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1 Introduction

Sports, the most important sideshow in the world is the title of a book written by
German sports journalist Horst Peets (1960). 60 years later, this title remains
relevant. It could even be said that the sports world has become a real industry.
This dissertation will focus on one of the many timetabling problems related to
this ‘sideshow’, namely the time-relaxed travelling tournament problem. The
goal of this problem is to minimise the total travel time or travel distance in a
competition by adapting the timetable.

In this first section, the importance and relevance of this problem will be
discussed. The first paragraph will discuss the importance of timetabling or
scheduling in a sports competition. The next paragraphs will then provide more
insight in the importance of time-relaxed timetabling in sports competitions.
This is followed by a discussion on the importance of travel time. The final
paragraphs of this introduction will then clarify why sports related subjects are
interesting for a master’s dissertation.

Scheduling is an important aspect of every competition. This can be
clarified using similar arguments as Kendall, Knust, Ribeiro, and Urrutia used
to show the relevance of their annotated bibliography on the subject (2010).
In professional sports leagues, revenue maximisation and logistic optimisation
are key and the timetable needs to facilitate this. On the other hand
non-professional leagues have different problems, e.g. the large number of
tournaments and competitors, which also require coordination and logistical
efforts. Timetabling consists of fixing a date and a venue for every single game
of a competition. Good fixtures are an important aspect of maximising
revenues, ensuring attractiveness and keeping the interest of the media and the
fans. Schedules will affect the performance (positively or negatively) of every
team in the competition. Multiple decision makers, constraints and objectives
have to be taken into account while coming up with the best schedule,
indicating the difficulty of the task (Kendall et al., 2010).

This paragraph will focus on the importance of time-relaxed timetabling
and will show the need for distinguishing the time-constrained and
time-relaxed situation. A time-relaxed schedule is a schedule where more
timeslots are available than strictly needed to schedule all games. This differs
from time-constrained scheduling where the number of timeslots is the
minimum number of slots required to schedule all games (Schönberger,
Mattfeld, & Kopfer, 2004). Non-commercial sports leagues attract less public
attention, therefore, scheduling constraints coming from e.g. broadcasting
rights and security forces are usually non-existing. However, venue availability
is in general more limited, since most venues of non-professional teams are
shared. Additionally, non-professional players usually have a lower availability,
due to having other activities (e.g. family and work) as well (Van Bulck,
Goossens, & Spieksma, 2019). These availability limitations support the claim
that non-commercial sports leagues are not suited for time-constrained
scheduling. Most contributions in the world of sports timetabling deal with
time-constrained scheduling, however, time-relaxed timetabling still remains
an important subject. Mainly because of its omnipresence in non-professional
competitions, where flexibility is key, but also because some professional
competitions like the NBA (Bean & Birge, 1980) or NHL (Costa, 1995) are in
fact time-relaxed (Van Bulck & Goossens, 2020).
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There exist numerous optimisation problems in the sports world (cf.
Section 3.1) of which this dissertation will cover one, the Time-Relaxed
Travelling Tournament Problem (RTTP). The goal of the RTTP is to
minimise the total distance to be travelled by varying the schedule of a
tournament. In the classic European scenario, for example the Belgian Jupiler
Pro League, a team travels back to its home venue after every away game,
even when two consecutive away games are scheduled. Consequently, the total
distance to be travelled is independent of the schedule. In a rather small
country like Belgium, with a maximum distance between two home venues of
top tier teams (KV Oostende and KAS Eupen) of about 250 km, this remains
possible. However, when the home venues of the teams are located further
from each other, e.g. a distance of over 2200 km between the venues of Chilean
first tier clubs Huachipato and Deportes Iquique, it is not always in the best
interest of the teams to return home after every away game (Durán et al.,
2007). By introducing the concept of away trips, i.e. a team that has multiple
consecutive away games will stay on the road instead of returning home, the
total distance to be travelled can be reduced. The next paragraphs will focus
on the importance of travel time for the main stakeholders of sports
competitions: the teams and their players, the fans, the umpires and the
parents (and other volunteers).

The first (and maybe the most important) stakeholders are the teams and
their players. They are the core subject of the RTTP (and the corresponding
time-constrained problem (TTP)). This paragraph discusses the effects of travel
on the team and players performance. Many researchers have already focused on
the potential existence of a home advantage. Several factors, e.g. local crowds,
familiarity with local conditions and travel time of the opponent, appear to
support this claim (Du Preez & Lambert, 2007; Pollard, Prieto, & Gómez, 2017).
Domestic air-travel is frequently used as an explanation for poor away-match
performance, but it is much harder to statistically prove the impact of travel time
on match performance. When separating travel effects by means of regression
analyses on performance data from team sports, it is shown that travel related
issues only explain 1 or 2% of the overall variance in match outcome (Duffield &
Fowler, 2017). The lack of supporting data does not render the (time-relaxed)
travelling tournament problem irrelevant, since limiting the travel time and
distance for all teams will create some kind of fairness between them. Limiting
the total distance to be travelled is certainly perceived as something positive
by teams and their players since this plays a positive role on their own comfort
and on the travel related costs that teams need to incur.

A second important stakeholder in all sports competitions are the fans. All
games have to be scheduled at times and locations that are convenient for the
fans, while limiting the distance to be travelled by fans is also desirable. Many
U.S.-based teams apply the concept of away trips, but the story in Europe is
somewhat different. In European competitions the total distance that has been
travelled at the end of the season will always be the same, since the concept
of away trips without returning home is absent. There are still guidelines to
optimise the distance to be travelled during specific sub-periods, e.g. the English
football fixtures during the Christmas period. The travel time during this period
is minimised to avoid fans having to travel long distances during the holiday
period, a time of the year that is characterised by bad weather conditions and
sometimes limited public transportation offerings (Kendall & Westphal, 2013).
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Limiting the distance to be travelled in these periods might be an incentive
for fans to still come to the stadium. If your team plays close enough to its
home venue, which often means playing a local rival, the fans will not stay
away. In fact, empirical research shows that these so called ‘derby’ games have
a predicted rise of about 14% on the size of the crowd as compared to non-derby
games (Buraimo, Forrest, & Simmons, 2009).

Another essential group of actors in many professional and amateur sports
competitions are the umpires or referees. The travelling umpire problem (TUP)
has the same objective as the TTP, namely minimising the total distance to
be travelled, but is subject to different constraints and is defined for different
actors (umpires instead of teams). In TTP, distance is minimised by creating
away trips, while distance minimisation in TUP is done by assigning the umpire
crews to the venues which are closest to them. The two main constraints of the
TUP state that one umpire crew should be assigned to each team at least once
during the season, and that one umpire crew should not be assigned to a team
too often in short succession (Trick, Yildiz, & Yunes, 2012). The existence of
sufficient research on the TUP confirms that the travel time and distance of
umpire crews is an important factor in sports scheduling.

The previous paragraphs mainly cover research in a professional context
and while this might be the most important in terms of economic value, this
is certainly not the most important in terms of size. Only a fraction of all
people participating in sports can be called professional players. Therefore,
it is important to highlight the relevance of travel time minimisation for non-
professional sports leagues. In these leagues, like in professional soccer leagues
in Europe, the visitor teams always go to the game’s venue and return home
immediately after the game. This means that for a fixed league of teams, the
distance is independent of the sequence of the games. Since the composition
of recreational sports competitions, e.g. Belgian youth football leagues, is not
solely based on the previous results of the competing teams, the composition of
the leagues is not fixed when the games have to be scheduled. This characteristic
introduces a third distance related problem: the sport teams grouping problem
(STGP). The objective of the STGP is to divide all participating teams in
different groups that each will form a separate competition while minimising
the total distance to be travelled across all competitions (Toffolo, Christiaens,
Spieksma, & Vanden Berghe, 2019). Compared to the TTP and the TUP,
the STGP again comes with a different approach to the distance minimisation
problem. Distance is minimised in the STGP by adapting the composition of the
competition. The fact that the distance problem can be tackled from different
viewpoints, again shows the importance of travel time in the sports world.

The final introductory paragraphs will cover the relevance of a sports related
master’s dissertation. All over the world, cities and countries make a bid to
bring major sports events, like the Olympics or other worldwide and continental
championships, to their city or country. These events provide additional jobs,
improve the current infrastructure and create more tourism to the hosting city
or country1. Additionally, they attract interest from all over the world and
games are watched by millions of people at the same time. Therefore, a country
like Qatar thinks it is interesting to invest more than $200 million in their bid

1https://edition.cnn.com/travel/article/tokyo-2020-olympics-rugby-world-cup
-tourists/index.html
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for the organisation of the 2022 FIFA World Cup2.
A further illustration of how important sports are, can be found in the

almost absurd amounts of money teams invest in their players. Merchandise
and ticket sales go up when a world class player is signed3, and if the player
does what the team expects of him, the team will also perform better. A better
team performance will further increase the fan base and often results in higher
bonuses for the team (and the players). For example, the winner of the UEFA
Champions League 2018/2019 could have earned over 60 million euros4. Another
source of income for the clubs and players are the broadcasting rights. In the
English Premier League, a total of more than 3 billion euros of TV money is
divided amongst the top tier teams5.

Apart from the previously listed economic factors, sports also play a big
social role. Sports stadiums have evolved during the past decades. They are
no longer just places where a few home games are played every month, the new
sports stadiums have evolved into multi-functional areas with shops, offices and
restaurants. This again shows that sports are relevant for the entire world, even
when you do not practice sports or when you are not interested in them.

Even though aforementioned factors make sports a relevant study subject
for a dissertation by themselves, one additional decisive characteristic needs to
be mentioned. The fact that almost everyone can relate with sports makes it a
real socially relevant subject. At some point, everyone gets involved with the
subject and this makes problems related to sports somewhat easier to
understand and more interesting. This and all previously mentioned
socio-economic factors motivate researchers and students, like ourselves, to
explore existing optimisation problems in the sports world.

The remainder of this paper is structured as follows. Section 2 covers the
problem description and Section 3 delivers an overview of the existing literature
related to the problem. The methodology of this dissertation is presented in
Section 4 and tested in Section 5, where the experimental results are provided.
Finally, the general conclusions are drawn and some subjects for future research
are proposed in Section 6.

2https://bleacherreport.com/articles/1793593-how-qatar-won-the-right-to-host
-the-2022-fifa-world-cup/

3https://www.cnbc.com/2018/07/18/juventus-sold-over-60-million-of-ronaldo
-jerseys-in-just-one-day.html

4https://www.uefa.com/uefachampionsleague/news/newsid=2562033.html
5https://www.forbes.com/sites/bobbymcmahon/2019/08/04/premier-league-201920

-odds-how-to-watch-changes/#2897209c13a1
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2 Problem Description

2.1 Time-Relaxed Travelling Tournament Problem
In a t-round-robin tournament, every team plays every other team a fixed
number t times during the competition. So in a double round-robin (or DRR),
every team plays exactly two matches against every other team, one at their
home venue and one at the home venue of the opponent. In a time-relaxed
environment a competition has K timeslots more available than are required
to schedule all matches. These K additional timeslots are filled with byes, i.e.
timeslots where a team does not play a match.

The time-relaxed travelling tournament problem (K-RTTP) boils down to
a double round-robin tournament in a time-relaxed environment (K byes per
team) (Bao & Trick, 2010), characterised by,

• a set of n teams T , assume n to be even

• a set of timeslots (or rounds) R, with |R| > 2(n−1) or |R| = 2(n−1)+K

• an n×n integer distance matrix D, where Dij(= Dji) equals the distance
between team ti and tj , with ti,j ∈ T : i 6= j

This means that every team has to play 2(n−1) matches during the competition.
The output of the K-RTTP is a feasible double round-robin tournament schedule
for n teams, consisting of n(n− 1) matches and nK byes scheduled over 2(n−
1) +K rounds, which meets the following constraints.

• C1: Each team plays every other team exactly twice

• C2: Each team plays exactly once at the home venue of all other teams

• C3: Each team has a total of K byes

• C4: The length of all home stands and away trips should range from length
L to length U (‘atmost constraint’) (Van Hentenryck & Vergados, 2007)

• C5: Two teams should not play each other twice on two consecutive rounds
(‘norepeat constraint’) (Van Hentenryck & Vergados, 2007)

The resulting schedule is a combination of an opponent schedule and a home-
away assignment. The opponent schedule, where each team is represented by
a different integer and a bye is represented by a 0, determines the different
matchups in every round. The home-away assignment shows for all rounds
which teams will play at home (+) and which will play an away game (-). Byes
are ignored in the home-away assignment.

Let us now consider the case where t = 1, n = 4 and K = 1, i.e. a single
round-robin tournament (SRR) of 4 teams with 1 bye per team, as an
example. It is clear that schedule S1 (Table 1) can be created by combining
the opponent schedule (Table 2) and the home-away assignment (Table 3).
The home-away assignment can also be seen as a combination of the so-called
home-away patterns (HAPs) of all teams, which are sequences of n − 1 pluses
and minuses and K zeros (Post & Woeginger, 2006). The HAP for team 1 in
schedule S1 can easily be found in Table 3 and is ‘-+0+’. Also, it is important
to notice that there are no two teams with an equal HAP since every two
teams have to play each other in one of the rounds.
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T/R 1 2 3 4
1 -4 3 0 2
2 3 4 0 -1
3 -2 -1 4 0
4 1 -2 -3 0

Table 1: Schedule S1 (t = 1, n = 4,K = 1)

T/R 1 2 3 4
1 4 3 0 2
2 3 4 0 1
3 2 1 4 0
4 1 2 3 0

Table 2: Opponent Schedule SRR
(t = 1, n = 4,K = 1)

T/R 1 2 3 4
1 - + 0 +
2 + + 0 -
3 - - + 0
4 + - - 0

Table 3: Home-Away Assignment
(t = 1, n = 4,K = 1)

Since the conflict between travel distance and the home/away patterns of
the teams is the core of the K-RTTP, the total distance to be travelled in the
tournament is used as the objective function, i.e. it can be used to compare
different schedules. The HAP’s of the teams are limited by the constraints
proposed earlier in this section. In accordance with the literature, the following
assumption, which considers the distance calculation, is added.

• Each team will start and end the competition at their home venue

This assumption implies that all teams that have an away game as final game,
will still need to travel back to their home venue when the competition ends.
This potential “post-season” travel is included in the distance calculation.

In this dissertation, a fair and optimal schedule minimises the total
distance travelled during the tournament (for the tournament as a whole)
while keeping the different HAP’s compliant with the imposed constraints. In
order to minimise or at least decrease the total distance to be travelled, the
concepts of away breaks, away trips and home stands can be introduced.
When team i has consecutive away games at the venues of team j and team k,
team i can choose not to travel back to their own venue but travel directly
from the venue of team j to the venue of team k. In this case team i will have
an away break. When one or more consecutive away breaks occur, it can be
called an away trip. These so called away trips can reduce the total distance
that must be travelled by team i. The opposite of an away trip is the situation
where a team plays several consecutive home games, this situation is called a
home stand. The potential impact of away trips on the distance to be travelled
by a team is made clear in the following example.

Schedule S2 (Table 4) represents the complete double-round-robin schedule
for a competition consisting of four teams {1, 2, 3, 4}. Each row represents the
individual schedule of a team over all seven rounds, while each column represents
the schedule of a single round. The presence of one bye game per team shows
that this is an instance of the K-RTTP, K = 1. The distance matrix D (Table
5) is used to calculate the total distance travelled by a team. Notice that due
to the pairwise distances, this matrix is symmetrical and has a 0-diagonal.
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T/R 1 2 3 4 5 6 7
1 -4 0 -2 3 2 4 -3
2 3 4 1 4 -1 -3 0
3 -2 0 -4 -1 4 2 1
4 1 2 3 -2 -3 -1 0

Table 4: DRR Schedule S2 (n = 4,K = 1)

i/j 1 2 3 4
1 0 3 5 4
2 3 0 4 5
3 5 4 0 3
4 4 5 3 0

Table 5: Distance Matrix D (n = 4)

As mentioned, the assumption that each team starts and ends the
competition at their home venue needs to be included in the distance
calculation. The distance travelled by team 1 is calculated by the following
summation.

D14 +D44 +D42 +D21 +D11 +D11 +D13 +D31

The first and last term take the starting and finishing of the competition at
the home venue into account, while the second term indicates that the bye
game in round 2 is spent on the road. Using the pairwise distances gives us a
total distance to be travelled of 22 (= 4 + 0 + 5 + 3 + 0 + 0 + 5 + 5). If teams
would always return home after playing an away game, the distance travelled
by team 1 could be calculated as follows:

D14 +D41 +D11 +D12 +D21 +D11 +D11 +D11 +D13 +D31

This results in 24 (= 4 + 4 + 0 + 3 + 3 + 0 + 0 + 0 + 5 + 5), which is higher than
when team 1 would not return home after every away game.

2.2 Length of Home Stands and Away Trips
When working with a uniform instance i.e. an instance where the distance
between any two stadiums is equal, maximising the number of breaks,
minimises the number of trips in a tournament and therefore minimises the
total distance to be travelled (Urrutia & Ribeiro, 2004). This supports the
claim that an away break may reduce total travel distance. However, this
break maximisation has its practical limitations. The length of an away trip,
i.e. the number of consecutive away breaks, must be limited because of two
main reasons.

Players can train and rest easier and probably better when they are at home.
Also, long away breaks can result in feelings of homesickness with some players
and this can affect their performance on the pitch. A second driver to limit the
duration of away trips are the fans. Most fans will go watch the game when the
match is at the home venue of their favourite team. It might be fun to go and
see the game every weekend of a month, but nobody likes to wait three or four
rounds until their team plays another home game (see e.g. Durán, Guajardo,
and Sauré (2017)). Since both players and fans are a crucial part of all sports
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tournaments, away trips will have a fixed upper bound on their length, even
when this might affect the travel distance of the schedule in a negative way.

The limitations are applied by defining two integer parameters L and U .
Parameter L sets a lower bound on the amount of consecutive home or away
games that can be played. Usually L = 1, which makes an alteration of home
and away games possible. The second integer parameter, U , defines an upper
bound on the length of the home stands and away trips. Setting the value of U
equal to n − 1 removes the limitation on the length of home stands and away
trips. The lower bound of the travelled distance of a single team, which equals
the optimal solution of the travelling salesman problem for visiting all home
venues, can now always be reached. This scenario is theoretically possible in a
time relaxed environment with n ∗ (n− 1) available timeslots where each game
is booked in a different timeslot. In this scenario all teams could in turn play
their (n− 1) away games. This confirms the conjecture made by Bao and Trick
(2010) that the ILB is tight for the K-RTTP when K is suffiently large. While
this theoretically is the solution with the lowest total distance to be travelled,
in practice limiting the upper bound parameter U (and the amount of byes K)
is necessary, as previously mentioned.

The lower the value of U , the more frequent a team is required to travel
to their home venue, which in turn could increase the total travelled distance.
Note, however, that U should be larger than 1 (if n > 2). When no home stands
or away breaks occur, the schedules alternate home and away games. In this
scenario only two different schedules exist, one starting with a home game and
one starting with an away game. Since no two teams can have exactly the same
HAP (cf. supra), this type of competition can only exist for two teams. As soon
as a third team comes in to play, no feasible schedule exists for U = 1.

2.3 K-RTTP Specifications
This dissertation discusses the K-RTTP for K = {1, 2, 3}. Since K is typically
small, byes are ignored when defining home stands and away trips, and hence
in the calculation of total distance travelled. The home-away pattern “+-0-“
starts with one home game and is followed by an away trip with the length of
two matches. The bye is spent on the road and no additional trips need to be
considered while calculating the total distance travelled by the team following
this pattern. Another advantage of setting the value of K relatively small is
that solutions for the TTP are feasible for the K-RTTP for all K ≥ 0 (and
even, solutions of k1-RTTP are feasible for k2-RTTP, for k1 ≤ k2) (Bao &
Trick, 2010).

In accordance with previous literature on the (R)TTP, the values for U and
L are set equal to respectively 3 and 1 and this dissertation will only cover
problems with an even number of teams. If n is even and no byes occur in a
round, this round will exist out of n/2 games. While n is even, a number of
byes b can occur. In this scenario byes always come in pairs, so b will also be
even. A round will then exist out of (n− b)/2 matches, while b teams will have
a bye. Furthermore, the K-RTTP model in this dissertation complies with all 5
constraints mentioned in one of the previous paragraphs. Finally, byes can be
placed in every timeslot, independent of it being the first or the last. Neither
are bounds imposed on the number of consecutive byes. Teams are also able to
spend byes spent on the road.
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2.4 Problem Variants
This section will cover some of the existing variants on the K-RTTP that is
covered in this dissertation. These variants can be obtained by imposing
additional constraints considering the value of K, the symmetry of the
schedule and the scheduling of byes.

2.4.1 Time-Constrained Travelling Tournament Problem

The first variant can actually be seen as a special case or specialisation of the
K-RTTP. A concept B can be seen as a specialisation of a concept A if and only
if: every instance of concept B is also an instance of concept A and instances
of concept A which are not instances of concept B exist6. Since the time-
constrained travelling tournament problem (TTP) covers the instances of the
RTTP where K = 0 and solutions for the TTP are feasible for the K-RTTP for
all K ≥ 0, the TTP can clearly be seen as a special case of the RTTP. These
time-constrained problems are defined by the fact that each team plays exactly
one game in each round. A competition of n teams, n is even, consists out of
2∗(n−1) rounds and in each round n/2 games are played. All other constraints,
as well as the objective function, remain unchanged. The only difference is that
some statements from the previous section become unnecessary since TTP is a
time-constrained problem and byes do not occur, if n is even. Previous literature
on the TTP shows that this problem is strongly NP-hard (Thielen & Westphal,
2011). Since the TTP is a specialisation of the K-RTTP it is logical to assume
that the K-RTTP will at least match the level of complexity of the TTP, i.e.
the K-RTTP is also strongly NP-hard. NP-hard problems are at least as hard
to solve as the hardest NP-problems, i.e. problems that can currently not be
solved in polynomial time (Garey & Johnson, 1979). Since complexity theory
does not belong to the scope of this dissertation, it is sufficient to say that
NP-hard problems require evaluation of an immense number of possibilities to
determine the exact solution. Here, heuristics can effectively reduce the number
of evaluations needed and play an invaluable role in obtaining solutions within
a reasonable time frame (Pearl, 1984).

2.4.2 Mirrored Double Round-Robin Tournament

A second variant of the K-RTTP studied in this dissertation is the mirrored
double round-robin tournament (MDRR). Here, the first n − 1 matches are
scheduled like a single round-robin tournament. The last n − 1 matches can
then easily be scheduled by flipping the venues of the first n−1 matches. Apart
from the easy implementation, an advantage of the MDRR is that it guarantees
that every team plays every other team once in both parts of the competition.
This variant of the (R)TTP is called the (R)TTP/Mirror problem (Easton,
Nemhauser, & Trick, 2001). All feasible schedules of the (R)TTP/Mirror are
also feasible schedules for the (R)TTP.

6https://en.wikipedia.org/wiki/Specialization_(logic)
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2.4.3 Restrictions on the Scheduling of Byes

Three additional variants can be defined by putting some restrictions on the
scheduling of byes (Brandão & Pedroso, 2014). A first variant to the RTTP
only allows byes to occur during home stands. Rounds without a game will
always be spent at the home venue in this scenario. A second constraint can
be added to increase the fairness of the competition, all teams are now required
to play a game in the last time slot. By adding this constraint no team will
end its matches before the others and therefore the possibility of matchfixing is
limited. This second constraint can be further extended to make sure that all
teams start their competition in the same round, i.e. no byes are allowed in the
first round. Finally, the third variant discussed by Brandão and Pedroso (2014)
combines the first two and limits the RTTP to only allowing byes during home
stands and not allowing byes in the final round of the competition.

