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SAMENVATTING

Antibiotica-resistente bacteriën vormen een steeds groter wordend probleem voor

zowel ontwikkelings- als ontwikkelde landen. ESKAPE-bacteriën spelen hierin een

significante rol omdat deze bacteriën vaak resistent zijn tegen de gebruikelijke an-

tibiotica. Het vinden van middelen die tegen deze bacteriën werken is de laatste

jaren aanzienlijk afgenomen. Een mogelijk alternatief voor het gebruik van antibi-

otica is faagtherapie. Faagtherapie is het gebruik van bacteriofagen voor de bestri-

jding van bacteriële infecties. Bacteriofagen, kortom fagen, zijn virussen die bac-

teriën infecteren en op het einde van hun levenscyclus kunnen doden. Fagen zijn

eerder kieskeurig qua gastheer, ze infecteren niet zomaar alle bacteriën van het-

zelfde species. De meeste fagen infecteren bacteriën met stam-specificiteit. Mo-

menteel wordt deze bacterie-faag interactie bepaald in het lab. Dit is een kostelijke

en vooral tijdrovende activiteit. In deze thesis worden machine learning technieken

gebruikt om deze interacties in silico te voorspellen op basis van hun genoom.

Om deze interacties te kunnen voorspellen, werden ESKAPE genomen verzameld uit

publieke databases. Daarna werden profaagsequenties, met behulp van PHASTER,

gedetecteerd in deze ESKAPE genomen. Voor elke sequentie, zowel de bacteriën als

de fagen, werden frequenties berekend van alle 3-meren. Deze frequenties dienden

als features voor verschillende machine learning modellen. Uiteindelijk werden de

machine learning modellen vergeleken met elkaar via Precision-Recall curves en F1-

score curves. Ons beste model, een Support Vector Machine, gaf voorspellingen op

het stam-niveau met een nauwkeurigheid van 85.84% en een F1-score van 84.84%.

Trefwoorden: bacterie-faag interactie, faagtherapie, machine learning, kernel meth-

oden, Random Forest, K-nearest neighbors, Support Vector Machine, Linear Discrimi-

nant Analysis, Two-step Kernel Ridge Regression.
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SUMMARY

Antibiotic-resistant bacteria have become increasingly problematic in both develop-

ing and developed countries. ESKAPE bacteria play a significant role in this because

these bacteria are often resistant to commonly used antibiotics. Finding drugs that

work against these bacteria has decreased considerably in recent years. A possible

alternative to the use of antibiotics is phage therapy. Phage therapy is the use of

phages to fight bacterial infections. Bacteriophages, in short phages, are viruses that

infect bacteria and kill them at the end of their replication cycle. Phages are picky

in terms of their host, they do not just infect all bacteria of the same species. Most

phages infect bacteria with strain specificity. Currently, bacterium-phage interactions

are being determined in the lab. This is a costly and time-consuming activity. In this

thesis, machine learning techniques are used to predict these interactions in silico

based on genomic sequence data.

To predict these interactions, ESKAPE genomes were collected from public databases.

Prophage sequences were detected, in the bacterial genomes, using PHASTER. For

each of the phage sequence and bacterial sequences, frequencies were computed

for all 3 mers. These frequencies served as features for various machine learning

models. Ultimately, the machine learning models were compared with each other via

Precision-Recall and F1 score curves. Our best model, a Support Vector Machine, gave

predictions at the strain level with an accuracy of 85.84% and an F1 score of 84.84%.

Keywords bacterium-phage interaction, phage therapy, machine learning, kernel

methods, Random Forest, K-nearest neighbors, Support Vector Machine, Linear Dis-

criminant Analysis, Two-step Kernel Ridge Regression.
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CHAPTER 1

INTRODUCTION AND OUTLINE

According to the World Health Organisation (WHO), one of the biggest present-day

threats to global health, food security and development is antibiotic resistance. It

leads to longer hospital stays, higher medical costs and increased mortality. But what

exactly is the phenomenon, antibiotic resistance, and how can we try to combat it?

For that, we first have to briefly explain what antibiotics are. In 1928, Alexander Flem-

ing discovered the first antibiotic, penicillin, by serendipity. During the Second World

War, penicillin saved millions of lives by controlling bacterial infections that soldiers

got on the battlefield. Since then, many other classes of antibiotics were discovered.

They were soon after employed to combat bacterial infections in several ways (Ven-

tola, 2015). The definition of an antibiotic is any organic molecule that inhibits growth

or kills microbes by specific interactions with bacterial targets (Davies and Davies,

2010). An antibiotic kills or affects bacterial cells and not human cells. It can do so by

affecting the cell wall, the cell membrane, the DNA-copying machinery that is unique

for bacteria or many others targets (Ventola, 2015). Antibiotic resistance is a phe-

nomenon where bacteria develop resistances against certain types of antibiotics. The

spread of antibiotic resistance increasingly leads to bacterial infections that are diffi-

cult or even impossible to treat. This is causing a huge problem in the medical world.

According to the WHO, one of the causes is that antibiotics are frequently overpre-

scribed by health workers and veterinarians, leading to their overuse by the public.

Human overuse but also misuse e.g., in the case of viral infections or the use of antibi-

otics for human medicine as a growth promoter in livestock has stimulated the rise of

multidrug-resistant superbugs. For example, extremely drug-resistantMycobacterium

tuberculosis is almost impossible to treat with existing medicines (O’Neill, 2016).

In 2014, a total of 700,000 people died because of antibiotic resistance. This num-

ber is probably a big underestimation due to poor surveillance and reporting. The

antibiotic-resistant Mycobacterium tuberculosis alone kills over 200,000 people every

year and without further action, this number is only going to increase in the future. By

2050, superbugs could kill up to 10 million people every year in a worst-case scenario

(O’Neill, 2016). What would happen if routine medical procedures are threatened by

antibiotic resistance? If procedures like blood transfusion or childbirth become dan-

gerous due to a high risk of post-procedure infections? For these reasons, scientists



are urgently searching for effective alternatives to antibiotics.

The interest in bacteriophages (or phages), as a promising alternative for antibiotics,

is beginning to re-emerge into the scientific world. Phages are viruses that invade

bacterial cells and, at the end of their lytic cycle, phages can disrupt the host cell

wall, resulting in the bacterial cell to undergo lysis (Sulakvelidze et al., 2001b). A

decade before the discovery of penicillin, doctors applied phages to treat bacterial

infections (Schmidt, 2019). However, the limited knowledge and understanding of

phage biology made this treatment less popular than antibiotics when the latter be-

came available. This delayed the widespread adaptation of phage therapy (Mansour,

2017). In the Soviet-Union and some East-European countries, researchers continued

to study and use phages while in the West-European countries phages were put on

the sideline for a long time. However, with the ever-increasing threat of antibiotic

resistance, phage therapy is regaining popularity within Western countries (Pirnay,

2014).

A disadvantage of using phages as a treatment against bacterial infections is that

phages, in general, infect bacteria with strain level specificity (Hesse and Adhya,

2019). Indeed, phages are picky: a phage can, for example, infect a Pseudomonas

aeruginosa PA96 but not necessarily a Pseudomonas aeruginosa UCBPP-PA14 so it

does not infect all bacteria from the same species. This makes it very hard to find

the matching phage against a particular infection (Leite et al., 2018). Additionally, in-

fections are sometimes caused by multiple bacteria so doctors need multiple phages

to treat a single patient (Kutter and Sulakvelidze, 2005). Nowadays, researchers and

medical professionals are looking for bacterium-phage interactions in laboratories,

which is a time-consuming activity. The aim of this thesis is to develop machine learn-

ing models that can accurately predict interactions between a bacterium and phages

to speed up the process of finding and characterizing bacterium-phage interactions.

In the second chapter, bacteriophages will be described along with their character-

istics. Also, the interactions between bacteria and phages will briefly be discussed.

The concept of the evolutionary arm-race that is going on between bacteriophages

and bacteria for millions of years is going to be introduced. Finally, the advantages

and disadvantages of phage therapy are given together with the most important dif-

ferences between phage therapy and antibiotics. In the third chapter, the database

construction is going to be explained from scratch. Complete bacterial genomes were

collected from NCBI from within Python. After collecting these sequences, they were

used as input for PHASTER, to collect active prophage sequences. We computed the

3-mer frequencies using Python. Afterwards, the 3-mer frequencies were used as fea-

tures for the bacterial and prophage sequences. PCA and t-SNE were used to explore

the prophage sequences. Finally, a multiple sequence alignment was performed on a

2



CHAPTER 1. INTRODUCTION AND OUTLINE

subsample of 50 prophages. In Chapter four, the different constructed modelling ap-

proaches will be described, this will be preceded with a short introduction to pairwise

learning and the four possible prediction settings. In Chapter five, a conclusion will be

presented and the work in this thesis will be summarized. Future perspectives will be

elaborated on together with some alternative methods.

3
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CHAPTER 2

PHAGES AND PHAGE THERAPY

2.1 What are bacteriophages?

Phages, also called bacteriophages, are viruses that infect bacteria. Phage means

to eat or to devour in Greek. Phages are the most ubiquitous viruses on the planet.

They are found in the ocean, deep-sea vents, the soil, the food that we eat and the

water we drink (Prescott, 1993). An estimated total number of between 1030 and

1032 bacteriophages exist on Earth, more than any other organism (Prescott, 1993).

Frederick Twort (Twort, 1915) and Felix d’Herelle (Brock, 1998) independently discov-

ered the existence of bacteriophages in 1915 and 1917. Since then, phages have

been used in a variety of practical applications such as detection and identification

methods of bacteria, as well as in the food industry to kill Listeria monocytogenes on

cheese (Atamer et al., 2013). Nowadays, the interest of using phages as antimicrobial

agents is strongly increasing (Hesse and Adhya, 2019).

Essentially, a phage contains a DNA or RNA genome. The genome can be double-

stranded or single-stranded and is covered with a coat of proteins, a capsid, and

these capsids are made up of virus-encoded proteins (Kutter and Sulakvelidze, 2005).

Together, the combination of the genome and capsid is called the nucleocapsid. In

addition, a virus can be covered with an envelope, also called the lipoprotein mem-

brane. The entire structure, the genome, the capsid, and sometimes the envelope,

is called a virion or a virus particle. The virion moves from bacterium to bacterium

often killing the bacteria they encounter. The exterior of the virus particle is covered

with viral proteins, called spikes. These spikes can interact with bacterial proteins or

bacterial receptors that are present on the bacterial cell surface.

One way to classify viruses is according to symmetry. There are two big classes:

viruses with cubic symmetry and viruses with helical symmetry (Kutter and Sulakvelidze,

2005). Some viruses are not classified into these two categories, they belong to the

third category, namely the complex viruses. Most known bacteriophages (around
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95 %) belong to the order of the Caudovirales and are complex viruses (Roux et al.,

2015). Their structure is a mix of the previous classes. They have an icosahedral

head and a helical tail. Members of the Caudovirales are all tailed DNA viruses with

their genetic material inside their head structure. A tail can contain tail fibers, tail

spikes or tail tips (Figure 2.1) and these are all important for the specific interaction

between phage and host (Nobrega et al., 2018).

Figure 2.1: A typical structure for the Caudovirales (Mansour, 2017).

The Caudovirales are divided into three families based on the morphologies of their

tail. The first family is the Siphoviridae, they account for 60 % of the total number

of Caudovirales and have long, flexible tails. Around 25% of the Caudovirales are

phages of the Myoviridae family with double-layered, contractile tails. The third fam-

ily is the Podoviridae (15%), characterized by short, stubby tails. They can extend

their tail due to some key infection proteins enclosed inside the head, upon contact

with their host (Kutter and Sulakvelidze, 2005). The Caudovirales group is the most

important group within phages and to know how and why they interact with certain

bacteria is of utmost importance for applications in biotechnology and medicine. The

tail structures are key determinants of the host specificity and infection process of

the respective phages (Nobrega et al., 2018). These tailed phages are using receptor-

binding proteins (RBPs), like tail fibers, tail tips and tail spikes, to interact with their

host surface receptors such as lipopolysaccharide (LPS).

2.2 Replication cycles of bacteriophages

Phages are also classified based on their replication strategy. The two most frequently

followed replication cycles are the lytic and lysogenic cycle (Kutter and Sulakvelidze,

2005). Phages that strictly follow the lytic cycle are called virulent phages. In this

6
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lytic cycle, phages infect and rapidly kill their host cells (Figure 2.2). The cycle starts

with a phage tail accidentally making contact with a matching bacterial surface re-

ceptor. Subsequently, phages inject their genetic material in the bacterial genome

through the phage tail (Kutter and Sulakvelidze, 2005). In general, the phage tail has

an enzymatic mechanism that can penetrate the peptidoglycan matrix and the inner

membrane to release the genetic material into the bacterial cell.

Figure 2.2: The lytic and lysogenic replication cycles of phages (Garretto et al., 2019).

Immediately after penetration, the genetic material of the phage synthesizes early

proteins. The translated proteins protect the phage genome and restructure the host

metabolism towards the needs of the phage. They inhibit protease activity, block re-

striction enzymes, destroy several host proteins and immediately terminate various

host macromolecular biosyntheses (Kutter and Sulakvelidze, 2005). This causes the

phage to take over the host metabolism and molecular machinery to produce a vast

number of new phages. Phages start to synthesize new sigma factors or DNA-binding

proteins, resulting in hijacking the host RNA polymerase complex to ensure phage

transcription or they encode their own RNA polymerase. These transitions lead to

specific modifications of host chaperones (macromolecular structure folding proteins)

and eventually to the production of late proteins. These late proteins are subcom-

ponents of the phage tail and head. These specific modifications ensure that the

produced phage proteins are properly folded. Subsequently, the phage proteins are

7
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folded and assembled into a complete virus particle. The complete virus particle can

be spread out by bursting out of the cell membrane due to the enormous intracellular

pressure or due to viral enzymes. This process is called lysis (Kutter and Sulakvelidze,

2005). Caudovirales, the tailed phages, use two components for lysis: an endolysin,

an enzyme that cleaves in the peptidoglycan matrix of the host bacteria and a holin,

a protein that creates pores in the inner membrane so that lysins can reach the pep-

tidoglycan layer and precipitate lysis.

