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ABSTRACT

Within the field of psychometrics, over the last decade a new approach using network

visualizations is proposed to explore interactions between elements of a construct,

such as a collection of symptoms for a disease of disorder, and explain the possible

challenges of overlap or bridge connections between diseases of disorders which is

formally known as comorbidity. Network visualizations allow to plot statistical depen-

dencies between variables of such a construct to aid in exploratory data analysis.

Estimation of such networks is typically done using node centrality indices to under-

stand the role of importance for each variable present in the network. A challenge of

such estimation is that the statistical dependencies are limited to those of two vari-

ables at a time, possibly conditioned on the presence of other variables. A concern

addressed in this dissertation is that higher-order interaction terms in groups of three

or more variables could influence statistical dependencies at a lower level, or the

possible risk of false positive entries of statistical dependencies within the resulting

network visualization.

This dissertation will discuss the possible role of joint information content on the es-

timation of interaction networks by introducing a simulation framework powered by

Confirmatory Factor Analysis (CFA) to control the level of such higher-order interac-

tion for specific groups of three variables as a parameter. This parameter consists of

three levels: (a) a synergistic case where the presence of a third variable increases

the statistical dependency of the first two variables; (b) a redundant case where in-

formation of the third variable may also be present in the first two variables, leading

to a decrease of statistical dependency between the two original variables; and (c)

a zero-case where no higher-order interaction term is forced on the variables. To

achieve a sparse network representation of the data containing only significant sta-

tistical dependencies between variables, the graphical LASSO regularization method

was considered. Several model layouts are also proposed for the simulation.

The results show that the level of joint informational content between specific groups

of variables influences both occurrence and strength of statistical dependencies. This

applies both for particular groups of variables sharing characteristics as for those for

which their statistical dependency should be considered a false positive. These find-

ings showcase possible new challenges regarding estimation of interaction networks.



To conform with the guidelines to allow for the results to be reproduced, an online

repository has been made available which contains the complete library of used R-

scripts of the simulation framework, its related functions and those used for visual-

ization of the main results. It also contains multiple workspace files with data of the

repetitions subjected to a fixed seed number (100). The repository can be found via

the following URL:

https://github.com/jan-vanroozendaal/MaStat-Thesis-InteractionNetworks

Tags: psychometrics, network estimation, network visualization, joint informational

content, interaction information
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CHAPTER 1

RESEARCH OBJECTIVES

1.1 Introduction

The field of psychometrics is concerned with understanding and measuring psycho-

logical or social-related topics that are often complex by nature. Examples of such

topics could be disorders for which the symptoms are known but for which their cause

is still debatable. Either a collection of symptoms gives the diagnosis of the existence

of a disorder or the sudden emergence of the disorder causes the symptoms to be

present. Over the course of the last decade, network visualizations of such constructs

have been proposed (Schmittmann et al., 2013; Borsboom and Cramer, 2013) to look

at them from another perspective; to understand possible interactions of symptoms

within a disorder system or between disorder systems. Interactions between symp-

toms using such data visualization approach is limited to those between two variables,

either conditioned or unconditioned on the presence of other variables in the net-

work. Such connections also depict statistical dependencies between variables in the

network. The application of this new approach also demands for reliable estimation

techniques to determine the importance of each point in the network, which is often

done using node centrality indices. Despite this, a possible limitation of this approach

is that it may not correctly address the fundamental issue of taking account for the

possible joint information shared in groups of three or more variables, whether in a

synergistic or redundant setting. The presence of a variable could either enhance or

deteriorate statistical dependencies between other variables, possibly influencing re-

sults for network estimation when using the established centrality indices of strength,

betweenness and closeness. Another possibility could be the existence of a statistical

dependency between two variables which was first considered insignificant for other

level settings of joint informational content between the related variables. This also

increases the concern of detecting false positives regarding statistical dependencies

during estimation. This dissertation will introduce a simulation framework to generate

interaction networks where the amount of said joint information for a group of three

variables will be controlled as a parameter. This simulation framework is written in the

programming language R and relies heavily on the lavaan package (Rosseel, 2012).



1.2. PROBLEM STATEMENT & RESEARCH OBJECTIVES

1.2 Problem Statement & Research Objectives

The problem statement of the dissertation could be defined as follows: by manipu-

lating the level of joint information content for a group of three variables to either a

synergistic or redundant setting and comparing it to the ’zero’-level case, there is rea-

son to believe that it influences statistical dependencies between variables and thus

the results of the established estimation techniques using node centrality indices on

the resulting networks. A challenge therefore is to derive to a sparse precision matrix

for each level of joint informational content configured which conditions said statisti-

cal dependencies on the existence of the other variables in the model. It also drives

insignificant statistical dependencies to zero to deliver the sparse representation of

the network. The research objectives are thus to investigate to what extent these

statistical dependencies change for each extreme level of joint information content.

Another interest is whether its influence is only limited to a particular set of statis-

tical dependencies between variables sharing some common characteristics, or if it

could be considered random. To address the concern of possible false positives of

statistical dependencies found in the resulting networks, key performance indicators

such as specificity and sensitivity will be measured for different configurations of joint

informational content and threshold options for the regularization method to come

to a sparse representation of the data regarding statistical dependencies between

variables.

1.3 Outline of dissertation

The following chapter will discuss the main theoretical background for the main topics

of psychometrics, network visualization, and joint informational content which origi-

nates from information theory. Furthermore, the LASSO regularization technique to

derive to a sparse network model is also discussed. Chapter 3 covers the method-

ology with regards to the modelling approach taken in order to control the level of

joint informational content for each given set of variables within the model. Several

model layouts are then proposed to explore whether its influence on the estimation

of the resulting networks differs significantly. The fourth and final chapter covers the

main results found with regards to the emergence or changes of (unexpected) statis-

tical dependencies found in the resulting interaction networks. It is then followed by

a brief discussion of these summarized results and a final conclusion regarding the

role of joint informational content on the estimation of interaction networks. Several

shortcomings and limitations of the dissertation are discussed which could provide

further ideas and improvements on extending the simulation approach.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The theoretical background of three main topics will be discussed in this chapter. First,

an overview of the motivation, use, visualization, estimation and related challenges

of network psychometrics will be discussed in its own section. This is followed by cov-

erage of several concepts related to the field of information theory in order to discuss

possible definitions and accompanying calculations for joint informational content be-

tween variables. The final topic covered will be of the LASSO regularization method

which is used to derive to a sparser collection of data with the intention of creating

a network model with more interpretability. This technique could lead to a network

model with possibly more significant or relevant interactions to explore further.

2.2 Network Psychometrics

This section will discuss the motivation for using an dependency network as a visual

tool for exploratory data analysis in the field of psychometrics along with its core vi-

sual components and guidelines for interpretation. The topic of comorbidity shall also

be briefly discussed to put emphasis on the possible interplay of symptoms across

disorders challenging the traditional relationship models of symptoms and disorders

as a possible argument to suggest the alternative, namely an dependency network

approach. The Gaussian graphical model will be considered as the main template of

such dependency network for this dissertation mainly because of its relation to the in-

verse covariance matrix and therefore also to the problem statement. Regarding the

topic of suggested estimation methods of the accuracy of an dependency network or

the importance of variables derived from the network approach, current limitations

or embedded assumptions of the dependency network template and the suggested

metrics for estimation of the model should be evaluated as well to motivate the need

for attempting to include joint informational content for the intents and purposes of

improving estimation of the network.



2.2. NETWORK PSYCHOMETRICS

2.2.1 Motivation for a Network Approach

Psychometrics can be defined as a scientific discipline focused on the theory of how

to objectively measure complex topics of psychological or social nature such as be-

havior, disorders or abilities. In the paper of Schmittmann et al. (2013) a summary

is given of how the relationship between such psychological constructs and the vari-

ables (or symptoms) available for observation is mostly interpreted in one of two

ways: either the construct causes the variables to be present (reflective model), or

the appearance of a (set of) variable(s) determines the presence of the psychologi-

cal construct (formative model). In both model types, the construct is represented

as an unobserved or latent variable. Reflective models assume that correlation be-

tween symptoms should exist but only due to their common cause. Direct causal

relationships between symptoms is disregarded to emphasize the idea that estab-

lishing the relationship between symptoms and psychological constructs is done via

measurement. In formative models, for each symptom it is assumed they each cap-

ture separate parts that together explain the construct as a whole. Removal of one

symptom would therefore directly change the severity or description of the construct.

A limitation of such models is that it excludes the possible interplay and relationship

between a set of symptoms that may occur within a given disease or disorder. In fact,

the authors believe this to be a possible motivation why such psychological constructs

are described as a single unit or entity. Instead of placing symptoms as a function to

latent variables, both Schmittmann et al. (2013) and Borsboom and Cramer (2013)

propose a third approach of psychometrics involving network analysis. A network

of direct relationships between symptoms represents a causal, dynamic system of

the psychological construct. The goal of the network is not to seek for a common

cause of the construct; its emphasis is on the dynamics of the symptoms themselves.

Schmittmann et al. (2013) stress that the dimension of time and its role on the symp-

toms is not well presented in reflective and formative models and that the proposed

network models are to change over time. Borsboom and Cramer (2013) mention a

possible advantage of using such network models with time-series data using lag-1

correlations to visualize the evolution of the emergence of symptoms, as building a

network of all symptoms for one individual may not be suitable when the presence

of one or more symptoms is missing at one point in time. Also, Schmittmann et al.

(2013) discuss how outgoing effects or events in one’s life may be derived by exam-

ining either the overall network or part of it. An example given is how a selection of

interactions between symptoms may create a vicious circle within a person’s lifeline

possibly triggering a series of negative events along the way. The emphasis is to shift

psychometrics more towards the dynamics of the symptoms when placed together in

a psychological construct.

4



CHAPTER 2. LITERATURE REVIEW

2.2.2 Role of Comorbidity

It should also be noted that the difficulty of how to differentiate constructs such as

depression and anxiety can also be reflected via such network models. As both may

share symptoms, one may ask whether the separate networks of the symptoms of

both depression and anxiety could be linked together. This phenomena of symptoms

related to multiple constructs is called comorbidity. Cramer et al. (2010) discuss the

role of comorbodity in both the reflective model (in their paper referred to as the com-

mon cause hypothesis) and the network model approach. Comorbidity in a reflective

model suggests a direct correlation between the latent variables while keeping the

observable symptoms separated between each latent variable, eliminating the possi-

bility to explore comorbidity in terms of exploring edges of nodes derived from distinct

psychological constructs. The term ’bridge symptom’ is defined to identify symptoms

that are shared across disorders or create overlap in the network model by possibly

passing on effects (via correlations) to other nodes from each disorder when emerged.

The authors also bring the argument that, compared to latent variable modelling, es-

timation of each of the symptoms (nodes) in the model is not considered to be equal.

Instead, node centrality can be used as an estimation metric to understand the impor-

tance of one symptom in the network model compared to others, as will be discussed

later in this section. In short, for the topic of comorbidity, the network approach along

with its proposed estimation metrics for node centrality allows for a causal explana-

tion why certain symptoms may lead to a greater risk of comorbidity and thus to an

inequality of weight importance of symptoms. Cramer et al. (2010) also state that

this inequality via node centrality puts a challenge to the cut-off approach of diagnos-

ing disorders where the number of symptoms is used as a metric. Jones et al. (2019)

define statistics specifically designed to measure the node centrality of such bridge

symptoms, expanding on the defined node centrality estimation methods described

by Epskamp et al. (2018). Both the conclusions of Cramer et al. (2010) and Jones

et al. (2019) state that cases of comorbodity could be explored further via network

modelling sets of symptoms between disorders without limiting to only directly linking

latent variables acting as constructs of these disorders, providing a further argument

to use this approach in psychometrics. Furthermore, the literature review of Fried

et al. (2017) reviewing network studies including comorbidity research conducted be-

tween 2010 and 2016 mentions the implication derived from the network approach

that the frequency of being diagnosed with one of either disorders may co-occur as

a function dependent on the number of bridge symptoms. The authors state that

such implication could not have been derived from the traditional concept of reflec-

tive models or the common-cause hypothesis. Referring back to the compatibility of

time-series data as suggested by Borsboom and Cramer (2013) to understand the

5



2.2. NETWORK PSYCHOMETRICS

evolution of emergence of symptoms within a network for each individual, combining

this with the topic of comorbidity, Fried et al. (2017) do take into consideration that

the occurrence of comorbidity may differ across individuals while being diagnosed

similarly, allowing for further explanation via the network approach.

2.2.3 Data Visualization for Exploratory Data Analysis

Aspects in terms of data visualization for the network approach in psychometrics will

now be discussed. The Gaussian graphical model will be used as the main graph tem-

plate for visualization purposes. The main visual properties of the Gaussian graphical

model is formally discussed in Lauritzen (1996) and consists of two essential building

blocks of (a) nodes and (b) edges derived from a set of random variables where the

data is assumed to hold a multivariate normal (or Gaussian) distribution to create an

undirected network graph, often referred to as a Markov random field. Nodes typically

represent variables from the given dataset for the study and are commonly graphi-

cally displayed with circles. Edges are the lines connecting nodes together based on

a given relation. Such model is considered undirected as there is no restriction for the

edges to follow a specific path or sequence to connect nodes together.

Borrowing the syntax for the formal notation of the properties of the data distribu-

tion and the accompanying Gaussian graphical model from Yuan and Lin (2007), one

could start with the collection of variables notated as a random vector with length

p referring to the number of dimensions (or variables) named X. The notation of the

Guassian distribution is given using μ for the unknown mean and
∑

representing the

covariance matrix.

X = (X(1), . . . , X(p)) ∼ Np(μ,
∑

) (2.1)

The relationship conveyed between two nodes in a Gaussian graphical model is the

correlation of the two relevant variables after conditioning for all other present vari-

ables, giving the model an advantage of minimizing the risk of showcasing deceitful

correlations (Bhushan et al., 2019). This conditioning is achieved by estimating the

inverse of the covariance matrix C, which is often named the concentration matrix or

precision matrix.

C =
∑−1 (2.2)

Because of this property, it is not a prerequisite of the model to have all combina-

tions of pairs of nodes connected with each other; however, Epskamp et al. (2018)

discuss in their tutorial paper of estimating such networks that sampling variation de-

rived from the multivariate normal distribution may introduce bias when measuring

6



CHAPTER 2. LITERATURE REVIEW

centrality of nodes. While centrality will be discussed later in this section, for now

it suffices to describe that it evolves around the presence of edges towards a node

(Fried et al., 2017) or the presence of a node as a destination step when determining

direct paths, most often the shortest, between a given pair of nodes in the network

using edges to form a path (Costantini et al., 2019; Epskamp et al., 2018). Due to this

variation, the observation of true zero partial correlations is considered rare (Bhushan

et al., 2019), and most non-penalized network graphs are considered to be dense due

to the high number of possible observed non-zero edges.

Using the definition of the Gaussian random vector X from Equation 2.1, the Guassian

graphical model is defined as a graph G using the coordinates from the p-dimensions

stored in V and a collection of edges E referring to the conditioned correlations be-

tween two variables:

G = (V, E) (2.3)

For clarification, an edge included in E can be denoted as ej where i and j represent

the two variables and lie between 1 and p. Referring back to the Gaussian random

vector X, one could also describe it as the edge between X() and X(j). Because the

edges are undirected, ej equals ej but the latter will be omitted due to redundancy. If

an edge between X() and X(j) does not exist, this can be referred back to the precision

matrix C where for the entry cj a value of 0 is found. The collection of edges E

therefore include entries of ej where their corresponding conditional correlations cj >

0 and can be written as:

E = (ej)1≤<j≤p (2.4)

Besides shapes and lines, other data visualization dimensions such as color and thick-

ness of edges are used to convey information about the strength of the partial correla-

tion between two nodes and whether it is considered positive or negative. An example

of a final Gaussian graphical model is shown in Figure 2.1 and originates from the pa-

per of Epskamp (2016) where a dataset bfi consisting of 25 variables grouped into

five factors is used from the R-package psych (Revelle, 2011). While in this example

a threshold is used to remove edges from the network with an absolute value smaller

than 0.05, other missing edges could be derived from the observation that cj = 0.

When discussing similarities of the Gaussian graphical model to other modelling ap-

proaches, Bhushan et al. (2019) refer back to the single latent variable construct of

the reflective model, this time described as a uni-dimensional factor model. It is crit-

ical to mention here that its purpose lies in exploratory data analysis to explore both

presence of expected relationships between nodes based from theory and possible

unexpected ones explored via data visualization, and is not to be used directly for sta-

7



2.2. NETWORK PSYCHOMETRICS

Figure 2.1: Example of a Guassian graphical model as seen in Epskamp (2016). Color
and thickness are used as extra dimensions to convey more information about the
partial correlations between nodes.

tistical inference. The authors do mention that comparison of network models across

different groups of the population could be realized using a Hamming distance met-

ric. Originating from information theory, this metric describes the number of positions

where a change is required for an object to be in a specific required state. For string

objects, this represents the number of characters to be replaced to spell out a given

word or sequence. With regards to the network graphical models, the application of

the Hamming distance refers to the difference of the presence or absence of edges

across two models; however, the sign and level of the partial correlation embedded

in the edges is ignored for comparison. This means that if an edge was present be-

tween nodes A and B with a strong positive partial correlation in network model 1

and a weak negative partial correlation in network model 2, the Hamming distance

would not increase by one when comparing the two network models based on this

edge comparison. Because of this limitation of ignoring the stability of the correlation

between nodes across networks representing different target groups, bootstrapping

methods have been proposed by Epskamp et al. (2018) to allow for confidence inter-

vals of edge weights, as will be discussed later.

Jones et al. (2018) discuss possible misinterpretation of such network models from a

data visualization perspective, focused mainly on node positioning. They discuss how

most presentations of network studies utilize an algorithm for aesthetic purposes,

named the Fruchterman-Reingold (FR) algorithm, as described in Fruchterman and

Reingold (1991). In short, nodes are positioned as such that they do not overlap other

nodes in the presentation view. Clusters of nodes with strong partial correlations are

placed closer to each other. At the same time, nodes are placed as such that edges

across the network are of approximate equal length. The network shown in Figure

8



CHAPTER 2. LITERATURE REVIEW

2.1 shows the application of the FR-algorithm; nodes with thick edges are placed

relatively close to each other. The clustering element of the algorithm would suggest

that node positioning, or the distance between two particular nodes, captures some

information about the likeliness of these nodes within the model. Bhushan et al.

(2019) already warn that similarity of nodes is not conveyed in the model via the

dimension of position; Jones et al. (2018) add to this that the coordination levels of

the nodes along the X and Y axes do not contain any meaningful information about

the characteristics of a node.

To allow exploratory data analysis via plots with meaning given to positions to inspect

(dis)similarities of variables, the multidimensional scaling (MDS) method is suggested.

Compatible with high-dimensional data sets, it allows to represent nodes in a low-

dimensional space. The input for MDS is a proximity matrix of some sort, and the

authors discuss how the network edges, each representing partial correlation between

a pair of nodes, can be used for such application. Similarly to the techniques applied

in the FR algorithm, nodes with strong associations will tend to be presented close

to each other in the MDS plot; however, it is important to note that the Eucledian

distance of nodes on the resulting MDS plot now does represent dissimilarities. The

example MDS plot on Figure 2.2 shows the similarities of the nodes used in Figure 2.1

from the bfi dataset. The R-code snippet to recreate this plot can be found in Appendix

A and refers to the tutorials as shown in Jones et al. (2018). The interpretation of the

values of the two dimensions D1 and D2 to build the scatter plot is beyond the scope

of this dissertation. It suffices to understand that positioning of the data points is now

given a clear meaning compared to the node positioning in the network model.

Figure 2.2: Example of MDS plot using the bfi dataset from the psych R-package.

A few clear examples to showcase the relation between the model network and the

MDS plot are now given. The nodes N1 through N5 are positioned as such in the MDS

plot that they could form a cluster. In Figure 2.1, these nodes are seen closely to

each other on the upper-left corner and most edges are (strongly) positively related.

The clustering of the data points in the MDS points therefore suggests that these
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nodes are strongly similar or are closely related to each other. An example where

dissimilarity is displayed can be done using the nodes C1, C2 and C3 against C4 and

C5. Starting from the network model, all five nodes are shown on the bottom-left

corner. Negative weighted edges exist between C3 and C5 and between C2 and C4.

Because all other edges are (strongly) positive, there is a distance between nodes

C4 and C5 from the remaining nodes of that factor. The MDS plot shows this clearly

as nodes C1 through C3 are grouped on the upper-left corner while nodes C4 and C5

are on the opposite end of the plot on the bottom-right. The same phenomena is

shown with node A1 which is distant from the other A-nodes in the MDS plot due to

its negative edge weights with nodes A2 and A3.

With this insight, Jones et al. (2018) allowed for a technique where both edges and

node positioning are given meaning, derived from the partial correlations and zero-

order correlations, respectively. Alternatively, principal component analysis can be

used to give meaning to the coordinates of the nodes on the X and Y axes. The co-

variance matrix could be used as input for eigenvalue decomposition. These axes are

derived from the two main principal components representing most of the aggregated

variance. Of course, as these two component may not capture all aggregated vari-

ance, information will be lost in this lower-dimensional space when plotting nodes. It

can be interpreted as a metric of how well the complexity of the network can be repre-

sented in such two-dimensional spacing. If the two principal components collectively

account for a low percentage of the aggregated variance explained, interpretation of

the results derived from the plot should be taken with caution. Compared to MDS, the

coordinates of the nodes on the X and Y axes on the PCA plot are now given meaning,

but its trade-off is that the distance between nodes is not directly interpretable in

terms of (dis)similarity, especially when the the two principal components account for

a small percentage of the variance. Instead, the positional distance of two nodes in

the PCA plot help to explain how one node may differ in one dimension or component

related to the other. The main conclusion of Jones et al. (2018) is that plots represent-

ing the complexity of a network on a lower-dimensional space, either via MDS or PCA,

may convey additional information about (dis)similarities of nodes using position as a

data visualization dimension compared to the Gaussian graphical model utilizing the

FR algorithm. Such additional plots may aid with the exploratory data analysis in the

study.

The PCA plot for the bfi dataset using the first two principal components explaining

most of the aggregated variance is shown in Figure 2.3; the R-code is also found in

Appendix A. Between the two principal components, a total of 31.5% of the variance

is explained meaning that caution is advised when relying on the insights of this plot.

Because the coordinate points from the two principal components explaining most
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Figure 2.3: Example of PCA plot using the bfi dataset from the psych R-package. The
first principal component RC1 accounts for 18% of the aggregated variance; for RC2
it is 13.5%.

of the variance has now been given a meaning, the positioning of each data point

may have shifted when comparing it to the MDS model. Nevertheless, while distance

between data points is not easily explained, the examples given of the N-nodes being

closely together and a separation between nodes C4 and C5 and the remaining C-

nodes are still noticeable from the PCA plot despite the low percentage of variance

explained. This shows that there is potential to use both MDS and PCA plots alongside

the network model visualization to support exploratory data analysis.

2.2.4 Estimation via Node Centrality

Regarding estimation techniques for the structure of psychometric networks, the mea-

surement of node centrality via multiple indices of degree, betweenness and close-

ness is considered a popular method (Bringmann et al., 2019) and originate from the

work of Freeman (1978). Important to note is that such indices were developed when

dealing with social networks where nodes typically reflect people and edges the exis-

tence of an relationship or of a communication channel. Rather than the classification

of the existence of an edge between two nodes, the centrality indices may also be

compatible with edge weights (Opsahl et al., 2010) in a weighted network, such as

with using the absolute partial correlation levels as has been described earlier. Such

centrality indices taking into consideration edge weights has been considered a com-

mon standard (Bringmann et al., 2019) and has been used in the work of Epskamp

et al. (2018) to estimate accuracy in psychometric networks. Furthermore, if edges

were modelled as such that they were restricted to go into one direction, this dimen-

sion of edge direction influences the results on the three mentioned node centrality

indices (Bringmann et al., 2019). For the scope of this literature review, only undi-

rected edges will be considered.
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Starting with the degree index, it describes the number of edges a node has (Freeman,

1978). Taking edge weights into consideration, an alternative method is to sum up

the absolute edge weight values for this node. This degree index using edge weights

is then renamed as ’strength’. The closeness index of a node is considered a more

’global’ metric of the network and describes the level of distance a node has with

all other nodes in the network, if such connection via edges can exist. The concept

of closeness relates to efficiency of communication of information of a node to other

nodes in the network (Freeman, 1978). Minimizing the distance between two nodes

without considering edge weights is done by finding the lowest number of edges

required to build the bridge between them; however, Bringmann et al. (2019) note

that edge weights may be considered a proxy for connection speed or efficiency of

communication, and that shorter paths with weak edge weights may not be preferred

over longer paths with stronger edge weights when considering them. Betweenness

tells for each node how many times they are included when mapping the shortest

path (in this case, with edge weights considered) between a given set of two nodes

(Freeman, 1978). This centrality index describes whether the node plays a significant

role in information flow between nodes that are not directly connected in the network

via an edge (Bringmann et al., 2019).

Before continuing with the assumptions made when applying these node centrality

indices for estimation and the possible critique of how these may not be fit within

the concept of psychometric networks due to their origins in social networks, the

work of Epskamp et al. (2018) focuses further on this estimation by introducing ac-

curacy of edge weights by creating a 95% confidence interval and stability of the

aforementioned node centrality indices via non-parametric bootstrapping techniques.

Their assumption is that, due to the rule edge weights play in the node centrality

indices, wide confidence intervals of the edge weights lead to poorer accuracy to es-

timate node centrality. In combination, the authors introduce a stability metric for the

indices by estimating them on subsets of the data by reducing the number of observa-

tions to be used to create the network while keeping the number of nodes constant.

Stability is tested via correlation of the original values of the centrality indices and

those estimated from the networks using a reduced number of observations. As a

standard, in order to conclude stability of the indices, this correlation should be con-

sidered strong with a minimum threshold set to at least 0.7. The more observations

can be dropped while maintaining this strong correlation with the original centrality

indices, the stronger the stability of said indices.

Interestingly, Jones et al. (2019) discuss the combined topics of comorbidity and cen-

trality indices to define a method for estimating bridge symptoms using altered ver-

sions of the strength, betweenness and closeness indices. Categorizing beforehand
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the symptoms to their predefined communities (commonly disorders), the ’bridge

strength’ of a node can be defined as the sum of absolute edge weights of a node

connected to other nodes originating from other communities. Similarly, bridge be-

tweenness and bridge closeness only consider paths between nodes coming from

different communities while taking into account edge weights. The main intention of

introducing this variation of node centrality indices is to spot potential bridge symp-

toms for an individual to avoid comorbidity issues in diagnosis of disorders.

2.2.5 Node Centrality Assumptions

Because of the aforementioned origin of said indices (Freeman, 1978) using only the

structure of social networks at the time, there has been discussion about their com-

patibility in psychometric networks (Bringmann et al., 2019; Hallquist et al., 2019).

The word ’flow’ was mentioned during the description of the betweenness centrality

index. Borgatti (2005) describes three types of flow processes that would be con-

sidered applicable in social network structures: serial, parallel and transfer flows. In

short, both serial and parallel flows are based on a duplication mechanism. A sim-

ple example would be a virus, where one person could infect others over time via

coughing or sneezing. People infected with the virus would become immune over

time, thus a recurring loop of people becoming infected is impossible allowing for a

serial flow. A parallel flow could be of multiple people simultaneously spreading an

e-mail to their direct connections due to a computer virus. Transfer flows focus on the

question whether a flow, such as traffic, is designed to follow the fastest, shortest,

or otherwise most efficient way to traverse from one node to another or prefers a

non-deterministic approach. The example of a package delivery process is used as a

route must be determined to allow for the most packages to be delivered in an area

to gain time efficiency. The critique of Borgatti (2005) is that the betweenness and

closeness centrality measures of Freeman (1978) directly make assumptions that the

flow of information should only occur using the shortest paths possible and that re-

visiting of nodes is excluded. A concern could therefore be that using such indices to

deduce node centrality (and thus its importance) on a network that uses a different

approach of information flow would lead to misleading results. Instead, the essence

of closeness and betweenness should be on the arrival time and frequency of ar-

rival of information, respectively (Borgatti, 2005). The examples given to describe

the flow types along with the redefined purposes of closeness and betweenness are

applicable to social network structures; however, in the case of a psychological net-

work depicting a order, while the visualization aspect allows one to conceptualize

how symptoms may spread, it is hard to define the flow between symptoms using the

edges as they do not carry information from one to another (Bringmann et al., 2019).

