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ABSTRACT

As a buzzword in technology, machine learning has gained the status of a synonym of
super intelligent computing. The non expert is undoubtedly aware of its existence in many
applications, such as speech recognition systems, computer games and chatbots. Yet, as an

invisible driving force behind such applications it is surrounded with an aura of mystery. It seems
almost as if machine learning is meant not to be comprehended. Understandingly, this results in
a reluctance to use it, as it is considered an imperceptible enemy rather than a supportive friend.
This holds, at least, for many practitioners in highly specialized fields, such as medicine and law.
A high number of experts in these fields are unwilling to believe that machine learning can add
value to their tasks, let alone that they can imagine that one day machine learning systems will
surpass their expertise.

In 1876, Alexander Graham Bell became the first inventor to be granted a patent for the telephone.
He approached American communications company Western Union and offered them rights to his
patent for $100,000, but company bigwigs balked at the proposal citing the “obvious limitations
of his device, which is hardly more than a toy”. A little bit later, in 1879, Henry Morton, a leading
scientific mind and president of the Stevens Institute of Technology, called one man’s tinkering a
"conspicuous failure." The man was Thomas Edison. The invention was the light bulb. History
clearly tends to repeat itself, as one Nathan Stubblefield invented a wireless communication
device in 1892, but he found himself ridiculed for his efforts.

Maybe these stories tell us to be careful in expecting (or hoping) that one day it will become clear
that machine learning is unable to touch the limits of humankind’s extraordinary intelligence? At
any rate, the fact that many people refuse to accept the power of machine learning, is often either
due to ignorance about its principles or due to false knowledge (which is, according to George
Bernard Shaw, “even more dangerous than ignorance”).

The purpose of this thesis is to describe machine learning to the non expert, in particular to
practitioners in law. Emphasis is on a clear understanding of the basic principles. This means
that instead of focusing on the amazing results that machine learning has achieved in the field of
law, i.e. what can be done, we highlight how it is done. However, because machine learning is a
very broad field, it is necessary to narrow down the topic. We have chosen to focus on supervised
machine learning, where data instances on which the system relies for its proper functioning,
consist of input-output pairs (in contrast, in unsupervised machine learning data instances
only contain an input part). Supervised machine learning is much richer in applications than
its unsupervised counterpart, and this also applies to the particular field of law. The general
principles of supervised machine learning are illustrated on a particularly interesting and very
popular machine learning methodology, namely artificial neural networks. If their interesting
history and intuitive, yet subtle, characteristics will not attract the attention of the newcomer in
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machine learning, he can be sure that he never will be active in the field of artificial intelligence.
Trying to understand the described fundamental principles of machine learning will pay off for
the legal practitioner: applications of machine learning in his field will be much better understood,
appreciated and -indeed- criticized.
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1
FUNDAMENTALS OF MACHINE LEARNING

1.1 Introduction to machine learning

Can a computer mimic human behavior in performing complex tasks? Every person,

computer scientist or otherwise, knows the answer: “Yes”. Indeed, today no serious man

considers a computer as the mere equivalence of a mechanical calculator, restricted to the

simple task of automatically carrying out the basic operations of arithmetic. The many examples

of apparently smart computerized systems in everyday life have induced human beings with a

general understanding of machines that are able to intelligently react to changing conditions.

Autopilot systems in airplanes [6], intelligent speed adaptation in cars [57], speech recognition

systems [75] and smart lawn mowers [80] are just a few of these examples.

What distinguishes the computer scientist from the layman, is that only the first one thoroughly

understands the working principles of machine learning, the main field of computer science that

is devoted to simulating the outcome of human reasoning in performing a complex task. This

is, in fact, quite remarkable, as the basic principles of machine learning are relatively easy to

grasp. The crucial idea is to copy the main method by which humans develop ability to solve a

certain complex task, namely by learning from examples. This applies, in particular, to tasks

that cannot be clearly defined, in the sense that a simple and deterministic stepwise approach to

perform the task seems nonexistent. Examples include riding bike, swimming, and recognizing

a picture as representing a person, even if the picture is very blurred as in Fig. 1.1. The last

case stresses at once what learning from examples means: it refers to being able to generalize

the information incorporated in the presented examples to new, yet similar, instances. Thus

generalization has been achieved when the involved task can still be satisfactorily solved upon

presentation of a new instance, e.g. when one still recognizes the silhouette of a man on a blurred
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CHAPTER 1. FUNDAMENTALS OF MACHINE LEARNING

Figure 1.1: Blurred picture of a man. Image adapted from https://pxhere.com/en/photo/

646715.

picture although neither the picture nor the man has been seen before. Generalizing certain

aspects of a real phenomenon after having been presented instances of its working, is exactly

what characterizes machine learning. This feature is significantly different from other well known

functions a computer is able to perform, such as finding a word in a text (which merely relates

to performing a simple search through words in memory) or switching thermostat modes when

certain temperature thresholds are reached (which executes a clearly defined algorithm such as

’if the temperature is lower than X degrees start heating, if the temperature is higher than Y

degrees start cooling’).

The generalization property of machine learning relates to another important feature of most

machine learning systems: the involved processes are often black boxes, meaning that the

underlying mechanism that maps the input to the output is obfuscated by a figurative box [39]. A

machine learning system is able to identify new blurred pictures, after having been presented

a lot of similar blurred pictures, yet the rules that have been learnt by the system to perform

this task, cannot be extracted from it. This is, again, not unlike human behavior on performing

complex tasks. If an adult is asked to describe in detail the specific rules by which he rides bike,

he will fail to do so. At least, not the kind of rules that can be easily implemented by another

person in order to allow him to ride bike instantaneously. The black box notion correlates with

an important distinction in computer science approaches that are developed to solve complex

tasks, namely data-driven versus rule-based systems. In a data-driven system the available
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1.2. TYPES OF MACHINE LEARNING SYSTEMS

information takes the form of numeric data, representing a set of instances (or examples) of the

behavior of the considered phenomenon [20]. In contrast, a rule-based system relies on rules as

the representation of knowledge encoded in the system, the purpose being to mimic the reasoning

of a human expert in solving a knowledge intensive problem [25]. Simply speaking, one could say

that data-driven systems, the class to which most machine learning systems belong, mimic the

outcome of human reasoning, while rule-based systems mimic the human reasoning itself. This

work restricts attention to data-driven machine learning, as this is the most relevant subfield for

law. For example, in client-lawyer relationships, clients may desire that the considered judgment

of an experienced lawyer is informed by the most relevant information required to answer their

questions, where that information relates to, e.g., case law (which constitutes data, as contrasted

to rules) [84].

1.2 Types of machine learning systems

Machine learning systems can be used to perform a variety of tasks. Depending on the task

at hand, a different kind of machine learning system might be appropriate. The result is a

hierarchical organization of machine learning systems, where the properties of the considered

task determine the selection of the right kind of machine learning system to be applied. The

top of this hierarchy distinguishes between supervised and unsupervised machine learning. The

difference between both types of system lies in the structure of the given examples by which the

system learns to grasp a real world phenomenon.

1.2.1 Supervised machine learning

In supervised machine learning, the examples, which represent particular instances of the studied

phenomenon, consist of both an input and a corresponding output. Since the examples are to be

given in a format that is understandable by a computer system, the collected inputs and outputs

are typically numeric. In supervised machine learning, an example is then of the form (xi,yi),

where xi represents the input of the ith example, while yi denotes the corresponding output. It

is not required that both vectors have the same number of components. Let xi ∈Rn, i.e. a vector

with n components, and yi ∈Rm, i.e. a vector with m components, with possibly m 6= n. The set of

all collected examples can then be represented as D = {(xi,yi) | i = 1, . . . , N}, with N denoting the

number of examples.

As a simple illustration of how a set of examples may look like in a supervised learning context,

suppose that we want to predict Amazon’s stock price based on a short history encompassing

five stock prices. Then a typical procedure to construct examples for a machine learning system

that is to perform this task, entails the collection of all available historical stock prices of

Amazon. Suppose that there are 500 historical prices, which we can denote as s1, . . . , s500. Since

we want the system to learn to predict the next price given the five previous prices, we provide
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CHAPTER 1. FUNDAMENTALS OF MACHINE LEARNING

it examples consisting of prices over five consecutive days as input, while the next price serves

as the corresponding output. Thus the examples for this particular application are given by

(x1,y1), (x2,y2), . . . , (x495,y495) with

x1 = (s1, s2, s3, s4, s5)

y1 = s6

x2 = (s2, s3, s4, s5, s6)

y2 = s7

. . .

x495 = (s495, s496, s497, s498, s499)

y495 = s500

and thus D = {(xi,yi) | i = 1, . . . ,495} for this particular case.

How can these examples be used to understand the behavior of Amazon’s stock price over time?

The general idea, to be made more concrete below, is that each example entails a small piece of

information about the fluctuation of the stock price. An intelligently designed machine learning

system might then be able to unify all these examples into a more comprehensive view on the

behavior of the stock price. In particular, after the system has digested all the provided examples,

we will give the trained system the stock prices (s496, s497, s498, s499, s500) of the last five days,

and we hope that the system might be able to provide a useful prediction of the as yet unknown

stock price s501. Whether the system will succeed in generating a good prediction will depend on

several factors, such as the type of machine learning system that is used, the number of examples

that has been collected, and the phenomenon itself (if Amazon’s stock prices exhibit very chaotic

behavior, there is no hope that a system can be constructed that produces reliable predictions).

Supervised machine learning systems are typically applied to regression or classification tasks.

Predicting Amazon’s stock price is an example of regression, where the goal is to determine the

continuous value of one or more given output variables given the value of one or more input

variables. Other examples of regression tasks include the prediction of swimming performance

given input variables such as swimming technique, lung capacity, and hand and foot size [49],

the prediction of the price of real estate in terms of variables such as built-up area, the number of

bedrooms and the location [67], and modelling the relationship between stream water temperature

and air temperature, where either of the variables can be taken as input variable [42]. In

a classification task, the output variables assume discrete values, and each of these values

represents one of the possible classes. The goal is to predict the correct class of a given input. An

important example in medicine is the classification of a tumor as either malignant or benign,

given input data that consist of medical records relevant to the type of cancer involved [36].

Another widespread application of machine learning classification is to distinguish between spam
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1.2. TYPES OF MACHINE LEARNING SYSTEMS

emails and non spam ones, where the input variables include email header information [5]. The

number of classes in both classification examples is two, but there are plenty of applications

where more than two classes are appropriate. Consider as illustration the classification of Spanish

red wines into seven distinct groups, based on metals in the wine (B, Ca, Fe, etc) and on certain

physico-chemical properties such as pH and acidity [56].

The word supervised is properly chosen, as the system can be considered to learn under the

supervision of an imaginary master. The master provides the system with the inputs from the

examples, and tells the system which output should be produced for any given input. It is then up

to the system to behave in accordance with the instructions from the master. Although the explicit

goal of supervised machine leaning is often to perform prediction, there are frequently some less

pronounced goals, such as gaining understanding of the considered phenomenon. These two goals

are often complementary. Determining the relationship between a cancer category (malignant or

benign) and information represented by medical records, may increase understanding of cancer,

while at the same time doctors might use the trained system to predict the cancer type of a

certain patient given his medical records.

1.2.2 Unsupervised machine learning

Unsupervised machine learning is applied when the collected examples only have an input part.