The second frequently observed replication cycle is the lysogenic cycle (Figure 2.2).

This is more of a dormant phase where the phage integrates into the host genome.

When this happens the phage is called a prophage. The inserted phage can also form

a plasmid that is not integrated into the bacterial genome but is replicated along-

side the genome. In this quiescent state, the phage gets replicated as its host cell

replicates. The lysogenic cycle can last for over a thousand generations and changes

the phenotype of the bacterium due to expression of genes that normally are not ex-

pressed. This is called lysogenic conversion (Monteiro et al., 2019). An example is

Vibrio cholerae which encodes the toxins that cause cholera symptoms due to infec-

tion from CTX� bacteriophage (Clokie et al., 2011).

Phages in the lysogenic lifecycle can switch towards a lytic lifecycle. This phenomenon

is called prophage induction and this process does not happen randomly (Owen et al.,

2020). This event is precisely controlled by several factors, including damage to the

host DNA, external conditions and others (Wang et al., 2003). If this event happens

too early, too few bacteria carrying the prophage will have reproduced. If the lysis

is delayed for too long, opportunities for infecting new cells are lost (Abedon, 1990).

Phages that can switch from the lysogenic cycle into the lytic cycle are called tem-

perate phages. These cells are called lysogenic or lysogenized because of the ability

of the prophage to turn into the lytic cycle and lyse. Temperate phages protect their

host from subsequent infections by encoding a repressor protein. This repressor also

blocks transcription of other phage genes (Kutter and Sulakvelidze, 2005). This mech-

anism is an example of superinfection immunity.

A less frequently observed third type of replication cycle is the chronic cycle, followed

by mostly archaeal phages and some filamentous bacteriophages. In essence, this

cycle is also redirecting the bacterial metabolism towards the assembly of new virions

but instead of breaking the cell wall and precipitate lysis, the progeny of the phages

is continuously released from the host by budding or extrusion (Weinbauer, 2004).

According to Cenens et al. (2013), there are two more replication cycles, namely

pseudolysogeny and carrier-state lifecycles. Phages following these replication cycles

8



CHAPTER 2. PHAGES AND PHAGE THERAPY

are carried inside a host without being in the lytic or lysogenic lifecycle, which gives

benefits to the phage such as protection against new infections from other phages

and preventing a lytic cycle when the host resources are limited. They are generally

used as synonyms but the carrier state more often refers to bacteria with a plasmid-

like prophage (Weinbauer, 2004).

2.3 Interactions between phages and bacteria

Phages are obligate parasites, they cannot complete their lifecycle and produce off-

spring without infection of a host, in this case, a bacterium. This means that if the

host does not have enough resources to survive, the phages cannot replicate within

the host (Weinbauer, 2004). As mentioned before, the temperate phages are not the

only ones that benefit from the interaction, the bacterial host can as well. Firstly,

the temperate phage protects their host from new infections by other phages, which

can be done by changing the bacterial surface receptors (Cenens et al., 2013). Sec-

ondly, they also provide horizontal gene transfer and encode additional genes that

have a beneficial effect on the host, resulting in increased microbial diversity (Cenens

et al., 2013). Thirdly, temperate phages presence results in pathogenicity for numer-

ous bacterial strains, e.g., Vibrio cholerae (Clokie et al., 2011) and E. coli 0157 (Ross

et al., 2016).

The property of facilitating horizontal gene transfer is very important for bacterial evo-

lution. Antibiotic resistance is a direct consequence of this phenomenon. Horizontal

gene transfer can be very beneficial to the recipient host cell by spreading virulence

or resistance properties throughout the community (Kutter and Sulakvelidze, 2005).

In bacteria, horizontal gene transfer can occur through transformation, conjugation

and transduction. Transformation is the direct uptake, incorporation and expression

of foreign genetic material out of the environment through the cell membrane. Con-

jugation is the process that involves the transfer of the genetic material via plasmids

from a donor cell to a recombinant recipient cell. The last form of horizontal gene

transfer, namely transduction, involves phages. Transduction is the ability of phages

to mobilize bacterial genes and carry them to another bacterial cell. There are two

kinds of transduction: the generalized and the specialized transduction. In gener-

alized transduction, any part of the bacterial genome can be transferred to a new

bacterial host by the phage (Trevors, 1999). More specifically, when a phage lyses

the host the bacterial chromosome is broken into small pieces. Sometimes, phage

packaging proteins can erroneously incorporate a piece of bacterial DNA instead of

phage DNA into the phage head. The assembled phage particle, now carrying bacte-

9
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rial DNA, can transfer the DNA into a new host.

Conversely, specialized transduction only carries restricted parts of the bacterial chro-

mosome (Trevors, 1999). This is because of the specific mechanism of specialized

transduction. A prophage always integrates at a specific point in the bacterial chro-

mosome with the help of an enzyme system. Normally, only the prophage sequence

is excised from the bacterial chromosome. However, occasionally the excision is ab-

normal leading to some bacterial genes in the phage DNA (Griffiths et al., 2000).

Again, these bacterial genes can subsequently be transferred into a new bacterial

host. Generalized transduction can be carried out by virulent and temperate phages

while specialized transduction can only be carried out by temperate phages and not

by virulent phages (Griffiths et al., 2000).

2.4 Coevolution of bacteria and phages

Phages outnumber bacteria by up to a factor of 10 (Stern and Sorek, 2011). Still,

bacteria have evolved numerous mechanisms to avoid getting infected by phages.

Conversely, phages have evolved to infect the bacteria that have previously become

resistant to phage infection. This has led to an evolutionary arms-race that has been

going on for millions of years. This arms-race led to an increase in diversity in bac-

teria and phages and will lead to continuous variations and selection towards the

adaptation of the host and the counter-adaptation in the phage. As a result of a con-

stantly changing balance between prey and predator, species have to evolve to stay

at the same fitness level (Stern and Sorek, 2011). Temperate phages increase diver-

sity by transferring genetic material from one host to another. Coevolution is not only

happening between bacteria and phages but also in other host-parasite interactions.

Because of the fast replication and turnover of bacteria and phages, this process is

happening faster than in other host-parasite interactions.

The three most important and well known bacterial defences are inhibition of phage

attachment to cell surface receptors, restriction-modification systems and clustered

regularly interspaced short palindromic repeats and CRISPR-associated genes (CRISPR/-

Cas) (Stern and Sorek, 2011). These bacterial defence systems have high genetic

variability, which is the consequence of the coevolutionary arms-race with phages.

This battle resulted in a huge variety of restriction-modification systems and many

subtypes of the CRISPR/Cas system. Coevolving lytic phages can lead to increased

diversity within a bacterial community by selecting for multiple modes of resistance

(Stern and Sorek, 2011). Another characteristic is the propensity of undergoing lat-

eral gene transfer, sometimes even with distantly-related prokaryotes. This mobility
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allows the host to quickly counteract the invading phage and thus contribute to enor-

mous diversity in phages and bacteria (Stern and Sorek, 2011).

2.4.1 Cell surface receptors

For the host to be infected by the phage, the phage must first attach to the surface of

the host through a process that is called adsorption. As mentioned in Section 2.1, the

phage uses its RBPs to recognize bacterial surface receptors of the host. These RBPs

include tail fibers, tail spikes and tail tips (Nobrega et al., 2018). Bacterial receptors

are presented by polysaccharides, LPS and surface proteins. The interaction between

RBPs and bacterial receptors constitutes the primary determinant of host specificity.

Therefore, a trivial way of avoiding the infection by phages is to modify these surface

receptors or simply make them inaccessible. Phages, on the other hand, can mod-

ify their RBPs to acquire novel interaction capabilities. For example, normally phage

lambda (Siphoviridae) targets the receptor LamB in its Escherichia coli host. When

the expression of the original receptor decreases through mutation the phage lambda

mutates as well to acquire the ability to target a new surface receptor, namely, OmpF

in addition to LamB (Samson et al., 2013). This coevolutionary process is observed in

multiple hosts and with various phages.

A second way of masking the surface receptors is by producing a surface component

such as an exopolysaccharide (EPS) (Samson et al., 2013). This is literally masking

the surface receptors for the phages. Phages can counteract this mechanism by pro-

ducing hydrolases that cleave the EPS to get to the surface receptor.

The third mechanism of the bacterial surface defence is to only express their surface

receptors under specific environmental conditions or in response to specific condi-

tions, such as quorum sensing (the ability to detect and respond to cell population

density by regulating genes (Miller and Bassler, 2001)). If the expression of the sur-

face receptor is variable, e.g., increased or decreased in the growth phase, it is ben-

eficial for the phages to have multiple RBPs. Phages can counter this mechanism by

encoding RBPs with variable specificities, which is achieved by RBP gene mutation

that results in a variety of RBPs and thus expansion of the host-range (Figure 2.3).

2.4.2 Restriction-modification systems

The restriction-modification (RM) system is probably the best-studied phage defence

mechanism and occurs in over 90% of the sequenced bacterial and archaeal genomes

11
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Figure 2.3: An overview of the three bacterial mechanisms to avoid infection by
phages and the counteraction of phages (Samson et al., 2013). In (a) the bacte-
rial surface receptor changed, leading to a change in the RBP. In (b) the bacterial
surface receptor was masked with EPS or a capsule, the phage reacted by expressing
a depolymerizing enzyme. In (c) a single phage has multiple RBPs for interacting with
different bacterial receptors (Samson et al., 2013).

(Samson et al., 2013). The system consists of two components: the first one restricts

new incoming foreign genetic material and the second one protects the host genetic

material from getting restricted. Both activities are regulated by the recognition of

a specific DNA sequence that is four to eight base pairs long. Protection is mostly

achieved by modification (methylation) of this specific DNA sequence such that for-

eign genetic material can be recognized. The RM system typically encodes a methyl-

transferase gene that regulates the defence activity and a restriction endonuclease

gene that regulates the foreign restriction activity (Figure 2.4).

Phages have developed mechanisms to evade the RM system in numerous ways

(Samson et al., 2013). Firstly, phages have acquired a methyltransferase gene them-

selves, or they stimulate the host methyltransferases to offer protection to the phage
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genome. Secondly, phages can avoid this RM system through inhibition of the en-

donuclease activity by producing specific proteins, e.g., Ocr protein from phage T7,

which blocks the active site of the restriction endonuclease. Another example is a

Bacillus subtilis phage that incorporates unusual bases in their genome such as 5-

hydroxymethyluracil instead of thymine and thus avoiding action by the restriction

endonuclease (Stern and Sorek, 2011).

Figure 2.4: The restriction-modification defence system: A) a general overview of the
methylasetransferase (M) and the restriction endonuclease (R) activity. B) Examples
of evading the bacterial system 1: Incorporation of unusual bases 2: Masking the
restriction site with phage proteins 3: Using the methyltransferase for masking the
phage genetic material 4: inactivation of the restriction endonuclease (Stern and
Sorek, 2011).

2.4.3 CRISPR/Cas defence system

CRISPR/Cas is an adaptive, widespread mechanism that archaea and bacteria use for

protection against viral infections by breaking down the foreign DNA. It is used in

40% of the bacteria and 90% of the archaea (Stern and Sorek, 2011). The mecha-

nism is similar to RNA interference (RNAi) in eukaryotes. CRISPR/Cas uses small RNA

molecules for specific sequence detection and neutralization of foreign genetic mate-

rial. Although this is a powerful mechanism to target phage sequences, phages have
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found different ways to keep the arms-race going.

Firstly, a mutation or recombination in the target sequence of the phage can pre-

vent the CRISPR/Cas from recognizing the phage because the original DNA sequence

stored in the CRISPR loci does not match the mutated sequence any longer (Stern

and Sorek, 2011). Secondly, anti-CRISPR genes are preventing the activity of the

CRISPR/Cas system through several mechanisms. Bondy-Denomy et al. (2013) found

anti-CRISPR genes that prevent the activity of the CRISPR/Cas system. However, they

did not unravel the actual mechanisms of these anti-CRISPR genes. Two years later,

Bondy-Denomy et al. (2015) found three anti-CRISPR/Cas genes and unveiled their

mechanisms. Two of the translated proteins blocked the DNA-binding activity of the

CRISPR-Cas complex by interacting with different protein subunits leading to steric or

non-steric modes of inhibition. The third protein binds with the Cas helicase-nuclease

and prevents its recruitment to the DNA-bound CRISPR-Cas complex. Even anti-anti-

CRISPR genes have recently been discovered and they inhibit the anti-CRISPR system

(Tang, 2019).

2.4.4 Are defence systems a burden or a benefit?

In this section, the pros and cons of the microbial immune systems are shortly re-

viewed. Evidently, the phage infecting the host and killing it is a strong disadvantage

to the bacterial host. However, phages also benefit host fitness by supplying new pos-

sible beneficial genes by enabling horizontal gene transfer (Stern and Sorek, 2011).

Although, two disadvantages come with encoding phage defence mechanisms. The

first disadvantage is the energy that is needed to carry additional genetic cargo. A

second disadvantage is autoimmunity, this is the immune system that recognises its

own cells and tissues as foreign, resulting in an immune response against itself. For

example, in RM systems the protecting methyltransferase is less stable than the re-

striction enzyme, which can cause the restriction enzyme to work on the host genetic

material (Samson et al., 2013). The CRISPR/Cas system is also not perfect and the

periodic acquisition of bacterial genetic material leads to spacers that target the bac-

terial genome (Stern and Sorek, 2011). Paradoxically, phages themselves also carry

anti-phage defence mechanisms. This is to defend their already infected host against

competitors.
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2.5 Phage therapy

2.5.1 Historical aspects

As an ancient proverb states: ’The enemy of my enemy is my friend’ and that is the

essence of phage therapy. In this therapy, doctors use phages to combat bacterial

pathogens. Phages can certainly be called enemies of our enemies as they are natu-

ral predators of bacteria (Hesse and Adhya, 2019). Phage therapy is the application

of phages in clinical or veterinary context to combat bacterial infections. Additionally,

phages can also be used as biological control agents that reduce the number of bac-

teria in food (Kutter and Sulakvelidze, 2005).

