

REINFORCEMENT LEARNING FOR
INVENTORY OPTIMISATION IN MULTI-
ECHELON SUPPLY CHAINS

Word count: 15.892

Victor Hutse
Student number : 0140756292

Supervisor: Prof. Dr. Francis wyffels

Master’s Dissertation submitted to obtain the degree of:

Master in Business Engineering: Data Analytics

Academic year: 2018-2019

REINFORCEMENT LEARNING FOR
INVENTORY OPTIMISATION IN MULTI-
ECHELON SUPPLY CHAINS

Word count: 15.892

Victor Hutse
Student number : 0140756292

Supervisor: Prof. Dr. Francis wyffels

Master’s Dissertation submitted to obtain the degree of:

Master in Business Engineering: Data Analytics

Academic year: 2018-2019

Deze pagina is niet beschikbaar omdat ze persoonsgegevens bevat.
Universiteitsbibliotheek Gent, 2021.

This page is not available because it contains personal information.
Ghent University, Library, 2021.

Preface

Since I first came in contact with the principles of machine learning about two and a half years

ago, my interest in the subject has kept growing. Partly because I am deeply fascinated by how

all these methods work and partly because I believe that it can make a di↵erence in the end.

This thesis is the product of that growing fascination.

The true journey of this thesis started last summer when I had decided I would write something

about reinforcement learning. At this point, I could fit my knowledge of reinforcement learning

into a handful of sentences. Over summer I started by following David Silver’s course on Youtube,

rigorously taking notes. Because I was determined to keep learning on the subject I ended

up bringing a bundle of about 300 pages worth of RL papers with me while trekking in the

Himalayas, reading them early before breakfast and late before going to bed.

I would like to extend special thanks to Prof. Dr. Francis wy↵els and Andreas Verleysen. I am

very grateful for the guidance you gave me, the countless practical tips on how to realise the RL

program, and the constant availability. I truly enjoyed the moments where we could brainstorm

and share thoughts, during the meetings that always seemed to run over.

Next, I would like to thank my family and friends who continually supported me. They were

prepared to listen when I was stuck, when something would not work, and when something

finally did work.

Looking back over the past year I am glad that I chose this subject. I can honestly say it never

lost my interest. I hope I may learn as much in the coming year as I have in the past year.

The corresponding code base will be made available at

https://github.ugent.be/vhutse/gym-scm.

The icons used in schematic figures were taken from Flaticon.com.

Victor Hutse, Augustus 2019

https://github.ugent.be/vhutse/gym-scm

To Raymond Hutse

Thank you for always believing in me.

Reinforcement learning for Inventory
Optimization in Multi-Echelon Supply

Chains
by

Victor HUTSE

Abstract

This thesis is inspired by the recent success of reinforcement learning applications such as the
DQN Atari case, AlphaGo and more specific uses of reinforcement learning in the Supply Chain
Management domain. We build on the paper by Kemmer et al., where reinforcement learning is
used for general inventory optimisation in a double echelon supply chain. We extend the existing
literature in two ways. First by increasing the problem complexity: we add di�culty through
non-zero lead times, continuous action spaces and by regarding larger systems. Secondly, we use
more recent reinforcement learning algorithms like DQN and DDPG using function approxima-
tion, which become necessary for more complex problems. During the process, we have built a
simulation environment conform to the OpenAI Gym API to facilitate future benchmarking in
this environment.

Keywords

Reinforcement learning, Supply chain optimisation, Inventory optimisation, Machine Learning,
Multi-echelon, Operations management

CONTENTS i

Contents

1 Introduction 1

1.1 Problem Description . 1

1.2 Current solutions . 3

1.3 Research Question . 3

2 Inventory Optimisation 6

2.1 Theory of inventory optimisation . 6

2.1.1 Setting the lot size: Economic Order Quantity 7

2.1.2 Extensions of the EOQ model . 8

2.1.3 Setting the reorder point . 8

2.2 Current Inventory Management methods . 9

2.2.1 Heuristic policy: (Q,R) . 9

2.2.2 Multi-echelon methods . 11

3 Reinforcement Learning 12

3.1 Reinforcement Learning methods . 12

3.1.1 Q-learning . 13

3.1.2 Neural fitted Q-iteration and Deep Q learning 14

3.1.3 Deep Deterministic Policy Gradient . 16

3.2 Inventory Optimisation from a RL perspective 18

3.2.1 The state space . 19

3.2.2 The action space . 21

3.2.3 The reward function . 22

3.3 Improving Inventory Optimisation with Reinforcement Learning 24

3.3.1 The choice of the lot size . 24

CONTENTS ii

3.3.2 Determining the reorder point . 24

4 Experiments with Discrete Action Spaces 26

4.1 Base case: Discrete approach . 27

4.1.1 Experiment . 27

4.1.2 Results and Discussion . 32

4.2 Expanded case: Discrete approach . 36

4.2.1 Experiment . 36

4.2.2 Results and Discussion . 38

5 Experiments with Continuous Action Spaces 40

5.1 Experiment . 40

5.1.1 Action and state space . 42

5.1.2 Demand function . 42

5.1.3 (Hyper)parameter setting and setup . 42

5.2 Results and discussion . 49

6 Conclusion 54

A Complete results tables 61

CONTENTS iii

List of Symbols

Due to the crossing of several research fields, this work requires a large amount of symbols to

be used in the mathematical functions. The double usage of symbols has been avoided to the

extent possible, in the remaining cases the intent should be clear from context. The variables

are grouped by use. The first block is used for the specification of the environment, the second

is used in the context of RL and the third is used in the domain of SCM.

Il,p Inventory position per location and per product

Dl,p Demand per location and per product

D
avg
l,p Average demand per product and per location

Pl,p Production action per product and per factory

Sf,s,p Transportation action per factory, shop and product combination

⇢p Price per product

⇧l,p Production cost

Hl,p Holding cost

Tl,p Transportation cost

Kl,p Setup cost

⌦l,p Opportunity cost of stock-out

⇡f,p Unit production cost

⌘l,p Unit holding cost per location and per product

Cp Truck capacity per product

⌧l Truck cost


T
f,p Transportation setup cost per factory and per product


P
f,p Production setup cost per factory and per product

�l,p Stock-out penalty per product

t Time step

CONTENTS iv

V Variance change

M Trend

✏s,p Demand perturbation per product and shop

Q
⇤ EOQ amount

� Demand rate

c Cost per item ordered or produced

R Reorder point

L Lead time

s Safety stock

h Holding cost per unit per unit time

K Setup cost

L(z) Normalised loss function

n(R) Expected number of stock-outs in the lead time for the (Q,R)-model

p stock-out cost

Q Order amount

R Reorder point

G(Q,R) Expected average cost for the (Q,R)-model

µ Mean demand

� Standard deviation of the demand

Q Q-value or Q-network

µ Actor network

R Reward

S State

A Action

� Discount rate

✓ Weights of a neural network

P State change probabilities

I Inventory state

W Production and Transportation state

D Demand state

CONTENTS v

List of Abbreviations

DDPG Deep Deterministic Policy Gradient

DQN Deep Q Networks

EOQ Economic Order Quantity

Hold. Holding costs

Inv. Inventory

MDP Markov Decision Process

NFQ Neural-Fitted Q iteration

Opp. Opportunity cost of shortage

Prod. Product, production or production costs

RL Reinforcement Learning

SCM Supply Chain Management

Trans. Transportation or transportation costs

INTRODUCTION 1

Chapter 1

Introduction

With the use of Reinforcement Learning to achieve inventory optimisation we find ourselves at

the cross-section of the fields of business and computer science. The problem we are studying

situates itself in the field of business. The overall goal is to successfully run a business. To

achieve this, amongst other things we attempt to minimise the costs made concerning making,

ordering and holding products, while safeguarding the revenue.

While this might seem like a trivial problem for small companies, the number of products

companies need to hold in inventory quickly increases for larger companies. The di�culty of

this problem increases when we take supply chains as a whole into account, either all belonging

to one company or consisting of multiple companies. The inventory must then be managed for

a vast amount of products over di↵erent locations, including dependencies across products and

locations. All this renders it di�cult to keep an overview over all inventory levels, even using

the computer software tools available today.

Bearing this in mind and inspired by the recent successes of applications of Reinforcement

Learning in other domains we attempt to make an RL agent to manage the inventory levels of

a supply chain.

1.1 Problem Description

To investigate the abilities of an RL agent in this domain we take the case of a small supply

chain, producing and selling a certain product. The supply chain consists of one factory and

three shops. The product is produced in the factory and when necessary transported to the

shops from where they can be sold according to the external demand from customers. We

1.1 Problem Description 2

Figure 1.1: Base case: One factory, three shops and one product. This is the the structure of

the supply chain used as a red line through this work.

assume that the necessities for the production process are always available. Furthermore, we

assume that customers do not backorder products when they are not available. In such a case,

customers go to another shop instead.

The goal of an agent in this environment is to maximise the profit across the whole supply chain,

achieved over a certain period. We define the profit as the attained revenue minus the costs

incurred due to production, holding products, transportation of products, setup and stock-outs.

The reward function is mathematically specified in section 3.2.3.

Because the algorithms behind RL agents have sprung from the idea of learning from experi-

ence [30], an extensive volume of data is required to be able to learn from. To this end we have

created a discrete event simulation model, to be able to create this data artificially. This placed

us in control of the data supply and makes it possible to generate interesting scenarios. This

allows the agent to be tested and developed in ’laboratory’ circumstances, before exposing it to

the complexity of real-world data. The environment simulation model was made according to

the framework of the OpenAI Gym [6].

The main complexities added to the environment are the non-zero lead times, di↵erent demand

scenarios, production constraints and inventory constraints. An environment is characterised

by positive lead times when the products are not immediately available when produced or

transported. They become available after several time steps. The production constraint put a

limit on the number of products that can be set for production in every time step. The inventory

constraints limit the number of products that can be held at a location.

1.2 Current solutions 3

The di↵erent demand scenarios are all based on a sinusoidal demand function, where some

parameters can be changed and tuned in or out. Inspiration for this artificial demand signal was

found in Kemmer et al. [18]. The demand is made stochastic by adding a stochastic signal to

the demand that perturbs the sinusoidal form. It is possible to introduce a trend in the demand

function or make it heteroskedastic. The demand function is mathematically introduced in

section 4.2.1.

1.2 Current solutions

The current solutions to the problem of inventory optimisation are all rather similar. In e↵ect,

they boil down to the creation of a simple heuristic, often characterised by two variables. Three of

the most well-known examples are the (Q,R)-policy, the (s,S)-policy and the (S,T)-policy [35].

The (Q,R)-method specifies a fixed order quantity and a reorder point in terms of inventory

level. The (s,S)-method specifies a reorder point s and a level S to order up to, both in terms

of inventory level. The (S,T)-method indicates a point to order up to S, in terms of inventory

level. The variable T indicates a fixed time interval for when to order. These policies are all

specified upfront and updated periodically based on historic demand.

The methods used to determine a good value for the order size and the reorder point range from

the store owners personal experience to rather complex mathematical and statistical models

devised to minimise the inventory costs over di↵erent locations. The order quantity is usually

based on the Economic Order Quantity theory or one of it’s more recent extensions. While the

reorder point is most often set to an amount that allows the company in question to attain a

certain service level, assuming some statistical properties of the demand function.

1.3 Research Question

The main research question we attempt to answer in this work is:

Q1: Can current Reinforcement Learning methods compete with incumbent inventory

optimisation methods?

With ’current Reinforcement Learning methods’ we refer to recent well-known reinforcement

learning methods that have been used, tested and implemented by other authors. Without

adding any special flavours. The inventory optimisation methods we compare RL methods with

1.3 Research Question 4

are simple heuristic policies such as the (Q,R) policy. We opt to use this policy as a baseline

because it is simple to implement and it well represents the general principles of current inventory

optimisation methods. There are more complex methods available today, but we believe these

are more popular in academic circles while gaining less traction in practice. Compared to the

(Q,R) heuristic we define ’being able to compete with’ as performing better than the heuristic

method. First of all, because this heuristic is only the very basis of inventory optimisation.

Secondly, because using an RL agent to manage the inventory would probably feel like giving

up a part of the control to most people. We assume that if the agent is not able to outperform

the incumbent methods, a user would not deem it worthwhile to give up this part of the control.

We devise a set of sub-questions to further determine in which aspects RL agents can compete

with incumbent methods, to further elaborate our comprehension of the capabilities of RL based

methods in this domain. The first sub-question is:

Q1.1: Can reinforcement learning provide a more versatile approach for inventory

optimisation?