The main application of unsupervised machine learning is clustering. In this case the task of the

machine learning system is to identify groups (commonly referred to as clusters) in the given

data set, with members of the same group sharing certain characteristics. This is analogous to

classification, although in the case of clustering no class labels are available, as output data is

not provided. A first consequence is that the system has to define meaningful groups without

external guidance. A second consequence is that it also has to find an appropriate number of

clusters, since in typical applications of clustering a suitable number of clusters is not known. The

selected number of clusters is frequently the result of a trade-off. On the one hand, a very large

number of clusters is undesired, since then each cluster will only contain a small fraction of the

data points, and a cluster with only a few elements is not what we intuitively mean by a group of

elements. On the other hand, a very small number of clusters might also be undesired, since this

might imply that any cluster has a large number of different elements, perhaps meaning that

these elements are not very similar, thereby contradicting the very definition of clustering.

The best-known unsupervised machine learning technique to perform clustering is K-means [33].

This is a simple and intuitive algorithm, and it is instructive to describe it, although we will

not discuss all the details. Denote the set of given examples by D = {xi | i = 1, . . . , N}, where, as a

reminder, each example contains only an input part. K-means assumes the number of clusters to

be given, which is denoted by k. As said above, in typical applications an appropriate value for k

is not known. Luckily, some heuristic methods have been developed to identify a suitable number
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CHAPTER 1. FUNDAMENTALS OF MACHINE LEARNING

of clusters [12, 76, 79, 82, 92]. We assume that such a method has been applied, and thus that

k has been assigned a proper value. K-means defines clusters in terms of so-called centroids. A

centroid is an element of the data space that is representative of the cluster. For example, if the

data set would contain basic characteristics of people, like age, weight, height and sex, it might

be the case that two clusters are detected, the one consisting of males, the other of females. An

appropriate centroid of the male cluster would then be the vector with as entries the average age,

the average weight and the average height of the men that belong to the considered data set. The

same applies to the female cluster. With this background knowledge on clustering, we can now

describe the K-means algorithm:

1. Randomly select k elements from the data set D. These elements are used as initial

centroids.

2. For each element xi ∈ D, compute the distance to each centroid. Assign xi to the cluster

that has the centroid with smallest distance to xi. The choice of distance measure depends

on the application at hand.

3. Update the k centroids: recompute each centroid as the average of the elements in D that

are member of the corresponding cluster.

4. Go back to step 2 unless there is convergence. Convergence is reached when the membership

of each xi is not changing anymore.

Notice that steps 2 and 3 are repeatedly performed. In step 2, the data elements are assigned

to the cluster with the closest centroid, whereby it is possible that some elements are assigned

to a different cluster compared to the assigned cluster in the previous iteration. In step 3, the

centroids are recomputed, which may result in new centroids compared to the previous iteration

due to the possibility that certain elements have changed membership in step 2. The algorithm

terminates when the membership that is assigned to each data element in step 2 is the same as

in the previous iteration.

Let us briefly review an application of K-means that has been described in the literature. In [3]

the authors show how K-means can be used to make customer service in telecommunication

companies more efficient. The grouping of customers is performed according to their profitability.

The profitability of a customer is defined as the profit the company makes from serving the

customer over a specified period of time. The customers who generate more profit for the company

are called high profitability customers. Input variables are defined in terms of RFM, which

is the abbreviation of Recency, Frequency and Monetary. These terms refer to how recently a

customer has purchased (recency), how often the customer purchases (frequency), and how much

the customer spends (monetary). These abstract concepts need to be converted into numeric

6



1.2. TYPES OF MACHINE LEARNING SYSTEMS

Figure 1.2: The centroids of the four clusters (from [3])

variables, in order to obtain examples in the right format. The set of examples has a suitable

format provided that, as we have seen, it can be described as D = {xi | i = 1, . . . , N}, where each

xi is a vector containing real numbers as components. To this end, the authors introduce three

numeric input variables, the first one to capture recency (referred to as variable R), the second

one to take frequency into account (variable F), and the third one to incorporate the monetary

aspect (variable M). To be concrete, for the ith customer the corresponding example (xi1, xi2, xi3)

is defined as follows:

xi1 = Average time duration between two calls over 1 month (in hours)

xi2 = Average number of calls per day over 1 month

xi3 = Bill value over 1 month

The data of 100 customers is used to construct the examples, meaning that N = 100. Next, the

authors determine a suitable number of clusters, but we do not discuss the algorithm that was

used for this task. Using that algorithm, it is found that k = 4 is an appropriate number of

clusters. Each cluster can then be analyzed in terms of its centroid, which is the vector containing

the average value of the three input variables R, F and M, where the average is taken over the

customers that are assigned to the corresponding cluster. Fig. 1.2 shows the centroids of the

four clusters. Considering the values of the centroids, the authors interpret each cluster in more

human-understandable language as follows:

• Cluster 2: High profitable customers.

• Cluster 4: Profitable customers.

• Cluster 3: Medium profitable customers.

• Cluster 1: Low profitable customers.

What is the use of this customer segmentation? The segmentation suggests how a diversified

strategy could be implemented to increase revenue. High profitable customers, i.e. members of

cluster 2, are very important to the company. Consequently, it is wise to provide them certain
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benefits, such as discounts, gifts on special occasions such as their birthday, and a special hotline

service where more skilled and senior customer officers handle their questions and concerns.

These benefits are intended to reduce the probability that a customer from cluster 2 would

terminate his contract with the company. Since these benefits come, of course, also at a cost, the

benefits with the highest costs should not be provided to the low profitable customers, which are

the customers that have been assigned to cluster 4. Following these ideas, a cost-benefit analysis

by the economic department of the company may result in a detailed and refined strategy for each

cluster. How to handle a new customer? We simply wait one month to collect his or her data, since

the three input variables refer to data over a period of one month, and we assign the customer to

the cluster with closest centroid. For example, if the values of the three input variables for this

customer are given by (3.50, 8.70, 60) we assign the customer to cluster 4, since the corresponding

centroid (3.47,9.00,59.33) is closest to the customer’s data (measuring distance according to the

Euclidean distance measure1). The strategy implemented by the economic department to serve

customers in cluster 4 is then to be applied to this customer.

The above example illustrates two properties of machine learning systems that have been

referred to in Section 1.1. First, such systems imitate human behavior in solving problems.

The segmentation of customers could also have been done by a trained human being without

the aid of a computer. However, the processing capacity of humans is far lower, and it would

take an incredible amount of time to fulfill the task. The authors did not provide details on

the computation time, but it definitely took K-means not longer than a few minutes to produce

the four clusters and their accompanying centroids. The imitation of human behavior can also

be considered from another perspective: provide the four clusters to a member of the economic

department of the company, and he will not be able to tell whether the result was produced by a

human being or by a computer. Both are able to generate the non trivial information encapsulated

in the four clusters, meaning that even if the result was produced by K-means, it would seem

as if human intelligence was the sole driving force in fulfilling the segmentation task. Secondly,

machine learning systems imitate complex human behavior. Indeed, segmenting customers based

on some collected data, thereby producing a prototypical customer for each cluster (as represented

by its centroid) is a non trivial objective, its complexity far exceeding the task of, for example,

finding a specific word in a given text.

1.3 Steps in constructing a machine learning system

In this section we provide a general description of constructing a machine learning system.

There are several steps involved in the construction, starting from the collection of examples

and ending with a machine learning system that is properly trained. After the construction, the

machine learning system is to be used for understanding or prediction, or for some other related

1https://en.wikipedia.org/wiki/Euclidean_distance
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1.3. STEPS IN CONSTRUCTING A MACHINE LEARNING SYSTEM

goal. The description is general, because in this chapter we do not yet consider any specific

machine learning system, such as artificial neural networks, which are the focus of the next

chapter. Our description restricts to supervised machine learning systems, as the remainder of

this work will be solely devoted to this type of systems. The construction of a supervised machine

learning system depends, to some extent, on its intended use, in particular whether the goal

is classification or regression. In avoiding that our description would become too lengthy and

possibly confusing, we further restrict our outline to supervised machine learning systems that

are used for regression.

1.3.1 Step 1: collecting examples

Given a real world phenomenon that is to be studied, such as the relationship between stream

water temperature and air temperature, the first step is to collect examples, as particular

instances of the phenomenon. We have already described the use of examples and the proper

format in which the examples need to be presented to the system. What remains to be discussed

is the precise relationship between D = {(xi,yi) | i = 1, . . . , N}, the set of collected examples, and

the phenomenon itself. Let us assume, as is common practice, that the phenomenon can be

described by a certain function f (this is not possible for all phenomena, e.g. the points (x, y) on a

circle cannot be represented by a function y= f (x)). Intuitively, the collected examples are then

instances of f , in the sense that yi = f (xi). However, in almost all case studies measurement

error is present. This obviously applies to cases where rather complex measurement instruments

are used, such as measurements involving phenomena in physics (e.g. the measurement of the

gravitational constant [53, 54, 65]) or measurements related to biology (e.g. related to gene

expression arrays [43, 63, 78]), but measurement errors are also to be expected in collected data

that may be falsely assumed error-free by researchers not familiar with data mining, such as

in survey data [55, 68] and in economic time series [4, 24]. Due to the presence of measurement

errors, it is therefore more correct to describe the relationship between the examples (xi,yi) and

the real world phenomenon f as

yi = f (xi)+εi(1.1)

where εi represents the measurement error. The error εi is typically not (exactly) known. Data

analysis requires that εi j (the jth component of εi) is small compared to yi j (the jth component of

yi) for all j, otherwise the examples are not a reliable representation of the studied phenomenon,

and any machine learning system will fail in correctly understanding the considered event.

1.3.2 Step 2: choice of a specific machine learning system

As outlined in Section 1.2, the phenomenon under study, together with the related examples,

determine the choice of machine learning system. For example, it is clear that if the examples do

not have an output part, an unsupervised machine learning system should be applied. However,

9
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the categories of systems that we have described still contain plenty of specific machine learning

systems to choose from. As an example, a lot of supervised machine learning systems that perform

regression have been developed, such as artificial neural networks [7], support vector machines

[31], kriging [42] and random forests [34]. Although the phenomenon and the structure of the

examples indicate which type of machine learning system is applicable, choosing a specific system

requires further decision criteria. One obvious criterium is the expertise of the researcher, which

will further restrict the set of feasible systems to a subset of systems in which the researcher has

gained experience. Two other factors that are almost always taken into account are computation

time and the degree of sophistication of the system. Intuitively, a more advanced system is to be

preferred over a less advanced one. However, there are at least three reasons why this intuitive

selection rule should be applied with great care. First, cases have been reported where a simpler

model outperforms a more complex one [17]. Secondly, a more complex model often comes with a

larger computation time. One of the explanations for this observation is quite simple: complexity

often relates to the number of parameters that a model has, and computation time increases as

more parameters need to be optimized. Thirdly, a system might even be too complex, in the sense

that it results in overfitting, an artifact that has to be avoided by all means. Overfitting deserves

an extensive description (Section 1.3.4).

1.3.3 Step 3: training

Having chosen a certain machine learning system, such as a neural network, the next step is

to ensure that the system learns to understand the considered phenomenon, which it will do by

using the examples D = {(xi,yi) | i = 1, . . . , N} that have been collected in the first step.

1.3.3.1 Splitting the set of examples into a training set, a validation set and a test set

Before actual training starts, we split the set of examples into three disjoint subsets, referred to

as the training set DTr, the validation set DV and the test set DTe, such that DTr∪DV ∪DTe = D.