It was in 1915 that Frederick W. Twort made a rather odd observation that is now

known as the discovery of bacteriophages. When he was growing Vaccinia virus on

agar media in the absence of living cells, Twort noted that many colonies of Micro-

coccus species grew. Only these colonies appeared watery or glassy. He noted under

the microscope that these colonies had degenerated into small granules that were

coloured red with Giemsa stain. Twort himself said that he could not draw definitive

conclusions from this (Kutter and Sulakvelidze, 2005). He thought it was a living pro-

toplasm or an enzyme with the power of growth. It was Félix d’Herelle, in 1917 that

concluded it had to be a microbe that was antagonistic to bacteria and that caused

them to lyse. d’Herelle worked at the Pasteur Institute in Paris and from 1919 on, the

institute started applying phages in therapy but abandoned its use once cheap and

broad-host-range antibiotics became available (Kutter and Sulakvelidze, 2005). Only

in the east of Europe, researchers kept applying phage therapy to treat wound infec-

tions, gastroenteritis, sepsis and other ailments (Pirnay, 2014). Because of the lack

of scientific knowledge and the advent of antibiotics phage therapy was left behind

until now. The recent and rapid emerge of antibiotic-resistant superbugs has forced

scientists and companies to search for alternatives, leading to, among others, the

founding of AmpliPhi Biosciences and Adaptive Phage Therapeutics (Schmidt, 2019).

The former developing phage therapeutics for drug-resistant bacterial infections and

the latter one is working on delivering phage therapy to hospitals and others.

2.5.2 Three important aspects of phage therapy

There are three important aspects of phage therapy. Firstly, practitioners can employ

either natural or genetically modified phages in phage therapy (Figure 2.5). Natu-

ral phages are phages that are found in nature and can just be collected from vari-
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ous sources. Genetically modified phages are phages that are modified to enhance

some therapeutic characteristic(s). For example, companies hunt for broad-host-

range phages and then engineer them for the desired attributes such as improved

penetration of a biofilm or greater efficiency of killing bacteria (Schmidt, 2019). Engi-

neered phages have some advantages over natural ones, particularly in commercial

development. Additionally, engineered modifications are patentable while natural

phages are not (Schmidt, 2019).

Figure 2.5: The three general aspects of phage therapy. Firstly, natural or engineered
phages can be deployed. Secondly, phage cocktails can consist of only one single type
of phage or a combination of different phages. Thirdly, general phage preparations or
personalized preparations can be used (Schmidt, 2019).

Secondly, one can add only a single type of phage or a combination of different

phages, called a phage cocktail. The resistance onset can partially be delayed by

adding several phages in one cocktail, each targeting a different bacterial receptor

(Schmidt, 2019). Depending on the genetic diversity of the bacterial species that has

to be combated there will be more or fewer phages needed in the phage cocktail

(Hesse and Adhya, 2019). If the bacteria have low genetic diversity and thus a lim-

ited number of different phage receptors, like Staphylococcus aureus, it is sufficient to

treat the infection with a few different phages. Conversely, Acinetobacter baumannii

is a pathogen exhibiting high genetic diversity and therefore is better treated with a

large number of different phages (Schmidt, 2019).

Phages in the phage cocktail mostly have a complementary feature like their host-

range. This is to improve the efficacy of the cocktail and to minimize the resistance

onset.
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A third important aspect of phage therapy is the use of general phage preparations

versus personalized phage preparations. In some East-European regions, pharmacies

offer fixed cocktails against the most common bacterial infections. Treatment can

also be personalized. This means that the pathogens causing the infection need to be

identified beforehand, after which phages that are most effective against a patient’s

specific bacterial strains are applied. It goes without saying that the personalized

cocktail is more expensive than the fixed cocktail. Additionally, personalized cocktails

are only used for chronic infections to ensure that there is enough time to select for

the specific phage. Also, according to Örmälä and Jalasvuori (2013), fixed cocktails

could induce resistance towards those phages in the fixed cocktail, resulting in a need

to constantly change those phages in the cocktails.

2.5.3 Comparing antibiotics with phage therapy

It is of utmost importance that people understand the difference between antibiotics

and phage therapy so that previous mistakes are avoided. This includes overuse and

misuse of the therapeutic agent. Phages and bacteria are constantly in an ongoing

evolutionary arms-race, this is why phages could be one of the potential solutions

towards the post-antibiotic era (Gordillo Altamirano and Barr, 2019). Phages can be

administered to humans in many ways, for example, orally, rectally, locally, with

aerosols and intravenously (Sulakvelidze et al., 2001a). The way of administrating

phages influences the effectiveness of the treatment, but this will not be further dis-

cussed in detail.

Firstly, the most distinguishing characteristic is that most antibiotics have a broad-

host-range while phages are very specific (Hesse and Adhya, 2019). In general,

most phages are known to be strain-specific. As a result, they can precisely tar-

get pathogenic bacteria, while leaving beneficial microbiota unaffected. Because of

this characteristic, it is important to know which bacteria cause the infection before

physicians can treat a patient (Pirnay et al., 2018). Thus, phage specificity can be

considered a big advantage and disadvantage at the same time. Phage therapy re-

quires to identify the bacterial pathogen at strain level before applying the correct

phage cocktail to the patient. This can cost a lot of time in wet-lab circumstances and

is a major reason why predicting interactions in silico between phages and bacteria

can be a big step forward in phage therapy (Monteiro et al., 2019).

Secondly, phages replicate exponentially after adding them to the site of infection.

Therefore, phage preparations can be administered at lower concentrations compared
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to antibiotics (Sulakvelidze et al., 2001a). However, the exponential behaviour of

phage replication also poses regulatory challenges for practical application. Because

of the size of phages, relatively big, phages are quickly removed from circulating in

the body. If this happens too fast and thus no bacterial cells were infected, the repli-

cation cycle ends.

Thirdly, bacteria can develop resistance against antibiotics as well as phages. How-

ever, in contrast to antibiotics, phages can coevolve to regain the ability to infect

their host (e.g., by targeting a new surface receptor). But when resistance occurs it

should be possible to select another phage that still has its effectiveness against the

phage-resistant bacteria or use a phage that is specially trained against the resistant

bacterium (Pirnay et al., 2010). Finally, developing a new antibiotic may take around

thirteen years while selecting new appropriate phages is a relatively fast process that

is mostly completed in weeks or months (Sulakvelidze et al., 2001a). Although, an

antibiotic that is already on the market and is still effective can be prescribed imme-

diately.

The comparison above is made between lytic phages and antibiotics, lysogenic phages

are not useful for killing bacteria immediately and are thus not included in this com-

parison. However, it is possible to convert lysogenic phages into a lytic variant

(Schmidt, 2019). It has to be mentioned that bacterial resistance to phages is not

inevitable but according to Carlton (1999), it happens at a tenfold lower rate than

with antibiotics. Since phage resistance is not correlated with antibiotic resistance,

it could also be added in combination, a strategy that is also being employed at the

Queen-Astrid military hospital here in Belgium. Scientific research shows that bacteria

that are getting resistant to phage therapy are sometimes resensitized to antibiotics,

which leads to a synergetic effect (Hesse and Adhya, 2019). This is because antibi-

otics and phage therapy use alternative mechanisms to target bacteria.

2.5.4 Phage engineering

Several companies are trying to enhance the ability of phages to interact with cer-

tain pathogens by engineering the natural phage. They hunt for natural phages with

a broad-host-range and then engineer them for the desired attributes, for example,

more immunogenicity, greater access to biofilms and improved pharmacology. Fur-

thermore, researchers can engineer phages to overcome host-range limitations. An-

other example is transforming lysogenic phages into lytic phages by deleting the
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phage repressor (Dedrick et al., 2019). By doing so scientists eliminated the chance

that the phage goes into the lysogenic cycle and that genes are transferred by trans-

duction (Monteiro et al., 2019). A variety of ways exist to convert phages from a

lysogenic lifestyle to a lytic lifestyle (creating so-called vir mutants), as reviewed by

Monteiro et al. (2019).

In addition, synthetic biology can be used to improve the efficiency and safety of the

temperate phages in such a way that the temperate phages can have a similar ef-

fect as using strictly virulent phages (Monteiro et al., 2019). Moreover, due to the

integration of the temperate phage, the bacterium gets insensitive for further phage

infections. Superinfection immunity causes problems in phage therapy. Not only are

temperate phages very abundant in nature, but they are also easy to find and isolate

because of the advances in high-throughput sequencing. Since bacterial DNA usually

also contains the DNA of one or a few lysogenic phages, marked by an integrase, they

are very easy to recognize in genome databases where the isolation of the genetic

material of a strictly lytic phage is rather difficult. Park et al. (2017) have succeeded

in engineering a temperate phage that delivers a synthetic gene network which inter-

feres with the bacterial CRISPR/Cas system and eventually kills the bacterium. Yosef

et al. (2015) engineered a temperate phage to resensitize the bacterium to antibi-

otics. Strictly lytic phages will probably remain the preferred choice for the following

years in phage therapy, although vir mutants can be used to target different bacterial

surface receptors than the strictly lytic phages.

2.5.5 Disadvantages of phage therapy

Phage therapy does have some disadvantages, of course, and it would be naive to

believe otherwise. Firstly, Sarker et al. (2012) pointed out that there is an enormous

phage loss during gastric passage conditions. Applying a larger dose could be a solu-

tion to this problem.

Secondly, most bacterial infections involve several different pathogens. Therefore,

targeting only one of these pathogens will not resolve the infection. This problem

is solved by using complex phage cocktails containing phages against many strains.

However, the genetic variability in the bacterial species is also becoming a problem,

for example, phage cocktails against E. coli contain ten different phages but only

target 50% of the bacterial strains (Brüssow, 2019). When more phage strains are

added, interferences problems start to appear.

Thirdly, sometimes pathogens are present in such a low concentration that the repli-

cation threshold is not exceeded. Because phages are relatively big entities they are
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quickly removed out of the body. Therefore, phages are sometimes not able to infect

enough bacterial host cells and then no productive phage infection chain can occur

(Brüssow, 2019).

Fourthly, collecting and plating the specific phage in time is sometimes difficult when

the infection is acute since short disease durations need an early phage interven-

tion. Even when the cocktail is given on time phages still need to have access to the

pathogen.

Finally, because phages and bacteria have been co-evolving for millions of years this

implies that a phage will never fully eliminate a bacterium due to phage-resistant

species. Indeed, phages need their bacterial host to replicate, so they have no ad-

vantage of completely eliminating their means of reproduction. This is why the com-

bination of phage therapy with classical antibiotics can prove useful in cases where

both have a synergetic effect (Monteiro et al., 2019). The combined use of the two

can lead to complete elimination of the bacterial species.

A major drawback of phage therapy is that phage preparations were classified as

medical products (European Union) or drugs (US), based on the literal implementa-

tion of definitions (Pirnay et al., 2018). As a result, a lot of costly and time-consuming

procedures are needed for the development of phage-based antibacterials. However,

the characteristic of phages that makes them so useful, to overcome the bacterial

resistance so fast, is completely worthless in this case (Pirnay, 2014). For example,

fifty German patients were suffering from an infection of E.coli O104:H4. No effec-

tive alternatives were available and because of the strict medicine regulation, phages

could not be used (Pirnay, 2014). It would take years to make all the arrangements for

the medicine regulation for the new O104:H4 phages. The Declaration of Helsinki in

June 1964 is a way to avoid this strict medicine regulation (Association, 2013). It says

that humans can be used for experiments if no other option is available and if the

patient agrees. With the Declaration of Helsinki, physicians can apply phage therapy

and override any national or local law.

Another drawback is the limitation in intellectual property for natural entities such as

genes or phages. All these drawbacks make it almost impossible to manufacture cus-

tomized phages. In Belgium, there is since recently a new law that allows physicians

and pharmacists to personalize the patient treatment and produce medicines that

are not commercially available, better known as magistral preparations (Pirnay et al.,

2018). In the Belgian and European law, the notion of a magistral preparation is de-

fined as "any medicinal product prepared in a pharmacy in accordance with a medical

prescription for an individual patient" (Pirnay et al., 2018). Magistral preparations are
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mixed from their constituent ingredients by a pharmacist for a specific patient accord-

ing to the prescription of a physician. Magistral preparations are increasing because

of the demand for personalized therapies and rare diseases. In the face of this loom-

ing antibiotic crisis, it could be very helpful to consider phage therapy applications in

the medical world (Pirnay, 2014).
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CHAPTER 3

AN ESKAPE-BASED GENOME

DATABASE

3.1 Introduction: Why do we focus on ESKAPE

organisms?

Several highly problematic bacterial pathogens have been grouped in a category that

has received the name ESKAPE. This acronym denotes the following bacterial species:

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter

baumanii, Pseudomonas aeruginosa and Enterobacter species. Simultaneously, this

acronym symbols their ability to escape the effects of antibiotics through evolutionar-

ily developed mechanisms (Rice, 2008). Moreover, these are six of the most important

pathogens when it comes to antimicrobial resistance. The ESKAPE group consists of

both Gram-positive and Gram-negative bacteria. They mostly occur in the human

gut, on the skin and in the environment (Santajit and Indrawattana, 2016). In partic-

ular, ESKAPE pathogens differentiate themselves from other pathogens due to their

increased resistance to commonly used antibiotics such as vancomycin, carbapenems

and penicillin (Santajit and Indrawattana, 2016). The increased resistance and clinical

significance result in a necessity to understand their mechanisms of resistance.

The ESKAPE organisms are commonly found in hospitals both in developing and de-

veloped countries (Rice, 2008). Because of the reasons mentioned in the previous

chapter, the emergence and escalation of resistance among ESKAPE pathogens is in-

creasing (Natarajan and Usha, 2018). Especially for these pathogens, the increase in

resistance is alarming, because they cause two-third of all the healthcare-associated

infections, also called nosocomial infections. Nosocomial infections are infections

that patients contract during hospital care or other healthcare facilities that were not

present or incubating at the time of admission (Khan et al., 2017). These infections

lead to an overall increase in mortality and morbidity in hospitals and intensive care
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units. Most strains are able to facilitate horizontal gene transfer, allowing them to

pass resistance genes from one pathogen to another (Pendleton et al., 2013). This is

especially problematic with nosocomial infections, where selection pressure is even

higher due to constant exposure to antibiotics.