13



2.2. NETWORK PSYCHOMETRICS

As for the assumption regarding betweenness and closeness using shortest paths,

as symptoms are not meant to communicate information from one symptom to an-

other to reach some end-state, in combination with the fact that edges only convey

strength of relation and not a communication channel, it makes the value of these

indices questionable.

Furthermore, Bringmann et al. (2019) mention that due to the use of length and dis-

tance metrics to calculate the node centrality indices, the information contained in the

edge between nodes whether the partial correlation is negative or positive is ignored;

therefore, the indices can only generally state something about the level of influence

of a node, but not whether it is positive or negative. This can also be paired with the

violation of the assumption that changing the representation of the node (a person

in social networks and a symptom in psychological networks) would not change the in-

terpretation of the indices. The DSM documentation (American Psychiatric Association,

2013) does classify symptoms in terms of severity. Such information is currently not

conveyed in the centrality indices (Bringmann et al., 2019), meaning that the most

central node may not always be considered the most important one to tackle if occur-

ring when its severity level is considered relatively low compared to others close in

the network. The context of node centrality is then not directly one of severity of the

symptom.

Another important assumption about the centrality indices that is applicable much

easier in social network structures is that each node refers to a distinct entity or

person. On the other hand, symptoms are usually created by combining responses

from multiple questions on a questionnaire. It is not unlikely to think that due to the

setup of the questionnaire and the predetermined progression of the questions, multi-

collinearity may exist between these symptoms and can therefore not be interpreted

as fully unique (Bulteel et al., 2016). If this assumption is not met, comparing central-

ity levels of two nodes becomes problematic when overlap of the two node constructs

is possible (Bringmann et al., 2019). This assumption will be one of the central focus

points throughout this dissertation.

Finally, as is applicable in multiple fields of research, one needs to assume that all

relevant nodes are included for network analysis. Epskamp et al. (2018) pointed out

in their bootstrap approach that stability of the betweenness and closeness indices

often scores a lower rate when sub-setting the data compared to the strength in-

dex. Hallquist et al. (2019) find that sampling variability explains this instability of

the two centrality indices and they are highly sensitive to spurious correlations be-

tween nodes. They refer this insight back to the concept of comorbidity and bridge

symptoms, stating that the role of betweenness to identify bridge symptoms is put

into danger. Furthermore, the authors suggest to use both the marginal and partial
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correlation matrix and not rely fully on analysis via network visualization only. Bring-

mann et al. (2019) suggest to focus more on the dynamics of the network rather than

node centrality to intervene with the development of a disorder. Indeed, the possi-

bility of shared variance across nodes via multicollinearity is one to explore further

to find better estimation techniques for psychometric networks to better understand

interaction between symptoms.

2.3 Joint Informational Content

The measures discussed in this section are related to the information theory frame-

work of Shannon (1948) of how to quantify information streams. The discussed net-

work psychometrics are heavily reliable on the accuracy and stability of the corre-

lations between two nodes after conditioning for all other variables to describe the

similarity of nodes. It has been discussed how a low-dimensional approach via MDS

has allowed for better interpretation of this similarity across nodes by using a coor-

dinate system and the Euclidean distance as measure. An alternative approach to

understand dependencies between variables based on information theory could be

done via the metric of mutual information (Steuer et al., 2002). A limitation of the

current network approach to better understand the established statistical dependen-

cies between nodes is that it currently does not consider the high-order dependencies

between three or more variables. Similarly to partial correlations, level of mutual infor-

mation could be measured both before and after conditioning on the other variables.

The shift of this measurement could then be interpreted as the interaction information

metric. The core of information theory is that it uses the probability distributions of

variables to determine the extent to which these variables are related to each other

or the level of interaction between them. To better understand the concepts of mutual

information and interaction between variables beyond the perspective of Pearson cor-

relation values, it is best to start with the single-variable information metric of entropy

derived from the framework of Shannon (1948).

2.3.1 Entropy & Mutual Information

If one knows that a variable can hold multiple values but may only return one at a

time, each value could be mapped with a level of probability p() when determining

its distribution. The unpredictability of the result output from that variable for a given

measurement test could be interpreted as the level of information one gains from

reading said measurement result. To illustrate, if one knows that the result will always

have the same outcome, only one value in the variable may exist with a probability
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of 1 (or 100%); therefore, no additional information is gained as the outcome was to

be expected. Using the same notation as seen in Steuer et al. (2002), going across all

possible values of variable A, here given in the range , . . . , M , the average amount

of information gain H(A) is named the entropy:

H(A) = −
M
∑

=1

p() logp() (2.5)

This concept of entropy can be expanded to two variables A and B by using their joint

probability distribution, with  and bj the states or outcomes of the variables and M

and Mb the number of outcomes possible for variables A and B, respectively.

H(A,B) = −
M
∑

=1

Mb
∑

j=1

p(, bj) logp(, bj) (2.6)

In case of statistical independence between the two variables, such as when no edge

has been visualized between two nodes in a network, the entropy levels of variables

A and B may simply be added up to derive to H(A,B). Otherwise, the calculation of the

joint entropy H(A,B) has to include conditional probability in the form of p(|bj) and

its related conditional entropy H(A|B) defined as:

H(A|B) = −
M
∑

=1

Mb
∑

j=1

p(, bj) logp(|bj) (2.7)

The joint entropy is then calculated via the simple addition:

H(A,B) = H(A|B) + H(B) (2.8)

Finally, using the property that the level of entropy of H(A|B) can only be smaller or

equal to the level of entropy of H(A), as knowing the outcome of variable B can only

decrease the level of uncertainty of the outcome of variable A or leave it unchanged,

the joint entropy H(A,B) holds the following mathematical rule:

H(A,B) ≤ H(A) + H(B) (2.9)

This property can then be used to define the level of mutual information I(A,B) be-

tween the variables A and B (Shannon, 1948) and cannot be negative:

(A,B) = H(A) + H(B) − H(A,B) ≥ 0 (2.10)
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Steuer et al. (2002) also discuss an alternative approach to entropy derived from Kull-

back (1959). Its original formula uses two probability distributions p and p0. Rather

than describing the average level of information gained from a measurement, Kull-

back’s entropy equation explains how substituting an initial probability function p0

with a more fitting distribution p changes the level of information gained. Again,

using the notation as seen in Steuer et al. (2002):

K(p|p0) =
∑

p log
p

p0
(2.11)

Steuer et al. (2002) rewrite this equation to refer back to the joint probability distribu-

tion of variables A and B. Here, p0 has been substituted by the probability distributions

of variables A and B separately, and the joint probability distribution is interpreted as

the final fitting distribution p:

K(p|p0) =
∑

j

p,bj log
p(, bj)

p()p(bj)
(2.12)

The authors mention that the measure of K(p|p0) can be used as a distance metric

between the observed joint probability distribution and the assumption that the vari-

ables are statistically independent and can therefore be interpreted similarly as the

mutual information I(A,B) found via the Shannon entropy equations. One important

argument that Steuer et al. (2002) do make is that compared to Pearson correlation,

the value of I(A,B) being 0 can directly be interpreted as such that the assumption of

statistical independence between variables A and B holds. Another advantage is that

the metric of mutual information is not limited to linear functions as it uses probabil-

ity distributions and is not bound to a specific model approach (Timme et al., 2014).

Where Pearson correlation is bound to linear dependencies, the mutual information

measure captures correlation between the variables in a more generalized, broader

sense (Steuer et al., 2002). This leads to their argument that a Pearson correlation

value (close to) zero does not fully imply statistical independence between the vari-

ables.

Using the equation to understand the level of interaction between three or more vari-

ables can be done by grouping variables together as a set and applying it as a single

vector against the target variable (Timme et al., 2014). If variables B and C were to

be treated together within a set S to measure the mutual information with variable A

as outcome Y, it can be rewritten as such:

(Y, S) =
∑

p(Y,B,C) log
p(Y,B,C)

p(Y)p(B,C)
(2.13)
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Timme et al. (2014) do mention that a drawback of this approach is that the contri-

bution of each of the variables within the set with regards to the mutual information

between the set and the target variable cannot be derived directly. Instead, the calcu-

lation should be repeated excluding certain variables from the set at a time to deduce

the influence of the presence of a variable in the set towards the resulting level of

mutual information.

Initially, the numeric value of the calculated entropy may be hard to interpret. Up to

now, the only conceptualization given is that a higher level of entropy describes, on

average, a higher level of surprise or information gain from knowing the measurement

of a variable. Ince et al. (2017) discuss how using the logarithm function with base-2

allows for an interpretation of this numeric value using the unit of bits. In their de-

scription, a bit represents a yes/no question. If the distribution is known and a series

of questions need to be asked to know the outcome value for a given trial, entropy ex-

plains the average number of questions needed to guess that outcome value. Due to

the usage of base 2 in the function, a reduction of one bit unit means that the level of

uncertainty has been cut by half. An example given is when predicting the roll of a fair

die, with entropy log2 6. If one already received information prior to guessing that the

outcome was even, the number of possible outcomes is reduced by half, and the new

entropy og23 is exactly 1 bit less than og26. When discussing mutual information,

Ince et al. (2017) compare it to the level of explained variance in linear regression but

state that while both are similarly interpreted in terms of context, mutual information

is not dependent on the relationship type between variables and can thus be applied

in non-linear relationships as well. This confirms with the description of entropy given

by Timme et al. (2014). Due to the common scale of bits being applicable on many

kinds of relationships between data, a view on mutual information could be to use it

as a statistical test to determine independence between variables, similarly to how

t-tests and tests of correlation are used (Ince et al., 2017).

2.3.2 Interaction Information

Similarly to how partial correlation is used in network psychometrics in order to ac-

count for the other variables present in the model, mutual information between two

variables can be conditioned after knowing the content of the third variable (Timme

et al., 2014; Cover and Thomas, 2012), which is usually given in the notation form

I(A;B|C) with a non-negative property and is calculated using the following formula:

(A;B|C) =
∑

p(A,B,C) log
p(C)p(A,B,C)

p(A,C)p(B,C)
(2.14)
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The concepts of mutual information and conditional mutual information are probably

better explained via data visualization. Venn diagrams have been considered the

most popular and useful approach to visualize relations between sets. In this case,

each set can represent the existing entropy levels of a variable.

Figure 2.4: Entropy Venn Diagrams showcasing mutual information and interaction
information, as found in Runge (2015).

Mutual information can be seen as the overlap of the two ’entropy sets’ of variables

X and Y, where in the conditional mutual information it is the unique part of over-

lap between X and Y that is not overlapped by variable Z. It is clear from these two

visualizations that both metrics cannot be negative. Nevertheless, interpretation on

the possible value shift when calculating the difference between the conditional and

unconditional mutual information refers back to McGill (1954) and is referred to as

interaction information. Ghassami and Kiyavash (2017) describe it as the multivari-

ate generalization of mutual information. Additional information of a third variable Z

may increase or decrease the level of information transmitted between the original

variables X and Y. Using example C from Figure 2.4, the overlap of variables X, Y and

Z can be notated as I(X;Y;Z) and is the remainder of the mutual information between

X and Y minus the conditional mutual information of X and Y after conditioning for

variable Z. Of course, the role of the variables can be interchanged, meaning that

one could start with the mutual information of X and Z and measure it again after

conditioning on variable Y; the value of the interaction information would remain the

same, given that the entropy levels of the variables do not change. In notation form,

this becomes:

(X;Y;Z) = (X;Y) − (X;Y |Z) = (Y;Z) − (Y;Z|X) = (X;Z) − (X;Z|Y) (2.15)

This equation allows for I(X;Y;Z) to be both positive or negative, which has given the

opportunity to explain whether the relationship between two variables is of a syner-

gistic or redundant nature (Timme et al., 2014). In short, synergy would suggest that

two variables X and Y, when known together, allow for more information to be gained

about a third variable Z compared to using only X and Y separately against Z. On the

other hand, redundancy suggests that variables X and Y together deliver the same

information of variable Z as when you inspect the information of variable Z explained
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by X and Y alone. As the name suggests, when redundancy occurs there is no added

value to have both X and Y be present together in a model with regards to the in-

formation delivered by X and Y alone. Despite this conceptualization, the properties

of positive or (representing) negative interaction information is hard to interpret us-

ing Venn diagrams; the paper of Finn and Lizier (2020) addresses these challenges

and proposes new compatible measures for those. Using examples C and D in Figure

2.4, Runge (2015) explains that both plots should not be over-interpreted. Overlap

between X and Y (I(X;Y)) and X, Y and Z (I(X;Y;Z)) makes it easy to understand the

difference between conditional and unconditional mutual information between X and

Y and allows one to understand how the introduction of variable Z (and its entropy

set) allows to partially explain the level of interaction and correlation between vari-

ables X and Y. On the other hand, when the entropy sets of variables X and Z do not

overlap as shown in example D, it is straightforward to denote I(X;Z) = 0, but the addi-

tional equation I(X;Z|Y) > 0 cannot be directly derived from the visualization as there

is still no overlap between X and Z. Instead, this should be interpreted as the case

where the variables are, when variable Y is not present, unconditionally independent,

but with the introduction of variable Y they become conditionally dependent (Runge,

2015). The work of Ghassami and Kiyavash (2017) explains how determining whether

the interaction information is positive or negative can determine the skeleton of the

DAG for a particular system. For a positive value, each variable is responsible for

explaining (partially) the dependency between the two other variables. This is clearly

represented in examples A and B in Figure 2.5. Also applicable in example C, variables

X and Z are considered independent given the existence of variable Y.

Figure 2.5: Skeleton structures of DAGs of three variables, as found in Ghassami and
Kiyavash (2017)

This leads to the conclusion that for examples A, B and C, I(X;Z|Y) = 0 while I(X;Z)

≥ 0, leading to a positive value for I(X;Y;Z). Example D, which shows the conditional

dependency of X and Z when Y is introduced, forces the inverse where I(X;Z) = 0 and

I(X;Z|Y) ≥ 0, leading to a negative value for I(X;Y;Z). This scenario implies that knowing

one variable strengthens the correlation between the two other variables (Ghassami

and Kiyavash, 2017). For example D, knowing the value of X allows for a stronger

correlation between Y and Z. One could place this in the context of an XOR gate where

Y is the outcome variable. While I(X;Z) = 0, if Y is determined one knows that the

input variable from variable X will automatically determine the input value of variable

Z, and thus I(X;Z|Y) ≥ 0. If Y was not known at the time, variables X and Z were

still considered independent. An alternative approach where the value of interaction
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information cannot be negative and proves how redundancy and synergy may co-

exist together to produce a net result of zero interaction information is discussed in

Appendix B and is named the Partial Information Decomposition method from the

work of Williams and Beer (2010).

Estimation of the mutual information between two Gaussian variables could be simpli-

fied if the assumption of the given joint distribution is bivariate normally distributed

(Gel’Fand and Yaglom, 1959). Used in the studies by Kraskov et al. (2004) for im-

proving the estimation of mutual information using a k-nearest neighbours (KNN) ap-

proach rather than binning to determine the joint probability density and Ma and Sun

(2011) using a variation via copula functions to estimate the mutual information, the

equation utilizes the correlation coefficient ρ as such:

M = −
1

2
log(1 − ρ2) (2.16)

This equation could also be considered compatible for the purposes of better esti-

mating the described psychological network models as the edges are determined via

partial correlations. Indeed, both conditional and unconditional mutual information

could be calculated by using ρ both from the covariance matrix and its inverse to

retrieve the partial correlation, leading to a possible value for the interaction infor-

mation. A limitation here is that in the high-dimensional setting where the number of

observations is lower than the number of variables, the inversion of the covariance

matrix is not possible due to the matrix becoming singular. This issue may also oc-

cur outside the high-dimensional setting in the situation where one of the variables

can be described as a linear function of other present variables, as is the case with

collinearity. The matrix then becomes singular as embedded eigenvalues may equal

to zero and will, at most, be positive semi-definitive.

2.4 Sparse Models via Graphical LASSO

As the number of interactions in the network may scale very quickly when increasing

the number of variables relevant for the study, the number of edges possibly visual-

ized in the network model will grow fast and could most likely hinder the exploratory

data analysis phase of the research. Because of this, techniques for penalized re-

gression and dimension reduction will be included within the scope of this review. In

particular, the graphical LASSO penalized regression technique will be discussed in

more detail as it is considered a broadly accepted approach with included flexibility

of customizing its penalty parameter.
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As the number of nodes grows and their partial correlations with other nodes may

not be easily observed as exact zeroes (Costantini et al., 2019), the risk of having an

overfitted model presenting biased results increases due to the model being forced

to display all non-zero relationships between two variables. Instead, regularization

methods such as LASSO (Tibshirani, 1996) can be used to find a sparse model to avoid

this risk, and may also be applied in the setting of high-dimensional data. Because

the Gaussian graphical model is based on the inverse of the covariance matrix, the

goal of regularization is to estimate a sparse inversion of this matrix. As described

in Friedman et al. (2008), if the assumption of the multivariate Gaussian distribution

holds for the continuous data used in the model, given the rule that a zero partial

correlation between two variables implies conditional independence between the two,

introducing a penalty parameter allows to drive other partial correlations further down

to zero to leave with only the sparse, strongly relevant partial correlations in the

model.

As the lasso regularization technique is used to impose a penalty on the covariance

matrix its type is classified as L1. Using p again to define the number of variables

or dimensions present, μ for the mean, S for the sample covariance and C for the in-

verse of the covariance matrix, the problem defined is one of maximizing a penalized

log-likelihood. The following equation as shown in Friedman et al. (2008) describes

the partially maximized Gaussian log-likelihood of the presence of the data when ac-

counting for μ:

logdetC − trce(SC) − λ
∑

|C| (2.17)

The mechanics of this ’graphical LASSO’ (GLASSO) could be summarized as follows.

A penalty parameter λ1 is chosen and multiplied by the sum of absolute values in Θ

to compute the total penalty. By using the absolute values, both positive and nega-

tive values of partial correlation are treated equally (Epskamp et al., 2018). Using this

penalty, the LASSO regularization method maximizes the problem of the log-likelihood

function embedding this penalty as shown in Equation 2.17. Important for this prob-

lem is that the total sum of edge values originating from Θ is forced to be limited and

thus, some edges will have to shrink towards zero to meet this condition. The result

will be a sparse inverse covariance matrix and thus a sparser network model that will

still attempt to represent the covariance present in the complete data set. Modifying

the level of λ1 changes the sparsity of the network; a higher penalty parameter leads

to a sparser model. Typically, the level of λ1 where all edges shrink down to zero is

considered the maximum value for λ1. Optimization methods to determine a fitting

value for λ1 can be done using the EBIC criteria and is derived from the work of (Chen

and Chen, 2008). In short, this criteria is used to tackle the problem of variable selec-

tion given the complexity of the model due to the high number of possible covariates.
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The optimal value of λ1 is found where the EBIC criteria is minimized. The result of

this regularization method is a sparse network model with non-zero partial correla-

tions to gain better accuracy in model estimation and allow to easily identify strong

relationships between variables after penalization. This approach differentiates from

the regular LASSO approach as described in Tibshirani (1996) as a covariance matrix

derived from a multivariate Gaussian distribution can be used as input.

An alternative method based on GLASSO is introduced by Celik et al. (2014) and

focuses on the usage of ’modules’, each representing a collection of variables. Com-

pared to the earlier described approach by Friedman et al. (2008) which still consid-

ers the usage of (a selection of) original variables in the network model, the ’module

GLASSO’ (MGL) approach allows for even more aggressive dimensionality reduction

in the model. This is shown in Figure 2.6 where only a network between the modules

is considered. The motivation of this approach is derived from the idea that networks

may be structured and that the independence assumption which drives the usage of

regularization methods with penalization such as LASSO may not hold. The remark

of Celik et al. (2014) stating networks may be structured refers to the idea that while

an edge missing between two nodes may suggest mutual independence, it could be

that on a higher-level concept there may be a form of interaction. Variables that

are interacting heavily with each other could be bundled together in a module. The

interaction between modules, and thus the estimation of conditional independence

between modules, is then explored via MGL. This covers a limitation of the Gaussian

graphical model where higher-level constructs to represent sets of variables is not

made compatible and estimation is limited to the possible large number of edges.

Figure 2.6: Left: a Gaussian graphical model representation using nine variables.
Right: a module graphical lasso representation where the nine variables are divided
into three modules. Each module is represented by a latent variable L1, L2 and L3 and
conditional independencies between modules are estimated by visualizing a network
of the latent variables. Found in Celik et al. (2014).

Each module is represented via a latent variable, and MGL attempts to allocate each

variable into one of the modules. In order to do so, the values of the set of latent

variables L must be estimated first. MGL allows for the usage of the k-means clus-

tering algorithm where cluster centroids will represent the latent variables. It can be

used without having a prior assumption of a possible network structure between these

latent variables. Because the visual representation of MGL suggests using edges be-
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tween the latent variables, it also includes the step of estimating the inverse covari-

ance matrix which is given the notation
∑−1
L

. Celik et al. (2014) have also provided

proof that the estimation of the inverse covariance matrix
∑−1
X

with original variables

X can be derived when starting from
∑−1
L

. Once the latent variables have been deter-

mined, the Euclidean distance is used to assign original variables into modules.

This approach is interesting in combination with the topic of joint information content

as it explores the interactions between variables from a higher level construct. Be-

cause the MGL approach also utilizes a partial correlation matrix
∑−1
L

with possible

estimation of
∑−1
X

, there is potential to utilize the concepts of mutual information

and interaction information on modules. This also allows the opportunity to explore

whether joint information content can be differentiated when exploring variables as-

signed within the same module or across different modules. An alternative method

where latent variables are introduced in the Gaussian graphical model is described

in Meng et al. (2014), where a distinction is made between global and remaining

localized effects to explain the interactions between variables. Such global effects

could affect many variables. An example is the oil price on the stock value of many

companies which rely heavily on this resource, and the underlying political or geo-

logical factors that could affect the resource price. Their motivation is that achieving

a sparse model is hindered by the presence of said global effects. Latent variables

would capture the correlations of the global effects on the variables, and edges be-

tween variables found in the sparse model would suggest the remaining, localized

level of interaction. As shown in Figure 2.7, representing global factors through the

use of latent variables creates a model where the covariance matrix is not necessarily

sparse, but the assumption is made that the number of latent variables is far lower

than the original number of variables in the data set. Meng et al. (2014) describe it

as a sparse plus low-rank matrix due to the combination of the original sparse ma-

trix and the low rank inherited from the reduced number of latent variables. While

this approach does not reference the usage of modules to assign variables together

and the estimation of the latent variables is not performed via a k-means clustering

algorithm, one could interpret the model approach as such that it might allow for an

explanation of a higher-level interaction using latent variables as a proxy.

Figure 2.7: Visual representation of the Gaussian graphical model and its inverse
covariance matrix (a & b) and the Latent Variable Gaussian Graphical Model (LVGMM)
variation (c & d), as found in Meng et al. (2014).
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METHODOLOGY

3.1 Introduction

This chapter will describe how a simulation framework was built in order to generate

data from a specific created model and control the level of interaction information

for a set of variables within this model. The configurations of the model would then

serve as the baseline model or ground truth. Such configurations can be both the

adjustment of the level of interaction information to manipulate correlations between

given variables as well as including predefined residual correlations between variables

from different sets. Once determined, the data generated from this model would be

subjected to the graphical LASSO regularization approach in order to create a sparse

model. The edges detected via this regularization method can then be visualized as

a network model. The main interest is to determine whether spurious correlations are

detected after applying graphical LASSO for each predetermined level of interaction

information and how these findings change when shifting from a full-redundancy sce-

nario up to a full-synergy scenario, including the case where little to none interaction

information exists in the model. Spurious correlations are hereby defined as those

found via graphical LASSO but which were not predefined in the baseline model. De-

tecting spurious correlations for a given level of interaction information included in

(parts of) the model could have implications on how dependency networks should be

estimated as the presence of one or more spurious correlations may influence the

calculation of the node centrality indices.

The chapter is divided into the following sections: first, an overview is given of the

model building approach using the R-package lavaan (Rosseel, 2012) in order to con-

trol the model design, configure the relationships between sets of variables and allow

for simulating data sets; second, several model variations are presented to explore

how the model design may influence the detection of spurious correlations when us-

ing similar levels of interaction information between the same variables in the model;

and third, the presentation of the output in terms of average calculated level of inter-

action information determined for a given sample size of data sets and several KPIs

related to spurious correlations found via graphical lasso regularization.
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3.2 Modelling Approach

A latent variable approach, which in design may resemble the functionality from the

module graphical lasso technique by (Celik et al., 2014), was selected for this study

using the R-package lavaan (Rosseel, 2012). The idea is that for each latent variable

included in the model, a new set of three variables X, Y and Z would be included in

the network model. Each set of variables originating from the same latent variable

will be referred to as a ’triplet’. The naming convention for the variables in this case

would be the combination of the letter representing the latent variable pasted with

the name of the variable present within the triplet. This means that for the first latent

variable A, the variables A.x, A.y and A.z are created.

The implied correlations between the variables within a triplet can be stored in a

matrix  and are derived from an equation considered central in the field of Confirma-

tory Factor Analysis (CFA) for which its theoretical background can be found in Bollen

(1989). The equation is now shown with each component explained in the following

paragraphs:

 = ΛΨΛT + Θ (3.1)

In essence, each latent variable in the model is constructed using three indicators (the

variables X, Y and Z), each multiplied with a predetermined factor loading λ1, λ2 and

λ3. The mapping of which observed variables are loaded using which factors in a CFA

model can be done via a matrix named Λ of size p x m (Bowen and Guo, 2011) with p

the number of variables and m the number of latent variables specified in the model.

The transposed matrix ΛT is used as well in the equation. The matrix Ψ is symmetrical

of size m x m and contains (co)variances of the latent variables which are encoded

using ψ’s. Finally, the matrix Θ is of size p x p and contains the residual variances or

the variances of the error terms of the created variables X, Y and Z on the diagonal

and their residual covariances off the diagonal. Using Equation 3.1, the matrix  will

contain estimated population variances and covariances with the number of rows and

columns equal to the number of observed variables derived from all latent variables

in the model (Bowen and Guo, 2011).

Continuing with the example of a latent variable creating a triplet of variables, both

the covariance structure and the implied covariance structure from CFA can be demon-

strated. The accompanying matrix equation (3.2) is derived from Equation 3.1 and

shows how to compute  for a given triplet. When using the lavaan model syntax,

the visualization of the CFA model as shown in Figure 3.1 can be achieved using the

R-package semplot (Epskamp and Stuber, 2014). Figure 3.2 shows the mapping of

the (implied) covariances and were shown in Epskamp (2013).
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Figure 3.1: Visualization of the CFA modelling approach with mapping of the factor
loadings λ1, λ2 and λ3 coming from latent variable 1. ψ11 is the variance-covariance
matrix of latent variable 1 with only one cell. θ11, θ22 and θ33 are residual variances
of the observed variables with error terms. As shown in Epskamp (2013).

Figure 3.2: Left: covariance structure of the observed variables using the matrix on
the left-hand side of Equation 3.2. Right: implied covariance structure using the
resulting matrix on the right-hand side of Equation 3.2. As shown in Epskamp (2013).
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In Appendix C.1, R-code of the lavaan model syntax is shown for the generation of

data of a single triplet via one latent variable using the CFA model structure as shown

in Figure 3.1. It includes the assignment of the factor loadings λ1, λ2 and λ3 and

the calculation of the (co)variances of the X, Y and Z-variables. For this study, the

variance of the variable X is left fixed and is dependent on the factor loading λ1. This

is done to allow for the covariance between the other two variables Y and Z, and the

underlying variances of variables Y and Z separately, to change. Changing the level of

covariance of one pair in the triplet will allow for the level of interaction information to

change. For clarification, the calculation of the level of interaction information present

within the triplet is based on the difference of mutual information between variables

X and Y in the unconditioned case and the conditioned case with the introduction of

variable Z. Fixing the variance of variable X is therefore a necessary step. Combined

with the factor loadings λ2 and λ3, the parameters for the level of variance of the

variables Y and Z, named t2s and t3s respectively, are determined.