With this research question, we wish to investigate the possibility for RL methods to learn

to recognise and exploit patterns in the external demand and the flow of inventory through

the supply chain. We believe an RL method could exploit this understanding by dynamically

changing the used order size and the de facto reorder point. While incumbent methods appear

to be more static.

Q1.2: Can reinforcement learning provide a more integrated approach to inventory

optimisation in supply chains?

With this research question, we intend to examine whether RL methods can identify more

e�cient policies with respect to how many products of every type to hold at every location and

with respect to order amounts. Can profit be increased by synchronising orders for di↵erent

product categories etc. The final research question is more practical and more inherent to the

reinforcement learning domain:

Q1.3: Are current reinforcement learning methods scalable in approaches to inventory

optimisation in larger supply chains?

This last sub-question to the first research question is a crucial point for the use of RL in

inventory management. The scalability in terms of problem size for RL approaches to inventory

1.3 Research Question 5

management will probably prove decisive with respect to the future success of these methods in

the domain of inventory management. While the problems regarded in this study might seem

trivial at first, they are considerably large compared to other RL applications.

Q2: Are continuous action space RL algorithms competitive when the problem becomes too

large for discrete action spaces?

Problems with a limited action space are generally more cost-e�ciently solved using a discrete

action space. However, this approach is not scalable to problems with larger action spaces. This

is due to the fact that every action is regarded independently, making it impossible to take

advantage of the similarity between actions. We research whether continuous action spaces are

competitive for the considered case.

INVENTORY OPTIMISATION 6

Chapter 2

Inventory Optimisation

This thesis deals with the topic of inventory optimisation. The essence of inventory management

is the art of balancing on the line between an excess and a shortage of inventory. Both holding

too much and too little inventory can prove problematic for the functioning and profit of a

company. The di�culty of this exercise lays with the problem of unknown future demands.

Di↵erent approaches have been used to address the problem of inventory management. In less

scientific situations the policy is undoubtedly hinged upon the experience of the shop owner or

responsible employee. The notion of past demand evolution helps to improve current decision-

making abilities. Another method is to study the past demand for each product and determine its

statistical properties. This allows calculating the optimal inventory policy under the assumption

that the derived statistical properties will be true in the future. More recently this last approach

has been extended by combining the statistical properties of demand at di↵erent locations, to

determine an optimal policy for a larger system.

This chapter starts with an introduction to the principles of the inventory management research

field. Next, we give an example of how this can be used in practice. Followed by the description

of the benchmark method used in this study. Finally, we give an overview of what we believe to

be the strengths and weaknesses of current inventory management practices.

2.1 Theory of inventory optimisation

For the most part of the recent evolution of inventory management revenue was not considered,

i.e. revenue loss caused by shortages is assumed not to happen [29]. The optimal inventory

policy was determined by minimising the costs tied to inventory management. The most well-

2.1 Theory of inventory optimisation 7

known example of this theory is the Economic Order Quantity (EOQ), first introduced by

F.W. Harris [11]. While Harris’ intended use for his findings was to determine the optimal

production lot sizes, his paper eventually largely shaped the field of inventory optimisation.

2.1.1 Setting the lot size: Economic Order Quantity

The basic EOQ model makes the following assumptions:

1. The demand is constant and known. It is represented by the demand rate of �.

2. Stockouts are not allowed.

3. Orders are completed immediately. Which means the lead times are zero.

4. The costs taken into account are:

(a) A fixed setup cost K per order that is made.

(b) A cost per item ordered or produced, c

(c) The cost to hold a unit per time unit, h.

Because stockouts are not allowed by the assumptions of the EOQ model, the revenue is not

influenced by the decisions it makes. This is why optimal results are achieved by minimising

the costs, which is equivalent to maximising the profit in the case of constant revenue. The to

be minimised cost function of the EOQ model is:

T (Q) =
Q

2
hc+

�

Q
K + c�. (2.1)

Q is the order size, this is a fixed amount. As the lead times are assumed to be zero, it can

easily be seen that the optimal strategy is to only place a new order when we have run out of

inventory. The costs are minimised by ordering in batches of Q⇤. With Q
⇤ equal to:

Q
⇤ =

r
2K�

h
(2.2)

These very simple principles have been the basis of the conceptual framework for inventory

optimisation in the past 100 years [7]. Step by step, authors have contributed by relaxing as-

sumptions and including additional complexities. This has lead to a series of rather complex

mathematical models that are each applicable to a very narrow set of cases with strict assump-

tions.

2.1 Theory of inventory optimisation 8

2.1.2 Extensions of the EOQ model

While the basic EOQ model and it’s direct extensions such as the adaption for non-zero lead

times are simple and easy to grasp, the more advanced models are complex and di�cult to

implement. A di↵erent model needs to be developed for every scenario [1, 28].

2.1.3 Setting the reorder point

In section 2.1.1 we mentioned that under the assumption of zero lead times and known demand

the optimal strategy is to place a new order when the inventory level drops to zero. When relax-

ing these assumptions, an order should be placed before the inventory depletes: the inventory

level at which to place an order is known as the reorder point. The reorder point should include

the amount of demand expected to occur during the lead time of the order, supplemented by

an amount to account for the uncertainty of the demand. The latter is referred to as the safety

stock. This results in

R = �L+ s, (2.3)

where � represents the demand rate, L the lead time and s is the safety stock.

The reorder point is dependent on a series of system characteristics: the demand uncertainty,

the lead time, the cost of holding inventory, and the cost of not being able to fulfil demand. In

practice, two approaches are used to determine the reorder point based on these factors. The

first is the trade-o↵ method, in which balance is sought between the cost of holding inventory and

the cost of unfulfilled demand. Because the latter is not directly observable, it can be di�cult to

quantify. This leads to the second approach, the service level method. In this case, the reorder

point is chosen to attain a certain service level, given the lead time and the demand uncertainty.

Here we have defined the cost of unfulfilled demand because it is part of the reward function of

the RL Agent. Thus we focus on the trade-o↵ method to let both agents be based on the same

information. As both methods require the introduction of a considerable amount of equations

we limit the discussion to the trade-o↵ method. The service level method is not used in this

work.

2.2 Current Inventory Management methods 9

The trade-o↵ method

When the cost of unfulfilled demand is defined, the trade-o↵ method can be used. In this case

the cost function can be defined as the average cost of holding, setup, and unfulfilled demand.

As per Nahmias and Olsen (2015, p.267) [23], this results in:

G(Q,R) = h(Q/2 +R� �L) +K�/Q+ p�n(R)/Q. (2.4)

The terms in the right-hand side of this equation represent the holding cost, setup cost and

shortage cost respectively. The factor n(R) represents the expected number of shortages. The

minimisation of this cost function is achieved by iteratively solving the following two equations:

Q =

r
2�[K + pn(R)]

h
(2.5)

1� F (R) = Qh/p�. (2.6)

For a normally distributed demand, n(R) can be computed with the standardised loss function,

which is defined as

L(z) =

Z 1

z
(t� z)�(t)dt. (2.7)

Following which, it has been found that

n(R) = �L

⇣
R� µ

�

⌘
= �L(z). (2.8)

In equation (2.6), F (R) refers to the value found for the cumulative function of the normally

distributed demand. The value found for 1 � F (R) corresponds with a z value. Which can be

used to calculate the reorder point R as R = �z + µ.

2.2 Current Inventory Management methods

2.2.1 Heuristic policy: (Q,R)

The baseline method discussed here is the (Q,R) inventory policy. This method assumes the

inventory position to be monitored continuously. When the inventory position drops to the

reorder point R, a new order of Q units is placed.

2.2 Current Inventory Management methods 10

Figure 2.1: (Q,R)-method inventory level pattern. This is the characteristic pattern of the

inventory level for heuristic methods. An order is placed when the inventory level drops to the

reorder point R. Products are ordered in fixed batches of Q units. When the inventory level

reaches R again after the replenishment, the cycle repeats itself.

Thus to define a working heuristic method, two parameters need to be defined: the lot size Q

and the reorder point R. In section 2.1.3 one method to do this is presented. This method is

developed for systems with stationary, normally distributed demand. Characterised by positive

lead time, setup costs, holding costs, proportional ordering costs and a shortage cost. This

method starts by setting the lot size Q to the optimal amount defined according to the EOQ

theory, Q⇤. Followed by iteratively solving equation (2.5) and (2.6), until the values for Q and

R each converge upon a value.

As the condition of normality is not satisfied in the demand function used in the environment

at hand, we use a slightly adapted method here. For the lot size, we use the Q
⇤ found by the

EOQ theory. We define R by filling in equation (2.6) once. We do not perform the iteration of

both equations to mitigate the influence of the normality assumption.

Advantages

The main advantage of the EOQ-based heuristic methods is that they are very easy to implement.

Every company can make at least a basic estimate of the costs related to ordering and keeping

goods, the lead time and the probability distribution of the demand. Together with the desired

service level, such an exercise will yield valuable insights into the near-optimal lot size and

reorder point for a location. Finally, it is easy to be set up in a very decentralised manner.

2.2 Current Inventory Management methods 11

Disadvantages

While getting an approximate solution to small problems is very easy with EOQ-based heuristic

methods, achieving good results quickly becomes more complex as the problem becomes more

di�cult. On the one hand, defining the optimal lot size becomes more di�cult because the

extended versions of the EOQ model grow very mathematically complex as the assumptions are

made more realistic. This leads to a large range of complex mathematical models that each apply

to very specific situations and assumptions. On the other hand, the quality of the reorder points

determined by the heuristic methods deteriorates. The practice of managing every product and

location separately leaves more and more room for improvement as the number of products and

locations increase. Finally, the heuristics are a static method: unless everything is recalculated,

the practice remains the same. The increased levels of connectivity and the increased ability to

store, process and analyse data is not exploited.

2.2.2 Multi-echelon methods

In multi-echelon approaches, the aim is to increase the e�ciency of a supply chain by managing

its di↵erent components jointly. For example the case of multi-echelon safety stock optimisa-

tion [9, 10]. In such cases, the lot sizes of products remain the same: defined by the EOQ model

or one of its extensions. The e�ciency of the supply chain is instead achieved by shifting the

levels of safety stock while retaining the service level o↵ered to the final external customer.

Advantages

These kinds of methods o↵er an improvement for the second issue listed for EOQ-based heuristic

methods. The multi-echelon methods no longer regard every location separately. Rather than

taking a service level goal into account for every location, the supply chain is viewed as a whole.

Only the service level to the external customers is taken into account. As can be seen in Desmet

et al. (2010), the service level to external customers can be retained with less safety stock by

keeping less stock in intermediate steps and more in the last level. Leading to serious cost

reductions.

REINFORCEMENT LEARNING 12

Chapter 3

Reinforcement Learning

Reinforcement learning is a paradigm of machine learning where an agent learns a certain be-

haviour, learns to link actions to situations. In supervised learning, the agent learns by com-

paring input data and the provided label for this case. In reinforcement learning, this labelled

data is not available. Instead, the agent learns through interaction with the environment as

presented in figure 3.1.

The goal of the reinforcement learning agent is to adapt its policy to maximise the reward signal

it receives from the environment. The policy of an RL agent is the mechanism that determines

which action to take given the current state of the environment. In the next sections, we will

see that the policy can take multiple forms.

Reinforcement learning problems are specified as Markov Decision Processes. There are three

parts to an MDP. The first is the agent, the entity that learns. The second is the environment,

this comprises everything else and is not under control of the agent. Finally, there is the reward:

a numerical feedback signal the agent receives from the reward. The goal of the agent is to

maximise this reward signal through the choice of its actions.

3.1 Reinforcement Learning methods

There are di↵erent types of reinforcement learning algorithms such as model-based, value learning

and policy gradient algorithms. For a detailed introduction to the field of reinforcement learning,

we refer the interested reader to the base work by Sutton and Barto [30, 31].

In this document, we use two di↵erent algorithms as a basis for the learning agent. The first is

Neural-fitted Q iteration [25]. This algorithm is the precursor to the Deep Q Networks algorithm

3.1 Reinforcement Learning methods 13

Figure 3.1: The Agent-Environment interaction in an MDP [31]. The agent interacts with the

environment by selecting an action, based on the perceived state of the environment. Base on

the agent’s action, the state of the environment changes. The new state is in turn perceived by

the agent. The environment also passes a reward signal, which is used by the environment as a

feedback signal, during training.

used to play Atari [22], but using a multi-layer perceptron instead of a deep convolutional

neural network, because we are not working with image data. The second algorithm is Deep

Deterministic Policy Gradient (DDPG) [20]. While NFQ works with a limited set of discrete

actions, DDPG allows the agent to choose its actions from a continuous action space. In the

remainder of this introduction to reinforcement learning, we will describe the workings of these

two algorithms. The two algorithms have Q-learning as a shared basis, so we start with a

discussion of Q-learning and build up from there.