Multidrug resistance is amongst the top three threats to global public health and is

caused by an inappropriate use or unneeded prescription of antibiotics (Santajit and

Indrawattana, 2016). In 2011, Magill et al. (2014) conducted a survey in the United

States about nosocomial infections which counted 75,000 deaths in that year alone.

3.2 Data collection and preprocessing

In this thesis, the goal is to accurately predict interactions between bacteria and their

prophages using machine learning models. This prediction problem will be repre-

sented as a binary classification (a binary outcome that will be represented by a one

or a zero). For this purpose, bacterial sequences were collected from the National

Center for Biotechnology Information (NCBI), a database which is publicly available

(NCBI Resource, 2018). There are databases publicly available, with known interac-

tions between a bacterium and its (pro)phage(s). However, these databases mostly

annotate the (pro)phage’s host at the species level, not at the strain level (Leite et al.,

2018). In practice, bacterium-phage interactions are specific at the strain level. Con-

sequently, these databases are not suited to construct machine learning models to

aid practical phage therapy. To circumvent the problems of annotation, we chose to

collect complete bacterial genomes and detect prophages in these genomes. By do-

ing so, the detected prophages together with each corresponding bacterial genome by

definition constitute an interaction at the strain level. We collected bacterial genomes

of the ESKAPE organisms because they are the priority in research towards alternative

antimicrobial solutions.

One could argue whether this is relevant since prophages have a lysogenic replication

cycle and in most applications phages with a lytic replication cycle are used but it is

possible to convert temperate prophages into virulent phages (Monteiro et al., 2019).

Additionally, the gained knowledge can be used for treatment with virulent phages

since they use the same infection machinery (tail fibers, tail spikes and tail tips).

3.2.1 ESKAPE genome collection and filtering

Firstly, sequenced genomes of the ESKAPE organisms were collected from NCBI (NCBI Re-

source, 2018). Data collection was restricted to completely sequenced genomes in

order to increase the relevance of subsequent processing steps and analyses. Sec-
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Table 3.1: The number of unique bacterial strains and the total collected genomes per
bacterial species.

Organism Unique strains Total genomes
Enterococcus faecium 81 85
Staphylococcus aureus 474 478
Klebsiella pneumoniae 369 376
Acinetobacter baumannii 161 164
Pseudomonas aeruginosa 145 149
Enterobacter cloacae 26 26
Enterobacter aerogenes 15 15

ondly, raw collected data was filtered. Duplicate entries and genomic sequences with

unknown nucleotides were removed. The raw ESKAPE genome database consists of

1,515 complete genome sequences. After filtering for the sequences that contain un-

known nucleotides, 1,457 genomes were left. We did not apply a filter for plasmids

because we reasoned that plasmids can also contain prophages. 1,293 of the 1,457

bacterial genomes contained at least one prophage (see further below). 1,271 unique

bacterial strains were found amongst the 1,293 bacterial genomes (Table 3.1), i.e., a

strain that only appears once in the database. The largest bacterial species is Staphy-

lococcus aureus with 474 unique strains and the smallest group is the Enterobacter

aerogenes with 15 unique strains. A Python script was used to automatically access

the NCBI database and collect ESKAPE genomes. Furthermore, we have collected in-

formation on the bacterial strain annotation, sequencing method and description for

the bacterial genomes.

3.2.2 Prophage detection

After the collection of bacterial genomes, the next step is to detect the prophages.

This was done with PHASTER using the complete bacterial genomes as input. PHASTER

is a tool to identify and annotate phages within bacterial genomes or plasmids. Hence

the name PHAge Search Tool- Enhanced Release (Arndt et al., 2016). PHASTER is the

upgraded version of the popular web server PHAST (Zhou et al., 2011). Of the many

tools to detect prophages, we chose to work with PHASTER because PHASTER can

work with an API and thus automate our prophage detections. PHASTER works with

a relatively straightforward pipeline. Bacterial genome sequences can be supplied in

a FASTA or GenBank format and then a BLAST search is performed against a custom

(pro)phage database that combines protein sequences from the NCBI phage database

and the prophage database made by Srividhya et al. (2006). Phage-like genes are

then clustered into prophage regions using DBSCAN (Ester et al., 1996). Again, a

BLAST search is performed but for the non-phage genes against a non-redundant

bacterial protein database. Every detected prophage region is assigned a complete-
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Table 3.2: The number of genomes for each organism from NCBI that contained at
least one active prophage and the total genomes found.

Organism Genomes with active prophage(s) Total genomes (Percentage)
Enterococcus faecium 85 92 (92.4%)
Staphylococcus aureus 478 546 (87.6%)
Klebsiella pneumoniae 376 412 (91.2%)
Acinetobacter baumannii 149 178 (83.7%)
Pseudomonas aeruginosa 164 182 (90.1%)
Enterobacter cloacae 26 28 (92.9%)
Enterobacter aerogenes 15 19 (79.0%)

Table 3.3: The number of active prophages for each bacterial species and the average
number of active prophages per organism.

Organism Active prophages Number of active prophage(s) / total genomes
Enterococcus faecium 192 2.1
Staphylococcus aureus 1,083 2
Klebsiella pneumoniae 1,299 3.2
Acinetobacter baumannii 357 2
Pseudomonas aeruginosa 468 2.6
Enterobacter cloacae 94 3.4
Enterobacter aerogenes 39 2.1

ness score based on the proportion of phage genes in the identified region: If this

score is higher than 90, the prophage region gets the label of ’active’. A score be-

tween 70-90 receives the label of ’questionable’ phage region and below 70 is the

’incomplete’ zone. We filtered for active prophages with a genome size larger than

10 Kb, as nucleotide sequences smaller than 10 Kb can be difficult to distinguish from

other integrative elements. These steps in the database construction are based on

methods used before by (Costa et al., 2018) and (Shen et al., 2020). The former used

PHAST to discover prophages in the Acinetobacter baumannii genomes and the lat-

ter explored the Klebsiella pneumoniae genomes with the PHAST web server as well

(Zhou et al., 2011). The PHASTER API was accessed by a Python script to automati-

cally upload the bacterial genome sequences (as FASTA files) to the PHASTER server

for processing and detecting active prophages.

The database consists of 1,293 unique bacterial genomes and 3,532 prophage genomes.

After having detected the prophage sequences, we have analyzed their GC content

and length (Figures 3.1 and 3.2). The average GC% lays between 33.15% (Staphy-

lococcus aureus) and 62.62% (Pseudomonas aeruginosa). In Figure 3.2 one can see

the boxplot that represents the length of the prophages per bacterial species. The

smallest prophage genomes has a length of 10,006 basepairs (Pseudomonas aerugi-

nosa) and the largest sequence has 134,280 basepairs (Staphylococcus aureus) while

the length of the bacterial host varies between 2.73 Mbp (Enterococcus faecium) and

6.63 Mbp (Pseudomonas aeruginosa). It was found that 1,293 of the 1,457 bacterial
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genomes contained active prophages (Table 3.2). A total of 3,532 active prophages

were found in these 1,293 bacterial genomes (Table 3.3). On average, every bacte-

rial genome contained between 2 and 3.4 active prophages. Enterobacter cloacae

had with an average of 3.4 active prophages per genome the highest number of

prophages and Staphylococcus aureus and Acinetobacter baumannii with only 2 ac-

tive prophages per genome the lowest number.

Figure 3.1: A boxplot of the prophages GC% per bacterial species.

3.2.3 Prophage processing and final database construction

Since the goal is to use supervised learning methods to accurately predict bacterium-

phage interactions, an interaction matrix containing known interactions (also called

labels) is needed. In this case, this is a positive interaction (one) or a negative interac-

tion (zero) between a bacterium and phage. Since the database consists of 1,293 bac-

teria and 3,532 prophages, the interaction matrix has the same dimensions, namely

1,293 by 3,532. An interaction is indicated with a one and no interaction with a zero.

Each row represents a bacterium and each column a prophage. Note that there is only

one interaction per prophage (column) but that one bacterium (row) can contain mul-
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Figure 3.2: A boxplot of the prophages length per bacterial species.

tiple interactions. Most common machine learning methods require both instances

(data points) from a positive class, as well as a negative class. This, by definition, re-

sults in a binary classification in which both classes are tried to be separated as well as

possible. In this case, both known positive interactions between bacteria and phages

as well as known non-interacting bacterium-phage pairs (negative interactions) are

needed. A negative interaction implies that there is no interaction between a given

phage and a bacterium. Which is not the same as not knowing whether there is in-

teraction. However, as our data collection approach focused on detecting prophages

in bacterial genomes, these constitute only positive interactions. Besides, negative

interactions are scarce in most publicly available databases. For simplicity, we will

start with assuming that all non-observed interactions are negative interactions but

keep in mind that this is not identical. One could say that this is a naive approach but

considering the strain specificity of bacterium-phage interactions, this is not such a

terrible idea.

To summarize, the final database consists of an interaction matrix with the observed

and constructed labels and both the bacterial genomes and prophage sequences

grouped in two separate files (for storage capacity reasons and ease of use). This

is the starting point for further feature engineering methods.
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3.3 Constructing the primary feature matrices

All 3-mer frequencies were computed and normalized for every bacterial and prophage

sequence and stored in a feature matrix. The features were constructed separately

for the bacteria and the prophages. This gives us for every bacterial sequence and

prophage a number of 64 features, namely, the 3-mer frequencies. We chose to start

with the 3-mers frequencies because of simplicity. Since we are the first to predict

these interactions based on the k-mer features with machine learning, there is no lit-

erature that describes what number of k is ideal. To summarize, the bacteria feature

matrix has 1,293 rows with 64 columns and the prophage feature matrix has 3,532

rows with 64 columns. There is thus a separate feature matrix for both the bacteria

and the prophages.

3.4 Data exploration and visualization

To visualize and understand our database, the Principal Component Analysis (PCA)

method (Paul et al., 2013) together with a t-distributed Stochastic Neighbor Embed-

ding (t-SNE) (van der Maaten and Hinton, 2008) was performed on the prophage

sequences. These methods are both used to reduce high dimensionality in datasets.

PCA was performed on the features of the prophages to explore and visualize the

3-mer frequencies for the prophages with only two components. We looked at the

species level instead of at the strain level because there were too many unique strains

to visualize properly. The initial PCA could group the prophages with only two compo-

nents relatively well (Figure 3.3). Only the prophages that infect Enterobacter aero-

genes and Enterobacter cloacae had overlap with the prophages that infect Klebsiella

pneumoniae. This is probably because Enterobacter is our smallest bacterial species

and PCA tries to maximize the variability for the entire dataset, thus potentially fo-

cussing less on the smallest bacterial species. According to the first principal compo-

nent, one could almost say that the PCA distinguished between prophages that infect

gram-positive and gram-negative bacteria (Figure 3.3). Since Staphylococcus aureus

and Enterococcus feacium are the only two gram-positive species, it appears trivial

that they are more different than the other prophages. Surprisingly, the prophages

that infect Acinetobacter baumannii showed more similarity to the prophages that

infect gram-positive species than with the other prophages from gram-negative bac-

teria, represented as two principal components at least. One could also say that

according to the first principal component the prophages that infect Staphylococcus
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Figure 3.3: A Principal Component Analysis of the prophage features

aures and Pseudomonas aeruginosa are the least similar to each other. The first

principal component explained 77.49% of the variance, while the second principal

component explained 11.24%. Analysis of the loadings showed that the most impor-

tant features for the first principal component are the frequencies of the GCG and TTT

3-mers with weights of respectively, 0.23 and -0.32. In addition, the fact that the PCA

could distinguish pretty good between different prophages with only two components,

potentially signals high conservation among prophages related to the same species.

We hypothesize that representing an entire genomic sequence by only the 3-mer fre-

quencies leads to less diversity and is probably too simplistic as representation.

Looking at the second principal component, we hypothesized that some of the prophage

genomes are present as reverse complements in our database. This finding was

strengthed by the fact that the largest loadings, in absolute value, of the second

principal component are the frequencies of the AAA 3-mer and the frequencies of the

TTT 3-mer. To investigate this, we took a subsample of 50 prophage sequences that

infect Staphylococcus aureus. 25 of the 50 prophages had a second principal com-

ponent that was higher than 0.01 and 25 of the prophages had a second principal

component that was lower than 0.00. The original 50 prophages sequences were an-

alyzed with PCA seen in Figure 3.4. We computed the reverse complements for the
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25 prophages that had originally a second principal component of below 0.00 and

computed a second PCA for the subsample of 50 prophages that now included 25

reverse complement sequences (Figure 3.5). In this plot, the PCA could not distin-

guish the prophage sequences very well. The first principal component showed, in

absolute values, the highest loadings for ACG (0.23) and AAA (-0.43). This further

supports our observation that the second principal component reflects the variation

between forward and reverse complemented phage sequences. In addition, the pres-

ence of reverse complement sequences was also confirmed by sending a toy example

to PHASTER in which an already detected prophage was replaced by its reversed com-

plement sequence in its host bacterial genome. Here again, PHASTER predicted the

presence of the prophage as before.

Figure 3.4: A Principal Component Analysis on a subset of 50 prophages that infect
Staphylococcus aureus.