Each subset will play a central role in further steps in constructing the machine learning system.

A common rule of thumb to perform this splitting is the 60/20/20 rule [48, 91], meaning that the

training set contains 60% of the examples, the validation set 20% of the examples, and the test

set the remaining 20%. That is,

DTr = {(xi,yi) | i = 1, . . . ,b0.6Nc}(1.2)

DV = {(xi,yi) | i = b0.6Nc+1, . . . ,b0.8Nc}(1.3)

DTe = {(xi,yi) | i = b0.8Nc+1, . . . , N}(1.4)

where b.c denotes rounding to the nearest integer.

10
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1.3.3.2 Meaning of training a machine learning system

Essentially, the task of a machine learning system is to provide the user a mathematical represen-

tation of the real world phenomenon. In the more exact terminology of Section 1.3.1, the machine

learning system that has been chosen in the previous step should, ideally, identify the function f .

However, completely identifying f is unfeasible, since we only have a limited number of examples

(xi,yi), i = 1, . . . , N. Indeed, due to practical or budgetary limitations, measurements will only be

collected in a limited number of inputs. This implies that there will exist input values for which

the corresponding output is unknown. The given examples thus provide a limited view on the

considered phenomenon. Furthermore, the examples give an obfuscated view on the phenomenon,

as the examples are only approximate instances of the phenomenon due to measurement errors,

which we expressed by equation (1.1). This means that the best we can hope for is to identify a

function f̂ that is a satisfactory approximation to f .

The choice of a specific machine learning system implies at once the choice of a functional form f̂

that is to be used as approximation to f . For example, a radial basis function network [30, 46, 60],

which is a supervised machine learning system that can be used for regression, is in its simplest

form expressed as

f̂ (x) =
M∑
j=1

w j exp
(
− ∣∣∣∣x−c j

∣∣∣∣2)
(1.5)

where ||.|| denotes the Euclidean norm, and where M,w j and c j, j = 1, . . . , M, are parameters.

The description of f̂ is incomplete as long as no values have been assigned to these parameters.

Training is then to be understood as the determination of suitable values for the parameters, i.e.

such that f̂ is a good approximation of f .

The relationship between collecting examples (step 1), choosing a specific machine learning

system (step 2) and training the system (step 3) can thus be described as follows. The choice of a

specific machine learning system amounts to selecting a function f̂ , which has some parameters

with as yet undetermined values, while training refers to determining values for the parameters,

using the collected examples, in such a manner that f̂ is a good approximation of f .

How to find suitable values for the parameters? An intuitive idea is to randomly try different val-

ues for the parameters, each time evaluating the performance of the machine learning system for

the given choice of parameter values, and then select the parameter values for which performance

is highest. For example, suppose that the inputs of our examples contain three components, and

assume that the radial basis function network (1.5) has been chosen as machine learning system.

Then we could try, for example, the following parameter values:

M = 2,w1 = 0.2,w2 = 0.7,c1 = (0.9,1.2,−0.1),c2 = (2.3,0.75,−2)(1.6)

and

M = 2,w1 = 0.11,w2 = 3.4,c1 = (1.7,−0.2,0.75),c2 = (3,1.5,−2.7)(1.7)

11
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and possibly many others, and we select the values for which the system performs best. However,

the comparison of the performance of different systems requires a measure, in the same way

as comparing students requires an objective measure, in particular grades. The comparison of

machine learning systems that have been assigned different parameter values, is performed

using a so-called error measure.

1.3.3.3 Error measure

An error measure evaluates the performance of a machine learning system by computing the error

between the outputs generated by the system and the output part of the examples. Conceptually

speaking, the error that the system makes in representing the ith example (xi,yi) is typically

computed as
∣∣∣∣yi − f̂ (xi)

∣∣∣∣2, where f̂ (xi) is the output that the machine learning system produces

for the given input xi (cf. Section 1.3.3.2), and where the notation ||v|| refers to the norm (i.e.

length) of a vector v. The total error is then simply defined as the average of the errors on all

examples:

E( f̂ ,D) = 1
N

N∑
i=1

∣∣∣∣yi − f̂ (xi)
∣∣∣∣2(1.8)

The above notation explicitly takes the set of examples D into account, since it is often useful to

compute the error measure only for a subset of D, e.g. for the training set DTr in which case the

error measure is given by

E( f̂ ,DTr) = 1
|DTr|

∑
(xi ,yi)∈DTr

∣∣∣∣yi − f̂ (xi)
∣∣∣∣2(1.9)

where |DTr| denotes the number of elements in DTr. While E( f̂ ,D) measures the performance

with respect to all examples, E( f̂ ,DTr) measures how well the system performs on the training

set.

It is important to realize that the error measure E( f̂ ,D) only approximately tells us how well

the system performs in representing the phenomenon. The reason is that the error measure

computes the error with respect to the examples. As outlined above, the examples are only

approximate instances of the considered phenomenon, because of the presence of measurement

error (cf. Section 1.3.1).

When multiple specific machine learning systems are considered where the parameters have

been given certain values, it is convenient to use slightly different notations for the different

systems, e.g. f̂1, f̂2, etc. For example, the radial basis function network with parameters given by

(1.6) could be denoted by f̂1, while the one with parameters given by (1.7) may be referred to by

12



1.3. STEPS IN CONSTRUCTING A MACHINE LEARNING SYSTEM

f̂2. The error measure then allows to compare their performances, and it is plausible to say that

the first radial basis network performs better than the second if

E( f̂1,D) < E( f̂2,D)(1.10)

and vice versa. However, this is not really the way that machine learning experts compare the

performance between systems with different parameter values. The next sections will clarify how

performance comparison should be appropriately performed. At any rate, the concept of error

measure will be an essential ingredient in comparing given systems.

1.3.3.4 Training algorithm

An intuitive way to determine suitable parameter values for a given machine learning system is

to try at random several values, then comparing the systems in terms of the error measure E as

given by (1.8), and finally selecting the values corresponding to lowest E. There are, however,

two problems with this intuitive optimization procedure. The first problem relates to overfitting,

which is described in Section 1.3.4. The second problem is that the number of feasible parameter

values is very often infinite, as is the case for the radial basis network considered in Section

1.3.3.2. Thus, in case of bad luck, by randomly guessing values for the parameters we might end

up with systems that all have a large error.

A training algorithm is an algorithm that tries parameter values in a sophisticated way, typically

by employing mathematical techniques to update current parameter values to new values for

which E is reduced. Generally speaking, a training algorithm typically starts with an initial

random guess for the parameter values, but repeatedly applies a mathematical method to obtain

an appropriate sequence of parameter values for which the corresponding E is decreasing. That

is, only the first value is a random guess, and all other values are derived from the previous

parameter values by a theoretically founded method that tries to guarantee that the new values

correspond to a lower error than the previous ones.

The best-known training algorithm is undoubtedly gradient descent [72], which is conveniently

explained for the case where the machine learning system has only one parameter α ∈R. Given

a randomly chosen initial value for this parameter, say a1, gradient descent will compute the

derivative of the error measure in a1. Calculus then tells us that the slope in a1 describes the

behavior of the error function nearby a1. For example, if the slope is positive, then values smaller

then a1 will result in smaller values of E. Gradient descent will then select such a smaller value

a2 as new and better value for the parameter α. If the slope is negative, a2 will be chosen as some

value that is larger than a1. This procedure is then repeated by computing the derivative of E in

a2 and the sign of the derivative is again used as guideline to select a new value a3. To avoid that

the procedure would go on forever, a stopping criterion is needed. A plausible stopping criterion is

to stop training when the error is below a certain threshold. In Section 1.3.4 we come back to the

13
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Figure 1.3: Illustration of gradient descent in case there is only one parameter. Image adapted
from https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

stopping criterion, as this criterion is of the utmost importance to end up with a reliable machine

learning system.

The gradient descent technique is illustrated in Fig. 1.3. Other, more advanced, algorithms to

minimize E exist, such as the Levenberg-Marquardt method [35].

1.3.4 Step 4: validation

The previous steps resulted in the construction of examples (the set D, with as subsets the training

set DTr, the validation set DV and the test set DTe), and some specific machine learning system,

expressed as a function f̂ that contains parameters and that is to be used as an approximation to

the real world phenomenon f . Section 1.3.3.4 describes the use of a training algorithm, which

is able to efficiently update the parameter values such that the error measure decreases as

consecutive parameter values are selected. We did not specify yet which error measure should be

used in applying the training algorithm. Intuitively, we use the error measure E( f̂ ,D), described

by (1.8), which determines the error with respect to all examples. After all, we want the machine

learning system to be a good representation of all examples. Paradoxically, a system that performs

very well with respect to all examples might actually be a very bad system. The anomaly to be

blamed for this perplexing result is known under the name overfitting.

1.3.4.1 Overfitting

Overfitting is one of the main concerns of a machine learning practitioner [8]. To understand

why practitioners might not be confident that their system will perform well on its intended task,

although their training algorithm has identified parameter values for which E( f̂ ,D) is very low,

we need to recall the actual task of a machine learning system. That task is to generalize the

information that is, in some way, encapsulated in the given set of examples (cf. Section 1.1). This
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means that it is not sufficient that a system performs well on the examples; actually, our desire is

that the system does a good job on previously unseen instances of the considered phenomenon.

A previously unseen instance refers to some input-output pair (x,y) that relates to the studied

phenomenon, but that is not part of the set of examples D. Although it is not one of the collected

examples, it is essential that the system is able to properly process this instance too. For example,

consider a system that has been trained to classify the tumour of patients into “benign” and

“malignant”, using collected examples of patient data for which the correct class is known. The

ultimate purpose of such a system is, however, to correctly classify the tumour of a new patient,

given certain medical data associated with this patient and for whom the correct class is currently

unknown. Thus whenever the system has seen a lot of examples, consisting of medical input data

together with the correct class (benign or malignant) as output data, it is desired that the system

is able to use this experience to assign the right class to a new patient.

The description provided in Section 1.3.1 allows to gain insight into the overfitting issue. Equation

(1.1) shows that examples are only approximate instances of the real world phenomenon, since

these examples are corrupted by noise. If a machine learning system is trained in such a way

that the error E( f̂ ,D) is zero, the undesired consequence is that the system has not only modeled

the phenomenon f , but also the measurement errors. In this case, the equation shows that

f̂ (xi) = f (xi)+ εi, while what we ideally want to have is that f̂ (xi) = f (xi). The holy grail in

machine learning is, therefore, to have ingenious methods to separate the phenomenon, i.e. f ,

from the measurement errors, i.e. ε. The next section describes a commonly used technique to

pursue this goal.