There is one noticeable difference in the model layout when comparing it to Figure

3.1. To achieve the effect of forcing a specific level of interaction information within

a triplet, a second factor needs to be created including only loadings related to the

variables Y and Z. This factor will be named A.bf, with ’bf’ referring to the term ’bi-

factor model’ as each triplet of variables will be constructed using two factors. The

loadings of the additional factor will not be the same as used to create the one-factor

model for latent variable A. Instead, two new factor loadings 2s and 3s will also be

indirectly related to the covariance of variables Y and Z. While this additional factor

should be included in the model syntax, there should not be a correlation between

the two defined factors. This can be forced in the model syntax by mapping the

correlation of each factor to one multiplied by itself, and zero multiplied by the other

factor.

A visualization of this model using the previous syntax is shown in Figure 3.3 and is

also produced via the R-package semplot, where the additional factor is renamed to

A.b. The lavaan model syntax and the creation of the variables ecor, t2s, t3s, 2s

and 3s can then be repeated for each new triplet to be introduced in the model. This

allows to expand the model with a given number of triplets with no embedded interac-

tion between variables originating from different triplets. Such interaction can also be

included in the model syntax if required; the next section of this chapter will discuss

how residual correlations are used to create different layouts of the simulation model

to explore the role of interaction information further. Having established a simple

model including only one triplet, several different configurations of the variables λ1,

λ2, λ3 and ecov will be used to demonstrate their role on the covariance matrix of the

triplet variables. While it is assumed that the factor loadings to construct the latent
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Figure 3.3: Visualization of the bi-factor lavaan model to create a triplet of variables
with adjustable level of interaction information between variables X and Y.

variables will be indifferent for each triplet added to the model and will remain fixed

once the complete model has been built, the ecov parameter may vary per triplet to

introduce flexibility in the model and can be changed freely per triplet to set up a new

scenario for simulation of the data.

For the baseline model, the factor loadings are fixed at λ1 = 0.99, λ2 = 0.70 and

λ3 = 0.30 as these are considered compatible for the model with the introduced

flexibility of controlling the level of interaction information per introduced triplet. For

the following examples, the ecov value is set at a given level so that approximately no

interaction information exists within the triplet. The specifics regarding which values

ecov can hold in the model and how this affects the level of interaction information

follows shortly. For now, these examples demonstrate how each loading is primarily

responsible for the covariance between one specific variable within the triplet against

the two others. The factor loading λ1 controls the covariances between both the

variables A.x and A.y and between the variables A.x and A.z; a lower value decreases

both covariances, albeit not at the same rate as demonstrated in Tables 3.1, 3.2 and

3.3. Similarly for λ2, the covariances between A.y and the two other variables in

the triplet are dependent on the factor loadings as shown in Tables 3.4, 3.5 and 3.6.

Factor loading λ3 does the same for the variable A.z as demonstrated in Tables 3.7,

3.8 and 3.9.

As mentioned earlier, the factor loadings λ1, λ2 and λ3 will remain fixed at the spec-

ified baseline levels. To have control over the amount of interaction information gen-

erated within a triplet between variables A.x and A.y, only one of the covariances
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A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.545 0.308 1

Table 3.1: Baseline covari-
ances

A.x A.y A.z
A.x 1
A.y 0.748 1
A.z 0.490 0.308 1

Table 3.2: Change in 1 =
0.80

A.x A.y A.z
A.x 1
A.y 0.648 1
A.z 0.424 0.308 1

Table 3.3: Change in 1 =
0.60

A.x A.y A.z
A.x 1
A.y 0.944 1
A.z 0.545 0.370 1

Table 3.4: Change in 2 =
0.90

A.x A.y A.z
A.x 1
A.y 0.704 1
A.z 0.545 0.237 1

Table 3.5: Change in 2 =
0.50

A.x A.y A.z
A.x 1
A.y 0.545 1
A.z 0.545 0.150 1

Table 3.6: Change in 2 =
0.30

A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.832 0.550 1

Table 3.7: Change in 3 =
0.70

A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.704 0.442 1

Table 3.8: Change in 3 =
0.50

A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.315 0.115 1

Table 3.9: Change in 3 =
0.10

between variable A.z and another variable within the triplet should change. For this

modelling approach, the level of ecov controls the covariance between variables A.y

and A.z. This is achieved due to the inclusion of the additional latent variable within

the model syntax; unlike the original latent variable, both of its factor loadings are

dependent on ecov and are only related to A.y and A.z. Selection of this value should

be done with care as it is a requirement with regards to analysis of the amount of

interaction information generated for the covariance matrix to remain positive defini-

tive. The next set of tables shows for three predetermined values of ecov the changes

of the covariance between A.y and A.z. These chosen values for ecov happen to be

solid cases to generate redundancy, synergy or zero interaction information within

the triplet, excluding the risk of the covariance matrix not being invertible.

A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.545 0.308 1

Table 3.10: Zero interac-
tion, with ecov = −0.15

A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.545 0.068 1

Table 3.11: Synergy, with
ecov = −0.39

A.x A.y A.z
A.x 1
A.y 0.832 1
A.z 0.545 0.678 1

Table 3.12: Redundancy,
with ecov = 0.22

Assuming a bivariate normal distribution, the approach by Gel’Fand and Yaglom (1959)

is applied using the correlation coefficient between A.x and A.y in both the conditioned

and unconditioned case to measure the level of interaction information. For a single

3x3 matrix, the R-code of the function to calculate the level of interaction information

is presented in Appendix C.2.

Using the covariance matrices from Tables 3.10, 3.11 and 3.12 along with the function

to calculate interaction information, the values returned are approximately 0.00, 0.58
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and −0.17, respectively. Interpretation of the output value is not as straightforward.

For instance, unlike in the method suggested by Ince et al. (2017) to use a base-2

logarithm to allow a unit of bits to be used when calculating possible differences in

entropy from observing a measurement, a natural logarithm is used instead. Neg-

ative values significantly distant from zero indicate a presence of redundancy while

significantly positive values suggest synergy.

Even with a simple model consisting of only one triplet of variables, the influence of

the level of interaction information can be demonstrated. Data based on the lavaan

model can be generated to be subjected against the glasso regualization method. The

influence of the level of interaction information on the results from glasso are visible

when visualizing the related network model. For the visualization part of the workflow,

the R-package qgraph (Epskamp et al., 2012) is used. In Figure 3.4, using the same

values for ecov to force either synergy, redundancy, or zero interaction information as

mentioned in Tables 3.10, 3.11 and 3.12, there are noticeable differences in terms of

the strengths of the remaining partial correlations between variables and the shape

of the network. It should be noted that the goal is not to represent or match the

covariance matrices derived from the lavaan model; the qgraph visualization focuses

on partial correlations found via a sparse inverse covariance matrix using the regular-

ization method. This means that the edge weights found could indeed deviate from

those observed in the original covariance matrix. The edge weight between variables

A.x and A.y remains present and relatively consistent across the three cases. Exam-

ining from the direction of synergy towards redundancy, the edge weight between

variables A.y and A.z steers more towards a stronger positive value. An opposite

trend is found for the edge weight between variables A.x and A.z between the cases

of synergy and zero interaction information; for the redundancy case, it is missing

from the network. The structure of the network from the redundancy case could now

be described better as a ’chain’ rather than a fully connected cycle of a triplet. With-

out knowing the full details of the edge weights, other than knowing both are fairly

positive by inspecting the visualization, explaining how the presence of redundant

information found between variables A.x and A.y changed the network layout can be

done as follows: as A.y is both positively correlated to A.x and A.z in this network,

the unique information gained between A.x and A.y is reduced, because part of the

relation with A.z will be embedded in A.y. As there is no other way of learning how

A.z behaves with other variables, in this case because the edge with A.x is missing,

redundant information is unavoidable as part of the information found between A.y

and A.z will inevitably be present when exploring the information gained between A.x

and A.y.
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Figure 3.4: qgraph visualizations of the triplet. Both color intensity and edge thickness
represent edge weight. Red indicates negative edge weight, green indicates positive
edge weight. Left: synergy; Middle: Zero interaction information; Right: redundancy.

In the case of synergy, comparing the heavy edge weights of A.x to A.z and A.y to A.z

and observing the difference of the sign, knowing both of these opposite correlations

due to the presence of variable A.z brings more information about the characteristics

of the positive relation between A.x and A.y, allowing for synergy to be present due

to the introduction of A.z. In the case of zero interaction information, it can be noticed

the two edges towards A.z both edges are steering towards the value of zero. For

this particular set of edge weights found, it is inconclusive whether the relationship

between A.x and A.y gives either more or less total insight given the presence of A.z.

The model can be expanded to include more triplets of variables, each assigned with

the same factor loadings λ1, λ2, λ3 for the latent variables and with the possibil-

ity to assign a different ecov value per triplet. Using the lavaan model syntax, the

choice can be made which variables from one triplet may interact with those from

other triplets by using residual correlations. The ’residual’ part comes from the fact

that each indicator was regressed on latent variables. The model expects a set of

relationships, in this case edges, between the observed variables and only between

those regressed from the same latent variable. As the correlation matrix from the

data may differ from what is defined in the model, residual correlations may exist be-

tween other variables. The value of these correlations are forced into the model via

the lavaan model syntax to create an edge between one variable regressed from one

latent variable (or originating from one triplet) to another variable regressed from a

second latent variable (or originating from another triplet).

Figure 3.5 shows how three triplets, with each triplet displaying either synergy, re-

dundancy or zero interaction information, may have edges between them by forcing

residual correlations between variables from different triplets. It is expected to in-

spect the edges in the network visualization of those representing the forced residual

correlations in the model along with those between the observed variables originat-

ing from the same latent variable; however, spurious correlations between variables

from different triplets may be observed as well that were not inherently programmed.

An example of such spurious correlation could be the one between variables A.z and

C.x. This modelling approach will therefore be used to understand the role of interac-

32



CHAPTER 3. METHODOLOGY

tion information on the presence of such spurious edges, and how it may impact the

network estimation techniques used with regards to network centrality indices. The

R-code to create such model using lavaan is shown in Appendix C.3.

Figure 3.5: qgraph network visualization of three triplets with residual correlations
between triplets. Triplet A includes redundancy; triplet B includes zero interaction
information; triplet C includes synergy. The primary link between the triplets are done
via the variables A.z, B.z and C.z. Residual correlations were set at 0.15.

A representation of the covariance matrix programmed in via the lavaan model syntax

is shown in Table 3.13. The cursive values refer back to the demonstration of the

influence of the ecov and represent the same values as shown in Tables 3.10, 3.11 and

3.12. The bold values are the newly introduced forced residual correlations between

the z-variables from each triplet.

A.x A.y A.z B.x B.y B.z C.x C.y C.z
A.x 1
A.y 0.832 1
A.z 0.545 0.678 1
B.x 0 0 0 1
B.y 0 0 0 0.832 1
B.z 0 0 0.150 0.545 0.308 1
C.x 0 0 0 0 0 0 1
C.y 0 0 0 0 0 0 0.832 1
C.z 0 0 0.150 0 0 0.150 0.545 0.068 1

Table 3.13: Covariance matrix representation of the example displayed in Figure 3.5
including the residual correlations as included in the lavaan model syntax in bold.

A limitation found with this modelling approach is the relatively weak residual cor-

relations made possible when forcing synergy on each triplet and allowing for each

triplet to be connected with at least one other triplet. For stable simulation runs

with the factor loadings and ecov-values presented, residual correlations between z-

variables are considered the most reliable, albeit with a maximum correlation level

of 0.10. Raising these correlation levels causes the covariance matrix to not be pos-

itive definitive anymore. The less synergy is introduced within triplets in the model,

the higher these residual correlations may be. Given the previous example using a

cluster of three triplets connected to each other via their z-variables, in the case of
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maximum redundancy allowed within the model for each triplet the residual corre-

lations can be raised up to approximately 0.35. Any case between full synergy and

full redundancy will accept maximum correlation levels between these two values. It

has been demonstrated in the previous example that residual correlations of 0.15 are

compatible within the model when using the combination of having one instance of

synergy, redundancy and zero interaction information within a cluster of three inter-

connected triplets. To allow the feature of choosing per triplet the level of interaction

information, any residual correlations added will be kept at the maximum level for

which the model remains stable in the case of maximum possible generated synergy

for each triplet.

Adding residual correlations between the z-variables of different triplets has shown to

be the most stable and compatible form of adding additional forced correlations in the

simulation framework model. Using the same approach for x- and y-variables, in the

case of forcing the maximum allowed level of synergy per triplet, residual correlations

between x-variables are not considered applicable in the model while a level of 0.04

maximum is recommended for residual correlations between y-variables. Continuing

with possible combinations between the x-, y- and z-variables, only the residual cor-

relations between a y-variable from one triplet and a z-variable from another triplet

shows the most potential to be added in a model where maximum synergy is ap-

plied. Between all triplets, this allows for six additional residual correlations that all

together can be used at a level of 0.06. These additional residual correlations can

be used in combination with the ones using a pair of z-variables if the latter ones are

reduced to a level of 0.05 maximum. Subsetting the possible combinations of resid-

ual correlations also allows for some flexibility. An example could be to have residual

correlations between z-variables at 0.10 while using only a subset of possible residual

correlations between y- and z-variables fixed at 0.06 for a layout using three triplets,

each included with the maximum allowed level of synergy.

In the case of forcing maximum allowed redundancy within the model for each triplet,

for this particular example the residual correlations between the y- and z-variables

can be raised up to 0.23 while residual correlations between z-variables can be set

to 0.36. Again, cases with mixed levels of interaction information per triplet allow for

residual correlations with a level between these two extremes. Nevertheless, even

with relatively weak residual correlations in the full synergy case, the glasso regu-

larization method still detects spurious correlations that can be visualized within the

network. A remaining question is whether different spurious correlations may be de-

tected when changing the level of interaction information within one triplet, while

keeping all other factors in the model constant. Using the qgraph package, an edge-

list can be retrieved for each resulting network after applying the glasso regularization
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method. Filtering out those edges that were expected to be included in the network,

such as those occurring between variables of the same triplet and between variables

that were used to force residual correlations into the model, results in a list of possi-

ble spurious correlations. Some of these may still be approximated close to zero and

may be considered negligible; others can be considered significant and its existence

and, possibly, strength is therefore influenced by the level of interaction information

across triplets and the particular interaction given to them via residual correlations.

In summary, the complete workflow of the code can be described as follows: (1) a

combination of compatible factor loadings and ecov values are prepared to create the

variables needed for the lavaan model syntax per triplet; (2) the model syntax is writ-

ten; (3) for a fixed number of repetitions (1000 for this approach) and a fixed number

of the sample size of the generated data from the model (200 for this approach),

for each triplet the level of interaction information is computed and the average is

taken over all iterations to conclude the expected level of interaction information;

(4) for each repetition a network model with glasso regularization applied is created

and the complete edgelist stored in a table; and (5) both the individual edgelists

from each repetition and the aggregated count of edges found from all repetitions are

used to compute several key performance indicators. For each repetition, sensitiv-

ity and specificity are defined using the logic of knowing which edges were or were

not expected to compute true positives and negatives along with false positives and

negatives. This method has also been used in Epskamp (2016). Furthermore, the

percentage of edges found which were (non-)programmed are also computed. As will

be explained in the next section, the percentage of edges found within or between

clusters (a collection of interconnected triplets) is also computed. As for the aggre-

gated count of edges found, this list can be filtered based on whether the edges were

(not) programmed in the model, or were occurring either within or between clusters.

An aggregation of the average edge weight is also taken into account.

3.3 Model Variations

Having discussed the possible flexibility of the layout of the model via the mapping

of the residual correlations, several model variations are now presented. The goal of

introducing multiple layouts is to discover whether for each layout or group of similar

layouts there is a noticeable pattern regarding the existence and possibly the weight

of spurious correlations when changing the level of interaction information for one or

more triplets. For this purpose, each of the suggested models has been scaled up

to include between nine and twelve triplets. All of the following layouts will use one

particular set of residual correlations, meaning that only residual correlations are used
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between z-variables, or those only between y- and z-variables. A careful consideration

has been made to have each triplet be connected to a fixed number of other triplets.

The following layout designs show how each node from a triplet can be connected to

two, three or four nodes originating from other triplets. A null model is also included

for control of the experiment; this model contains no residual correlations, making

each triplet independent. No spurious correlations are to be expected from this model

regardless of the level of interaction information chosen per triplet.

Figure 3.6: Visual overview of the presented model layouts.

Layout Description
1 Null Model. Nine triplets, all considered independent. No interaction is

expected between triplets.
2 Three clusters of three triplets. All triplets within a cluster are connected

to two others via their z-variables.
3 Three clusters of three triplets. Each z-variable from one triplet is con-

nected to the two y-variables from the other triplets.
4 Closed loop structure of 10 triplets in which each triplet connects to two

others in a given sequence via their z-variables.
5 Closed loop structure of 10 triplets in which each triplet connects to two

others in a given sequence via the z-variable of one triplet to the y-variable
of the next one. Connections between the y- and z-variables within the
same triplet are visualized to show the loop.

6 Expansion of Model Layout 2. Three clusters of four triplets. Each triplet
within a cluster is connected to the three other related triplets via the
z-variables.

7 A double closed-loop structure using the z-variables from each triplet. Fol-
lowing the alphabetic sequence, each triplet is connected to the two pre-
vious and the two next triplets in the sequence.

Table 3.14: Description of model layouts shown in Figure 3.6.

The R-codes for each model layout including the workflow as described earlier are

found in Appendices D.1 and D.2. The levels of the residual correlations per model

correspond to the maximum allowed in the case of forcing each triplet to include the

maximum possible amount of synergy within the model.
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RESULTS

4.1 Main Results

For each model, twelve different threshold levels were applied when performing graph-

ical LASSO regularization on the simulated data, ranging from 0.005 to 0.05 in steps

of 0.005, including two Boolean values True and False. This was repeated for each

’case’, referring to the setting of forcing either only synergy on all triplets, only re-

dundancy on all triplets or no interaction information at all. Combining this with the

seven different model layouts, for each combination of model layout, case and thresh-

old level a simulation run was performed with 1000 repetitions. This brings a total of

7 ∗ 3 ∗ 12 ∗ 1000 = 252.000 repetitions for this study. For each unique simulation

setting, the following KPIs were computed: (1) size of the model in terms of number

of edges; (2) sensitivity and specificity based on the presence or absence of network

edges that were (not) programmed; (3) percentage of edges present in the model

which were expected; (4) for applicable Models 2, 3, and 6, the percentage of edges

present within a cluster. Referring to Figure 3.6, a cluster in this context can be de-

scribed as a separate unit of forced interconnected triplets via residual correlations;

all applicable models have three clusters. For these models, this allows a further

breakdown of potentially found spurious edges by whether these are present within a

cluster or between variables from different clusters. Due to the extensive amount of

summary statistics of those KPIs for each simulation setting, boxplot figures and their

summary statistics are available in Appendix E.1. Across all models, general trends for

sensitivity are fairly comparable when going through each threshold level setting in

ascending order. Each model showcases how switching between cases changes both

the initial sensitivity levels and influence of the threshold level on said levels. Sen-

sitivity is considered lowest in the zero interaction case but remains approximately

stable across all threshold levels, with the exception of the True Boolean value for

the limit argument. For either the full synergy or redundancy case, sensitivity slowly

decreases with each threshold level raised. Specificity hovers very closely to 1 in

all models for the zero interaction and full redundancy case. Regarding the synergy

case, all models follow the same pattern where at lower threshold levels specificity is
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significantly below 1 but is most often closely reached starting from level 0.03. The

percentage of edges found which were expected increase for each increment of the

threshold level across all cases. This is to be expected; intentionally programmed or

expected edges should have fairly strong partial correlations which would not shrink

down to zero after applying regularization while spurious correlations are, in compari-

son, considered much weaker and likely to shrink down to zero. Starting percentages

of programmed or expected edges found do differ across the cases for each model.

The most notable difference is for the synergy case, where said starting percentages

are well below 30% for all models except for Model 6. Higher threshold levels show

that for the zero interaction and redundancy case, the percentage is steering closely

towards 100%; for the synergy case, this does only happen when the Boolean value

True is used in Model 1. A similar analysis is done regarding the percentage of edges

found within a cluster, applicable to Models 2, 3, and 6. The trends shown from these

results are fairly comparable to the ones shown for the percentage of expected edges

found for all cases. Finally, considering the size of the model, as most spurious edges

were found in the synergy case for all models the trends seen from the boxplots are

considered logical. Network size decreases for each increased threshold level in all

cases, where relatively little size shrinkage is found for the zero interaction and full

redundancy case when comparing results of the two threshold extremes.

Figure 4.1: Area chart of discovered spurious edges in full synergy case. Split by
threshold level (rows) and models (columns). Height of area represents % of occur-
rence for each edge. Edges are sorted descending by occurrence. Number shown is
number of spurious edges found (width of area).
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Figure 4.2: Idem, for the case of zero interaction.

Figure 4.3: Idem, for the case of full redundancy.

Figures 4.1 to 4.3 showcase the number of spurious edges detected per set of configu-

rations for the simulation along with the occurrence percentage per edge found across

the 1000 simulations. At first glance the number of edges found across the cases are

fairly similar for the lower threshold levels. Only from the threshold level of 0.03 and

beyond, less spurious edges are detected in the synergy case. A similar trend can be

said for the two other cases, where starting from 0.03 there are clear differences to

be seen regarding the total number of edges found with each level increment. The
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most noticeable observation is the much higher occurrence percentages found in the

synergy case. It also showcases the different characteristics each model may hold,

judging from comparing the shapes of the area per model. Several bumps are seen in

the chart in the synergy case, most visibly for Models 2, 3 and 5 when starting from

threshold level 0.01. These bumps suggest a sudden sharp decline in occurrence per-

centage, suggesting spurious edges in the synergy case could be categorized further.

This is done by splitting these up into ’path types’. For example, an edge between

variable A.x and B.y is considered a X-Y path type. Because triplets were used, the

path types possible are X-X, X-Y, X-Z, Y-Y, Y-Z and Z-Z. Mapping the range of occur-

rence percentages of each path type per model per case per threshold level is done

in Appendix E.2. Because mapping the data per model, case, threshold level and path

type leads to numerous tables, a summary is given for the occurrences of each path

type per model in the synergy case and when applying no threshold.

Model X to X X to Y X to Z Y to Y Y to Z Z to Z
Model 1 9.90 (n=45) 14.05 (n=90) 19.60 (n=90) 20.20 (n=45) 26.85 (n=90) 34.00 (n=45)
Model 2 20.25 (n=36) 26.65 (n=72) 31.80 (n=72) 34.70 (n=36) 41.00 (n=72) 47.50 (n=27)
Model 3 20.30 (n=36) 25.55 (n=72) 31.25 (n=72) 32.95 (n=36) 40.10 (n=54) 46.60 (n=36)
Model 4 16.50 (n=45) 22.15 (n=90) 26.35 (n=90) 28.60 (n=45) 32.90 (n=90) 39.70 (n=35)
Model 5 16.40 (n=45) 21.70 (n=90) 25.60 (n=90) 27.50 (n=45) 32.60 (n=80) 38.70 (n=45)
Model 6 9.20 (n=66) 11.70 (n=132) 13.40 (n=132) 14.10 (n=66) 16.50 (n=132) 18.95 (n=48)
Model 7 16.70 (n=45) 22.00 (n=90) 27.80 (n=90) 29.30 (n=45) 32.60 (n=90) 39.00 (n=25)

Table 4.1: Median occurrence percentages (scaled 0-100) per model & path type in
the full synergy case with no threshold. Includes number of uniquely related edges.

A common trend for all models is the increasing median occurrence percentages when

going through the path types horizontally in Table 4.1; edges of path type Z-Z are

more commonly found in all models compared to all other path types, despite the fact

that the number of unique edges to be identified of this path type are considerably

smaller compared to path types X-Y, X-Z and Y-Z across all models. Similarly, edges

of path type X-X are found least frequently across all models. Because the edges

are sorted in descending order of occurrence, the first bumps in the area charts seen

in Models 2, 3 and 5 refer to the jump of edge occurrences between path types Z-

Z and Y-Z; the second bump of edge occurrences between path types Y-Z and Y-Y.

Taking Model 2 and 3 separately, their only difference regarding model layout is the

configuration of forced residual correlations. Model 2 uses residual correlations using

Z-Z type edges for triplets within a cluster; Model 3 uses Y-Z type edges instead.

Despite this, no significant differences can be observed regarding median occurrence

percentages of each path type when comparing both models. Similarly for Models 4

and 5 whose layouts form a closed-loop structure between all the triplets, there are

minimal differences in occurrence percentages across all path types. This leads to

another discussion point addressed further in the next section regarding the effect

of the forced residual correlations and the effect of forcing different variations of a

generic model layout.
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As seen from Figures 4.2 and 4.3, occurrence percentages for spurious edges of all

path types drop dramatically for each model, with the range between minimum and

maximum occurrence percentages across path types per model being much smaller.

In both cases, the occurrence values do not increase per path type when ordering

them as shown in Table 4.1; values for X-Z are higher compared to Y-Y, the difference

being greater in the full redundancy case. When only looking at Models 2 & 3 or

Models 4 & 5 separately, no significant differences in edge occurrences per path type

can be discovered.

Model X to X X to Y X to Z Y to Y Y to Z Z to Z
Model 1 0.70 (n=45) 0.90 (n=90) 1.30 (n=90) 1.00 (n=45) 1.60 (n=90) 2.20 (n=45)
Model 2 0.80 (n=36) 0.95 (n=72) 1.50 (n=72) 1.10 (n=36) 1.80 (n=72) 2.40 (n=27)
Model 3 0.70 (n=36) 1.00 (n=72) 1.50 (n=72) 1.20 (n=36) 1.70 (n=54) 2.55 (n=36)
Model 4 0.70 (n=45) 0.90 (n=90) 1.30 (n=90) 0.90 (n=45) 1.50 (n=90) 2.10 (n=35)
Model 5 0.70 (n=45) 0.90 (n=90) 1.30 (n=90) 1.10 (n=45) 1.40 (n=80) 2.10 (n=45)
Model 6 0.50 (n=66) 0.60 (n=132) 0.90 (n=132) 0.70 (n=66) 1.00 (n=132) 1.50 (n=48)
Model 7 0.70 (n=45) 0.80 (n=90) 1.10 (n=90) 1.00 (n=44) 1.30 (n=90) 1.80 (n=25)

Table 4.2: Idem, for the zero interaction case with no threshold.

Model X to X X to Y X to Z Y to Y Y to Z Z to Z
Model 1 1.40 (n=45) 1.00 (n=90) 1.90 (n=90) 0.80 (n=45) 1.40 (n=90) 2.30 (n=45)
Model 2 1.60 (n=36) 1.30 (n=72) 2.10 (n=72) 0.90 (n=36) 1.60 (n=72) 2.70 (n=27)
Model 3 1.50 (n=36) 1.20 (n=72) 2.10 (n=72) 0.85 (n=36) 1.70 (n=54) 2.50 (n=36)
Model 4 1.20 (n=45) 1.00 (n=90) 1.60 (n=90) 0.70 (n=45) 1.30 (n=90) 2.20 (n=35)
Model 5 1.20 (n=45) 1.10 (n=90) 1.80 (n=90) 0.70 (n=45) 1.50 (n=80) 2.10 (n=45)
Model 6 0.90 (n=66) 0.70 (n=132) 1.10 (n=132) 0.60 (n=65) 0.95 (n=132) 1.60 (n=48)
Model 7 1.10 (n=45) 1.00 (n=90) 1.45 (n=90) 0.70 (n=44) 1.10 (n=90) 2.00 (n=25)

Table 4.3: Idem, for the full redundancy case with no threshold.

So far, the focus of the presented results are related only to the frequency of the edges

found in the network. More interesting is to combine both the occurrence percentage

and average edge weight metrics to observe whether relatively highly occurring spu-

rious edges carry, in proportion to other spurious edges, heavier weights. Optionally,

for Models 2, 3 and 6 data from spurious edges could be split up into two groups;

those found within and between clusters. The full synergy case is used as baseline

due to the significantly higher occurrence percentages observed per path type for all

models compared to the zero interaction and full redundancy case. Three main trends

have been found between the two metrics in the full synergy case across all models

and path types when iterating over the various threshold levels. For each related

model and path type, these trends will be compared to the two other cases.

