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Abstract

English

Deep learning is currently one of the most popular machine learning methods due to its ability to au-

tonomously extract features from enormous amounts of data and automatically learn meaningful rep-

resentations from them. It is applied in various scientific fields, such as image and speech recognition,

and robotics. Due to the recent explosion in biological ’omics’ data, deep learning has also found its

application within the biology field, with it being used in problems such as early cancer recognition and

protein-protein interactions. In this dissertation, it is applied in the automatic annotation of splice sites

and promoter sequences in A. thaliana and H. sapiens.

Splice site prediction is a mainly solved problem where prediction results as high as 95% are obtained

for both precision and recall. However, state of the art deep learning models represent the data using

a one-hot encoding, which has the limitation that it requires all samples to be of the same length if no

padding or cropping is to be applied. A new data representation strategy called k-mer encoding is there-

fore proposed which can work on datasets consisting of samples with varying lengths. Another problem

frequently encountered in splice site prediction is the large class imbalance in favour of the negative

samples. This results in high false discovery rates as deep learning algorithms need large amounts of

data in order to be able to generalise to unseen data. To circumvent this, a new augmentation method

is proposed that takes the reverse complement of the positive samples. As opposed to splice site predic-

tion, automated promoter annotation suffers from mediocre prediction results due to the lack of easily

identifiable consensus sequences and a straight-forward negative sample construction method. A new

negative sample construction scheme is introduced in this dissertation, which starts from the positive

samples and which preserves the most conserved core promoter elements present in them.

The state of the art splice site prediction method by Zuallaert et al. (2018) is used as a starting point

in order to develop and obtain a detailed understanding on how deep neural networks work. Their

convolutional neural network called SpliceRover is rebuilt for use on an A. thaliana splice site dataset.

This replica model failed to reproduce the results reported by Zuallaert et al., stalling at 90% precision

and recall values for the positive donor and acceptor classes. If the data is augmented using the reverse

complement strategy, significant improvements are seen in the false discovery rate and precision values.

This indicates that the proposed augmentationmethod can help in solving the problems encountered in

splice site prediction. When k-mer encoding is applied, deep learning fails to capture the details within

the data and does not produce meaningful results. The networks used for promoter annotation were

able to produce state of the art prediction results with one-hot encoded data. If k-mer encoded data

is used, a significant worse performance is encountered for values of k ∈ [3, 4]. A k-mer value of 5

can however compete with the results obtained with one-hot encoded A. thaliana data, although this

is most likely due to the large differences in features between the negative and positive promoter class.

The proposed negative construction scheme has a neutral effect towards the prediction results and does

not yield significant improvements.

Futherworks consists of altering the negative constructionmethod in such away that it contains negative

samples from all sorts of negative sample construction approaches. When the negative samples are

constructed using a (semi)-random construction scheme, the bases should be chosen in such a way that

the species-specific DNA base composition is respected. This way, a more robust deep learning network

can be developed that still achieves high prediction results when employed outside of test settings.
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ABSTRACT

Nederlands

Deep learning is momenteel één van de populairste gebruikte methoden in het domein van machinaal

leren. Dit komt doordat het in staat is volledig autonoom eigenschappen te herkennen in grote ho-

eveelheden data, en via deze automatisch te leren hoe de data voor te stellen en te voorspellen. Van-

daag wordt het gebruikt in een waaier aan wetenschappelijke disciplines zoals bijvoorbeeld beeld- en

spraakherkenning en robotica. Door de recente explosieve groei in het aantal ’omics’ datasets heeft

deep learning ondertussen ook zijn plaats gevonden binnen de biologie. Zo wordt het onder meer ge-

bruikt om kanker op te sporen in een vroeg stadium en om eiwit-eiwit interacties te voorspellen. In

deze masterproef wordt deep learning gebruikt voor de automatische herkenning van splice sites en

promotoren in A. thaliana en H. sapiens.