Since a prophage does not have one correct orientation (genes can occur in both di-

rections because the genomic material of these phages is dsDNA) (Zeldis et al., 1973),

we added the reverse complement of each prophage sequence to the prophage se-

quence itself. Every prophage sequence is now represented by the originally detected

sequences, appended by the reverse complement of each sequence. Again, we com-

puted the 3-mer frequencies for these new sequences in Python and did a third PCA

(Figure 3.6). We added these reverse complements to each prophage to eliminate the

variability that is explained by the difference between the prophages in their forward

orientation and reversed orientation. The first principal component explained 92.19%

of the variance and the second principal component 1.62%. The fact that PCA can

explain 92.19% of the variance of our dataset in only one Principal Component hints

to redundancy of the data. The largest loadings, in absolute value, for the first prin-
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Figure 3.5: A Principal Component Analysis on a subset of 50 prophages that infect
Staphylococcus aureus with computed reverse complements.

cipal component are the 3-mers GCG (0.22) and AAA (-0.29). The largest loadings,

in absolute value, for the second principal component are the 3-mers CTG (0.28) and

CGA (-0.27). There is no symmetrical element anymore that splits the prophages

according to the y-axis. Adding the reverse complement of every prophage to the

original prophage sequence handled the problem regarding the prophage sequences

that could be present in both orientations. A pair plot for the largest loadings for the

first principal component and the second principal component can be seen in Figure

3.7. On the diagonal one can see the densities for the largest loadings. For example,

Pseudomonas aeruginosa has a noticeable higher frequency of the 3-mer CGA and

a lower frequency of the 3-mer AAA than other prophages related to other bacterial

hosts. High and narrow peaks are again hinting to redundancy in the data.

Another interesting note is that both AAA and TTT frequencies are negatively corre-

lated for the first principal component, respectively -0.294 and -0.293. This means

that prophages from species like Klebsiella pneumoniae, Pseudomonas aeruginosa

and Enterobacter contain a lower frequency of AAA and TTT 3-mers in their sequences

than the prophages related to other bacterial hosts. Interesting is that these three

bacterial species also have the highest GC% (Figure 3.1), resulting in a negative cor-

relation between the GC% and the frequencies of both AAA and TTT 3-mers. Because

of this similarity in GC% and both 3-mers the Enterobacter had overlap with the Kleb-

siella pneumoniae in the PCA (Figure 3.3).
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Figure 3.6: A Principal Component Analysis (PCA) on the prophage sequences with the
reverse complements.

A t-SNE was also performed on the new prophage sequences (Figure 3.8). The idea

of a t-SNE is to embed high-dimensional points in low dimensions in a way that re-

spects the similarity between points so that clusters in the high-dimensional space

can be preserved. Nearby points in the high-dimensional space correspond to the

nearby points in the low dimensional space, and distant points in high-dimensional

space correspond to distant embedded low-dimensional points (van der Maaten and

Hinton, 2008). The t-SNE plot confirms that the prophages from Enterobacter are

similar to prophage from Klebsiella pneumoniae since they are again plotted together.

The exceptionally good separation between the different prophages suggests that the

features are potentially too simplistic to represent complex phage sequences. If it is

possible to differentiate that good with only two components for the t-SNE, there can

not be that much diversity between the prophages. Representing entire genomes by

their overlapping 3-mer frequencies potentially leads to an oversimplification of the

prophage sequences, especially to distinguish intraspecies variability among them.

However, through evolution phages have adjusted their 3-mers profiles to their host

profile. This similarity could lead to accurate predictions at the species level and is

probably the reason why t-SNE and PCA can distinguish that good for the prophages

only using two components. Also, the t-SNE showed some outliers such as the black
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Figure 3.7: A pairplot of the largest loadings for the first principal component (GCG and
AAA) and the second principal component (CTG and CGA). The diagonal represents
the densitities for a given k-mer.

dots (Enterococcus faecium) in the yellow group (Staphylococcus aureus) but these

were not further investigated.

3.5 Multiple sequence alignment

To further zoom in on the diversity (or similarity) between the prophage sequences,

a whole-genome alignment was computed. However, because of limited compute re-

sources, we were unable to align all of the prophage sequences per species. Typically,

online tools for multiple sequence alignment limit the input size to between 2 and 4

MB. A subsample of 50 prophage sequences from Staphylococcus aureus was already

2.6 MB. This prophage subsample was the same subsample that was discussed in

the previous subsection (3.4). 50 prophage sequences were collected from the orig-

inal dataset. The reverse complements were computed for the prophages that had

a second principal component lower than 0.00 since we hypothesize that the second
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Figure 3.8: A t-distributed Stochastic Neighbor Embedding (t-SNE) on the prophages
sequences with the reverse complements.

principal component is distinguishing between normal prophages and their reverse

complement. This resulted in 25 original prophage sequences and 25 reverse com-

plements of prophage sequences, all of which were related to Staphylococcus aureus.

An MSA was done using Mauve (Darling et al., 2004). Mauve is a program for con-

structing MSAs in the presence of large-scale evolutionary events such as inversion

and rearrangement. It employs algorithmic techniques that scale well in the lengths

of sequences being aligned. All 50 sequences can be seen in Figure 3.10. Since it

is a rather complex figure, we have zoomed in on the first 10 sequences in Figure

3.9. In this figure, we can see that each row is a different prophage genome. Each of

the colored blocks surrounds a region of the genome sequence that aligned to a part

of another genome and is presumably homologous and internally free from genomic

rearrangement. When the block lies above the center black line, the aligned region is

in the forward orientation. Consequently, when the block lies under the center black

line, the aligned region is in the reverse orientation. Colored blocks in the first genome

are connected by lines to similarly colored blocks in the other genomes. These lines

indicate which regions in each genome are homologous. Inside each block, Mauve

draws a similarity profile of the genome sequence. The height of the similarity pro-

file corresponds to the average level of conservation in that region of the genome

sequence. Regions outside the blocks lack detectable homology among the input

genomes. In this figure, one can see that the prophages are kind of similar to each
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other and contain a lot of horizontal gene transfer. This is as expected because all the

50 prophages are infecting the same bacterial species, e.g. Staphylococcus aureus.

One can see some conserved regions (the red block and the purple block) and some

more variable regions (the yellow block). Extrapolating these results to all prophages

has to be done with caution since this is a small subset of the data. Ideally, an MSA is

performed for more prophages but there is not yet an easy available system that can

align many complete prophage sequences. Since performing an MSA on all the entire

dataset would be too complex, an alternative is to perform a clustering analysis on

the data and then align the clusters. But again, this is a computationally intensive

process and was not further explored.

Figure 3.9: The first 10 prophages that infect Staphylococcus aureus for a multiple se-
quence alignment for 50 prophages sequences with 25 of them in normal orientation
and 25 of them in reversed orientation.
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Figure 3.10: Multiple sequence alignment for 50 prophages sequences that infect
Staphylococcus aureus with 25 of them in normal orientation and 25 of them in re-
versed orientation.
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CHAPTER 4

PREDICTIVE MODELS TO INFER

BACTERIUM-PHAGE

INTERACTIONS

4.1 Introduction and pairwise learning definition

To recapitulate, this work aims to construct machine learning models that can ac-

curately predict whether or not a specific bacterium-phage pair will interact. Car-

valho Leite et al. (2019) stated that the main challenges to train classification models

able to predict bacterium-phage interactions at the species and at the strain level is

the need for both types of samples, namely bacterium-phage pairs that both interact

as well as do not interact. They discuss two approaches to tackle this problem. The

first one is the use of one-class classification methods. These are techniques that

use only one labelled class to be trained and are used for the detection of outliers

in a dataset. The second one is the generation of putative non-interacting data and

uses single and ensemble-learning approaches, to predict bacterium-phage interac-

tions at the strain level. Carvalho Leite et al. (2019) constructed feature vectors from

the molecular weight of the proteins, the chemical composition and the amino acid

frequency to predict the interactions. They collected their positive interactions from

public annotated database like NCBI (NCBI Resource, 2018) and PhagesDB (Russell

and Hatfull, 2016). The generated putative non-interactions were based on the fol-

lowing hypothesis: most known phages are specific at the strain level (except some

rare exceptions that infect and kill a wide range of bacteria, e.g., bacteriophage Mu).

Generating the negative interactions was based on two rules: 1) if a phage interacts

with a species, no negative interaction between this specific phage and bacteria from

this particular species will be generated 2) a phage only attacks one bacterial species.

Using this approach they created 20,586 negative pairs for the 2,297 positive interac-

tions at the strain level. Also, to maintain an equilibrium in the data, they generated

the same amount of negative interactions per species as there were positive interac-
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tions for that species. Their best multiclass models gave an accuracy of 95.7%, while

their best one-class classification model resulted in an accuracy of 76.5% at the strain

level.

Besides predicting bacterium-phage interactions based on machine learning models,

Edwards et al. (2015) reviewed several computational tools and methods for predict-

ing the host of a given phage based on their genomic sequences. Their database

contained 820 phages with 153 different bacterial hosts. They examined different

computational signals such as abundance profiles, genetic homology, CRISPRs, exact

matches and oligonucleotide profiles to identify phage-host relationships. They re-

viewed a method that was similar to the method in this thesis. Edwards et al. (2015)

computed k-mer profiles of lengths three to eight and took the host that had the

smallest Euclidean distance between the phage nucleotide usage profile and the bac-

terial profile. They also used 3-mers and computed the Euclidian distance of phage’s

profile to the host’s profiles to identify the appropriate host. They predicted between

8% and 17% of the hosts correctly at the species level with k-mer profiles differing be-

tween three and eight base pairs. Edwards et al. (2015) found out that the Euclidian

distance of the 4-mers provided the strongest signal to identify the correct host. The

3-mer usage predicted approximately 10% of the host correctly at the species level.

Practically, this thesis focuses on the ESKAPE organisms, this in contrast with Car-

valho Leite et al. (2019) that did not focus on any particular bacterial species. We con-

sidered two different approaches: a Two-step Kernel Ridge Regression, implemented

in R and specifically tailored for pairwise learning (Section 4.2.2); and a selection

of other widely used machine learning methods (Section 4.2.3). Therefore, a short

introduction to pairwise learning is necessary. Afterwards, the methods to predict in-

teractions between bacterial genomes and their prophages will be discussed. Finally,

in the last part of this chapter, the results of both approaches will be examined.

In pairwise learning, one wants to predict the properties of pairs of objects. For exam-

ple, given a ligand and a protein, one wants to predict if they interact with each other

or not. The same idea applies to bacteria and prophages: given a bacterium and a

prophage, one wants to predict if they interact or not. For each pair of objects there is

one label, in this case, interaction (labelled as a binary one) or no interaction (labelled

as a binary zero). Therefore, the goal in pairwise learning is to find a function such

that given a pair of objects the output of the function can approach the true label as

close as possible (Stock, 2017). A pair of objects is called a dyad. We will call the

first object of the dyad an instance and the second object a task (Stock et al., 2016).
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Pairwise settings occur in multiple domains of science, such as chemistry (predicting

binding affinity between two types of molecules), medicine (design of personalized

drugs) and ecology (predicting host-parasite interactions) (Stock, 2017).

In pairwise learning, one can distinguish four possible settings for making predictions.

The first setting is when information about both objects are known during training but

as parts of different dyads. This is the easiest setting in which to predict the label

and is shown in Figure 4.1 as setting A. In our case, this is the same as not knowing

the interaction between a specific bacterium (x) and prophage (y). But we do know

the interactions between x and other prophages (except y). Also, the interactions be-

tween y and other bacteria (except x) are known. In Figure 4.1, this entails predicting

the grey interactions. The second setting is when only one of both objects is known

during training. Here, we can distinguish setting B and C in Figure 4.1 and this is

equivalent to predicting the blue interactions or respectively the yellow interactions.

In this thesis, this corresponds to predicting interactions between a bacteria and a

prophage, of which one was never observed during training. Fourthly, setting D is

when none of the objects is seen during training. This is the most difficult case and

is equivalent to predicting the red interaction in Figure 4.1. In this case, this is equal

to predicting the interaction between a new prophage and a new bacterium. This

thesis is not particularly focused on any one setting. It must be said however that in

practice setting B is the major focus. More specifically, setting B would represent a

hospitalized patient infected with a novel bacterial strain that is not yet present in the

database but still belongs to the ESKAPE group.

4.2 Methods

First, the problem of negative interactions is shortly addressed again with some pos-

sible solutions. Secondly, the Two-step Kernel Ridge Regression (TSKRR) method is

introduced and fitted to the data. Thirdly, different models like Random Forest (RF),

K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Linear Discriminant

Analysis (LDA) were fitted to the data. Hyperparameters were tuned and model eval-

uation was performed with Precision-Recall curves and F1-score plots. The F1-score is

computed as the product of the precision and the recall, divided by the sum of the pre-

cision and recall multiplied by two. Formally, F1 = 2� Prec�s�on�Rec���/(Prec�s�on+

Rec���).
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Figure 4.1: The four settings for prediction in pairwise learning. Setting A: both objects
are observed during training but as parts of different dyads. Setting B: only one object
is observed during training. Setting C: only one object is observed during training.
Setting D: none of the objects are observed during training (Waegeman, 2019).

4.2.1 Handling negative interactions

As Carvalho Leite et al. (2019) already explained, the main challenge to train com-

monly used classification models able to predict bacterium-phage interactions at the

species or at the strain level is to deal with both types of samples, namely the inter-

actions and non-interactions between bacterium-phage pairs. The database contains

3,532 positive interactions but no confirmed negative interactions. Thus, in order

to train a binary classifier, a strategy to construct negative interactions needed to

be developed. Our strategy consisted of four separate approaches to handle nega-

tive interactions. The first approach was to impute the interactions within a bacterial

species and for prophages unknown to interact. Since interspecies interactions sel-

dom happen, these interactions were put to zero. The intraspecies interactions were

put to Not Available (NA) and were imputed using the TSKRR method. Secondly, all

the non-observed interactions were put to zero, this means the intraspecies and the

interspecies interactions. Thirdly, we argued that setting the intraspecies interaction

to zero was too strict. The intraspecies interactions were set to one instead of zero.

This causes a shift in the interpretation of the dataset. Instead of predicting at the

strain level, the model is now predicting at the species level. Since all the interactions

within a species are now one, the model is now trained to recognize which prophage
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can infect a specific bacterial species.