From hereon out, the focus will be set on one model at a time. Creating a scatter plot

of the average edge weight and occurrence percentage allows to have each data point

represent a specific edge between two variables. Splitting this data up into the afore-

mentioned path types and threshold levels, there are three noticeable patterns to be

found when scrolling through the plots in order of increasing threshold level. Com-

mon for all patterns is that the median occurrence percentage per edge decreases as
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increasing threshold levels exclude more edges from the resulting networks. The first

pattern shows a clustering of data points spread out in terms of occurrence but for

which the average edge weight lies close to zero. At first sight there seems to be a

balanced distribution in terms of positive and negative edge weights. As the threshold

level increases, the data points are shifted to the left as the occurrence percentage

drops. The range of observed average edge weights starts to widen. For those data

points averaging significantly below or above zero, this could be explained by the

average being computed of very few occurrences of an edge with weights well above

the threshold with consistent sign (either positive or negative). Nevertheless, as the

data points spread out some remain close to an average edge weight of zero. This

seems to suggest the presence of an element of randomness in the edge weights for

those edges across the repetitions in the simulation. As the threshold level rises, the

number of data points starts to shrink as no occurrences of edges are captures with an

absolute weight greater than the threshold. Occurrences are mostly no greater than

1% and often as low as 0.1%. This means, despite the larger edge weights detected

even with high threshold levels, with such low occurrence percentages and few data

points left it becomes improbable to find a pattern that may explain its influence on

the estimation of network models. As for the last automatic threshold setting True,

for some models and cases the number of data points or the spread on the average

edge weights may be in contrast with the observed pattern.

Figure 4.4: Scatter plots of occurrence percentage versus average edge weight for
edges found in Model 1 with path type X-Y. Showcases the first described trend ("A")
in result analysis.

The second observed trend is, when within a given path type, two distinct groupings

of data points can be identified. Using Figure 4.5 as reference, the grey data points

form one grouping and show a similar trend as explained earlier. The new grouping of

data points, marked in black, start off with a different occurrence percentage, further

away from the x-axis. As the threshold level increases, the data points remain closely

together towards lower average edge weights. This shows that for, at least, a majority
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Figure 4.5: Idem, but for edges found in Model 2 with path type X-Z. Data points in
black showcase the second described trend ("B").

X-X X-Y X-Z Y-Y Y-Z Z-Z
Model 1 A A A A A A
Model 2 B C B A C A
Model 3 B B B C A C
Model 4 A A B A C A
Model 5 A B B A A A
Model 6 A A B A C A
Model 7 A A B A C A

Table 4.4: Trend types found per model and path type in the full synergy case.

of observations these edge weights were negative when present and significantly

distinct from zero. The last threshold level shows show the data grouping has deviated

from the trend, showing heavier edge weights and increased occurrence. Figure 4.6

shows the third, opposite observed trend where the average weight of the data points

increases per threshold level raised. The next step is to seek common characteristics

of edges found within such data groupings and how the metrics change in the other

cases. For applicable models, it will be explained whether these trends are exclusive

to edges discovered either within or between clusters.

Figure 4.6: Idem, but for edges found in Model 2 with path type Y-Z. Data points in
black showcase the third described trend ("C").
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A good variation of trend discoveries is captured across all models and path types as

seen in Table 4.4. For Models 2, 3 and 6 including clusters, when splitting the data

points of edges into those occurring within a cluster or between clusters, the data

points showing either trend ’B’ or ’C’ all came from edges within a cluster. Using

Figures 4.5 and 4.6 with data from Model 2, the black data points represent edges

within a cluster and the grey data points of those between clusters. Iterating per

path type, for those models where either trend ’B’ or ’C’ was found, an overview

is presented of condensed data for each case using a coordination system where

the median of the occurrence percentages and average weights are taken for the

grouping of related edges. In Models 2 and 3, the available data points for path

type X-X that form a separate data grouping concerns all possible X-X edges within a

cluster. As a cluster consists of three triplets, a maximum of three X-X edges between

the three X-variables can exist, e.g. A.x - B.x, A.x - C.x and B.x - C.x. This yields

a total of nine edges. For each threshold level and case, the data of the group of

these nine edges are aggregated to find the median value for the occurrence rates

and average edge weights. Appendix E.2 shows the specific values that form the

coordinates for each setting; only scatter plots will be shown for this section. Figure

4.7 shows how the trend for the zero interaction case differs between Models 2 and 3.

In most plots, data points that deviate much from the trend or have extreme values

are usually found for the case then the threshold level is set to the Boolean value

True. This behavior leaves room for further discussion. As expected, occurrence and

number of edges detected decreases per threshold level raised. Finally, data for the

redundancy case in Model 2 shows an atypical trend as the median edge weight for

the edge group raises at later levels of the threshold.

Figure 4.7: Coordinates of data grouping of path type X-X. Left: Model 2. Right: Model
3. Size represents distinct number of edges detected. Color gradient represents level
of threshold applied (False is white, True is black).

Moving along with path type X-Y, again as seen in Table 4.4 in Models 2, 3 and 5

separate data groups have been identified showcasing a particular trend. The edges

involved differ between the models. The edges included in the grouping for Models 2

and 3 contain all possible X-Y edges within a cluster of three triplets, with a maximum

of 18 distinct edges. For Model 5, only one set of X-Y edges from neighbouring triplets

are included. Going in alphabetical order, only edges where the x-variable from one

triplet was connected to the y-variable from the next triplet are considered, yielding
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10 distinct edges as 10 triplets were used. A clearer overview of included edges per

model can be found in Appendix E.2 per path type.

Figure 4.8: Idem, coordinates of data grouping of path type X-Y. Top Left: Model 2. Top
Right: Model 3. Bottom Left: Model 5.

Trends for edge groups of path type X-Z are fairly consistent across all models and for

all cases. The number and characteristics of edges included differ per model.

Figure 4.9: Idem, coordinates of data grouping of path type X-Z. Top Left: Model 2.
Top Right: Model 3. Middle Left: Model 4. Middle Right: Model 5. Bottom Left: Model
6. Bottom Right: Model 7.

For Models 2 and 3, all six possible X-Z edges within a cluster are included, bringing

a total of 18 edges for the full model. The same applies to Model 6 where twelve X-Z

can occur within a cluster, yielding a total of 36. Model 4 includes twenty X-Z edges

from neighboring triplets in both directions, meaning A.x to B.z and A.z to B.x are

both allowed. Model 5 shares ten edges from Model 4 going in one specific direction;

from A.z to B.x. Model 7 has forty edges included going in both directions between

neighbouring triplets with distance ’2’ due to the double-loop layout. For instance,

given triplet C, X-Z edges in both directions with triplets A, B, D, E are included.
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Only for data analysis in Model 3 a separate data grouping was found related to the

Y-Y path type. It includes all possible edges occurring within a cluster (A.y to B.y, A.y

to C.y and B.y to C.y), yielding a total of nine edges as three clusters were used in

the layout. Compared to the results from the other path types thus far, these results

show unique trends across all cases.

Figure 4.10: Idem, coordinates of data grouping of path type Y-Y for Model 3.

All possible Y-Z edges within a cluster were used for Model 2 and 6. Model 4 includes

twenty Y-Z edges from neighboring triplets in both directions, meaning A.y to B.z and

A.z to B.y are both allowed. Similar as in the previous path type, Model 7 has forty

edges included with the same logic applied for filtering the relevant edges.

Figure 4.11: Idem, coordinates of data grouping of path type Y-Z. Top Left: Model 2.
Top Right: Model 4. Bottom Left: Model 6. Bottom Right: Model 7.

Only for Model 3, a separate data group was found showcasing a different trend ’C’

for edges of path type Z-Z, consisting of those Z-Z found within a cluster (A.z to B.z,

A.z to C.z and B.z to C.z). This brings the sample size for this data grouping to a total

of nine distinct Z-Z edges for the model.

Figure 4.12: Idem, coordinates of data grouping of path type Z-Z for Model 3.
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An enumerated summary of the findings is now given. The full synergy case allows for

many more spurious correlations to be detected, both for variables within a construct

and those between unique constructs when comparing the occurrence percentages

between cases using Tables 4.1, 4.2 and 4.3. Consistent for all cases and models,

occurrence percentages seem to differ per path type. The path type chosen for the

forced residual correlations (either of type Y-Z or Z-Z) is unlikely to influence the oc-

currence of edges of specific path types when comparing figures for Model 2 versus

3 or Model 5 versus 6 giving closely similar results with occurrences of said residual

correlations excluded. On the contrary, the influence of the model layout via map-

ping of residual correlations is best shown in Figure 4.7 where the trend in the zero

interaction case heads in the opposite direction when comparing results from Models

2 & 3. Figure 4.8 repeats this where trends for Models 3 & 5, both using residual

correlations of path type Y-Z, are opposite to Model 2 for the full synergy and zero

interaction case. For path types X-Z and Y-Z, observed trends remain fairly stable

for applicable models. It is important to stress that most spurious edges found fol-

low trend A as seen in Figure 4.4. Occurrences of edges following this trend sharply

drop as the threshold level is increased. Most edge weights average close to zero

at the start of trend A and the range of values tends to spread out as occurrence

percentages drop and the threshold level increases. It becomes difficult to determine

both the general direction of edge weights per path type and cause of the spread

in weight other than sampling variability. All data groupings found with trend B or C

are either edges between neighboring triplets (or constructs) or, for Models 2, 5 and

6, edges found within a cluster. Configuration of the forced residual correlations to

determine the model layout has also influenced the results of data groupings found.

This is easily determined by comparing Model 2 to 3 or Model 4 to 5 where in the

former case residual correlations of path type Z-Z were used and of path type Y-Z in

the latter. The Boolean value True for the threshold setting often gives more extreme

or contradictory results. The change of level of interaction information only changes

the occurrences of spurious edges but not the general trend seen regarding the edge

weights for some path types. Edges of path type X-Z all show a negative trend for

increasing threshold levels. The most diverse results are found for path types Y-Y and

Z-Z in Model 3 when residual correlations of path type Y-Z were used.

4.2 Discussion

Because each triplet (or construct) is considered identical in this modelling approach,

regarding the different occurrence percentages per path type a possible, partial ex-

planation could be given. Knowing that the presence of variable Z for each triplet is
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responsible for generating the amount of interaction information, a possible explana-

tion as of why many non-programmed Z-Z edges were discovered between constructs

could be related to the theoretic role of comorbidity as discussed in Section 2.2.2. For

each construct, variable Z is given influence on the behavior of the other variables X

and Y. If such identical characteristics are embedded for each variable Z, it is not un-

likely to think the possible Z-Z edges are those creating a bridge between symptoms

from different constructs as seen in comorbidity. Again, in most cases these edges are

less frequently observed with more randomized edge weights as the threshold level

increases, thus this argument is also challenged as one may expect such bridge edges

to be considered still significant after applying higher threshold levels with regulariza-

tion. Nevertheless, generating synergy per construct for this modelling approach

increases the potential of discovering more spurious edges with different occurrence

frequencies per path type, allowing for more insights to be discovered how charac-

teristics of variables in a full synergy case influence chances of occurrence. As for

the sharp decline of edges found following trend A, it could mean that many edges

found across repetitions were to be considered insignificant despite the application of

GLASSO regularization. Referring to the edge characteristics found for data groupings

following trends B and C, it allows for an argument that edges (or groupings) found

outside these criteria showcasing trend A could be considered more as false positives

instead of genuine discoveries and would support the results found in Model 1 as

no connection between constructs was to be expected, but again this could be chal-

lenged by the relatively high occurrence percentages found per path type in the full

synergy case. As for the results found via the True threshold setting often deviating

from the found trends, documentation for the qgraph package explains this setting as

a ’thresholded EBICglasso’ approach where edge weights are reduced to zero if they

are considered lower than the threshold value log(p∗ (p− 1)/2))/
p
n with n the sam-

ple size used for the covariance matrix and p the number of dimensions. This is used

to guarantee high specificity levels as possible false positives from the non-diagonal

entries in the precision matrix due to sampling error are excluded from the network

applying this threshold setting. There are cases, most notably for analysis of path

types X-X and X-Y in Models 2 & 3, where the median occurrence and edge weight for

the data grouping deviates from the observed trends. Again, given the very low oc-

currence percentages close to zero for these data points, it becomes difficult to state

whether the trends are caused by the dominance of false positive edges within these

data groupings which could explain the deviating results from the True threshold set-

ting, or whether the setting is considered incompatible for this modelling approach

given the sample size and number of variables included. Given the diversity of trends

shown for path types Y-Y and Z-Z in Model 3 when using residual correlations of path

type Y-Z, this may bring some evidence that a combination of the level of interac-
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tion information and the intended forced model layout influence the direction of the

trends shown regarding edge weights when increasing threshold levels. Nevertheless,

it should be noted that the median edge weight of most of the data groupings when

applying no threshold still hover close to zero, meaning that differences in networks

across the cases may be harder to distinguish under this circumstance.

4.3 Conclusion

The simulation approach has shown that across all presented model layouts with inter-

action between constructs, each consisting of a triplet of variables, both the amount

and, to some extent, the average weight of spurious edges between constructs can

be influenced by the level of interaction information. The findings shown introduce

a new challenge with regards to estimating network models if using the node cen-

trality indices, especially if the edge weights are not considered. The presence of a

spurious edge may influence said centrality indices for multiple nodes at once. While

the presence of only one spurious edge may only lead to minimum changes for the

centrality indices when dealing with larger and complex networks, the inclusion of

more variables within such network also increases the presence of (dynamic) values

of interaction information for each selected triplet of variables from the data, which

in return may increase the chance of having spurious edges present when no thresh-

old logic is applied. Beyond the interaction terms between two variables described

via (conditioned) correlation, higher-order interaction terms where joint information

is shared in groups of three or more variables, whether in a synergistic or redundant

setting, also have their influence on the presence of edges and thus on the estima-

tion of the resulting network and the grade of importance of its nodes. The discussed

embedded assumptions when using the original centrality indices of Freeman (1978)

are still applicable when using the level of interaction information as a parameter for

simulation purposes to create and estimate a network model. This means that, if the

constructs would represent disorders or diseases and its nodes the related symptoms,

additional information regarding the severity of symptoms is still ignored when using

centrality indices as an estimation technique. The discussion point made by Bulteel

et al. (2016) and Bringmann et al. (2019) that the risk of multicollinearity may exist

for symptoms if their presence are both determined by combining responses from a

questionnaire is also considered relevant for the results found. The discussed possi-

ble overlap of two node constructs could be enforced if synergy is achieved after the

introduction of a third, closely related node, further influencing the possible results

found after estimating the network model. The findings of this simulation approach

also bring more emphasis on the suggestions made in Epskamp et al. (2018) regard-
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ing the inference of the accuracy of edge weights and the stability of the centrality

indices via non-parametric bootstrapping, both which are dependent on the level of

occurrence of edges found across the many iterations performed. Due to the shown

influence of the level of interaction information set via higher-order interaction terms

on the occurrence percentages and in some cases the shift of sign of the edge weight,

such stability metrics could also depend whether the levels of interaction information

found for particular groups of variables is considered consistent across all iterations

given the data set at hand. In short, this study has shown an introduction of pos-

sible proof that higher-order interaction terms limited to a group of three variables

may indeed influence the layout and thus the estimation of network models, and

that the level of interaction information for particular triplets should be considered

in exploratory data analysis prior to further statistical inference to check for possible

causes or assumptions regarding importance of nodes in psychometrics.

4.4 Limitations

The manipulation of the level of interaction information is done as such that only

’pure’ synergy or redundancy is achieved per triplet. The Partial Information De-

composition approach by Williams and Beer (2010) is discussed in Appendix B and

explains how a combination of synergy and redundancy could be present when mea-

suring interaction information for a set of two variables. No combinations of synergy,

zero interaction and redundancy across triplets in the same model were considered

for simulation. Residual correlations were set at the maximum level compatible for

the synergy case, which range from 0.06 to 0.10. More distinguishable results are to

be expected when using a simulation setting where said residual correlations could

be increased significantly. Another improvement could be to apply the techniques

used on a real data set or case along with detailed analysis of possible changes of

node centrality indices. Alternative approaches regarding regularization methods and

thresholds to derive to a sparse precision matrix could also be proposed, such as the

MPT2 algorithm by Lauritzen et al. (2019) which deviates from GLASSO and model

selection via the EBIC criteria.
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APPENDIX A

R-CODE OF MDS & PCA PLOTS

WITH ’BFI’ DATASET

1 # as seen in Jones et al. (2018)

2 # "Visualizing Psychological Networks: A Tutorial in R"

3

4 library(psych)

5 library(smacof)

6

7 bfi_data <- bfi

8 bfi_data[26:28] <- list(NULL) #dropping last three columns (age/gender/education)

9 bfi_data <- na.omit(bfi_data) #removing observations with missing data

10

11 COR <- cor(bfi_data)

12

13 #MDS

14 bfi_diss <- sim2diss(COR) #converting similarities into dissimilarities

15 bfi_MDS <- mds(bfi_diss)

16

17 plot(bfi_MDS$conf, type="n")

18 text(bfi_MDS$conf, colnames(bfi_data))

19

20 #PCA

21 PCA_adult <- principal(COR, nfactors = 2) #eigen value decomposition

22

23 plot(PCA_adult$loadings, type="n")

24 text(PCA_adult$loadings, colnames(bfi_data))
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APPENDIX B

PARTIAL INFORMATION

DECOMPOSITION

Negative interaction information can still be difficult to interpret when applying to

real-world examples. As an alternative, Williams and Beer (2010) opt for a non-

negative measure approach, named the partial information decomposition, as the

interpretation of negative information being passed along from one variable to an-

other is considered unclear. In order to achieve this, a new definition of redundancy

is given, namely it being the minimum information that any variable, entropy set, or

otherwise considered information source can provide about the outcome of the target

variable, averaged over all possible outcomes (Williams and Beer, 2010). All used in-

formation sources may share common information, which is considered the minimum

information provided, while at the same time different sources may deliver informa-

tion with regards to different outcomes of the target variable. The main idea is to

split the total information of a set of variables towards a target variable into synergy,

redundancy and unique information, which are referred to as the atoms of the total

information. This differs from the earlier described usage of synergy and redundancy

in the sense that they may coexist in the partial information decomposition approach.

Another characteristic is that, instead of bundling the input variables together to find

the average interaction information, the partial information decomposition takes into

account possible subsets of these input variables.

Timme et al. (2014) provide a simplification of the mutual information values that

can be calculated in a three-variable scenario as shown in Figure B.1, being the mu-

tual information of the collection of input variables against the target variable S, here

denoted as R1 and R2, and the mutual information between each input variable sep-

arately against the target variable S:

(S;R1, R2) = Syn(S;R1, R2) + Unq(S;R1) + Unq(S;R2) + Rdn(S;R1, R2) (B.1)



Figure B.1: Overview of the atoms of synergy, redundancy, and unique information,
as found in Williams and Beer (2010)

(S;R1) = Unq(S;R1) + Rdn(S;R1, R2) (B.2)

(S;R2) = Unq(S;R2) + Rdn(S;R1, R2) (B.3)

The first step in this approach is to find Rdn(S;R1, R2). Given the new definition of

redundancy by Williams and Beer (2010), for each input variable and each outcome

of the target variable the specific information captured needs to be measured. This is

done by the following formula:

(S = s;X) =
∑



p(|s)
�

log
1

p(s)
− log

1

p(s|)

�

(B.4)

Knowing that the term 1
p(s) captures the surprise of reading the value s as a measure-

ment, the information term I(S=s;X) describes the information delivered by variable

X for each outcome s possible in outcome variable S, whereas I(S;X) would only de-

scribe it as the average or expected value of delivered information calculated across

all possible outcomes of variable S. To apply this to two or more input variables to

find redundancy across them towards output variable S, one could simply sum up the

minimum information delivered by each input variable given the output s:

mn(S;X1, X2, . . . , Xk) =
∑

s∈S
p(s)mnX (S = s;X) (B.5)
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According to Williams and Beer (2010), this summation of the minimum information

delivered by each input variable equals the redundancy of information delivered to-

wards the outcome variable, therefore mn(S;R1, R2) = Rdn(S;R1, R2). Calculating

the atoms of unique information per input variable and the synergy created by both

input variables is now made possible. Focusing only on synergy, it becomes inter-

esting how from Figure B.1 the redundancy term plays a role in finding the level of

synergy as they are treated as two separate quantities:

Syn(S;R1, R2) = (S;R1, R2) − (S;R1) − (S;R2) + Rdn(S;R1, R2) (B.6)

The redundancy term has to be added back, as from Figure B.1 it becomes clear

that subtracting both (S;R1) and (S;R2) means that the overlapping area, being the

redundancy, is subtracted twice and must be corrected by adding the redundancy

term back once. Calculating the unique information atoms Unq(S;R1) and Unq(S;R2)

can be derived from equations B.2 and B.3 when knowing Rdn(S;R1, R2).

Finally, both Williams and Beer (2010) and Timme et al. (2014) explain how negative

values for the traditional interaction information measure can be explained by looking

further into the interplay of synergy and redundancy. If the interaction information

formula from equation 2.15 is rewritten as shown below, it becomes possible to plug

in the different mutual information measures as described in the atoms of synergy,

redundancy and unique information:

(S;R1;R2) = (S;R1, R2) − (S;R1) − (S;R2) (B.7)

Plugging in the values gives the following insights: the unique information terms

Unq(S;R1) and Unq(S;R2) are present in both (S;R1, R2) with a positive sign and

in (S;R1) and (S;R2) with a negative sign, weighing each other out. The redun-

dancy term occurs twice over (S;R1) and (S;R2) and is subtracted from the single

redundancy term found in (S;R1, R2), leaving only the following terms:

(S;R1;R2) = Syn(S;R1, R2) − Rdn(S;R1, R2)) (B.8)

Once again this equation shows that the atoms of synergy and redundancy are to be

considered together rather than exclusive, as was done before in the earlier interpre-

tation of interaction information where the sign of the value would dictate whether

only synergy or redundancy occurs. It also gives a more general and understandable

explanation why negative values for interaction information could occur. While the

association between positive/negative values for interaction information and syner-
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gy/redundancy is still considered logical, the equation does not exclude the possibility

that systems could exist with both non-zero contributions towards synergy and redun-

dancy while yielding a zero value for interaction information, meaning that (S;R1, R2)

can confound the atoms of synergy and redundancy (Williams and Beer, 2010). This

also means that a system with negative interaction information can still hold interac-

tions between variables that yield synergy and vice versa.
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APPENDIX C

MODELLING APPROACH IN R

C.1 Lavaan Model Syntax for Single Triplet

1 library(lavaan)

2

3 #set factor loadings and covariance within triplet

4 l1 <- sqrt(0.99)

5 l2 <- sqrt(0.70)

6 l3 <- sqrt(0.30)

7 A.ecov <- -0.38

8 t1 <- 1 - l1^2 #variance

9 t2 <- 1 - l2^2

10 t3 <- 1 - l3^2

11

12 A.ecor <- A.ecov / (sqrt(t2) * sqrt(t3)) #correlation

13 A.t2s <- t2 - abs(A.ecor)*t2 #used in lavaan syntax

14 A.t3s <- t3 - abs(A.ecor)*t3 #used in lavaan syntax

15 A.l2s <- 1 * sqrt(abs(A.ecor)*t2)

16 A.l3s <- sign(A.ecor) * sqrt(abs(A.ecor)*t3)

17

18 pop.model <- c("

19 # model A

20 A =~ (", l1, ")*A.x + (", l2, ")*A.y + (", l3, ")*A.z

21 A.bf =~ (", A.l2s, ")*A.y + (", A.l3s, ")*A.z

22

23 A.x ~~ (", t1, ")*A.x

24 A.y ~~ (", A.t2s, ")*A.y

25 A.z ~~ (", A.t3s, ")*A.z

26

27 A ~~ 1*A

28 A.bf ~~ 1*A.bf

29 A ~~ 0*A.bf

30 ")

31 fit <- lavaan(pop.model)

32

33 #visualize lavaan SEM

34 semPaths(fit)



C.2. FUNCTION TO CALCULATE INTERACTION INFORMATION IN TRIPLET

C.2 Function to Calculate Interaction Information in

Triplet

1 lav_interaction_information_cor_triplet <- function(triplet.cor = NULL) {

2 # unconditioned case - mutual information between A.x and A.y in cell [2,1]

3 cor.xy <- triplet.cor[2,1]

4 mi.xy <- -1/2 * log(1 - (cor.xy*cor.xy))

5 # conditioned case - mutual information between A.x and A.y

6 mi.xy_z <- as.numeric(NA)

7 #2x2 matrix of A.x and A.y minus cross-product of transpose of matrix

8 #transpose contains only correlations of A.z with other two variables A.x and A.y

9 #tcrossprod() returns 2x2 matrix

10 res.cov <- ( triplet.cor[1:2,1:2] - tcrossprod(triplet.cor[1:2,3]) )

11 if(all(diag(res.cov) > 0)) {

12 #from this new 2x2 matrix, extract new conditioned correlation between A.x and A.y

13 res.cor <- cov2cor(res.cov)[2,1]

14 #explicit check whether correlation value falls in [-1, 1]

15 if(abs(res.cor) < 0.999) {

16 mi.xy_z <- -1/2 * log(1 - (res.cor*res.cor))

17 }

18 }

19 #difference in mutual information in the conditioned minus unconditioned case

20 mi.xy_z - mi.xy

21 }

C.3 Model of Three Triplets with Varying Levels of

Interaction Information

1 library(lavaan)

2

3 #set factor loadings and covariance within triplet

4 l1 <- sqrt(0.99)

5 l2 <- sqrt(0.70)

6 l3 <- sqrt(0.30)

7

8 A.ecov <- 0.22 #redundancy

9 B.ecov <- -0.15 #zero-interaction

10 C.ecov <- -0.39 #synergy

11

12 t1 <- 1 - l1^2 #variance

13 t2 <- 1 - l2^2

14 t3 <- 1 - l3^2

15

16 A.ecor <- A.ecov / (sqrt(t2) * sqrt(t3)) #correlation

17 A.t2s <- t2 - abs(A.ecor)*t2 #used in lavaan syntax
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18 A.t3s <- t3 - abs(A.ecor)*t3 #used in lavaan syntax

19 A.l2s <- 1 * sqrt(abs(A.ecor)*t2)

20 A.l3s <- sign(A.ecor) * sqrt(abs(A.ecor)*t3)

21

22 B.ecor <- B.ecov / (sqrt(t2) * sqrt(t3))

23 B.l2s <- 1 * sqrt(abs(B.ecor)*t2)

24 B.l3s <- sign(B.ecor) * sqrt(abs(B.ecor)*t3)

25 B.t2s <- t2 - abs(B.ecor)*t2

26 B.t3s <- t3 - abs(B.ecor)*t3

27

28 C.ecor <- C.ecov / (sqrt(t2) * sqrt(t3))

29 C.l2s <- 1 * sqrt(abs(C.ecor)*t2)

30 C.l3s <- sign(C.ecor) * sqrt(abs(C.ecor)*t3)

31 C.t2s <- t2 - abs(C.ecor)*t2

32 C.t3s <- t3 - abs(C.ecor)*t3

33

34

35 pop.model <- c("

36

37 # model A

38 A =~ (", l1, ")*A.x + (", l2, ")*A.y + (", l3, ")*A.z

39 A.bf =~ (", A.l2s, ")*A.y + (", A.l3s, ")*A.z

40

41 A.x ~~ (", t1, ")*A.x

42 A.y ~~ (", A.t2s, ")*A.y

43 A.z ~~ (", A.t3s, ")*A.z

44

45 A ~~ 1*A

46 A.bf ~~ 1*A.bf

47 A ~~ 0*A.bf

48

49 # model B

50 B =~ (", l1, ")*B.x + (", l2, ")*B.y + (", l3, ")*B.z

51 B.bf =~ (", B.l2s, ")*B.y + (", B.l3s, ")*B.z

52

53 B.x ~~ (", t1, ")*B.x

54 B.y ~~ (", B.t2s, ")*B.y

55 B.z ~~ (", B.t3s, ")*B.z

56

57 B ~~ 1*B

58 B.bf ~~ 1*B.bf

59 B.bf ~~ 0*B

60

61 # model C

62 C =~ (", l1, ")*C.x + (", l2, ")*C.y + (", l3, ")*C.z

63 C.bf =~ (", C.l2s, ")*C.y + (", C.l3s, ")*C.z

64

65 C.x ~~ (", t1, ")*C.x

66 C.y ~~ (", C.t2s, ")*C.y
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67 C.z ~~ (", C.t3s, ")*C.z

68

69 C ~~ 1*C

70 C.bf ~~ 1*C.bf

71 C.bf ~~ 0*C

72

73 # residual correlations

74 A.z ~~ 0.15*B.z

75 B.z ~~ 0.15*C.z

76 A.z ~~ 0.15*C.z

77 ")

78 fit <- lavaan(pop.model)

79

80 Data1 <- simulateData(pop.model, sample.nobs = 200)

81 qgraph(cor(Data1), layout="spring", graph="glasso", sampleSize=200, cut=0)
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APPENDIX D

R-CODE OF MODEL LAYOUTS

D.1 R-Code Template for Model 1 - Null Model

1 # EXAMPLE 1: 10 LATENT VARIABLES, ALL TRIPLETS, NO INTERACTION BETWEEN NODES FROM

DIFFERENT TRIPLETS ("NULL MODEL")

2

3 # Loading packages

4 library(lavaan)

5 library(semPlot)

6 library(qgraph)

7 library(dplyr)

8

9 #set seed for reproducability

10 set.seed(100)

11

12 #parameters for simulation

13 REP <- 1000L #repetitions

14 N <- 200L #sample size

15

16 #=-=-CASE SELECTION=-=-=-#

17 #e.covs are now arranged in a vector of size 10

18 #input of ii_choice in order: redundancy/zero interaction/synergy

19 ii_choice = c(0.22, -0.15, -0.39)

20

21 #CASE - ZERO INTERACTION

22 #ecov <- rep(-0.15, 10L)

23

24 #CASE - REDUNDANCY

25 #ecov <- rep(0.22, 10L)

26

27 #CASE - SYNERGY

28 ecov <- rep(-0.39, 10L)

29

30 #CASE - CUSTOM

31 #ecov <- c(0.22, -0.15, -0.39, 0.22, -0.15, -0.39, 0.22, -0.15, -0.39, 0.22)

32

33 #CASE - RANDOM

34 #ecov = sample(ii_choice, 10, replace = TRUE)
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35 #=-=-FUNCTIONS=-=-=-#

36 #Function 1: calculate II from 3x3 correlation matrix

37 lav_interaction_information_cor_triplet <- function(triplet.cor = NULL) {

38 # mi.xy

39 cor.xy <- triplet.cor[2,1]

40 mi.xy <- -1/2 * log(1 - (cor.xy*cor.xy))

41

42 # mi.xy_z

43 mi.xy_z <- as.numeric(NA)

44 res.cov <- ( triplet.cor[1:2,1:2] -

45 tcrossprod(triplet.cor[1:2,3]) * (1/triplet.cor[3,3]) )

46 if(all(diag(res.cov) > 0)) {

47 res.cor <- cov2cor(res.cov)[2,1]

48 if(abs(res.cor) < 0.999) {

49 mi.xy_z <- -1/2 * log(1 - (res.cor*res.cor))

50 }

51 }

52

53 mi.xy_z - mi.xy

54 }

55

56

57 #=-=-CREATING MODEL VARIABLES-=-=-=-=-=#

58 #L and T-values

59 l1 <- sqrt(0.99)

60 l2 <- sqrt(0.70)

61 l3 <- sqrt(0.30)

62

63 t1 <- 1 - l1^2

64 t2 <- 1 - l2^2

65 t3 <- 1 - l3^2

66

67 #alphabet string is prepared, substring function to be in used in for-loop to create

variable names for the model

68 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

69

70 #for-loop to create the model components

71 for(i in 1:length(ecov)) {

72 #first, take the appropriate capital letter of the alphabet

73 letter = substr(alphabet, i, i)

74

75 #temporary variables to store the new variable names in

76 #first iteration will create A.ecor, A.l2s, ... , second iteration will create B.

ecor, B.l2s, ... , etc.