Splice site predictie is een probleem dat reeds grotendeels is opgelost, en waar precisie en sensitiveit

waarden van 95% makkelijk worden behaald. De state of the art deep learning modellen gebruiken

echter een one-hot encodering om hun data voor te stellen, welke als nadeel heeft dat een dataset

enkel voorbeelden mag bevatten die dezelfde lengte hebben. Dit kan worden omzeild met de k-mer

encodering, welke geen problemen heeft met voorbeelden van variable lengte zonder deze te moeten

aanpassen. Een ander frequent voorkomend probleem is het lage aantal positieve voorbeelden aan-

wezig in datasets, wat aanleiding geeft tot een verhoogde false discovery rate. Dit komt doordat deep

learning algoritmen nood hebben aan een groot aantal voorbeelden uit de verschillende klassen om

optimaal te kunnen leren. Het kan worden omzeild door de data te augmenteren. Hiervoor wordt

een nieuwe data augmentatie strategie geïntroduceerd die het omgekeerde complement neemt van

elk positieve splice site DNA sequentie. In tegenstelling tot splice site predictie leidt het gebruik van

machinaal leren in automatische promoter annotatie nog steeds tot tegenvallende resultaten. Dit komt

omdat er geen duidelijke consensus sequenties aanwezig zijn in promotoren, en omdat de constructie

van een negatieve dataset niet voor de hand ligt. In dezemasterproef wordt daarom een nieuwemanier

voorgesteld omde negatieve voorbeelden te construeren. Hierbij worden deze opgesteld vanuit de posi-

tieve voorbeelden, en worden de meest geconserveerde core promotor sequenties behouden.

De state of the art splice site detectie methode van Zuallaert et al. (2018) wordt gebruikt als startpunt

om deep learning onder de knie te krijgen. Hun convolutioneel neuraal network SpliceRover werd nage-

maakt voor gebruik en haalde een maxmimum waarde van 90% voor precision en recall van de positive

splice site klassen. Het slaagt er dus niet in om de resultaten van Zuallaert et al. te reproduceren. Bij

toepassing van de k-mer encodering werd duidelijk dat deze de onderliggende splice site patronen niet

kan weergeven. Wanneer de aangereikte data augmentatie strategie wordt gebruikt zijn er significante

verbeteringen temerken in de false discovery rate en precisiewaarden. Dit geeft aan dat de omgekeerde

complement aanpak een geldigemethode is die ook in de praktijk kan gebruikt worden omde resultaten

van automatische splice site detectie te verbeteren. De netwerken ontworpen voor promoter predic-

tie met one-hot encodering bereikten resultaten compatibel met de huidige state of the art. Wanneer

een k-mer encodering werd gebruikt met k gelijk aan 3 of 4, daalden deze resultaten significant. Een

k-mer encodering met k gelijk aan 5 kan echter wél concurreren met de resultaten behaald met one-

hot geëncodeerde A. thaliana data. Dit is hoogstwaarschijnlijk te wijten aan de grote verschillen tussen

de negatieve en positieve samples in de datasets. De nieuw geïntroducteerde methode om negatieve

samples aan te maken levert geen significante verbetering op.

Toekomstig werk bestaat eruit om de negatieve voorbeelden constructie methode zo aan te passen dat

voorbeelden gemaaktworden via allerhande verschillende technieken. Wanneer hierin een techniek ge-

bruikt die willekeurig DNA basen kiest, dienen ze gekozen teworden zodat de specifieke base compositie

eigen aan de species wordt behouden. Hierdoor kan een deep learning netwerk worden ontwikkeld dat

ook hoge predictie resultaten behaald in meer realistische omstandigheden.
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1. Introduction

Every organism on this planet is able to live and function due to a minuscule molecule found within

all of its cells called DNA. Ever since the resolution of its structure in 1953 by Watson and Crick, major

breakthroughs have beenmade in the field, eventually leading to our recently acquired ability to change

an individual’s DNA at will (Cong et al., 2013; NPR, 2019). This genome editing would be impossible

without the invention of genome sequencing by Sanger et al. (1977), which allowed scientists to read

DNA as one would read a book. While Sanger sequencing was the sequencing standard for many years

to come, the technique was slow, expensive and labour-intensive (Heather and Chain, 2016). An answer

to these problems was given in the form of next-generation and third-generation sequencing methods

such as Illumina (Canard and Sarfati, 1994) and nanopore sequencing (Jain et al., 2016). These new

methods allowed for automated sequencing that is faster and cheaper than Sanger sequencing with an

added surplus of being able to read out a high amount of DNA sequences at once, and led to an explosion

in the amount of DNA data that is freely available in genetic databases.