Overfitting can be illustrated by a case study in climatology. Fig. 1.4 shows yearly temperature

anomalies from 1880 to 2014 as recorded by several institutes, namely NASA, NOAA, the Japan

Meteorological Agency, and the Met Office Hadley Centre (United Kingdom). Although the

observed phenomenon is, of course, the same, the graphs produced by the different institutes

are not identical, due to different measuring techniques. Another observation is that the graphs

exhibit minor variations over short time spans, which gives the overall pattern an irregular

appearance. Such fluctuations are the result of a host of factors with random behavior, which

typically have a temporal and minor influence. A popular research question in climatology is to

make predictions of the mean temperature for, e.g., the next 20 years. To answer such a question,

it is not meaningful that the machine learning system incorporates the short-term random

fluctuations. Rather, the system should be able to detect the underlying trend, which is driven

by the non random factors that have a dominant influence on the climate. The temperature

anomalies from 1970 on allows the system to gain insight into the evolution of the temperature

over the years, but what actually matters is that this experience is used to predict how this

evolution is to continue in the future. An acceptable candidate for f̂ is the thick black line shown

in the figure. Although it is not a perfect fit to the examples, it seems to be a good representation

of how the temperature has evolved in the past and how it will probably evolve in the future.
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Figure 1.4: A first illustration of overfitting. Image adapted from https://earthobservatory.

nasa.gov/WorldOfChange/DecadalTemp)

Figure 1.5: A second illustration of overfitting

Another illustration of overfitting relates to modelling the price of a house in terms of its size2.

A reseacher has collected some examples of this phenomenon, where the examples are in the

format (house size, house price), and has trained two different machine learning systems on these

examples. The resulting f̂ for both systems is shown in Fig. 1.5. It is seen that the second system

(on the right) perfectly represents the examples. However, the fact that f̂ in this case shows very

unrealistic behavior, with extremely large prices for certain house sizes, suggests that it will

perform poorly when a new house size is presented to the system with as goal to predict its price.

We then say that this system has been overfitted. The machine learning system shown on the

left is a much more appealing model of the relationship between the price of a house and its size.

Consequently, the system that perfectly fits the examples is inferior to the system that makes

errors on the given examples.

2https://srdas.github.io/DLBook/ImprovingModelGeneralization.html
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Figure 1.6: A third illustration of overfitting. Image adapted from https://hackernoon.

com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-

learning-820b091dc42

A final illustration of overfitting is displayed in Fig. 1.6.

1.3.4.2 Avoiding overfitting with the use of the validation set

Training a machine learning system, i.e. optimizing the parameters with the use of a training

algorithm, by minimizing the error E( f̂ ,D), might result in overfitting. The previous sections

illustrated this observation. Since the ultimate goal is to train a system in such a way that it

performs well on unseen examples, the most popular solution to avoid overfitting is to train

the algorithm on a certain subset of the examples, and to evaluate its performance on another

subset. In other words: learning is done using certain examples, while the presence of overfitting

is detected by evaluating the performance of the system on other examples.

This is why in Section 1.3.3.1 the set of all examples D is subdivided into several sets, namely a

training set DTr, a validation set DV and a test set DTe. The use of the test set is described in

Section 1.3.5. In this section we explain how the training set and the validation set are useful in

training the system, while at the same time overfitting is avoided.

In plain words, the strategy to properly train the system is to apply the training algorithm only

on the examples in the training set. This means that the inputs xi from the examples in DTr are

presented, one by one, to the system, and depending on the difference between the corresponding

output yi and the produced output f̂ (xi), the training algorithm updates the parameter values to

new values (cf. Section 1.3.3). More specifically, the training algorithm chooses the new parameter

values in order to reduce E( f̂ ,DTr). However, from time to time, for example whenever ten other

examples from DTr have been presented to the system, the error is computed with respect to the

validation examples, i.e. the examples in DV . The examples in DV are, as far as the system is

aware of, new (i.e. previously unseen), since they have not been used to determine the parameter

values of the system (remember that parameter values are updated by solely using the examples

in the training set DTr). The optimal parameter values are then those for which the error on

the validation set E( f̂ ,DV ) is minimal. This accomplishes our goal, since ensuring that the

performance is best with respect to unseen examples is equivalent to ensuring generalization.
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A typical procedure for training is then as follows:

1. Assign initial values to the parameters, e.g. randomly chosen real numbers.

2. Present an example from the training set DTr to the system, and apply the training

algorithm to find new parameter values that decrease the error E( f̂ ,DTr).

3. Every time a certain number of examples have been presented to the system, e.g. every ten

examples, compute the performance of the machine learning system on the validation set

DV , i.e. compute the error E( f̂ ,DV ).

4. Repeat the previous two steps until the error E( f̂ ,DV ) drops below a predefined threshold.

The training error E( f̂ ,DTr), which is the error that the system makes on the training examples,

typically decreases as more examples from the training set are presented. This is straightforward,

as the training algorithm updates the parameter values in order to reduce the training error.

The story is different for the validation error E( f̂ ,DV ). Initially, we expect the validation error to

decrease as training examples are presented, because by digesting examples the system starts to

grasp the phenomenon. However, after many examples have been presented, overfitting might

make its appearance. At that point, the training error is becoming very low, which is a bad thing,

since it means that the system starts to also represent noise, such as measurement errors. At that

same point, however, the validation error will begin to increase, because the fact that overfitting

pops in implies that the system starts to perform worse on the unseen validation examples. Thus

we expect that the training error keeps decreasing, while the validation error typically decreases

until overfitting emerges, and then starts to increase. The evolution of the training error and the

validation error as examples from the training set DTr are presented to the system is illustrated

in Fig. 1.7. The vertical line indicates where training should be terminated, corresponding to the

minimum value of the validation error. At that moment it is not advised that training is still

continued, because then overfitting will come alive, and generalization will be gone forever.

1.3.5 Step 5: testing

Having designed a machine learning system that avoids overfitting, it is ready to be applied to

its intended task. However, it is common practice that the machine learning researcher first

presents some results that convincingly show that the system will have high performance on

this task. It is not helpful that he tries to be convincing by reporting the training error, since a

low training error might actually indicate overfitting, as has been repeatedly argued above. Nor

is it very meaningful to refer to the validation error, because the system has been developed to

minimize that error. So of course the validation error is low. Instead, the researcher should make

a case for using his system by applying it to a set of examples that has not be used, in any way,
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Figure 1.7: Evolution of training error and validation error as examples from the training set are
presented to the machine learning system

in training the system. This is why one of the subsets of the set of examples D is the test set

DTe: we have kept aside these examples from training to be used for the ultimate performance

test of the trained system. Having trained the system using the training set and the validation

set, the researcher now presents the inputs from the test examples to his system. The system

computes the corresponding output, which is compared to the output parts of the test examples.

In other words, the so-called test error E( f̂ ,DTe) is computed. The lower the test error, the more

convincing the researcher will be in claiming that his system is amazing.
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2
ARTIFICIAL NEURAL NETWORKS AS A PRIME EXAMPLE OF

MACHINE LEARNING

2.1 Introduction

The previous chapter started by raising the question whether a computer is capable to

mimic human behavior in performing complex tasks. An even more profound question

is whether a machine is actually able to think [22]?

For a long period, investigating such questions was considered the privilege of the philosophical

arena, with philosophers such as Descartes arguing that there is a real distinction between

the mind and the body [18], while others, e.g. Hobbes, claimed that everything consists only

of matter or is ultimately dependent upon matter [21]. If the materialists are right in stating

that the mind is merely a physical substance, there might be some prospect in answering the

above question in the affirmative sense. Yet, it is a challenge in itself to define the meaning of

intelligence, let alone to answer this deep question in a straightforward way. Already in 1950

Alan Turing devised an elegant test that allows to evaluate to what extent a machine is able to

think, without the need to come up with a proper definition of intelligence [83]. His test is still

the most popular way to determine a machine’s intelligence and has been coined the Turing test.

The test implements the idea that when a human being is unable to determine whether he is

having a conversation with a machine or with another human being, the machine has reached

the level of human intelligence. In a practical setting, a human interrogator is having a written

conversation with messages exchanged through, for example, a chatbox with another human

being and with a machine. This conversation is supposed to entail a normal, everyday talk with

the other two entities. The machine is said to have passed the Turing test if the interrogator is

unable to distinguish the machine from the human. The test is illustrated in Fig. 2.1. So far, no
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Figure 2.1: Illustration of the Turing test, with C the human interrogator, and A the machine
and B the other human being (or vice versa). Image adapted from [69].

machine has been able to pass the Turing test, but Ray Kurzweil, author of some well known

books on artificial intelligence (AI) such as “The singularity is near: when humans transcend

biology” [38], has made an interesting bet on the future of artificial intelligence. According to his

prediction, in 2029 the first computer will pass the Turing test1.

After having outlined the general principles of machine learning in the previous chapter, it is

instructive to take a closer look at one of the many existing machine learning systems. Because

of their interesting history and because they have many applications, artificial neural networks

(ANNs) will be described in some detail in this chapter. Originally, they were developed in an

attempt to apply the working principles from the brain in an artificial environment. That explains

why the fundamental unit of an ANN is called a neuron, the same term that is used for the basic

units in the brain. Given the degree of intelligence with which humans are endowed, it might

be surprising that neurons are, in fact, rather simple units [9]. Yet, as gradually became clear,

high complexity can be attained by the interaction amongst a very large number of such simple

building blocks (it has been estimated that the brain contains about 100 billion neurons [28]).

The realization that complex functions can be built by suitably combining simple functions, is

1https://www.kurzweilai.net/a-wager-on-the-turing-test-why-i-think-i-will-win
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2.2. ARTIFICIAL NEURAL NETWORKS WITH FIXED WEIGHTS: THE MCCULLOCH-PITTS
NEURON

Figure 2.2: McCulloch (1889-1969) and Pitts (1923-1969). Adapted from [74].

the very cornerstone of what was to become machine learning. In the next sections we go back in

time to briefly describe the origin and the subsequent evolution of ANNs. This will shed some

light on how researchers successfully relied on insights from neurology to create a new kind of

entity that in the future might even transcend human intelligence [37]. In describing the origin

of neural networks we rely, to some extent, on [88] and on a very well written account by Andrey

Kurenkov2.

2.2 Artificial neural networks with fixed weights: the
McCulloch-Pitts neuron

2.2.1 Description

The beginning of the field of artificial neural networks is widely recognized to be the seminal

paper by McCulloch and Pitts in 1943 [50] (a picture of McCulloch and Pitts is shown in Fig. 2.2),

who introduced the concepts of neuron and artificial neural network. The neuron they introduced

was essentially just a very simple function with an arbitrary number of n input variables and a

single output variable. The output variable was restricted to be binary, i.e. its value is either 0 or

1. Such a machine learning system can only be used for classification into two classes, where the

value 0 corresponds to one class and the value 1 to the other class.

Their neuron, accepting n input values and producing either 0 or 1 as output, operates as follows.

Any value xi of the ith input variable is multiplied by a constant value wi, referred to as a weight,

and the weighted values are then summed to obtain a single value

s(x) =
n∑

i=1
wi xi(2.1)

with x= (x1, . . . , xn). Following the notation of the previous chapter, the network is represented by

a function f̂ , which is assumed to approximate the real world phenomenon f (cf. Section 1.3.3.2).
2http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-

learning/
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Figure 2.3: Graphical representation of τ with α= 0.

McCulloch and Pitts defined the output f̂ (x) as 1 if s(x) exceeds a predefined threshold value α

and 0 otherwise. In other words:

(2.2)
f̂ (x)= 1 if s(x)>α

= 0 otherwise

By introducing the so-called step function τ, defined as

(2.3)
τ(z)= 1 if z >α

= 0 otherwise

we can describe the operation of the neuron, given by (2.2), also as follows:

f̂ (x) = τ
(
s(x)

)
(2.4)

This representation will prove useful when extensions to this basic ANN are discussed. The

function τ is illustrated in Fig. 2.3. In the terminology of neural networks, a function as τ is

referred to as an activation function, since it determines when the neuron returns as output one,

in which case it is said that the neuron is ’activated’.