77 nam_ecor <- paste(letter, ".ecor", sep="")

78 nam_l2s <- paste(letter, ".l2s", sep="")

79 nam_l3s <- paste(letter, ".l3s", sep="")

80 nam_t2s <- paste(letter, ".t2s", sep="")

81 nam_t3s <- paste(letter, ".t3s", sep="")
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82 #convert the string of the variable names ("A.ecor") to actual variables (A.ecor)

with numeric values attached to them

83 assign(nam_ecor, ecov[i] / (sqrt(t2) * sqrt(t3)))

84 assign(nam_l2s, 1 * sqrt(abs(eval(as.name(paste(nam_ecor))))*t2))

85 assign(nam_l3s, sign(eval(as.name(paste(nam_ecor)))) * sqrt(abs(eval(as.name(paste

(nam_ecor))))*t3))

86 assign(nam_t2s, t2 - abs(eval(as.name(paste(nam_ecor))))*t2)

87 assign(nam_t3s, t3 - abs(eval(as.name(paste(nam_ecor))))*t3)

88

89 #clear the workspace of ’junk’ variables after the last iteration

90 if(i == length(ecov)) {

91 rm(i, letter, nam_ecor, nam_l2s, nam_l3s, nam_t2s, nam_t3s)

92 }

93 }

94

95 #=-=-LAVAAN MODEL SYTNAX-=-=-=-=-=-#

96 pop.model <- c("

97

98 # model A

99 A =~ (", l1, ")*A.x + (", l2, ")*A.y + (", l3, ")*A.z

100 A.bf =~ (", A.l2s, ")*A.y + (", A.l3s, ")*A.z

101

102 A.x ~~ (", t1, ")*A.x

103 A.y ~~ (", A.t2s, ")*A.y

104 A.z ~~ (", A.t3s, ")*A.z

105

106 A ~~ 1*A

107 A.bf ~~ 1*A.bf

108 A ~~ 0*A.bf

109

110 # model B

111 B =~ (", l1, ")*B.x + (", l2, ")*B.y + (", l3, ")*B.z

112 B.bf =~ (", B.l2s, ")*B.y + (", B.l3s, ")*B.z

113

114 B.x ~~ (", t1, ")*B.x

115 B.y ~~ (", B.t2s, ")*B.y

116 B.z ~~ (", B.t3s, ")*B.z

117

118 B ~~ 1*B

119 B.bf ~~ 1*B.bf

120 B.bf ~~ 0*B

121

122 # model C

123 C =~ (", l1, ")*C.x + (", l2, ")*C.y + (", l3, ")*C.z

124 C.bf =~ (", C.l2s, ")*C.y + (", C.l3s, ")*C.z

125

126 C.x ~~ (", t1, ")*C.x

127 C.y ~~ (", C.t2s, ")*C.y

128 C.z ~~ (", C.t3s, ")*C.z
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129 C ~~ 1*C

130 C.bf ~~ 1*C.bf

131 C.bf ~~ 0*C

132

133 # model D

134 D =~ (", l1, ")*D.x + (", l2, ")*D.y + (", l3, ")*D.z

135 D.bf =~ (", D.l2s, ")*D.y + (", D.l3s, ")*D.z

136

137 D.x ~~ (", t1, ")*D.x

138 D.y ~~ (", D.t2s, ")*D.y

139 D.z ~~ (", D.t3s, ")*D.z

140

141 D ~~ 1*D

142 D.bf ~~ 1*D.bf

143 D.bf ~~ 0*D

144

145 # model E

146 E =~ (", l1, ")*E.x + (", l2, ")*E.y + (", l3, ")*E.z

147 E.bf =~ (", E.l2s, ")*E.y + (", E.l3s, ")*E.z

148

149 E.x ~~ (", t1, ")*E.x

150 E.y ~~ (", E.t2s, ")*E.y

151 E.z ~~ (", E.t3s, ")*E.z

152

153 E ~~ 1*E

154 E.bf ~~ 1*E.bf

155 E.bf ~~ 0*E

156

157 # model F

158 F =~ (", l1, ")*F.x + (", l2, ")*F.y + (", l3, ")*F.z

159 F.bf =~ (", F.l2s, ")*F.y + (", F.l3s, ")*F.z

160

161 F.x ~~ (", t1, ")*F.x

162 F.y ~~ (", F.t2s, ")*F.y

163 F.z ~~ (", F.t3s, ")*F.z

164

165 F ~~ 1*F

166 F.bf ~~ 1*F.bf

167 F.bf ~~ 0*F

168

169 # model G

170 G =~ (", l1, ")*G.x + (", l2, ")*G.y + (", l3, ")*G.z

171 G.bf =~ (", G.l2s, ")*G.y + (", G.l3s, ")*G.z

172

173 G.x ~~ (", t1, ")*G.x

174 G.y ~~ (", G.t2s, ")*G.y

175 G.z ~~ (", G.t3s, ")*G.z

176

177
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178 G ~~ 1*G

179 G.bf ~~ 1*G.bf

180 G.bf ~~ 0*G

181

182 # model H

183 H =~ (", l1, ")*H.x + (", l2, ")*H.y + (", l3, ")*H.z

184 H.bf =~ (", H.l2s, ")*H.y + (", H.l3s, ")*H.z

185

186 H.x ~~ (", t1, ")*H.x

187 H.y ~~ (", H.t2s, ")*H.y

188 H.z ~~ (", H.t3s, ")*H.z

189

190 H ~~ 1*H

191 H.bf ~~ 1*H.bf

192 H.bf ~~ 0*H

193

194 # model I

195 I =~ (", l1, ")*I.x + (", l2, ")*I.y + (", l3, ")*I.z

196 I.bf =~ (", I.l2s, ")*I.y + (", I.l3s, ")*I.z

197

198 I.x ~~ (", t1, ")*I.x

199 I.y ~~ (", I.t2s, ")*I.y

200 I.z ~~ (", I.t3s, ")*I.z

201

202 I ~~ 1*I

203 I.bf ~~ 1*I.bf

204 I.bf ~~ 0*I

205

206 # model J

207 J =~ (", l1, ")*J.x + (", l2, ")*J.y + (", l3, ")*J.z

208 J.bf =~ (", J.l2s, ")*J.y + (", J.l3s, ")*J.z

209

210 J.x ~~ (", t1, ")*J.x

211 J.y ~~ (", J.t2s, ")*J.y

212 J.z ~~ (", J.t3s, ")*J.z

213

214 J ~~ 1*J

215 J.bf ~~ 1*J.bf

216 J.bf ~~ 0*J

217 ")

218

219 fit <- lavaan(pop.model)

220 Sigma <- lavInspect(fit, "Sigma")

221

222 #visualize lavaan SEM

223 semPaths(fit)

224

225

226
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227 #=-=-BASELINE EDGELIST-=-=-=-=-=-=#

228 # get indices lower-half of Sigma

229 idx <- lav_matrix_vech_idx(n = nrow(Sigma), diagonal = FALSE)

230 node_from <- col(Sigma)[idx]

231 node_to <- row(Sigma)[idx]

232 # programmed: non-zero edge

233 programmed <- ifelse(abs(Sigma[idx]) > 0, 1, 0)

234 # create df_edgelist

235 df_edgelist <- data.frame(node_from, node_to, programmed)

236

237 #=-=-SIMULATION PROCESS-=-=-=-=-=-=#

238 #prepare master dataframe

239 df_master <- data.frame(node_from=as.integer(),

240 node_to=as.integer(),

241 programmed=as.integer(),

242 weight=as.numeric(),

243 run_id=as.integer())

244

245 #prepare list of vectors

246 ii_list <- list()

247

248 #prepare vectors for KPIs

249 sensitivity_vector <- specificity_vector <- programmed_vector <- nonprogrammed_

vector <- size_vector <- c(numeric(REP))

250

251 for(i in 1:length(ecov)){

252 #create dynamic string for variable name for vector

253 nam_ii <- paste("ii",i,sep="")

254 #append vector to list

255 ii_list[[i]] <- numeric(REP)

256 }

257

258 for(j in seq_len(REP)) {

259 #STEP 1: simulate ’REP’ times a dataset of size N and find the correlation matrix

260 Data <- simulateData(pop.model, sample.nobs = N)

261 COR <- cor(Data)

262

263

264 #STEP 2: calculate interaction information per triplet

265 #length of ecov also translates in the number of triplets in the model

266 for(i in 1:length(ecov)){

267 #for each triplet

268 #find index numbers to subset the correlation matrix into the relevant 3x3

matrix (per triplet)

269 m_low <- ((i-1) * 3) + 1

270 m_high <- m_low + 2

271

272 #use function lav_interaction_information_cor_triplet

273 #and assign for each iteration of REP the value into the ’dynamic value’
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274 ii_list[[i]][j] <- lav_interaction_information_cor_triplet(COR[m_low:m_high, m_

low:m_high])

275 }

276

277

278 #STEP 3: retrieve edgelist from glasso

279 qgraph_glasso <- qgraph(cor(Data), layout="spring", graph="glasso", sampleSize=N,

280 threshold=0.015, DoNotPlot=TRUE)$Edgelist

281

282 glasso_edges <- data.frame(qgraph_glasso$from, qgraph_glasso$to, qgraph_glasso$

weight)

283 #rename column names to match with df_edgelist

284 colnames(glasso_edges) <- c("node_from", "node_to", "weight")

285

286

287 #STEP 4: merge the glasso edges with the baseline edgelist, left outer join

288 df_edgelist_merged <-merge(x=df_edgelist,y=glasso_edges, all.x=TRUE)

289 #add run_id to know from which iteration the data comes from

290 df_edgelist_merged$run_id <- j

291

292

293 #STEP 5: save results of iteration in master dataframe

294 df_master <- rbind(df_master, df_edgelist_merged)

295

296

297 #STEP 6: calculate KPIs per iteration

298 #prepare a 2x2 matrix for sensitivity/specificity

299 kpi_matrix <- matrix(c(0,0,0,0),nrow=2,ncol=2)

300

301 # (A) True Positives - programmed = 1 and weight != NA

302 kpi_matrix[1,1] <- length(which(df_edgelist_merged$programmed == 1

303 & !is.na(df_edgelist_merged$weight)))

304

305 # (B) False Negatives - programmed = 1 and weight = NA

306 kpi_matrix[2,1] <- length(which(df_edgelist_merged$programmed == 1

307 & is.na(df_edgelist_merged$weight)))

308

309 # (C) True Negatives - programmed = 0 and weight = NA

310 kpi_matrix[2,2] <- length(which(df_edgelist_merged$programmed == 0

311 & is.na(df_edgelist_merged$weight)))

312

313 # (D) False Positives - programmed = 0 and weight != NA

314 kpi_matrix[1,2] <- length(which(df_edgelist_merged$programmed == 0

315 & !is.na(df_edgelist_merged$weight)))

316

317 #calculate sensitivity & specificity

318 sensitivity_vector[j] <- kpi_matrix[1,1] / (kpi_matrix[1,1] + kpi_matrix[2,1])

319 specificity_vector[j] <- kpi_matrix[2,2] / (kpi_matrix[2,2] + kpi_matrix[1,2])

320
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321 #calculate percentage of edges found that were programmed/non-programmed

322 #edges programmed: TP / (TP + FP)

323 programmed_vector[j] <- kpi_matrix[1,1] / (kpi_matrix[1,1] + kpi_matrix[1,2])

324 nonprogrammed_vector[j] <- 1 - programmed_vector[j]

325

326 #calculate number of edges to represent size of network

327 size_vector[j] <- length(which(!is.na(df_edgelist_merged$weight)))

328

329 print(j) #to keep track in console

330 }

331

332 #store KPI vectors into list

333 list_kpi <- list(size = size_vector, sensitivity = sensitivity_vector, specificity =

specificity_vector,

334 ’%_programmed’ = programmed_vector, ’%_nonprogrammed’ =

nonprogrammed_vector)

335

336 #convert KPI vectors into data-frame

337 df_kpi <- as.data.frame(do.call(cbind, list_kpi))

338 df_kpi <- format(df_kpi, digits=3, nsmall=0)

339 df_kpi <- sapply(df_kpi, as.numeric)

340

341 df_kpi_avg <- colMeans(df_kpi)

342 df_kpi_avg <- format(df_kpi_avg, digits=3, nsmall=0)

343

344

345 #=-=-RENAMING NODES FROM NUMBERS TO VARIABLE NAMES-=-=-=-=-=-=#

346 #transform numeric values for nodes in edgelist to actual variable names of model

347 #sequential order, 1/2/3 are A.x/A.y/A.z, etc.

348 number <- seq(3*length(ecov))

349

350 for(i in 1:length(ecov)) {

351 #first, take the appropriate capital letter of the alphabet

352 letter <- substr(alphabet, i, i)

353

354 #inner loop, create three variables for each iteration

355 for (j in 1:3) {

356 if (j == 1){

357 #create A.x, B.x, etc.

358 name <- paste(letter, ".x", sep="")

359 }

360 else if (j == 2){

361 #create A.y, B.y, etc.

362 name <- paste(letter, ".y", sep="")

363 }

364 else {

365 #create A.z, B.z, etc.

366 name <- paste(letter, ".z", sep="")

367 }
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368 #replace each occurrence of current number (first one in vector) to newly

created name

369 df_master$node_from[df_master$node_from == number[1]] <- name

370 df_edgelist$node_from[df_edgelist$node_from == number[1]] <- name

371 #repeat the same for the ’node_to’ column

372 df_master$node_to[df_master$node_to == number[1]] <- name

373 df_edgelist$node_to[df_edgelist$node_to == number[1]] <- name

374 #delete first value of vector, similar to number += 1 in Python

375 number <- number[-1]

376 }

377 if (length(number) == 0) { #if all iterations are complete

378 #remove ’junk’ variables from the workspace

379 rm(number, i, j, name, letter, alphabet)

380 }

381 }

382

383

384 #=-=-OVERALL KPIs-=-=-=-=-=-=#

385 #having calculated KPIs per iteration, now to calculate KPIs from df_master after

all iterations

386 #KPIs could be related to subsets of the master dataframe

387

388 # (A) % of replications where particular edge was found (via group by)

389 #filter the master dataframe with only records including weights

390 df_master_filtered <- df_master[!is.na(df_master$weight),1:2]

391

392 #aggregate edges by number of occurrences, named ’count’

393 df_master_filtered_agg <- aggregate(df_master_filtered, by=list(df_master_filtered$

node_from, df_master_filtered$node_to),

394 FUN=length)[1:3]

395 #rename columns

396 colnames(df_master_filtered_agg) <- c("node_from", "node_to", "count")

397

398 #calculate % of occurrence, named ’occur’

399 for (i in 1:nrow(df_master_filtered_agg)) {

400 df_master_filtered_agg$occur[i] <- df_master_filtered_agg$count[i] / REP

401 }

402

403 #merge grouped-by dataframe of edges with metadata of ’programmed’

404 df_master_filtered_agg <-merge(x=df_edgelist,y=df_master_filtered_agg, all.x=TRUE)

405

406 #some edges may have a ’NA’ value for columns ’count’ and ’occur’, which is

plausible

407 #replace ’NA’ in columns ’count’ and ’occur’ with 0

408 df_master_filtered_agg$count[is.na(df_master_filtered_agg$count)] <- 0

409 df_master_filtered_agg$occur[is.na(df_master_filtered_agg$occur)] <- 0

410

411

412
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413 # (A-1) full list of all edges with occurrence, descending order

414 df_master_filtered_agg_occurlist <- df_master_filtered_agg[order(-df_master_filtered

_agg$occur),][,c(1,2,5)]

415

416 # (A-2) occurrences split by programmed and non-programmed edges

417 df_master_filtered_agg_programmed <- df_master_filtered_agg[df_master_filtered_agg$

programmed == 1,c(1,2,5)]

418 #descending sort by occurrence %

419 df_master_filtered_agg_programmed <- df_master_filtered_agg_programmed[order(-df_

master_filtered_agg_programmed$occur),]

420

421 df_master_filtered_agg_nonprogrammed <- df_master_filtered_agg[df_master_filtered_

agg$programmed == 0,c(1,2,5)]

422 #descending sort by occurrence %

423 df_master_filtered_agg_nonprogrammed <- df_master_filtered_agg_nonprogrammed[order(-

df_master_filtered_agg_nonprogrammed$occur),]

424

425 # (B) overall specificity and sensitivity KPIs

426 kpi_matrix_agg <- matrix(c(0,0,0,0),nrow=2,ncol=2)

427

428 # (1) True Positives - sum of edge counts where programmed = 1

429 kpi_matrix_agg[1,1] <- length(which(df_master$programmed == 1

430 & !is.na(df_master$weight)))

431

432 # (2) False Negatives - number of records where programmed = 1 and count = 0

433 kpi_matrix_agg[2,1] <- length(which(df_master$programmed == 1

434 & is.na(df_master$weight)))

435

436 # (3) True Negatives - number of records where programmed = 0 and count = 0

437 kpi_matrix_agg[2,2] <- length(which(df_master$programmed == 0

438 & !is.na(df_master$weight)))

439

440 # (4) False Positives - sum of edge counts where programmed = 0

441 kpi_matrix_agg[1,2] <- length(which(df_master$programmed == 0

442 & is.na(df_master$weight)))

443

444 #calculate sensitivity & specificity

445 sensitivity_agg <- kpi_matrix_agg[1,1] / (kpi_matrix_agg[1,1] + kpi_matrix_agg[2,1])

446 specificity_agg <- kpi_matrix_agg[2,2] / (kpi_matrix_agg[2,2] + kpi_matrix_agg[1,2])

447

448 # (C) Average weight of edges

449 df_master_filtered_weight <- df_master[!is.na(df_master$weight),c(1,2,4)]

450 #aggregate edges by average weight

451 df_master_filtered_weight_agg <- aggregate(df_master_filtered_weight[,3], by=list(df

_master_filtered_weight$node_from, df_master_filtered_weight$node_to), FUN=mean)

452 df_master_filtered_weight_agg[,3] <- format(df_master_filtered_weight_agg[,3],

digits=3, nsmall=0)

453 colnames(df_master_filtered_weight_agg) <- c("node_from", "node_to", "avg_weight")

454
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455 #add metadata about % of occurrences in list

456 df_master_filtered_weight_agg <- merge(x=df_master_filtered_weight_agg,y=df_master_

filtered_agg[,c(1,2,5)], all.x=TRUE)

457 #descending sort by occurrence %

458 df_master_filtered_weight_agg <- df_master_filtered_weight_agg[order(-df_master_

filtered_weight_agg$occur),]

459

460 # (C-2) Filter by only significant edges (< -0.02 or > 0.02)

461 df_weight_sig <- df_master_filtered_weight_agg[abs(as.numeric(df_master_filtered_

weight_agg$avg_weight)) >= 0.02,]

462

463

464 #=-=-CALCULATING II PER TRIPLET-=-=-=-=-=-=#

465 #preparing dataframe for the output, two columns for scores and description of level

of II intended

466 df_ii <- data.frame(ii_score=as.numeric(10),

467 ii_programmed=character(10),

468 stringsAsFactors = FALSE)

469

470 for(i in 1:length(ecov)){

471 #add mean II values per triplet

472 df_ii$ii_score[i] <- mean(ii_list[[i]])

473

474 #add description of programmed intention of level of II

475 if (ecov[i] == ii_choice[1]) {

476 df_ii$ii_programmed[i] <- "redundancy"

477 }

478 else if (ecov[i] == ii_choice[2]) {

479 df_ii$ii_programmed[i] <- "zero interaction"

480 }

481 else if (ecov[i] == ii_choice[3]) {

482 df_ii$ii_programmed[i] <- "synergy"

483 }

484 else {

485 df_ii$ii_programmed[i] <- "custom"

486 }

487 }

488

489 #=-=-FINAL LIST OF RESULTS-=-=-=-=-=-=#

490 list_results <- list(’Iteration Summary (Avg. KPIs)’ = df_kpi_avg, ’Iteration KPIs’

= df_kpi, ’II per Triplet’ = df_ii, ’Occurrences of All Edges’ = df_master_

filtered_agg_occurlist, ’Occurrences of All Programmed Edges’ = df_master_

filtered_agg_programmed, ’Occurrences of All Non-Programmed Edges’ = df_master_

filtered_agg_nonprogrammed, ’Avg. Edge Weights & Occurrences’ = df_master_

filtered_weight_agg, ’Only Significant Avg. Edge Weights & Occurrences’ = df_

weight_sig)

491

492 print(list_results$‘Iteration Summary (Avg. KPIs)‘)

493 print(list_results$‘II per Triplet‘)
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D.1.1 Model Syntax for Model 4

Model 4 uses a closed loop structure via Z-variables of two neighboring triplets. To

force the layout, the following residual correlations are added in the lavaan model

syntax:

1 # residual correlations

2 A.z ~~ 0.10*B.z

3 B.z ~~ 0.10*C.z

4 C.z ~~ 0.10*D.z

5 D.z ~~ 0.10*E.z

6 E.z ~~ 0.10*F.z

7 F.z ~~ 0.10*G.z

8 G.z ~~ 0.10*H.z

9 H.z ~~ 0.10*I.z

10 I.z ~~ 0.10*J.z

11 J.z ~~ 0.10*A.z

D.1.2 Model Syntax for Model 5

Model 5 uses a closed loop structure using the Y-variable from one triplet to a Z-

variable of its neighboring triplet, going in alphabetical order. The residual correlations

are changed as follows:

1 # residual correlations

2 A.z ~~ 0.06*B.y

3 B.z ~~ 0.06*C.y

4 C.z ~~ 0.06*D.y

5 D.z ~~ 0.06*E.y

6 E.z ~~ 0.06*F.y

7 F.z ~~ 0.06*G.y

8 G.z ~~ 0.06*H.y

9 H.z ~~ 0.06*I.y

10 I.z ~~ 0.06*J.y

11 J.z ~~ 0.06*A.y

D.1.3 Model Syntax for Model 7

Model 7 uses a double closed loop structure using the Z-variables between two triplets.

Going in alphabetical order, each triplet is connected to four triplets in total: two

triplets positioned before and two triplets positioned after the triplet of question. For

instance, triplet C is connected to triplets A, B, D and E, all via edges between their

Z-variables. The residual correlations are thus split up into two separate loops, as

follows:

76



APPENDIX D. R-CODE OF MODEL LAYOUTS

1 # residual correlations

2 #loop 1

3 A.z ~~ 0.1*B.z

4 B.z ~~ 0.1*C.z

5 C.z ~~ 0.1*D.z

6 D.z ~~ 0.1*E.z

7 E.z ~~ 0.1*F.z

8 F.z ~~ 0.1*G.z

9 G.z ~~ 0.1*H.z

10 H.z ~~ 0.1*I.z

11 I.z ~~ 0.1*J.z

12 J.z ~~ 0.1*A.z

13

14 #loop 2

15 A.z ~~ 0.09*C.z

16 B.z ~~ 0.09*D.z

17 C.z ~~ 0.09*E.z

18 D.z ~~ 0.09*F.z

19 E.z ~~ 0.09*G.z

20 F.z ~~ 0.09*H.z

21 G.z ~~ 0.09*I.z

22 H.z ~~ 0.09*J.z

23 I.z ~~ 0.09*A.z

24 J.z ~~ 0.09*B.z
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D.2 R-Code Template for Model 2

Compared to the R-code shown in Appendix D.1, several smaller code chunks have

been adapted to include metrics of edges occurring either within or between clusters.

The lavaan model syntax now creates only nine triplets A to I and forced residual

correlations have been added:

1 # residual correlations

2 A.z ~~ 0.10*B.z

3 B.z ~~ 0.10*C.z

4 A.z ~~ 0.10*C.z

5 D.z ~~ 0.10*E.z

6 E.z ~~ 0.10*F.z

7 D.z ~~ 0.10*F.z

8 G.z ~~ 0.10*H.z

9 H.z ~~ 0.10*I.z

10 G.z ~~ 0.10*I.z

The section "Baseline Edgelist" is edited as such:

1 #=-=-BASELINE EDGELIST-=-=-=-=-=-=#

2 # get indices lower-half of Sigma

3 idx <- lav_matrix_vech_idx(n = nrow(Sigma), diagonal = FALSE)

4 node_from <- col(Sigma)[idx]

5 node_to <- row(Sigma)[idx]

6 # programmed: non-zero edge

7 programmed <- ifelse(abs(Sigma[idx]) > 0, 1, 0)

8 # within-cluster edges

9 set1 <- 1:9

10 set2 <- 1:9 + 9

11 set3 <- 1:9 + 9 + 9

12 in_cluster <- ifelse((node_from %in% set1 & node_to %in% set1) |

13 (node_from %in% set2 & node_to %in% set2) |

14 (node_from %in% set3 & node_to %in% set3), 1, 0)

15 # create df_edgelist

16 df_edgelist <- data.frame(node_from, node_to, programmed, in_cluster)

Additional vectors are prepared to store KPI data in regarding the percentage of edges

found within or between clusters.