10



3 Literature Overview

This section starts with a brief overview of optimisation problems (Section 3.1)
and scheduling problems (Section 3.2) in the sports world. This is followed
by an overview of the literature on the applied move operators, algorithms
and heuristics of the TTP (Section 3.3). Next, the same subjects are covered
for the RTTP (Section 3.4). Finally, some additional readings (Section 3.5)
and a summary of applied move operators and experimental results in previous
research (Section 3.6) are presented.

3.1 Optimisation Problems in Sports
The sizeable socio-economic impact of sports is one of the drivers in the search
for optimal solutions for all sports related problems. A large amount of
optimisation problems are scheduling problems. These problems also include
the time-relaxed travelling tournament problem, which is the subject of this
master’s dissertation. This section gives a short summary of some other
optimisation problems that exist in the sports world. More details about
scheduling problems are discussed in Section 3.2.

A first sports related optimisation problem is the sports selection problem,
studied by Rogulj, Papić, and Čavala (2009). Children should practise the
sport that fits them best. Optimisation of the initial choice of sports will help
improve the results a person will achieve. Rogulj et al. (2009) state that
different sports are determined by authentic kinesiological structures and
specific anthropological characteristics. Success of an individual in particular
sports activities seems to be predominantly determined by the compatibility of
his/her anthropological characteristics with the anthropological model of top
athletes in that sport. Emerging new information technologies and the
introduction of new methods and knowledge create the possibility to develop a
systematic and scientifically based approach in selecting the appropriate sport
(Rogulj et al., 2009).

Due to an increase in competitiveness in most sports, teams and
organisations will try to identify talented athletes at a very young age. By
implementing an effective talent identification system the likelihood of success
can be significantly increased and future financial rewards could also increase
(e.g. young talents have a higher market value) (Mann, Dehghansai, & Baker,
2017). The importance of the problem is clear but the practical prediction of
future talents still remains challenging. The fact that future performance is
impacted by so many different variables, ranging from physical capability to
psychological factors, makes this optimisation problem an interesting subject
for further research.

Every sport has its own game defining moments, like e.g. penalty kicks in
football or free throws in basketball. These situations have in common that they
are all not that hard to execute. Every professional football player can aim the
ball to one of the four corners from only eleven meters and every NBA-player
can throw a ball in the hoop from fifteen feet away. Yet, in reality, football
players launch their penalty kick into the crowd and basketball players ruin
their free throws, regardless of the limited technical difficulty of these moments.
There is a clear link between metabolic power and fatigue (heart rate is used as
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an indicator) and the performance on free throws (Padulo et al., 2015). These
findings can be used to determine which players will probably excel in these
game defining moments.

While the three presented subjects show the variety of optimisation problems
in the sports world. A large collection of additional optimisation subjects, all
with their own relevant research, exists and includes e.g. batting orders in cricket
(Norman & Clarke, 2010), Formula 1 car specifications (Wloch & Bentley, 2004)
and timing of soccer substitutions (Myers, 2012).

3.2 Scheduling in Sports
On the topic of scheduling sports leagues, two different cases can be considered.
First, there are the temporally constrained problems, where there are exactly
enough timeslots to schedule all games. Secondly, there are the time-relaxed
problems. From a theoretical perspective, time-relaxed scheduling problems
usually have a larger set of possible outcomes since the restriction of each team
playing in each round is removed. In this case, each team will have one or more
rounds in which no game has to be played, even though the league consists of
an even number of teams. In time-relaxed scheduling problems the number of
rounds will be larger than the minimum number of rounds needed to schedule all
games. This dissertation will mainly focus on time-relaxed scheduling problems.

A lot of real-life competitions (at least in Europe) take part in a double
round-robin format, i.e. all teams play two games against all of their opponents,
one home game and one away game (Goossens & Spieksma, 2012). This implies
that for a competition of twenty teams, for example the English Premier League,
a total of 380 games should be played and scheduled. Variations on this format
of course exist, some tournaments use a single round-robin format, where each
team plays every other team just once at a fixed location. A small real-life
example of this can be found in the group stage of the FIFA World Cup. The
round-robin format surely is not the only format used in real life. A different
format can be found in the NBA (National Basketball Association) where teams
play more often against the teams that play in the same conference and the same
division. Even though a lot of variation is present in tournament scheduling,
only double round-robin tournaments will be covered in this dissertation.

As mentioned in earlier sections, stadiums have become more than just the
venue of a few home games of a single club each month. It could be as clear
as two clubs sharing the same stadium for their home games, like for example
Club Brugge K.V. and Cercle Brugge KSV in the Belgian Jupiler Pro League
(Goossens, 2017) or FC Internationale Milano and AC Milan in Italian Serie A
(Della Croce & Oliveri, 2006). This might seem like a minor problem, but it
has serious implications since it is impossible for both teams to have a home
game in the same weekend. It gets even more complicated when both teams
play in another division, which was the case in Belgium from 2015 until 2018
when Club Brugge played in first division while Cercle Brugge played in second.
This has the implication that two different leagues must be at least partially
aligned.

Some venues are also available for more than one sports discipline, for
example the King Baudouin Stadium which is used as the home venue for
Belgium’s national football team, but also facilitates the Memorial Van
Damme, the IAAF Diamond League’s final event. The 2019 Memorial Van
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Damme was scheduled on a timeslot where UEFA EURO2020 qualifiers took
place. The qualifier schedule had to be adapted causing the Belgian national
football team to play two away games during this international break. Finally,
some venues are also used as a location for concerts or other cultural activities.
For example, the Wembley stadium, the home venue of the England national
football team, also hosted concerts of e.g. P!NK and Bon Jovi in 2019. The
multidisciplinary use of these stadiums may be a great development for the
importance of sports, but it implies availability constraints on the venues of
the teams.

An additional complication of the scheduling problem can be found in the
fact that for many sports different competitions overlap. Teams play their
domestic competition(s) and maybe a continental or even a world cup. Most
teams want to perform at their best in each of these competitions and the
organisers want to see all teams at their best, so the schedules should be
aligned. An example of misalignment between several competitions could be
witnessed in December 2019, when Liverpool FC had to play a game for the
domestic Carabao Cup on the 17th, while having to play the semi-finals of the
FIFA Club World Cup on the 18th. In the end, the club decided to let the first
team compete in the World Cup, while leaving the Carabao Cup for the
U23-squad7.

Timetabling problems have been extensively researched in previous
literature, e.g. yearly published papers on (R)TTP (Figure 1). Due to the
abundance of research on the topic, this literature overview can and should
only cover the literature relevant for this dissertation. For a more complete
overview of the existing research on sports timetabling, the reader is referred
to several general sports timetabling papers (Drexl and Knust (2007),
Rasmussen and Trick (2008), Knust (2010), Van Bulck, Goossens,
Schönberger, and Guajardo (2020)).
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Figure 1: Published (R)TTP Papers

7https://www.bbc.com/sport/football/50827321
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3.3 TTP
This section provides an overview of the TTP-literature relevant for this
dissertation. More specifically, some interesting move operators (Section 3.3.1)
and algorithms and heuristics (Section 3.3.2) are covered. The final part of
this section discusses the construction of a TTP schedule (Section 3.3.3).

3.3.1 Move Operators

A move operator is defined as a mechanism that performs a certain move or
change to an existing schedule in order to create a new schedule, which will also
be part of the search space. This search space is defined as the set of schedules
that can be obtained by applying any linear combination of move operators on
any member of this set. All schedules that are part of the search space comply
with the the first 3 constraints (C1, C2 and C3) of Section 2.1, later defined
as the hard constraints. Schedules in the search space can violate the last 2
contraints (the atmost and norepeat constraint) of Section 2.1, later defined as
soft constraints. The solution space of this dissertation is defined as the subset of
the search space containing the schedules that comply with all five constraints of
Section 2.1, members of the solution space will be called feasible schedules. For
the time-constrained travelling tournament problem, Anagnostopoulos, Michel,
Van Hentenryck, and Vergados (2006) have defined five basic move operators.
These five operators, or a selection of them, are implemented in more than six
methods that were created to tackle the TTP. When performing some minor
alterations to these operators, they can also be implemented in RTTP-solving
algorithms (Section 3.4.1).

3.3.1.1 Swap Homes
The first move operator is called SwapHomes and was proposed by
Anagnostopoulos et al. (2006). It basically swaps the home and away roles of
two teams, ti and tj , in a competition. If ti and tj have a match-up in round
rx and round ry, where ti plays at home in rx and plays away in ry, the move
operator SwapHomes(S, ti, tj) will change the schedule S such that ti will
play at home in ry and away in rx against team tj . An example of this move
operator can be found in Table 6.

T/R 1 2 3 4 5 6
1 4 3 -2 -3 2 -4
2 -3 -4 1 4 -1 3
3 2 -1 -4 1 4 -2
4 -1 2 3 -2 -3 1

T/R 1 2 3 4 5 6
1 4 3 -2 -3 2 -4
2 3 -4 1 4 -1 -3
3 -2 -1 -4 1 4 2
4 -1 2 3 -2 -3 1

Table 6: Example SwapHomes(S, t2, t3)
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3.3.1.2 Swap Rounds
The second move operator proposed by Anagnostopoulos et al. (2006) is the
SwapRounds operator and swaps the matches of two rounds, rx and ry. The
move operator SwapRounds(S, rx, ry) will swap the matches of rx and ry for
every team that participates in the competition. An example of this operator
is provided in Table 7.

T/R 1 2 3 4 5 6
1 4 3 -2 -3 2 -4
2 -3 -4 1 4 -1 3
3 2 -1 -4 1 4 -2
4 -1 2 3 -2 -3 1

T/R 1 2 3 4 5 6
1 4 -3 -2 3 2 -4
2 -3 4 1 -4 -1 3
3 2 1 -4 -1 4 -2
4 -1 -2 3 2 -3 1

Table 7: Example SwapRounds(S, r2, r4)

3.3.1.3 Swap Teams
The move operator SwapTeams proposed by Anagnostopoulos et al. (2006)
swaps the schedule of two teams, ti and tj , except when they play each other.
This implies that two matches will change in 2(n−2) rounds. This will result in
a new schedule for n teams where 4(n − 2) matches have been changed. Table
8 provides an example of this move operator.

T/R 1 2 3 4 5 6
1 4 3 -2 -3 2 -4
2 -3 -4 1 4 -1 3
3 2 -1 -4 1 4 -2
4 -1 2 3 -2 -3 1

T/R 1 2 3 4 5 6
1 -2 3 -4 -3 4 2
2 1 -4 3 4 -3 -1
3 4 -1 -2 1 2 -4
4 -3 2 1 -2 -1 3

Table 8: Example SwapTeams(S, t1, t3)

3.3.1.4 Partial Swap Teams
The move operator PartialSwapTeams of Anagnostopoulos et al. (2006)
involves one round, rx, and two teams, ti and tj . A precondition for this move
is that ti and tj do not play each other in round rx but have 2 different
opponents, e.g. ta and tbn respectively. It does not matter if they play at home
or away. The move will start by swapping both matches, ti − ta and tj − tb to
ti − tb and tj − ta. After the swap, a schedule will appear that violates some
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hard constraints (C1 and C2 (Section 2.1)) of a double round-robin
tournament. To restore those violations, an ejection chain is called upon. This
chain starts by searching the round ra where the original match ti − tb was
planned. In ra, the matchups of ti and tj are swapped again. Matches tc − ti
and td − tj will now become td − ti and tc − tj . After this swap, the ejection
chain searches again for the round where the match td − ti was originally
planned and swaps the matchups for both ti and tj . This procedure is
repeated until the circle is complete, i.e. we arrive again in round rx. After the
ejection chain is applied, a schedule will be produced that is part of the search
space (but not necessarily of the solution space). The maximum number of
rounds where matches can be swapped is equal to |R| − 2, because the rounds
where ti and tj have a match-up will never change. For every involved round,
two matches will be altered.

The example of this move operator in Table 9 requires some additional
clarification. After matches t4 − t2 and t3 − t6 are changed to t6 − t2 and
t3 − t4 in r5 a schedule appears that is not a part of the search space. An
ejection chain is invoked to make sure that the new schedule is again part of
the search space. First, the round of the initial match t3 − t4 is determined,
here r1. In r1, the original matches t3 − t4 and t1 − t6 are replaced by t3 − t6
and t1 − t4. Next, the round of initial match t1 − t4 is determined, here r6.
Also for this round the original matches t1 − t4 and t5 − t6 are replaced by
t1 − t6 and t5 − t4. This procedure repeats itself for r2, r7, r8, r4 and r9, in that
particular order. The matches in r9 were originally t4 − t5 and t6 − t2 and are
replaced by t6 − t5 and t4 − t2. The match t4 − t2 was originally planned to be
played in r5, the initial round. After this last swap, the circle is complete and
the schedule is again part of the search space. However, the resulting schedule
is not part of the solution space because the atmost constraint is violated by
team 4 in round 10. A fourth consecutive home game exceeds the upper bound
of 3 set on home stands or away trips. Since this new schedule is infeasible,
additional moves will have to be applied to retrieve a feasible schedule.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 3 -2 -4 5 4 -5 -6 -3 2
2 -5 6 1 3 4 -3 4 5 -6 -1
3 4 -1 5 -2 6 2 -6 -4 1 -5
4 -3 -5 -6 1 2 -1 -2 3 5 6
5 2 4 -3 -6 -1 6 1 -2 -4 3
6 -1 -2 4 5 -3 -5 3 1 2 -4

T/R 1 2 3 4 5 6 7 8 9 10
1 4 3 -2 -6 5 6 -5 -4 -3 2
2 -5 4 1 3 -6 -3 6 5 -4 -1
3 6 -1 5 -2 4 2 -4 -6 1 -5
4 -1 -2 -6 5 -3 -5 3 1 2 6
5 2 6 -3 -4 -1 4 1 -2 -6 3
6 -3 -5 4 1 2 -1 -2 3 5 -4

Table 9: Example PartialSwapTeams(S, t4, t6, r5)
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3.3.1.5 Partial Swap Rounds
The last move operator proposed by Anagnostopoulos et al. (2006) is called
PartialSwapRounds and is determined by one team ti and two rounds, rx and
ry. The move will swap the opponents of team ti in rounds rx and ry. This
swap will create a schedule that falls outside the search space, which calls for
an ejection chain to restore the violations on C1 and C2 (Section 2.1). It is
sufficient to find the connected component which contains the games of ti, in rx
and ry. A connected component is a graph where the nodes represent the teams
and where an edge connects two teams that play against each other in rx or
ry (see e.g. Figure 2). All teams in this connected component must have their
games swapped (Anagnostopoulos et al., 2006). The opponents on the other
hand might have to change their location to meet the requirements for the new
match-up. This will create a new schedule that falls within the search space.
The matches of only two rounds will be altered for this move operator.

The example in Table 10 again requires some additional clarification.
Swapping the games of t1 in r6 and r10 will lead to a schedule that does not
meet the requirements of a double round-robin tournament. The connected
component that contains the games of t1 in r6 and r10 (t1 − t4,t1 − t2) also
includes the arcs t4 − t6,t5 − t6,t5 − t3,t3 − t2 (Figure 2). Since it is necessary
to swap the games in r6 and r10 of all other nodes in the connected
component, the matches of the other teams involved: t2, t3, t4, t5 and t6 in r6
and r10 should be swapped. The resulting schedule is part of both the search
and solution space. However, the latter is not guaranteed by this operator.

T/R 1 2 3 4 5 6 7 8 9 10
1 6 3 -2 -4 5 4 -5 -6 -3 2
2 -5 6 1 3 -4 -3 4 5 -6 -1
3 4 -1 5 -2 6 2 -6 -4 1 -5
4 -3 -5 -6 1 2 -1 -2 3 5 6
5 2 4 -3 -6 -1 6 1 -2 -4 3
6 -1 -2 4 5 -3 -5 3 1 2 -4

T/R 1 2 3 4 5 6 7 8 9 10
1 6 3 -2 -4 5 2 -5 -6 -3 4
2 -5 6 1 3 -4 -1 4 5 -6 -3
3 4 -1 5 -2 6 -5 -6 -4 1 2
4 -3 -5 -6 1 2 6 -2 3 5 -1
5 2 4 -3 -6 -1 3 1 -2 -4 6
6 -1 -2 4 5 -3 -4 3 1 2 -5

Table 10: Example PartialSwapRounds(S, t1, r6, r10)

t1

t4t2

t3

t5

t6

t1 − t4

t5 − t6t5 − t3

t1 − t2

t4 − t6t3 − t2

Figure 2: Connected Component PartialSwapRounds(S, t1, r6, r10)
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3.3.2 Algorithms and Heuristics

In this section three relevant algorithms for TTP are discussed. The tabu
search approach (Di Gaspero & Schaerf, 2007) is covered since it introduces
the ejection chain as it will be used in this dissertation. The research of
Di Gaspero and Schaerf was also used to broaden the knowledge on the move
operators proposed in Anagnostopoulos et al. (2006). Secondly, simulated
annealing heuristics are covered. The PBSA algorithm by Van Hentenryck and
Vergados (2007) delivered the current best known solutions for the
NLx-instances and TTSA, proposed by Anagnostopoulos et al. (2006), serves
as the underlying mechanism for it. These algorithms are therefore relevant to
cover in this section.

3.3.2.1 Tabu Search Heuristics
A first algorithm used in research on the TTP is a tabu search based heuristic.
The tabu search approach for TTP was introduced by Di Gaspero and Schaerf
(2007). This method dives deeper into the neighbourhood of certain moves and
makes use of a tabu list in order to search for new schedules in a more efficient
way. The program is extended with a local search algorithm to improve the
search for a (near) optimal solution. The tabu search heuristic is equipped with
its own cost function based on the total distance to be travelled and the number
of violated constraints. Two constraints, C4 and C5 (Section 2.1), are defined
as soft constraints. Violations against these create an infeasible schedule and
are penalised in the cost function. To perform a local search, the algorithm uses
the five move operators proposed by Anagnostopoulos et al. (2006):

1. SwapHomes: swap venues for two teams in two different rounds

2. SwapTeams: swap two teams in all rounds

3. SwapRounds: swap two complete rounds

4. PartialSwapTeams: change the opponents for two teams in one round

5. PartialSwapRounds: swap the opponents of one team in two rounds

Since the last two move operators might create a schedule that falls outside
the search space, an ejection chain should be included (Di Gaspero & Schaerf,
2007). An ejection chain for the TSP is defined by Glover (1992) as follows: “An
ejection chain is initiated by selecting a set of elements to undergo a change of
state (e.g. to occupy new positions or receive new values). The result of this
change leads to identifying a collection of other sets, with the property that
the elements of at least one must be “ejected from” their current states.” The
translation to the TTP problem is the following. When a schedule undergoes a
certain swap operation where several elements are changed, the newly created
schedule might fall outside the search space, i.e. violations against constraints
C1, C2 or C3 (Section 2.1) can occur. This calls for an ejection chain that will
change critical elements in the schedule in order to make it part of the search
space again. However, it is not guaranteed that the new schedule will be part of
the solution space, i.e. the new schedule might violate constraints C4 and C5.

To improve efficiency and to avoid not detecting a move on the tabu list,
Di Gaspero and Schaerf (2007) execute a neighbourhood analysis to determine
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move operators that have the same end result. The cardinality of both move
operator 3 & 5, and 4 & 5 are significant i.e. the execution of both move operators
will often result in the same schedule. Finally the quality of the move operators
is observed. The quality is defined as the variation in cost due to the move. The
conclusion is that the best moves in terms of quality are move 1, move 4 with a
move length of 4 or smaller and move 5 with a move length of 6 or smaller. For
move 4 the shortest chain closure (SCC) , which consists in closing the chain as
soon as one of the two closing matches is encountered, should be used to obtain
optimal results. These 3 moves will lead to better schedules in a more efficient
way. Using this algorithm and especially these 3 moves, the best solutions of
certain problems can be approached. The tabu search approach is proven to be
a decent method to solve the TTP.

3.3.2.2 Simulated Annealing Heuristics
Simulated annealing heuristics are based on the annealing process found in
metallurgy. Oxford Learner’s Dictionary defines this process as ‘heating metal
or glass and allowing it to cool slowly, in order to make it stronger or softer ’8.
Kirkpatrick, Gelatt, and Vecchi (1983) simulated this process to be used as
an optimisation algorithm. The first step consists of ‘melting’ the system to
be optimised at a high temperature. Then, the temperature is slowly lowered
until the system ‘freezes’ and no more changes occur. The temperature should
only adapt when the systems reaches a steady state. One important feature
of simulated annealing heuristics is that local optima can always be escaped at
nonzero temperatures (Kirkpatrick et al., 1983). In the following sections two
relevant simulated algorithms are discussed.

3.3.2.2.1 TTSA
A first simulated annealing heuristic is proposed by Anagnostopoulos et al.
(2006). This algorithm improved the solutions for the NL12 , NL14 and NL16
instances. Based on existing simulated annealing techniques, the travelling
tournament simulated annealing (TTSA) algorithm was developed. Some
main design characteristics define this new method and lead to high-quality
solutions.

The first characteristic is the separation of constraints into two groups:
hard constraints, which are always satisfied by the configurations, and soft
constraints, which can be violated. A schedule that violates one or more soft
constraints is called an infeasible schedule. There are basically two soft
constraints for the TTP. The ‘no repeat’ constraint states that teams should
not play two consecutive matches against the same opponent. The ‘atmost’
constraint limits the number of consecutive home or away games
(Van Hentenryck & Vergados, 2007). Due to the implementation of soft
constraints, TTSA can explore both the feasible and the infeasible region
which seems particularly important for this problem (Anagnostopoulos et al.,
2006).

The second characteristic arises from the selection of the move operators.
The set of move operators ensures that the neighbourhood of any schedule is
as large as possible. This large neighbourhood provides an extensive number
of possible schedules that can be obtained from any given schedule. Attention

8https://www.oxfordlearnersdictionaries.com/definition/american_english/anneal
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should be paid to move operators that only perform a swap between two teams.
These operators may require the change of 4(n−2) entries in a schedule to make
it part of the search space again. A similar concept of ejection chains is also
used in the tabu search approach of Di Gaspero and Schaerf (2007) (cf. Section
3.3.2.1).

A third characteristic of TTSA is the implementation of a strategic
oscillation strategy. By dynamically adjusting the objective function, the time
spent in the feasible and infeasible region is balanced. This is done by
adjusting the weight factor w, which penalises each violation of soft
constraints with a specific weight, whenever a new schedule is found. After
spending a long time in the infeasible region, w will become large and the
penalty for violations increases with it. This will drive the search towards the
feasible region.

A last design characteristic is the usage of reheats in order to facilitate the
escape from local minima in search of the global minimum. The exploration
of the neighbourhood is done by using the 5 basic move operators discussed in
Section 3.3.1.

Since this dissertation will start from the TTSA, the next paragraphs contain
an extensive overview of its structure. The algorithm starts by generating a
random initial feasible schedule S. The objective function value of this initial
schedule can be calculated according to the following rules. If the schedule is
feasible, the objective function will be the total cost (here the total distance) of
the schedule. If the schedule is infeasible, the total cost is incremented with a
penalty factor.