3.1.1 Q-learning

Q-learning [8] is an o↵-policy, model-free, value-based reinforcement learning algorithm. O↵-

policy means that the agent learns about using one policy while using another. In practice,

this means that the agent learns about using a greedy policy, which means always choosing

the action leading to the best outcome while using an ✏-greedy policy, which means choosing

a random action in 1 � ✏ of all cases, to explore the state space. Model-free means that the

transitions of the environment are not known, the agent only perceives the environments states.

Value-based means that the agent learns a value representation of the environment, based on

which a policy is handled. In the case of Q-learning, the agent learns action-values Q(s,a), which

correspond to the sum of the discounted expected future rewards for an agent following a certain

policy. The state-action value Q(s, a) in a certain time step is recursively defined by an equation

3.1 Reinforcement Learning methods 14

Figure 3.2: The Q-learning algorithm as described by Sutton and Barto [31]

known as Bellman equation.:

Q(st, at) = R(st, at) + maxa0(�Q(st+1, a
0). (3.1)

After each iteration the action value for the corresponding state-action pair is updated in the

following manner:

Q(st, at) Q(st, at) + ↵[R+maxa0(Q(st, a
0))�Q(st, at)]. (3.2)

This update rule can be described as updating the current Q-value in the direction of the target

Q-value. This is the Q-value found by using equation (3.1) on the perceived transition. This

concludes the algorithm represented in figure 3.2.

This type of approach is called a table look-up method because the current Q-value for each

state-action pair is stored in a table separately. This type of method works well for problems with

a relatively small state and action space but becomes exceedingly slow when these grow larger.

The limitation of Q-learning is intuitively clear from the fact that in a table-based method all

state-action pairs must be visited individually for their value representation to be updated. The

fact that the value representation is defined by a recursive relationship in Q-learning amplifies

the limitation, because every state-action pair must be updated, and thus visited multiple times

to achieve a good estimate.

3.1.2 Neural fitted Q-iteration and Deep Q learning

To deal with larger state and action spaces, we can use function approximators such as neural

networks to store Q-values more e�ciently. This can only be done because we expect similar

3.1 Reinforcement Learning methods 15

Figure 3.3: The DQN algorithm [22]

state-action pairs, i.e. state-action pairs that are in each others vicinity, to have similar Q-

values. This is what is done in more advanced reinforcement learning algorithms such as Deep

Q Networks and Neural-fitted Q iteration.

Strictly speaking, the Q-learning algorithm could be used with a neural network as a function

approximator without alteration. However, when we update the neural network representing

the action values, we cannot alter one single value as in the table-based case. Instead, we adapt

the weights of the neural network in the direction of steepest descent. This weight adaption

might cause unrelated other parts of the network to be a↵ected as well. This e↵ect can be seen

as an advantage, but in the paper on NFQ [25] Riedmiller suggests that this most often leads

to unstable and slow training.

To remedy this problem methods such as NFQ and DQN use a technique called experience

replay [21]. This practice involves storing the sequences in the form of (s,a,s’,r), that the agent

has gone through. The network is then updated using stochastic gradient descent [5] on a

random sample from experience bu↵er. This involves calculating the gradient for a loss function

based on the di↵erences between the current Q-values and the targets, similar to equation (3.2).

The network is then updated by pulling the calculated gradient through the network using

backpropagation [13, 26]. While normal reinforcement learning data is highly correlated, this

practice of experience replay allows us to train on batches of uncorrelated samples more closely

3.1 Reinforcement Learning methods 16

representing the whole state-action space during every step. This results in the agents faster

and more reliable convergence. An overview of the resulting algorithm is found in figure 3.3.

Deep Q learning has been improved by several sources since its first introduction. Some of these

improvements are used in this study. Van Hasselt, Guez, and Silver [34] add a target network to

the DQN algorithm. The result is called Double Deep Q Networks or DDQN. This is a second

neural network with a duplicate of the weights of the Q-network. The target network is used to

calculate the target values, used during the stochastic gradient descent. When the same network

is used for target calculation the target value directly influences its own change, which can lead

to feedback loops. Using a separate network for the calculation of the target values decorrelates

the relationship between the target values and the update Q-network, stabilising the training

of the network. The target network is then periodically updated using the original Q-network.

DDQN uses a hard update, where the weights of the original Q-network are directly copied into

the target network. Another option is the soft update, where the weights of the original network

are gradually brought over to the target network. As shown in equation 3.3, with ✓
Q0

and ✓
Q

the weights of the target network and the original network respectively, and ⌧ ⌧ 1 the positive

update coe�cient:

✓
Q0 ⌧✓

Q + (1� ⌧)✓Q
0
. (3.3)

Schaul et al. [27] use a di↵erent method to select the transition sequences used for the gradi-

ent descent. Instead of randomly selecting transition sequences they attribute each transition

sequence with a priority. The priority is calculated based on how much was learned from a tran-

sition. The authors use the intuition: ”How surprised the agent was with a transition” [27]. This

is represented by the absolute di↵erence between the Q-value and the target value for a transi-

tion. The resulting algorithm is referred to as prioritised experience replay and is characterised

by two hyperparameters: ↵ and �. The ↵ is a parameter for the degree of prioritisation. The

parameter � is annealed from its starting value to one, this value corrects the bias introduced

by prioritised experience replay.

3.1.3 Deep Deterministic Policy Gradient

In the methods discussed above the number of actions an agent could choose from was limited.

We call this a discretised action space. DDPG is an algorithm made for continuous action

3.1 Reinforcement Learning methods 17

Figure 3.4: The DDPG algorithm [20].

spaces. In NFQ, and Q-learning, in general, a value representation was learned for all state-

action combinations. In NFQ the di�culty of a large number of values to store was overcome

by using a function approximator such as a neural network to store all the Q-values. When the

preferred action was to be selected for the current state, the Q-value could be calculated for

all actions the agent could take in this state. After this, the action with the largest Q-value

could be chosen. When dealing with a continuous instead of a discretised action space, this

mechanism to choose the preferred action becomes too computationally demanding because of

the large number of actions to choose from. This is why a new, second function approximator

is introduced: the policy network or actor.

DDPG is an actor-critic method, these methods are a hybrid combination of the policy gradient

approach and the value representation approach. The actor network or policy network returns

the best action given a state. The Q-network or critic network is very similar to the network used

NFQ or DQN. Given the state and the action, it returns a certain value for this combination.

An overview of the DDPG algorithm can be found in figure 3.4. The algorithm starts with the

initialisation of 4 networks: a critic network, an actor network, and a target network for each

3.2 Inventory Optimisation from a RL perspective 18

of these. The target networks were created to introduce more stability in the training of the

networks. DDPG also uses a replay bu↵er, which means it is also an o↵-policy RL method.

In the first part of the main loop: when interacting with the environment, actions are selected

by the policy network based on the current state. During training, a noise signal is added to

the action selected by the policy network, rather than selecting a completely random action

in some of the cases as done in the previously discussed methods for discrete action spaces.

The noise signal is generated by a random process. The original DDPG paper suggests using

noise generated by an Ornstein-Uhlenbeck process [33]. The noise from the Ornstein-Uhlenbeck

process is recommended because auto-correlated noise is said to lead to more e�cient exploration.

As in NFQ and DQN, DDPG stores the transition sequences in a replay bu↵er. In the second

part of the main loop, a batch of transitions is randomly sampled from the replay bu↵er. For

this batch of transitions, the target Q-values are calculated using parameters of the target actor

and target critic network. The critic is updated using these targets just as the Q-network is

updated in NFQ and DQN. The actor network is updated using gradient ascent over this batch,

to maximise the Q-value or expected future rewards, of the action selected for every state. The

critic network is often regularised using L2 regularisation [20, 14]. When using L2 regularisation

a fraction of the sum of the squared Euclidean norms of the weight matrix of each of the network’s

layers is added to the loss function. This introduces a bias towards smaller weights and is used

to prevent overfitting. Finally, the target networks are slowly updated from the actor and critic

network respectively, using soft updates as in equation (3.3).

3.2 Inventory Optimisation from a RL perspective

To make decisions in the supply chain management domain using RL, the problem at hand

must be specified explicitly in mathematical terms. As mentioned the underlying mathematical

principles of RL are based on MDPs. Thus we must define the problem of inventory optimisation

as an MDP, which is characterised as follows: (S,A, P↵, R↵). Where S is a set of states, A is a

set of actions, P↵ is a set of probabilities that taking a certain action ↵ in a certain state will

lead to another specified state. R↵ is the immediate reward following the transition from one

state to another. The RL methods used in this study are model-free RL methods. Such methods

consider the transition probabilities to belong to the domain of the environment. Thus we do

not need to explicitly satisfy the transition probabilities.

3.2 Inventory Optimisation from a RL perspective 19

The body of literature on this subject is very limited, which is why we suggest a possible

specification of the MDP. The model is an extended version of the model used by Kemmer et al.

[18].

3.2.1 The state space

The state of an MDP should represent the situation of the environment. The state should be

as close as possible to possessing the Markov property [30]. This means that the transition

probabilities only depend on the current state and the chosen action. This can be interpreted

as the current state containing all necessary information to determine the next action. In such

a case the estimate of the best next action can not be improved by adding more information to

the state.

It is intuitively clear that attaining this property is not possible for most realistic situations.

This is certainly the case for inventory management. Inventory management inherently includes

a forecasting problem, making the achievement of the Markov property impossible. We attempt

to make the state as exhaustive as realistically possible.

The state space we use in this document is the following:

• The inventory level per product–location combination.

• The number of products in production and the number of products in transit, per product–

location combination.

• The demand levels per product–location combination, for the past X periods.

The inventory level per location is the most elementary piece of information in the inventory

management system. This corresponds to the number of products available in the shops to be

sold to the end customers and the number of products available in the factories to be shipped,

to replenish the inventory in the shops. The inventory level per location can be represented as a

matrix, keeping the inventory level per product–location combination: Il,p is the inventory level

at location l of product p. We make the convention of using the first columns for the factories.

For example with one factory, three shops and two products the inventory per location would

look like this:

I =

2

4I0,0 I1,0 I2,0 I3,0

I0,1 I1,1 I2,1 I3,1

3

5 . (3.4)

3.2 Inventory Optimisation from a RL perspective 20

The number of products in production and the number of products in transit is a necessary

element of the state in inventory management problems with positive lead times. We have

chosen to keep one number for each combination of product and location. This results in a

matrix with the same shape as the inventory per location. The production and transit values

for the factories represent the work in process levels per product per factory. The production

and transit values for the shops represent the number of products currently being transported

to this shop. We do not include information on from which factory the transported products

are being shipped, because this is of little importance to decisions regarding maintaining an

inventory level. Information on which amount of products was shipped when or the expected

time of arrival is not included. Including this kind of information would lead to a more sparse

state space, which may complicate the learning process. At the same time, we believe the explicit

inclusion of this information would contribute rather little to an agents performance. The first

column represents the factory, thus production. The remaining columns represent products in

transportation. In our example with one factory, three shops and two products, the products in

production and transit would look as follows:

W =

2

4W0,0 W1,0 W2,0 W3,0

W0,1 W1,1 W2,1 W3,1

3

5 . (3.5)

Finally, we add the demand per location to the state. This is not the demand for the current

period, because the current demand is assumed unknown. The demand per location represents

the demand in a number of past periods. How many past periods to include here is interpreted

as a hyperparameter that can be tweaked. The number of demand periods taken into account

should allow deducing the recent trend of the demand, but an excess amount of demand periods

might confuse the algorithm. Per demand period taken into account, we record the demand per

product and location. The values for the shops represent the external demand, per time step,

and product. The demand for the factories represents the number of products shipped from this

factory, summed over all shops, in the time step in question. Thus the demand per location

becomes a tensor consisting of X stacked matrices of the number of products by the number of

locations. For our example with one factory, three shops, two products and three past demand

periods, this looks like:

3.2 Inventory Optimisation from a RL perspective 21

D =

2

4

2

4D
t�1
0,0 D

t�1
1,0 D

t�1
2,0 D

t�1
3,0

D
t�1
0,1 D

t�1
1,1 D

t�1
2,1 D

t�1
3,1

3

5

2

4D
t�2
0,0 D

t�2
1,0 D

t�2
2,0 D

t�2
3,0

D
t�2
0,1 D

t�2
1,1 D

t�2
2,1 D

t�2
3,1

3

5

2

4D
t�3
0,0 D

t�3
1,0 D

t�3
2,0 D

t�3
3,0

D
t�3
0,1 D

t�3
1,1 D

t�3
2,1 D

t�3
3,1

3

5

3

5 .