An illustration of a McCulloch-Pitts artificial neural network in the case of two input variables (i.e.

n = 2) is shown in Fig. 2.4. The figure indicates that the values x1 and x2 of some given example

are multiplied by weights w1 and w2 respectively, and these weighted values w1x1 and w2x2

are then sent to the neuron. The neuron computes s(x), according to (2.1), as an intermediate

step in computing its output, and the final output is then calculated according to (2.2). It is
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Figure 2.4: Illustration of a McCulloch-Pitts artificial neural network. Adapted from
https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b.

common to regard such an ANN as consisting of two layers, where the first layer, containing

the input variables, is called the input layer, and where the second layer, containing the neuron

that computes the output, is referred to as the output layer. Although the input variables are

not really neurons, since they are just placeholders for the input values and do not perform any

operation, it is common practice to refer to the input variables also as neurons. Any unit in the

network can then be called a neuron. To distinguish between the input variables and the actual

neuron in the output layer, we refer to the first as input neurons and to the latter as output

neurons.

2.2.2 Illustration of a two layer ANN: representing the AND function

Notwithstanding the extreme simplicity of this very first artificial neural network, it allows to

represent some common logical gates. As an illustration, we demonstrate how such a network

can model the logical AND function. The AND function is defined as the function that assumes

two binary input values, with the corresponding output being one if both inputs equal one, and

zero otherwise. For example, if the input equals (1,0) the AND function returns 0 as output. The

AND function can be implemented using the ANN described in the previous section by setting

the weights and the threshold to the following values:

w1 = 1

w2 = 1

α = 1.5

As an example of the operation of this network, consider as input x= (1,0). We first compute s(x)

according to (2.1):

s(x) = 1×1+1×0 = 1

Next we compute the output f̂ (x), which requires to compare s(x) = 1 to the threshold α= 1.5.

Since s(x)≤α, we find that f̂ (x)= 0, cf. (2.2). The output of the neural network thus equals the
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output as given by the AND function. One can easily verify that the other possible inputs, namely

(0,0), (0,1) and (1,1), also result in equality between the neural network output and the output

produced by the AND function.

2.2.3 Artificial neural networks with more than two layers

Let us consider another logical function. The XOR function is defined as producing as output one

if and only if the two binary input variables assume a different value; otherwise, the output is

zero. For example, the output corresponding to (1,0) equals 1, while (1,1) produces 0. How can

the XOR be represented by a neural network with two input variables and a McCulloch-Pitts

neuron? Unfortunately, whatever values are assigned to the two weights and to the threshold,

the network will fail to produce the correct output for every possible input vector [89]. The XOR

is a too complex function to be modeled by a network with a neuron that is as simple as the

McCulloch-Pitts neuron.

Yet, the state of affairs is not as depressing as might seem. Referring to Section 2.1, ANNs

were initially developed by borrowing some general principles from neurology, in particular the

principle that even simple processing units can exhibit very complex behavior, provided that

enough of these units are employed and that they exchange information in an appropriate way.

So, the very first machine learning researchers had the idea of using multiple McCulloch-Pitts

neurons, expecting that this would improve the complexity of the neural network. They found an

ingenious way to incorporate more neurons: by adding an extra layer between the input layer

and the output layer. Like the output layer, this extra layer consists of McCulloch-Pitts neurons.

The result is an ANN with three layers, with the first layer (i.e. the input layer) containing the

input variables, and both the second layer and the third layer (i.e. the output layer) containing a

number of McCulloch-Pitts neurons. The operation of the McCulloch-Pitts neurons in the second

layer is essentially the same as those in the output layer. The extra layer is commonly referred

to as the hidden layer, and the neurons in this layer are called hidden neurons. Furthermore,

connections between neurons are again maintained by weights. There is a weight between every

neuron in the first layer and every neuron in the hidden layer, as well as between every neuron

in the hidden layer and every neuron in the output layer. A graphical representation of an ANN

with three layers is shown in Fig. 2.5.

To describe in some detail the working of this more complex network, it is convenient to extend

our notation. In the case of two layers, there was only one type of weights, namely the weights

connecting the input layer to the output layer. With three layers, there are two kinds of weights,

i.e. weights between the input layer and the hidden layer, and weights between the hidden layer

and the output layer. The weight that goes from the jth neuron in layer k−1 to the ith neuron in

layer k is denoted by w(k)
i j . For example, the weight that connects the second input neuron (which

belongs to layer 1) with the first hidden neuron (belonging to layer 2) is denoted by w(2)
12 .
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Figure 2.5: Illustration of an artificial neural network with three layers.

Each hidden neuron performs the same operation as the output neuron in the two layer case.

This means that the jth hidden neuron receives the input vector from the input neurons, and

then computes its output h j(x) as follows:

h j(x) = τ j

( n∑
i=1

w(2)
ji xi

)
(2.5)

with the function τ j defined as

(2.6)
τ j(z)= 1 if z >β j

= 0 otherwise

The above equations are essentially the same as (2.3)-(2.4). The only difference is that we have

taken into account that each hidden neuron might have its own threshold β j. The values h j(x)

produced by the hidden neurons are then sent to the output neuron. The output neuron computes

the final output in a similar way as for the two-layer case, cf. (2.4). There is, however, one

important difference: the output neuron is now receiving the values h j(x) as its input values,

while in the two layer case it received the values x j as input values. The final output, as computed

by the output neuron, is then given by:
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f̂ (x) = τ
( m∑

j=1
w(3)

1 j h j(x)
)

(2.7)

where m denotes the number of hidden neurons, and where τ is still defined as in (2.3).

In summary, the network computes the output for a given input vector according to the following

steps:

1. Each input value xi, i = 1, . . . ,n, is sent to each hidden neuron.

2. Given the input values x = (x1, . . . , xn), each hidden neuron performs the operation (2.5).

This results in the values h1(x), . . . ,hm(x).

3. The values h1(x), . . . ,hm(x) are sent to the output neuron.

4. Given the values h1(x), . . . ,hm(x), the output neuron computes the output of the network

by performing operation (2.7).

For convenience, we have described the structure of the network for the case of one output neuron.

The same principles are easily extended when more output neurons are needed.

In constructing a network with three layers, there is no freedom in the choice of the number of

input neurons and the number of output neurons: the number of input neurons equals the number

of input variables, while the number of output neurons equals the number of output variables.

Both are determined by the considered application. For example, the AND function has two input

variables and one output variable, and thus the network that was constructed to model this

function has two input neurons and one output neuron. The story is different for the number of

hidden neurons. In principle, the user is completely free to choose the number of hidden neurons.

Recalling the above considerations, we might expect that as more hidden neurons are introduced,

the network is able to model more complex behavior. Does this suggest to use a very large number

of hidden neurons, such that we might be pretty sure that our phenomenon will be properly

modelled? No. One reason why a very complex model might not be desired, was discussed in

the previous chapter: overfitting. A system with very high complexity will typically also model

irregularities that are not intrinsically part of the considered phenomenon, such as measurement

errors. Plenty of heuristic methods have been developed to determine an appropriate number of

hidden neurons, but we will not discuss these techniques here. The interested reader is referred

to, e.g., [19, 43, 59, 81, 90].
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Figure 2.6: Implementing the XOR gate by a neural network consisting of McCulloch-Pitts
neurons. Adapted from http://hollich.psych.purdue.edu/CSS/Lecture1.html.

2.2.4 Illustration of a three layer ANN: representing the XOR function

The conjecture that higher complexity can be attained by using more neurons is exemplified by

modelling the XOR function. As stated above, researchers have shown that a two layer ANN of

the kind we have described above, is unable to represent the XOR correctly. However, it can be

described by a three layer ANN, as we now demonstrate.

The input layer of our three layer ANN contains two input neurons, since the XOR has two input

variables, while the output layer has one output neuron, which is determined by the fact that the

XOR has one output variable. The threshold α associated with the output neuron is set to α= 0.

Furthermore, we choose two hidden neurons with associated thresholds β1 =β2 = 0. There are

six weights, because there is one weight from each neuron in a certain layer to each neuron in

the next layer. We choose the weights as follows:

• The weight from the first input neuron to the first hidden neuron: w(2)
11 = 1.

• The weight from the first input neuron to the second hidden neuron: w(2)
21 =−1.

• The weight from the second input neuron to the first hidden neuron: w(2)
12 =−1.

• The weight from the second input neuron to the second hidden neuron: w(2)
22 = 1.

• The weight from the first hidden neuron to the output neuron: w(3)
11 = 1.

• The weight from the second hidden neuron to the output neuron: w(3)
12 = 1.

The neural network is shown in Fig. 2.6.

Let us verify its working on the input vector x = (1,0). Since the input values differ, the XOR

returns one as output, and a correct ANN should thus produce f̂ (x)= 1 as output. We follow the

steps described in Section 2.2.3 to compute the network output f̂ (x):

29

http://hollich.psych.purdue.edu/CSS/Lecture1.html


CHAPTER 2. ARTIFICIAL NEURAL NETWORKS AS A PRIME EXAMPLE OF MACHINE
LEARNING

1. The input values x1 = 1 and x2 = 0 are sent to the hidden neurons.

2. Each hidden neuron performs the operation (2.5):

h1(x) = τ1

(
w(2)

11 x1 +w(2)
12 x2

)
= τ1

(
1×1−1×0

)
= τ1(1)

= 1

h2(x) = τ2

(
w(2)

21 x1 +w(2)
22 x2

)
= τ2

(
−1×1+1×0

)
= τ2(−1)

= 0

Notice that in going from the third line to the fourth for h1, we set τ1(1)= 1, which follows

from 1>β1, cf. (2.6). A similar reasoning applies to τ2(−1).

3. The values h1(x) and h2(x) are sent to the output neuron.

4. The output neuron computes the network output by applying (2.7):

f̂ (x) = τ
(
w(3)

11 h1(x)+w(3)
12 h2(x)

)
= τ

(
1×1+1×0

)
= τ(1)

= 1

where the last line holds because 1 > α = 0, and thus, according to (2.3), it follows that

τ(1)= 1. This demonstrates that the neural network produces the correct output if the input

vector equals (1,0). By performing similar calculations one can verify that the network also

produces the correct output for the other input vectors, given by (0,0), (0,1) and (1,1).

2.3 Artificial neural networks with variable weights: the
Rosenblatt perceptron

2.3.1 The need for an efficient training algorithm

One may wonder how to find suitable values for the parameters (i.e. the weights and the

thresholds) of the ANNs that we have considered above. In machine learning terminology, the

question is how to properly train an ANN (cf. Section 1.3.3.2). For the ANNs that modelled

the AND and the XOR we boldly presented parameter values for which the ANN performs the

classification correctly. But it is not clear at all how proper values should be obtained, given any
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application at hand. Actually, for the AND and the XOR application we do not need a sophisticated

method to identify suitable values for the parameters. Values can be found by trial and error. Two

important characteristics shared by the AND and the XOR application allow to apply this brute

force method. First, the number of feasible input vectors is very small. Indeed, there are only

four possible input vectors. Secondly, all input vectors are known beforehand. That is, we know

that the four possible vectors are given by (0,0), (1,0), (0,1) and (1,1). Since the network is only

required to model four patterns, and since these patterns are known in advance, it is not such a

hard task for a computer to try different values for the parameters until a configuration has been

found that classifies the four patterns correctly. Given the tremendous speed of today’s computers,

it is very plausible that correct parameters values will be found in a reasonable amount of time.