The objective function of a schedule S is given by the following formula
(with nbv(S) being the number of violations against the soft constraints of
schedule S)

C(S) =

{
totalDistance(S) if S is feasible√
totalDistance(S)2 + [w ∗ f(nbv(S))]2 , otherwise

The rationale behind the definition of f is an interesting one to include. It is
intuitively clear that having 1 violation instead of 0, i.e. crossing the
feasible/infeasible boundary, should cost more than any subsequent violations.
Adding 1 violation to a schedule that already has 10 violations does not make
that much difference. In their experiments Anagnostopoulos et al. have chosen
f(nbv(S)) = 1 + (

√
nbv(S) ∗ ln (nbv(S)))/2. The size of the penalty factor

depends on the value of the weight factor w. When a better feasible schedule
is found, w is divided by a factor θ (θ > 1). If a better infeasible schedule is
found, w is multiplied by θ. As a result, w will vary according to the
frequencies of feasible and infeasible configurations in the last iterations, this is
the implementation of the strategic oscillation strategy. Strategic oscillation
will balance the time spent in feasible and infeasible regions of the search
space.

After the initialisation, a series of iterations will be performed on the
schedule. The algorithm randomly applies one of the move operators and
calculates the objective function value for this new schedule. Each iteration
ends with calculating the variation ∆ which is the difference between the
objective function values of the newly created schedule and the best-known
schedule in the algorithm. If ∆ ≥ 0, TTSA applies the move operator and
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changes the best schedule to the new schedule. Otherwise, it applies the move
with a certain probability equal to exp(−∆/T ). T is used as the temperature
in this algorithm and varies continuously during the execution of the program.
The temperature decreases each iteration since it is multiplied with a factor β
(β ∈ [0, 1]), the cooling factor. Temperature T can also be increased to
facilitate moving away from a local minimum. This is the reheating procedure,
the last of the design characteristics mentioned in previous paragraphs. After
a certain amount of iterations in which no better schedule was found, a reheat
increases the temperature to twice the value of T when the last schedule that
improved the objective function value was found. The algorithm ends when
the upper limit of non-improving iterations is met.

3.3.2.2.2 PBSA
A second simulated annealing-based algorithm, population-based simulated
annealing (PBSA), is actually an extension of the TTSA algorithm.
Van Hentenryck and Vergados (2007) extended the TTSA method and found
new best solutions for NL12, NL14 and NL16 and other large-scale instances.
The simulated annealing approach is used because of its great capabilities in
micro-intensification and -diversification of schedules. To improve this
algorithm, macro-intensification and -diversification should be added. This is
typically found in population-based and tabu search algorithms. Therefore,
TTSA is used as a basis and some components are added to create the
population-based simulated annealing algorithm.

Basically, the core of the algorithm is organised as a series of waves. The
first wave consists of x times (e.g. 25 times) the same initial schedule on which a
simulated annealing run is performed. This will result in x new best schedules.
From those x new best schedules, the best y (y ≤ x) (e.g. 5) are called the elite
runs and will be kept for the next wave. The other x − y (e.g. 25 − 5 = 20)
will start from the schedule with the current best objective function value. This
procedure repeats itself with each wave having its own set of starting schedules
and temperature.

The core of the algorithm terminates when a certain number of waves does
not adapt the best schedule. This core procedure will be restarted on a lower
temperature until a new schedule is found. The algorithm is stopped when no
new best schedule is found for a certain amount of core procedures.
Van Hentenryck and Vergados have also investigated the effect of this
macro-diversification (adding the population-based layer). They concluded
among other things that an increasing number of elite runs will improve the
solutions but will also increase the time consumed to run the algorithm.

3.3.3 Construction of a TTP Schedule

The discussed algorithms all require the initialisation or the construction of a
schedule. The move operators will then be performed on this initial schedule.
Trick (2000) proposes a multiphase approach for the construction of sports
timetables and defines three separate subproblems. Finding home-away
patterns (HAPs) for all n teams in a competition can be considered as a first
subproblem. This consists of finding a set of n strings of pluses and minuses
that correspond to the home and away sequence of a team. Trick (2000)
defines the construction of a basic match schedule (BMS) as a second
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subproblem. Constructing this BMS consists out of assigning games to the
HAPs that where proposed in the first subproblem. The basic match schedule
is actually a schedule with generic teams. The third subproblem consists of
changing these generic teams into real teams, which then completes the
timetable.

The alternative approaches in sports timetable generation mainly differ in
the order in which these subproblems are being tackled. In general, the more
critical a decision is perceived the earlier it will be made. The second and third
subproblem can also be considered as one by immediately using real teams in
developing a schedule. The order of the two remaining subproblems is dependent
on the importance the researchers assign to the individual subproblems. Russell
and Leung (1994) propose a first-break-then-schedule approach, i.e. they first
generate home-away patterns and then they assign teams to these patterns.
Trick (2000) proposes a first-schedule-then-break approach, which reverses the
order of these subproblems. A first phase fixes the opponents for all rounds.
The resulting schedule can be called the opponent schedule, in which each team
is represented by a different integer. In a second phase, the decision about the
venue of every match in every round is made. This will result in the home-away
assignment for the opponent schedule. This assignment respects the opponent
schedule and decides for every game which of the two competing teams will
play at home (+) and which team will play an away game (-). This results in a
complete schedule of a round-robin tournament.

The second phase of the first-schedule-then-break approach can also be
seen as a new optimisation problem. Rasmussen and Trick (2006) define this
problem as the timetable constrained distance minimisation problem
(TCDMP). For a given timetable of a double round-robin tournament with n
teams, an n × n distance matrix and an upper bound on the amount of
consecutive home and consecutive away games, this problem determines an
optimal home-away assignment. Rasmussen and Trick (2006) provide both an
IP- and a CP-formulation for this problem. Apart from these formulations, the
authors also present two alternative solution methods for the TCDMP: a
hybrid integer programming/constraint programming approach and a branch
and price algorithm. However, the IP-formulation, and to a lesser extent the
CP-formulation, are the most relevant to cover in this master’s dissertation.
For the exact models and more details on the formulations, the reader is
referred to Rasmussen and Trick (2006). Since the TCDMP only covers the
home-away assignment of given timetable, several constraints present in the
TTP can be omitted, e.g. the home-away assignment has no impact on the
violation of the no-repeat constraint. Therefore, this problem can be seen as
less challenging than the TTP.

In the results of their research, Rasmussen and Trick (2006) show that the
IP-formulation is better equipped to handle larger instances than the
CP-formulation. This is not seen as a surprise since IP-models frequently excel
for optimisation problems, when they are compared to CP models. However,
the CP-formulation is shown to be better at solving instances with 6 teams.
Additionally, the simplicity of CP-models as opposed to IP-models, makes it
clear that both types have their advantages.

Since using a high-quality approximation of an optimal solution as initial
schedule can significantly improve the results of any given algorithm, the 5.875
approximation algorithm by Westphal and Noparlik (2014) is also covered
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here. The schedule resulting from this algorithm approximates the optimal
TTP solution by a factor which is not more 5.875 for any U ≤ 4 and any
n ≤ 6. It also produces this high quality solutions in a very short timeframe.

First, the teams are ordered by descending star weight, i.e. the team with
the largest total distance to all other teams gets assigned to the first place.
For clarity’s sake, in Figure 3 all teams are represented by their place in this
ordered list, i.e. the team represented by number 1 is the team with the highest
star weight. For n=20, the first and second round are displayed in Figure 3.

1 11 2 12 3 13 4 14 5

19 9 18 8 17 7 16 6 15

10 20

11 2 12 3 13 4 14 5 15

10 19 9 18 8 17 7 16 6

1 20

Figure 3: Construction Round 1 and 2 (n = 20, U = 4)

The graph consists out of nodes and oriented arcs. A solid arc (u, v) means
that team u plays against team v at the venue of team v. Games for the following
rounds of the first half of the season can be derived by rotating the positions of
the teams counterclockwise. Only one arc changes orientation during one half
of the season, this is the arc that is connected with the node with the smallest
star weight, in this case node 20. This arc changes orientation every Uth round.
The predetermined orientation of the arcs makes sure that no team has home
stands or away trips with a size exceeding U . By rotating the positions, every
team will have met every other team exactly once during this first n−1 rounds.

To construct a complete schedule of a double round-robin tournament, the
second half of the season remains to be constructed. To avoid home stands and
away trips that exceed the allowable length, Westphal and Noparlik (2014) let
the second half of the season start with the matches scheduled in round n− 2,
followed by the matches of round n − 1, 1, 2, ..., n − 3. Of course the venues
for the second half of the competition are swapped. For an even more detailed
overview of this algorithm and the rationale behind it, the reader is referred to
Westphal and Noparlik (2014).
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3.4 RTTP
While the previous section mainly focused on research in the time-constrained
environment, this section covers previous research on the time-relaxed travelling
tournament problem. First some move operators that were used in previous
research on the RTTP are covered. This is followed by a description of the two
algorithms that have provided the best known solutions for the NLx instances.

3.4.1 Basic Move Operators from TTP

A first set of important move operators are those presented by
Anagnostopoulos et al. (2006). However, these moves are developed for a
time-constrained environment and some of them are not able to cope with the
presence of byes. These moves were adapted to a time-relaxed context by
Pérez-Cáceres and Riff (2015).

3.4.1.1 Swap Homes RTTP
The SwapHomesRTTP move operator does not differ from its time-constrained
counterpart.

T/R 1 2 3 4 5 6 7
1 4 3 -2 -3 0 2 -4
2 3 -4 1 4 0 -1 -3
3 -2 -1 -4 1 4 0 2
4 -1 2 3 -2 -3 0 1

T/R 1 2 3 4 5 6 7
1 4 3 -2 -3 0 2 -4
2 -3 -4 1 4 0 -1 3
3 2 -1 -4 1 4 0 -2
4 -1 2 3 -2 -3 0 1

Table 11: Example SwapHomesRTTP (S, t2, t3)

3.4.1.2 Swap Rounds RTTP
The SwapRoundsRTTP move operator also remains unchanged after
conversion from TTP to RTTP.

T/R 1 2 3 4 5 6 7
1 4 3 -2 -3 0 2 -4
2 3 -4 1 4 0 -1 -3
3 -2 -1 -4 1 4 0 2
4 -1 2 3 -2 -3 0 1

T/R 1 2 3 4 5 6 7
1 4 -3 -2 3 0 2 -4
2 -3 4 1 -4 0 -1 3
3 2 1 -4 -1 4 0 -2
4 -1 -2 3 2 -3 0 1

Table 12: Example SwapRoundsRTTP (S, r2, r4)
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3.4.1.3 Swap Teams RTTP
The conversion to a time-relaxed environment changes the number of matches
that are altered. The time-constrained version of the SwapTeams operator
swaps 2 matches, the matches of ti and tj in 2(n− 2) rounds (all rounds where
ti and tj do not have a matchup). The resulting schedule will have 4(n − 2)
different matches compared to the original schedule. The RTTP variant has
an additional k rounds, meaning an additional 2k matches have to be altered.
However, if both teams have a bye in the same round, no matches have to be
changed for that round. The parameter s indicates the number of times ti and tj
have a bye in the same round. This move operator will result in 2(n−2)+2(k−s)
different matches as compared to the original schedule in a competition with n
teams and k byes.

T/R 1 2 3 4 5 6 7
1 4 3 -2 -3 0 2 -4
2 -3 -4 1 4 0 -1 3
3 2 -1 -4 1 4 0 -2
4 -1 2 3 -2 -3 0 1

T/R 1 2 3 4 5 6 7
1 -2 3 -4 -3 4 0 2
2 1 -4 3 4 0 -3 -1
3 4 -1 -2 1 0 2 -4
4 -3 2 1 -2 -1 0 3

Table 13: Example SwapTeamsRTTP (S, t1, t3)

3.4.1.4 Partial Swap Teams RTTP
The move PartialSwapTeamsRTTP is performed in a similar way as its time-
constrained counterpart. The move swaps the opponents of two teams, ti and
tj in round ra. A precondition for this move is that ti and tj do not play each
other in round ra but have 2 different opponents, ta and tb. It is possible that
one of both teams has a bye in ra. However, it is not allowed for both ti and
tj to have a bye in ra since this would cause the schedule to remain unchanged.
The move will start by swapping matches ti− ta and tj− tb to ti− tb and tj− ta.
After this swap, a schedule will appear that violates at least some of the hard
constraints (C1, C2 and C3) of a time-relaxed double round-robin tournament.
To restore those violations, an ejection chain that works almost exactly as in
Section 3.3.1.4, is called upon. The only difference occurs when one of the teams,
e.g. ti, has a bye in a particular round, e.g. rb. If this is the case, tj will become
the team that has a bye in rb and ti will now have a match-up with the former
opponent of tj in rb. To continue the ejection chain, a round where tj originally
had a bye has to be found. When multiple byes occur for a single team, a list
of all visited and swapped rounds is stored and updated to make sure no round
is visited twice. After a round is selected where tj previously had a bye, the
ejection chain can continue until the circle is complete and round ra is selected
again. After the ejection chain is applied, the returned schedule is part of the
search space but not necessarily of the solution space. The maximum number of
rounds where matches can be swapped is equal to |R| − 2− s (with s = number
of rounds where both ti and tj have a bye).
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T/R 1 2 3 4 5 6 7 8 9 10 11
1 4 0 -2 -6 5 3 -4 2 -3 6 -5
2 3 -5 1 4 -6 0 5 -1 -4 -3 6
3 -2 0 -6 5 4 -1 6 -5 1 2 -4
4 -1 6 5 -2 -3 0 1 -6 2 -5 3
5 -6 2 -4 -3 -1 6 -2 3 0 4 1
6 5 -4 3 1 2 -5 -3 4 0 -1 -2

T/R 1 2 3 4 5 6 7 8 9 10 11
1 4 0 -2 -6 3 5 -4 2 -5 6 -3
2 5 -3 1 4 -6 0 3 -1 -4 -5 6
3 -6 2 -4 5 -1 6 -2 -5 0 4 1
4 -1 6 3 -2 -5 0 1 -6 2 -3 5
5 -2 0 -6 -3 4 -1 6 3 1 2 -4
6 3 -4 5 1 2 -3 -5 4 0 -1 -2

Table 14: Example PartialSwapTeams(S, t3, t5, r10)

In this paragraph, the example in Table 14 is explained in more detail. After
matches t3 − t2 and t5 − t4 are swapped to t3 − t4 and t5 − t2 in r5 a schedule
appears that does not comply with the requirements of a double round-robin
tournament. The ejection chain will restore this as follows. First, the round
where t3 − t4 was originally scheduled is obtained, yielding r5 for our example.
In r5, the original matches t3− t4 and t1− t5 are replaced by t1− t3 and t5− t4.
This procedure repeats itself for r6, r7, r1, r3, r11 and r9, in that particular order.
The matches in r9 were originally t3 − t1 and t5 − bye and are now replaced by
t3−bye and t5− t1. The bye of t3 was originally planned in r2, a round that has
not been visited before. For r2, the original matches t3− bye and t5− 2 and are
now replaced by t3 − t2 and t5 − bye. The match t3 − t2 was originally planned
to be played in r10, which was the initial round. After this last swap, the circle
is complete and the schedule is again part of the search space. However, the
resulting schedule is not part of the solution space because the atmost constraint
is violated by team 5 in round 10. A fourth consecutive home game exceeds the
upper bound of three games set on home stands or away trips.

3.4.1.5 Partial Swap Rounds RTTP
The last move operator, PartialSwapRoundsRTTP , swaps the opponents of
a team ti in round rx and round ry, just like its time-constrained counterpart
(Section 3.3.1.5). After swapping the opponents in rx and ry, an ejection chain
is called upon to restore the violations of C1, C2 and C3 (Section 2.1). The
connected component of t in rx and ry has to be found and all the teams in this
component must have their games swapped. It is possible that ti has a bye in
rx or ry. If ti has a bye in both rx and ry, the resulting schedule will not differ
from the original schedule since the connected component will only consist of
ti − 0 and ti − 0. Therefore this situation should be avoided. This move will
only change elements of the two rounds rx and ry.
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T/R 1 2 3 4 5 6 7 8 9 10 11
1 4 0 -2 -6 5 3 -4 2 -3 6 -5
2 3 -5 1 4 -6 0 5 -1 -4 -3 6
3 -2 0 -6 5 4 -1 6 -5 1 2 -4
4 -1 6 5 -2 -3 0 1 -6 2 -5 3
5 -6 2 -4 -3 -1 6 -2 3 0 4 1
6 5 -4 3 1 2 -5 -3 4 0 -1 -2

T/R 1 2 3 4 5 6 7 8 9 10 11
1 -3 0 -2 -6 5 3 -4 2 4 6 -5
2 -4 -5 1 4 -6 0 5 -1 3 -3 6
3 1 0 -6 5 4 -1 6 -5 -2 2 -4
4 2 6 5 -2 -3 0 1 -6 -1 -5 3
5 -6 2 -4 -3 -1 6 -2 3 0 4 1
6 5 -4 3 1 2 -5 -3 4 0 -1 -2

Table 15: Example PartialSwapRoundsRTTP (S, t1, r1, r9)

Swapping the games of t1 in r1 and r9 will lead to a schedule that does
not meet the requirements of a double round-robin tournament. The connected
component that contains the games of t1 in r1 and r9 (t1 − t4,t1 − t3) also
includes the arcs t4 − t2,t2 − t3 (Figure 4). It is necessary to swap the games
in r1 and r9 of all other nodes in this connected component, to be more precise
the matches of the other teams involved, t2, t3 and t4, should be swapped. The
result is a schedule that is part of the search space but not of the solution space.
The latter because the new schedule in infeasible since it violates the no repeat
constraint twice (in round 10 by team 2 and 3).

t1

t4

t2

t3

t1 − t4

t4 − t2t2 − t3

t3 − t1

Figure 4: Connected Component PartialSwapRoundsRTTP (S, t1, r1, r9)

3.4.2 Additional Move Operators

In addition to the adaptation of these five move operators (Anagnostopoulos et
al., 2006), Pérez-Cáceres and Riff (2015) proposed two new operators, that are
only applicable in a time-relaxed environment since they exploit the presence of
byes. Similar to the definition in this dissertation, Pérez-Cáceres and Riff define
an away pattern as a sequence of away games and potentially byes, without any
home game in between. The concept of an ‘extendable away group’ was defined
as "an away pattern that can be modified in order to increase the continuous
sequence size of non-character +".” Basically, any away trip with less than
three consecutive away games is an extendable away group since an extra away
game can be added to the group. When working with an RTTP with 1 bye per
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team and an upper limit on the length of away trips of 3, the set of extendable
away groups is {−, 0−,−0, 0− 0,−−, 0−−,−− 0,−0−} (with ‘−’ representing
an away game and ‘0’ representing a bye). A final move operator, ShiftMove,
was proposed by Chen, Kendall, and Vanden Berghe (2007).

3.4.2.1 Swap Bye Matches
The move operator SwapByeMatches proposed by Pérez-Cáceres and Riff
(2015) is only applicable for time-relaxed problems. First two teams, ti and tj ,
that have a bye in the same round are selected. The operator consists out of
swapping the byes for both teams with a round where they have a match-up.
This means that one of their byes originally was scheduled in round rx and one
of their match-ups in round ry (the choice for ry will be made randomly). This
will be changed to a bye in ry and a match-up in rx. This easy to implement
move operator can potentially extend an away pattern of a team. By
extending an away pattern of a team from 1 to 2 or from 2 to 3, more
consecutive away games will occur and this can reduce the total distance to be
travelled.

T/R 1 2 3 4 5 6 7
1 4 -3 -2 0 2 -4 3
2 3 -4 1 4 -1 -3 0
3 -2 1 -4 0 4 2 -1
4 -1 2 3 -2 -3 1 0

T/R 1 2 3 4 5 6 7
1 4 -3 -2 0 2 -4 3
2 3 0 1 4 -1 -3 -4
3 -2 1 -4 0 4 2 -1
4 -1 0 3 -2 -3 1 2

Table 16: Example SwapByeMatches(S, t2, t4)

3.4.2.2 Grouping Away Using Byes
This move operator focuses on extending an away trip of a team in order to
reduce its travelling distance. First a random extendable away group is selected.
For team t, where this away group belongs to, a round rx, where team t has
an away game (preferably one that is not part of an away trip) and that is not
covered by the extendable away group, is randomly selected. The next step
consists out of performing SwapRoundsRTTP (S, rx, ry), with ry the round
preceding or following the extendable away group. When the extendable away
group is both preceded and followed by a round, one of the two is randomly
chosen as round ry.
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T/R 1 2 3 4 5 6 7
1 4 0 -2 -3 2 -4 3
2 3 -4 1 4 -1 -3 0
3 -2 0 -4 1 4 2 -1
4 -1 2 3 -2 -3 1 0

T/R 1 2 3 4 5 6 7
1 4 3 -2 -3 2 -4 0
2 3 0 1 4 -1 -3 -4
3 -2 -1 -4 1 4 2 0
4 -1 0 3 -2 -3 1 2

Table 17: Example GroupingAwayUsingByes(S)

3.4.2.3 Shift Move
The move operator ShiftMove was proposed by Chen et al. (2007) and works
as follows. Randomly select rounds rx and ry (x < y), remove rx and insert
it at the position of round y, round ry and all rounds in between will now be
scheduled one round earlier.

T/R 1 2 3 4 5 6 7
1 4 0 -2 -3 2 -4 3
2 3 -4 1 4 -1 -3 0
3 -2 0 -4 1 4 2 -1
4 -1 2 3 -2 -3 1 0

T/R 1 2 3 4 5 6 7
1 4 -2 -3 2 0 -4 3
2 3 1 4 -1 -4 -3 0
3 -2 -4 1 4 0 2 -1
4 -1 3 2 -3 2 1 0

Table 18: Example ShiftMove(S, r2, r5)

3.4.3 Algorithms and Heuristics

In this section the most important algorithms and heuristics for the RTTP are
covered. Both the complete search method by Brandão and Pedroso (2014)
and the clonal selection algorithm by Pérez-Cáceres and Riff (2015) came up
with a series of new best solutions for an extensive amount of instances and are
therefore covered here.

3.4.3.1 Complete Search Method
A first RTTP algorithm, the Complete Search Method, was created by
Brandão and Pedroso (2014). This technique can be seen as the first heuristic
approach that can present solutions for an extensive amount of RTTP
instances. Brandão and Pedroso abandoned the brute force-method and came
up with an algorithmic approach for the problem. Their method contains
several tools: branch-and-bound, metaheuristics and dynamic programming.
The branch and bound method is used to generate solutions round by round.
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Metaheuristics are added to the algorithm to improve the bounds of the
solution. Dynamic programming on its turn is used to compute the
independent lower bounds quickly and efficiently after each iteration. The
operators used by the method are SwapHomesRTTP, SwapRoundsRTTP
and SwapTeamsRTTP (Section 3.4.1).

Generating schedules is done round by round, i.e. all games of round rx
must be fixed before moving on to round rx+1. By doing this, restrictions can
be detected much earlier and excess calculations are avoided. A branch will not
be further investigated if the sum of the current cost and the independent lower
bound of a candidate is higher than the upper bound. This independent lower
bound of all teams is the sum of the optimal schedule for every team, ignoring
any restrictions or validity constraints (Easton, Nemhauser, & Trick, 2002).
In order to calculate this independent lower bound, a dynamic programming
approach is used to determine the optimal distance for each team given their
location and the amount of matches they have already played.