Fourthly, for the other widely used machine learning methods, the dataset slightly

changed. Methods like Random Forest (RF), K-Nearest Neighbors (KNN) and Support

Vector Machine (SVM) do not need two kernels (Section 4.2.2) and an interaction ma-

trix. However, these methods also need both positively and negatively labelled inter-

actions. Therefore, we have equally appended our 3,532 known positive interactions

with 3,532 negative interactions, making a total of 7,064 interactions. The negative

samples were collected but not randomly. Negative sampling was weighted based on

the number of occurrences of each bacterial species. For example, the dataset con-

sists of 1,083 positive prophages-bacterium interactions that infect Staphylococcus

aureus so 1,083 negative prophages-bacterium interactions were selected that did

not infect Staphylococcus aureus. In addition, to avoid a biased performance due to a

particularly fortunate or unfortunate sampling, the sampling of negative interactions

was repeated 200 times. In each repetition, RF, KNN and SVM models were fitted and

the accuracy was computed.

The accuracy was also computed with shuffled labels. This was done to identity ran-

dom patterns in our data. Accuracies with the shuffled labels, for binary classification

problems, should typically be around 50%, equivalent to random guessing. If there

would be a random pattern in the data the accuracy would be significantly higher

than 50%.

4.2.2 Two-step Kernel Ridge Regression

Kernel methods can be used to create complex, nonlinear representations of objects

by computing a dot product between implicit feature representations (Stock, 2017).

A kernel function is a mathematical tool to represent and manipulate objects in high-

dimensional feature spaces. The main idea in kernel methods is that in this high-

dimensional space, a simple linear model could describe the patterns in the data. The

problem is that mapping these features to a high-dimensional space is often compu-

tationally intensive. With kernels, one can perform algebraic operations in this high

dimensional space without performing the mapping and thus avoiding the computa-

tional problem. Kernel methods are very popular in bioinformatics and they can easily

be employed for pairwise learning settings. This can be done by defining so-called

pairwise kernels, which measure the similarity between two dyads (pair of objects),

in this thesis, a bacterium and prophage (Stock et al., 2016). These pairwise ker-

nels were computed as the dot product of the feature matrix and the transpose of

the feature matrix. This resulted in a bacteria kernel matrix of 1,293 by 1,293 and a
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prophage kernel matrix of 3,532 by 3,532.

Predicting the interaction between a bacterium and prophage was done with TSKRR.

This method is implemented in the xnet package in R (Stock et al., 2020). TSKRR uses

two kernels (bacteria and prophages) as feature matrices. TSKRR is the combination

of two ordinary Kernel Ridge Regressions, one for generalizing to new instances (first

object of a dyad) and one that generalizes to new tasks (second object of a dyad), to

indirectly predict new dyads (Stock et al., 2016). The hyperparameters of the TSKRR

are the different regularization parameters for the kernel matrices. After optimizing

the hyperparameters with a 2D grid-search, the optimal TSKRR was fitted to the data

and with Leave-one-out cross-validation (LOOCV) were interactions predicted. Addi-

tionally, a precision-recall curve was plotted. Since TSKRR is a regression method,

the predicted output values are not probabilities or classes but output values laying

between 0 and 1. To convert these predicted output values into predicted classes a

threshold needs to be set on the predicted output values. In this way, the threshold

results in a binarization of the output values, which is the desired output format.

In addition to fitting a multi-species TSKRR model, a second TSKRR model was trained

only with data corresponding to the largest species, Staphylococcus aureus, to com-

pare performances and explain these in relation to the computed kernels. This species

consists of 1,083 active prophages and 478 bacteria. Again, the hyperparameters

were optimized and the kernel matrices were computed and used to train a TSKRR

model. With LOOCV were the interactions predicted and the precision-recall curve

plotted. Finally, a third TSKRR model was fitted to the new interaction matrix in which

the intraspecies interactions were put to one instead of zero. Again, the hyperparam-

eters were tuned, LOOCV was used to predict the interactions and a precision-recall

curve was plotted together with an F1-score plot.

4.2.3 Other widely used machine learning methods

Besides training TSKRR models, we also trained several widely used machine learning

models like RF (Breiman, 2001), KNN (Cunningham and Delany, 2007), SVM (Wang,

2005) and LDA (Rayens, 2012). These other widely used machine learning methods

do not need two kernels matrices, but rather one data frame in which the features

for the prophages and bacteria are combined. As explained in Section 4.2.1, 7,064

interactions were collected, both positive and negative, and a data frame was made

with the features (3-mers) for these specific bacteria and prophages. As a result, the

data frame has 7,064 rows, where each row represents a specific interaction between
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one bacterium strain and one prophage. The features for a specific bacterium were

collected together with the features for a specific prophage. This resulted in a data

frame that has 7,064 rows and 131 columns. The first two columns describe the host

and the host accession number, followed by the 64 features for the prophages and

64 features for the bacteria and finally a binary label that represents the interaction

(one or zero).

4.3 Results and discussion

In this section, the results will be discussed for both the TSKRR and the other widely

used machine learning models. First, the kernels were visualized by means of a

heatmap. Secondly, the results of the TSKRR models will be described. Finally, the

other widely used machine learning models will be evaluated and discussed.

4.3.1 Kernel representations of bacterial and prophage

sequences

After computing the 3-mer frequencies for both prophages and bacteria, we had two

feature matrices: one for the bacteria and one for the prophages. The dot product

was computed of each of the feature matrices and its transpose. This resulted in

a kernel matrix for the bacterial genomes and a kernel matrix for the prophage se-

quences. These kernels were plotted by means of a heatmap, Figures 4.2 and 4.3

visualize both kernels. In Figure 4.2 one can see the similarity within and the differ-

ences between bacterial species very clearly. The first 41 bacteria are from the genus

Enterobacter, from row 41 to 205 are Pseudomonas, from row 205 to 354 are Acine-

tobacter, from row 354 to 730 are Klebsiella, then the large group from row 730 to

1,208 are Staphylococcus and finally from row 1,208 to 1,293 are Enterococcus. The

groups on the diagonal represent the similarity within the species and have, in most

cases, the highest values. The species that have the largest differences between each

other have the lowest scores. The difference between Pseudomonas and Staphyloc-

cous bacterial genomes is the largest as they appear almost dark in the plot. On the

contrary, intraspecies differences between the genomes appear to be unobservable

in the heatmap. This observation already hints at potential difficulties to predict in-

teractions at the strain level and limited diversity in sequences or an oversimplistic

representation of them. One can imagine that seeing no differences within species

leads to difficult prediction tasks at the strain level. The heatmap can not distinguish

between different prophages that infect the same bacterial species, this is probably

an effect of our too simplistic feature engineering. Representing a genome only by
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the 3-mer frequencies masks the diversity between the bacterial and prophage se-

quences. This was already hinted in the t-SNE (Figure 3.8) and PCA (Figure 3.6) were

one can see that with only two components the t-SNE and PCA can group the different

prophages quite well. In addition, from the MSA plot (Figure 3.9) one can see that a

subset of prophages is quite similar to one another, making it even harder to distin-

guish within prophages that infect the same bacterial species. An alternative is to

compute other k-mers instead of 3-mers. K-mers such as 4-mers, 5-mers and 6-mers

will probably have more differences within one bacterial species or prophages that

infect the same bacterial species, leading to more intraspecies differences than the

3-mers.

The kernel matrix constructed from the prophage sequences also shows the intraspecies

similarity and the interspecies differences although some intraspecies differences can

be observed as similar patterns within each block (representing phages related to

one particular bacterial species). Again, one can see that the differences between

the prophages of Pseudomonas and Staphylococcus are the largest. This could al-

ready be seen in the previous boxplots and PCA plot and is now confirmed again. For

prophages related to some of the bacterial species (e.g. Staphylococcus aureus), the

heatmap suggests that there is some variation between the prophages infecting the

same bacterial species. This could be further examined with clustering methods or a

phylogenetic tree. Due to limited time and computational resources, these analyses

could not be done in this thesis.

Figure 4.2: A heatmap visualization of the bacteria kernel.
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Figure 4.3: A heatmap visualization of the prophage kernel.

4.3.2 Imputation of the negative interactions for the TSKRR

First, the imputation of the intraspecies interactions was done. Again, these were

computed because there are no confirmed negative interactions in our dataset. We

assume that all unknown interactions are negative interactions but this is a hypoth-

esis. As a result, the interaction matrix only consists of 3,532 positive interactions,

in contrast to the 4,563,344 (total number of interactions in the matrix, minus 3,532)

negative interactions. Since our interaction matrix is very sparse, all the imputed

values were close to zero. This is probably because we only have around 0.077%

positive interactions in the total interaction matrix. Nevertheless, a model was fitted

(k = 0.01 and g = 0.01) to the imputed interaction matrix and a precision-recall curve

was plotted (Figure 4.4). As one can see the area under the curve is approximately

zero and thus represents bad predictions at the strain level.

4.3.3 Two-step Kernel Ridge Regression results

As the TSKRR model with imputed missing values did not give good predictions, the

intraspecies interactions were put back to zero. A TSKRR model was trained based on

the two constructed kernel matrices representing respectively, the bacterial genomes

and the prophage sequences. After finetuning the hyperparameters with 2D grid-

search, namely the weights of the kernels (k = 0.001 and g = 0.000359), a precision-

recall curve was plotted (Figure 4.5) with the predicted interactions from LOOCV. From
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Figure 4.4: Precision-recall curve for the imputed interactions with hyperparameters
k = 0.01 and g = 0.01.

Figure 4.5 can be seen that this model was not very successful in predicting the cor-

rect label either. More precisely, the model could not predict positive interactions.

Since we could not see any significant differences at the intraspecies level in the

heatmaps, we fitted a model on the largest species, i.e. Staphyloccous aureus. Hy-

perparameters were also tuned with a 2D grid-search (k = 0.001, g = 0.000359) and

a precision-recall plot was plotted (Figure 4.6) with the predicted interactions from

LOOCV.

As can be seen in Figures 4.5 and 4.6, these models are not exactly optimal for predict-

ing positive interactions. The precision is in both cases lower than expected. These

values are low because of the low value of the numerator (the true positives). The

area under the curve is in both models approximately zero. Looking at the MSA (Figure

3.9), it is comprehensible that predictions at the strain level potentially are hard. The

prophages in the subsample are really similar to each other. In addition, predictions

at the strain level require alternative kernels, for example, kernels that allow for more

differentiating between bacterial strains in a species. This will be further discussed in
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Figure 4.5: Precision-recall curve with hyperparameters k = 0.001 and g = 0.000359
for the first model.

Figure 4.6: Precision-recall curve with hyperparameters k = 0.001 and g = 0.000359
for the Staphylococcus aureus model.
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the last chapter.

As seen on the heatmaps before, the difference within bacterial strains is not no-

ticeable. The difference in bacterial species, on the other hand, can be seen clearly.

Therefore, we have additionally constructed a TSKRR model that predicts interactions

at the species level, by setting the intraspecies interactions to one instead of zero.

This causes the TSKRR to recognize interaction at the species level instead of the

strain level. With this new interaction matrix, the hyperparameters were tuned us-

ing a 2D grid-search and a TSKRR model was fitted (k = 0.00069 and g = 0.00001).

Again, the interactions were predicted with LOOCV.

Figure 4.7: Precision-recall curve with hyperparameters k = 0.00069 and g =
0.00001 for the interspecies model.

Setting the intraspecies interactions to one instead of zero made the dataset more

balanced. Instead of only 0.07% positive interactions, the dataset now contains

25.29% positive interactions. Furthermore, the heatmaps (Figures 4.2 and 4.3) showed

a significant difference between bacterial species in both kernels, which is expected

to lead to better predictions in this new setting. The precision-recall curve (Figure

4.7) shows a better prediction for positive interactions and has a bigger area under

the curve.

The F1-score plot reaches values close to one near the middle which points to a good
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Figure 4.8: F1-score curve with hyperparameters k = 0.00069 and g = 0.00001 for
the interspecies model.

performance of the model (Figure 4.8). On the edges, the F1-score is going down

which is expected since these correspond to the most extreme thresholds. If the

threshold is set too low, there will be many false positives and thus a lower F1-score.

In contrast, if the threshold is too high, there will be more false negatives so a lower

F1-score. Generally, the performance of this model is decent for most thresholds. At

a threshold of 0.5, the accuracy of the model predictions was 98.1%, the error rate

was 1.9%, the precision 94.9% and the specificity 98.2%.

4.3.4 Other widely used machine learning models

After the data exploration and fitting of the TSKRR models, a selection of other widely

used machine learning models was fitted to the data. First, the dataset was split in a

test set and a training set. Secondly, the training set was again split into a training and

tuning set. The training and tuning sets were used to optimize the hyperparameters,

while the test set was used to validate the model. Table 4.1 summarizes the various

performance metrics for the weighted selected negative interactions for the prophage

sequences were the reverse complement is added. The LDA model has the lowest

accuracy (48.7%), while the Support Vector Classification (SVC) model has the highest

accuracy (85.2%).
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Table 4.1: The different performance meassurements for the weighted selected neg-
ative interactions from the dataset where the reversed complements were added.

Method Accuracy Precision Recall F1-score
Linear Discriminant Analysis 48.7 48.4% 48.2% 48.3%
Random Forests 84.0% 86.8% 84.1% 84.1%
K-Nearest Neighbors 84.6% 87.7% 84.7% 84.3%
Support Vector Classification 85.2% 88.1% 85.2% 84.9%

The precision-recall curves for the RF (82 estimators), KNN (21 neighbors), SVM ( C

= 46.41 and gamma = 100) and LDA models are plotted in Figure 4.9. The average

precision (AP) is always given in the legend. Based on this plot, one can say that the

RF model performs best regarding the precision, with an average precision of 85%

but the other models, except the LDA model, are also performing quite well. The KNN

model has an average precision of 81% and the Support Vector Classification 82%.

The lowest average precision is 47% for the LDA model.

Figure 4.9: Precision-recall curves for different models.