(3.6)

All components of the state can be stacked into one large tensor to represent the environments

state in a certain time step.

3.2.2 The action space

The action space contains the range of possibilities in which the agent can influence the state of

the environment. These are the inputs to the environment that belong to the control sphere of

the agent. The goal is for the agent to select the possible action leading to the highest expected

reward, in each time step. There are two di↵erent ways the agent can influence the state of the

environment: by choosing to produce products and by choosing to transport products from a

factory to a shop. We call these the production action and the transportation action respectively.

Every time step a production and transportation action are chosen. It is also possible to choose

zero-actions, which corresponds to not acting.

The production action consists of defining one production amount per product, per factory in

every time step. In our example with one factory and two products this looks as follows:

P =

2

4P0,0

P0,1

3

5 . (3.7)

The transportation action consists of deciding how many products to ship from every factory to

every shop, for each product. In the case with one factory, three shops and two products this

would look as follows:

S =

2

4

2

4S0,1,0

S0,1,1

3

5

2

4S0,2,0

S0,2,1

3

5

2

4S0,3,0

S0,3,1

3

5

3

5 . (3.8)

Where Sf,s,p represents the number of products of type p to be transported from factory f , to

shop s.

3.2 Inventory Optimisation from a RL perspective 22

3.2.3 The reward function

The definition of the reward function is one of the most important elements of any reinforcement

learning application. This is no di↵erent in the case of inventory optimisation. The reward

function is the signal that steers the behaviour of the agent. Only what is measured in the reward

will be reflected in the agent’s behaviour. This provides certain freedom to the RL approach

for inventory management: it allows companies to specify the reward functions according to the

criteria they value the most. Values di↵er strongly among companies, discount retailers and

high-end speciality shops probably look at certain criteria in di↵erent ways.

As mentioned in the introduction we judge the agents’ performance based on the achieved

profit for the complete supply chain. Which means an attempt to maximise the attained profit.

However, components like the service level achieved could also be included in the reward function,

to aim for a di↵erent outcome. In the remainder of this subsection, the components of the

demand function will be mathematically specified.

Revenue

The revenue generated in a time step is defined as the number of products that are sold in that

time step times their price, summed over all shops and products. The number of products sold

in a shop, in a time step, is equal to the number of products demanded and available in the

shop:

% =
nX

s=1

mX

p=0

max(Is,p, Ds,p)⇥ ⇢p, (3.9)

where % is the revenue, Is,p and Ds,p are the inventory level and external demand respectively,

in shop s for of product p, and ⇢p is the price per product p.

Production cost

The production cost in a time step is equal to the number of products that start production in

that time step times their unit production cost, summed over all factories and products:

⇧ =
oX

f=0

mX

p=0

Pf,p ⇥ ⇡f,p, (3.10)

where ⇧ is the production cost, Pf,p is the production action per factory per product, and ⇡f,p

is the unit production cost per factory per product.

3.2 Inventory Optimisation from a RL perspective 23

Holding cost

The holding cost in a time step is defined as the number of products in inventory times the cost

of holding a unit in inventory, summed over all locations and products:

H =
nX

l=0

mX

p=0

Il,p ⇥ ⌘l,p, (3.11)

where H is the holding cost, and ⌘l,p is the unit holding cost per location per product.

Transportation cost

The cost of sending products from one location to another is calculated per truck. There is a fixed

cost per truck needed, irrespective of the number of products in the truck. The transportation

cost in a time step then becomes the number of required trucks times the cost per truck, for all

product location combinations:

T =
oX

f=0

nX

s=1

&Pm
p=0 Sf,s,p

Cp

'
⇥ ⌧f,s, (3.12)

where T is the transportation cost, Sf,s,p is the transportation action per factory, shop and

product. Where Cp is the truck capacity per product, and ⌧f,s is cost of sending a truck from

factory f to shop s.

Setup cost

The setup cost is a fixed cost per factory and per product, for both production and transporta-

tion. These are incurred when a product is produced in a factory in a given time step and when

a product is transported from a factory in a given time step. This results in:

K =
oX

f=0

mX

p=0

(◆Pf,p ⇥ 
P
f,p + ◆

T
f,p ⇥ 

T
f,p), (3.13)

where K is the setup cost, ◆Pf,p and ◆
T
f,p are the indicator variables indicating when a production

and transportation setup cost are incurred. The setup costs for for production and transportation

are given by ◆
P
f,p and ◆

T
f,p.

Opportunity cost of shortage

The opportunity cost of shortage is equal to a penalty for every unit demand that could not be

met with the inventory, summed over all shops and products. These are the products that might

3.3 Improving Inventory Optimisation with Reinforcement Learning 24

be back-ordered in other cases. The opportunity cost of shortage represents a loss of goodwill

from the customer, i.e. they might be more inclined to go to a competitor in the future and the

opportunity cost of sales. From which we derive:

⌦ =
nX

s=1

mX

p=0

min(Il,p �Dl,p, 0)⇥ (�1)⇥ �l,p, (3.14)

where ⌦ is the opportunity cost of shortage and �l,p is the penalty considered per product.

3.3 Improving Inventory Optimisation with Reinforcement Learning

As discussed in the section on existing solutions to the problem of inventory management. We

intend to improve the available tools for inventory optimisation along both its paradigms.

In statistical terms, the EOQ-based models can be seen as parametric models, where we explicitly

define assumptions for the underlying phenomena, in this case the demand. The RL approach

can be seen as a non-parametric counterpart, making no assumptions about the underlying

principles, but needing a lot more data to achieve good results. As a consequence EOQ-based

models can used only in a limited set of case, while the RL based method can be used for

di↵erent problem specifications.

3.3.1 The choice of the lot size

The current choice of the lot size is based on the EOQ theory. While basic EOQ provides a

sound place to start, today’s more complex reality often requires more complex mathematical

variants of EOQ to be able to calculate the optimal lot size. As we have seen in the section on

variants of the EOQ models, each slightly di↵erent situation requires a di↵erent kind of EOQ

model. Because of this find the correct EOQ model is not possible for most realistic situations.

We propose to use a data-driven approach such as Reinforcement Learning to find a near-optimal

approach without having to make any of the assumptions necessary with EOQ.

3.3.2 Determining the reorder point

Improve the choice of the reorder point in two ways. First of all, rather than assuming the dis-

tribution of the reward, we can take a more data-driven approach. By learning from experience

from the actual past demand data, it is possible to train an agent to determine the reorder point.

Without having to pass it the assumed demand distribution. Secondly, it is no longer necessary

3.3 Improving Inventory Optimisation with Reinforcement Learning 25

to assume the distribution of the demand always remains constant. Both the demand rate and

its variance can change over time. Using the data-driven approach an agent can learn that the

demand and its uncertainty are di↵erent during di↵erent times of the year. By letting the agent

choose when to place an order and when not to, the reorder point is being set dynamically.

EXPERIMENTS WITH DISCRETE ACTION SPACES 26

Chapter 4

Experiments with Discrete Action

Spaces

To further explore the possibilities of reinforcement learning in the domain of inventory optimi-

sation, a problem similar in size to the one discussed in Kemmer et al. [18] is regarded. Kemmer

et al. [18] proved that a policy gradient RL method using a quadratic or RBF based function

approximator is able to outperform a (Q,R)-heuristic policy in terms of maximising the supply

chain profit, in a case with perturbed sinusoidal demand in three shops, supplied by one factory.

We note that this is a non-trivial achievement, as only two out of four of the tested methods

succeeded in this endeavour.

In the following two chapters we build up complexity through experiments by first starting with

a discrete action space as in Kemmer et al. [18]. We refer to this problem as the discrete base

case. Next, we attempt to use the same method on a problem with a larger action space, this

problem is referred to as the expanded case. Finally, we attempt to solve the problem from the

first setup, using a continuous action space instead of a discretised one. This is referred to as

the continuous base case.

The supply chain at the foundation of the base case consists of one factory, three shops and one

product. We consider four types of stochastic demand scenarios for the experiments regarding

the base case, with varying levels of complexity. Comparison of the performance of RL agents

with the benchmark across these demand scenarios should allow us to form an answer to research

questions 1.1 and 1.2. The expanded case should indicate the abilities of RL agents in terms of

inventory management, concerning problems characterised by a large discrete action space.

4.1 Base case: Discrete approach 27

Figure 4.1: An overview of the environment used for the base case using a discrete action space.

The environment parameters are included per component of the environment. Inv., prod., and

trans. refer to inventory, product or production, and transportation respectively.

The agents used in the cases with a discrete action space are both a combination of NFQ and

DQN. We use NFQ enhanced with the extensions made for DQN such as prioritised experience

replay, as mentioned in section 3.1.2. The agents used in the cases with a continuous action

space are DDPG agents, as presented in section 3.1.3.

4.1 Base case: Discrete approach

4.1.1 Experiment

As mentioned in the introduction of this chapter, the base case we discuss consists of a supply

chain with 1 factory, 3 shops and 1 product. In this work, we categorise the environments by

these metrics. We will refer to a case with ↵ factories, � shops and � products as an (↵,�,�)-case.

Thus the base case is a (1,3,1)-case.

4.1 Base case: Discrete approach 28

Action and state space

When defining the action space for this experiment as done in section 3.2, we see that the action

space has four dimensions. One for the production of products and three for the transportation

of the product from the factory to each of the three shops. In the experiments using a discrete

action space, we have decided to give the agent three values to choose from along each dimension.

Here this corresponds with 34 = 81 action possibilities in every time step. As discretising the

action space considerably limits the action space, it is important to make sensible decisions with

respect to which values to include, which is why we base these values upon the EOQ theory.

For the discrete RL approach, the agent can choose between not performing a certain action,

performing an action, producing or transporting half of the EOQ amount or performing an

action, producing or transporting the EOQ amount. For the sake of symmetry, it seems logical

to include a fourth value with 1.5 times the EOQ amount, however, this would bring the size of

the action space up to 256 di↵erent actions. We believe the advantage of this additional freedom

for the agent would not weigh up against the additional complexity. We choose to include 0.5

rather than 1.5 times or more times the EOQ amount in the spirit of JIT-management.

Comparing this action space, 81 distinct actions, to other famous discrete problems tackled for

example by DQN we see that this is already a rather large action space. Two of the most well-

known examples are probably ’cart pole’ and ’mountain car’ from the OpenAi gym [6]. These

have discrete action spaces with only two and three di↵erent actions respectively. An example of

a more complex environment with a discrete action space can be found in the Arcade Learning

Environment (ALE) [3]. This collection of Atari games has an action space of 18 distinct actions.

There are two problems with using large discrete action spaces. On the one hand, it becomes

exceedingly di�cult to have enough examples of all di↵erent actions. On the other hand, there

are no relations between actions. For example, the action of not producing would be as similar

to producing the minimum amount as to producing the maximum amount. This makes it more

di�cult to learn a certain behaviour.

When defining the state space as done in section 3.2 for this (1,3,1)-case, we see that it has

20 dimensions. Four dimensions for the inventory at each of the locations, four for the work

in process and the products in transit to each of the shops and since we use the demand of

the past 3 time steps in this experiment, another 12 for the past demand. Compared to the

smaller problems mentioned above, ’cart pole’ and ’mountain car’ this state space is much more

4.1 Base case: Discrete approach 29

high-dimensional. These have four and two dimensions respectively. Note that they might have

more fine-grained steps along each of these dimensions. On the other hand, it must be noted

that these two toy environments are fully observed and do not have inherent randomness to

them, which makes these problems a lot simpler. The Arcade Learning Environment [3] is more

similar to our environment here in that perspective. Compared to the state space used for ALE,

our state space is rather small. The state space used by Hausknecht et al. [12] contained up to

80 features for the location of all objects. While in Mnih et al. [22] raw pixel data was used 84

x 84 sized grayscale images, leading to much higher dimensionality.

Demand function

As mentioned in the introduction of this chapter we use four variants of the same demand

function to represent varying levels of closeness to representing reality. The basic demand

function is a stationary sinusoidal function with constant variance. This is the type of demand

function best suited for the heuristic policies. In this case the variance V and trend M in

equation 4.1 are set to zero.