Finally, hill-climbing metaheuristics are used to improve bounds. When a
local minimum is reached, random perturbations are applied until a new
minimum is reached or until a number of iterations is performed. Each
iteration consists of applying one of the move operators to the schedule and
checking if this generates a new better schedule. The three transformations (or
operators) do not cover the complete search space and as a consequence lead
to suboptimal solutions. In addition, some auxiliary data structures are stored
to check several constraints in a fast way. These data structures consist of the
current location, last opponent, number of byes used, number of consecutive
home or away games and a matrix to check if a game has already been
scheduled. Using the complete search method, competitive solutions are found
for NL4, NL6 and NL8 with up to 3 byes. A noteworthy finding is the longer
runtime of the RTTP in comparison with the TTP, supporting the claim from
Section 2.4.1 that the RTTP at least matches the complexity of the TTP.

3.4.3.2 Clonal Selection Algorithm
A second proposed algorithm, ‘CLONALG’, is created by Pérez-Cáceres and
Riff (2015) and has generated most of the best-known solutions for the
time-relaxed NLx instances 9,10. Pérez-Cáceres and Riff (2015) introduce new
components to the Clonal Selection Algorithm (CLONALG), an artificial
immune algorithm based on clonal selection principle. The new version of
CLONALG is called RAISTTP (artificial immune system for relaxed TTP). It
can handle hard constraints that define the search space and soft constraints.
The algorithm uses a penalty and fitness function to find solutions that satisfy
the constraints. The penalty function consists of the average distance among
teams and a penalty factor associated to the violation of a constraint. The
fitness function is defined by the total travelled distance of all teams and the
number of violated atmost and no repeat constraints in scheduling candidates.
To make changes to the candidate solution, the five basic transformations
proposed by Anagnostopoulos et al. (2006) are used. Two additional move
operators, ‘SwapByesMatches’ and ‘GroupingAwayUsingByes’ (cf. supra), are
proposed. These move operators are only applicable to the RTTP problem
since they focus on the byes of a team.

9https://mat.tepper.cmu.edu/TOURN/
10http://www.sportscheduling.ugent.be/RobinX/travelRepo.php
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The RAISTTP algorithm is constructed as follows. First a single
round-robin schedule is created using the polygon method, as described by
Ribeiro and Urrutia (2007). To obtain the double round-robin the single
round-robin is mirrored and venues are assigned randomly. After this initial
schedule is constructed, the algorithm will follow a loop until the maximum of
iterations is reached. An iteration starts with calculating the fitness of all
available solutions. Next, the clonation rate is calculated to determine which
percentage of the available solutions will be used and which percentage will be
discarded. The remaining solutions will have the best fitness values and are
therefore the closest to an optimal value. Next, a hypermutation is performed
on all remaining solutions using the seven transformations. This will generate
some new solutions that are potentially closer to an optimal objective function
value. Next, a diversity selection is performed in order to select the most
different solutions, in terms of home/away pattern, from the best ones. This
step avoids that algorithm gets stuck in a local optimum. The last step of each
iteration is generating some new solutions based on the existing ones.
Together they will form the group of solutions for the next iteration. When
the maximum number of iterations is reached, the best solution will be the
solution that has the highest fitness function value. This method performs well
compared to other methods but is not yet capable obtain a proven optimal
schedule for instances consisting out of more than 10 teams.

3.5 Additional Readings
This section is used to cover some interesting additional readings that not
necessarily belong to the field of (R)TTP. However, findings from these
readings could be interesting to apply to the time-relaxed travelling
tournament problem.

According to Schönberger et al. (2004) the travelling tournament problem
(TTP) can be defined as ‘temporally constrained’. Meaning that the number
of matchdays is exactly enough to set up all fixtures. In the category of
‘temporally relaxed’, Schönberger et al. (2004) make a distinction between two
different types. The first type of ‘temporally relaxed’ problems are those who
have an extensive amount of rounds or timeslots and accordingly a
considerable number of byes. An example of such problems are the scheduling
problems in non-commercial sports leagues. Various methods have been
established to solve these optimisation problems efficiently, e.g. combination of
the tabu search and transportation problems (Van Bulck et al., 2019),the
memetic algorithm (Schönberger et al., 2004; Van Bulck & Goossens, 2020) or
a resource based approach (Knust, 2010).

The second type of ‘temporally relaxed’ problems include the problem
studied in this master’s dissertation. This second type is defined as the relaxed
travelling tournament problem of competitions with 4 to 20 teams with up to
3 byes. This problem type can be seen as a limitation of the first type, where
the number of playing rounds or timeslots are reduced to an almost absolute
minimum.

A special remark should be made regarding the objectives of both types of
problems. The first type with an excess of byes focuses primarily upon the rest
days between fixtures of teams and a balanced assignment for all teams.
Suksompong (2016) identifies three issues that should be handled when
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scheduling such a tournament. First, periods with a high intensity (i.e. a lot of
games in a short amount of time) or periods with low intensity can appear if
the rest time between games has a high variation. Second, a difference in the
rest time of 2 teams before their match-up can have an influence on the
outcome of the game. A longer rest period could potentially create a positive
bias for a team. Third, the difference in the number of games played per team
can have an impact on the outlook of the classification after each time slot.
‘Temporally relaxed’ problems of the second type with few byes primarily
focus on the total distance per team, especially in professional competitions.
For most non-professional competitions, the distance has less impact on the
schedule since most teams travel home after each game (Schönberger et al.,
2004).

Van Bulck et al. (2019) proposed a new approach for a non-professional
indoor football league scheduling, a time-relaxed competition with a large
number of byes. Therefore, this problem could perhaps be compared to a
RTTP problem with a large K and findings from this research can be used in
RTTP problems where the value K is rather limited. Their approach is
innovative since it implements venue and team availability into the scheduling.

Each team can present a set of timeslots where they are not able to play
a game and a set of timeslots where they can play a home game. Based on
this input data, the program strives for finding the best suited solution for each
team. The method implements a heuristic approach, based on the principles of
tabu search. For each non-tabu team a new transportation problem is solved
to determine an optimal sequence of home games for this team and the optimal
timeslots to play these games. After the optimisation is done for a team, this
team is added to the tabu list. Once all teams are added to the tabu list, a
new iteration can start. This new insight could be very interesting when the
current RTTP is extended with availability constraints to closer match realistic
scenarios. However, this approach is hard to implement on the current RTTP
problem. Since this dissertation only works with a limited amount of byes
(K ≤ 3), not enough timeslots are available to change the match-ups of the
different teams. Therefore, solving a transportation problem per team would
probably not have a considerable impact on the solution of an RTTP instance.

Schönberger et al. (2004) created the Memetic Algorithm (MA) to solve
‘temporally relaxed’ problems of the first type. The Memetic Algorithm uses
the fundamentals of Genetic Algorithms (GA) and adapts them to create
solutions for non-commercial sports competitions. The results prove to be
excellent for competitions with a huge number of available timeslots. When
the number decreases, the search for an optimal solution becomes harder to
almost impossible. In this master’s dissertation, the focus is on RTTP with up
to 3 byes, which can be seen as a special case of the problem studied by
Schönberger et al. (2004). Their method, however, minimises other objectives
while coping with availability constraints and is therefore less useful to solve
the RTTP problem which limits the additional timeslots to an almost absolute
minimum.

Another finding is the limited capability of genetic algorithms to solve both
TTP and RTTP problems. This has been stipulated by Eiben and Ruttkay
(1997) who claim that the blindness of genetic operators represents a major
obstacle of applying Genetic Algorithms. The operators frequently introduce
new constraint violations leading to an inferior mean solution quality. In turn,
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this lowers the selection pressure over the course of the run. In the end,
Genetic Algorithms have the tendency to converge prematurely without
finding a solution of reasonable quality (Eiben & Ruttkay, 1997).

The next example of a ‘temporally relaxed’ problem is the non-professional
table tennis league in Germany, investigated by Knust (2010). Here a special
case of the multi-mode resource-constrained project scheduling problem
(MRCPSP) with time-dependent resource profiles and partially renewable
resources is created. In order to obtain a highly qualitative schedule, the
problem is split into 2 subproblems. The first subproblem balances the
home-away assignments of all teams. The second subproblem determines a
feasible schedule for all matches in correspondence with the home-away
assignments of the first subproblem. This procedure is repeated in multiple
iterations with the principles of local search. To solve the second subproblem a
genetic algorithm created for RCPSP problems by Hartmann (1998) is adapted
to the specials needs of this subproblem in order for it to run more efficiently.

The construction of timetables can also be done using an adaptive large
neighbourhood search (ALNS) as proposed by Van Bulck and Goossens (2020).
Two steps should be covered each iteration. First a part of the schedule should
be fixed, the other part can then be changed and optimised. The selection
can be time- or team-based, where respectively a number of complete timeslots
or a number of complete team schedules can be changed. The second stage
consists of optimising the variable cells using IP . The new solution will be
accepted in a similar way as new solutions are accepted in TTSA. This means
that a new solution will always be accepted when the objective function value
is improved or will be accepted with a certain probability when this is not the
case. Next to ALNS, Van Bulck and Goossens (2020) suggest a second method
for constructing schedules, named Memetic Algorithm. This approach can be
compared to the one proposed by Schönberger et al. (2004) and will therefore
not be further discussed here.

Another finding involves break minimisation and maximisation. The RTTP
problem covered in this dissertation tries to maximise the number of breaks
as mentioned in Section 2.2, hereby minimising the number of trips which in
turn could lead to a lower travelling distance. Some, however, try to reach
the opposite, break minimisation or a maximum of trips for each team. Régin
(2001) implements constraint programming in order to minimise the number of
breaks in a sports schedule. Trick (2000) also makes use of break minimisation
in his schedule-then-break approach. This break minimisation can be useful for
the RTTP problem. It has been shown by Miyashiro and Matsui (2005) that
an optimal solution of the break minimisation problem can be constructed from
that of the maximisation problem and vice versa. This means that a schedule
with a minimum of 2n − 2 breaks for 2n teams is essentially equivalent to a
schedule with a maximum of breaks (Miyashiro & Matsui, 2005). This break
maximisation schedule will return an optimal solution for RTTP instances with
a constant distance (distance between all teams is the same) as shown by Suzuka,
Miyashiro, Yoshise, and Matsui (2007).

Additionally, it is interesting to study the some of the mechanics behind
the ALNS method in more detail, mainly the implementation of a dynamically
adapting selection mechanism. Pisinger and Ropke (2010) use this kind of
selection mechanism in order to determine which destroy/repair methods will
be selected. However, it might be interesting to apply a similar method to
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select between different move operators. This dynamic selection method will
be described in detail in the next paragraph.

Each destroy/repair mechanism is assigned a weight that determines how
often each particular method will be selected during the algorithm. The weights
are adjusted dynamically to let the algorithm adapt to the instance at hand
and the state of the search. Initially all methods are assigned the same weight
ρ. The ratio of the weight of a method to the sum of all weights represents
the probability that a method will be selected. Now the weights are adjusted
dynamically based on the recorded performance of the corresponding method.
Whenever the ALNS heuristic is completed, a score ψ is assigned based on
the performance of the method. For example, the value of ψ is different if
the method returns a new global best solution as opposed to when the method
returns a solution that will only be accepted. The new weight of a destroy/repair
method is then calculated using the following formula:

ρ = λρ+ (1− λ)ψ
where λ ∈ [0, 1] represents the decay parameter. λ how sensitive the weights are
to differences in the performance of the different methods.

Another interesting reading was the doctoral dissertation of Bao (2009) on
time-relaxed round-robin tournaments and the NBA scheduling problem. This
dissertation covers integer and constraint programming formulations in a time-
relaxed environment. Even though formulations specifically for the K-RTTP are
not provided, this dissertation of Bao (2009) served as an introduction in integer
en constraint programming in time-relaxed timetabling. Finally, it is important
to highlight the competitiveness of timetabling problems, a statement that is
confirmed by the existence of international timetabling competitions11. While
the competitive nature of this field makes it more appealing for researchers, it
introduces problems related to comparison of different algorithms and heuristics.
Schaerf and Di Gaspero (2006) state that in order to compare two algorithms
it is necessary to specify the used instances as well as the compared features
(e.g. quality of the objective function, speed,. . . ). While this might ensure
reproducibility, researchers can still take advantage of the so-called Mongolian
horde approach, where they run as many trials as they can and report only the
best of them (Schaerf & Di Gaspero, 2006).

3.6 Overview of Past Research
In order to provide a broad view on the current state of the research on (R)TTP,
this final section of the literature overview delivers a short summary of the
methods and results of past research. Also, some additional information is
provided on the different instances that exist for the (R)TTP.

3.6.1 Summary of Applied Moves

Table 19 covers a short summary of all the used move operators by the previously
presented solution algorithms.

A special remark should be made on the "Simulated annealing with hill
climb" method created by Lim, Rodrigues, and Zhang (2006). This method
only has one move operator called ’Local jump’, exchanging 2 complementary
matches in 2 rounds. This move operator replaces the first five operators
mentioned in Table 19.

11https://www.itc2019.org
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3.6.2 Problem Instances

Several different problem instance classes were defined for the (R)TTP. In this
section all seven instance classes mentioned on Trick’s Website12 are covered.
The main focus of this dissertation will lie on the NL instances, hence their
detailed description in this section, since these are most frequently covered in
previous research. However, some experimental results for other instances are
also included in Section 5.

The NL-instances are proposed to represent the scheduling of the National
League in Major League Baseball by Easton et al. (2001). Even though several
changes have been made to the composition of the National League, this instance
class remains as it was originally defined. The distance between two teams is
the "air distance" between the city centers of the cities these teams are located
in. The National League consists out of 16 teams, however smaller instances of
the problem can be generated by limiting the instance to the first x teams. All
NLx instances are therefore a part of the following set {NL4, NL6, NL8, NL10,
NL12, NL14, NL16}. The list of participating teams can be found in Table
20, in that prescribed order. Consequently, NL4 will represent a competition
between the Atlanta Braves, the New York Mets, the Philadelphia Phillies and
the Montreal Expos.

1 ATL Atlanta Braves 9 STL St. Louis Cardinals
2 NYM New York Mets 10 MIL Milwaukee Brewers
3 PHI Philadelphia Phillies 11 HOU Houston Astros
4 MON Montreal Expos 12 COL Colorado Rockies
5 FLA Florida Marlins 13 SF San Francisco Giants
6 PIT Pittsburgh Pirates 14 SD San Diego Padres
7 CIN Cincinnati Reds 15 LA Los Angeles Dodgers
8 CHI Chicago Cubs 16 ARI Arizona Diamondbacks

Table 20: Teams NL-instance Class

Similar to the NL-instances, three other instance classes of this problem
represent real life competitions. The NFL-instances are based on the air distance
between the city centers from NFL teams. An important difference with the NL-
instances is that the NFL-instances facilitate problems with up to 32 teams13.
Another set of instances, the SUPER-instances, are derived from the rugby
union league Super 14 (Uthus et al., 2009b). An important characteristic of this
class is its geographical difference with the other classes. The SUPER-instances
include teams that are located in Australia, New Zealand and South-Africa, so
the competition consists out of three clusters. In the NL-instances the teams
are more evenly geographically distributed. Finally, the BRA-instance class,
proposed by Urrutia and Ribeiro (2004), covers the 24 teams in the main division
of the 2003 edition of the Brazilian soccer championship.

Two other instances are defined from a more theoretical perspective. A first
theoretical class is the CON-instance class, in this class the distance between
any two venues is equal. For these instances, Urrutia and Ribeiro (2004) show
that distance minimisation is equivalent with break maximisation. The second

12https://mat.gsia.cmu.edu/TOURN/
13http://www.sportscheduling.ugent.be/RobinX/travelRepo.php
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theoretical class is the CIRC-instance class, where all venues are located on
a circle. These instances are proposed since solving the TSP for a circular
distance matrix is trivial. However, solving the TTP for the CIRC-instance
class still remains challenging. A last instance class, the GAL-instance class,
was proposed by Uthus et al. (2012). The galaxy-instances are different since
they cover distances in a 3D-space that includes Earth and 39 other exoplanets.
This 3D-space makes the problem set even more challenging. Additionally, this
set allows for instances up to 40 teams.

3.6.3 Experimental Results

Most researched methods have developed a solution for some NLx instances,
these instances can therefore be used to compare the performance of the different
methods. A summary can be found in Table 22. A first look at Table 22 learns
that most methods are able to find an optimal solution for competitions with up
to 8 teams. Finding an optimal solution for competitions with 10 or more teams
is clearly a lot harder for all methods. The explanation for this phenomenon
is simply that more teams imply more options and thus more efficient methods
will excel here. The best performing method is ‘Population Based Simulated
Annealing’ by Van Hentenryck and Vergados (2007) since it has the current
best solution for NL12, NL14 and NL16. This method is clearly capable of
constructing a good solution for instances with a high complexity, which is an
important characteristic of the RTTP. Based on these results, ‘Population Based
Simulated Annealing’ seems to be the most promising method to use as a basis
for this dissertation.

The second set of results are shown in Table 21 and have been created for
the RTTP instances. Until now only Brandão and Pedroso (2014) and Pérez-
Cáceres and Riff (2015) have presented new solutions for the RTTP instances.
A summary of their results on the NLx instances can be found in Table 21.
The table shows the best solutions found up until this moment for RTTP NLx
instances with 0, 1, 2 or 3 byes for every team. All results for the NL4, NL6
and NL8 are given by Brandão and Pedroso (2014). For the bigger instances,
solutions are calculated by Pérez-Cáceres and Riff (2015). Note that not all of
these results are proven to be optimal.

K = 0 K = 1 K = 2 K = 3 K > 0 Solution found by
NL4 8276 8160 8160 8044 (Brandão & Pedroso, 2014)
NL6 23916 23124 22557 22557 (Brandão & Pedroso, 2014)
NL8 39721 39128 38761 38670 (Brandão & Pedroso, 2014)
NL10 59436 59425 59373 59582 (Pérez-Cáceres & Riff, 2015)
NL12 110729 117680 119067 116082 (Pérez-Cáceres & Riff, 2015)
NL14 188728 209616 209317 205690 (Pérez-Cáceres & Riff, 2015)
NL16 261687 307125 300188 297426 (Pérez-Cáceres & Riff, 2015)

Table 21: Current RTTP Solutions
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4 Methodology

In this thesis, the time-relaxed travelling tournament problem is approached
from two different viewpoints. Section 4.1 approaches the problem from a
heuristic point of view and covers the RPBSA (time-relaxed population based
simulated annealing) heuristic. In Section 4.2, two exact optimisation methods
are presented for the RTTP by means of constraint programming models.

4.1 Heuristic Approach for RTTP: RPBSA
The Population-Based Simulated Annealing method (PBSA) (Van Hentenryck
& Vergados, 2007) leverages TTSA (Anagnostopoulos et al., 2006), a simulated
annealing algorithm for the TTP. This dissertation focuses on adapting the
TTSA to enable its usage in a time-relaxed environment, this adapted algorithm
will be called RTTSA . Since experimental findings show that PBSA delivers
added value, it is appended as an additional step together with the RTTSA.
This is done to obtain comparable results with the current best known solutions
for the RTTP-instances (Brandão & Pedroso, 2014; Pérez-Cáceres & Riff, 2015).
In the rest of this dissertation, the term RPBSA is used to refer to the PBSA
method with RTTSA as underlying simulated annealing algorithm.

While substantial effort is undertaken to adapt the TTSA algorithm to a
time-relaxed setting, the components of PBSA are implemented as-is. Indeed,
the framework of the PBSA algorithm makes no assumptions on the underlying
simulated annealing algorithm, and thus needs no adaption when applying the
RTTSA algorithm instead of the TTSA algorithm. It is sufficient to say that
PBSA is used to enhance the performance of RTTSA. This section will first
discuss the fitness evaluation of a given schedule (Section 4.1.1) and will then
deliver an overview of the main concepts of RTTSA (Section 4.1.2). The next
part of this section covers a short overview on the implementation of RPBSA
(Section 4.1.3) and the generation of an initial schedule (Section 4.1.4). Finally,
the different adaptations made to the TTSA algorithm are highlighted (Section
4.1.5). A more detailed overview of TTSA can be found in previous literature
(Anagnostopoulos et al., 2006).

4.1.1 Fitness Evaluation

Since the ability to compare the fitness of two different schedules is an essential
element of the model used in this master’s dissertation, this subject requires
some additional clarification first. In order to define the fitness value of any
given schedule, a distinction between essential and non-essential constraints has
been made. To improve clarity the five constraints mentioned in Section 2 are
repeated here.

• C1: Each team plays exactly two times against all other teams

• C2: Each team plays exactly once at the home venue of all other teams

• C3: Each team has a total of K byes

• C4: The length of all home stands and away trips should range from length
L to length U (“atmost constraint”)

• C5: Two teams should not play each other twice in two consecutive rounds
(“norepeat constraint”) 39



The first three constraints (C1, C2, C3) remain essential constraints, i.e.
no schedules that violate these constraints can be returned by the algorithm.
Violating one or more of these constraints would no longer return a schedule of
a DRR with K byes per team. Therefore, schedules that violate one or more of
the first three constraints are beyond the scope of the RTTP. For the other two
constraints (C4, C5), the story is different. While schedules that violate C4, C5,
or both do not correspond to feasible solutions, these schedules satisfy the basic
constraints of a DRR with K byes per team i.e. the algorithm can potentially
return schedules that violate these two constraints.

In this dissertation, different degrees of feasibility are defined according to
the number of violations (nbv) a schedule has. Feasible schedules comply with all
constraints and have zero violations. If a schedule has at least one violation, this
schedule will be called an infeasible schedule. However, part of the infeasible
schedules will only have a limited number of violations, these are the semi-
feasible schedules. These semi-feasible schedules are explicitly defined since for
these schedules the feasibility can potentially be restored by means of a repair
mechanism (cf. Section 4.1.5.3). Each time a single team violates constraint
C4 or C5, one violation is counted. The schedule represented in Table 23 is an
infeasible schedule with seven violations, since it violates C4 three times and
C5 four times. Note, however, that the sequence ‘-4,0,4’ for team 1 does not
violate C5, since the games against the same opponent are separated by an
intermediary bye. This implementation of non-essential or soft constraints may
facilitate the search since the ability of exploring infeasible regions appears to
be essential for the success of simulated annealing on the travelling tournament
problem (Anagnostopoulos et al., 2006).

T/R 1 2 3 4 5 6 7 8 9 10 11
1 3 -2 -5 -6 -4 0 4 2 5 -3 6
2 6 1 0 -4 -5 -3 3 -1 4 6 5
3 -1 -5 -4 5 6 2 -2 0 -6 1 4
4 -5 6 3 2 1 -6 -1 0 -2 5 -3
5 4 3 1 -3 2 0 6 -6 -1 -4 -2
6 -2 -4 0 1 -3 4 -5 5 3 -2 -1

Table 23: NL4 3-RTTP Schedule

In this dissertation, the objective function formula proposed by
Anagnostopoulos et al. (2006) is utilized.

C(S) =

{
totalDistance(S) if S is feasible√
totalDistance(S)2 + [w ∗ f(nbv(S))]2 , otherwise

For more details on this objective function, the reader is referred to Section
3.3.2.2 (or previous literature (Anagnostopoulos et al., 2006)).
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4.1.2 Main Concepts RTTSA

Time-Relaxed Travelling Tournament Simulated Annealing (RTTSA) uses the
same concepts and is structured in a similar way as its time-constrained
counterpart (TTSA). This section will briefly cover these concepts to provide
clarity on where the proposed adaptations will fit in.

RTTSA aims to perform a search in the neighbourhood of a given schedule
in order to obtain a schedule with a better objective function value. The
neighbourhood of a schedule S can be defined as the set of all possible
schedules S′ that can be obtained by performing one of the nine defined move
operators (Section 3.4). The concepts of the first five move operators
(SwapHomes, SwapRounds, SwapTeams, PartialSwapRounds,
PartialSwapTeams) are already implemented in the TTSA algorithm for the
time-constrained TTP, but required some adaptations in order to cope with
byes (Section 3.4.1). Two other move operators (GroupingAwayUsingByes,
SwapByes) are obtained from previous work on the RTTP (Pérez-Cáceres &
Riff, 2015). Finally, building on top of the existing move operators, two new
operators are proposed (ExtendAwayTrip, FlipSchedule).