In addition to the precision-recall curves, the F1-score was computed. As mentioned

before, the F1-score is the product of the precision and the recall divided by the sum

of the precision and the recall multiplied by two. The F1-score plots can be seen in

Figure 4.10. Ideally, an F1-score is as close to one as possible. For the LDA model,

the F1-score is lower than the other models. Also, it needs a higher threshold to make

positive predictions than the other models. Since LDA is a simple linear method this

result was expected. For the other three different models (RF, KNN and SVC) the F1-

score is between 0.8 and 1.0 for thresholds in the interval of 0.2 and 1.0. One can

see that if the threshold is too low, the F1-score is going down. If the threshold is
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too high the F1-scores are decreasing as well. If the threshold is too low, more false

positives will occur, leading to a lower precision and F1-score. If the threshold is too

high, there will be more false negatives. The decrease in F1-score is more noticeable

for lower thresholds than for higher thresholds. This points to the fact that our models

are better in predicting negative interactions than in positive interactions.

Figure 4.10: F1-scores for Random Forest (82 estimators), K-Nearest Neighbors (21
neighbors) and Support Vector Classification (C = 46.41 and gamma = 100).

To evaluate the model performance and avoid being biased for the negative inter-

action set, we repeated the weighted negative selection procedure 200 times while

computing the accuracy of the different models (Figure 4.11). The average accu-

racy for the RF model is around 84% as already computed in Table 4.1, together with

accuracy for the KNN model of 84% and 85% for the SVM model. For the shuffled

labels, the models have an accuracy of on average 50%, which is the equivalent of a

model that predicts randomly. Therefore, in the case of the shuffled labels, the mod-

els do not perform better than randomly guessing which object pair has a positive or

negative interaction. If random patterns would occur in the data, accuracies of the

models trained after shuffling the labels would be remarkably higher than 50%. Since

our models have an accuracy of on average 50% with shuffled labels, this means no

random patterns occur in our data.
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Figure 4.11: The accuracy for a Random Forest, K-Nearest Neighbors and Support
Vector Classification model. The first row of plots are with the true labels and the

second row are with shuffled labels.
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CHAPTER 5

CONCLUSION AND FUTURE

PERSPECTIVES

5.1 Conclusion

In chapter 1 and 2, we introduced the current problems with antibiotic-resistant bac-

teria, leading to bacterial infections that are almost impossible to treat. As one of the

promising alternatives to antibiotics, phage therapy is beginning to re-emerge into

the medical world. One of the remaining bottlenecks with phage therapy is the strain-

level specificity of the phages, which makes it a long and costly procedure to find the

matching phage(s) against a particular bacterial infection.

A practical hurdle in applying machine learning models to predict bacterium-phage in-

teractions at the strain level is the need for strain-level annotation. To circumvent this

lack of annotation, we have constructed a first-in-class database containing interac-

tions between bacteria and their prophages annotating at the strain level. By employ-

ing the state-of-the-art tool PHASTER, we managed to collect active prophages that

were integrated into the bacterial genomes. By doing so, the interaction between the

bacteria and the prophages are by definition confirmed at the strain level. We found

a total of 3,532 active prophages in 1,457 bacterial genomes.

Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding

(t-SNE) were used to visualize the sequences of the prophages. Some interesting

results came out of this PCA and t-SNE. Using only two components, one can appro-

priately distinguish the prophages related to the different bacterial species. Initially,

the second principal component had a symmetrical element for all the prophages.

This made us think that there were reverse complements of the prophages present

in our database. We selected a subset of 50 prophages that infect Staphylococcus

aureus and computed for 25 of them the reverse complement sequence. After per-

forming a PCA to the reverse complements we saw that the symmetry was gone.

Phages do not have specific orientation in the bacterial genome. Prophage genes
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can occur on both DNA strands, so taking only one DNA strands leads unfortunately

to collecting reverse complements as well. We added to each prophage sequence

its reverse complement to handle this problem. This was done to eliminate the vari-

ability that was explained by the difference between the prophages and the reverse

complements. A possible alternative is to find the genes in the prophage sequences,

collect them in the forward orientation and compute the 3-mers on the genes instead

of the entire prophage sequence. This method solves the problem regarding reverse

complements. An interesting fact is that there seems to be a negative correlation be-

tween GC% and the frequencies of both AAA and TTT 3-mers. Since P. aeruginosa, K.

pneumoniae and Enterobacter all have high GC% in their sequences and are clearly

different from the other prophages in the PCA (Figure 3.6) according to the first prin-

cipal component. Since both AAA and TTT 3-mers have negative loadings for the first

principal component, the prophages that have a positive first principal component

have less AAA and TTT 3-mers in their genomes.

To deal with the unknown negative interactions we assumed that all non-observed

interactions are negative interactions. This reasoning was based on the hypothesis

that most prophages infect bacteria with strain level specificity. One could argue that

this approach is not perfect but due to time constraints, other approaches were not

tested. We used the normalized 3-mer frequencies as features for the prophages and

the bacterial sequences.

In the Multiple Sequence Alignment, one can see that the prophages are similar to

each other. This can carefully be extrapolated to other prophages that infect the

same bacterial species. Furthermore, in the heatmaps, PCA and t-SNE it became

clear that the differences between bacterial species and prophages that infect the

same bacterial species are clearly noticeable. In contrast, the differences within bac-

terial species and the prophages that infect the same bacterial host are almost not

visible. The PCA, t-SNE and MSA hinted to possible difficulties to predict interactions

at the strain level. In addition, more features that characterize the strain-level differ-

ences are needed to predict accurately at the strain level. The 3-mer frequencies did

not distinguish enough within intraspecies to predict at the strain level. An alternative

would be to compute other k-mer frequencies and do the same analysis. Computing

the k-mer frequencies of longer k-mers will result in more specific features for both

the prophage and bacterial sequences, leading to more differences within a bacterial

species and the prophages that infect the same bacterial species. Another option is

to focus on specific regions in the genome instead of computing the k-mers for the

56



CHAPTER 5. CONCLUSION AND FUTURE PERSPECTIVES

entire genome, this will be discussed in the next section.

In the heart of this thesis, namely chapter four, we introduced pairwise learning and

proposed some alternative approaches to predict bacterium-phage interactions at the

strain level. We used two different approaches to predict the interactions. Firstly, a

TSKRR method was used. We created two pairwise kernels by taking the dot product

of the feature matrix and the transpose of the feature matrix. This resulted in a bacte-

ria kernel matrix of 1,293 by 1,293 and a prophage kernel matrix of 3,532 by 3,532. A

TSKRR model was used to predict bacterium-phage interactions at the strain level and

species level. Therefore, we needed both positive as negative labelled interactions.

We have 3,532 positive interactions confirmed by PHASTER and used several meth-

ods to handle the negative interactions. A naive approach is to set all the unlabelled

interactions to zero. Considering the strain specificity of bacterium-phage interac-

tions, this simple approach does make sense from a biological perspective. First, we

imputed with a TSKRR model the negative interactions. Secondly, the intraspecies in-

teractions were set to one instead of zero. Thirdly, for the other widely used machine

learning methods, we selected 3,532 weighted negative interactions based on the

number of occurrences of each bacterial species. A possible alternative for the neg-

ative interactions would be to look at the genetic similarity between the prophages

and determine a threshold above or below which a specific bacterium-phage pair has

a positive or negative interaction. If a prophage is similar to a prophage that already

infects the bacterium, the bacterium-phage pair would have a positive interaction.

In contrast, if a prophage is dissimilar to a prophage that infects the bacterium, the

bacterium-phage pair would have a negative interaction.

Predictions at the strain level were not so accurately predicted by the TSKRR model.

This could already be seen in the heatmaps of the kernels, in which no intraspecies dif-

ferences were noticeable. Conversely, the predictions at the species level showed ex-

cellent results but this was already expected since interspecies differences are clearly

visible in the heatmaps. This resulted in our optimal model for predictions at the

species level with an accuracy of 98.1%, an error rate of 1.9%, a precision of 94.9%

and a specificity of 98.2%. Which is not so surprising since prophages adjust their

3-mer profiles to their host throughout evolution and our predictions at the species

level use the 3-mer frequencies as features.

Secondly, widely used methods like Random Forest, K-Nearest Neighbors and Sup-

port Vector Machine were applied to predict the interactions. We selected 7,064

bacterium-phage interactions to store in a new database. Overall, the widely used

machine learning models showed high accuracies and good precision-recall curves.
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Our best-performing SVM model (C = 46.41, gamma = 100 and kernel = Radial ba-

sis function) got an accuracy of 85.2%, a precision of 88.1%, a recall of 85.2% and

an F1-score of 84.9% for predictions at the strain level. The model with the lowest

accuracy was the LDA with an accuracy of 49.5% and a precision of 48.3%, recall of

48.3% and an F1-score of 48.3%. We believe that the big discrepancy between the

TSKRR and the other widely used machine learning methods is caused by the extreme

sparseness of the interaction matrix used to train the TSKRR model. With only 0.077%

of the interactions matrix being positively labelled, the TSKRR has to handle a very

sparse interaction matrix, while the other widely used machine learning methods are

using a more balanced dataset.

To conclude, this thesis aimed to construct machine learning models that can accu-

rately predict whether or not a specific bacterium-phage pair will interact and there-

fore, shorten the time that is needed to find the right phage against a bacterial in-

fection. Ideally, these models can shorten the time that is needed to find a specific

phage to treat infection by a particular bacterium in, for example, a hospital. There-

fore, a first-in-class database, containing 1,293 bacteria and 3,532 prophages, was

constructed that links prophages with their bacterial host at the strain level. This

database is focused on the ESKAPE organisms because of their clinical significance

and their increasing resistance to commonly used antibiotics such as vancomycin and

penicillin. Despite bottlenecks like the need for both positive and negative samples,

we were able to accurately predict interactions at the species level with a Two-Step

Kernel Ridge Regression model. With other widely used machine learning methods

like Random Forests, K-Nearest Neighbors and Support Vector Classification, we were

able to predict whether there is a positive or negative interaction at the strain level

with an accuracy between 84-86%. Better feature representation is necessary to pre-

dict with a TSKRR model at the strain level and to improve our accuracy. This being

said, we only tested the models on our self-constructed database. Never were new

bacterial strains or new prophages being introduced from the ESKAPE group. We

would expect that prophages from other bacterial hosts i.e., a bacterium that is not

from the ESKAPE group, have no positive interactions predicted by our models. In

practice, lytic phages are used in phage therapy. Our models are trained on lysogenic

phages, nevertheless, lysogenic phages can be converted into the lytic variant and

the infection machinery is for both the same. One can test this by introducing some

lytic phages into our dataset and evaluated the predictions. Again, due to limited

time, this analysis could not be performed.
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5.2 Future perspectives

These constructed modelling approaches are far from perfect. One could explore

many more alternatives for predicting bacterium-phage interactions. A couple of al-

ternatives and future works are given below.

5.2.1 The use of other kernels

As already seen in the heatmaps (Figures 4.2 and 4.3) our kernels did not distin-

guish between prophages that infect the same bacterial species or within bacterial

species. Since the TSKRR method needs two pairwise kernels, one can find many

alternative ways to compute these similarities. Further efforts should be undertaken

to efficiently compute kernels for sequences at this scale. Having kernels that can

distinguish between prophages that infect the same bacterial species is a must for

predicting interactions at the strain level. Also, multiple sequence alignments, for

larger subsets, could not be computed in time because of limited computational re-

sources. A possible alternative to mitigate the limitation in computational resources is

to work on the most diverse regions in the bacterial DNA and the prophage sequence

instead of the entire genome. Since these regions are smaller, the computational

time will be significantly shorter. Also, by taking the most diverse regions for phages

e.g., the early genes (the proteins that take over the host metabolism and molecular

machinery) and the RBPs, there will be an increase in differences between prophages

that infect the same bacterial species. This same idea can be applied to the bacteria.

If one can compute the 3-mers or other k-mers for the most diverse regions in the

bacterial genome e.g., the restriction-modification systems and the CRISPR regions,

the differences within a bacterial species will be significantly larger and easier to dis-

tinguish.

For example, one can extract the genes from the prophage sequences with Phanotate

(McNair et al., 2019). Phanotate can be used to get the correct orientation of the

genes i.e., forward or reverse, which would be a more elegant solution compared

to adding reverse complements to each of the sequences. Subsequently, multiple

sequence alignment can be performed for clusters in our dataset, since a multiple

sequence alignment on the entire dataset would be too complex and computationally

intensive. Finally, on the new database, one can compute the 3-mers or other k-mers

again and use the machine learning methods discussed in this thesis to predict the

bacterium-phage interactions at the strain level.
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5.2.2 Alternative feature matrices

We computed the 3-mer frequencies for each bacterial or prophage sequence but

this is a rather simple representation for an entire genome, presumably masking the

diversity in our database. This could be avoided by looking, for example, specific

to the early genes or the receptor binding proteins of a phage as explained above.

These genes are typically less conserved and thus more diverse than other genes.

This diversity originates from the fact that phages and bacteria are constantly in an

evolutionary arms-race in which they have to adapt to each other to survive. Also,

other k-mers could be computed, since the decision of taking 3-mers instead of any

other k-mer was more of an arbitrary choice. According to Edwards et al. (2015) the

4-mers could be promising to predict the bacterium-phage interaction at the species

level. But in fact, many k-mers should be computed. There is no simple evidence that

points to particular 3-mers or 4-mers being the best choice.

5.2.3 Alternative approaches to handle the negative

interactions

As already said, the need for both negatively and positively labelled interactions is

needed for most machine learning methods. One could use one-class learning meth-

ods such as one-class SVM. These methods try to identify objects of a specific class

amongst all objects, by learning from a training set containing only objects of that

class (Oliveri, 2017). These methods are typically used to detect outliers in a dataset.

One could also incentivise laboratories to evaluate unknown interactions, starting with

the unknown sequences that contain the most useful information. In this way, con-

firmed negative interactions could be added to the constructed database. In another

approach, followed by Wang et al. (2006), they computed the distances from every

unknown instance to all labelled and unlabelled instances and chose the negative

interactions that are maximally separated from the known positive and maximally

separated from each other to be evaluated in the lab. This way, more information

is gathered by confirming negative interactions. Liu et al. (2015) followed a slightly

different approach. Instead of selecting the unknown interactions as negative by com-

paring them to all other positive pairs, Liu et al. (2015) looked at objects that have

known interactions with each member of the pair. Thus computing distances for ev-

ery member of the pair separately and only to those instances that are linked to the

pair. For example, one can look at the genetic similarity between the prophages and

determine with a threshold whether a specific bacterium-phage pair consists of a pos-

itive or negative interaction. If a prophage is similar to another prophage that infects

a specific bacterium, this prophage is more likely to infect this specific bacterium as
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well. If a prophage is different from another prophage that already infects a specific

bacterium, this prophage is less likely to infect this specific bacterium. This same idea

can be applied to specific regions of the genome such as the RBPs or the early genes.