This ad hoc procedure breaks down if the number of feasible input vectors is very large, or if

not all possible input vectors are known at the moment that training is to be performed. In fact,

such a situation is often encountered in practice, e.g. when the task is to relate a handwritten

character to the corresponding capital letter that one finds on a keyboard. In this case the set

of possible input vectors is both extremely large and not completely known in advance, since it

consists of all characters that have ever been written by people by hand as well as all characters

that could ever be written by humans. Trying to determine parameter values by trial and error

is not very wise in this case. The task of recognizing handwritten characters is very complex.

This means that many neurons will be required, because the number of neurons relates to the

degree of complexity that can be handled, as has been argued above. Many neurons imply many

parameters, i.e. many weights and thresholds, and randomly finding suitable values for all these

parameters will be prohibitively time consuming. Indeed, randomly trying values for a large set

of parameters is not unlike randomly guessing the correct numbers in a combination lock with

many digits.

2.3.2 Rosenblatt’s idea

Rosenblatt invented a way to circumvent the need to set the parameters to constant values. He

proposed a method to initially assign random values to the parameters and then update the

parameter values, in particular the weights, as new examples are presented to the system. The

new kind of neuron that he introduced in 1957 to accomplish this task was coined the perceptron

[64]. In fact, the perceptron shares a lot of characteristics with the McCulloch-Pitts neuron:

• Each value that is given as input to the perceptron is multiplied by a weight.

• The weighted values are summed and compared to a threshold.

• If this sum is larger than the threshold, the output is one; otherwise, it is zero. In other

words, his perceptron also produces a binary output.
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Figure 2.7: A letter t that is not so easy to identify.

The crucial difference is that the weights are allowed to change during training. Intuitively

speaking, every time an example is processed by the ANN, the system will evaluate its current

performance. Based on this evaluation the weights may be changed in order to improve the

performance.

It is no exaggeration to say that with this idea machine learning in the truest sense was born. As

outlined in Chapter 1, the main principle of machine learning is to learn from experience, where

experience is coded as examples that represent instances of the phenomenon. In this sense, the

neural networks that have been constructed to implement the AND and the XOR, and which rely

on McCulloch-Pitts neurons, are only forerunners to machine learning. They lack any learning

component, because regardless of the number of times that any certain input vector is given

to the network, the same output will be produced. For example, the ANN implementing the

XOR will always produce 1 if the vector (1,0) is presented to the network, irrespective of other

input vectors that have been processed in the meantime. This is, of course, desired, as the XOR

itself always returns one as output upon being presented (1,0) as input. A very different story

unfolds for many other real world applications. Consider again the application of the automatic

recognition of handwritten characters. The letter shown in Fig. 2.7 may be mistakenly taken for

an l by an ANN that has only seen a small number of example characters before, just as a child

may have difficulties in correctly identifying this letter. However, if the ANN has already been

presented a very large number of handwritten characters, we require that it has become better

at its job and that it now correctly returns t as output, although it identified this same letter

in a different way before. Thus the same input vector may be mapped to a different output by

the network, depending on the characters that has been presented in the meantime. And this

is what Rosenblatt understood: an ANN can become gradually better in performing its complex

task as more training examples are presented, if we allow the weights to gradually change as the

examples are processed.

2.3.3 The training algorithm proposed by Rosenblatt

Proposing to change the nature of the weights, from being constant values to variables, is in itself

not particularly mind-blowing. What was groundbreaking, was that Rosenblatt also presented

an efficient algorithm to update the weights during training. Unfortunately, in developing his
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training algorithm he had to give up an important extension of the originally introduced neural

networks. The application of his algorithm is restricted to two layer networks.

Let us have a look at the training algorithm. Since the discussion will be restricted to networks

with two layers, we can use the notation wi again (cf. Section 2.2.1) instead of more cumbersome

notations as w(2)
i j that were needed for the three layer case. For convenience, we will again restrict

attention to networks with one output neuron (the description of the training algorithm is easily

extended to multiple output neurons).

Algorithm 1 (Training of an ANN with a single perceptron)

The training algorithm proceeds as follows:

1. Initially, assign random values to the weights wi.

2. Consider a training example (x, y).

3. Compute the weighted sum of the inputs s(x) as given by (2.1).

4. Compute f̂ (x) as given by (2.2).

5. Denote the current value of weight wi by wold
i . This value is updated to a new value wnew

i as

follows:

wnew
i = wold

i +
(
y− f̂ (x)

)
xi(2.8)

The update rule for the weights is contained in the fifth step of the algorithm, in particular

equation (2.8). Since there are only four possibilities for the combined values of f̂ (x) and y, it is

little work to describe the update rule for each of these possibilities:

• y= 1 and f̂ (x)= 0. In this case (2.8) is simplified to:

wnew
i = wold

i + xi

• y= 0 and f̂ (x)= 1. In this case (2.8) becomes:

wnew
i = wold

i − xi

• y= 1 and f̂ (x)= 1. The rule (2.8) reads as:

wnew
i = wold

i

• y= 0 and f̂ (x)= 0. In this case (2.8) becomes:

wnew
i = wold

i
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The last two cases, with y = f̂ (x) = 1 and y = f̂ (x) = 0, are easily understood. In both cases it

holds that the output produced by the network equals the output of the presented example. The

network thus has produced the correct output, so there is no reason to change the weights. Let us

consider the case with y= 1 and f̂ (x)= 0. To be concrete, let us assume that the involved network

has two input neurons and one output neuron, and that the current training example is given by

(x, y) with x= (1.2,0) and y= 1. This training example is presented to the network (step 2 of the

algorithm) and s(x) is computed (step 3 of the algorithm):

s(x) = wold
1 x1 +wold

2 x2

= 1.2wold
1(2.9)

Next, step 4 dictates to compute f̂ (x). This means that s(x)= 1.2wold
1 is compared to the threshold

α. We have assumed that the produced output equals zero. Therefore, according to (2.2), it

necessarily holds that

1.2wold
1 < α(2.10)

This makes clear the underlying reason for the zero output: 1.2wold
1 is below the threshold. In

other words, the first weight is actually too small to produce the correct output (remember that

the true output is y = 1). The solution is simple: increase that weight. This is exactly what is

done in step 5, since (2.8) shows that wnew
1 is given by

wnew
1 = wold

1 +
(
y− f̂ (x)

)
x1

= wold
1 +1.2(2.11)

and thus the current weight wold
1 is increased by an amount 1.2 to result in an updated weight

wnew
1 .

In the above illustration we have deliberately set x2 = 0 for convenience. As a more complex

illustration, let x2 =−0.5, while maintaining the other details of the considered illustration, i.e.

y= 1, f̂ (x)= 0 and x1 = 1.2. Apply step 3 of the algorithm, which consists of computing s(x):

s(x) = wold
1 x1 +wold

2 x2

= 1.2wold
1 −0.5wold

2

The next step is the calculation of the network output, which entails comparing the above right

hand expression with the threshold α. Since, by assumption, the network produces 0 as output, it

follows that

1.2wold
1 −0.5wold

2 < α(2.12)
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This expression again clarifies why the network has computed an incorrect value: 1.2wold
1 −0.5wold

2

is too small. In particular, it is below the threshold to produce one as output, which is the desired

value. Consequently, correct output might be produced if the value in (2.12) would be larger. In

comparison to the previous illustration, where s(x) only contained one term (given by the left

hand side of (2.10)), the expression of interest now consists of two terms, namely 1.2wold
1 and

−0.5wold
2 . That expression can be increased by increasing both terms. It is obvious that the first

term can be increased by adding a positive value to wold
1 . The second term can be increased by

subtracting a positive value from wold
2 , because of the negative factor -0.5. This is what a human

would intuitively do. How does the training algorithm handle this case? Applying step 5 of the

training algorithm, the weights are updated as follows:

wnew
1 = wold

1 + x1

= wold
1 +1.2(2.13)

wnew
2 = wold

2 + x2

= wold
2 −0.5(2.14)

As a matter of fact, the algorithm follows the same reasoning. The positive value 1.2 is added

to wold
1 , while the positive value 0.5 is subtracted from wold

2 . Of course, the computer, which

executes the algorithm, easily beats us in accuracy and speed. Knowing that modern ANNs often

have millions of neurons, and thus even much more weights to be updated during training, only

stresses the significance of using a training algorithm.

2.4 Further developments in the field of artificial neural
networks

Sections 2.2 and 2.3 describe how artificial neural networks originated. The first networks were

very limited in practical applicability by restricting to binary inputs and binary outputs, and the

weights were set to constant values. Learning was not part of the job of a neural network. Then

Rosenblatt came to the scene, introducing his famous learning algorithm that allows to update

the values of the weights as training examples are presented. Furthermore, input variables may

be either discrete or continuous.

A lot of time has passed since Rosenblatt’s original research. Many research results have improved

the capabilities of artificial neural networks. It is impossible to extensively describe all the

important contributions that have been made in the meantime. Yet, to grasp the full power of

ANNs, it is instructive to briefly describe some important extensions that have resulted from

research in this popular field of computer science since the 1950s.
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Figure 2.8: The logistic function.

2.4.1 Continuous output

The ANNs described above are limited to binary output values. The applicability of such neural

networks is very limited, as they can only perform classification into two classes. Indeed, the

value 0 can always be interpreted as denoting a certain class, with the value 1 referring to a

second class. One application where such an ANN is useful is in classifying a tumour as either

benign or malignant, where the input variables include certain measurements of cell properties

[47]. However, many real world applications rely, of course, on continuous output variables. The

reason why the above ANNs are forced to produce a binary output is the use of the step function

τ as activation function, cf. equations (2.3)-(2.4).

By simply using other kinds of activation functions, it is possible to obtain a continuous output. A

very frequently used activation function is the sigmoid, also called logistic, activation function.

Using the same notation τ, the output of the network is then still given by (2.4), but where τ is

defined as

τ(z) = 1
1+e−z(2.15)

with e denoting the exponential function. The logistic function is shown in Fig. 2.8. Notice that

there are some similarities with the step function, which was shown in Fig. 2.3).

It may be objected that ANNs equipped with a logistic activation function are still very restrictive,

in that they require the outputs of the examples to lie between 0 and 1. Thus they would not

be of any use to model stock prices, house prices, temperatures, etc. However, this is merely an

unimportant practical detail, as before any training is performed the outputs of the training
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examples can be rescaled to lie in [0,1]. Given y1, . . . , yN as outputs of the examples, we train the

ANN with the following transformed output values

zi = yi −mink yk

maxk yk −mink yk
(2.16)

As an illustration, if there are five examples, with outputs of the examples given by 5, 2, 7, 8 and

10, the first example that is actually given to the network will have as output

z1 = 5−2
10−2

= 3/8

which indeed lies between 0 and 1. Such transformations, which ensure that the examples are

presented in a suitable form to the network, are very common, and constitute almost a field in

itself. This is the research domain of preprocessing [1, 15].