In order to perform the neighbourhood search of a solution, a simulated
annealing metaheuristic is used (Kirkpatrick et al., 1983). Pseudocode for the
RTTSA algorithm is shown in Algorithm 1. Line 7 to line 43 make clear that
the main structure of the proposed RTTSA algorithm is in line with a standard
simulated annealing meta-heuristic. For a given temperature T , the algorithm
selects one of the moves and generates the schedule S′. If S′ has at least one
violation and at most the number of allowed violations (in this case, S′ is called
semi-feasible) the repairSchedule method (Section 4.1.5.3) is applied in order to
try restore the feasibility of schedule S′.

Next, the algorithm determines if the objective function value (cost) of the,
potentially repaired, schedule S′ is lower than the cost of schedule S or is lower
than the cost of the best feasible or infeasible schedule encountered at that point
in the algorithm. If this is the case, TTSA applies the move, if not, the move
still has a certain probability of being accepted. Note that strictly infeasible
schedules (nbv > nbvAllowed) also can be accepted. This is done to ensure that
infeasible regions are also covered during the search. However, when schedule S′
is entirely equal to schedule S in terms of both distance and scheduled matches,
the move will always be rejected (see Section 4.1.5.3 for more details on this
scenario). Whenever a move gets accepted, intermediary variables nbf and nbi
(new best feasible and new best infeasible) are used to indicate the value of
the best feasible and best infeasible schedule at that time. The probability of
accepting a non-improving move should decrease over time, this is implemented
by adding the variable counter, which is incremented for every non-improving
move and reset to zero when the best solution (feasible or infeasible) found so
far has been improved. When counter reaches a predetermined upper limit
the temperature T is updated to βT , (constant β < 1) and counter is reset to
zero. With this step we enter a new phase of the algorithm. This phase is then
repeated a predetermined number of times.

Some other concepts that were already applied in TTSA are the objective
function mentioned earlier, the strategy for strategic oscillation and the usage
of reheats. These concepts have not been adapted to be used in a time-relaxed
environment. Consequently, the reader is referred to previous literature
(Anagnostopoulos et al., 2006) for a detailed overview of these concepts.
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Algorithm 1 RTTSA

1: procedure RTTSA(SRPBSA)
2: S ← SRPBSA
3: bestFeasible←∞, nbf ←∞, bestInfeasible←∞, nbi←∞
4: reheat← 0, counter ← 0
5: while reheat ≤ maxR do
6: phase← 0
7: while phase ≤ maxP do
8: counter ← 0
9: while counter ≤ maxC do

10: Move← selectMove
11: S′ ←Move(S)
12: if 0 < nbv(S′) ≤ nbvAllowed then
13: S′ ← repairSchedule(S′)

14: end if
15: if C(S′) < C(S) or

nbv(S′) = 0 and C(S′) < bestFeasible or
nbv(S′) > 0 and C(S′) < bestInfeasible then

16: accept← true
17: else if ∆C = 0 and S′ = S then . ∆C = C(S′)− C(S)
18: accept← false
19: else
20: accept← true with probability exp(−∆C/T )

false otherwise
21: end if
22: if accept then
23: S ← S′

24: if nbv(S) = 0 then
25: nbf ← min(C(S), bestFeasible)
26: else
27: nbi← min(C(S), bestInfeasible)

28: end if
29: if nbf < bestFeasible or nbi < bestInfeasible then
30: reheat← 0, counter ← 0, phase← 0
31: bestTemperature← T
32: bestFeasible← nbf
33: bestInfeasible← nbi
34: if nbv(S) = 0 then
35: w ← w/θ
36: else
37: w ← w ∗ θ
38: end if
39: else
40: counter + +

41: end if
42: end if
43: end while
44: phase+ +
45: T ← βT

46: end while
47: reheat+ +
48: T ← 2 ∗ bestTemperature
49: end while



4.1.3 Implementation of RPBSA

In this dissertation, RTTSA is an intermediary step in the RPBSA algorithm.
Since no adaptations have been made to the PBSA framework, a short
overview of its implementation in this dissertation is sufficient. Figure 5
clarifies the mechanics of RPBSA. The initial solution (S0), created using the
5.875-approximation method (Section 4.1.4), is used as a starting point. This
initial schedule is copied a number of times (in the example 8 times) in order
to generate a population. The next population is then obtained by applying
RTTSA-algorithm to each member. This will result in a set of new schedules
of which the best few are selected as the elite runs (in the example the best 3
are selected). These few elite runs will become member of the next population
and the remaining slots of that population are filled with copies of the current
best solution (indicated with a square in the example). Then the
RTTSA-algorithm is applied once again. This is repeated during a
predetermined number of phases. For a more detailed overview of the
PBSA-algorithm, the reader is referred to previous literature (Van Hentenryck
& Vergados, 2007).

S0 S0 S0 S0 S0 S0 S0 S0

S1,1 S2,1 S3,1 S4,1 S5,1 S6,1 S7,1 S8,1S∗3,1 S∗5,1 S∗7,1
t

(a) After first wave
S0 S0 S0 S0 S0 S0 S0 S0

S∗3,1 S∗3,1 S∗3,1 S∗3,1 S∗3,1S∗3,1 S∗5,1 S∗7,1
t

(b) Before second wave
S0 S0 S0 S0 S0 S0 S0 S0

S1,2 S2,2 S3,2 S4,2 S5,2 S6,2 S7,2 S8,2S∗2,2 S∗3,2 S∗6,2

S∗3,1 S∗3,1 S∗3,1 S∗3,1 S∗3,1S∗3,1 S∗5,1 S∗7,1
t

2t

(c) After second wave
S0 S0 S0 S0 S0 S0 S0 S0

S∗2,2 S∗2,2 S∗2,2 S∗2,2 S∗2,2 S∗2,2 S∗2,2 S∗2,2S∗2,2 S∗3,2 S∗6,2

S∗3,1 S∗3,1 S∗3,1 S∗3,1 S∗3,1S∗3,1 S∗5,1 S∗7,1
t

2t

(d) Before third wave

(Based on Van Hentenryck and Vergados (2007))

Figure 5: Illustration RPBSA (Population Size 8 and 3 Elite) Runs
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4.1.4 Initial Schedule

An initial schedule for the K-RTTP of n teams is constructed in two different
steps. First the 5.875-approximation algorithm for the Travelling Tournament
Problem, proposed by Westphal and Noparlik (2014), is used to generate a
feasible schedule for a TTP instance of n teams (e.g. Table 24). While, Westphal
and Noparlik propose their approximation algorithm for U ≥ 4 and n ≥ 6, their
research clearly states how their method should be applied for other values
of U and n. For U = 3, the orientation of certain arcs should be adapted
(cf. Figure 6). In this case, the method guarantees an approximation ratio of
5/2 + 12/(n− 1), which is not higher than 4.9 for any n ≥ 6.

1 11 2 12 3 13 4 14 5

19 9 18 8 17 7 16 6 15

10 20

11 2 12 3 13 4 14 5 15

10 19 9 18 8 17 7 16 6

1 20

(cf. Westphal and Noparlik (2014))

Figure 6: Construction Round 1 and 2 (n = 20, U = 3)

The resulting time-constrained schedule is turned into a time-relaxed
schedule by inserting K columns with byes (or zeros) in the last K rounds of
the schedule, with K being the number of byes. This will result in an extended
schedule where the last 2K rounds have the following pattern: round filled
with matches, round filled with byes, round filled with matches, etc. Since
some move operators are not able to shift byes, an additional step is added to
make sure that all rounds at least have one match to be played. This is done
by swapping x matches (x ∈ [1, n/2]) for every pair of a round full of matches
and the following round full of byes. On average half of the matches of a round
will be swapped, resulting in 2 consecutive rounds with half of teams playing
in the first round and bye in the second and half of the teams having the
opposite schedule. The sequence of matches remains unchanged and therefore
the objective function value of the time-constrained schedule will be preserved.
All this results in an initial schedule for the K-RTTP of n teams (e.g. Table
25, n = 4,K = 2).
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T/R 1 2 3 4 5 6
1 2 3 -4 -3 4 -2
2 -1 4 -3 -4 3 1
3 4 -1 2 1 -2 -4
4 -3 -2 1 2 -1 3

Table 24: Initial NL4
TTP Schedule

T/R 1 2 3 4 5 6 7 8
1 2 3 -4 -3 4 0 0 -2
2 -1 4 -3 -4 0 3 0 1
3 4 -1 2 1 0 -2 -4 0
4 -3 -2 1 2 -1 0 3 0

Table 25: Initial NL4 RTTP withK = 2
Schedule

4.1.5 Adaptations to TTSA

This section highlights the adaptations that have been made to the TTSA
algorithm. Some adaptations exploit the presence of byes and are only directly
applicable for research on the RTTP. The changed move operators and the
addition of a repair mechanism for semi-feasible instances, are examples of
this. The decision to change the current uniform probability distribution of
the move operators to a dynamic probability distribution, can be applied in
both the time-relaxed and the time-constrained environment. This section will
first discuss the adapted move operators and the new probability distribution.
Finally the reparation of semi-feasible schedules is discussed.

4.1.5.1 Move Operators

4.1.5.1.1 Move operators TTSA and CLONALG
SwapHomes, SwapRounds, SwapTeams, PartialSwapRounds and finally
the PartialSwapTeams-operator are the five move operators used in the
TTSA algorithm. These require some adaptation in order to cope with a
time-relaxed environment. The main objective is to avoid that the algorithm
stops running when it encounters a bye. The necessary adaptations were
already provided by Pérez-Cáceres and Riff (2015). These moves can change
the candidate solution in many different ways, but none of them take the
travelling distance explicitly into account. To guide the algorithm to better
solutions in terms of total travelling distance, the two new moves introduced in
the Clonal Selection Algorithm (Pérez-Cáceres & Riff, 2015) are also included,
these moves are called SwapByes and GroupingAwayUsingByes. A detailed
description of these seven move operators can be found in Section 3.4 and in
previously mentioned literature.

4.1.5.1.2 New Move Operators
The two new move operators are FlipSchedule and ExtendAwayTrip.
FlipSchedule is a drastic move operator that aims to radically change the
candidate solution. This diversifying operator facilitates moving away from a
local optimum in order to find a global optimum. ExtendAwayTrip slightly
changes the GroupingAwayUsingByes operator by always adapting the
schedule of the team that has to travel the most. This is implemented to
increase the equitability of the schedules of all teams.
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Flip Schedule
The objective function of a schedule C(S) is mainly determined by the sequence
of games all teams play. Inverting a complete schedule has no impact on the
value of the objective function. However, inverting only part of the schedule
potentially improves the objective function, since changes occur at the ‘edges’
of the inverted region. The move operator FlipSchedule is both applicable for
TTP and RTTP instances. It can be seen as a series of SwapRoundsRTTP
operators and as an adaptation of the ShiftMove operator created by Chen
et al. (2007). The method starts by randomly selecting 2 rounds, ra and rb
(ra < rb). Hereafter, the positions of ra and rb and all intermediate rounds are
inverted. This means that ra will become rb, ra + 1 → rb − 1, ra + 2 → rb − 2,
etc. and finally rb will become ra. The pseudo code for this move operator is
given in Algorithm 2. Table 26 provides an example of this move operator.
The resulting schedule is not feasible since the no-repeat constraint is violated
4 times, in r3 for t1 and t3, as well as in r7 for t1 and t4.

Algorithm 2 Flip Schedule

1: procedure Flip Schedule(S)
2: ra < rb|r ∈ R
3: for m = 0, . . . , b rb−ra2 c do
4: S∗ ← SwapRounds(ra +m, rb −m)
5: end for
6: return S∗

T/R 1 2 3 4 5 6 7 8 9
1 2 3 -4 0 0 0 -3 4 -2
2 -1 4 -3 -4 3 0 0 0 1
3 4 -1 2 0 -2 -4 1 0 0
4 -3 -2 1 2 0 3 0 -1 0

T/R 1 2 3 4 5 6 7 8 9
1 2 3 -3 0 0 0 -4 4 -2
2 -1 4 0 0 3 -4 -3 0 1
3 4 -1 1 -4 -2 0 2 0 0
4 -3 -2 0 3 0 2 1 -1 0

Table 26: Example FlipSchedule(S, r3, r7)

Extend Away Trip
The move operator ExtendAwayTrip combines an away trip of length 1 with
one of length 2. First, the operator orders the teams in increasing order of the
distance travelled. Second, it selects the first team having away trip of length
1, followed, after one or more home games (and possibly byes), by an away
trip of length 2 (or vice versa). If such a team is found, 4 new schedules will be
generated. If this team has multiple away trips of length 1 or 2, the rounds are
selected randomly. The first schedule is generated by applying the move
operator PartialSwapRoundsRTTP . The single away match will be swapped
with the home match preceding the away trip of length 2. The second schedule
is the result of a swap between the same matches but by using the move
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operator SwapRoundsRTTP . The third generated schedule again makes use
of PartialSwapRoundsRTTP and swaps the single away match with the first
home game following the 2 consecutive away games. The fourth and last
schedule also inserts a single away game after the away trip op length 2 using
SwapRoundsRTTP . In case the away trip of length 2 starts at round 0, only
schedules 3 and 4 are generated. The opposite happens if the away trip of
length 2 ends in the last round of the schedule, then the single away game is
only insert in the round preceding the 2 consecutive away games. Finally, for
all new schedules the cost is determined. As shown in Algorithm 3, the best
schedule in terms of cost will be returned.

Algorithm 3 Extend Away Trip

1: procedure Extend Away Trip(S)
2: T ∗ ← Team With Largest Distance
3: ra ← Round single away game
4: rb ← Round home game preceding away trip with length 2
5: rc ← Round home game succeeding away trip with length 2
6: if ra, rb, rc ∈ R then
7: S1 ← PartialSwapRoundsRTTP (T, ra, rb)
8: S2 ← SwapRoundsRTTP (ra, rb)
9: S3 ← PartialSwapRoundsRTTP (T, ra, rc)

10: S4 ← SwapRoundsRTTP (ra, rc)

11: end if
12: S∗ ← min(S1, S2, S3, S4)
13: return S∗

An example of how this move operator works is given in Table 27. First
the team with the largest distance in the initial schedule is selected, in this
case team 4. The selected single away game of team 4 takes place in round
1 and the selected away trip of length 2 takes place during rounds 4 and 5.
Hereafter, four new schedules are generated by swapping matches in rounds 1
and 3 twice using PartialsSwapRoundsRTTP and twice in rounds 1 and 6
using SwapRoundsRTTP . The cheapest schedule turns out to be the schedule
generated using SwapRoundsRTTP on rounds 1 and 6. This results in an away
trip of length 3 for team 4 in rounds 3 to 5.

T/R 1 2 3 4 5 6 7 8 9 10 11
1 -5 0 5 4 -2 3 2 -4 -6 -3 6
2 4 0 -6 -5 1 6 -1 3 5 -4 -3
3 -6 0 -4 6 -5 -1 5 -2 4 1 2
4 -2 0 3 -1 -6 5 6 1 -3 2 -5
5 1 -6 -1 2 3 -4 -3 0 -2 6 4
6 3 5 2 -3 4 -2 -4 0 1 -5 -1

T/R 1 2 3 4 5 6 7 8 9 10 11
1 3 0 5 4 -2 -5 2 -4 -6 -3 6
2 6 0 -6 -5 1 4 -1 3 5 -4 -3
3 -1 0 -4 6 -5 -6 5 -2 4 1 2
4 5 0 3 -1 -6 -2 6 1 -3 2 -5
5 -4 -6 -1 2 3 1 -3 0 -2 6 4
6 -2 5 2 -3 4 3 -4 0 1 -5 -1

Table 27: Example ExtendAwayTrip(S)



4.1.5.2 Adaptation Select Move
In the TTSA algorithm, the selection of the move operators follows a uniform
probability distribution. The RTTSA algorithm steps away from this uniform
distribution and uses a dynamic probability distribution which adjusts as the
search progresses. First the need for an adapted probability distribution is
studied. Running the RTTSA algorithm with a uniform distribution, while
keeping track of how many improved schedules every move operator returns,
resulted in clear differences in the ‘success rate’ of the different move operators.

The results of all runs are shown in Figure 7a and Figure 7b. Lines are
selected to present the results in order to increase readability, however no options
exist between the different x-values. For each NLx instance and each number
of byes (K ∈ {1, 2, 3}), three runs of 30 minutes have been executed. Time-
constrained instances are not considered in this experiment since not all move
operators can be applied on these instances. Merging results for instances where
K = 0 with the results for instances with other values of K could therefore lead
to a distorted view of the actual probability distribution. Figure 7a shows the
likelihood of each move operator conditioned on a successful move, i.e. a move
that results in a lower value for the objective function C(S). This likelihood is
calculated as the ratio of the number of times a move operator has improved
the solution to the total number of times the solution has been improved.

According to Figure 7a, which merges the results over different values for
K for the same instance, GroupingAwayUsingByes and SwapHomesRTTP
seem to be very promising moves, with overall percentages of 19.6% and
18.1%. For the larger instances with up to twelve teams, the operator
GroupingAwayUsingByes is dominant with probability peaks up to 40% for
NL6 and NL10. SwapHomesRTTP , SwapByes and ExtendAwayTrip are
the other good performers for these instances. Looking at the largest instances
(NL14 and NL16) in Figure 7a, both SwapHomesRTTP and SwapByes
perform particularly better than the other move operators, with a cumulative
percentage for both operators of over 50%. Therefore, those 2 move operators
are responsible for over half of the improvements found while running the
algorithm. The dominant move operator GroupingAwayUsingByes of the
smaller instances seems to be less effective for the large instances, with less
than 5%. The performance of the other 5 move operators is steady over all
instances with an overall percentage between 5% and 10%. Since all move
operators deliver some improving schedule, all operators can be considered
useful in the search for a better solution.

Figure 7b, which merges the results over the different instances for different
values of K, shows some similar results. SwapHomesRTTP , SwapByes,
GroupingAwayUsingByes and ExtendAwayTrip are the dominant moves for
all number of byes. An interesting trend is the decreasing performance of
SwapHomesRTTP as the number of byes increases. An opposite trend can be
witnessed for GroupingAwayUsingByes. The performance of all other moves
does not considerably vary over the different number of byes according to
Figure 7b.
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(a) Improving moves per instance
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Figure 7: Move Operator Performance
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Since the different move operators have a different ‘success rate’, i.e. some
operators have a higher probability of returning a useful schedule than others,
a uniform distribution of the move operators might no longer be ideal. A
dynamic distribution, which adjusts as the search progresses, could improve
the amount of useful schedules that the algorithm generates. The dynamic
distribution proposed in this dissertation is based on the one proposed by
Pisinger and Ropke (2010) in their study on the adaptive large neighbourhood
search. A considerable difference is that instead of making adaptations to the
weights of the different move operators, the adaptations are directly made to
the probabilities. Each move operator j is assigned a probability of being
selected φj , initially each operator has the same probability. Whenever a move
operator is selected, the performance of this operator is given a score ψ.

Let a be the index of the move operator that was applied. A next step now
consists of recalculating φa by adding ψ.

φa = φa + ψ
However, the sum of all probabilities φj will now exceed 1. This problem is
solved by adapting all probabilities as follows

φj =
φj

1+ψ ∀j
Now the sum of all probabilities will again be equal to 1. To prevent one move
operator from being implemented too frequently, a final step which ensures that
none of the probabilities will exceed 0.5 is added. The rationale behind this is
that on average at least one in every two move operators should be different.
Whenever a certain move operators has a probability that exceeds 0.5 after the
calculation in the previous step, the excess probability is evenly redistributed
over all other move operators. Let b be the index of a move operator with a
probability that exceeds 0.5 with an excess of e and let N be the number of
move operators. {

φj = φj + e
N−1 if j 6= b

φj = 0.5 if j = b

The value of ψ is computed using the following formula.

ψ = max


ω1 if the new schedule is a new best feasible
ω2 if the new schedule is a new best infeasible
ω3 otherwise

The aim of this probability adaptation is to reward move operators that seem
to work well for the instance at hand. Therefore, move operators returning new
best feasible schedules should be rewarded more than operators that return a
new best infeasible schedule. However, the latter case is still preferred over not
returning a better schedule (feasible or infeasible) at all. Consequently, it is
clear that in this case ω1 > ω2 > ω3 should hold. Since moves that do not
improve the best (in)feasible schedule do not bring us closer to the goal, in
terms of objective function value, ω3 is assigned the value 0. To determine the
values for ω1 and ω2, an assessment on the frequency of new better feasible or
better infeasible schedules is made for different sizes of a competition. Figure 8
displays the mean absolute frequency of better schedules occurring over 9 runs
of 30 minutes per instance size. Note, however, that a logarithmic y-axis is used
to represent all results in one clear figure.
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Figure 8 shows a sizeable fluctuation in the number of new best infeasible
schedules generated over the different instances, ranging from 44 for NL4 to
4100 for NL10. This variation can not intuitively be covered by a function of
the instance size and therefore a fixed value is assigned to ω2. Several values
were tested and the results of these tests are shown in Table 28. On average the
results are best if ω2 is set to 0.005% although this value is not the best for every
instance. ω1 is determined by again looking at the number of better feasible
schedules generated. There seems to be a slight decreasing trend as instances
get larger. This can be explained intuitively since the ratio of feasible schedules
to the number of total produced schedules decreases with an increasing instance
size. This means that for larger instances, the probability of producing a feasible
schedule is smaller and accordingly the probability of producing a new better
feasible schedule. To cope with this phenomenon, ω1 should be an increasing
function of the number of teams, i.e. feasible schedules in larger instances are
rewarded more since their occurrence is less frequent. Figure 8 learns us that
the differences between the instances are rather small, therefore chosen function
is ω1 =

√
n ∗ x + ω2. The addition of ω2 ensures that ω1 > ω2 holds for any

value of n and x.
To set the x value, the average feasible frequency is used. After 30 minutes,

on average 300 better feasible schedules are generated or 10 per minute. In
theory after 10 minutes 100 new feasible schedules would be found and for
those 100, 100% should be distributed over the moves who generated those
schedules. This results in 1% per new better feasible solution for the smallest
instance NL4. Therefore x is set to 0.5% and the final value for ω1 is set to√
n/200 + 0.00005. While more extensive parameter tuning could potentially

deliver a better result, the potential improvement of adapting these values will
probably be minor. Therefore, the parameters ω1, ω2 and ω3 are set at these
intuitive values.
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Figure 8: Frequency Better (In)Feasible Schedules
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ω2 0.10% 0.05% 0.01% 0.005% 0.001%

NL4K2 8160 8160 8160 8160 8160
NL6K2 23199 23301 22990 23374 23162
NL8K2 44183 43035 42898 42133 43127
NL10K2 71418 71851 67743 70339 70750
NL12K2 133902 133266 131353 130389 128231
NL14K2 260776 263268 260524 244638 258483
NL16K2 349283 341040 354091 350233 346990

Mean gap 12.93% 12.38% 11.35% 10.55% 11.41%

Table 28: Test Values ω2

4.1.5.3 Repair Mechanism for Semi-feasible Schedules
The RTTSA algorithm is able to perform a large amount of moves, i.e. generate
a lot of different schedules, with little computational effort. However, all move
operators can potentially change a feasible schedule into an infeasible schedule,
i.e. a schedule that violates one or more soft constraints (C4, C5). Table 29 gives
an overview of which constraints can be violated by each move. A "-icon shows
that the constraint can potentially be violated when a certain move operator is
applied to a feasible schedule.