1 #prepare vectors for KPIs

2 sensitivity_vector <- specificity_vector <- incluster_vector <- outcluster_

vector <-

3 programmed_vector <- nonprogrammed_vector <- size_vector <- c(numeric(REP))
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Before the code chunk in lines 321-324, the following is added:

1 #calculate percentage of edges found within/outside cluster

2 edges_incluster <- length(which(df_edgelist_merged$in_cluster == 1 & !is.na(df_

edgelist_merged$weight)))

3 incluster_vector[j] <- edges_incluster / length(which(!is.na(df_edgelist_merged$

weight)))

4 outcluster_vector[j] <- 1 - incluster_vector[j]

The additional vectors are added to the list stkp:

1 #store KPI vectors into list

2 list_kpi <- list(size = size_vector, sensitivity = sensitivity_vector, specificity =

specificity_vector, ’%_programmed’ = programmed_vector, ’%_nonprogrammed’ =

nonprogrammed_vector, ’%_incluster’ = incluster_vector, ’%_outcluster’ =

outcluster_vector)

Before line 425, the following code chunk is added:

1 # (A-3) split by those within and outside cluster

2 df_master_filtered_agg_incluster <- df_master_filtered_agg[df_master_filtered_agg$in

_cluster == 1,c(1,2,6)]

3 #descending sort by occurrence %

4 df_master_filtered_agg_incluster <- df_master_filtered_agg_incluster[order(-df_

master_filtered_agg_incluster$occur),]

5

6 df_master_filtered_agg_outcluster <- df_master_filtered_agg[df_master_filtered_agg$

in_cluster == 0,c(1,2,6)]

7 #descending sort by occurrence %

8 df_master_filtered_agg_outcluster <- df_master_filtered_agg_outcluster[order(-df_

master_filtered_agg_outcluster$occur),]

9

10

11 # (A-4) combination: non-programmed, in cluster

12 #those that are non-programmed and outside of cluster are already covered by ’

outcluster’

13 #because no edges between clusters would be programmed with intention

14 df_master_filtered_agg_nonprogrammed_incluster <- df_master_filtered_agg[df_master_

filtered_agg$programmed == 0 & df_master_filtered_agg$in_cluster == 1 ,c(1,2,6)

]

15 #descending sort by occurrence %

16 df_master_filtered_agg_nonprogrammed_incluster <- df_master_filtered_agg_

nonprogrammed_incluster[order(-df_master_filtered_agg_nonprogrammed_incluster$

occur),]

The final list of results is larger as KPI data is now available about edges occurring

either within a cluster or between clusters:

1 #=-=-FINAL LIST OF RESULTS-=-=-=-=-=-=#

2 list_results <- list(’Iteration Summary (Avg. KPIs)’ = df_kpi_avg, ’Iteration KPIs’

= df_kpi, ’II per Triplet’ = df_ii, ’Occurrences of All Edges’ = df_master_
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filtered_agg_occurlist, ’Occurrences of All Programmed Edges’ = df_master_

filtered_agg_programmed, ’Occurrences of All Non-Programmed Edges’ = df_master_

filtered_agg_nonprogrammed, ’Occurrences of Edges within Cluster’ = df_master_

filtered_agg_incluster, ’Occurrences of Edges between Clusters’ = df_master_

filtered_agg_outcluster, ’Occurrences of Non-Programmed Edges within Cluster’ =

df_master_filtered_agg_nonprogrammed_incluster, ’Avg. Edge Weights & Occurrences

’ = df_master_filtered_weight_agg, ’Only Significant Avg. Edge Weights &

Occurrences’ = df_weight_sig)

D.2.1 Model Syntax for Model 3

Model 3 uses the same setup as Model 2 with its only difference being the forced

weaker residual correlations linked between a Z-variable from one triplet towards the

Y-variables from the other triplets in its cluster:

1 # residual correlations

2 A.z ~~ 0.06*B.y

3 A.z ~~ 0.06*C.y

4

5 B.z ~~ 0.06*A.y

6 B.z ~~ 0.06*C.y

7

8 C.z ~~ 0.06*A.y

9 C.z ~~ 0.06*B.y

10

11 D.z ~~ 0.06*E.y

12 D.z ~~ 0.06*F.y

13

14 E.z ~~ 0.06*D.y

15 E.z ~~ 0.06*F.y

16

17 F.z ~~ 0.06*D.y

18 F.z ~~ 0.06*E.y

19

20 G.z ~~ 0.06*H.y

21 G.z ~~ 0.06*I.y

22

23 H.z ~~ 0.06*G.y

24 H.z ~~ 0.06*I.y

25

26 I.z ~~ 0.06*G.y

27 I.z ~~ 0.06*H.y
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D.2.2 Model Syntax for Model 6

Model 6 is quite similar to Model 2 as it uses residual correlations between Z-variables

for all triplets in the cluster. The only difference is that four triplets are presents within

each cluster instead of three. Assuming the additional triplets have been prepared in

the lavaan model syntax (as twelve triplets are used instead of nine requiring the

creation of triplet J, K and L), this changes the list of residual correlations required as

follows:

1 A.z ~~ 0.10*B.z

2 A.z ~~ 0.10*C.z

3 A.z ~~ 0.10*D.z

4 B.z ~~ 0.10*C.z

5 B.z ~~ 0.10*D.z

6

7 C.z ~~ 0.10*D.z

8

9 E.z ~~ 0.10*F.z

10 E.z ~~ 0.10*G.z

11 E.z ~~ 0.10*H.z

12

13 F.z ~~ 0.10*G.z

14 F.z ~~ 0.10*H.z

15

16 G.z ~~ 0.10*H.z

17

18 I.z ~~ 0.10*J.z

19 I.z ~~ 0.10*K.z

20 I.z ~~ 0.10*L.z

21

22 J.z ~~ 0.10*K.z

23 J.z ~~ 0.10*L.z

24

25 K.z ~~ 0.10*L.z
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APPENDIX E

SIMULATION RESULTS

E.1 Summary KPIs

Figure E.1: Boxplot of Sensitivity levels per combination of model layout, case and
threshold level.



E.1. SUMMARY KPIS

Threshold Syn Zero Redun
False 100.00 (100.00-100.0) 66.70 (66.70-66.7) 93.30 (90.00-96.7)
0.005 100.00 (100.00-100.0) 66.70 (66.70-66.7) 93.30 (90.00-96.7)
0.01 100.00 (100.00-100.0) 66.70 (66.70-66.7) 93.30 (90.00-96.7)
0.015 100.00 (100.00-100.0) 66.70 (66.70-66.7) 93.30 (90.00-96.7)
0.02 100.00 (100.00-100.0) 66.70 (66.70-66.7) 90.00 (86.70-93.3)
0.025 100.00 (100.00-100.0) 66.70 (66.70-66.7) 90.00 (86.70-93.3)
0.03 100.00 (100.00-100.0) 66.70 (66.70-66.7) 90.00 (86.70-93.3)
0.035 100.00 (100.00-100.0) 66.70 (66.70-66.7) 86.70 (83.30-90.0)
0.04 100.00 (100.00-100.0) 66.70 (66.70-66.7) 86.70 (83.30-90.0)
0.045 100.00 (100.00-100.0) 66.70 (66.70-66.7) 86.70 (83.30-90.0)
0.05 100.00 (100.00-100.0) 66.70 (66.70-66.7) 83.30 (80.00-86.7)
True 100.00 (100.00-100.0) 93.30 (90.00-96.7) 66.70 (66.70-66.7)

Table E.1: Model 1 - Sensitivity KPIs

Threshold Syn Zero Redun
False 97.20 (94.40-100.0) 55.60 (52.80-58.3) 77.80 (75.00-80.6)
0.005 97.20 (94.40-100.0) 55.60 (52.80-58.3) 77.80 (75.00-80.6)
0.01 94.40 (91.70-97.2) 55.60 (52.80-58.3) 77.80 (72.20-80.6)
0.015 94.40 (91.70-97.2) 55.60 (52.80-58.3) 75.00 (72.20-77.8)
0.02 94.40 (88.90-97.2) 52.80 (52.80-55.6) 72.20 (69.40-77.8)
0.025 91.70 (88.90-94.4) 52.80 (52.80-55.6) 72.20 (69.40-75.0)
0.03 91.70 (86.10-94.4) 52.80 (50.00-55.6) 69.40 (66.70-75.0)
0.035 88.90 (86.10-91.7) 52.80 (50.00-55.6) 69.40 (66.70-72.2)
0.04 88.90 (86.10-91.7) 52.80 (50.00-55.6) 66.70 (63.90-69.4)
0.045 86.10 (83.30-88.9) 52.80 (50.00-52.8) 66.70 (63.90-69.4)
0.05 86.10 (83.30-88.9) 50.00 (50.00-52.8) 63.90 (61.10-66.7)
True 77.80 (75.00-80.6) 72.20 (69.40-75.0) 50.00 (50.00-50.0)

Table E.2: Model 2 - Sensitivity KPIs

Threshold Syn Zero Redun
False 86.70 (82.20-91.1) 44.40 (42.20-46.7) 62.20 (57.80-64.4)
0.005 86.70 (80.00-88.9) 44.40 (42.20-46.7) 60.00 (57.80-64.4)
0.01 82.20 (77.80-86.7) 42.20 (42.20-44.4) 60.00 (57.25-62.2)
0.015 80.00 (75.60-84.4) 42.20 (40.00-44.4) 57.80 (55.60-60.0)
0.02 75.60 (71.10-80.0) 42.20 (40.00-44.4) 57.80 (55.60-60.0)
0.025 73.30 (68.90-77.8) 42.20 (40.00-42.2) 55.60 (53.30-57.8)
0.03 71.10 (66.70-73.3) 40.00 (40.00-42.2) 53.30 (51.10-57.8)
0.035 68.90 (64.40-71.1) 40.00 (40.00-42.2) 53.30 (51.10-55.6)
0.04 66.70 (64.40-68.9) 40.00 (40.00-42.2) 53.30 (48.90-55.6)
0.045 64.40 (62.20-66.7) 40.00 (40.00-42.2) 51.10 (48.90-53.3)
0.05 62.20 (62.20-64.4) 40.00 (40.00-40.0) 51.10 (46.70-53.3)
True 62.20 (60.00-64.4) 57.80 (53.30-60.0) 40.00 (40.00-40.0)

Table E.3: Model 3 - Sensitivity KPIs

Threshold Syn Zero Redun
False 95.00 (92.50-97.5) 55.00 (52.50-57.5) 77.50 (75.00-80.0)
0.005 95.00 (92.50-97.5) 55.00 (52.50-57.5) 77.50 (75.00-80.0)
0.01 95.00 (90.00-97.5) 55.00 (52.50-57.5) 75.00 (72.50-80.0)
0.015 92.50 (90.00-95.0) 55.00 (52.50-57.5) 75.00 (72.50-77.5)
0.02 92.50 (87.50-95.0) 55.00 (52.50-55.0) 72.50 (70.00-75.0)
0.025 90.00 (87.50-95.0) 52.50 (52.50-55.0) 72.50 (67.50-75.0)
0.03 90.00 (85.00-92.5) 52.50 (50.00-55.0) 70.00 (67.50-72.5)
0.035 87.50 (85.00-92.5) 52.50 (50.00-55.0) 67.50 (65.00-72.5)
0.04 87.50 (82.50-90.0) 52.50 (50.00-55.0) 67.50 (65.00-70.0)
0.045 85.00 (82.50-90.0) 52.50 (50.00-52.5) 65.00 (62.50-70.0)
0.05 85.00 (80.00-87.5) 50.00 (50.00-52.5) 65.00 (62.50-67.5)
True 77.50 (75.00-80.0) 72.50 (70.00-72.5) 50.00 (50.00-50.0)

Table E.4: Model 4 - Sensitivity KPIs

84



APPENDIX E. SIMULATION RESULTS

Threshold Syn Zero Redun
False 90.00 (85.00-92.5) 52.50 (50.00-55.0) 75.00 (72.50-77.5)
0.005 87.50 (85.00-92.5) 52.50 (50.00-52.5) 72.50 (70.00-75.0)
0.01 87.50 (82.50-90.0) 52.50 (50.00-52.5) 72.50 (70.00-75.0)
0.015 85.00 (82.50-87.5) 50.00 (50.00-52.5) 70.00 (67.50-72.5)
0.02 82.50 (80.00-87.5) 50.00 (50.00-52.5) 70.00 (67.50-72.5)
0.025 82.50 (80.00-85.0) 50.00 (50.00-52.5) 68.75 (65.00-72.5)
0.03 80.00 (77.50-82.5) 50.00 (50.00-52.5) 67.50 (65.00-70.0)
0.035 80.00 (77.50-82.5) 50.00 (50.00-50.0) 67.50 (62.50-70.0)
0.04 77.50 (75.00-80.0) 50.00 (50.00-50.0) 65.00 (62.50-67.5)
0.045 77.50 (75.00-80.0) 50.00 (50.00-50.0) 65.00 (62.50-67.5)
0.05 77.50 (75.00-77.5) 50.00 (50.00-50.0) 62.50 (60.00-65.0)
True 77.50 (77.50-80.0) 70.00 (67.50-72.5) 50.00 (50.00-50.0)

Table E.5: Model 5 - Sensitivity KPIs

Threshold Syn Zero Redun
False 85.20 (81.50-88.9) 50.00 (48.10-53.7) 70.40 (68.50-74.1)
0.005 83.30 (79.60-88.9) 50.00 (48.10-53.7) 70.40 (66.70-74.1)
0.01 83.30 (79.60-87.0) 50.00 (48.10-51.9) 68.50 (66.70-72.2)
0.015 81.50 (77.80-85.2) 48.10 (46.30-51.9) 66.70 (64.80-70.4)
0.02 79.60 (75.90-83.3) 48.10 (46.30-50.0) 66.70 (63.00-68.5)
0.025 79.60 (75.90-83.3) 48.10 (46.30-50.0) 64.80 (63.00-66.7)
0.03 77.80 (74.10-81.5) 48.10 (46.30-50.0) 63.00 (61.10-66.7)
0.035 75.90 (74.10-79.6) 46.30 (44.40-48.1) 63.00 (59.30-64.8)
0.04 75.90 (72.20-77.8) 46.30 (44.40-48.1) 61.10 (57.40-63.0)
0.045 74.10 (70.40-75.9) 46.30 (44.40-48.1) 59.30 (57.40-61.1)
0.05 72.20 (70.40-75.9) 46.30 (44.40-46.3) 57.40 (55.60-61.1)
True 68.50 (66.70-68.5) 63.00 (59.30-64.8) 44.40 (44.40-44.4)

Table E.6: Model 6 - Sensitivity KPIs

Threshold Syn Zero Redun
False 92.00 (86.00-94.0) 48.00 (46.00-50.0) 66.00 (64.00-70.0)
0.005 90.00 (86.00-94.0) 48.00 (46.00-50.0) 66.00 (62.00-70.0)
0.01 88.00 (84.00-92.0) 46.00 (44.00-50.0) 64.00 (62.00-68.0)
0.015 86.00 (82.00-90.0) 46.00 (44.00-48.0) 62.00 (60.00-66.0)
0.02 84.00 (80.00-88.0) 46.00 (44.00-48.0) 60.00 (58.00-64.0)
0.025 82.00 (78.00-86.0) 44.00 (42.00-48.0) 60.00 (56.00-62.0)
0.03 80.00 (76.00-84.0) 44.00 (42.00-46.0) 58.00 (56.00-60.0)
0.035 78.00 (74.00-82.0) 44.00 (42.00-46.0) 56.00 (54.00-60.0)
0.04 76.00 (72.00-80.0) 42.00 (42.00-44.0) 56.00 (52.00-58.0)
0.045 74.00 (70.00-78.0) 42.00 (40.00-44.0) 54.00 (52.00-56.0)
0.05 72.00 (68.00-76.0) 42.00 (40.00-44.0) 52.00 (50.00-56.0)
True 62.00 (60.00-62.0) 56.00 (54.00-58.0) 40.00 (40.00-40.0)

Table E.7: Model 7 - Sensitivity KPIs
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Figure E.2: Boxplot of Specificity levels per combination of model layout, case and
threshold level.

Threshold Syn Zero Redun
False 78.90 (75.10-83.70) 97.30 (96.30-98.00) 96.80 (95.60-97.80)
0.005 78.90 (75.10-83.70) 97.80 (97.00-98.50) 97.50 (96.30-98.30)
0.01 85.20 (82.70-88.40) 98.50 (97.50-99.00) 98.00 (97.30-98.80)
0.015 89.90 (88.10-91.90) 98.80 (98.30-99.30) 98.80 (98.00-99.30)
0.02 93.10 (92.10-94.60) 99.30 (98.80-99.50) 99.00 (98.50-99.50)
0.025 95.60 (94.60-96.30) 99.50 (99.00-99.80) 99.50 (99.00-99.80)
0.03 97.00 (96.30-97.50) 99.50 (99.30-99.80) 99.50 (99.30-99.80)
0.035 98.00 (97.50-98.50) 99.80 (99.50-100.00) 99.80 (99.50-100.00)
0.04 98.80 (98.30-99.00) 99.80 (99.50-100.00) 99.80 (99.80-100.00)
0.045 99.30 (98.80-99.50) 100.00 (99.80-100.00) 100.00 (99.80-100.00)
0.05 99.50 (99.30-99.80) 100.00 (99.80-100.00) 100.00 (99.80-100.00)
True 100.00 (100.00-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.8: Model 1 - Specificity KPIs

86



APPENDIX E. SIMULATION RESULTS

Threshold Syn Zero Redun
False 65.70 (61.82-70.50) 97.10 (96.20-98.10) 96.20 (94.90-97.50)
0.005 75.20 (72.10-78.40) 97.80 (96.80-98.40) 97.10 (95.90-98.10)
0.01 83.20 (80.60-85.40) 98.40 (97.50-99.00) 97.80 (96.80-98.70)
0.015 88.60 (87.00-90.20) 98.70 (98.10-99.40) 98.40 (97.80-99.00)
0.02 92.40 (91.10-93.70) 99.00 (98.70-99.70) 99.00 (98.40-99.40)
0.025 94.90 (94.00-95.90) 99.40 (99.00-99.70) 99.40 (98.70-99.70)
0.03 96.80 (95.90-97.50) 99.70 (99.40-100.00) 99.70 (99.00-100.00)
0.035 98.10 (97.50-98.40) 99.70 (99.40-100.00) 99.70 (99.40-100.00)
0.04 98.70 (98.10-99.00) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.045 99.00 (98.70-99.40) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.05 99.40 (99.00-99.70) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
True 99.70 (99.00-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.9: Model 2 - Specificity KPIs

Threshold Syn Zero Redun
False 67.00 (62.70-72.50) 97.10 (96.10-98.00) 96.40 (95.10-97.40)
0.005 75.80 (72.50-79.70) 97.70 (96.70-98.70) 97.10 (96.10-98.00)
0.01 83.30 (81.00-85.90) 98.40 (97.40-99.00) 98.00 (97.10-98.70)
0.015 88.90 (86.90-90.50) 98.70 (98.00-99.30) 98.70 (97.70-99.00)
0.02 92.50 (91.20-93.80) 99.00 (98.70-99.70) 99.00 (98.40-99.30)
0.025 95.10 (94.10-96.10) 99.30 (99.00-99.70) 99.30 (99.00-99.70)
0.03 96.70 (96.10-97.40) 99.70 (99.30-100.00) 99.70 (99.30-99.70)
0.035 97.70 (97.40-98.40) 99.70 (99.30-100.00) 99.70 (99.30-100.00)
0.04 98.70 (98.00-99.00) 99.70 (99.70-100.00) 100.00 (99.70-100.00)
0.045 99.00 (98.70-99.30) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.05 99.30 (99.00-99.70) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
True 99.70 (99.30-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.10: Model 3 - Specificity KPIs

Threshold Syn Zero Redun
False 71.60 (66.80-78.50) 97.50 (96.50-98.20) 97.00 (95.90-98.00)
0.005 79.00 (75.20-83.58) 98.00 (97.15-98.70) 97.70 (96.70-98.50)
0.01 85.60 (82.95-88.40) 98.50 (97.70-99.00) 98.20 (97.50-99.00)
0.015 90.10 (88.40-92.20) 99.00 (98.20-99.50) 98.70 (98.20-99.20)
0.02 93.40 (92.20-94.70) 99.20 (98.70-99.50) 99.20 (98.70-99.50)
0.025 95.70 (94.70-96.50) 99.50 (99.00-99.70) 99.50 (99.00-99.70)
0.03 97.20 (96.50-97.70) 99.70 (99.20-99.70) 99.70 (99.50-100.00)
0.035 98.00 (97.50-98.50) 99.70 (99.50-100.00) 99.70 (99.50-100.00)
0.04 98.70 (98.20-99.20) 99.70 (99.70-100.00) 100.00 (99.70-100.00)
0.045 99.20 (98.70-99.50) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.05 99.50 (99.20-99.70) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
True 99.70 (99.20-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.11: Model 4 - Specificity KPIs

Threshold Syn Zero Redun
False 72.70 (66.80-79.20) 97.50 (96.65-98.20) 97.00 (95.70-97.70)
0.005 79.70 (75.20-84.30) 98.00 (97.20-98.70) 97.50 (96.50-98.27)
0.01 85.60 (82.95-88.90) 98.50 (97.70-99.00) 98.20 (97.20-99.00)
0.015 90.10 (88.40-92.20) 99.00 (98.20-99.20) 98.70 (98.00-99.20)
0.02 93.40 (92.20-94.70) 99.20 (98.70-99.50) 99.20 (98.70-99.50)
0.025 95.40 (94.70-96.50) 99.50 (99.00-99.70) 99.50 (99.00-99.70)
0.03 97.00 (96.20-97.70) 99.70 (99.20-99.70) 99.50 (99.20-99.70)
0.035 98.00 (97.50-98.50) 99.70 (99.50-100.00) 99.70 (99.50-100.00)
0.04 98.70 (98.20-99.00) 99.70 (99.70-100.00) 99.70 (99.70-100.00)
0.045 99.20 (98.70-99.50) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.05 99.50 (99.20-99.70) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
True 99.70 (99.50-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.12: Model 5 - Specificity KPIs
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E.1. SUMMARY KPIS

Threshold Syn Zero Redun
False 87.20 (83.00-90.50) 98.30 (97.60-98.80) 97.70 (96.90-98.40)
0.005 90.10 (86.60-92.70) 98.60 (97.90-99.10) 98.30 (97.60-98.80)
0.01 92.70 (90.25-94.65) 99.00 (98.40-99.30) 98.80 (98.10-99.30)
0.015 94.80 (92.90-96.20) 99.30 (98.80-99.70) 99.10 (98.60-99.50)
0.02 96.40 (95.00-97.40) 99.50 (99.10-99.70) 99.50 (99.10-99.70)
0.025 97.60 (96.50-98.30) 99.70 (99.50-99.80) 99.70 (99.30-99.80)
0.03 98.30 (97.60-98.80) 99.80 (99.70-99.80) 99.80 (99.50-99.80)
0.035 98.80 (98.40-99.10) 99.80 (99.70-100.00) 99.80 (99.70-100.00)
0.04 99.10 (98.80-99.50) 100.00 (99.80-100.00) 100.00 (99.80-100.00)
0.045 99.50 (99.10-99.70) 100.00 (99.80-100.00) 100.00 (99.80-100.00)
0.05 99.70 (99.50-99.80) 100.00 (99.80-100.00) 100.00 (100.00-100.00)
True 99.80 (99.70-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.13: Model 6 - Specificity KPIs

Threshold Syn Zero Redun
False 71.70 (66.50-78.20) 97.70 (96.90-98.40) 97.10 (96.10-98.20)
0.005 79.20 (75.30-83.90) 98.20 (97.40-99.00) 97.70 (96.90-98.40)
0.01 85.50 (82.90-88.60) 98.70 (98.20-99.20) 98.40 (97.70-99.00)
0.015 90.25 (88.30-92.20) 99.00 (98.40-99.50) 99.00 (98.40-99.50)
0.02 93.50 (92.20-94.80) 99.20 (99.00-99.70) 99.20 (99.00-99.70)
0.025 95.80 (94.80-96.60) 99.50 (99.20-99.70) 99.50 (99.20-99.70)
0.03 97.10 (96.60-97.90) 99.70 (99.50-100.00) 99.70 (99.50-100.00)
0.035 98.20 (97.70-98.70) 99.70 (99.50-100.00) 99.70 (99.70-100.00)
0.04 98.70 (98.40-99.20) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.045 99.20 (99.00-99.50) 100.00 (99.70-100.00) 100.00 (99.70-100.00)
0.05 99.50 (99.20-99.70) 100.00 (99.70-100.00) 100.00 (100.00-100.00)
True 99.70 (99.50-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.14: Model 7 - Specificity KPIs
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Figure E.3: Boxplot of percentage levels of edges found which were programmed or
expected per combination of model layout, case and threshold level.