2.4.2 Multiple layers

Rosenblatt’s ANN is restricted to an input layer and an output layer. A hidden layer is not

possible. This is very restrictive, as many real world applications are too complex to be modelled

by an ANN without hidden layer. This already applies to the rather simple XOR, which cannot

be modelled without hidden neurons, as we have seen. It is tempting to think that the above

described training algorithm still applies if an extra layer is added. Unfortunately, matters are

more complicated. To see this, let us consider, for convenience, the update rule for the weights in

the binary input case. To be concrete, assume that the presented training example resulted in

the situation f̂ (x)= 1 while y= 0. The update rule then decreases the weights that are connected

to each input variable that has value one, i.e. xi = 1, as follows:

wnew
i = wold

i +
(
y− f̂ (x)

)
xi

= wold
i +

(
0−1)×1

= wold
i −1

while the weights that are connected to the input variables that have value 0, i.e. xi = 0, are left

unchanged:

wnew
i = wold

i +
(
y− f̂ (x)

)
xi

= wold
i +

(
0−1)×0

= wold
i

Remember that the reasoning behind this rule was that the output generated by the ANN is too

high, and thus we reduce the weights that are responsible for this too large output.
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If an extra layer is added, there are weights between the input variables and the hidden neurons,

as well as between the hidden neurons and the output neurons. In this case, and without going

into detail, it is not clear which weights are to be blamed for an incorrect output. Rosenblatt

simply avoided this issue by restricting to two layer neural networks. It was only later that

an update rule was developed that could handle this much more complex case. That algorithm,

which will not be described here, is the famous backpropagation algorithm [66].

2.4.3 Approximation capabilities of ANNs

The first ANNs could barely model a function as simple as the AND. The XOR function, as

intuitive and simple to understand as it may be, was beyond the power of these premature ANNs.

Things can change. ANNs have been gaining capabilities that were beyond the imagination

of the first machine learning researchers. By adopting ideas from neurology and mathematics,

the power of ANNs was increased by equipping it with multiple layers and with many neurons,

supplemented by efficient training algorithms. Can an artificial neural network actually represent

any reasonable function? That is to say, given any sufficiently large set of training examples

from a real world phenomenon, is an ANN, in principle, able to accurately model these examples,

and thus the related phenomenon? This question, restated in a much more abstract form, has

attracted mathematicians. It is a triumph for ANN researchers that the answer to this question

is ’yes’ [26, 32].

2.5 An illustrative case study

As an illustration of the application of neural networks, we describe a case study from the

literature. The selected case study involves the prediction of graduation success at the United

States Military Academy [41]. Each year more than 15,000 candidates apply for admission to the

US Military Academy. Approximately 1,200 applications are accepted, receiving a full scholarship

with an estimated value of $372,000. Recently there has been a spike in the number of first term

course failures. Due to the large costs associated with an acceptance, it is important to have a

model that can predict graduation of a student who applies for admission. An accurate prediction

model can both inform admission decisions as well as identify students requiring remediation.

The authors collected 5100 training examples from an admissions database and from the annual

Cooperative Institutional Research Program (CIRP) survey. Nine input variables were considered:

• The rank that was obtained in high school.

• A variable that indicates the quality of the high school that has been attended.

• SAT math score, where the SAT is a standardized test that is widely used for college

admissions in the United States.
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• SAT English score.

• Faculty assessment score.

• A variable that relates to the extra-curricular activity.

• A variable that indicates the education status of the father.

• A variable that indicates the education status of the mother.

• Time that has passed since high school graduation.

The ANN thus contains nine input neurons. The authors considered three binary output variables:

• A variable that indicates whether the student did not graduate from United States Military

Academy. If graduation was not achieved, this output variable has the value one. Otherwise,

it is zero.

• A variable that indicates whether the student was a late graduate. If so, the value is one;

otherwise, it is zero.

• A variable that has value one if the student did graduate within the normal period, and

has value zero otherwise.

The task of the ANN is to learn the relationship between the given input variables and the output

variables, based on the information contained in the large set of training examples. This task is

clearly a classification task (cf. Section 1.2.1), where the three possible classes can be described

as ’graduate’, ’late graduate’ and ’non graduate’.

The set of training examples is divided into a training set, a validation set and a test set (cf.

Section 1.3.3.1). The authors use a 70/15/15 rule: 70% of the examples are included in the training

set, 15% in the validation set, and the remaining 15% are assigned to the test set.

The neural network contains a hidden layer, and the backpropagation algorithm is chosen as

training algorithm. A graphical representation of the network is shown in Fig. 2.9. The number

of hidden neurons is determined with the use of the validation set. As outlined in Section 1.3.4.2,

it is not wise to determine the number of hidden neurons by simply training several ANNs, each

with a different number of hidden neurons, and to select the one that performs best on the set of

all examples (i.e. for which the error is lowest). Such a procedure easily results in the dramatic

effect of overfitting (cf. Section 1.3.4.1). Instead, the authors follow the widely accepted procedure

to determine the number of hidden neurons by training several ANNs, but where training is done

solely on the training set, while selecting the ANN that performs best on the validation set. They

found that 50 hidden neurons resulted in the best performance on the validation set.
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Figure 2.9: Graphical representation of the ANN described in [41].

Finally, the selected ANN with 50 hidden neurons was tested (cf. Section 1.3.5). The classification

accuracy turned out to be about 95%. This means that when the ANN was given the input vectors

of the examples in the test set, which are examples that had not been seen before and thus were

new to the ANN, it predicted in 95% of the cases the correct class (’graduate’, ’late graduate’ or

’non graduate’).

What is the use of having developed this ANN? The answer is essentially contained in Section

1.1: the purpose of machine learning is not to perform very well on a given set of examples, but

on previously unseen examples. The (only) purpose of a given set of examples is to let the ANN

gain insight into the studied phenomenon. After this learning phase, the ANN is expected to

understand the phenomenon and to give reliable answers on new cases that derive from this

phenomenon. Since the ANN for the presented case study shows very good performance on the

test set, people responsible for the admissions at the US Military Academy might consider to use

it in future procedures, instead of previously employed admission evaluations. To be concrete,

suppose that a person wants to enter the military school. The board can then ask the potential

student to provide the information that is necessary to determine the values of the nine input

variables (the rank that was obtained in high school, the SAT English score, etc). This information

is then given as input vector to the trained ANN, and the ANN returns an output. If the output

is, e.g., (0,0,1), it means that it is predicted that the person will not graduate from the military

school if admission would be allowed (since the third class corresponds to ’non graduate’). The

admission board might then decide not to permit admission. Such a procedure is very objective

as well as very efficient. There is no need to organize endless meetings, requiring many time

and even more coffee, to decide on a matter that is to result in the same outcome, using similar
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reasonings, as when an ANN would be used.
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3
APPLICATIONS OF SUPERVISED MACHINE LEARNING IN LAW AND

CRIMINOLOGY

3.1 Use of machine learning in law and criminology

Section 1.1 mentioned several applications where machine learning has demonstrated its

use. The domains of law and criminology are not an exception: without doubt, machine

learning is able to generate a paradigm shift in these domains too. And yet, the imple-

mentation of machine learning in these fields has lagged other fields [61]. Somehow it seems that

judges and lawyers cannot believe that a computerized system is able to be their equal, let alone

to surpass them, given their knowledge of, and years of experience in, complex legal matters.

The sections in this chapter show how machine learning can be useful in law and criminology by

reviewing some applications that has been described in the literature.

3.2 Predicting criminal recidivism

Palocsay, Wang and Brookshire [58] developed an ANN that performs the following classification

task (classification was described in Section 1.2.1). Given certain input variables that relate

to characteristics of an individual who has been released from prison, predict whether this

individual will eventually return. In the following subsections, we describe the data set used

by the authors to train the ANN, some architectural details of the ANN that was developed to

perform this task, and the results.

43



CHAPTER 3. APPLICATIONS OF SUPERVISED MACHINE LEARNING IN LAW AND
CRIMINOLOGY

3.2.1 Data set

Data was obtained from the Inter-university Consortium for Political and Social Research [71].

The criminal recidivism data contains information on two sets of releases from North Carolina

prisons: 9457 individuals released from 1 July, 1977 to 30 June, 1978 (to which the authors refer

as the 1978 data set), and 9679 individuals released from 1 July, 1979 to 30 June, 1980 (referred

to as the 1980 data set).

For each individual in the data set it is known whether he returned to a North Carolina prison.

This information serves as output variable: the output variable is equal to 1 if the individual

returned to a North Carolina prison, and 0 otherwise. Nine input variables are considered:

1. Whether the individual was African-American or not.

2. Whether the individual had a past alcohol problem.

3. Whether the individual had a history of using hard drugs.

4. Whether the sample sentence was for a felony or misdemeanor (’sample sentence’ refers to

the prison sentence from which individuals were released).

5. Whether the sample sentence was for a crime against property or not.

6. The individual’s gender.

7. The number of previous incarcerations, not including the sample sentence.

8. The age at the time of release.

9. The time served for the sample sentence.

3.2.2 Some architectural details of the neural network

The ANN used by the authors is a network with multiple layers, having nine input neurons and

one output neuron. The authors used logistic activation functions (cf. Section 2.4.1). However,

this results in a continuous output between 0 and 1, while the task is to classify an individual

as being a recidivist or not (which requires a binary output value). This is easily resolved by

mapping values that are larger than 0.5 to 1, and smaller values to 0.

The given data set was divided into a training set (cf. Section 1.3.3), a validation set that is used

to avoid overfitting (cf. Section 1.3.4), and a test set to evaluate the performance of the network

on unseen examples (cf. Section 1.3.5).

The network was trained on the training set using the backpropagation algorithm (cf. Section

2.4.2).
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Figure 3.1: Results on the 1978 data set for the ANN developed by Palocsay, Wang and Brookshire.

3.2.3 Results

The results for all experiments were recorded in terms of the percentage of recidivists correctly

classified as recidivists, the percentage of non-recidivists correctly classified as non-recidivists,and

the total percentage of correct classifications. The authors describe these results on the 1978 data

set, both on the training set and on the test set, for different choices of the number of hidden

neurons, see Fig. 3.1. As stated in Section 2.2.3, choosing the number of hidden neurons is not

easy, and one simple solution is to apply the ANN on the validation set for different numbers of

hidden neurons, and selecting that number for which the corresponding error is smallest.

The authors made a comparison with the results obtained by applying logistic regression, which

is a popular method from statistics. They found that the ANN (slightly) outperformed logistic

regression. Although in terms of predictability ANNs might be better than traditional statisti-

cal methods, ANNs have the disadvantage of lacking explanatory capability in comparison to

statistical models. This issue will be studied in more detail in the next chapter.

3.3 Predicting decisions of the European Court of Human
Rights

In most research projects, case law is manually collected and hand-coded, although some re-

searchers already use computerized techniques to collect case law and automatically generate

usable information from it, e.g. [40], [44] and [73]. The case study described by Medvedeva, Vols

and Wieling [52] is an interesting illustration of how machine learning can be used to analyze

complex textual data. The goal of the study is to create a system that automatically predicts

whether any particular article of the ECHR is violated, given the facts of the case. To this end, the

authors developed a support vector machine (SVM), a very popular machine learning technique

for classification, which was developed by Cortes and Vapnik [14].
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Figure 3.2: Overview of the data set used by Medvedeva, Vols and Wieling.

3.3.1 Data set

The authors use the publicly available data published by the ECtHR1. More concretely, they use

all texts of admissible cases available on the HUDOC website as of September 11, 2017. Fig. 3.2

shows an overview of the data set.