Moves C4 C5
SwapHomes " -
SwapRounds " "
SwapTeams " -
PartialSwapRounds " "
PartialSwapTeams " "
SwapByesMatches " "
GroupingAwayUsingByes " "
FlipSchedule " "
ExtendAwayTrip " "

": Constraint can be violated when operator is applied

Table 29: Potential Violations (per move operator)

In fact, most of the generated schedules are not feasible, especially as the
number of participating teams rises. The high percentage of infeasible solutions
has been observed in time-relaxed sports timetabling problems with availability
constraints in Schönberger et al. (2004) and Van Bulck and Goossens (2020). As
a remedy, these authors propose to (partially) repair candidate solutions after
applying move operators. Even though Schönberger et al. and Van Bulck and
Goossens study a slightly different problem, the approach of repairing candidate
solutions can also be useful for the RTTP.

Schedules with an excessive amount of violations require more computational
effort to repair than schedules with a small number of violations. Schedules with
more participating teams have on average more violations. Consequently the
number of allowed violations should ideally be a multiple, denoted by τ , of the
number of teams n, yielding dτne, where the ceiling function ensures an integer
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result. To determine this quantity for semi-feasible schedules, an experimental
study is performed. Before discussing the results however, firstly the algorithm
of the repair mechanism is covered. The pseudo code for this mechanism can
be found in Algorithm 4.

Each time a move operator creates a new schedule, this schedule is checked
for violations. If the new schedule is semi-feasible, the repair method is applied
to try to restore the feasibility. First, an assessment is made to determine the
number and location of violations. Basically, two types of violations are possible:

• Home stands or away trips exceeding 3 matches (C4 is violated)

• Two consecutive games against the same opponent (C5 is violated)

The assessment will create an array with the following information:

• Number of violations against C4

• Number of violations against C5

• Location of each violation (team and round of violation)

Once the assessment of violations has been executed, the repair method is called
with the information on all violations as input. First, violations against the
atmost constraint are trying to be repaired. The algorithm searches for a bye
in the schedule and applies a PartialSwapRoundsRTTP move operator. If
the selected bye is not part of the trip, this move will swap it with each of
the rounds that are part of the away trip or home stand that is exceeding the
upper bound of 3. To clarify, consider the following pattern with an away trip of
length 4: +,-,-,-,-,+ , if one of those away games is replaced by a bye, feasibility
is restored. The resulting pattern can be as follows: +,-,0,-,-,+.

If a bye is part of the trip, a solution for this violation can often be found
by partially swapping all rounds not part of the trip with this bye. An example
of this can be seen in the following pattern: +,-,-,0,-,-,+ which is an away trip
of length 4, by swapping the bye with a home game the pattern is changed to:
+,-,-,+,-,-,+ which is feasible and has two away trips of length 2.

If the violation is repaired in the resulting schedule, this repaired schedule
will be the new schedule. In case multiple feasible schedules can be created,
the schedule that performs best in terms of total travelling distance is selected.
If a violation against the upper bound of a trip is repaired, a new assessment
is made of the violations in the schedule. If the violation is not repaired, the
algorithm continues and tries to repair the remaining violations.

Violations against the no-repeat constraint per definition come in pairs. Two
teams will have a no-repeat violation in the same round for consecutively playing
the same opponent. To repair this violation, both matches against the same
opponent of one team are swapped using the move operator PartialSwapRound
with all other rounds of this team. The best feasible schedule in terms of total
travelling distance will be returned by the algorithm. If the no-repeat violation
is repaired, then the no-repeat violation for the opponent in the same round will
be repaired as well. Hereafter, a new assessment of the violations is made and
the program can continue to resolve violations. If the violation is not repaired,
the algorithm continues and tries to repair the remaining violations. To select
which schedule the repair mechanism should return, the cost of both the input
schedule and the resulting schedule are determined. The best schedule will be
returned by the method.



Algorithm 4 Repair Schedule

1: procedure Repair Schedule(S)
2: violationInfo[]← violationAssesment(S)
3: U = set of violations against C4
4: G = set of violations against C5
5: for all u ∈ U do
6: t ← Team of u
7: b ← Round where t has a Bye
8: if b ∈ Ru then . Ru = all rounds ∈ away trip/home stand
9: for all r ∈ R \Ru do

10: Sr ← PartialSwapRounds(t, b, r)

11: else
12: for all r ∈ Ru do
13: Sr ← PartialSwapRounds(t, b, r)

14: if u is repaired then
15: S∗ ← min(Sr)
16: violationInfo[]← violationAssesment(S∗)
17: Update U and G
18: for all g ∈ G do
19: t ← Team responsible for violation g
20: z ← Round where t has a repeat game violation
21: for all r ∈ R \ {z, z − 1} do
22: Sr1 ← PartialSwapRounds(t, z, r)
23: Sr2 ← PartialSwapRounds(t, z − 1, r)

24: if g is repaired then
25: S∗ ← min(Sr1, Sr2)
26: violationInfo[]← violationAssesment(S∗)
27: Update U and G
28: return min(S∗, S)

In order to determine the set of semi-feasible schedules, i.e. determine the
maximum number of allowable violations, an experimental study was
performed. Seven different values for the multiple were considered
{0, 0.25, 0.50, 0.75, 1, 1.25, 1.50} and were tested on four different instances
{NL8,NL10,NL12,NL14} with three different number of byes, K = {1, 2, 3}.
When for a certain instance, τn does not return an integer number of
allowable violations, this number is rounded to the closest integer. To avoid
excessive runtimes in this experiment, each run was terminated when a
population was generated that did not improve the objective function value,
compared to the previous population. All of the 84 combinations where
considered three times in order to obtain representative mean values. The
results of this experiment are summarised in Tables 30 and 31, and Figure 9.
Since the difference between the different number of byes for the same instance
are negligible for the purpose of this experiment, all results with the same
instance and the same τ are merged.
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In Table 30, the obtained results are represented relatively to the current
best found solution for the different instances (Table 21). This is done to allow
for comparability across the different instances. For example, using τ = 0 on
the instance NL8, returns a mean objective function value which lies 21.04%
higher than the current best found solution for the same instance, with a mean
runtime of 2.03 minutes. It is interesting to see that the gap is clearly smaller for
instances where n is multiple of 4. Closing the gap to an optimal solution seems
to be easier for these instances, something that was also noticed by Thielen and
Westphal (2010) who derived a lower approximation ratio for instances with
those n values.

The results in Table 30 are then used to construct Figure 9. This figure
plots the average gap against the average runtime over the different instances for
several values of τ . Repair multiple values {0.25, 1.25, 1.50} are all dominated by
others since they have nearly the same average gap for a higher runtime, or they
have a higher average gap for the same runtime. The case τ = 0 is not clearly
dominated by one of the other multiples, but this is mainly due to the design
of this experiment. A run terminates when a population does not improve the
objective function value. With τ = 0, no schedules are being repaired, therefore
finding a better objective function value is becoming harder and a run will
terminate sooner. The design of this experiment favours the average runtime
when τ = 0. The findings from Section 5 (cf. infra) also support the decision
to only consider τ values larger than 0. This means that only three options
for τ remain, {0.50, 0.75, 1}. Since these three values deliver comparable results
on both the average runtime and the average gap, the conservative decision is
made to average out these values. This results in fixing repair multiple τ to 0.75
when deciding the number of allowable violations. Therefore, a schedule of a
competition with 10 teams will be semi-feasible when this schedule has up to 8
(dτne = d0.75 ∗ 10e = d7.5e = 8) violations.
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Figure 9: Gap - Runtime Plot
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τ 0 0.25 0.50 0.75 1.0 1.25 1.50

NL8 Mean gap to optimal 21.04% 14.02% 10.97% 9.80% 9.73% 9.21% 7.81%
Mean time (in minutes) 2.03 3.8 5.2 8.94 14.61 20.12 35.39

NL10 Mean gap to optimal 23.65% 19.17% 16.63% 17.25% 17.03% 17.63% 16.80%
Mean time (in minutes) 3.44 8.61 10.67 8 13.1 19.3 34.74

NL12 Mean gap to optimal 16.93% 11.45% 10.15% 10.27% 11.22% 11.18% 11.50%
Mean time (in minutes) 4.05 11.3 16.96 19.65 12.64 16.19 19.68

NL14 Mean gap to optimal 33.27% 23.97% 21.03% 19.10% 20.18% 20.20% 19.48%
Mean time (in minutes) 6.12 36.07 29.28 38.05 25.18 33.01 35.91

Table 30: Mean Gap and Runtime (per instance per τ)

Even though certain adaptations have been made to the algorithm in order
to perform this experiment, the results still deliver a decent indication on how
capable the mechanism is to return better (and feasible) schedules. Again the
results can be merged for all instances with the same number of teams and
the same τ . Table 31 summarizes this capability using two variables, repaired
used and repaired feasible. Repaired used covers the instances where the repair
chain returns a schedule with a lower objective function. If this better schedule
is feasible, then it also counted as repaired feasible.

τ 0.25 0.50 0.75 1.0 1.25 1.50

NL8 Repaired used 77.33% 77.22% 73.11% 79.33% 84.78% 82.67%
Repaired feasible 70.37% 63.28% 56.62% 57.38% 58.78% 56.21%

NL10 Repaired used 64.02% 74.40% 82.26% 86.67% 88.24% 89.50%
Repaired feasible 52.70% 52.57% 54.14% 52.73% 51.36% 49.77%

NL12 Repaired used 48.00% 48.33% 60.00% 72.00% 82.33% 87.67%
Repaired feasible 40.19% 33.83% 36.67% 37.20% 37.42% 37.60%

NL14 Repaired used 43.00% 39.33% 43.33% 44.44% 52.89% 65.33%
Repaired feasible 33.21% 26.75% 24.12% 20.30% 21.10% 23.52%

Table 31: Performance Repair Mechanism

Since τ = 0.75 is selected, only these results are studied in detail. The
number of feasible schedules returned by the repair mechanism is clearly
dependent on the size of the problem instance. This seems quite logical, since
instances with more teams have bigger schedules and the average number of
violations is higher for bigger schedules. The repair mechanism will return a
better schedule, in terms of objective function value, in at least 40% of the
cases. This clearly shows that implementing this repair mechanism might
improve the overall performance of the algorithm. Another observation is the
decrease, on average, of Repaired feasible with increasing values of τ . Since
increasing τ allows more violations in semi-feasible schedules, the intuitive
reasoning that schedules with more violations are harder to repair is
confirmed.

However, in exceptional circumstances the repair mechanism could undo
the move that was performed by one of the operators. Schedules are in that
case repaired to the schedule as it was before applying the move operator. To
avoid cycles and slowing down the algorithm significantly, an additional check
is implemented. This check is implemented on line 17 of Algorithm 1 on Page
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42. Whenever the new, potentially repaired, schedule has the same objective
function value as the previous schedule, these two schedules are compared. If
both schedules are in fact entirely equal, the move will not be accepted. This
computationally expensive complete comparison of two schedules is therefore
only executed when problems can arise.

4.2 Constraint Programming for RTTP
While heuristic algorithms, like the RPBSA, potentially deliver high quality
solutions within a reasonable timeframe, these solutions are not necessarily an
optimal solution. Discrete optimisation strategies will always return an optimal
solution, given enough time. Therefore, this thesis also introduces two discrete
optimisation formulations for the K-RTTP specifications at hand. Note that
other, potentially better performing, models can be drawn up.

Previous research on discrete optimisation for time-relaxed problems is
quite limited. To the best of our knowledge, only Bao (2009) proposed several
IP- and CP-formulations for the RTTP. However, in his work Bao mainly
focuses on break minimisation and time-relaxed problems with considerably
more timeslots. Consequently, the exact problem studied in this dissertation is
only briefly covered by Model 22 in Bao (2009). However, since this model was
only proposed as a comparison with models for other problem specifications, a
new CP-formulation specifically proposed for the problem at hand could
potentially improve the performance. The work of Bao (2009) could still be
used to provide valuable insights in IP- and CP-modelling for time-relaxed
problems. As mentioned in Section 3.3.3, both the IP- and the CP-formulation
have their advantages. However, since this is, to the best of our knowledge, the
first proposal of IP- or CP-models for solving the specific K-RTTP
specifications of this thesis, an intuitive approach is followed in drawing up
these models. The modelling framework offered by constraint programming is
more flexible than the framework provided by integer programming and is
therefore seen as more suited for drawing up an intuitive representation of the
problem. Additionally, Model 22 by Bao (2009) was also proposed as a
CP-model. A more in depth discussion on the modelling decisions and there
potential alternatives is provided in Section 4.2.3.

This section will first provide a CP-formulation specifically for the
K-RTTP specifications in this dissertation. In the second part of this section,
a CP-formulation is proposed for the time-relaxed timetable constrained
distance minimisation problem (RTCDMP). For any given opponent schedule,
the solution of this problem returns an optimal home-away assignment, given
enough time. Consequently, the RTCDMP can be used as the second step in
constructing a time-relaxed double round-robin tournament schedule when
following a first-schedule-then-break approach. However, the RTCDMP can
also be used to further enhance the results of any RTTP-algorithm. Using the
opponent schedule, provided by any given RTTP-algorithm, for the RTCDMP,
should result in an optimal home-away assignment for this opponent schedule.
Therefore, the RTCDMP can either prove that the solution delivered by the
RTTP-algorithm can not be further improved by adapting the home-away
assignment or it can return an improved schedule with an optimal home-away
assignment. Finally, the last part of this section covers a brief discussion on
the modelling decisions. Note, that n still represents the number of teams.
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4.2.1 RTTP

In the following CP-model for the RTTP, T denotes the set of teams, while R
denotes the set of rounds and R0 = R∪{0}. The distance matrix is represented
by D, and Di,j contains the distance between the venues i and j. Finally,
the number of byes is represented by B and Ub denotes the upper bound on
the number of consecutive home or consecutive away games. To formulate the
problem, a n×n matrix x is introduced, where the elements xij equal the round
r in which team i plays a home game against team j in round r, and xii equals
zero. Integer variable vir for each i ∈ T and each r ∈ R0 ∪ {|R| + 1} is used
to indicate the venue where team i is located in round r. Dummy slots 0 and
|R|+ 1 are used to make sure every team starts and finishes the competition at
their own venue. The travel distance of team i between round r and r + 1 is
represented by Dvir,vi(r+1)

. This results into the CP-model on the next page.
The objective function is given in (1), the goal of the RTTP is to minimise

the travelled distance by all teams over all rounds. The alldifferent constraint
(2) states that every team should at most play one home or away match in
every round. Constraints (3) indicate that a team should not play against
itself. Venues are assigned for all rounds by constraints (4). Constraints (5) and
(6) state that every team starts and ends the competition at their own venue.
Constraints (7) ensure that when a team has a bye, i.e. it has no matches in
a round, the team will stay at the venue of the previous round. The no-repeat
constraint is enforced by adding constrains (8). Constraints (9) and (10) set an
upper bound to the number of consecutive home and consecutive away games.

Since these two constraints are not straightforward, they might require some
additional clarification. First, let us consider constraints (9), these constraints
limit the number of consecutive home games. When Ub = 3, at most three
consecutive home games are allowed. In a time-constrained environment, these
allowed home stands will also appear in three consecutive rounds. However,
in a time-relaxed environment byes can be present in a home stand, which
means that an allowed home stand can now be spread over more than three
rounds. When setting B = 2, allowed home stands can also take place in four
or five consecutive rounds. This explains why the constraints are added for
every value of b (b ∈ {0, . . . , B}). Constraints (9) are proposed in an IF-THEN
form. If team i plays no away games during Ub + b rounds, then team i can
have at most Ub home games in that same period. This condition is necessary
since byes are ignored when determining the length of home stands and away
trips. Constraints (10) operate exactly the same, but they limit the number of
consecutive away games. Together with constraints (17) and (18), which add the
proper limitations to the different decision variables, these first ten constraint
types are sufficient for modelling the problem.

However, by adding some, at first sight unnecessary, constraints, the
performance of a CP-model can potentially be improved. These so-called
redundant constraints do not further restrict the solution space, but they can
potentially reduce the search space. Consequently, the efficiency of the
CP-model is improved since less potential schedules have to be considered.
These redundant constraints express properties of the problem solutions that
are not explicitly listed in the first ten constraints.
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min:
∑
i∈T

∑
r∈R0

Dvir,vi(r+1)
(1)

s.t. alldifferent(xij , xji : j ∈ T, j 6= i) ∀i ∈ T (2)

xii = 0 ∀i ∈ T (3)

xij = r ⇒ vir = i ∧ vjr = i ∀i, j ∈ T, ∀r ∈ R (4)

vi0 = i ∀i ∈ T (5)

vi(|R|+1) = i ∀i ∈ T (6)∑
j∈T

(xij ∨ xji = r) = 0⇒ vir = vi(r−1) ∀i ∈ T, ∀r ∈ R (7)

|xij − xji| > 1 ∀i, j ∈ T : i < j (8)
Ub+b∑
p=0

∑
j∈T

(xji = r + p) = 0⇒
Ub+b∑
p=0

∑
j∈T

(xij = r + p) ≤ Ub ∀i ∈ T, ∀b ∈ {0, . . . , B},
∀r ∈ {1, . . . , |R| − Ub+ b} (9)

Ub+b∑
p=0

∑
j∈T

(xij = r + p) = 0⇒
Ub+b∑
p=0

∑
j∈T

(xji = r + p) ≤ Ub ∀i ∈ T, ∀b ∈ {0, . . . , B},
∀r ∈ {1, . . . , |R| − Ub+ b} (10)

Ub+B∑
p=0

∑
j∈T

(xij = r + p) ≥ 1
∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub−B} (11)

Ub+B∑
p=0

∑
j∈T

(xji = r + p) ≥ 1
∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub−B} (12)

l∑
r=1

∑
j∈T

(xij = r) ≥ n− 1− k ∗ Ub
∀i ∈ T,
∀k ∈ {1, . . . , n− 1}
l = |R| − k ∗ (Ub+ 1)

(13)

l∑
r=1

∑
j∈T

(xji = r) ≥ n− 1− k ∗ Ub
∀i ∈ T,
∀k ∈ {1, . . . , n− 1}
l = |R| − k ∗ (Ub+ 1)

(14)

∑
i∈T

∑
j∈T\{1}

(xij = r) ≤ n/2 ∀r ∈ R (15)

x1,2 > x2,1 (16)

xij ∈ R0 ∀i, j ∈ T (17)

vir ∈ {1, . . . , n} ∀i ∈ T, ∀r ∈ R0 ∪ {|R|+ 1} (18)
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Constraints (11) (and (12)) ensure that teams play at least one home (away)
game in Ub+1+B consecutive rounds. These constraints are further extended
by constraints (13) (and (14)). If a team can play at most Ub home (away)
games in Ub+1 consecutive rounds, a team can only play Ub home (away)
games in the last Ub+1 rounds. Therefore, at least n − 1 − Ub home (away)
games should be scheduled in all rounds preceding the last Ub+1 rounds. This
finding can then be extended to the last 2Ub + 1, 3Ub + 1, . . . rounds. And
finally constraints (15) state that every round can have at most n/2 games.
Another important characteristic of solutions for this problem is their potential
symmetry. For any given schedule, the matches can be played in the opposite
order and the resulting schedule will return the same objective function value.
Therefore, only one of these two schedules should be considered, constraint (16)
states that all schedules should place the home match of team 1 against team 2,
before the away match of team 1 against team 2. By taking advantage of this
symmetry, the size of the solution space it reduced to half of its original size.
This can be seen as a technique to break the reflective symmetry as proposed
by Uthus et al. (2012).

The discussed formulation is further clarified by its OPL code in Appendix
A. In this code the implementation of the variable selection strategy is also
made clear. Since the vir variables are mainly determined by the value of the
xij variables, it is clear that the latter variables should be fixed first.

4.2.2 RTCDMP

The time-relaxed timetable constrained distance minimisation problem is
defined similar to how Rasmussen and Trick (2008) defined the TCDMP for
time-constrained problems. The RTCDMP still consists out of finding an
optimal home-away assignment, in terms of distance minimisation, for any
given opponent schedule. However, this opponent schedule will now include
one or more byes per team. While this seems like a minor adjustment, the
impact on the complexity of the problem formulation is considerable. In fact,
this problem is an adaptation of the problem studied in Section 4.2.1, where
the opponent schedule is already fixed. Again, a more intuitive modelling
approach is preferred for the scope of this master’s dissertation.

In the following CP-model, T again denotes the set teams, while R denotes
the set of rounds and R0 = R∪{0}. The number of byes is indicated by B and Ub
sets the upper bound for the number of consecutive home or consecutive away
games. The distance matrix is represented by D, and Dij equals the distance
between the venues of team i and team j. The opponent schedule or time table
is represented by TT , the opponent of team i in round r is indicated by TTir
(TTi,r = 0 if team i has a bye in round r). In order to formulate this CP-model,
two integer decision variable types are defined. To indicate whether a team
plays at home, plays away or has a bye, decision variable hir is introduced for
each i ∈ T and for each r ∈ R. hir equals 0 if team i plays away in round r, 1
if team i plays at home in round r and, similar to Bao (2009), 2 if team i has a
bye in round r. Integer variable vir for each i ∈ T and each r ∈ R0 ∪ {|R|+ 1}
indicates the venue where team i is located in round r. Dummy slots 0 and
|R|+ 1 are used to make sure every team starts and finishes the competition at
their own venue. Dvirvi(r+1)

indicates the distance team i travels between round
r and round r + 1.
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This all results in the following CP-formulation for the RTCDMP.

min:
∑
i∈T

∑
r∈R0

Dvirvi(r+1)
(19)

s.t. TTir = 0⇒ hir = 2 ∧ vir = vi(r−1) ∀i ∈ T, ∀r ∈ R (20)∑
r∈R

(hir = 1) = n− 1 ∀i ∈ T (21)∑
r∈R

(hir = 0) = n− 1 ∀i ∈ T (22)

TTir 6= 0⇒ hir + hTTirr = 1 ∀i ∈ T, ∀r ∈ R (23)

TTir1 = TTir2 ∧ TTir1 6= 0⇒ hir1 + hir2 = 1 ∀i ∈ T, ∀r1, r2 ∈ R (24)

hir = 0⇒ vir = TTir ∀i ∈ T, ∀r ∈ R (25)

hir = 1⇒ vir = i ∀i ∈ T, ∀r ∈ R (26)

vi0 = i ∀i ∈ T (27)

vi(|R|+1) = i ∀i ∈ T (28)
Ub+b∑
a=0

(hi(r+a) = 0) = 0⇒
Ub+b∑
a=0

(hi(r+a) = 1) ≤ Ub ∀b ∈ {0, . . . , B},∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub− b} (29)

Ub+b∑
a=0

(hi(r+a) = 1) = 0⇒
Ub+b∑
a=0

(hi(r+a) = 0) ≤ Ub ∀b ∈ {0, . . . , B},∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub− b} (30)

Ub∑
p=0

(hi(r+p) = 1) ≤ Ub ∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub} (31)

Ub∑
p=0

(hi(r+p) = 0) ≤ Ub ∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub} (32)

Ub+B∑
p=0

(hi(r+p) = 1) ≥ 1
∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub− b} (33)

Ub+B∑
p=0

(hi(r+p) = 0) ≥ 1
∀i ∈ T,
∀r ∈ {1, . . . , |R| − Ub− b} (34)

∑
i∈T

(hir = 1) ≤ n/2 ∀r ∈ R (35)∑
i∈T

(hir = 0) ≤ n/2 ∀r ∈ R (36)

hir ∈ {0, 1, 2} ∀i ∈ T, ∀r ∈ R (37)

vir ∈ {1, . . . , T} ∀i ∈ T, ∀r ∈ R0 ∪ {|R|+ 1} (38)
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The total distance is calculated by (19). Constraints (20) fix the value of
hir to 2 whenever team i has a bye in round r and they indicate that a bye is
spent at the venue of the previous opponent. Constraints (21) (and (22)) limit
the number of home (away) games of a team to n−1. Whenever a team plays a
match in round r, exactly one of the two teams playing that match can play at
home, the other plays away. This is enforced by constraints (23). Constraints
(24) are used to ensure that team i can only play one home game against every
opponent. Constraints (25) - (26) assign the correct venues for every team in
every round. All teams should start and end the competition at their home
venue, which is ensured by constraints (27) - (28). The number of consecutive
home and consecutive away games is limited by respectively constraints (29) and
(30). The operation of these constraints is similar to constraints (9)-(10) in the
CP-formulation for the RTTP (Section 4.2.1). These constraints, together with
constraints (37)-(38) that give the proper limitations to the decision variables,
are sufficient for modelling the RTCDMP.