Threshold Syn Zero Redun
False 26.00 (22.90-31.20) 64.50 (57.10-71.40) 68.20 (60.90-75.00)
0.005 26.00 (22.90-31.20) 69.00 (62.50-76.90) 73.00 (65.00-79.40)
0.01 33.30 (30.00-39.00) 76.90 (66.70-83.30) 78.40 (71.40-84.80)
0.015 42.30 (38.50-47.60) 80.00 (74.10-87.00) 83.90 (77.10-90.08)
0.02 51.70 (48.40-57.70) 87.00 (80.00-90.90) 87.90 (82.40-93.30)
0.025 62.50 (57.70-66.70) 90.90 (83.30-95.20) 92.60 (87.10-96.40)
0.03 71.40 (66.70-75.00) 90.90 (87.00-95.20) 93.50 (89.93-96.60)
0.035 78.90 (75.00-83.30) 95.20 (90.90-100.00) 96.30 (92.90-100.00)
0.04 85.70 (81.10-88.20) 95.20 (90.90-100.00) 96.60 (96.00-100.00)
0.045 90.90 (85.70-93.80) 100.00 (95.20-100.00) 100.00 (96.20-100.00)
0.05 93.80 (90.90-96.80) 100.00 (95.20-100.00) 100.00 (96.30-100.00)
True 100.00 (100.00-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.15: Model 1 - Percentage of Programmed or Expected Edges KPIs
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E.1. SUMMARY KPIS

Threshold Syn Zero Redun
False 24.50 (22.68-27.10) 69.00 (62.90-76.18) 70.70 (64.30-77.50)
0.005 30.80 (28.30-33.70) 73.30 (66.70-80.80) 75.00 (68.30-81.80)
0.01 39.10 (36.30-42.40) 79.20 (71.40-86.40) 80.00 (73.70-86.70)
0.015 48.50 (45.30-52.20) 83.30 (76.90-90.50) 84.80 (79.40-90.30)
0.02 58.50 (54.50-62.30) 87.00 (81.80-94.70) 89.70 (83.90-93.10)
0.025 68.00 (63.60-71.80) 90.90 (86.40-95.20) 92.90 (87.50-96.30)
0.03 76.20 (72.10-80.00) 94.70 (90.00-100.00) 95.90 (90.30-100.00)
0.035 82.90 (79.50-86.80) 95.00 (90.90-100.00) 96.20 (92.90-100.00)
0.04 88.60 (84.60-91.40) 100.00 (94.70-100.00) 100.00 (95.80-100.00)
0.045 91.70 (88.60-94.40) 100.00 (95.00-100.00) 100.00 (96.00-100.00)
0.05 94.10 (91.40-96.92) 100.00 (95.15-100.00) 100.00 (96.30-100.00)
True 96.40 (90.52-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.16: Model 2 - Percentage of Programmed or Expected Edges KPIs

Threshold Syn Zero Redun
False 28.10 (26.00-31.10) 69.00 (62.50-76.90) 71.55 (65.00-78.40)
0.005 34.30 (31.80-37.50) 73.10 (65.60-81.80) 75.70 (69.00-82.40)
0.01 42.10 (39.60-45.70) 78.30 (71.30-86.40) 80.60 (74.30-86.70)
0.015 51.30 (47.90-54.40) 82.60 (76.00-90.00) 85.70 (79.40-90.00)
0.02 60.00 (56.50-63.80) 87.00 (81.80-94.70) 89.30 (84.30-93.10)
0.025 68.60 (64.70-72.50) 90.50 (85.70-95.00) 92.60 (88.50-96.20)
0.03 76.10 (72.08-80.00) 94.70 (90.00-100.00) 95.80 (91.70-96.60)
0.035 82.30 (78.40-85.70) 95.00 (90.50-100.00) 96.20 (92.60-100.00)
0.04 87.50 (83.30-90.90) 95.00 (94.70-100.00) 100.00 (95.70-100.00)
0.045 90.90 (87.50-93.80) 100.00 (94.70-100.00) 100.00 (95.80-100.00)
0.05 93.50 (90.52-96.60) 100.00 (94.70-100.00) 100.00 (96.20-100.00)
True 96.70 (93.50-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.17: Model 3 - Percentage of Programmed or Expected Edges KPIs

Threshold Syn Zero Redun
False 25.50 (22.70-30.60) 69.00 (62.50-76.70) 72.70 (66.00-79.18)
0.005 31.50 (28.30-36.60) 73.30 (65.80-80.80) 76.70 (69.80-83.30)
0.01 39.80 (36.10-44.45) 78.60 (71.40-85.20) 82.10 (75.60-88.20)
0.015 48.70 (44.78-53.62) 83.30 (76.70-90.90) 86.30 (80.60-91.20)
0.02 58.50 (54.38-63.00) 87.50 (81.50-92.08) 90.30 (85.22-93.90)
0.025 67.80 (63.30-72.00) 91.30 (85.20-95.50) 93.50 (88.82-96.70)
0.03 75.60 (71.93-80.00) 95.20 (88.50-95.80) 96.30 (92.60-100.00)
0.035 82.20 (78.68-86.40) 95.50 (91.30-100.00) 96.60 (93.30-100.00)
0.04 87.50 (84.10-91.40) 95.70 (95.20-100.00) 100.00 (96.30-100.00)
0.045 91.70 (88.40-94.40) 100.00 (95.50-100.00) 100.00 (96.40-100.00)
0.05 94.40 (91.70-97.10) 100.00 (95.50-100.00) 100.00 (96.70-100.00)
True 96.90 (91.40-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.18: Model 4 - Percentage of Programmed or Expected Edges KPIs

Threshold Syn Zero Redun
False 25.00 (22.00-30.10) 67.70 (60.60-75.00) 70.50 (63.30-77.50)
0.005 30.60 (27.10-35.62) 71.40 (64.70-80.00) 75.00 (67.40-81.80)
0.01 37.80 (34.30-43.40) 76.90 (70.00-84.00) 80.60 (73.20-86.70)
0.015 46.60 (42.90-52.20) 83.30 (76.50-87.50) 85.30 (78.80-90.60)
0.02 56.10 (51.92-61.10) 87.00 (80.00-91.30) 89.70 (83.90-93.50)
0.025 64.80 (61.08-70.20) 90.90 (84.60-95.20) 92.90 (87.90-96.40)
0.03 73.20 (68.90-77.50) 95.20 (87.50-95.72) 93.90 (90.30-96.70)
0.035 80.00 (76.70-84.20) 95.20 (90.90-100.00) 96.40 (93.10-100.00)
0.04 85.70 (82.10-89.20) 95.50 (95.20-100.00) 96.60 (96.00-100.00)
0.045 90.90 (86.10-93.80) 100.00 (95.20-100.00) 100.00 (96.20-100.00)
0.05 93.80 (90.90-96.80) 100.00 (95.20-100.00) 100.00 (96.30-100.00)
True 96.90 (94.10-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.19: Model 5 - Percentage of Programmed or Expected Edges KPIs
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Threshold Syn Zero Redun
False 38.10 (32.40-44.70) 72.60 (65.90-79.40) 74.50 (68.50-80.40)
0.005 44.05 (37.70-51.20) 77.10 (70.30-83.90) 78.70 (72.50-85.40)
0.01 51.20 (44.80-58.60) 81.60 (75.00-87.50) 83.70 (77.80-89.70)
0.015 59.50 (52.30-66.20) 86.70 (80.00-92.30) 88.10 (82.98-92.50)
0.02 67.70 (60.60-73.80) 89.70 (84.80-93.50) 91.90 (87.20-94.90)
0.025 74.60 (68.70-80.00) 92.60 (88.90-96.30) 94.30 (90.20-97.20)
0.03 80.80 (75.88-85.40) 96.00 (92.30-96.62) 96.80 (92.50-97.40)
0.035 85.70 (81.75-90.00) 96.30 (92.90-100.00) 97.10 (94.60-100.00)
0.04 89.80 (86.30-93.20) 100.00 (96.00-100.00) 100.00 (96.90-100.00)
0.045 93.00 (89.40-95.50) 100.00 (96.20-100.00) 100.00 (97.10-100.00)
0.05 95.10 (92.70-97.50) 100.00 (96.40-100.00) 100.00 (100.00-100.00)
True 97.30 (94.70-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.20: Model 6 - Percentage of Programmed or Expected Edges KPIs

Threshold Syn Zero Redun
False 29.70 (26.60-34.40) 73.50 (67.60-80.60) 75.00 (69.60-82.10)
0.005 36.00 (32.80-41.00) 77.40 (71.40-84.10) 79.35 (73.50-85.70)
0.01 44.25 (40.90-49.40) 82.80 (76.42-88.50) 83.80 (78.60-89.55)
0.015 53.50 (50.00-58.22) 86.60 (81.20-92.00) 88.60 (83.30-93.80)
0.02 62.90 (58.90-67.20) 90.00 (85.20-95.50) 91.40 (87.80-96.40)
0.025 71.70 (67.20-75.50) 92.30 (88.50-95.80) 93.90 (90.60-96.90)
0.03 79.20 (75.00-83.30) 95.50 (91.30-100.00) 96.60 (93.30-100.00)
0.035 85.00 (81.20-88.90) 95.80 (92.30-100.00) 96.80 (96.20-100.00)
0.04 89.40 (86.00-92.90) 100.00 (95.50-100.00) 100.00 (96.40-100.00)
0.045 92.70 (89.70-95.10) 100.00 (95.70-100.00) 100.00 (96.60-100.00)
0.05 95.00 (92.50-97.40) 100.00 (96.20-100.00) 100.00 (100.00-100.00)
True 96.90 (93.80-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.21: Model 7 - Percentage of Programmed or Expected Edges KPIs
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E.1. SUMMARY KPIS

Figure E.4: Boxplot of percentage levels of edges found within their related cluster
per combination of model layout, case and threshold level.

Threshold Syn Zero Redun
False 41.75 (40.00-43.80) 75.90 (69.70-82.10) 77.10 (71.10-82.90)
0.005 47.05 (44.80-49.40) 79.30 (72.40-85.20) 80.60 (73.90-86.10)
0.01 53.80 (51.18-56.72) 83.30 (76.90-88.90) 84.40 (78.60-90.00)
0.015 61.40 (58.50-64.80) 87.00 (81.50-91.70) 88.20 (83.30-93.10)
0.02 69.40 (65.60-72.40) 90.50 (84.60-95.20) 91.20 (86.70-96.20)
0.025 76.50 (72.90-80.00) 94.70 (87.50-95.70) 93.30 (89.70-96.60)
0.03 82.50 (79.20-86.00) 95.00 (90.90-100.00) 96.20 (92.60-100.00)
0.035 87.50 (84.20-90.90) 95.20 (94.70-100.00) 96.30 (95.70-100.00)
0.04 91.40 (88.20-94.30) 100.00 (95.00-100.00) 100.00 (96.00-100.00)
0.045 94.10 (91.40-96.90) 100.00 (95.00-100.00) 100.00 (96.20-100.00)
0.05 96.80 (93.80-100.00) 100.00 (98.95-100.00) 100.00 (100.00-100.00)
True 100.00 (100.00-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.22: Model 2 - Percentage of Spurious Edges within Cluster KPIs
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APPENDIX E. SIMULATION RESULTS

Threshold Syn Zero Redun
False 42.15 (40.60-44.50) 75.80 (68.60-82.10) 76.50 (70.77-81.87)
0.005 47.60 (45.50-50.40) 78.60 (71.90-85.20) 79.50 (74.40-85.70)
0.01 54.40 (52.10-57.40) 82.60 (76.00-88.50) 83.90 (78.40-89.70)
0.015 61.80 (58.80-65.40) 86.40 (80.00-91.30) 87.90 (83.30-92.90)
0.02 69.20 (65.70-72.90) 90.50 (84.00-95.00) 91.85 (86.70-96.20)
0.025 76.10 (72.50-80.00) 94.70 (87.00-95.50) 93.30 (90.00-96.40)
0.03 82.10 (78.40-86.00) 95.00 (90.50-100.00) 96.00 (92.60-100.00)
0.035 87.15 (83.70-90.90) 95.00 (94.70-100.00) 96.30 (95.70-100.00)
0.04 91.05 (87.90-93.90) 100.00 (94.70-100.00) 100.00 (96.00-100.00)
0.045 93.80 (90.90-96.80) 100.00 (95.00-100.00) 100.00 (96.00-100.00)
0.05 96.60 (93.30-97.40) 100.00 (95.20-100.00) 100.00 (100.00-100.00)
True 100.00 (100.00-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.23: Model 3 - Percentage of Spurious Edges within Cluster KPIs

Threshold Syn Zero Redun
False 52.40 (48.10-57.92) 79.40 (73.30-84.80) 80.40 (75.40-85.77)
0.005 57.10 (51.98-62.90) 82.55 (76.45-87.90) 83.70 (78.40-88.68)
0.01 62.50 (57.30-68.30) 86.10 (80.00-90.90) 87.20 (82.47-92.35)
0.015 68.55 (63.30-74.20) 89.70 (84.20-93.50) 90.50 (86.40-94.90)
0.02 74.30 (69.20-79.70) 92.90 (87.50-96.30) 93.25 (89.70-97.20)
0.025 80.00 (75.00-84.50) 96.00 (90.00-96.60) 94.90 (92.10-97.40)
0.03 84.60 (80.60-88.95) 96.30 (92.90-100.00) 97.10 (94.30-100.00)
0.035 88.60 (85.05-91.85) 96.40 (96.00-100.00) 97.30 (96.90-100.00)
0.04 91.50 (88.48-95.20) 100.00 (96.20-100.00) 100.00 (97.10-100.00)
0.045 94.90 (91.10-97.50) 100.00 (96.30-100.00) 100.00 (97.10-100.00)
0.05 95.50 (93.20-97.60) 100.00 (100.00-100.00) 100.00 (100.00-100.00)
True 100.00 (100.00-100.00) 100.00 (100.00-100.00) 100.00 (100.00-100.00)

Table E.24: Model 6 - Percentage of Spurious Edges within Cluster KPIs
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E.1. SUMMARY KPIS

Figure E.5: Boxplot of number of edges found per combination of model layout, case
and threshold level.

Threshold Syn Zero Redun
False 115.5 (96.00-131.00) 31.0 (28.00-35.00) 42.0 (38.00-46.00)
0.005 115.5 (96.00-131.00) 29.0 (26.00-32.00) 39.0 (36.00-43.00)
0.01 90.0 (77.00-100.00) 26.0 (24.00-30.00) 36.0 (33.00-39.00)
0.015 71.0 (63.00-78.00) 25.0 (23.00-27.00) 33.0 (31.00-36.00)
0.02 58.0 (52.00-62.00) 23.0 (22.00-25.00) 31.0 (29.00-33.00)
0.025 48.0 (45.00-52.00) 22.0 (21.00-24.00) 30.0 (28.00-31.00)
0.03 42.0 (40.00-45.00) 22.0 (21.00-23.00) 28.0 (27.00-30.00)
0.035 38.0 (36.00-40.00) 21.0 (20.00-22.00) 28.0 (26.00-29.00)
0.04 35.0 (34.00-37.00) 21.0 (20.00-22.00) 27.0 (26.00-28.00)
0.045 33.0 (32.00-35.00) 20.0 (20.00-21.00) 26.0 (25.00-27.00)
0.05 32.0 (31.00-33.00) 20.0 (20.00-21.00) 26.0 (24.00-27.00)
True 30.0 (30.00-30.00) 28.0 (27.00-29.00) 20.0 (20.00-20.00)

Table E.25: Model 1 - Number of Edges within Network KPIs
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APPENDIX E. SIMULATION RESULTS

Threshold Syn Zero Redun
False 143.0 (127.00-155.00) 29.0 (26.00-33.00) 40.0 (36.00-45.00)
0.005 113.0 (102.00-123.00) 27.0 (24.00-31.00) 37.0 (34.00-42.00)
0.01 88.0 (80.00-95.00) 25.0 (23.00-28.00) 35.0 (31.00-38.00)
0.015 70.0 (64.00-76.00) 24.0 (22.00-26.00) 32.0 (30.00-35.00)
0.02 58.0 (53.00-62.00) 22.0 (21.00-24.00) 30.0 (28.00-32.00)
0.025 49.0 (45.00-52.00) 21.0 (20.00-23.00) 28.0 (27.00-30.00)
0.03 43.0 (40.00-46.00) 20.5 (19.00-22.00) 27.0 (25.00-29.00)
0.035 39.0 (36.00-41.00) 20.0 (19.00-21.00) 26.0 (24.00-27.00)
0.04 36.0 (34.00-38.00) 19.0 (19.00-21.00) 25.0 (24.00-26.00)
0.045 34.0 (32.00-36.00) 19.0 (18.00-20.00) 24.0 (23.00-25.00)
0.05 32.0 (31.00-34.00) 19.0 (18.00-20.00) 23.0 (22.00-25.00)
True 29.0 (27.00-32.00) 26.0 (25.00-27.00) 18.0 (18.00-18.00)

Table E.26: Model 2 - Number of Edges within Network KPIs

Threshold Syn Zero Redun
False 140.0 (122.00-156.00) 29.0 (25.75-33.00) 39.0 (35.00-43.00)
0.005 112.0 (99.00-124.00) 27.0 (24.00-31.00) 36.0 (33.00-40.00)
0.01 88.0 (79.00-96.00) 25.0 (22.00-28.00) 33.0 (30.00-37.00)
0.015 70.0 (63.00-77.00) 23.0 (21.00-26.00) 31.0 (28.00-33.00)
0.02 57.0 (52.00-62.00) 22.0 (20.00-24.00) 29.0 (27.00-31.00)
0.025 48.0 (44.00-52.00) 21.0 (19.00-22.00) 27.0 (26.00-29.00)
0.03 42.0 (39.00-45.00) 20.0 (19.00-21.00) 26.0 (25.00-27.00)
0.035 37.0 (35.00-40.00) 19.0 (19.00-20.00) 25.0 (24.00-26.00)
0.04 34.0 (32.00-36.00) 19.0 (18.00-20.00) 24.0 (23.00-25.00)
0.045 32.0 (30.00-34.00) 19.0 (18.00-19.00) 24.0 (22.00-25.00)
0.05 30.0 (29.00-32.00) 18.0 (18.00-19.00) 23.0 (22.00-24.00)
True 29.0 (27.00-31.00) 26.0 (24.00-27.00) 18.0 (18.00-18.00)

Table E.27: Model 3 - Number of Edges within Network KPIs

Threshold Syn Zero Redun
False 149.0 (122.00-170.00) 32.0 (29.00-36.00) 43.0 (39.00-48.00)
0.005 120.0 (102.00-136.00) 30.0 (27.00-34.00) 40.0 (37.00-45.00)
0.01 95.0 (82.00-106.00) 28.0 (25.00-31.00) 37.0 (34.00-41.00)
0.015 76.0 (67.00-84.00) 26.0 (24.00-29.00) 34.0 (32.00-37.00)
0.02 63.0 (57.00-69.00) 25.0 (23.00-27.00) 32.0 (30.00-35.00)
0.025 54.0 (49.00-58.00) 24.0 (22.00-26.00) 31.0 (29.00-33.00)
0.03 47.0 (44.00-51.00) 23.0 (21.00-24.00) 29.0 (28.00-31.00)
0.035 43.0 (40.00-45.25) 22.0 (21.00-23.00) 29.0 (27.00-30.00)
0.04 40.0 (38.00-42.00) 22.0 (21.00-23.00) 28.0 (26.00-29.00)
0.045 37.0 (36.00-39.00) 21.0 (20.00-22.00) 27.0 (26.00-28.00)
0.05 36.0 (34.00-38.00) 21.0 (20.00-22.00) 26.0 (25.00-27.00)
True 32.0 (31.00-35.00) 29.0 (28.00-29.00) 20.0 (20.00-20.00)

Table E.28: Model 4 - Number of Edges within Network KPIs

Threshold Syn Zero Redun
False 144.0 (117.00-168.00) 31.0 (28.00-35.00) 42.0 (38.00-47.00)
0.005 115.5 (96.75-134.00) 29.0 (26.00-32.00) 39.0 (36.00-43.00)
0.01 91.0 (78.00-103.00) 27.0 (24.00-30.00) 36.0 (33.00-40.00)
0.015 73.0 (64.00-81.00) 25.0 (23.00-27.00) 33.0 (31.00-36.00)
0.02 60.0 (54.00-65.00) 24.0 (22.00-26.00) 31.0 (30.00-34.00)
0.025 50.0 (46.00-54.00) 23.0 (21.00-24.00) 30.0 (28.00-31.00)
0.03 44.0 (41.00-47.00) 22.0 (21.00-23.00) 29.0 (27.00-30.00)
0.035 40.0 (37.00-42.00) 21.0 (20.00-22.00) 28.0 (27.00-29.00)
0.04 37.0 (35.00-39.00) 21.0 (20.00-22.00) 27.0 (26.00-28.00)
0.045 34.0 (33.00-36.00) 20.0 (20.00-21.00) 26.0 (25.00-27.00)
0.05 33.0 (32.00-34.00) 20.0 (20.00-21.00) 26.0 (24.00-27.00)
True 32.0 (31.00-34.00) 29.0 (27.00-30.00) 20.0 (20.00-20.00)

Table E.29: Model 5 - Number of Edges within Network KPIs
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E.1. SUMMARY KPIS

Threshold Syn Zero Redun
False 120.0 (100.00-146.00) 38.0 (34.00-42.00) 52.0 (47.00-57.00)
0.005 103.0 (86.00-123.00) 35.0 (32.00-39.00) 49.0 (44.00-53.00)
0.01 87.0 (74.00-102.00) 33.0 (30.00-37.00) 45.0 (41.00-49.00)
0.015 74.0 (65.00-86.00) 31.0 (28.00-34.00) 42.0 (39.00-45.00)
0.02 64.0 (57.00-73.00) 29.0 (27.00-32.00) 39.0 (37.00-42.00)
0.025 57.0 (52.00-64.00) 28.0 (26.00-30.00) 37.0 (35.00-40.00)
0.03 52.0 (48.00-57.00) 27.0 (26.00-29.00) 36.0 (34.00-38.00)
0.035 48.0 (45.00-52.00) 26.0 (25.00-28.00) 35.0 (33.00-36.00)
0.04 45.0 (43.00-48.00) 26.0 (25.00-27.00) 34.0 (32.00-35.00)
0.045 43.0 (41.00-45.25) 25.0 (24.00-26.00) 33.0 (31.00-34.00)
0.05 42.0 (40.00-44.00) 25.0 (24.00-26.00) 32.0 (30.00-33.00)
True 38.0 (36.00-40.00) 34.0 (32.00-35.00) 24.0 (24.00-24.00)

Table E.30: Model 6 - Number of Edges within Network KPIs

Threshold Syn Zero Redun
False 154.5 (127.00-176.00) 33.0 (29.00-37.00) 44.5 (40.00-49.25)
0.005 125.5 (105.00-141.00) 31.0 (27.75-35.00) 42.0 (37.00-46.00)
0.01 100.0 (85.00-112.00) 29.0 (26.00-32.00) 38.0 (35.00-42.00)
0.015 81.0 (71.00-90.00) 27.0 (24.00-30.00) 36.0 (33.00-39.00)
0.02 67.5 (60.00-74.00) 25.0 (23.00-28.00) 33.0 (31.00-36.00)
0.025 58.0 (53.00-63.00) 24.0 (22.00-26.00) 32.0 (30.00-34.00)
0.03 51.0 (47.00-55.00) 23.0 (22.00-25.00) 30.0 (29.00-32.00)
0.035 46.0 (43.00-49.00) 23.0 (21.00-24.00) 29.0 (28.00-31.00)
0.04 43.0 (40.00-46.00) 22.0 (21.00-23.00) 28.0 (27.00-30.00)
0.045 40.0 (38.00-43.00) 22.0 (21.00-23.00) 27.0 (26.00-29.00)
0.05 38.0 (36.00-40.00) 21.0 (20.00-22.00) 26.0 (25.00-28.00)
True 31.0 (30.00-33.00) 28.5 (27.00-29.00) 20.0 (20.00-20.00)

Table E.31: Model 7 - Number of Edges within Network KPIs
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APPENDIX E. SIMULATION RESULTS

E.2 Trend Analysis Data

For each path type, a table of coordinates per model, threshold level and case is pre-

sented for which the included data is used for the visualizations presented in Section

4.1 of the dissertation.

The set of X-X edges considered for Models 2 and 3 (n = 9) were the following:

Models 2 & 3
A.x to B.x
A.x to C.x
B.x to C.x
D.x to E.x
D.x to F.x
E.x to F.x
G.x to H.x
G.x to I.x
H.x to I.x

Table E.32: Set of X-X edges considered per model that showcase a particular trend
subjected to further analysis.

Model Threshold Syn Zero Redun
Model 2 False (18.9, -0.0026), n=9 (2.5, -0.0018), n=9 (4.4, -0.0024), n=9
Model 2 0.005 (10.8, -0.0043), n=9 (1.8, -0.0018), n=9 (3.5, -0.0031), n=9
Model 2 0.01 (5.0, -0.0061), n=9 (1.1, -0.0010), n=9 (2.5, -0.0044), n=9
Model 2 0.015 (2.1, -0.0072), n=9 (0.8, 0.0019), n=9 (1.6, -0.0040), n=9
Model 2 0.02 (0.7, -0.0100), n=9 (0.6, 0.0024), n=9 (1.0, -0.0070), n=9
Model 2 0.025 (0.3, -0.0230), n=8 (0.3, 0.0050), n=9 (0.6, -0.0072), n=9
Model 2 0.03 (0.1, -0.0302), n=5 (0.1, 0.0127), n=7 (0.4, -0.0085), n=9
Model 2 0.035 (0.1, -0.0384), n=2 (0.2, 0.0016), n=5 (0.3, 0.0039), n=7
Model 2 0.04 NA (0.1, 0.0426), n=5 (0.2, 0.0146), n=7
Model 2 0.045 NA (0.1, 0.0594), n=2 (0.1, -0.0015), n=6
Model 2 0.05 NA (0.1, 0.0594), n=2 (0.1, -0.0507), n=5
Model 2 True (0.1, 0.0464), n=6 (0.1, 0.1058), n=7 (0.1, 0.0030), n=2
Model 3 False (20.4, -0.0054), n=9 (2.5, -0.0005), n=9 (3.9, -0.0002), n=9
Model 3 0.005 (12.1, -0.0082), n=9 (1.9, -0.0010), n=9 (3.2, -0.0006), n=9
Model 3 0.01 (6.6, -0.0122), n=9 (1.4, -0.0014), n=9 (2.1, -0.0009), n=9
Model 3 0.015 (3.1, -0.0160), n=9 (0.8, -0.0011), n=9 (1.6, -0.0003), n=9
Model 3 0.02 (1.3, -0.0198), n=9 (0.6, -0.0064), n=9 (1.0, -0.0021), n=9
Model 3 0.025 (0.6, -0.0284), n=9 (0.3, -0.0102), n=9 (0.7, -0.0076), n=9
Model 3 0.03 (0.2, -0.0323), n=9 (0.2, -0.0181), n=8 (0.4, 0.0030), n=9
Model 3 0.035 (0.2, -0.0382), n=4 (0.2, -0.0393), n=5 (0.2, -0.0416), n=9
Model 3 0.04 (0.1, -0.0471), n=2 (0.1, -0.0478), n=3 (0.1, -0.0430), n=9
Model 3 0.045 (0.1, -0.0523), n=1 (0.1, -0.0511), n=3 (0.1, -0.0462), n=6
Model 3 0.05 (0.1, -0.0523), n=1 (0.1, -0.0530), n=2 (0.1, 0.0008), n=2
Model 3 True (0.1, 0.0513), n=5 (0.1, 0.1030), n=8 NA

Table E.33: Data coordinates for a specific group of edges with path type X-X in Models
2 and 3. The x-coordinate is the median of occurrence percentages of the included
edges; the y-coordinate is the median of the averages of all included edge weights. n
stands for the number of unique edges included in the group of interest.
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E.2. TREND ANALYSIS DATA

The set of X-Y edges considered for Models 2, 3 (n = 18) and 5 (n = 10) were the

following:

Models 2 & 3 Model 5
A.x to B.y & A.y to B.x A.x to B.y
A.x to C.y & A.y to C.x B.x to C.y
B.x to C.y & B.y to C.x C.x to D.y
D.x to E.y & D.y to E.x D.x to E.y
D.x to F.y & D.y to F.x E.x to F.y
E.x to F.y & E.y to F.x F.x to G.y
G.x to H.y & G.y to H.x G.x to H.y
G.x to I.y & G.y to I.x H.x to I.y
H.x to I.y & H.y to I.x I.x to J.y

J.x to A.y

Table E.34: Set of X-Y edges considered per model that showcase a particular trend
subjected to further analysis.