Dt,s =

$
D

avg
s

4
⇥ V

t
ttotal ⇥ sin

✓
2(t+ 2l)

26

◆
+D

avg
s +M ⇥ t

ttotal
+ ✏t,s

%
(4.1)

We relax assumptions, creating three more demand functions: a demand function stationary in

terms of the mean but with non-stationary variance, a demand function non-stationary in terms

of the mean with stationary variance, and a demand function non-stationary in terms of both

the mean and the variance. As the heuristic method is not able to perceive this change and

adapt itself, we expect the RL method to gain an advantage with the increasing complexity of

the demand function. The situation is similar to reality as when a heuristic inventory policy

such as (Q,R) or (s,S) is used, the calculations will not be redone continuously. It seems more

realistic that these would be redone periodically or when performance is perceived to deteriorate.

In the stationary and homoskedastic case the demand fluctuates between 4 and 6 units of

demand per shop. It can be seen in equation 4.1 that the seasonality of the demand is slightly

shifted between shops. Random perturbations are also di↵erent for every shop. When the trend

factor is included in the demand function, every new episode a trend is randomly chosen within

[�Davg

2 ,
Davg

2]. This leads the demand to transition to a value between 50% and 150% its starting

4.1 Base case: Discrete approach 30

value over the course of one episode. When the variability change factor is included, every

new episode a variability change is chosen within [13 , 3]. This amplitude of the sine function

is multiplied with this factor to change the variability. The variance factor gets a power that

increases from zero to one, to let the variance increase stepwise. Note that the variability

change factor is sampled in such a manner that we should on average have as many episodes

with decreasing as increasing variability over time.

(Hyper)parameter setting and setup

The parameter settings of the environment can have a big influence on the outcome of the

environment, but within a logical range, we do not believe them to have much influence on the

analysis of the outcome. We confirm the supply chain can attain a profit to avoid any perverse

incentives. An overview of the experiment and parameter settings can be found in figure 4.1.

Here we still wish to discuss the hindsight and the length of an episode. With hindsight we

refer to the number of periods of past demand included in the state. In this experiment, the

hindsight is chosen as 3. Several setting were tested for this parameter, but including more steps

did not seem to have a positive e↵ect on the performance of the agent. It seems critical to have

a minimum of three time steps to estimate the first and second-order derivative of the demand

function, which corresponds to the change in demand and the rate at which it is changing. On

the other hand, including more periods of past demand might confuse the agent if it does not add

more information. The length of an episode is set to 52 in the experiments we conduct. While

in this case, one time step seems to represent one week in a year, we want to stress that this

is not necessarily important. Each time step in this simulation could just as well represent one

hour or even minute in reality (given some slight changes in the parameter setting). We chose

for an episode length of 52 steps because a shorter episode length allows for shorter training

times. Otherwise, we might, for example, have chosen for 365 steps in an episode, without

considerable change in the outcome of the analysis. It was, however, important to set a certain

episode length, for it helps the agent to converge on a solution. The reward in the final step

of an episode forms a fixed anchor point for the calculation of the Q-values, using the Bellman

equation.

We chose to use the DQN implementation by Stable Baselines for our RL agent. The choices

made for the hyperparameters were based on Mnih et al. [22] and Riedmiller [25] and the

default values suggested by Hill et al. [16]. From there improvements were sought by changing

4.1 Base case: Discrete approach 31

Figure 4.2: Samples of the demand functions used for the base case. From top to bottom these

are: stationary in mean and variance, non-stationary mean and stationary variance, stationary

mean and non-stationary variance, and non stationary mean and variance.

4.1 Base case: Discrete approach 32

parameters in both directions, one at a time. Keeping the setting with the best results. For the

function approximator we base ourselves upon Riedmiller [25]. Riedmiller [25] uses a network

with two hidden layers of five nodes for an action space with two choices. We extend this

reasoning two our action space and choose the power of two closest to this value, resulting in

an MLP with two hidden layers consisting of 256 nodes. The agents were trained for a total

of one million time steps each, which corresponds to 10,000 to 15,000 completed episodes. We

found the best results with a rather small learning rate of 0.0001. As expected we found that

a relatively small discount factor � gave the best results: 0.92. This seems logical because the

environment provides very frequent rewards, where some other environments only provide one

reward per episode. During the first 900000 steps, the exploration factor ✏ is linearly reduced

from 100% to 1%. We use prioritised experience replay with the default parameters suggested

by Schaul et al. [27]: a prioritisation factor ↵ of 0.6 and an annealing factor � of 0.4. Finally,

mini-batches of 32 steps are used for training.

4.1.2 Results and Discussion

In Table 4.1 we display the summarised results for the discrete approach to the base case. As

the random component in the demand can lead to non-negligible di↵erences across episodes, the

measures were divided by the demand in its episode to make the results more comparable, both

across agents and over time. The displayed figures for both the RL approach as the heuristic

method are averages over 1000 episodes. For the heuristic approach, the trade-o↵ method was

used to set the reorder point, using the same costs as in the RL case. A more comprehensive

version of table 4.1, including the standard deviations for all measures can also be found in the

appendix.

When studying the results in Table 4.1 there are three most notable results. The first is that the

RL agent is able to outperform the heuristic agent for all four of the conducted experiments. We

note that the performance of the RL agent is always more consistent than that of the baseline

because the standard deviation over 1000 experiments is smaller. The di↵erence between the

average reward attained by the RL agent and the (Q,R)-agent is more than twice the standard

deviation of the RL agent’s reward and more than once the standard deviation of the (Q,R)-

agent’s reward.

4.1 Base case: Discrete approach 33

Demand Agent Reward Revenue Prod. Hold Trans. Setup Opp.

Stationary mean

and variance

NFQ 26.76 28.95 0.99 0.32 0.48 0.29 0.11

(Q,R) 25.23 27.38 0.92 0.31 0.46 0.19 0.26

Non-stationary

variance

NFQ 26.82 29.13 1.01 0.40 0.49 0.32 0.09

(Q,R) 24.57 26.77 0.90 0.34 0.45 0.19 0.32

Non-stationary

mean

NFQ 25.96 28.30 0.98 0.40 0.48 0.32 0.17

(Q,R) 24.45 26.72 0.91 0.37 0.45 0.20 0.33

Non-stationary

mean and variance

NFQ 26.23 28.63 1.00 0.47 0.48 0.32 0.14

(Q,R) 24.15 26.41 0.90 0.36 0.44 0.19 0.36

Table 4.1: Results for the base case, using a discrete action space. The NFQ agent outperforms

the (Q,R) benchmark method across all demand scenarios. We note that the advantage is due

to higher product availability instead of decreased costs.

Second, as expected we see that the profit generated by both agents decreases with the increasing

complexity of the reward function. As expected the RL agent has a larger advantage over the

heuristic method in the more complex demand scenarios, compared to the base demand scenario.

The RL agent loses less of the attained reward in the more complex scenarios compared to the

heuristic agent.

Lastly, we note that the comparative advantage of the RL agent over the heuristic benchmark

based on the trade-o↵ method from section 2.1.3, is due to higher product availability rather

than saving expenses on the production, transportation or holding of products. An agent able

to meet all external demand would achieve a revenue equal to the price of the product, which is

30 in this case. This enables us to calculate the percentage of the total demand the agent was

able to satisfy. Across the di↵erent demand scenarios, the RL agent is able to serve 96.67% to

94.27% of all external demand, averaged over 1000 episodes. The (Q,R)-agent is able to serve

between 91.30% and 88.27% of all demand. At the same time, the RL agent incurs more costs

than the (Q,R)-agent. The largest relative di↵erences are found for the setup cost, where the RL

agents’ costs are over 50% higher than the (Q,R)-agents’ costs. The RL agent also holds more

inventory and produces more products than the heuristic agent, on average. The latter might

be an indication that the profit attained by the (Q,R) agent could be increased by increasing

4.1 Base case: Discrete approach 34

the held safety stock. This could be done by increasing the reorder point. The outcome would

be a trade-o↵ between the extra costs of holding products and the increased revenue.

We tested the hypothesis that an increase of the reorder point could lead to increased reward for

a (Q,R)-agent. To test this, we set the reorder point a little higher to the maximum inventory

minus the EOQ amount. Using a higher reorder point is not possible for this environment,

because the maximum inventory refers to the inventory position, indicating both finished goods

and work in process or transportation. The test was conducted for both the case where the

demand is stationary in mean and variance and the case where they are non-stationary.

For both cases, we find a slight improvement of the reward of the (Q,R) agent. The performance

in the simplest case improved by 2.77% which is the result of a 2.85% increase in the revenue

and a 26% increase in the holding costs. The non-stationary case knew a reward improved by

2.11% arising from a 2.35% improvement in the revenue and a 12% increase in holding costs.

Although this is an improvement, these results still leave a confident margin in the advantage

of the RL agent.

Figure 4.3 depicts the evolution of the inventory level, the work in process and transportation,

and the demand during one episode for both the RL agent and the benchmark method. These

figures give an insight into the behaviour the RL agent has learned, compared to the well-known

behaviour of the (Q,R) inventory policy. Conform what can be found in table 4.1, the inventory

level is in the same range for both agents. The inventory level of the RL agent knows a little

less extreme fluctuations than that of the (Q,R) agent. Both agents show similar behaviour in

terms of inventory build-up in the shops. Inventory levels increase during periods of low demand

and disappear quickly in periods of high demand. It is more likely that the inventory builds up

because the demand is below average, rather than that this is a deliberate process to build up

a bu↵er for the coming period of high demand. The RL agent responds to the varying demand

mainly by decreasing the products in production and the products transported in periods of

low demand, both in terms of frequency and amount. While the (Q,R)-agent produces and

transports less often, but still produces the EOQ amount. It is clear that the RL agent has

learned to execute di↵erent actions in di↵erent situations, instead of repeating the same action

over and over again.

Keeping track of which exact actions are taken in every step provides a more detailed under-

standing of the agents’ behaviour. For the NFQ agent in the base case in the stationary and

4.1 Base case: Discrete approach 35

(a) RL agent

(b) (Q,R)-agent

Figure 4.3: Inventory evolution during one episode for the base case, using discrete action space.

Both methods have similar behaviour in terms of inventory build up. Overall the RL agent

holds more inventory than the (Q,R)-agent and the inventory level in the shops is reduced to

zero for shorter periods. The RL agent responds to the demand function in a reactive manner by

producing more in periods of high demand and decreasing production in periods of low demand.

4.2 Expanded case: Discrete approach 36

Figure 4.4: Expanded case: One factory, two shops and two products, using a discrete action

spaces. The parameters listed in the first column of each table refers to product 1, those in the

second columns refer to product 2.

homoskedastic demand scenario, we find that 58 of the 81 available actions are used over a course

of 1000 episodes. The 39 actions used most frequently are used in more than 99.5% of all steps.

For the (Q,R)-agent we find that less of the available action space is used for the same case. Of

the available 81 actions, only 19 are used by the heuristic. With 15 of these actions being used

in more than 99.8% of all steps. For the (Q,R)-agent we see that the use of transporting half of

the EOQ amount is indeed minimal. This seems to confirm that the agent does not experience

undue inventory shortages in the factory. The (Q,R)-agent will never produce half of the EOQ

amount because resources for production are not restricted in this case.

4.2 Expanded case: Discrete approach

4.2.1 Experiment

In this section, we discuss a slightly larger problem. The supply chain we use here has 1 factory,

2 shops and 2 products. Further in the text, we will refer to it as the expanded case or the

(1,2,2)-case.

Action and state space

When defining the action space as done in section 3.2, it can be found that this action space

has 6 dimensions. Each product has one dimension for production and two dimensions for

transportation. While in these terms, this is only 50% larger than in the previous section,

4.2 Expanded case: Discrete approach 37

this brings the action space up to 36 = 729 distinct actions. Which makes this action space 9

times larger than the one for the discrete base case. The three levels are no action, producing or

transporting half of the EOQ amount, or producing or transporting the EOQ amount. Note that

introducing the fourth action with 1.5 of 2 times the EOQ amount for every dimension would

lead to an action space with 4096 actions in this case. Still a discrete action space with 729

actions is hardly comparable to the ones for ’cart pole’, ’mountain car’ and even ALE discussed

in the previous section. We expect the agent to have a lot of di�culty with the exploration of

the action space.

For the expanded case, the state space has a total of 30 dimensions. Six for both the inventory

and the work in process and transit, and 18 for the past demand. For non-image data, this

is a rather large state space. For comparison, some of the MuJoCo environments [32] (e.g.

humanoid) also have a state space with around 30 DOF. The toy environments like ’pendulum’

and ’acrobat’ have 2 and 6 dimensions respectively [6]. It should, however, be noted that our

inventory management environment uses integers only, which makes it less fine-grained than

other continuous state spaces.

Demand function

We test the expanded case on the same type of demand function as the base case. The focus in on

the scenario with stationary and homoskedastic demand. We verify whether similar performance

can be attained on a problem with a larger state and action space, using the discretized action

space approach.