To make sense of and bring structure into this enormous amount of data, several universal structural

blocks are determined according to their fulfilled function, their position within the genome and their

exact sequence, among other criteria (Stein, 2001). The assignment of a certain DNA section to such a

universal structural block or genomic element is called structural annotation. Identifying what role each

of the different elements plays within an organism is referred to as functional annotation. Lacking the

computational resources for parsing the tremendous amount of data accompanied with sequencing a

species’ DNA, annotation was mostly done by hand in the years following the first sequenced genomes.

As this requires trained professionals and is labour-intensive and time consuming, automatic detection

of genomic elements rapidly sparked an extensive interest in the scientific community. The earliest

developed algorithms focused on recognising smaller genetic regions such as ribosome binding sites,

promoters and splice sites (Staden, 1984), which were later combined to search for genes in whole

genomes (Wang et al., 2004) and even functionally annotate them (Ferrão et al., 2019). Research on

automatic structural annotation of genomes is still ongoing, and especially functional annotation is still

in its infancy.

Of special importance in thismaster dissertation is the structural annotationof exon-intron junctions and

promoters. Exons and introns are the main building blocks of genes and the transitions between them -

referred to as splice sites - are important for a successful gene expression chain reaction. They have an

influence on the final gene product and mutations in splice patterns can lead to a variety of pathologies

(Ars et al., 2000; Daguenet et al., 2015). Promoters are found in the vicinity of the exons and introns, and

directly drive the gene expression process. They consist of two smaller blocks, called the core promoter

and the proximal promoter. The core promoter is needed to start the expression of a gene, while the

proximal promoter helps in further facilitating the process. Recently it has been shown thatmutations in

promoter regions can lead to cancer and other diseases (Jang et al., 2018; Fredriksson et al., 2014), mak-

ing them compelling targets for potential new therapies to alleviate or even eradicate these diseases.

The annotation of both splice sites and promoters can also facilitate the identification of their accom-

panying genes, and aid in a better understanding of the molecular processes happening in cells. The

first algorithms designed to this end utilised position weight matrices and homology searches for splice

site and promoter prediction, respectively (Staden, 1984; Mulligan and Mcclure, 1986). Other popular

techniques in the following years were support vector machines (SVMs), decision trees and neural net-

works (NNs). NNs autonomically extract features from the data and learn meaningful representations

from them, resulting in algorithms that can efficiently model complex biological problems. However,

to do this, they need a substantial amount of data and computational resources, both of which were

not available at the time. These problems were solved with the arrival of the DNA sequencing meth-

ods and with the publication of the deep neural network (DNN) AlexNet in 2012 by Krizhevsky et al.. In

their paper, Krizhevsky et al. proposed a new way of training DNNs by utilising graphics processing units

(GPUs). GPUs can process large quantities of data in parallel, making them ideal for use with deep learn-
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1. INTRODUCTION

ing approaches. The technique by Krizhevsky et al. was quickly picked up by the scientific community,

and led to the use of deep learning to address many known hard problems. Today, a variety of state of

the art splice site and promoter prediction programs exist that utilise deep learning in their underlying

algorithm, such as SpliceRover (Zuallaert et al., 2018) and CNNProm (Umarov and Solovyev, 2017).

The species of interest in this dissertation for splice site andpromoter prediction areArabidopsis thaliana

and Homo sapiens. A. thaliana, commonly referred to as thale cress, is an annual flowering plant from

the Brassicaceae family and grows 20 to 25 cm tall (EnsemblPlants, 2019). It is a multicellular, diploid

eukaryotic organism consisting of five chromosomes, which hold the entire genome length of 135 mega

base pairs (Mbp). Due to its small physical and genetic size and its rapid life cycle, it is awidely researched

plant that is frequently used as a model organism in genetic studies. H. sapiens is the only species of

the human genus currently living on earth. It is a diploid organism with a genome size containing nearly

3300 Mbp, divided into 22 pairs of autosomal chromosomes and 1 pair of sex chromosomes (NCBI,

2019). This genome contains around 50000 genes, almost 20000 of which are coding genes. This num-

ber is frequently revised due to the improvement of genome annotation methods, indicating that there

is still a lot left to explore about our own species.