Model Threshold Syn Zero Redun
Model 2 False (26.95, 0.0024), n=18 (2.85, -0.0018), n=18 (3.80, -0.0026), n=18
Model 2 0.005 (16.50, 0.0034), n=18 (2.25, -0.0025), n=18 (2.90, -0.0028), n=18
Model 2 0.01 (9.15, 0.0046), n=18 (1.50, -0.0032), n=18 (2.05, -0.0037), n=18
Model 2 0.015 (4.50, 0.0075), n=18 (1.00, -0.0047), n=18 (1.25, -0.0050), n=18
Model 2 0.02 (2.05, 0.0112), n=18 (0.65, -0.0035), n=18 (0.90, -0.0095), n=18
Model 2 0.025 (0.85, 0.0107), n=18 (0.30, -0.0003), n=18 (0.55, -0.0090), n=18
Model 2 0.03 (0.30, 0.0167), n=17 (0.25, 0.0020), n=14 (0.30, -0.0139), n=17
Model 2 0.035 (0.20, 0.0364), n=13 (0.20, 0.0062), n=12 (0.20, -0.0116), n=14
Model 2 0.04 (0.10, 0.0403), n=7 (0.10, 0.0354), n=10 (0.20, -0.0136), n=10
Model 2 0.045 (0.10, -0.0529), n=2 (0.10, 0.0500), n=7 (0.20, -0.0035), n=7
Model 2 0.05 (0.10, -0.0529), n=2 (0.10, 0.0515), n=6 (0.10, -0.0012), n=6
Model 2 True (0.10, 0.0574), n=1 (0.10, -0.0048), n=6 (0.10, 0.1062), n=3
Model 3 False (25.20, -0.0071), n=18 (2.60, -0.0020), n=18 (2.95, -0.0031), n=18
Model 3 0.005 (16.70, -0.0097), n=18 (1.95, -0.0029), n=18 (2.30, -0.0038), n=18
Model 3 0.01 (10.55, -0.0134), n=18 (1.25, -0.0038), n=18 (1.60, -0.0054), n=18
Model 3 0.015 (5.55, -0.0178), n=18 (0.85, -0.0059), n=18 (1.05, -0.0072), n=18
Model 3 0.02 (2.80, -0.0222), n=18 (0.50, -0.0056), n=18 (0.70, -0.0074), n=18
Model 3 0.025 (1.40, -0.0253), n=18 (0.30, -0.0049), n=18 (0.30, -0.0120), n=17
Model 3 0.03 (0.60, -0.0304), n=18 (0.30, -0.0170), n=17 (0.15, -0.0138), n=16
Model 3 0.035 (0.20, -0.0377), n=18 (0.10, -0.0356), n=15 (0.10, -0.0090), n=12
Model 3 0.04 (0.10, -0.0433), n=11 (0.10, -0.0443), n=13 (0.10, -0.0423), n=8
Model 3 0.045 (0.10, -0.0537), n=5 (0.10, -0.0464), n=9 (0.10, 0.0486), n=5
Model 3 0.05 (0.10, -0.0542), n=4 (0.10, -0.0502), n=5 (0.10, 0.0004), n=4
Model 3 True (0.50, -0.0602), n=18 (0.20, -0.1173), n=11 NA
Model 5 False (21.70, -0.0072), n=10 (1.90, -0.0024), n=10 (3.05, -0.0014), n=10
Model 5 0.005 (14.95, -0.0097), n=10 (1.60, -0.0026), n=10 (2.30, -0.0016), n=10
Model 5 0.01 (9.25, -0.0130), n=10 (1.05, -0.0053), n=10 (1.65, -0.0017), n=10
Model 5 0.015 (4.95, -0.0173), n=10 (0.80, -0.0099), n=10 (1.15, -0.0045), n=10
Model 5 0.02 (2.85, -0.0210), n=10 (0.45, -0.0117), n=10 (0.75, -0.0029), n=10
Model 5 0.025 (1.40, -0.0260), n=10 (0.30, -0.0112), n=10 (0.45, -0.0012), n=10
Model 5 0.03 (0.55, -0.0327), n=10 (0.20, -0.0308), n=9 (0.20, -0.0053), n=10
Model 5 0.035 (0.20, -0.0396), n=9 (0.10, -0.0388), n=6 (0.10, -0.0314), n=10
Model 5 0.04 (0.30, -0.0439), n=5 (0.10, -0.0452), n=4 (0.10, -0.0302), n=6
Model 5 0.045 (0.20, -0.0514), n=3 (0.10, -0.0493), n=3 (0.10, -0.0463), n=6
Model 5 0.05 (0.10, -0.0540), n=3 (0.10, 0.0134), n=2 (0.10, -0.0044), n=2
Model 5 True (1.10, -0.0626), n=10 (0.20, -0.1184), n=9 NA

Table E.35: Data coordinates for a specific group of edges with path type X-Y in Models
2, 3 and 5. The x-coordinate is the median of occurrence percentages of the included
edges; the y-coordinate is the median of the averages of all included edge weights. n
stands for the number of unique edges included in the group of interest.
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APPENDIX E. SIMULATION RESULTS

The set of X-Y edges considered for Models 2, 3 (n = 18), 4 (n = 20), 5 (n = 10), 6

(n = 36) and 7 (n = 40) were the following:

Models 2 & 3 Model 4 Model 5 Model 6 Model 7
A.x to B.z A.x to B.z A.z to B.x A.x to B.z A.x to B.z
A.z to B.x A.z to B.x B.z to C.x A.z to B.x A.z to B.x
A.x to C.z B.x to C.z C.z to D.x A.x to C.z A.x to C.z
A.z to C.x B.z to C.x D.z to E.x A.z to C.x A.z to C.x
B.x to C.z C.x to D.z E.z to F.x A.x to D.z B.x to C.z
B.z to C.x C.z to D.x F.z to G.x A.z to D.x B.z to C.x
D.x to E.z D.x to E.z G.z to H.x B.x to C.z B.x to D.z
D.z to E.x D.z to E.x H.z to I.x B.z to C.x B.z to D.x
D.x to F.z E.x to F.z I.z to J.x B.x to D.z C.x to D.z
D.z to F.x E.z to F.x J.z to A.x B.z to D.x C.z to D.x
E.x to F.z F.x to G.z C.x to D.z C.x to E.z
E.z to F.x F.z to G.x C.z to D.x C.z to E.x
G.x to H.z G.x to H.z E.x to F.z D.x to E.z
G.z to H.x G.z to H.x E.z to F.x D.z to E.x
G.x to I.z H.x to I.z E.x to G.z D.x to F.z
G.z to I.x H.z to I.x E.z to G.x D.z to F.x
H.x to I.z I.x to J.z E.x to H.z E.x to F.z
H.z to I.x I.z to J.x E.z to H.x E.z to F.x

J.x to A.z F.x to G.z E.x to G.z
J.z to A.x F.z to G.x E.z to G.x

F.x to H.z F.x to G.z
F.z to H.x F.z to G.x
G.x to H.z F.x to H.z
G.z to H.x F.z to H.x
I.x to J.z G.x to H.z
I.z to J.x G.z to H.x
I.x to K.z G.x to I.z
I.z to K.x G.z to I.x
I.x to L.z H.x to I.z
I.z to L.x H.z to I.x
J.x to K.z H.x to J.z
J.z to K.x H.z to J.z
J.x to L.z I.x to J.z
J.z to L.x I.z to J.x
K.x to L.z I.x to A.z
K.z to L.x I.z to A.x

J.x to A.z
J.z to A.x
J.x to B.z
J.z to B.x

Table E.36: Set of X-Z edges considered per model that showcase a particular trend
subjected to further analysis.
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E.2. TREND ANALYSIS DATA

Model Threshold Syn Zero Redun
Model 2 False (46.20, -0.0188), n=18 (2.50, -0.0073), n=18 (3.85, -0.0047), n=18
Model 2 0.005 (39.40, -0.0218), n=18 (2.00, -0.0080), n=18 (3.15, -0.0053), n=18
Model 2 0.01 (31.60, -0.0250), n=18 (1.55, -0.0107), n=18 (2.45, -0.0071), n=18
Model 2 0.015 (25.00, -0.0287), n=18 (1.10, -0.0122), n=18 (2.00, -0.0087), n=18
Model 2 0.02 (18.60, -0.0331), n=18 (0.80, -0.0161), n=18 (1.20, -0.0100), n=18
Model 2 0.025 (13.55, -0.0370), n=18 (0.60, -0.0184), n=18 (0.85, -0.0123), n=18
Model 2 0.03 (9.55, -0.0412), n=18 (0.45, -0.0232), n=18 (0.70, -0.0195), n=18
Model 2 0.035 (6.35, -0.0461), n=18 (0.30, -0.0242), n=17 (0.40, -0.0223), n=18
Model 2 0.04 (4.25, -0.0503), n=18 (0.30, -0.0420), n=15 (0.30, -0.0421), n=18
Model 2 0.045 (2.70, -0.0548), n=18 (0.20, -0.0565), n=13 (0.20, -0.0515), n=17
Model 2 0.05 (1.80, -0.0589), n=18 (0.20, -0.0607), n=11 (0.10, -0.0536), n=15
Model 2 True (7.05, -0.0952), n=18 (0.25, -0.1762), n=16 (0.15, -0.1556), n=2
Model 3 False (35.35, -0.0187), n=18 (2.60, -0.0123), n=18 (3.40, -0.0120), n=18
Model 3 0.005 (29.95, -0.0217), n=18 (2.20, -0.0136), n=18 (2.85, -0.0146), n=18
Model 3 0.01 (23.70, -0.0260), n=18 (1.80, -0.0166), n=18 (2.35, -0.0170), n=18
Model 3 0.015 (18.25, -0.0300), n=18 (1.50, -0.0195), n=18 (1.65, -0.0191), n=18
Model 3 0.02 (13.60, -0.0344), n=18 (1.10, -0.0226), n=18 (1.30, -0.0239), n=18
Model 3 0.025 (10.05, -0.0389), n=18 (0.70, -0.0296), n=18 (0.85, -0.0268), n=18
Model 3 0.03 (7.20, -0.0436), n=18 (0.60, -0.0312), n=18 (0.75, -0.0284), n=18
Model 3 0.035 (5.40, -0.0477), n=18 (0.40, -0.0416), n=17 (0.45, -0.0353), n=18
Model 3 0.04 (3.55, -0.0525), n=18 (0.30, -0.0459), n=17 (0.30, -0.0489), n=17
Model 3 0.045 (2.50, -0.0568), n=18 (0.20, -0.0517), n=15 (0.25, -0.0515), n=16
Model 3 0.05 (1.75, -0.0620), n=18 (0.10, -0.0561), n=12 (0.20, -0.0561), n=14
Model 3 True (5.80, -0.0946), n=18 (1.05, -0.1762), n=18 (0.15, -0.1848), n=10
Model 4 False (33.65, -0.0182), n=20 (2.25, -0.0076), n=20 (2.85, -0.0034), n=20
Model 4 0.005 (28.15, -0.0207), n=20 (2.00, -0.0086), n=20 (2.40, -0.0039), n=20
Model 4 0.01 (22.55, -0.0245), n=20 (1.60, -0.0103), n=20 (1.75, -0.0057), n=20
Model 4 0.015 (17.15, -0.0282), n=20 (1.10, -0.0115), n=20 (1.35, -0.0067), n=20
Model 4 0.02 (12.70, -0.0321), n=20 (0.80, -0.0134), n=20 (0.80, -0.0087), n=20
Model 4 0.025 (9.45, -0.0360), n=20 (0.65, -0.0157), n=20 (0.60, -0.0100), n=20
Model 4 0.03 (6.80, -0.0402), n=20 (0.40, -0.0184), n=20 (0.40, -0.0169), n=20
Model 4 0.035 (4.45, -0.0443), n=20 (0.30, -0.0259), n=19 (0.30, -0.0149), n=20
Model 4 0.04 (2.80, -0.0495), n=20 (0.20, -0.0434), n=19 (0.20, -0.0258), n=17
Model 4 0.045 (1.75, -0.0533), n=20 (0.10, -0.0525), n=15 (0.20, -0.0234), n=12
Model 4 0.05 (1.10, -0.0577), n=20 (0.10, -0.0601), n=13 (0.20, -0.0211), n=9
Model 4 True (6.10, -0.0988), n=20 (0.20, -0.1898), n=16 (0.10, -0.1529), n=3
Model 5 False (25.70, -0.0174), n=10 (2.10, -0.0130), n=10 (3.15, -0.0091), n=10
Model 5 0.005 (20.90, -0.0208), n=10 (1.45, -0.0153), n=10 (2.60, -0.0106), n=10
Model 5 0.01 (16.95, -0.0242), n=10 (1.15, -0.0180), n=10 (2.10, -0.0128), n=10
Model 5 0.015 (12.45, -0.0284), n=10 (0.80, -0.0207), n=10 (1.55, -0.0153), n=10
Model 5 0.02 (9.55, -0.0336), n=10 (0.65, -0.0244), n=10 (1.05, -0.0180), n=10
Model 5 0.025 (6.75, -0.0378), n=10 (0.50, -0.0302), n=10 (0.70, -0.0226), n=10
Model 5 0.03 (4.65, -0.0427), n=10 (0.35, -0.0466), n=10 (0.60, -0.0276), n=10
Model 5 0.035 (3.05, -0.0482), n=10 (0.20, -0.0546), n=9 (0.45, -0.0314), n=10
Model 5 0.04 (2.30, -0.0528), n=10 (0.20, -0.0546), n=9 (0.20, -0.0447), n=10
Model 5 0.045 (1.65, -0.0578), n=10 (0.10, -0.0546), n=9 (0.10, -0.0544), n=8
Model 5 0.05 (1.25, -0.0607), n=10 (0.15, -0.0649), n=6 (0.10, -0.0657), n=6
Model 5 True (12.60, -0.0952), n=10 (1.20, -0.1767), n=10 (0.20, -0.1841), n=10

Table E.37: Data coordinates for a specific group of edges with path type X-Z in Mod-
els 2, 3, 4 and 5. The x-coordinate is the median of occurrence percentages of the
included edges; the y-coordinate is the median of the averages of all included edge
weights. n stands for the number of unique edges included in the group of interest.
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APPENDIX E. SIMULATION RESULTS

Model Threshold Syn Zero Redun
Model 6 False (12.30, -0.0122), n=36 (1.70, -0.0065), n=36 (2.40, -0.0040), n=36
Model 6 0.005 (9.70, -0.0152), n=36 (1.40, -0.0079), n=36 (1.90, -0.0049), n=36
Model 6 0.01 (7.10, -0.0185), n=36 (1.10, -0.0094), n=36 (1.40, -0.0064), n=36
Model 6 0.015 (5.40, -0.0219), n=36 (0.80, -0.0114), n=36 (1.10, -0.0053), n=36
Model 6 0.02 (3.80, -0.0256), n=36 (0.60, -0.0161), n=36 (0.70, -0.0071), n=36
Model 6 0.025 (2.50, -0.0296), n=36 (0.40, -0.0186), n=36 (0.60, -0.0075), n=36
Model 6 0.03 (1.70, -0.0342), n=36 (0.30, -0.0206), n=35 (0.40, -0.0093), n=35
Model 6 0.035 (1.10, -0.0403), n=36 (0.20, -0.0270), n=32 (0.25, -0.0208), n=34
Model 6 0.04 (0.70, -0.0486), n=36 (0.20, -0.0411), n=27 (0.20, -0.0420), n=31
Model 6 0.045 (0.40, -0.0528), n=36 (0.10, -0.0526), n=20 (0.10, -0.0480), n=28
Model 6 0.05 (0.30, -0.0560), n=35 (0.10, -0.0532), n=19 (0.10, -0.0528), n=21
Model 6 True (3.05, -0.0988), n=36 (0.20, -0.1762), n=24 (0.10, -0.1884), n=2
Model 7 False (32.60, -0.0164), n=40 (2.10, -0.0071), n=40 (3.00, -0.0044), n=40
Model 7 0.005 (26.75, -0.0195), n=40 (1.70, -0.0080), n=40 (2.55, -0.0054), n=40
Model 7 0.01 (21.05, -0.0232), n=40 (1.35, -0.0102), n=40 (1.85, -0.0060), n=40
Model 7 0.015 (16.00, -0.0270), n=40 (1.05, -0.0135), n=40 (1.30, -0.0078), n=40
Model 7 0.02 (11.55, -0.0312), n=40 (0.70, -0.0167), n=40 (1.00, -0.0070), n=40
Model 7 0.025 (8.20, -0.0358), n=40 (0.50, -0.0188), n=40 (0.75, -0.0081), n=40
Model 7 0.03 (5.55, -0.0404), n=40 (0.30, -0.0214), n=40 (0.45, -0.0131), n=40
Model 7 0.035 (3.65, -0.0445), n=40 (0.30, -0.0286), n=38 (0.30, -0.0137), n=39
Model 7 0.04 (2.40, -0.0490), n=40 (0.20, -0.0301), n=33 (0.20, -0.0195), n=37
Model 7 0.045 (1.50, -0.0536), n=40 (0.10, -0.0483), n=27 (0.15, -0.0273), n=30
Model 7 0.05 (0.80, -0.0576), n=40 (0.10, -0.0564), n=18 (0.10, -0.0518), n=24
Model 7 True (2.40, -0.0948), n=40 (0.20, -0.1700), n=25 (0.10, -0.0158), n=2

Table E.38: Data coordinates for a specific group of edges with path type X-Z in Models
6 and 7. The x-coordinate is the median of occurrence percentages of the included
edges; the y-coordinate is the median of the averages of all included edge weights. n
stands for the number of unique edges included in the group of interest.
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E.2. TREND ANALYSIS DATA

The set of Y-Y edges considered for Model 3 (n = 9) were the following:

Model 3
A.y to B.y
A.y to C.y
B.y to C.y
D.y to E.y
D.y to F.y
E.y to F.y
G.y to H.y
G.y to I.y
H.y to I.y

Table E.39: Set of Y-Y edges considered per model that showcase a particular trend
subjected to further analysis.

Threshold Syn Zero Redun
False (31.7, 0.0049), n=9 (3.0, 0.0003), n=9 (2.4, -0.0064), n=9
0.005 (22.4, 0.0068), n=9 (2.3, 0.0004), n=9 (1.7, -0.0077), n=9
0.01 (14.4, 0.0085), n=9 (1.6, 0.0012), n=9 (1.1, -0.0106), n=9
0.015 (8.6, 0.0106), n=9 (1.2, -0.0009), n=9 (0.7, -0.0146), n=9
0.02 (4.6, 0.0126), n=9 (0.7, -0.0014), n=9 (0.5, -0.0233), n=9
0.025 (2.5, 0.0179), n=9 (0.6, -0.0024), n=9 (0.2, -0.0294), n=8
0.03 (1.3, 0.0204), n=9 (0.4, -0.0034), n=9 (0.2, -0.0318), n=6
0.035 (0.5, 0.0201), n=9 (0.3, 0.0010), n=9 (0.1, -0.0368), n=3
0.04 (0.2, 0.0200), n=9 (0.2, -0.0010), n=8 (0.1, -0.0497), n=2
0.045 (0.1, 0.0312), n=6 (0.2, -0.0021), n=5 (0.1, -0.0497), n=2
0.05 (0.1, 0.0510), n=3 (0.1, -0.0037), n=3 (0.1, -0.0533), n=1
True (0.3, 0.0688), n=9 (0.1, 0.1386), n=1 (0.1, -0.1255), n=9

Table E.40: Data coordinates for a specific group of edges with path type Y-Y in Model
3. The x-coordinate is the median of occurrence percentages of the included edges;
the y-coordinate is the median of the averages of all included edge weights. n stands
for the number of unique edges included in the group of interest.
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APPENDIX E. SIMULATION RESULTS

The set of Y-Z edges considered for Models 2(n = 18), 4 (n = 20), 6 (n = 36) and 7

(n = 40) were the following:

Model 2 Model 4 Model 6 Model 7
A.y to B.z A.y to B.z A.y to B.z A.y to B.z
A.z to B.y A.z to B.y A.z to B.y A.z to B.y
A.y to C.z B.y to C.z A.y to C.z A.y to C.z
A.z to C.y B.z to C.y A.z to C.y A.z to C.y
B.y to C.z C.y to D.z A.y to D.z B.y to C.z
B.z to C.y C.z to D.y A.z to D.y B.z to C.y
D.y to E.z D.y to E.z B.y to C.z B.y to D.z
D.z to E.y D.z to E.y B.z to C.y B.z to D.y
D.y to F.z E.y to F.z B.y to D.z C.y to D.z
D.z to F.y E.z to F.y B.z to D.y C.z to D.y
E.y to F.z F.y to G.z C.y to D.z C.y to E.z
E.z to F.y F.z to G.y C.z to D.y C.z to E.y
G.y to H.z G.y to H.z E.y to F.z D.y to E.z
G.z to H.y G.z to H.y E.z to F.y D.z to E.y
G.y to I.z H.y to I.z E.y to G.z D.y to F.z
G.z to I.y H.z to I.y E.z to G.y D.z to F.y
H.y to I.z I.y to J.z E.y to H.z E.y to F.z
H.z to I.y I.z to J.y E.z to H.y E.z to F.y

J.y to A.z F.y to G.z E.y to G.z
J.z to A.y F.z to G.y E.z to G.y

F.y to H.z F.y to G.z
F.z to H.y F.z to G.y
G.y to H.z F.y to H.z
G.z to H.y F.z to H.y
I.y to J.z G.y to H.z
I.z to J.y G.z to H.y
I.y to K.z G.y to I.z
I.z to K.y G.z to I.y
I.y to L.z H.y to I.z
I.z to L.y H.z to I.y
J.y to K.z H.y to J.z
J.z to K.y H.z to J.z
J.y to L.z I.y to J.z
J.z to L.y I.z to J.z
K.y to L.z I.y to A.z
K.z to L.y I.z to A.y

J.y to A.z
J.z to A.y
J.y to B.z
J.z to B.y

Table E.41: Set of Y-Z edges considered per model that showcase a particular trend
subjected to further analysis.
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E.2. TREND ANALYSIS DATA

Threshold Syn Zero Redun
Model 2 False (34.40, 0.0105), n=18 (3.35, -0.0026), n=18 (3.00, -0.0106), n=18
Model 2 0.005 (27.95, 0.0126), n=18 (2.65, -0.0029), n=18 (2.45, -0.0129), n=18
Model 2 0.01 (20.70, 0.0154), n=18 (2.30, -0.0033), n=18 (1.85, -0.0158), n=18
Model 2 0.015 (15.35, 0.0184), n=18 (1.80, -0.0045), n=18 (1.40, -0.0186), n=18
Model 2 0.02 (11.15, 0.0219), n=18 (1.35, -0.0036), n=18 (1.00, -0.0223), n=18
Model 2 0.025 (7.85, 0.0257), n=18 (1.00, -0.0072), n=18 (0.55, -0.0287), n=18
Model 2 0.03 (5.30, 0.0299), n=18 (0.80, -0.0106), n=18 (0.40, -0.0344), n=18
Model 2 0.035 (3.55, 0.0352), n=18 (0.50, -0.0075), n=18 (0.30, -0.0396), n=15
Model 2 0.04 (2.20, 0.0411), n=18 (0.40, -0.0102), n=18 (0.20, -0.0457), n=13
Model 2 0.045 (1.50, 0.0440), n=18 (0.40, -0.0074), n=15 (0.20, -0.0500), n=10
Model 2 0.05 (1.00, 0.0439), n=18 (0.30, -0.0180), n=15 (0.10, -0.0547), n=8
Model 2 True (3.60, 0.0978), n=18 (0.10, 0.1813), n=4 (0.30, -0.1653), n=17
Model 4 False (28.25, 0.0063), n=20 (2.60, -0.0018), n=20 (2.35, -0.0087), n=20
Model 4 0.005 (23.00, 0.0078), n=20 (2.20, -0.0021), n=20 (1.95, -0.0100), n=20
Model 4 0.01 (17.30, 0.0096), n=20 (1.70, -0.0018), n=20 (1.50, -0.0113), n=20
Model 4 0.015 (12.65, 0.0113), n=20 (1.35, -0.0034), n=20 (1.10, -0.0162), n=20
Model 4 0.02 (8.70, 0.0138), n=20 (1.00, -0.0053), n=20 (0.70, -0.0180), n=20
Model 4 0.025 (6.25, 0.0165), n=20 (0.75, -0.0107), n=20 (0.40, -0.0204), n=19
Model 4 0.03 (4.30, 0.0206), n=20 (0.50, -0.0136), n=20 (0.30, -0.0332), n=19
Model 4 0.035 (2.75, 0.0212), n=20 (0.50, -0.0108), n=19 (0.20, -0.0371), n=17
Model 4 0.04 (2.05, 0.0226), n=20 (0.40, -0.0242), n=19 (0.10, -0.0476), n=13
Model 4 0.045 (1.20, 0.0234), n=20 (0.20, -0.0271), n=19 (0.10, -0.0516), n=10
Model 4 0.05 (0.75, 0.0291), n=20 (0.10, -0.0545), n=18 (0.10, -0.0543), n=7
Model 4 True (2.90, 0.1014), n=20 (0.10, 0.1778), n=7 (0.10, -0.1586), n=17
Model 6 False (16.25, 0.0009), n=36 (1.90, -0.0005), n=36 (1.90, -0.0075), n=36
Model 6 0.005 (13.60, 0.0011), n=36 (1.65, -0.0003), n=36 (1.50, -0.0092), n=36
Model 6 0.01 (10.50, 0.0018), n=36 (1.30, 0.0007), n=36 (1.10, -0.0111), n=36
Model 6 0.015 (8.00, 0.0023), n=36 (1.00, 0.0000), n=36 (0.70, -0.0146), n=36
Model 6 0.02 (5.95, 0.0032), n=36 (0.80, 0.0011), n=36 (0.45, -0.0203), n=36
Model 6 0.025 (4.30, 0.0031), n=36 (0.50, 0.0040), n=36 (0.40, -0.0272), n=35
Model 6 0.03 (3.00, 0.0032), n=36 (0.40, 0.0042), n=35 (0.20, -0.0335), n=30
Model 6 0.035 (2.10, 0.0046), n=36 (0.25, 0.0027), n=34 (0.20, -0.0396), n=25
Model 6 0.04 (1.40, 0.0054), n=36 (0.20, 0.0051), n=32 (0.10, -0.0423), n=21
Model 6 0.045 (0.95, 0.0059), n=36 (0.10, 0.0235), n=29 (0.10, -0.0523), n=13
Model 6 0.05 (0.60, 0.0014), n=36 (0.10, -0.0131), n=21 (0.10, -0.0559), n=9
Model 6 True (1.30, 0.1030), n=36 (0.10, 0.1782), n=12 (0.10, -0.1624), n=16
Model 7 False (29.85, 0.0060), n=40 (2.60, -0.0018), n=40 (2.40, -0.0073), n=40
Model 7 0.005 (23.65, 0.0072), n=40 (2.30, -0.0020), n=40 (1.90, -0.0088), n=40
Model 7 0.01 (18.15, 0.0085), n=40 (1.80, -0.0021), n=40 (1.40, -0.0113), n=40
Model 7 0.015 (13.30, 0.0102), n=40 (1.30, -0.0026), n=40 (0.90, -0.0134), n=40
Model 7 0.02 (9.45, 0.0124), n=40 (1.00, -0.0012), n=40 (0.60, -0.0155), n=40
Model 7 0.025 (6.45, 0.0141), n=40 (0.75, -0.0021), n=40 (0.40, -0.0207), n=40
Model 7 0.03 (4.20, 0.0176), n=40 (0.60, 0.0005), n=40 (0.30, -0.0339), n=37
Model 7 0.035 (2.70, 0.0182), n=40 (0.40, 0.0017), n=40 (0.20, -0.0395), n=36
Model 7 0.04 (1.75, 0.0193), n=40 (0.20, 0.0008), n=38 (0.10, -0.0488), n=27
Model 7 0.045 (1.20, 0.0222), n=40 (0.20, -0.0099), n=33 (0.10, -0.0501), n=21
Model 7 0.05 (0.70, 0.0227), n=40 (0.20, 0.0016), n=23 (0.10, -0.0520), n=16
Model 7 True (1.10, 0.1010), n=40 (0.10, 0.1753), n=10 (0.10, -0.1523), n=25

Table E.42: Data coordinates for a specific group of edges with path type Y-Z in Mod-
els 2, 4, 6 and 7. The x-coordinate is the median of occurrence percentages of the
included edges; the y-coordinate is the median of the averages of all included edge
weights. n stands for the number of unique edges included in the group of interest.
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APPENDIX E. SIMULATION RESULTS

The set of Z-Z edges considered for Model 3(n = 9) were the following:

Model 3
A.z to B.z
A.z to C.z
B.z to C.z
D.z to E.z
D.z to F.z
E.z to F.z
G.z to H.z
G.z to I.z
H.z to I.z

Table E.43: Set of Z-Z edges considered per model that showcase a particular trend
subjected to further analysis.

Threshold Syn Zero Redun
False (43.00, 0.0107), n=9 (4.20, -0.0029), n=9 (4.00, -0.0128), n=9
0.005 (37.70, 0.0122), n=9 (3.80, -0.0031), n=9 (3.30, -0.0154), n=9
0.01 (31.10, 0.0145), n=9 (3.20, -0.0034), n=9 (2.70, -0.0172), n=9
0.015 (25.70, 0.0166), n=9 (2.70, -0.0060), n=9 (2.00, -0.0214), n=9
0.02 (20.80, 0.0189), n=9 (2.10, -0.0065), n=9 (1.70, -0.0221), n=9
0.025 (16.80, 0.0215), n=9 (1.60, -0.0089), n=9 (1.40, -0.0288), n=9
0.03 (13.20, 0.0238), n=9 (1.40, -0.0128), n=9 (0.80, -0.0355), n=9
0.035 (10.50, 0.0285), n=9 (1.10, -0.0138), n=9 (0.70, -0.0368), n=9
0.04 (7.90, 0.0313), n=9 (0.80, -0.0158), n=9 (0.60, -0.0489), n=9
0.045 (5.90, 0.0344), n=9 (0.70, -0.0157), n=9 (0.40, -0.0542), n=8
0.05 (4.70, 0.0370), n=9 (0.40, -0.0104), n=9 (0.25, -0.0589), n=8
True (1.20, 0.1438), n=9 NA (0.10, -0.2278), n=8

Table E.44: Data coordinates for a specific group of edges with path type Z-Z in Model
3. The x-coordinate is the median of occurrence percentages of the included edges;
the y-coordinate is the median of the averages of all included edge weights. n stands
for the number of unique edges included in the group of interest.
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