(Hyper)parameter setting and setup

The setup and hyperparameter setting for the extended problem is very similar to that of the

base case. Both hyperparameters for the environment and the agent are based upon those found

to work best in the base case. The hindsight is set to three. Following the reasoning of the

discrete base case, discussed in section 4.1.1: the number of steps per episode is set to 52. An

overview of the experiment can be found in figure 4.4.

There are three main di↵erences in the hyperparameter setting between the discrete base and

expanded case. The first is the size of the network. We extend the reasoning used in the base

case: the power of two closest to 2.5 times the number of distinct actions. This results in an

MLP with two hidden layers with each 2048 nodes. Because the expanded case is more di�cult

4.2 Expanded case: Discrete approach 38

Demand Agent Reward Revenue Prod. Hold Trans. Setup Opp.

Stationary mean

and variance

NFQ 15.43 21.98 4.03 0.54 1.01 0.60 0.36

(Q,R) 11.47 17.41 3.22 0.46 0.80 0.30 1.14

Table 4.2: Results for the expanded case, using a discrete action space. Compared to the base

case with discrete actions the di↵erence between the NFQ-agent and (Q,R)-agent has increased

across all reward components. The RL agent strongly outperforms the (Q,R)-agent.

than the base case and training a larger network takes more time, the agent was trained for

four million time steps. The exploration rate ✏ is decreased over the first 90% of the training

steps, which means the first 3.6 million steps in this case. For the expanded case we find better

results using a smaller learning rate: the learning rate is halved compared to the discrete base

case, being set to 0.00005. The other hyperparameters remain fixed across the discrete base and

expanded case.

4.2.2 Results and Discussion

The results for the discrete approach for the expanded case can be found in table 4.2. As for

the base case, the reward and reward components are expressed as values per unit demand,

averaged over 1000 episodes. For the expanded case, however, there are two di↵erent products.

The analysis of a system characterised by multiple products becomes more complex. To achieve

a detailed understanding of the behaviour learned by the agent it is necessary to keep track of

reward and its components for each product separately. In this study we do not track these

product level reward metrics, thus we focus on a macro-level analysis of the behaviour of both

agents. From the environment parameters, we know that on average 40% of the total demand

are products of type 1. This allows a high-level analysis of the results.

The first observation is that the RL agent outperforms the (Q,R)-agent by a large margin.

We noted that the relative advantage of the RL agent over the benchmark is larger for the

expanded case than in the smaller discrete base case. Contrary to our expectation the RL

agent’s performance does not seem stifled by the larger discrete action space. In general, we find

that the advantage of the RL agent comes from the higher attained product availability. The RL

agent sustains higher production, holding, transportation and setup costs than the (Q,R)-agent.

4.2 Expanded case: Discrete approach 39

An agent able to meet all external demand would attain a revenue close to 0.4⇥30+0.6⇥20 = 24,

with some margin for the random character of the demand. This indicates that the agent is

able to satisfy 92% of the demand. The (Q,R)-agent satisfies 71% of all demand. Both of the

values are under the assumption that both products are sold proportionally to the demand by

both agents. We find that these values are slightly lower than those found for the base case.

While this was expected for the RL agent because of the increased problem size, the strongly

decreased performance of the (Q,R)-agent is surprising because of the decentralised manner in

which the solution is found.

The higher costs incurred by the RL agent compared to the benchmark method are similar to

the base case. Yet we observe that the di↵erence between the agents, in this case, is larger than

in the discrete base case. This might be an indication that the RL agent uses a di↵erent strategy

than in the smaller case.

To achieve a better understanding of the agents’ behaviour in the expanded case, the actions used

by the agent can be studied as done for the base case. The RL agent uses 49 of the 729 available

actions. This means that less than 7% of the action space is used. This figure was 73% for the RL

agent in the base case. The (Q,R)-agent uses 60 of the available actions, corresponding to about

8% of the action space. While the di↵erence is less striking compared to the di↵erence found for

the RL-agent, it is still striking. This raises the question of whether improved performance could

be achieved by limiting the action space to two values per dimension: not acting, or producing

or transporting the EOQ amount.

EXPERIMENTS WITH CONTINUOUS ACTION SPACES 40

Chapter 5

Experiments with Continuous

Action Spaces

This chapter removes one constraint from the experimental setup in chapter 4, i.e. the action

space is now a continuous action range for each action dimension instead of a combination of

one of three discrete values for every action dimension. While increasing the complexity of the

problem, this is expected to enable solving larger problems. Because NFQ and DQN are not

suited for problems with continuous action spaces, another algorithm is needed. We opt to

use DDPG. This algorithm was posed by Lillicrap et al. [20] to be the equivalent of DQN for

continuous action spaces. The similarity between DQN and NFQ on the one side and DDPG

on the other side is that they all use value learning based on Q-learning. Which is supposed to

make them more sample e�cient [20, 22].

Even though using a continuous action space allows us to work with larger action spaces because

of the di↵erent representation, this also makes the problem a lot more di�cult. This is why we

start by tackling an equivalent of the discrete base case using a continuous action space, rather

than starting with a larger problem.

5.1 Experiment

An overview of the continuous approach of the (1,3,1)-case can be found in figure 5.1. As in the

discrete case, we will regard four di↵erent demand scenarios with varying levels of complexity.

5.1 Experiment 41

Figure 5.1: An overview of the environment used for the base case using a continuous action

space. The environment parameters are included per component of the environment. Inv., prod.,

and trans. refer to inventory, product or production, and transportation respectively.

5.1 Experiment 42

5.1.1 Action and state space

The action space for this experiment has four dimensions. For each of the dimensions, an action

is selected ranging from zero, or not acting, to producing or transporting the EOQ amount

(as defined in section 4.1.1). Limiting the action space to the EOQ amount has the benefit

to improve comparability between the results found in chapter 4 and here, for future research

however it might be more interesting to give the agent access to a larger action space. The state

space for this experiment is the same as discussed for the discrete base case.

5.1.2 Demand function

The demand functions used for the continuous base case are the same as those discussed in

section 4.1.1. The di↵erent scenarios are (in order of increasing complexity): stationary and ho-

moskedastic demand, non-stationary and homoskedastic demand, stationary and heteroskedastic

demand, and non-stationary and heteroskedastic demand.

5.1.3 (Hyper)parameter setting and setup

The setup for this experiment was very similar to the discrete cases, we used the DDPG im-

plementation by Stable Baselines [16], as discussed in section 3.1.3. Compared to other RL

algorithms, DDPG is known to be di�cult with respect to hyperparameter tuning. This was

confirmed by our experience. For the discrete case, it was possible to attain good results based

on values suggested in the introducing papers. Attempts to do the same for DDPG lead to poor

performance.

To tackle the problem of hyperparameter tuning a large random hyperparameter search was set

up. We recorded the hyperparameters used for DDPG from di↵erent sources [14, 15, 17, 19,

20, 24] and selected the minimum and maximum value found for each hyperparameter. The

resulting ranges can be found in table 5.1.

The tested hyperparameter settings were found by randomly selecting values from the ranges

in table 5.1 using a uniform function. The first two entries in the table are the learning rate

for the actor and critic network respectively. Critic L2 regularisation is the weight factor used

for L2 regularisation in the critic network. Gamma is the discount rate for future rewards,

used in the Bellman equation. Tau is the rate with which the target networks are updated.

The values for layers are the number of nodes in the first and second hidden layer respectively.

5.1 Experiment 43

Hyperparameters Min Max

Actor learning rate 0.00001 0.005

Critic learning rate 0.00005 0.005

Critic L2 regularisation 0 0.02

Gamma 0.9 0.999

Tau 0.0005 0.1

Layers [256,256] [512,512]

Batch size 32 1536

Bu↵er size 10000 1000000

O-U sigma 0 1

O-U theta 0 0.5

Reward scale 0.1 1

Layer normalisation False True

Binary reward False True

Table 5.1: The parameters that were explored during the hyperparameter search and the ranges

from which the values were uniformly drawn. The values were found by comparing values found

in 5 papers and a blog post [14, 15, 17, 19, 20, 24]

5.1 Experiment 44

Figure 5.2: DDPG hyperparameter search: training evolution of the best parameter combina-

tions tried in initial run. Plots 4 and 6 give the best impression. Setups 0, 1 and 2 train to slow

or a stuck in a local optimum. Setups 3, 5 and 7 are to unstable.

These are set independently of each other. The maximum value for the batch size might seem

out of tone, the value is found by taking 1.5 ⇥ 210. The bu↵er size is the maximum number of

transitions stored for experience replay. The sigma and theta of the Ornstein-Uhlenbeck process

are parameters for variance and starting place of this process respectively. The reward scale is

a scaling factor with which the reward signal is multiplied. Layer normalisation [2] is a form of

normalisation where the input data is normalised across features. The variable binary reward

refers to a hyperparameter specific to the environment. If the binary reward is set to True,

the agent receives a positive reward when a feasible action is selected and a negative reward

for unfeasible actions during the first million time steps. This was introduced with the aim of

simplifying the task for the agent, because of the highly constrained nature of the action space.

This way the agent could start by learning to take feasible actions and later refine this to good

actions. This fits within the philosophy of curriculum learning [4].

From the ranges in table 5.1, 160 di↵erent hyperparameters settings were randomly drawn.

Each separate training run took between 12 and 36 hours to complete. During training, the

agents were trained in blocks 100,000 time steps at a time. After 100,000 time steps, the agent

was evaluated on an evaluation environment to see performance evolution. Of the 160 tested

hyperparameter combinations, 9 were able to achieve a positive positive reward over one episode

during evaluation. The best 8 agents attained results between 24% and 86% of the performance

5.1 Experiment 45

Parameters Min Max

Actor learning rate 0.00005 0.0003

Critic learning rate 0.0005 0.004

Critic L2 regularisation 0.002 0.018

Gamma 0.92 0.98

Tau 0.04 0.09

Layers [256,256] [512,512]

Batch size 256 650

Bu↵er size 400000 700000

O-U sigma 0.55 0.7

O-U theta 0.45 0.5

Reward scale 1 1

Layer normalisation True True

Binary reward False True

Table 5.2: Refined hyperparameter ranges. Based on the hyperparameter settings of the two

best performing agents of the initial search, identified in figure 5.2 and 5.3. The new ranges are

used to sample new hyperparameter settings for agents. Based on the performance of these new

agents, the most interesting regions are narrowed down.

of the baseline during the evaluation, averaged over 100 episodes. The evolution of these 8

agents during training is depicted in figure 5.2.

Figure 5.3 depicts the most important numerical hyperparameters for these 8 agents. For the

actor learning rate, it is clear that the best performance is found in the outer left section of

the considered spectrum. For the other parameters, the values found for these best-performing

agents are still scattered across the whole range. Considering that the agents took into account

also still show very diverse performance, this is not surprising. By examining the best perfor-

mance of each agent averaged over a series of 100 evaluation episodes and the consistency of the

evolution of the agents’ performance during training, the best-performing agents are selected

among these to narrow down the most interesting ranges of the hyperparameter ranges. This lead

to the selection of the agents corresponding to plot 4 and 6 in figure 5.2. The hyperparameter

values for these two most promising combinations are marked in red in figure 5.3.

5.1 Experiment 46

Figure 5.3: DDPG hyperparameter search: hyperparameter settings found to give the best

results in the initial round. We see that for most parameters the interesting range is not narrowed

down yet. The settings marked in red are the two best performing agents, identified in figure

5.2.

5.1 Experiment 47

Based on the two most promising hyperparameter combinations marked in red in figure 5.3, a

new refined set of hyperparameter ranges was devised. These are listed in table 5.2. Another 40

agents were trained according to the same method as before, using 33 di↵erent hyperparameter

settings, generated from the revised ranges. 8 agents were trained using the same hyperparam-

eter settings.

Of the 40 agents trained in this second section, only 6 were unable to get a positive reward for

one episode during evaluation. This is 15% of the agents, compared to 94% in the initial search.

Another 6 agents attained a higher reward than the best agent from the initial 160 agents,

averaged over 100 evaluation episodes. While the agents from the second batch performed much

better than the initial 160 agents on average, the gain when compared on an individual level was

not spectacular. The best agent of the second batch performed 5%-points better than compared

to the best of the initial 160 agents, when compared to the baseline, reaching 91% of the baselines

reward averaged over 100 episodes during evaluation.

Finally, we note that there was a large discrepancy in the performance of the 8 agents trained with

the same hyperparameters. Averaged over 100 evaluation episodes, their rewards are between

43% and 88% of the baseline’s reward. This is due to the large importance of random variables

in the training of an agent. This has two unfortunate consequences, first of all, it will not be

possible to exactly reproduce these agents. Second, we can not rule out the hyperparameter

settings that resulted in a bad performance, with full disclosure.