However, the performance of this sufficient model can be enhanced by adding
some redundant constraints. These constraints are implemented in a similar way
as in the formulation from the previous section and are therefore not extensively
covered in detail. Constraints (31) and (32) limit the number of home and away
games in Ub+1 rounds to Ub. Constraints (33) and (34) state that at least
one home game and one away game should be present in any set of Ub+B+1
consecutive rounds. Finally, constraints (35) and (36) limit the number of home
and away games in single round to at most n/2.

Again the variable selection strategy is explicitly listed in the OPL code
based on this formulation (Appendix B). The hir variables are fixed first, since
making these decisions will automatically result in fixing the vir variables.

4.2.3 Discussion on the Modelling Choices

There is no such thing as ‘the’ IP- or CP-formulation for any given problem,
i.e. the proposed formulations are only one way of modelling the problems.
Therefore, the modelling choices and their alternatives require a brief
explanation. The main discussion point is the choice for CP-modelling over
IP-modelling. While both modelling techniques have their advantages, CP
offers more room to model problems intuitively. Furthermore, IP-formulated
problems tend to become rather complex and overwhelming at first, where the
CP-formulation enhances the readability.

Additionally, the complexity of the RTTP results in the fact that an optimal
solution, at least for larger instances, will not be found in a reasonable timeframe
by using discrete optimization techniques. This is why the main motivation
behind developing these formulations is not to solve the problems to optimality.
These models are presented to serve as additional benchmarking opportunities
for the algorithm proposed in earlier sections. However, in order to provide a
benchmark a feasible solution has to be returned first. While they are both very
effective for solving combinatorial problems, CP and IP use different strategies to
come up with solutions. IP focuses on finding a good but often infeasible solution
through linear relaxation, while a branching tree should provide feasibility. CP,
on the other hand, tries to maintain feasibility along the search by repetitively
extending partial feasible solutions to complete solutions (Hooker, 2002). Since
the feasibility of the results is an essential characteristic to provide a benchmark,
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a CP-formulation is preferred over an IP-formulation for its purpose in this
dissertation.

Another important decision is the choice of the different decision variables
of both models. In both models the variables vir are added since they provide
the possibility of modelling the total distance travelled by a team intuitively
and efficiently. These variables could probably be omitted in another model
formulation, but this would no longer allow to calculate the total distance by
simply iterating over all rounds for all teams. Additionally, the implementation
of the vir variables enhance the usability for other problem specifications where
byes can only be spent at home or where venue availability plays a crucial role.
Finally, Bao (2009) also uses similar decision variables to express the location
of any team at any given round in the tournament.

For the RTTP-formulation, the second type of decision variables could also
be chosen slightly differently. The xij variables now represent the round where
the home game of team i against team j takes place. However, defining xijr as a
boolean which equals 1 if team i plays at home against team j in round r, could
prove helpful for future research on an IP-formulation for the RTTP. For the CP-
formulation, the xij feels like a more clear choice for both the decision variable
as for the implementation of several of the constraints. For the RTCDMP, the
hir are defined in a way that they can take three different values. However,
an alternative modelling decision could be to only define hir for rounds where
team i actually plays a game. This is already predetermined by the input.
Consequently, hir could be modelled as a boolean which could again be helpful
for an IP-formulation. However, the constraints are somewhat less intuitive and
comprehensive when hir is not defined for all rounds.

Since both models are mainly presented for solving the NL-instance class,
symmetry breaking in the proposed models is limited. For other instance classes,
CIRC and CON, some sort of rotational symmetry exists (Uthus et al., 2012).
Rotating the assigned team numbers, i.e. team 1 becomes team 2, team 2
becomes team 3, etc., for these instance classes will have no effect on the total
travel distance since the distance between any two consecutive teams is equal.
When studying the distance matrix for the NL-instance class, it is clear that
this is not the case, therefore no rotational symmetry is present. For the CON
instance class, it is even possible to swap the assigned number of any two teams
without changing the total distance to be travelled.

A final remark on the modelling choices is the choice for the timetable
constrained version of the distance minimisation problem. For a
time-constrained instance, this version matches the version where the
opponent sequence is used as an input. However, for a time-relaxed problem
the timetable contains byes, which differentiates it from the opponent
sequence. Another potential problem to be studied could be the one where a
sequence of opponents is used as input and where venues need to be assigned
and byes need to be added. However, this problem variant lies even further
from the focus of this dissertation and it requires a deeper study on the
specific problem to develop a CP-formulation. Therefore, this problem variant
falls outside the scope of this thesis and interested readers are referred to
potential future research on the subject.
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5 Experimental Results

5.1 Practical Implementation
The results of the CP models have been obtained using IBM ILOG CPLEX
Optimisation Studio (Version 12.10.0.0) on a 2.2 GHz Dual-Core Intel Core
i5 processor with 4GB RAM running Windows 10. The RPBSA algorithm
was implemented using the Java 1.8.0 programming language in the NetBeans
IDE 8.2 environment. All java experiments have been performed on a 2.7 GHz
Dual-Core Intel Core i5 processor with 8 GB RAM running iOS. As already
mentioned in Section 3.5, it is important to take the competitive nature of the
research on timetabling into account when comparing the proposed algorithm
with previous research. The use of heuristics is usually proposed whenever
exact optimisation is not obtainable within a reasonable timeframe (Gigerenzer,
Hertwig, & Pachur, 2011). However, excessive runtimes are omnipresent in the
results of previous research on the (R)TTP and since most proposed heuristics
use some sort of stochastic decisions, the Mongolian horde approach (cf. Section
3.5 or Schaerf and Di Gaspero (2006)) is also something that influences the
results in this research field. To avoid distorted results as much as possible,
the performances, of both the algorithm as a whole and the different proposed
adaptations separately, are compared using mean values of our experimental
results. This will allow a fair and objective review of the proposed methods.
However, we are also not able to suppress the natural competitive behaviour of
human beings. Therefore, Section 5.5 provides an overview of the best solutions
that were developed in this dissertation for a range of instances. Solutions that
improve the current best known values will also be submitted to be added on
the RobinX website for round-robin sports timetabling14.

5.2 RPBSA
This section discusses the design and results of the RPBSA algorithm. First,
the initialization of the parameters is covered in Section 5.2.1. Next, results of
the experiments are provided in Section 5.2.2 and the influence of the initial
schedule in Section 5.2.3. Section 5.2.4 deals with the evaluation of the repair
mechanism and Section 5.2.5 with the dynamic probability distribution of move
operator selection. Finally, these experimental results are benchmarked against
the results from previous research and from the CP-models proposed in this
dissertation (Section 5.2.6).

5.2.1 Parameter Testing

The RPBSA algorithm requires the initialisation of 15 different input
parameters. Some of these parameters were already explained in detail and
values for those have been set after extensive test runs. The repair multiple τ
has been the subject of Section 4.1.5.3 and is set to 0.75. Additionally, the
initial values for parameters ω1 and ω2 of the dynamic operator selection
(Section 4.1.5.2) have also been fixed to, respectively, (

√
n/2 + 0.005)% and

0.005%.
14http://www.sportscheduling.ugent.be/RobinX/
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An optimal combination of the 12 remaining parameters could potentially
be obtained by performing a full factorial experiment. However, if every
parameter would have only two possible levels, which is not the case, 4096
(212) additional experiments would have to be performed to cover each
combination once and determine all main and interaction effects. In practice,
since the parameters have more than two potential levels and a single
replication is strongly discouraged due to the stochastic nature of the
algorithm, parameter tuning is not done using a full factorial experiment
design. Instead, parameter tuning is done one parameter at a time by
performing test runs based on the default values presented by
Anagnostopoulos et al. (2006) and Van Hentenryck and Vergados (2007).
Consequently, interaction effects are not considered in this dissertation. More
in depth parameter testing could be an interesting subject for future research.
The results of the parameter tuning are summarised in Table 32.

Parameters G, W , R, P and C seem to have a considerable impact on the
runtime of the algorithm, but a minor influence on its qualitative outcome.
Therefore, these parameters are set in a way that they return an algorithm with
a manageable runtime. Appendix C presents the outcome of 3 5-minute test runs
of every NLx instance for several parameters. Weight factor θ, cooling factors
β and ζ and population parameters X and Y have been set to several values
during this test but only marginal gains could be witnessed and are therefore set
to their default value as determined by Van Hentenryck and Vergados (2007).
The same reasoning is followed for weight factor w, where the default value of
4000 turns out to be the best performing out of the 5 tested values. For the last
parameter, T , the differences in outcome noticed between several values were
significantly larger, as shown in Table 33. For instances of up to 8 teams, a
temperature set to 400 generates better schedules. However, this changes for
larger instances, where a temperature of 1000 is performing better. Therefore
the value of T is set to 400 for instances of up to 8 teams and 1000 otherwise.

Parameter Abbreviation RPBSA

weight w 4000

temperature T

{
400 if n ≤ 8

1000 otherwise
cooling factor β 0.9999
phases of generations G 10
max stable waves W 5
population size X 30
elite runs Y 10
weight factor θ 1.04
reheats R 3
phases P 50
counter C 100
cooling factor phase ζ 0.96
repair multiple τ 0.75
new best feasible ω1 (

√
n/2 + 0.005)%

new best infeasible ω2 0.005%

Table 32: Initial Value Parameters



Temperature NL8K1 NL8K2 NL8K3 NL10K1 NL10K2 NL10K3 NL12K1 NL12K2 NL12K3

400 40365 41413 39761 67516 69112 66584 130663 127024 125521
700 42886 41471 40788 68796 64202 64143 130120 127986 126932
1000 43032 42254 40548 66541 66201 63370 124714 127974 121613

Table 33: Temperature Parameter Tuning

5.2.2 Experimental Design and Results

Once the parameters are initialized, the RPBSA algorithm is tested together
with four variations on the proposed specifications by means of 3 different test
runs of 30 minutes for each instance. Additionally, the CP formulation is
tested as an additional benchmarking opportunity. The mean of the results are
reported in Table 34. A first look at the table learns that optimal solutions are
found for the TTP instance and the three RTTP instances with 1,2 and 3 byes
for the smallest instance NL4 by all six methods. Optimality of the solutions
for NL4 with up to two byes, has been confirmed by the results of the CP
formulation.

The first of those six models to be tested is the CP formulation, implemented
in IBM ILOG CPLEX Optimization Studio. Only one test run is performed for
this approach since this exact method is always performed in the same way
for an instance. The results of the CP program are rather competitive but are
never the single best performing method. Especially for competitions with 12
or more teams and with 0 or 1 byes, CP seems to be struggling to come up with
high-quality solutions. For those instances, all other methods are performing
remarkably better. A remark should be made on the increasing performance of
CP as the number of byes gets larger, certainly for the larger instances.

In the second row of Table 34, the general algorithm as it is proposed
throughout this master’s dissertation is tested, and is called RPBSA. The
algorithm includes the repair mechanism as presented in Section 4.1.5.3 and
the moves are selected using a dynamic distribution as discussed in Section
4.1.5.2. This adapted select move mechanism has an upper limit on the
probability an operator is chosen, namely 50% so on average half of the moves
should be performed by a different operator. For the time-constrained
instances no solution is presented since the repair mechanism is not capable of
handling those instances as it makes use of byes to repair the schedules. For
four different instances, the RPBSA program has the lowest mean result. For
the other instances, RPBSA performs at a reasonable level and is not far off of
the results of the best method for this instance.

A third variant is called NO REPAIR and is basically the same as the
previous method but without the repair mechanism. Because the repair
method is not implemented, results for time-constrained instances can be
found. For those TTP problems, NO REPAIR is able to find the optimal
solution for 4 and 6 teams, and for 12 teams it delivers the lowest mean result.
For RTTP instances, NO REPAIR proves to be the best performing method
for only one instance, NL16K1.

The fourth method is called UNIFORM and neglects the dynamic move
selection and implements a uniform distribution for all moves at all times. It
does use the repair mechanism but only for the time-relaxed instances. This
UNIFORM variant can be considered the best performing one since it finds
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the lowest mean result for 20 instances out of the presented 28. The resulting
mean values are always within 10% of the best solution ever found and for
competitions with 4, 6, 8, 12 and 16 teams it returns a schedule that comes
within 5% of the best known schedules.

The fifth variant is called MOVES 100% and is almost the same as the
RPBSA program except for removing the limit of 50% on the dynamic
probability during operator selection. Again, for time-constrained instances
the repair mechanism is not implemented. For those instances MOVES 100%
is able to present the best performing solutions for 4 different competition
sizes. For the time-relaxed instances, this method does never return the lowest
mean result.

The method BEST START uses the RPBSA variation but with another
initial schedule, the results will be discussed in Section 5.2.3 (cf. infra). The
bottom row shows the best known solution found by any method in previous
literature. For the first five methods, the method with the lowest mean value for
an instance is marked. The BEST START receive a mark when they represent
an improvement of the best solution known from previous literature.

5.2.3 Impact Initial Schedule

The schedule that initializes the RPBSA algorithm plays a critical role in the
performance of the method. The five discussed methods in Table 34, except
for CPLEX, all start from the schedule generated by the 5.875-approximation
algorithm proposed by Westphal and Noparlik (2014) as explained in Section
4.1.4. The last method, called BEST START, on the penultimate row of Table
34 uses the RPBSA method, but with another initial schedule. This method
starts from the best TTP solution presented on the RobinX website15 for
every instance. This TTP solution is set to a time-relaxed instance in the way
presented in Section 3.3.3. The impact of this higher quality starting solution
is considerable. For all instances but two, the one with a better starting
solution is able to find better results after a 30 minute test run. On top, the
previous best known solution is improved for 13 instances by the BEST
START method. In order to see the clear impact of the initial schedule, BEST
START and RPBSA should be compared. Those 2 methods have these same
moves, dynamic selection probability and repair mechanism, only the starting
solution differs. Their comparison in Table 34 learns that BEST START is
performing better for all instances, which clearly shows the impact of a better
starting schedule on runs of 30 minutes. However, the method with the better
starting solution does not guarantee a better result. The risk of ending up in a
local minimum is quite high, since not a lot of moves will be accepted.

15http://www.sportscheduling.ugent.be/RobinX/
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5.2.4 Repair Mechanism

The results for assessing the performance of the repair mechanism are shown
in Figure 10 and the percentages represent the number of infeasible schedules
where feasibility is restored divided by the total number of infeasible
schedules. For example, the repair probability of NL10K3 is 89.8%, meaning
that all generated infeasible schedules with up to 8 violations
(= dτne = d0.75 ∗ 10e) are passed through the repair mechanism. From all
those infeasible schedules, 89.8% are returned by the repair mechanism
without any violation and consequently, with a restored feasibility. A first
conclusion of Figure 10 is that all generated infeasible NL4 schedules with up
to 3 violations can be repaired. In fact, only schedules with 2 violations can be
passed to the repair mechanism since only the norepeat constraint can be
violated. Those violations always come in pairs because two teams play each
other in two consecutive rounds and a violation will be reported for each team.
A second conclusion is the increasing performance as the number of byes rises.
Since the repair mechanism uses byes to repair schedules, more byes provide
more opportunities to restore the feasibility of a schedule. For large instances
the difference becomes quite extensive, with 3-RTTP instances having a repair
probability of over 80% and 1-RTTP instances struggling to get to 25%. The
third and last conclusion is the declining performance when the size of the
competition increases. First of all, the allowed number of violations is a linear
function of the competition size which results in more violations that
potentially have to be repaired for larger competitions. Secondly, swapping a
match between 2 rounds will cause more teams and matches to be involved for
larger instances and therefore reducing the probability of restoring feasibility.
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Figure 10: Performance Repair Mechanism

The comparison between an algorithm with and without the repair method
is presented in Figure 11b. The squares and crosses represent the mean solution
vales after 3 runs of 30 minutes for a program with and without the repair
mechanism, respectively. For all instances, except the largest one, the repair
method outperforms the other. This confirms the presumption implementing a
repair chain is potentially beneficial for the performance of the algorithm.
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5.2.5 Dynamic Probability Distribution

To select which move operator to select next, a random variable is generated. In
case the distribution is uniform, a random integer between 1 and the number of
available moves is generated. The probability of a certain move to be selected is
(1/numberOfMoves*100)% in each iteration. However, Section 4.1.5.2 showed
that not every move has the same expected performance and the performance is
dependent on the selected instance or competition. Therefore a dynamic move
selection was proposed with an adapting probability for each operation in each
iteration. If a move results in a better feasible or infeasible schedule, its selection
probability is increased, whereas the probability of all other moves decreases.
For this dynamic move selection, 2 variants exist. One variant implements a
limitation on the probability a move can be chosen. In this master’s dissertation,
50% was chosen as a benchmark, by doing this in theory every one in two moves
should be different. The second variant does not restrict the probability of an
operator with the result that the probability of a move operator can converge
to 100% and no other operator can be selected.

Figures 11c and 11d show a comparison between those 3 types of methods.
Figure 11c compares the uniform move selection method to the dynamic move
selection with a limitation of 50%. The triangles represent the uniform
distribution and are lower for all instances, except for NL10 and NL12 where
both methods have approximately the same gap to the best known solution.
For NL14 and NL16, the difference is more than 2% in favor of the uniform
distribution. This difference in performance can have several explanations. A
first one is that the variety of different moves throughout the program can be
effective to find new, potentially better solutions. This reduction of variety by
lowering the probability of selection for certain moves can cause the algorithm
to get stuck in a local minimum where no move is able to get out. A second
explanation can be the one of coincidence. This comparison is based on 3 runs
of 30 minutes for both methods and if the right move is selected at the right
time, a high-quality schedule can be produced. A third potential explanation
can be the extra computational effort that is required to calculate the
probability of each move after every iteration. Although these calculations are
rather limited, doing it thousands or millions of times might lower the
efficiency of the program. The conclusion is that a uniform move selection
performs on average slightly better than a dynamic move selection, based on
the experimental design in this section.

To assess the necessity of a limitation on the probability of a move, Figure
11d is used. The unlimited dynamic move selection, called Moves 100 and
displayed as stars, performs slightly worse than the 50% limited variant. Both
methods have the upper hand in 3 of the 6 instances but if the limited variant is
better, the difference is larger than for the inverse case. For NL10 and NL16 the
difference between both methods is around 2%, with the limited variant being
the best performing one. Again the explanation for those differences is not
clear but some possible reasons are the same as the previous comparison with
the uniform distribution. The overall conclusion of Figure 11c and 11d is that
the uniform distribution performs better, followed by the limited dynamic move
selection and the unlimited dynamic distribution being the worst performing
variant.
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(a) RPBSA vs CP
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(b) RPBSA vs No Repair
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Figure 11: Comparison methods
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5.2.6 External Benchmarking

To assess the performance of the constructed heuristics, a comparison is
executed with an exact method. The used external benchmark is the
CP-formulation presented in 4.2.1. Additionally, the results from this
CP-formulation are compared with the results found by Model 22 of Bao
(2009). The comparison of the heuristic (RPBSA) and exact method is shown
in Figure 11a and a first look learns that the performance of both methods is
similar for competitions of up to 10 teams. For the larger instances, the
heuristic performs better which could first of all be explained by the initial
solution. The heuristic starts from a schedule with a reasonable quality
whereas the exact method starts from scratch. Additionally, the experiment
design favors the performance of the heuristic. While heuristics are proposed
to return high quality solutions in a reasonable timeframe, exact methods are
constructed to solve problems to optimality. Given an unlimited runtime, the
exact method would always return an optimal solution. However, the
experiment mirrors reality by limiting the amount of resources, in this case
time, someone has to solve a problem. In realistic scenarios, where these
resource limitations apply, the heuristic method clearly performs better.

Where Table 34 contains the mean of the results of 3 test runs of 30 minutes
for different methods, Table 35 presents the best solution found for each instance
over all methods. The first column shows the objective function value of this best
solution. The second and third column represent the gap to the previous best
known solution and the method responsible for finding this solution, respectively.
The gap is calculated as follows: C(Sbestfound)−C(Spreviousbest)

C(Spreviousbest)
.

Except for method 1, the exact CP-model using CPLEX, all methods start
from the initial solution presented in Section 4.1.4. The definition of all
methods can be found below Table 35. It should be noted that method 2 (the
standard program) is not able to cope with time-constrained instances because
of the repair mechanism. A first conclusion is that all methods find the
optimal solution for NL4 instances. A second conclusion is the better
performance for time-relaxed instances that are a multiple of 4. The gap for
NL10 and NL14 instances is at least 5% while this is lower for all other
instances, a finding also supported by Westphal and Noparlik (2014). They
obtained a lower approximation ratio for instances where n is a multiple of 4
and consequently the initial schedule for those instances will be of higher
quality. A third conclusion is that for two instances, an improvement on the
current best found solution is returned. For NL6K1 and NL16K1 the best
known solution is improved with 1.05 and 0.17 percent, respectively. The new
best solutions are 22881 and 306601 found by method 4, using the uniform
move selection and method 3, the method without the repair chain. Note,
however that the current best NL16K0 solution (261687) can also be used as
an NL16K1 solution. A last conclusion is that method 4 finds the best solution
for most instances, 22 out of the 28 researched instances. For competitions
with 3 byes, this method finds all the best solutions according to Table 35.