This dissertation is written to provide sufficient background knowledge for both computer scientists who

lack a detailed biology education and for biologists who never practised deep learning before. Therefore

an extensive summary is given on DNA and the genome in chapter 2, and a high-level overview of NNs

and deep learning in chapter 3. A summary of the history of splice site and promoter prediction is given

in chapter 4, along with their current state of the art. It is followed by the ’Materials and methods’

section in chapter 5, in which the techniques used to tackle the problems in this thesis are presented.

Finally, results are shown and discussed in chapter 6, with a final remark and conclusion, and future

perspectives in chapter 7.

1.1. Problem statement

As splicing makes up an important step in the gene expression process, the required sites are highly

conserved across species. They stretch over only a few base pairs (bp) , thus making it possible to set

a fixed length of nucleotides around their consensus sequence that still captures the whole splice site.

This fixed length makes it easy to apply frequently used data encodings to the DNA sequences, and

incorporate them into already developed algorithms. Because of their highly conserved consensus se-

quence, algorithms identify the underlying genome patterns that are needed to constitute a splice site

with little effort, resulting in methods that can point out the sites in a given sequence in a highly reliable

manner. Because of this, splice site detection is mainly a solved problem for most organisms. It however

suffers from a large imbalance in the datasets, where the positive samples are heavily outnumbered by

the negative ones. This can result in a high number of false positive results, and thus an inflated false

discovery rate.

Promoter regions directly drive the initiation of a gene into functional molecules, such as proteins or

ribonucleic acids (RNAs). They consist of a proximal promoter, which mostly lacks easily identifiable

structures, and a core promoter, which binds the polymerase protein needed to start the gene expres-

sion process. Due to the importance of the core promoter in gene expression, it consists of several

structural regions which are highly conserved. However, their presence does not lead to easy promoter

identification. Three different polymerase molecules exist, leading to three structurally different types

of promoters. Within each of these subtypes, still a great variety is found in the structure of their core

promoter as not all existing core building blocks are needed for the promoter to function. This leads to

various combinations of conserved regions which constitute a valid core promoter. A model designed to

recognise promoter sequences will therefore have to learn a great range of different features in order

to make correct assumptions about a sequence being a promoter or not.

Another problem is that promoters most commonly stretch over several hundreds of bp, which com-
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plicates the choice of a fixed sample length that still captures all present consensus sequences. This is

circumvented by setting a large fixed length to the annotated promoter regions. However, this can cut

short promoters that are larger than this length, resulting in a loss of nucleotides that can possibly help

with correct promoter identification, or surround shorter promoter sequences with non-contributing

DNA bases that could introduce meaningless features.

The last issue lies within the construction of negative promoter datasets. While the design of negative

splice sites is very straightforward due to their short and highly conserved consensus sequences, this is

not the case for promoter data where no single consensus sequence can be assigned that is present

within all promoter structures. The negative sample dataset is therefore typically composed out of

randomly selected coding sequences of the same species (Liu et al., 2018), promoter sequences from

another species (Towell, 1993), or deconstructed positive samples (Oubounyt et al., 2019). These con-

structionmethods provide no great challenge for the designed promoter prediction programs (PPPs), as

the positive and negative sample datasets have little features in common. State of the art algorithms

work well on these artificially constructed datasets, yet fail when applied onto more realistic settings

(Bajic et al., 2004).

1.2. Aims

The aims of this master dissertation are twofold. The first goal is to obtain a detailed understanding of

how NNs in general, and deep learning in particular, work. To this end, an A. thaliana splice site dataset

was obtained through the Flemish Institute for Biotechnology (VIB). This dataset has previously been

used in other studies conducted by Degroeve et al. (2005) and Zuallaert et al. (2018), who respectively

used an SVM and a DNN to predict the splice sites in the A. thaliana dataset. The deep learning method

by Zuallaert et al., named SpliceRover, is reproduced. Tweaks are made to the SpliceRover algorithm’s

architecture in order to observe how different hyperparameters affect the acquired results. A new data

augmentation method is proposed where the reverse complement is taken, and this is order to lessen

the large class imbalance encountered in the A. thaliana splice set. A different train-test-validation split

than the more commonly used random and stratified split is also proposed, where the data are split

based on the gene the splice sites belong to.