The results of the complete hyperparameter search are summarised in figure 5.4. The circular

markers in this figure represent the hyperparameter settings tested. The circle diameter and

colour indicate the performance realised by the agent. The categories range from the largest

yellow circles for which the best reward was still highly negative, to the smallest dark blue circles

for the best-performing agents. The red vertical lines indicate the boundaries from within which

parameters were selected during the second batch of the parameter search. The red triangle

indicates the hyperparameter setting suggested by Lillicrap et al. [20].

One of the most striking conclusions from this summary is that the hyperparameter values

found for this environment often strongly di↵er from the values suggested by Lillicrap et al. [20].

This confirms the suspicion that DDPG hyperparameters are highly environment-dependent.

We find that the agent needed action noise with a higher variance to su�ciently explore the

environment, comparable to the value suggested by Plappert et al. [24] for sparse environments.

5.1 Experiment 48

Figure 5.4: DDPG hyperparameter search: an overview of the results of the complete hyper-

parameter search. The markers of the hyperparameter values are based upon the performance

of the corresponding agent. The large yellow markers represent the worst results, the smallest

dark blue markers represent the best results. The red vertical lines are the boundaries specified

in table 5.2. The bright red triangular markers represent the hyperparameter settings suggested

in Lillicrap et al. [20]. For many of these parameters, we see large di↵erences between these

suggested values and the most interesting ranges for this environment. Note that the discrete

appearance of the results for the L2 variable is because the values were rounded on the fourth

decimal.

5.2 Results and discussion 49

It is not surprising that the starting mean of the noise generation process is also larger, as

stronger exploration is required in the first episodes. Because the best performing setting is

found at the edge of the considered range, it might be interesting to extend the considered range.

The actor learning rated suggested in the original paper [20] is strongly confirmed here. This

seems one of the most critical hyperparameters, as no decent results were found using a deviant

setting. We find best results when using a larger batch size, this is not very surprising as larger

batches lead to better estimates for the gradient when updating the underlying models. The

problem with larger batch sizes is that the environment is often computationally too demanding

for larger batch sizes. We achieve better results with a smaller bu↵er size than suggested. For

this environment, an increased bu↵er size does not seem to o↵er an advantage. The setting

of the L2 regularisation for the Q-network does not seem decisive for this environment, setups

with good performance are found over the whole range of this parameter. Note that the values

tested for the L2 regularisation weight seem step-wise because they were rounded on the fourth

decimal. The best performance was found using learning rates for the Q-network around 2 to

3 times as much as the learning rate suggested in original paper [20]. The best results for this

environment were found using a slightly smaller discount rate to calculate the Q-values with

the Bellman equation. This is not surprising given the very high frequency of the reward signal

compared to other environments. We did not find any evidence of an advantage linked to using

a rescaled reward in this environment. This might be more interesting in cases with a sparser

reward space. Agents seem to perform better in this environment when the target networks

follow their counterparts more closely than suggested by the original DDPG paper [20].

Finally, we wish to remark the best-performing agents are all found within the second part of

this hyperparameter search. It is possible that the importance of one or a few hyperparameters

causes other parameters to seemingly only perform well in this second range, while in reality, they

can lead to good performance over the whole range. We conclude that we can confirm good

results for these hyperparameter ranges, but can not exclude good performance for di↵erent

hyperparameter settings.

5.2 Results and discussion

The summarised results for the continuous approach to the base case can be found in table 5.3.

The demand scenarios are the same as for the discrete base case. As in the previous sections,

5.2 Results and discussion 50

Demand Agent Reward Revenue Prod. Hold Trans. Setup Opp.

Stationary mean

and variance

DDPG 27.79 29.59 0.99 0.23 0.54 0.37 0.04

(Q,R) 25.35 27.28 0.91 0.29 0.45 0.19 0.27

Non-stationary

variance

DDPG 27.33 29.17 0.97 0.25 0.54 0.38 0.08

(Q,R) 24.66 26.64 0.89 0.32 0.44 0.19 0.34

Non-stationary

mean

DDPG 27.04 28.94 0.97 0.28 0.54 0.39 0.11

(Q,R) 24.51 26.55 0.89 0.36 0.44 0.20 0.34

Non-stationary

mean and variance

DDPG 26.85 28.74 0.96 0.27 0.54 0.38 0.13

(Q,R) 24.33 26.37 0.88 0.35 0.44 0.20 0.36

Table 5.3: Results for the base case using a continuous action space. The DDPG agent outper-

forms the (Q,R)-agent across all demand scenarios. The DDPG agent performs better than the

NFQ agent both in general and in product availability. In contrast with the NFQ agent, the

DDPG agent is able to reduce its holding costs to a level considerably lower than the (Q,R)-agent

inventory costs.

the values for the reward and broken down components of the reward are expressed per unit

demand to correct for fluctuations in the total amount of demand across episodes. The values

are averages found over 1000 tested episodes.

NOTE: During the hyperparameter search, the DDPG agents were not able to outperform the

(Q,R)-heuristic method. Here we see that a DDPG agent trained for 6 million time steps is able

to outperform the (Q,R)-agent across all demand scenarios with a considerable di↵erence. This

is due to a di↵erence in the environment. During the hyperparameter search the environment

had the same dimensions (1 factory, 3 shops, 1 product), but with lower demand. With the

demand in the range of 1 or 2 products per time step, the actions ranges were also a lot smaller.

This practice of using a more constrained action space was adopted from training the NFQ

agents, to initially simplify the problem to be able to learn faster. However, while for discrete

problems using a heavily constrained action space makes the problem easier, the opposite is true

for agents using a continuous action space. This is due to the action space only being explicitly

constrained for the environment and not explicitly for the agent, resulting in the agent having

to learn that only actions in a very small range are purposeful.

5.2 Results and discussion 51

From the results in table 5.3 we learn that with DDPG, also in the continuous case the RL

agent is able to achieve a distinctly better reward than the baseline method. In contrast with

the discrete case, the DDPG agent not only is able to create a much higher product availability

but also manages to cut holding costs. The DDPG agent manages to incur close to 30% less

holding costs while ensuring 8%-points higher product availability than the (Q,R)-agent.

We note that the (Q,R)-agents in the discrete and continuous cases attain very similar results, as

expected. From this, we conclude that the continuous (Q,R)-agent experiences little benefit from

the increased action space. When the inventory in the shops drops below the reorder point, but

insu�cient inventory is available in the factory to supply all demanding shops, the continuous

agent is able to evenly distribute all remaining factory inventory. The discrete heuristic can only

distribute half of the EOQ amount to all demanding shops or not act until the factory inventory

has increased.

When studying the other components of the reward function we see that the setup costs for

the continuous RL agent are larger than those incurred by the (Q,R)-agent and the discrete RL

agent. This further increase in the setup costs is an indication that the agent further trades

o↵ setup costs for decreased holding costs and possibly increased revenue. In practice, this

corresponds to producing and transporting in smaller batches. The same is true in a lesser

degree for the transportation costs, which are calculated per truck instead of per product. The

transportation costs are also higher for the continuous RL agent than both the heuristic method

and the discrete RL agent. The production cost for both the RL agent and the (Q,R)-agent are

similar to those of their discrete counterparts. Note that a production cost of 1 corresponds to

producing 1 product for every product demanded, as the unit production cost is 1. The fact

that the (Q,R)-agent’s production fluctuates around 0.90, hints at the possibility of increasing

the reward by increasing products held. Again this will be a trade-o↵ between the holding cost,

and the production cost and the revenue, based on the reorder point.

Figures 5.5a and 5.5b o↵er an insight into the behaviour learned by the continuous RL agent

and the characteristic inventory patterns of the (Q,R)-agent. We notice that the di↵erences we

saw between the (Q,R)-agent and the RL agent in the discrete case, have become more elaborate

in the continuous case. Both the inventory levels and the stream of products in production and

transportation behave more constant. This is possible because of the more fine-grained ability

to select actions.

5.2 Results and discussion 52

(a) DDPG agent

(b) (Q,R)-agent

Figure 5.5: Inventory evolution during one episode for the base case, using a continuous action

space. The inventory build up is more outspoken for the RL agent, but the levels are lower overall

compared to the (Q,R)-agent. The RL agent acts in a reactive way, very closely following the

demand level with the production and transportation levels, seen in the middle panel. The RL

agents inventory, production and transportation levels evolve smoother compared to all other

agents.

5.2 Results and discussion 53

For the continuous RL agent the di↵erences in inventory level between periods of low and high

demand. Note that the real inventory level is distinctly lower than those of the (Q,R)-agent and

the NFQ agent. The points where the inventory reaches its highest level for the DDPG agent,

during low-demand, are comparable to the lowest inventory levels of the NFQ agent, which are

during high-demand.

The response of the RL agent to the varying demand can be seen in the shape of the curves

for products in production and transportation. These all closely mimic the demand pattern.

We wish to stress that the current time step is not a part of the state space. This means that

the time step cannot influence the agent’s behaviour. The decisions are solely based on the

demand of the past three time steps, the current inventory level and the number of products in

production and transportation.

Finally, corresponding with the results in table 5.3, we see that the internal behaviour of the

continuous and discrete (Q,R)-agents is very similar, as expected. The less restricted action

space is only taken advantage of in a handful of cases. These situations can be recognised as the

irregularities in the sawtooth pattern of the products in transportation. Again, the production

action always produces the EOQ amount because the production is not limited by the availability

of other products.

CONCLUSION 54

Chapter 6

Conclusion

The problem of inventory optimisation can be described as the optimisation of company profit in

the face of uncertain demand by determining when, where and what to produce and transport.

The objective of this work was to further research how this problem can be dealt with in supply

chains, and by extension companies in general, using reinforcement learning. To this end we

created a simulation program, imitating the inventory management aspect of a supply chain.

This allowed us to develop, test and compare the results of di↵erent RL agents and a benchmark

representing current inventory management practice.

As mentioned in the introduction, the current methods to handle inventory management require

their behaviour to be determined upfront, e.g. the (Q,R)-agent is based on the order size and

the reorder point. From the experiments conducted in this work, we learn that RL agents

can outperform these methods by implicitly changing these variables based on the perceived

state. The DDPG agent demonstrated the behaviour of adapting its actions to the situation.

In episodes with little variance, it held less safety stock than in episodes with high demand

uncertainty.

In this study, we notice that the RL agents’ interaction with the problem environment took a

more reactive than proactive form. We expected the agent might be able to anticipate future

demand, based on patterns seen before. Instead, we see that the agent does not predict the next

action, but closely monitors the evolution of the state and responds to this. It is possible that

the agent does not have enough information about the past evolution of the demand to chose

actions anticipating future demand.

CONCLUSION 55

In the data from the conducted experiments, we did not find the expected signs of an integrated

approach across locations in the actions of the RL agents. The setup cost could be minimised by

taking transportation actions for di↵erent locations simultaneously. We expected the RL agent

to exploit this, but we see that the RL agents incur higher setup costs than the (Q,R)-agents.

We assume this is because the possible advantage of minimising the setup costs does not weigh

up against the increased holding costs. There are other ways of acting in an integrated way, but

these are more di�cult to recognise from the data.

The scalability of an RL inventory optimisation program to larger problem sizes is one of the main

concerns for this application. To our knowledge, the inventory management problems solved by

RL agents in this work are the largest for which this has been done in the existing literature. We

confirm that the possibilities for algorithms using discrete action spaces are limited in terms of

problem size for inventory management cases. By solving a reasonable inventory management

problem using a sample e�cient, function approximator based algorithm made for continuous

action spaces such as DDPG, we take a first step in the direction of tackling larger inventory

management problems using RL. The question remains: how large action spaces and problems, in

general, can become for DDPG to remain able to su�ciently explore the solution space. Because

large amounts of training data will be needed to achieve this, it is an advantage of the inventory

optimisation problem in this aspect that it can be simulated in a relatively cost-e�cient way, as

we have done here.

In the process of training a DDPG agent for this problem, we find evidence that corroborates the

general notion that the DDPG algorithm is di�cult to tune for hyperparameters. By studying

the performance and evolution of 200 DDPG agents characterised by 193 di↵erent hyperparam-

eter settings, we determine a set of interesting ranges for each hyperparameter, for inventory

management problems.

Overall we conclude that the RL approaches to solving inventory management problems used in

this work can compete with the existing methods for the considered setups. When comparing

between the two tested RL methods, we find that the approach using DDPG, with the continuous

action space, has a distinct advantage over using the NFQ algorithm. The RL agents outperform

the heuristic method in such a manner that users could deem it worthwhile to give up some

part of the control. We do however want to stress, that giving up control in this domain is not

CONCLUSION 56

a requirement for the use of RL. The actions chosen by the RL agent could serve as a guideline

that could be adopted or discarded by the responsible employees.