72



Byes K=0 K=1

Value Gap Method Value Gap Method

NL4 8276 0.00% 1,3,4,5 8160 0.00% 1,2,3,4,5
NL6 23916 0.00% 1,3,4,5 22881 -1.05% 4
NL8 39721 0.00% 3,4,5 39935 2.06% 4
NL10 62305 4.83% 3 62934 5.90% 4
NL12 117313 5.95% 3 121800 3.50% 4
NL14 201773 6.91% 4 225715 7.68% 4
NL16 288702 10.32% 5 306603 -0.17% 3

Byes K=2 K=3

Value Gap Method Value Gap Method

NL4 8160 0.00% 1,2,3,4,5 8044 0.00% 1,2,3,4,5
NL6 22557 0.00% 4 22595 0.17% 4
NL8 39125 0.94% 4 39630 2.48% 4
NL10 64009 7.81% 2 63738 6.98% 4
NL12 122826 3.16% 2 118199 1.82% 4
NL14 226048 7.99% 4 216387 5.20% 4
NL16 306191 2.00% 4 307663 3.44% 4

Table 35: Best Solutions Found

1 = CP using CPLEX ILOG
2 = Standard program with repair mechanism and dynamic move selection
with a limit of 50% probability of a move being chosen
3 = Program without repair mechanism but with dynamic move selection with
a limit of 50% probability of a move being chosen
4 = Program with repair mechanism and a constant uniform distribution for
move selection
5 = Normal program with repair mechanism and dynamic move selection with
a limit of 100% probability of a move being chosen
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5.3 New Move Operators

5.3.1 Extend Away Trip

The first newly developed move operator is called ExtendAwayTrip and
basically extends an away trip of length Ub-1 with an additional away game to
obtain a trip with a length that matches the upper bound Ub. To assess its
performance, the percentage of improved solutions caused by this move is
studied. Figure 12 shows this percentage over all NLx instances compared to
the average percentage, which would be the result if all operators returned an
equal amount of improved schedules. For ExtendAwayTrip, the performance
is above average for NL4, NL12 and NL14, meaning that this operator is
responsible for more improved moves than it is expected to. For the other
instances, ExtendAwayTrip is relatively close to the average threshold which
leads to the conclusion that this move performs well and is beneficial to in the
search for an optimal solution.
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Figure 12: New Move Operator Performance

5.3.2 Flip Schedule

The second developed move is FlipSchedule and shuffles the schedule by
changing the order of a number of consecutive rounds. Taking a look at Figure
12 learns that this move operator performs below average for all NLx
instances. This was to be expected, since this operator normally swaps a lot of
entries in the schedule. Therefore, the operator is highly likely to invoke some
violations. This might explain the lower performance of around 7% of
FlipSchedule. Note, however, that this operator was mainly introduced as a
diversification strategy.
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5.4 RTCDMP
As mentioned before, the CP-model for the RTCDMP can be used to enhance
the results of any RTTP-algorithm. Given enough time, the CP-model will
always return an optimal home-away assignment for a given opponent schedule
and prove its optimality. However, since available runtime is limited, the runs in
this experiment are limited to 30 minutes each. The goal of this experiment is
to develop the best home-away assignments given the timetables of the solutions
in Table 35. Given enough time, this experiment should either prove optimality
of the current home-away assignment or it should come up with a better home-
away assignment, in terms of objective function value. In practice, this means
that the solutions returned by the CP-model for RTCDMP can not be further
improved by only adapting the home-away assignment.

The results of this experiment are provided in Table 36. Solutions that
improved the RPBSA solution are indicated in light grey. Solutions indicated
in dark grey are instances were the solution provided by RPBSA could not be
matched within 30 minutes. Only for NL12K1 and NL16K2, a better solution
could be provided than the one returned by the RPBSA algorithm. These
improvements are also quite minor (< 1%). Furthermore, the optimality of
the RPBSA home-away assignments for the timetables up to 8 teams could be
proven in less than 20 minutes. Consequently, the results of this experiment
clearly show that the solutions provided by the RPBSA leave little to no room
for improvement by only adapting the home-away assignment.

K = 0 K = 1 K = 2 K = 3

NL4 RTCDMP 8276 8160 8160 8044
RPBSA 8276 8160 8160 8044

NL6 RTCDMP 23916 22881 22557 22595
RPBSA 23916 22881 22557 22595

NL8 RTCDMP 39721 39935 39125 39630
RPBSA 39721 39935 39125 39630

NL10 RTCDMP 62305 62934 64009 63738
RPBSA 62305 62934 64009 63738

NL12 RTCDMP 117313 121649 122826 118199
RPBSA 117313 121800 122826 118199

NL14 RTCDMP 201773 225715 226048 216387
RPBSA 201773 225715 226048 216387

NL16 RTCDMP 313614 306603 305830 314797
RPBSA 288702 306603 306191 307663

Table 36: Results RTCDMP
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5.5 Best Experimental Results over Several Instances
Table 37 contains the best solution found over all used methods presented in
this master’s dissertation for every investigated instance. These solutions are
also presented to be uploaded on the RobinX website. Furthermore, these best
solutions are compared to the previous best known. Additionally, in Tables 38,
39 and 40, the result of a 15-minute run is presented for all GALAXY, SUPER
and CONSTANT instances, respectively. The best known solutions are given
as a benchmark but it should be noted that those are usually the result of runs
with an excessive runtime. Additionally, it is important to repeat that solutions
for the TTP are feasible for the K-RTTP for all K ≥ 0 (and even, solutions
of k1-RTTP are feasible for k2-RTTP, for k1 ≤ k2) due to the limited number
of byes (Bao & Trick, 2010). However, while solutions with a lower objective
function value are sometimes found for instances with less byes (compare for
example the solutions for NL8K2 and NL8K3), in accordance with previous
literature, solutions are only posted for the instances they have been developed
for.

K = 0 K = 1 K = 2 K = 3

NL4 RPBSA 8276 8160 8160 8044
best known 8276 8160 8160 8044

NL6 RPBSA 23916 22881 22557 22595
best known 23916 23124 22557 22557

NL8 RPBSA 39721 39255 39125 39255
best known 39721 39128 38761 38670

NL10 RPBSA 59436 59144 59021 58833
best known 59436 59425 59373 59582

NL12 RPBSA 115072 114189 113432 113358
best known 110729 117680 119067 116082

NL14 RPBSA 201773 206307 203679 202910
best known 188728 209616 209317 205690

NL16 RPBSA 287995 284468 281912 281004
best known 261687 307125 300188 297426

Table 37: NL Results



K = 0 K = 1 K = 2 K = 3

GALAXY4 RPBSA 416 414 413 412
best known 416 414 413 412

GALAXY6 RPBSA 1365 1346 1323 1322
best known 1365 1330 1294 1294

GALAXY8 RPBSA 2382 2567 2623 2519
best known 2373 2298 2261 2250

GALAXY10 RPBSA 5228 5291 5303 4933
best known 4535 - - -

GALAXY12 RPBSA 7982 8659 8520 8700
best known 7197 - - -

GALAXY14 RPBSA 12685 14830 14333 14156
best known 10918 - - -

GALAXY16 RPBSA 12685 14830 14333 14156
best known 14900 - - -

GALAXY18 RPBSA 17571 19234 19080 19003
best known 20845 - - -

GALAXY20 RPBSA 22322 25486 25369 23711
best known 26289 - - -

GALAXY22 RPBSA 30002 35772 34258 35221
best known 33901 - - -

GALAXY24 RPBSA 38985 44228 44083 44187
best known 44526 - - -

GALAXY26 RPBSA 49353 54904 57079 55371
best known 58968 - - -

GALAXY28 RPBSA 69188 75245 76435 75640
best known 75276 - - -

GALAXY30 RPBSA 86803 92432 96080 96115
best known 95158 - - -

GALAXY32 RPBSA 109776 116698 117548 116439
best known 119665 - - -

GALAXY34 RPBSA 134661 147103 143496 148554
best known 143298 - - -

GALAXY36 RPBSA 170895 180629 186464 184100
best known 169387 - - -

GALAXY38 RPBSA 217941 230143 228137 220564
best known 204980 - - -

GALAXY40 RPBSA 252843 264233 266126 265039
best known 241908 - - -

Table 38: GALAXY Results
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K = 0 K = 1 K = 2 K = 3

SUPER4 RPBSA 63405 63334 63263 63192
best known 63405 63334 63263 63192

SUPER6 RPBSA 130365 128262 127686 127687
best known 130365 127903 127370 127370

SUPER8 RPBSA 182409 213379 189773 188385
best known 182409 178115 177406 177258

SUPER10 RPBSA 324380 376487 359465 355627
best known 316329 - - -

SUPER12 RPBSA 479968 546699 502524 500147
best known 460998 - - -

SUPER14 RPBSA 632764 743465 744924 708858
best known 571632 - - -

Table 39: SUPER Results

K = 0 K = 1 K = 2 K = 3

CON4 RPBSA 17 16 16 16
best known 17 16 16 16

CON6 RPBSA 43 42 42 42
best known 43 42 42 42

CON8 RPBSA 81 81 81 80
best known 80 80 80 80

CON10 RPBSA 129 129 129 129
best known 124 - - -

CON12 RPBSA 185 182 184 185
best known 181 - - -

CON14 RPBSA 269 269 268 265
best known 252 - - -

CON16 RPBSA 340 342 342 341
best known 327 - - -

CON18 RPBSA 423 425 425 425
best known 417 - - -

CON20 RPBSA 549 549 551 548
best known 520 - - -

CON22 RPBSA 648 651 653 650
best known 626 - - -

CON24 RPBSA 756 761 764 762
best known 749 - - -

Table 40: CON Results
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6 General Conclusion and Future Work

In this section, some general conclusions from this dissertation are listed. First
of all, it is important to note that the results presented in Section 5 only serve
as indicators for the general conclusions. Due to limited available runtime,
limited CPU power, the stochastic nature of the proposed algorithm and the
decision to present results for a broad range of instances, only a select number
of experiments could be performed. Therefore, no hard proof could be provided
for the different conclusions. However, we feel that valuable conclusions can still
be drawn based on the indications presented in the results.

A first conclusion that can be made is the fact that a heuristic approach
is preferred over an exact optimisation approach for the RTTP, if runtime is
limited. This is indicated by the fact that the results provided by the heuristic
PBSA algorithm clearly outperform those of the CP model on 30 minute runs.
Note, however, that while 30 minutes usually is considered as a long runtime for
heuristics, this is not the case for heuristics for the (R)TTP where a runtime of
more than one day is not unusual (Anagnostopoulos et al., 2006).

A second set of conclusions covers the proposed adaptions to the TTSA
algorithm. The results give a strong indication that the implementation of a
repair mechanism probably enhances the performance of the RPBSA algorithm.
Additionally, the two new move operators (ExtendAwayTrip and Flipschedule)
both have the potential to deliver (better) feasible schedules, which indicates
that implementing these extra operators is helpful in the search for an optimal
solution. It is also important to notice the improved short term results obtained
by starting the algorithm from a schedule with a lower objective function value.
Almost all best results for the NL-instance class have been found by using the
best TTP solution available on the RobinX website as an initial schedule. While
the short term results for this approach seem promising, it is important to keep
mind that the initial schedules might represent local minima in the objective
function. Consequently, the search for an optimal solution might be affected
negatively by using an initial schedule that is too good.

Finally, the results from Section 5 do not indicate any added value in
dynamically selecting the applied move operators. While it seems intuitive
that favouring the best-performing move operators would return better results,
this claim can not be confirmed by the experiments. A potential explanation
for this is the fact that the diversification provided by having more variation in
the move operators is more valuable for the search than initially estimated.

This dissertation contributes to the research field of sports timetabling,
and in particular time-relaxed timetabling, by proposing a heuristic approach
and two exact optimisation methods. Additionally, this dissertation provides a
structured overview of past literature on the subject. However, some aspects
of sports timetabling problems, while interesting, fall outside the scope of this
dissertation and remain to be researched in future work.

First of all, it could be interesting to implement the rationale behind some
of the proposed adaptations to a time-constrained problem. Since the TTP is
an extensively covered and competitive research subject, a ‘quick-and-dirty’
implementation of these innovative adaptations might not result in a correct
representation of their true potential. Therefore, the conscious choice was
made to mainly restrict this dissertation to time-relaxed timetabling problems
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and leave the extension to TTP for future research. The targeted search for
away trips of suboptimal length, used in the move operators
GroupingAwayUsingByes, proposed by Pérez-Cáceres and Riff (2015), and
ExtendAwayTrip, proposed in this dissertation, could for example serve as a
potential improvement on the existing set of move operators for the TTP.
Naturally, the absence of byes would render this task significantly more
challenging. A second proposal for future research is the implementation of a
repair mechanism for the TTP. Again the absence of byes can make it harder
to implement a similar mechanism in a time-constrained environment.

It could also be interesting to try to step away from the theoretical problem
formulation and start moving closer to real-life scenarios. The existing models
can potentially be extended to take availability constraints and preferences of
the teams into account. It might also be interesting to adapt the models in a
way that they return more equitable schedules. Additionally, the core of the
objective function, i.e. travel distance, could be replaced by a more economical
value that also takes e.g. travel and accommodation costs into account. The
distance minimisation problem could than be turned into a cost minimisation
problem. Finally, it might be interesting to study the practical usability of an
‘optimal’ schedule. While this schedule might optimise the total distance to be
travelled, it might not be desirable to repeat the same schedule year after year,
for various reasons.
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Appendices
A OPL Code CP- formulation RTTP

CP.mod

1 /*********************************************
2  * OPL 12.10.0.0 Model
3  * Authors: Alexander De Munster, Bram D'haenens
4  *********************************************/
5 using CP;
6 int nbTeams = ...;
7 range teams = 1..nbTeams;
8 int B = ...;
9 range byes = 0..B;

10 int nbRounds = 2*(nbTeams-1)+B;
11 range rounds = 1..nbRounds;
12 int Ub = ...;
13 int D[teams,teams]=...;
14 dvar int x[teams][teams] in 0..nbRounds;
15 dvar int v[1..nbTeams][0..nbRounds+1] in 1..nbTeams;
16 execute{
17   writeln("Defining search strategy and setting parameters");
18 cp.param.TimeLimit = 30*60;
19 var f=cp.factory;
20 var phase1 = f.searchPhase(x, f.selectSmallest(f.domainSize()),
21 f.selectLargest(f.value()));
22 var phase2 = f.searchPhase(v, f.selectSmallest(f.domainSize()), 
23 f.selectLargest(f.value()));
24 cp.setSearchPhases(phase1, phase2);
25 cp.param.PresolveLevel=6;
26 cp.param.Workers = 4;
27 cp.param.AllDiffInferenceLevel = 6;
28 cp.param.CountInferenceLevel = 6;
29 }
30 minimize sum(i in teams,r in 0..nbRounds)D[v[i][r],v[i][r+1]];
31 subject to
32 {
33 //One game per day
34 forall(i in teams)
35 allDifferent(append(all (j in teams: j!=i) x[i][j], all (j in teams) x[j][i]));
36 //Not against self
37 forall(i in teams)
38 x[i][i] == 0;
39 //Set venues
40 forall(i,j in teams, r in rounds)
41 x[i][j] == r => v[i][r] == i && v[j][r] == i;
42 //Start and finish at home
43 forall(i in teams){
44 v[i][0] == i;
45 v[i][nbRounds+1] == i;
46 }
47 //Stay at the same venue during a bye
48 forall(i in teams, r in rounds)
49 count(append(all(j in teams)x[i][j], all(j in teams)x[j][i]), r) == 0 
50  => v[i][r] == v[i][r-1];
51 //No repeat constraints
52 forall(i,j in teams: i<j)
53 abs(x[i][j] - x[j][i]) > 1;
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CP.mod

54 //At most constraints home games
55 forall (b in byes,r in 1..nbRounds-Ub+b, i in teams)
56  sum(n in 0..Ub+b)count(all(j in teams)x[i][j], r+n)== 0 
57  => sum(n in 0..Ub+b)count(all(j in teams)x[j][i], r+n) <= Ub;       
58 //At most constraints away games
59 forall (b in byes,r in 1..nbRounds-Ub+b, i,j in teams)
60  sum(n in 0..Ub+b)count(all(j in teams)x[i][j], r+n)== 0 
61  => sum(n in 0..Ub+b)count(all(j in teams)x[j][i], r+n) <= Ub;
62   //Redundant Constraints
63     forall (r in 1..nbRounds-Ub-B, i in teams) {   
64     sum(p in 0..Ub+B) count(all(j in teams) x[i][j], r+p) >= 1;
65     sum(p in 0..Ub+B) count(all(j in teams) x[j][i], r+p) >= 1;
66   }
67 forall(i in teams, k in 1..nbTeams-1){
68 sum(r in 1..nbRounds-k*(Ub+1)) count(all(j in teams) x[i][j], r) >= nbTeams-1-k*Ub;
69 sum(r in 1..nbRounds-k*(Ub+1)) count(all(j in teams) x[j][i], r) >= nbTeams-1-k*Ub;
70 }
71 forall(r in rounds){
72 count(all(i,j in teams: i!=j) x[i][j], r) <= nbTeams/2;
73 }
74 //Symmetry breaking
75 x[1][2]>x[2][1];         
76 }
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B OPL Code CP-formulation RTCDMP
TRDMP.mod

1 /*********************************************
2  * OPL 12.10.0.0 Model
3  * Author: Alexander De Munster, Bram D'haenens
4  *********************************************/
5 using CP;
6
7 int nbTeams = ...;
8 range teams = 1..nbTeams;
9 int B = ...;

10 int nbRounds = 2*(nbTeams-1)+B;
11 range rounds = 1..nbRounds;
12 int Ub = ...;
13 int D[teams,teams]=...;
14 int TT[teams][0..nbRounds+1]=...;
15 dvar int h[0..nbTeams][rounds]in 0..2;
16 dvar int v[teams][0..nbRounds+1] in 1..nbTeams;
17 execute{
18   writeln("Defining search strategy and setting parameters");
19 cp.param.TimeLimit = 30*60;
20 var f=cp.factory;
21 var phase1 = f.searchPhase(h, f.selectSmallest(f.domainSize()),
22  f.selectLargest(f.value()));
23 var phase2 = f.searchPhase(v, f.selectSmallest(f.domainSize()), 
24  f.selectLargest(f.value()));
25 cp.setSearchPhases(phase1, phase2);
26 cp.param.PresolveLevel=6;
27 cp.param.Workers = 4;
28 }
29 minimize sum(i in teams, r in 0..nbRounds)D[v[i][r],v[i][r+1]];;
30 subject to
31 {
32     //Handle occurence of byes
33     forall(i in 1..nbTeams, r in 1..nbRounds)
34     TT[i][r] == 0 => h[i][r]==2 && v[i][r] == v[i][r-1];
35   //Limit number of home/away games to n-1
36 forall(i in teams)
37   {
38   count(all(r in rounds)h[i][r],1)== nbTeams-1;
39   count(all(r in rounds)h[i][r],0)== nbTeams-1;
40 }
41 //For every match one team plays at home and one plays away
42   forall(i in teams, r in rounds)
43   (TT[i][r]!= 0) => h[i][r] + h[TT[i][r]][r]==1;
44   //Play every team exactly once at home
45   forall(i in 1..nbTeams, r1,r2 in 1..nbRounds:r1!=r2)
46     (TT[i][r1] == TT[i][r2] && TT[i][r1] != 0) 
47     => h[i][r1]+h[i][r2]==1;
48 //Set venue of the games
49 forall(i in 1..nbTeams, r in 1..nbRounds)
50   {
51   h[i][r] == 1 => v[i][r] == i;
52   h[i][r] == 0 => v[i][r] == TT[i][r];
53   }  
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TRDMP.mod

54     //Start and end at the home venue
55 forall(i in 1..nbTeams)
56   {
57       v[i][0] == i;
58       v[i][nbRounds+1] == i;
59   }
60   //Atmost constraint away games
61 forall(b in 0..B, r in 1..(nbRounds-Ub-b),i in 1..nbTeams)
62     sum(a in 0..Ub+b)(h[i][r+a]== 0) == 0  
63     => sum(a in 0..Ub+b)(h[i][r+a]==1) <= Ub;
64 //Atmost constraint home games
65 forall(b in 0..B, r in 1..(nbRounds-Ub-b),i in 1..nbTeams)
66     sum(a in 0..Ub+b)(h[i][r+a]== 1) == 0  
67     => sum(a in 0..Ub+b)(h[i][r+a]==0) <= Ub;
68   //Redundant constraints  
69 forall (r in 1..nbRounds-Ub, i in teams) {
70     count(all(p in 0..Ub) h[i][r+p], 0) <= Ub;
71     count(all(p in 0..Ub) h[i][r+p], 1) <= Ub; 
72     } 
73     forall (r in 1..nbRounds-Ub-B, i in teams) {   
74     count(all(p in 0..Ub+B) h[i][r+p], 0) >= 1;
75     count(all(p in 0..Ub+B) h[i][r+p], 1) >= 1;
76   }
77 forall(r in rounds){
78 count(all(i in teams) h[i][r], 1) <= nbTeams/2;
79 count(all(i in teams) h[i][r], 0) <= nbTeams/2;
80 }
81 }
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C Results Parameter Testing

The results of the following parameter tests are presented as a percentage which
is calculated as follows: C(Snew)−C(Sbestknown)

C(Sbestknown)

w NL4 NL6 NL8 NL10 NL12 NL14 NL16 Average

500 0.00% 2.39% 9.40% 14.56% 10.73% 21.11% 11.35% 9.93%
1000 0.00% 2.05% 7.46% 14.95% 7.76% 18.54% 10.65% 8.77%
2500 0.00% 2.21% 8.88% 14.83% 8.59% 19.89% 10.86% 9.32%
4000 0.00% 1.43% 7.65% 14.78% 6.26% 16.24% 12.03% 8.34%
10000 0.00% 1.93% 10.05% 15.20% 6.85% 19.12% 13.78% 9.56%

β NL4 NL6 NL8 NL10 NL12 NL14 NL16 Average

0.9 0.00% 2.15% 9.72% 14.61% 7.02% 16.52% 9.46% 8.50%
0.95 0.00% 2.05% 5.90% 13.87% 8.09% 19.37% 13.60% 8.98%
0.99 0.00% 2.69% 9.24% 13.63% 7.59% 19.82% 10.72% 9.10%
0.9999 0.00% 1.40% 7.87% 14.40% 9.41% 16.78% 13.20% 9.01%
0.999999 0.00% 2.06% 7.45% 14.62% 6.74% 18.67% 11.94% 8.78%

θ NL4 NL6 NL8 NL10 NL12 NL14 NL16 Average

1.01 0.00% 1.85% 9.52% 13.27% 8.24% 18.07% 9.88% 8.69%
1.025 0.00% 2.67% 7.35% 13.31% 7.87% 17.30% 12.12% 8.66%
1.04 0.00% 1.68% 8.48% 14.25% 7.47% 17.20% 11.55% 8.66%
1.05 0.00% 2.73% 8.45% 14.33% 7.51% 16.44% 11.33% 8.69%
1.1 0.00% 1.69% 6.69% 13.70% 7.95% 18.92% 10.85% 8.54%

ζ NL4 NL6 NL8 NL10 NL12 NL14 NL16 Average

0.9 0.00% 1.09% 8.64% 16.48% 7.55% 16.57% 11.77% 8.87%
0.95 0.00% 2.25% 6.17% 13.98% 9.34% 14.75% 12.41% 8.42%
0.96 0.00% 2.85% 8.51% 15.99% 7.23% 19.81% 11.66% 9.44%
0.975 0.00% 1.52% 7.72% 13.66% 9.63% 18.53% 11.53% 8.94%
0.99 0.00% 1.82% 7.06% 16.51% 7.07% 18.92% 11.65% 9.00%

X & Y NL4 NL6 NL8 NL10 NL12 NL14 NL16 Average µpop µg

X = 10, Y = 3 0.00% 1.45% 7.67% 14.61% 6.42% 16.54% 11.97% 8.38% 33.38 3.33
X = 30, Y = 10 0.00% 1.82% 7.76% 13.98% 8.16% 19.63% 11.75% 9.01% 15.95 2.10
X = 30, Y = 20 0.00% 2.34% 7.47% 15.95% 8.22% 18.84% 10.63% 9.07% 15.38 2.00
X = 50, Y = 15 0.00% 1.83% 7.15% 14.09% 8.17% 21.22% 12.85% 9.33% 11.90 1.67
X = 80, Y = 30 0.00% 2.04% 8.71% 15.35% 7.52% 21.14% 14.88% 9.95% 8.71 1.57

µpop = Average number of populations created
µg = Average number of generations created, with a maximum of G = 5 (default G = 10)

C.1
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