61



5.2. FUTURE PERSPECTIVES

62



BIBLIOGRAPHY

Abedon, S. T. (1990). Selection for lysis inhibition in bacteriophage. Journal of Theo-

retical Biology, 146(4):501–511.

Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D. S. (2016).

Phaster: a better, faster version of the phast phage search tool. Nucleic Acids

Research, 44(W1):W16–W21.

Association, W. M. (2013). World medical association declaration of Helsinki: ethical

principles for medical research involving human subjects. Journal of the American

Medical Association, 310(20):2191–2194.

Atamer, Z., Samtlebe, M., Neve, H., Heller, K., and Hinrichs, J. (2013). Review: elim-

ination of bacteriophages in whey and whey products. Frontiers in Microbiology,

4:191.

Bondy-Denomy, J., Garcia, B., Strum, S., Du, M., Rollins, M. F., Hidalgo-Reyes, Y.,

Wiedenheft, B., Maxwell, K. L., and Davidson, A. R. (2015). Multiple mechanisms

for crispr–cas inhibition by anti-crispr proteins. Nature, 526(7571):136–139.

Bondy-Denomy, J., Pawluk, A., Maxwell, K. L., and Davidson, A. R. (2013). Bacte-

riophage genes that inactivate the crispr/cas bacterial immune system. Nature,

493(7432):429–432.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Brock, T. D. (1998). Milestones in Microbiology. ASM Press.

Brüssow, H. (2019). Hurdles for phage therapy to become a teality—an editorial com-

ment. Viruses, 11:557.

Carlton, R. (1999). Phage therapy: past history and future prospects. Archivum Im-

munologiae et Therapiae Experimentalis, 47(5):267–274.

Carvalho Leite, D. M., Lopez, J. F., Brochet, X., Barreto-Sanz, M., Que, Y.-A., Resch,

G., and Peña-Reyes, C. A. (2019). Exploration of multiclass and one-class learning

methods for prediction of phage-bacteria interaction at strain level. Proceedings of

2018 IEEE International Conference on Bioinformatics and Biomedicine, page 8 p.



BIBLIOGRAPHY

Cenens, W., Makumi, A., Mebrhatu, M. T., Lavigne, R., and Aertsen, A. (2013).

Phage–host interactions during pseudolysogeny. Bacteriophage, 3(1):e25029.

Clokie, M. R., Millard, A. D., Letarov, A. V., and Heaphy, S. (2011). Phages in nature.

Bacteriophage, 1(1):31–45.

Costa, A. R., Monteiro, R., and Azeredo, J. (2018). Genomic analysis of acinetobacter

baumannii prophages reveals remarkable diversity and suggests profound impact

on bacterial virulence and fitness. Scientific Reports, 8(1):15346.

Cunningham, P. and Delany, S. (2007). K-nearest neighbour classifiers. Multi-

Classification System.

Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple align-

ment of conserved genomic sequence with rearrangements. Genome Research,

14(7):1394–1403.

Davies, J. and Davies, D. (2010). Origins and evolution of antibiotic resistance. Micro-

biology and Molecular biology Reviews, 74(3):417–433.

Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., Russell, D. A., Ford, K., Har-

ris, K., Gilmour, K. C., Soothill, J., Jacobs-Sera, D., Schooley, R. T., Hatfull, G. F., and

Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a dis-

seminated drug-resistant mycobacterium abscessus. Nature Medicine, 25(5):730–

733.

Edwards, R. A., McNair, K., Faust, K., Raes, J., and Dutilh, B. E. (2015). Computa-

tional approaches to predict bacteriophage-host relationships. FEMS Microbiology

Reviews, 40(2):258–272.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining, KDD’96,

page 226–231. AAAI Press.

Garretto, A., Miller-Ensminger, T., Wolfe, A. J., and Putonti, C. (2019). Bacteriophages

of the lower urinary tract. Nature Reviews Urology, 16(7):422–432.

Gordillo Altamirano, F. and Barr, J. (2019). Phage therapy in the postantibiotic era.

Clinical Microbiology Reviews, 32.

Griffiths, A. J., Miller, J., and Suzuki, D. (2000). An Introduction to Genetic Analysis.

W.H. Freeman, New York.

Hesse, S. and Adhya, S. (2019). Phage therapy in the twenty-first century: facing the

decline of the antibiotic era; is it finally time for the age of the phage? Annual

Review of Microbiology, 73:155–174.

64



BIBLIOGRAPHY

Khan, H. A., Baig, F. K., and Mehboob, R. (2017). Nosocomial infections: Epidemiology,

prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine,

7(5):478–482.

Kutter, E. M. and Sulakvelidze, A. (2005). Bacteriophages: Biology and Applications.

Boca Raton (Fla.): CRC Press.

Leite, D. M. C., Brochet, X., Resch, G., Que, Y.-A., Neves, A., and Pena-Reyes, C. (2018).

Computational prediction of inter-species relationships through omics data analysis

and machine learning. BMC Bioinformatics, 19(Suppl 14).

Liu, H., Sun, J., Guan, J., Zheng, J., and Zhou, S. (2015). Improving compound–protein

interaction prediction by building up highly credible negative samples. Bioinformat-

ics, 31(12):i221–i229.

Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A.,

Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., Ray, S. M., Thompson, D. L.,

Wilson, L. E., Fridkin, S. K., Infections, E. I. P. H.-A., and Team, A. U. P. S. (2014).

Multistate point-prevalence survey of health care-associated infections. The New

England Journal of Medicine, 370(13):1198–1208.

Mansour, N. (2017). Bacteriophages are natural gift, could we pay further attention!

Journal of Food Microbiology, 1:22.

McNair, K., Zhou, C., Dinsdale, E. A., Souza, B., and Edwards, R. A. (2019). PHANO-

TATE: a novel approach to gene identification in phage genomes. Bioinformatics,

35(22):4537–4542.

Miller, M. B. and Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of

Microbiology, 55:165–199.

Monteiro, R., Pires, D. P., Costa, A. R., and Azeredo, J. (2019). Phage therapy: going

temperate? Trends in Microbiology, 27(4):368–378.

Natarajan, S. and Usha, B. (2018). Eskape pathogens: Trends in antibiotic resistance

pattern.

NCBI Resource, C. (2018). Database resources of the national center for biotechnology

information. Nucleic Acids Res, 46(D1):D8–D13.

Nobrega, F. L., Vlot, M., de Jonge, P. A., Dreesens, L. L., Beaumont, H. J. E., Lavigne,

R., Dutilh, B. E., and Brouns, S. J. J. (2018). Targeting mechanisms of tailed bacte-

riophages. Nature Reviews Microbiology, 16(12):760–773.

Oliveri, P. (2017). Class-modelling in food analytical chemistry: Development, sam-

pling, optimisation and validation issues –a tutorial. Analytica Chimica Acta, 982:9

– 19.

65



BIBLIOGRAPHY

O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recom-

mendations. Technical report.

Owen, S. V., Canals, R., Wenner, N., Hammarlöf, D. L., Kröger, C., and Hinton, J. C. D.

(2020). A window into lysogeny: revealing temperate phage biology with transcrip-

tomics. Microbial Genomics, 6(2).

Park, J. Y., Moon, B. Y., Park, J. W., Thornton, J. A., Park, Y. H., and Seo, K. S. (2017).

Genetic engineering of a temperate phage-based delivery system for crispr/cas9

antimicrobials against staphylococcus aureus. Scientific Reports, 7(1):44929.

Paul, L., Suman, A., and Sultan, N. (2013). Methodological analysis of principal com-

ponent analysis (pca) method. International Journal of Computational Engineering

and Management, 16:32–38.

Pendleton, J., Gorman, S., and Gilmore, B. (2013). Clinical relevance of the eskape

pathogens. Expert Review of Anti-infective Therapy, 11:297–308.

Pirnay, J.-P. (2014). Faagtherapie: de medische toepassing van de evolutionaire

wapenwedloop tussen bacteriën en fagen. Belgisch Militair Tijdschrift, (8):107–120.

Pirnay, J.-P., De Vos, D., Verbeken, G., Merabishvili, M., Chanishvili, N., Vaneechoutte,

M., Zizi, M., Laire, G., Lavigne, R., Huys, I., Van den Mooter, G., Buckling, A., Debarbi-

eux, L., Pouillot, F., Azeredo, J., Kutter, E., Dublanchet, A., Górski, A., and Adamia, R.

(2010). The phage therapy paradigm: Prêt-à-porter or sur-mesure? Pharmaceutical

Research, 28:934–7.

Pirnay, J.-P., Verbeken, G., Ceyssens, P.-J., Huys, I., De Vos, D., Ameloot, C., and Fau-

connier, A. (2018). The magistral phage. Viruses, 10(2).

Prescott, L. M. (1993). Microbiology. Wm. C. Brown Publishers.

Rayens, W. (2012). Discriminant analysis and statistical pattern recognition. Techno-

metrics, 35:324–326.

Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosoco-

mial pathogens: no eskape. The Journal of Infectious Diseases, 197(8):1079–1081.

Ross, A., Ward, S., and Hyman, P. (2016). More is better: Selecting for broad host

range bacteriophages. Frontiers in Microbiology, 7:1352.

Roux, S., Hallam, S. J., Woyke, T., and Sullivan, M. B. (2015). Viral dark matter and

virus-host interactions resolved from publicly available microbial genomes. eLife,

4:e08490.

Russell, D. A. and Hatfull, G. F. (2016). Phagesdb: the actinobacteriophage database.

Bioinformatics, 33(5):784–786.

66



BIBLIOGRAPHY

Samson, J. E., Magadán, A. H., Sabri, M., and Moineau, S. (2013). Revenge of the

phages: defeating bacterial defences. Nature Reviews Microbiology, 11(10):675–

687.

Santajit, S. and Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in

eskape pathogens. BioMed Research International, 2016:2475067–2475067.

Sarker, S. A., McCallin, S., Barretto, C., Berger, B., Pittet, A.-C., Sultana, S., Krause, L.,

Huq, S., Bibiloni, R., Bruttin, A., Reuteler, G., and Brussow, H. (2012). Oral t4-like

phage cocktail application to healthy adult volunteers from bangladesh. Virology,

434(2):222–232.

Schmidt, C. (2019). Phage therapy’s latest makeover. Nature Biotechnology,

37(6):581–586.

Shen, J., Zhou, J., Xu, Y., and Xiu, Z. (2020). Prophages contribute to genome plasticity

of klebsiella pneumoniae and may involve the chromosomal integration of args in

cg258. Genomics, 112(1):998–1010.

Srividhya, K., Rao, G., Raghavenderan, L., Mehta, P., Prilusky, J., Manicka, S., Suss-

man, J., and Krishnaswamy, S. (2006). Database and comparative identification of

prophages, volume 344, pages 863–868.

Stern, A. and Sorek, R. (2011). The phage-host arms race: shaping the evolution of

microbes. BioEssays: News and Reviews in Molecular, Cellular and Developmental

Biology, 33(1):43–51.

Stock, M. (2017). Exact and Efficient Algorithms for Pairwise Learning. PhD thesis,

Ghent University.

Stock, M., Pahikkala, T., Airola, A., De Baets, B., and Waegeman, W. (2016). Efficient

pairwise learning using kernel ridge regression: an exact two-step method.

Stock, M., Pahikkala, T., Airola, A., Waegeman, W., and De Baets, B. (2020). Alge-

braic shortcuts for leave-one-out cross-validation in supervised network inference.

Briefings in Bioinformatics, 21(1):262–271.

Sulakvelidze, A., Alavidze, Z., and Morris, J G, J. (2001a). Bacteriophage therapy.

Antimicrobial agents and chemotherapy, 45(3):649–659.

Sulakvelidze, A., Alavidze, Z., and Morris, J. G. J. (2001b). Bacteriophage therapy.

Antimicrob Agents Chemother, 45(3):649–659.

Tang, L. (2019). Anti-anti-crispr. Nature Methods, 16(11):1080–1080.

Trevors, J. T. (1999). Evolution of gene transfer in bacteria. World Journal of Microbiol-

ogy and Biotechnology, 15(1):1–6.

67



BIBLIOGRAPHY

Twort, F. (1915). An investigation on the nature of ultra-microscopic viruses. The

Lancet, 186(4814):1241 – 1243.

van der Maaten, L. and Hinton, G. (2008). Viualizing data using t-sne. Journal of

Machine Learning Research, 9:2579–2605.

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P T,

40(4):277–283.

Waegeman, W. (2019). Predictive modelling.

Wang, C., Ding, C., Meraz, R. F., and Holbrook, S. R. (2006). PSoL: a positive sam-

ple only learning algorithm for finding non-coding RNA genes. Bioinformatics,

22(21):2590–2596.

Wang, I.-N., Deaton, J., and Young, R. (2003). Sizing the holin lesion with an endolysin-

-galactosidase fusion. Journal of Bacteriology, 185:779–87.

Wang, L., editor (2005). Support Vector Machines: Theory and applications. Springer

Berlin Heidelberg.

Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. Federation of European

Microbiological Societies Microbiology Reviews, 28(2):127–181.

Yosef, I., Manor, M., Kiro, R., and Qimron, U. (2015). Temperate and lytic bacterio-

phages programmed to sensitize and kill antibiotic-resistant bacteria. Proceedings

of the National Academy of Sciences, 112(23):7267–7272.

Zeldis, J., Bukhari, A., and Zipser, D. (1973). Orientation of prophage mu. Virology,

55(1):289 – 294.

Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., and Wishart, D. S. (2011). Phast: A fast

phage search tool. Nucleic Acids Research, 39(2):W347–W352.

Örmälä, A.-M. and Jalasvuori, M. (2013). Phage therapy. Bacteriophage, 3(1):e24219.

68