The considered texts need to be converted into training examples, which can then be fed to the

machine learning system. This requires to create examples consisting of input-output pairs. The

input of the examples does not include the entire text, as court decisions contain some information

that is redundant in terms of the envisaged goal. For example, the dissenting/concurring opinions

can be removed from the texts. Of course, also the decision itself is removed, since this aspect

is to be predicted and thus constitutes the output part. The remaining text (after removing the

redundant parts) is split into short consecutive sequences of words, and these items are then

considered as the inputs to the system. For example, the following sentence:

By a decision of 4 March 2003 the Chamber declared this application admissible.

is split into sequences of two words as follows:

By a, a decision, decision of, of 4, 4 March, March 2003, 2003 the, the Chamber,

Chamber declared, declared this, this application, application admissible, admissible.

1https://hudoc.echr.coe.int/eng
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Any contiguous sequence of two words is called a 2-gram, while, more generally, any contiguous

sequence of n words is referred to as an n-gram. The authors split the text into 1-grams, 2-grams,

3-grams, and 4-grams. Splitting into certain n-grams ensures a standard format for all possible

court decisions, and having this standard format it is possible to represent any court decision as

an input-output pair, where both input and output are vectors of real numbers.

3.3.2 Results

The authors apply their system to a test set, and evaluate the performance in terms of precision,

recall and F-score. Precision is defined as the number of true positives divided by the number

of true positives plus the number of false positives. If non-violation is to be predicted, a false

positive refers to a case the model incorrectly labels as a non-violation, i.e. the court actually

decided that there was a violation. A true positive refers to a case the model correctly labels as a

non-violation. In case violation is to be predicted, the roles are reversed, e.g. a true positive then

refers to a case the model correctly labels as a violation. Recall is the number of true positives

divided by the number of true positives plus the number of false negatives. If non-violation is

to be predicted, a false negative refers to a case that the model identifies as a violation, while

the court decided that there was no violation. The F-score is the harmonic mean of precision and

recall. The results are shown in Fig. 3.3 for each article separately. To interpret the results, it is

useful to notice that if we would just randomly guess the outcome, we would be correct in about

50% of the cases. Percentages substantially higher than 50% thus indicate that the model is able

to use textual information about the facts of the case to improve the prediction of the outcome

(violation or non-violation).

The results, with an average performance of 0.75, show substantial variability across articles.

It is possible that the differences are caused by differences in the amount of training data. The

lower the amount of training data, the less the model is able to learn from the data. However,

it is also plausible that cases related to certain articles are more complex than cases related to

other articles, resulting in a lower predictive accuracy.

3.4 Automation of legal reasoning in the discretionary domain
of family law in Australia

As a final illustration of the application of supervised machine learning to law and criminology,

this section discusses the work by Stranieri, Zeleznikow, Gawler and Lewis [77]. Their work

is very interesting, especially from a machine learning point of view, because the majority of

applications of artificial intelligence to legal reasoning have focused on domains of law that

are typically not regarded as discretionary. In contrast, the authors describe the application of

machine learning to judicial decisions that are based on the highly discretionary rules of the

47



CHAPTER 3. APPLICATIONS OF SUPERVISED MACHINE LEARNING IN LAW AND
CRIMINOLOGY

Figure 3.3: Results of the machine learning system developed by Medvedeva, Vols and Wieling.

Family Law Act of Australia of 1975, in particular in distributing property. The Act makes explicit

a number of factors that must be taken into account by a judge in altering the property interests

of parties to a marriage, but the statute is silent on the relative importance of each factor. The

goal of the author’s work is to discover how judges weigh the different factors.

3.4.1 Some background on the Family Law Act

Taking into account section 79(1) of the Family Law Act, judges of the Family Court follow a five

step process in order to arrive at a property order:

1. Ascertain the property of the parties.

2. Value all property of both parties.

3. Determine which assets will be paramount in property considerations (referred to as

common pool property).

4. Determine a percentage of the property to be awarded to each party.
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5. Create an order altering property interest to realise the percentage.

The system developed by the authors implements steps 3 and 4 above, i.e. the common pool

determination and the prediction of a percentage split. The discretionary power of the judge is

mainly exercised in step 4.

3.4.2 Common pool determination

We do not describe the details of the implementation of this task, as the most interesting machine

learning task is the prediction of a percentage split, since this is the step in the above five step

process where discretionary power is prevalent. It may suffice to state that the authors rely on

directed graphs to determine whether or not a certain asset will be included in the pool by the

Family Court. A directed graph is a set of objects that are connected together, where all the edges

are directed from one object to another. A graph is intuitive to understand, as it bears many

similarities with the sequential decision process by human beings. Furthermore, representation

rules have been developed to efficiently store a graph in a computer and to perform certain

operations on it in an automated way. Fig. 3.4 is an illustration of a directed graph that is used to

determine if a given vehicle will belong to the common pool.

3.4.3 Percentage split determination

As stated above, the Act describes some factors that must be taken into account by a judge

in determining the property interests of parties to a marriage, but deciding on the relative

importance of these factors is left to the judge. Generally speaking, the factors relevant for

a percentage split determination are past contributions of a husband relative to those of the

wife, the husband’s future needs relative to those of the wife, and the wealth of the marriage.

The authors realised that the factors could be placed in a hierarchy, and they developed such

a hierarchy in collaboration with domain experts. Actually, this provides a nice illustration of

how human expertise can be combined with machine learning abilities in obtaining a superior

system, refuting the often held idea (especially by people not acquainted with machine learning)

that machine learning considers human experts as unnecessary or, worse, as undesirable objects.

Their hierarchy contains 94 factors, part of which is shown in Fig. 3.5.

The hierarchy is used to decompose the task of predicting an outcome in 35 sub-tasks. Outputs of

sub-tasks further down the hierarchy are used as inputs to sub-tasks higher in the hierarchy.

In this way the overall task is converted into the simpler task of making multiple small-scale

inferences, and this is done level by level in the hierarchy. The authors use two different systems

to perform these inferences: the inferences represented by solid arcs in the figure are performed

with the use of so-called rule sets, while the dashed arcs depict inferences performed using neural

networks. We describe only the inferences performed by the neural networks.
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Figure 3.4: Illustration of a directed graph.

Fig. 3.6 illustrates how the ANN is used to infer a percentage split outcome. It expands the

factors on the right of Fig. 3.5. The inputs to the displayed neural network are the values of each

of these three factors (contributions of husband relative to wife, level of wealth, and future needs

of husband relative to wife). The output is the predicted percentage split. This is the ANN that

is highest in the hierarchy, and for lower levels the same procedure is employed. For example,

referring to Fig. 3.5, there is also an ANN that takes as input the common pool value and that

infers the level of wealth.

3.4.4 Data set

The authors rely on written judgments handed down by judicial decision makers in common

place cases. These concern the vast majority of cases that come before the first instance decision

maker and are never published, never appealed and constitute cases that set no precedents. They

prefer to use such cases for training over landmark cases because the intention is to apply neural

networks to lean how judges combine factors in actual day to day practice. Data was gathered

from cases decided between 1992 and 1994, and of the common place cases concerning family law
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Figure 3.5: Part of the hierarchy of 94 factors that are used to determine the percentage split.

Proportion of errors of magnitude > 3 0.03
Proportion of errors of magnitude > 2 0.12
Proportion of errors of magnitude > 1 0.16

Proportion of errors of magnitude > 0.5 0.31

Table 3.1: Results of Split Up on a test set

103 cases involved property alone. Three raters extracted data from these cases by reading the

text of the judgment and recording the values of the 94 variables.

3.4.5 Results

The authors evaluated their system, called Split Up, on a test set. They counted the proportion of

test cases on which the error in predicting the percentage was larger than 3, larger than 2, larger

than 1 and larger than 0.5. Table 3.1 presents the results.

Interestingly, the authors made also a comparison with an analysis performed by lawyers in

family law. Eight specialist family law solicitors were asked to analyse three cases. These cases

were devised to test diverse marriage scenarios. The results are shown in Fig. 3.7. Cases B and C

indicate compatibility between Split Up predictions and those of the lawyers. Case A was more

controversial. It involved a marriage where domestic duties were performed by paid staff and not
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Figure 3.6: Inferring percentage split outcome with an artificial neural network.

Figure 3.7: Percentage of assets awarded to husband by Split Up and family lawyers.

by either party to the marriage. Split Up and four lawyers interpreted the situation as one where

both parties had contributed to the home in equal measure. The remaining lawyers regarded

this situation as improbable and, despite evidence to the contrary, assigned the majority of the

home-maker role to the spouse who had not engaged in paid employment.
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Machine learning can be a very helpful tool for practitioners in law and for judges. That

is the message that is put forward in this work. Currently, machine learning is the

practitioner’s helper, but one day roles might be reversed. Ray Kurzweil and other

artificial intelligence experts are convinced that the singularity is an inevitable future event. At

that moment computers will surpass human’s intelligence. Whether or not this prediction will

come true is, actually, not the main concern of the legal practitioner. What he should be concerned

about is the rapid evolution of machine learning in his field. Therefore, this is the moment to

start studying it, and to use machine learning tools in his daily practice. The many surprising

and outstanding results that machine learning has produced, in very diverse domains, leave no

doubt about its use.

Yet, the field of machine learning is also encountering challenges, as if it has to reinvent itself.

The main worry is the black box behavior of many machine learning systems (cf. Section 1.1).

Black box techniques are thought to take inputs and provide outputs, but not to yield physically

interpretable information to the user [51]. The process or the reasoning that produces the given

output is hidden in model parameters that are extremely difficult to interpret. In this sense,

machine learning methods are “oracular inference engines that render verdicts without any

accompanying justification” [86].

This black box behavior might be highly undesirable depending on the intended application. At

any rate, it can be considered a disadvantage, and this for at least the following reasons:

• According to a longstanding philosophical rationale (going back to at least Aristotle), experts,

and thus also intelligent systems, should be able to justify their actions by marshaling

knowledge of causal relationships [45].
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• No single system has a zero error rate in making predictions. Thus understanding how a

system arrived at its decision is critical to ascertain how a certain error occurred, and to

be able to subsequently adjust the system such that the observed kind of errors will not

appear again.

• For a lot of applications it holds that unravelling the underlying mechanism is intrinsically

linked to the purpose of the application itself. For example, in medical applications an

informed consent process can only proceed appropriately if the physicians are sufficiently

knowledgeable to explain to patients how an artificial intelligence device works, which is

rendered difficult by the black-box problem [70].

• In the specific context of applications in law, it is well known that a judge has to motivate

its decision. This implies that his decision cannot be based on a black box tool, no matter

how sophisticated this black box system is.

Although the black box character of machine learning systems had already been recognized as

a severe deficiency before, at least for certain applications (e.g. [13], [16], [23], [62], [87]), it is

only very recently that turmoil has reached its peak. This has led to the emergence of a new

domain in the broader field of artificial intelligence, namely explainable artificial intelligence,

where the ambitious goal is to construct interpretable machine learning algorithms, providing

some explanation or justification for decisions obtained by black box mechanisms [2], [10], [11],

[27], [29], [85].

Not only scientific researchers, but also major companies, such as Google1 , and even govern-

ments2, have recently declared that explaining AI systems is an important goal.

As long as the singularity has not been realized, humans and machines depend on each other

for their performance. Machine learning systems are capable to supplement human expertise

by their speed and their seemingly intelligent reasoning. Conversely, humans are needed to

incorporate further characteristics of high level intelligence into systems, such as explainability.

1https://www.bbc.com/news/technology-50506431
2The DARPA division of the Department of Defense is spending $2 billion on its explainable artificial intelligence

program, cf. https://www.darpa.mil/program/explainable-artificial-intelligence
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