Future Research

One of the most challenging next tasks for this field of research is to study the behaviour of the

tested RL approaches on larger problems. With increasing problem size, we expect the required

network size to increase as well. Which will make training more complex. Future research might

look into the possibility of using more advanced network shapes to improve network performance.

One way of doing this is by adding convolutional layers to the network. It might be possible

to take advantage of the structured character of the data. We expect patterns to be similar

for di↵erent product-location combinations. To take advantage of this we suggest using a filter

on the data that takes in the information of all state components for one product-location at a

time. There are two ways to achieve this. The first is using a 2D-convolution layer. The data

is structured across two dimensions, using only one channel. One axis has all product-location

combinations, the other all state components. The filter slides over the matrix in the direction

of the product-locations, covering all state components for this product location. The second

way to do this is by using a 3D convolution layer. The data is structured as a tensor with

products on the first axis, locations on the second and the state components on the third, again

with only one channel. The filter moving over the data takes into account one product-location

combination in this plane of the tensor and all state combinations.

Comparing the performance of other RL algorithms against the results found here is another

interesting research topic. We suggest using the current state-of-the-art policy gradient methods.

This might be a good fit for this problem because they are regarded as less di�cult to tune in

terms of hyperparameters. The fact that they are less sample e�cient is not problematic for

this environment because of its cost-e�cient simulation.

While in this paper we were not able to confirm the integrated nature of the RL agents’ be-

haviour, we still believe this to be the case. Future works could attempt to prove this. This

could be done by setting the environment parameters in such a way that a cost encouraging the

integrated behaviour, such as the setup cost in this study, is more important. Another approach

is to compare two RL approaches, where in the first case the decisions for every product-location

combination are determined by an independent agent. In the second case, decisions are taken

CONCLUSION 57

by a central agent as in this work. The di↵erence between these two approaches should indicate

the advantage of centralised decision making.

In this study we found that the RL agent behaved more in a reactive than a proactive way.

To enable the agent to develop a expectation for future demand, it might be necessary to give

the agent access to a larger part of the past demand. It would be interesting to study the

information used in demand forecast literature and attempt to include similar information in

the state space of this problem.

Finally, the robustness of the interesting ranges for hyperparameters found in this work can

be confirmed by future research. A comparison could be made between agents sampled from

inside and outside the found ranges, studying the e↵ect of di↵erent problem variations on the

agents’ performance. Possible variations could be changing the problem dimensions, such as

the number of factories, shops or products. Another way to challenge the robustness of these

parameter settings is by testing di↵erent demand specifications.

BIBLIOGRAPHY 58

Bibliography

[1] Hisham M Abdelsalam and Magy M Elassal. “Joint economic lot sizing problem for a

three↵fd↵fd↵fdLayer supply chain with stochastic demand”. In: International Journal of

Production Economics 155 (2014), pp. 272–283.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geo↵rey E Hinton. “Layer normalization”. In:

arXiv preprint arXiv:1607.06450 (2016).

[3] Marc G Bellemare et al. “The arcade learning environment: An evaluation platform for

general agents”. In: Journal of Artificial Intelligence Research 47 (2013), pp. 253–279.

[4] Yoshua Bengio et al. “Curriculum learning”. In: Proceedings of the 26th annual interna-

tional conference on machine learning. ACM. 2009, pp. 41–48.

[5] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In: Pro-

ceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[6] Greg Brockman et al. “OpenAI Gym”. In: arXiv:1606.01540 [cs] (June 2016). arXiv:

1606.01540 [cs].

[7] Leopoldo Eduardo Cárdenas-Barrón, Kun-Jen Chung, and Gerardo Treviño-Garza. Cele-

brating a century of the economic order quantity model in honor of Ford Whitman Harris.

2014.

[8] Peter Dayan and CJCH Watkins. “Q-learning”. In: Machine learning 8.3 (1992), pp. 279–

292.

[9] Bram Desmet, El Houssaine Aghezzaf, and Hendrik Vanmaele. “A normal approximation

model for safety stock optimization in a two-echelon distribution system”. In: Journal of

the Operational Research Society 61.1 (2010), pp. 156–163.

http://arxiv.org/abs/1606.01540

BIBLIOGRAPHY 59

[10] Bram Desmet, El-Houssaine Aghezzaf, and Hendrik Vanmaele. “Safety stock optimisation

in two-echelon assembly systems: normal approximation models”. In: International Journal

of Production Research 48.19 (2010), pp. 5767–5781.

[11] Ford W Harris. “How many parts to make at once”. In: (1913).

[12] Matthew Hausknecht et al. “A neuroevolution approach to general atari game playing”. In:

IEEE Transactions on Computational Intelligence and AI in Games 6.4 (2014), pp. 355–

366.

[13] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural net-

works for perception. Elsevier, 1992, pp. 65–93.

[14] Peter Henderson et al. “Deep Reinforcement Learning That Matters”. In: arXiv:1709.06560

[cs, stat] (Sept. 2017). arXiv: 1709.06560 [cs, stat].

[15] Henry. Solving Continuous Control Environment Using Deep Deterministic Policy Gradi-

ent (DDPG) Agent. en. https://medium.com/@kinwo/solving-continuous-control-environment-

using-deep-deterministic-policy-gradient-ddpg-agent-5e94f82f366d. Nov. 2018.

[16] Ashley Hill et al. Stable Baselines. https://github.com/hill-a/stable-baselines.

2018.

[17] Yuenan Hou et al. “A novel DDPG method with prioritized experience replay”. In: 2017

IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2017), pp. 316–

321.

[18] Lukas Kemmer et al. “Reinforcement learning for supply chain optimization”. In: ().

[19] Roman Liessner et al. “Hyperparameter Optimization for Deep Reinforcement Learning

in Vehicle Energy Management”. In: ICAART. 2019.

[20] Timothy P. Lillicrap et al. “Continuous Control with Deep Reinforcement Learning”. In:

arXiv:1509.02971 [cs, stat] (Sept. 2015). arXiv: 1509.02971 [cs, stat].

[21] Long-Ji Lin. “Self-improving reactive agents based on reinforcement learning, planning

and teaching”. In: Machine learning 8.3-4 (1992), pp. 293–321.

[22] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv:1312.5602

[cs] (Dec. 2013). arXiv: 1312.5602 [cs].

[23] Steven Nahmias and Tava Lennon Olsen. Production and operations analysis. Waveland

Press, 2015.

http://arxiv.org/abs/1709.06560
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602

BIBLIOGRAPHY 60

[24] Matthias Plappert et al. “Parameter Space Noise for Exploration”. In: arXiv:1706.01905

[cs, stat] (June 2017). arXiv: 1706.01905 [cs, stat].

[25] Martin Riedmiller. “Neural Fitted Q Iteration – First Experiences with a Data E�cient

Neural Reinforcement Learning Method”. en. In: Machine Learning: ECML 2005. Ed. by

David Hutchison et al. Vol. 3720. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,

pp. 317–328. isbn: 978-3-540-29243-2 978-3-540-31692-3. doi: 10.1007/11564096_32.

[26] Martin Riedmiller and Heinrich Braun. “A direct adaptive method for faster backpropa-

gation learning: The RPROP algorithm”. In: Proceedings of the IEEE international con-

ference on neural networks. Vol. 1993. San Francisco. 1993, pp. 586–591.

[27] Tom Schaul et al. “Prioritized Experience Replay”. In: arXiv:1511.05952 [cs] (Nov. 2015).

arXiv: 1511.05952 [cs].

[28] Joaqúın Sicilia et al. “An inventory model for deteriorating items with shortages and time-

varying demand”. In: International Journal of Production Economics 155 (2014), pp. 155–

162.

[29] Edward A Silver. “Operations research in inventory management: A review and critique”.

In: Operations Research 29.4 (1981), pp. 628–645.

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. en.

Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 1998. isbn:

978-0-262-19398-6.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[32] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-based

control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE. 2012, pp. 5026–5033.

[33] George E Uhlenbeck and Leonard S Ornstein. “On the theory of the Brownian motion”.

In: Physical review 36.5 (1930), p. 823.

[34] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with

double q-learning”. In: Thirtieth AAAI conference on artificial intelligence. 2016.

[35] Matthew Waller, Brent D Williams, and Travis Tokar. “A review of inventory management

research in major logistics journals”. In: The International Journal of Logistics Manage-

ment (2008).

http://arxiv.org/abs/1706.01905
https://doi.org/10.1007/11564096_32
http://arxiv.org/abs/1511.05952

COMPLETE RESULTS TABLES 61

Appendix A

Complete results tables

Demand Agent Value Reward Revenue Prod. Hold Trans. Setup Opp.

Stationary mean

and variance

NFQ
Mean 26.76 28.95 0.99 0.32 0.48 0.29 0.11

Std. dev 0.34 0.34 0.02 0.02 0.01 0.01 0.03

(Q,R)
Mean 25.23 27.38 0.92 0.31 0.46 0.19 0.26

Std. dev 0.42 0.41 0.02 0.02 0.01 0.01 0.04

Non-stationary

variance

NFQ
Mean 26.82 29.13 1.01 0.40 0.49 0.32 0.09

Std. dev 0.48 0.46 0.02 0.03 0.01 0.01 0.05

(Q,R)
Mean 24.57 26.77 0.90 0.34 0.45 0.19 0.32

Std. dev 0.89 0.82 0.03 0.03 0.01 0.01 0.08

Non-stationary

mean

NFQ
Mean 25.96 28.30 0.98 0.40 0.48 0.32 0.17

Std. dev 0.79 0.88 0.03 0.14 0.02 0.03 0.09

(Q,R)
Mean 24.45 26.72 0.91 0.37 0.45 0.20 0.33

Std. dev 1.43 1.50 0.06 0.14 0.03 0.03 0.15

Non-stationary

mean and variance

NFQ
Mean 26.23 28.63 1.00 0.47 0.48 0.32 0.14

Std. dev 0.51 0.57 0.02 0.13 0.01 0.02 0.06

(Q,R)
Mean 24.15 26.41 0.90 0.36 0.44 0.19 0.36

Std. dev 1.54 1.60 0.06 0.13 0.03 0.02 0.16

Table A.1: Base case using discrete action space: full results

COMPLETE RESULTS TABLES 62

Demand Agent Value Reward Revenue Prod. Hold Trans. Setup Opp.

Stationary mean

and variance

NFQ
Mean 15.43 21.98 4.03 0.54 1.01 0.60 0.36

Std. dev 0.18 0.19 0.04 0.03 0.01 0.01 0.04

(Q,R)
Mean 11.47 17.41 3.22 0.46 0.80 0.30 1.14

Std. dev 0.14 0.12 0.06 0.02 0.01 0.01 0.03

Table A.2: Expanded case using a discrete action space: complete results

Demand Agent Value Reward Revenue Prod. Hold Trans. Setup Opp.

Stationary mean

and variance

DDPG
Mean 27.79 29.59 0.99 0.23 0.54 0.37 0.04

Std. dev 0.16 0.16 0.01 0.02 0.01 0.01 0.02

(Q,R)
Mean 25.35 27.28 0.91 0.29 0.45 0.19 0.27

Std. dev 0.40 0.39 0.02 0.02 0.01 0.01 0.04

Non-stationary

variance

DDPG
Mean 27.33 29.17 0.97 0.25 0.54 0.38 0.08

Std. dev 0.56 0.52 0.02 0.03 0.01 0.01 0.05

(Q,R)
Mean 24.66 26.64 0.89 0.32 0.44 0.19 0.34

Std. dev 0.82 0.76 0.03 0.03 0.01 0.01 0.08

Non-stationary

mean

DDPG
Mean 27.04 28.94 0.97 0.28 0.54 0.39 0.11

Std. dev 0.93 1.01 0.04 0.15 0.03 0.06 0.10

(Q,R)
Mean 24.51 26.55 0.89 0.36 0.44 0.20 0.34

Std. dev 1.41 1.47 0.06 0.14 0.03 0.03 0.15

Non-stationary

mean and variance

DDPG
Mean 26.85 28.74 0.96 0.27 0.54 0.38 0.13

Std. dev 1.10 1.15 0.04 0.14 0.03 0.06 0.11

(Q,R)
Mean 24.33 26.37 0.88 0.35 0.44 0.20 0.36

Std. dev 1.55 1.58 0.06 0.14 0.03 0.03 0.16

Table A.3: Base case using a continuous action space: full results

