094 74660 72 0.15 0.13

FW 302962 255490 84 0.08 0.07

FWT 309178 255072 83 0.06 0.05

WB 138485 81247 59 0.04 0.03

WF 257037 162535 63 0.03 0.03

WWT 188078 133374 71 0.05 0.04
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