The second goal focuses on tackling the problems that come along with promoter prediction. The first

problem encountered is the varying length of promoters which has to be captured in a fixed sample

length. The proposed solution to enable variable sample lengths is k-mer encoding, which can take sam-

ples of differing length and transform them into vectors with the same fixed length. This is first tested

on the splice site data, as results obtained from the new encoding can easily be evaluated according to

the already obtained state of the art results by Degroeve et al. and Zuallaert et al.. The newly proposed

encoding is then applied to the promoter datasets of A. thaliana and H. sapiens, and compared to the

more frequently used one-hot encoding to identify k-mer encoded data can be a valid alternative to

other more commonly used data encodings. The second issue is found within the construction of the

negative samples in the promoter datasets. Two different construction methods are explored in this

dissertation, one of which is a newly proposed one. They are compared to the state of the art construc-

tion approach by Oubounyt et al. (2019) to assess whether their use can result in more realistic testing

settings for newly developed PPPs.

Both problems in promoter prediction are addressed through the use of deep learning. Recently, it

proved to be a worthy contestant to more conventional machine learning techniques presently used in

state of the art PPPs. The aim is to provide another significant boost to the presented potential solutions

for the problems commonlymanifested in promoter prediction, and to improve the overall performance

in a field that is still troubled by mediocre prediction results.
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2. Biology of the genome

2.1. DNA and its structure

DNA can be regarded as the source code of all life on earth, containing all the information needed to

create and maintain it. Its main building blocks are molecules called nucleotides. They are composed of

a nucleobase attached to a sugar called desoxyribose, which in its turn is attached to a phosphate group

(see figure 2.1a). There are four bases that can be used in a nucleotide, namely adenine (A), guanine

(G), cytosine (C), or thymine (T). These can be regarded as the four letter alphabet with which the DNA

source code is written. When it is not known or further specified which exact base is found at a certain

place in a DNA sequence, a combination of several bases can be used. Each combination has a unique

name and accompanying letter symbol in accordance with the International Union of Pure and Applied

Chemistry (IUPAC) nucleotide notation (see table 2.1) (Saenger, 1984; Alberts et al., 2014; NIH, 2017).

Several nucleotides are connected to each other by linkage of the sugar group of the first nucleotide

to the phosphate group of the next, thus forming a polynucleotide strand with the backbone consist-

ing of alternating sugar and phosphate groups (Saenger, 1984; Ghosh and Bansal, 2003; Alberts et al.,

2014). As the phosphate group is attached to the fifth carbon atom of the sugar, this is called the five

prime (5’) end, while the ending with the exposed sugar group is called the three prime (3’) end. Two

polynucleotide strands are coiled around each other and joined by hydrogen bonds, creating the DNA

double helix structure. The bases are directed towards the center of the helix, and bind to the bases

of the opposite strand, following the complementary base pairing rules that A can only bind to T, and

G only to C. It is between these specific base pairs that the hydrogen bonds occur. The structure of a

double-stranded DNA helix and its composition can be seen in figure 2.1b.

Due to the base pairing, the base composition of one polynucleotide strand should always be comple-

mentary to the other strand (Alberts et al., 2014). As each strand should hold the exact same information

and thus should consist of the same base sequence, the two strands will have to run in opposite direc-

tion to each other in order to still be in line with the base pairing rules. One strand is considered the

non-template, sense, or coding strand, and runs from 5’ to 3’. The other is considered the template,

antisense or non-coding strand, runs from 3’ to 5’, and is in its 5’ to 3’ direction the reverse complement

of the coding strand (IUPAC-IUB, 1990; Pray, 2008). Positions relative to a certain place or element can

be indicated by use of the terms upstream or downstream and their respective symbols - and +, where

upstream is towards the 5’ end and downstream towards the 3’ ending (Lodish, 2008).

In this master dissertation, all sequences are given in 5’ to 3’ direction unless stated otherwise. Only the

coding strand of each DNA sequence is given as the non-coding strand can be derived from it by taking

the reverse complement.

2.2. The reference genome

The sequence of the consecutive bases encoding the information that is stored within an organism’s

DNA is called the genome (Lodish, 2008; Alberts et al., 2014; NIH, 2017). It can be visualised as a string

of characters using the abbreviations of the four DNA bases, and can range from hundred thousand to

150 billion bp (Ball, 2006; Pellicer et al., 2010). Inside the cell, the genome is neatly stored in compact

structures called chromosomes. Not all its contained information codes for life functions or an organ-

ism’s traits. Tthe majority is even considered to be non-coding (Ponting and Hardison, 2011; Kellis et al.,

2014). Coding means that the information held by that certain block of DNA can be expressed as a

protein (Twyman, 2003). Although non-coding DNA does not code for proteins, it can still fulfil impor-

tant functions such as transfer and regulation of the coding DNA, its derived products, or their needed
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2. BIOLOGY OF THE GENOME

Figure 2.1: (a) Simplified structure of a nucleotide with an unspecified base. (b) On the right, the three-dimensional (3D) view

of a DNA helix is shown. The last four bases are magnified on the left, showing the hydrogen bonds and the sugar

phosphate backbones in more detail (adapted from Pray (2008) and Ratcliffe (2015)).

Table 2.1: IUPAC nucleotide notation. The symbols (first column) stand for one or more bases, which are specified in the third

column. The full description of the symbol can be found in the second column. The last column indicates the symbol

for the complementary bases of the different groups according to the base pairing rules (NC-IUB, 1984).

Symbol Description Represented bases Complement

A Adenine A T or U

C Cytosine C G

G Guanine G C

T Thymine T A

U Uracil U A

R Purine AG Y

Y Pyrimidine CT R

S Strong interaction CG S

W Weak interaction AT W

M Amino AC K

K Keto GT M

B Not adenine CGT V

D Not cytosine AGT H

H Not guanine ACT D

V Not thymine or uracil ACG B

N Any base ACGT N

- Gap None None
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2. BIOLOGY OF THE GENOME

building components (Ambros, 2004; de Farias et al., 2014).

Sometimes sequences can be found within a genome that are similar or identical in different organisms

across several species. These are conserved sequences, and sequences which are similar in nearly all

species are referred to as invariant or highly conserved (NCBI, 1993). The block of most commonly

found nucleotides at a specific DNA location is referred to as a consensus sequence (Pierce, 2012), and

the IUPAC nucleotide notation (table 2.1) is used to visualise them. If an IUPAC nucleotide symbol is used

which contains two or more bases in its group, this means that each represented nucleotide is found

with an equal frequency in that exact place.

Different organisms within one species can also have various forms of the same gene, referred to as

alleles (Nature Education, 2014; Alberts et al., 2014). An example of this is a gene that gives colour to

a plant’s flowers. One plant can have yellow flowers, and another plant of the same species can have

red ones. The exact same gene codes for colour in both plants, but due to an alternative form in the

second plant, the colour of the flowers is changed. This poses a problem for the structural annotation

of a genome (NHS, 2017). If an organism’s genome is annotated by looking at its DNA sequence, this

annotation cannot be easily extrapolated to another organism of the same species as its DNA sequence

can differ. This also implies that one cannot speak of the genome of a species. In order to still have a

representative DNA sequence, scientists use so-called reference genomes to capture the diversity across

several members of the same species. Such a reference genome is built by reading the genome of

different organisms of a species and mixing them together to obtain one global sequence. In the past,

these assemblies have beenmade for a number ofmodel organisms, and can be freely downloaded from

websites such as the National Center for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov) and

the University of California Santa Cruz (UCSC, https://genome.ucsc.edu/).

2.3. Gene expression and RNA

The coding blocks of a genome are all localised in a bigger structural block called a gene, which is a DNA

sequence that encodes for a protein or another functionalmolecule (Conner andHartl, 2004). In the case

of eukaryotes, genes start with non-coding regulatory sequences, followed by an open reading frame

(ORF) consisting of coding and non-coding blocks respectively referred to as exons and introns, and end

with another sequence of non-coding regulatory regions (Anderson et al., 1981; Lynch, 2006; Shafee

et al., 2017). The conversion of the information held within a gene’s DNA into a functional molecule is

called gene expression (Pierce, 2012; Alberts et al., 2014). In eukaryotes it consists of a transcription,

modification, and translation step where an intermediate product called RNA plays the role of informa-

tion carrier. RNA has a structure similar to DNA, but the sugar used in its nucleotides is ribose, and the

base T is replaced by uracil (U). RNA is hardly ever found as a twisted double-strand helix, and more

often as a single-stranded molecule folded back upon itself (GSLC, 2016). An overview of the eukaryotic

gene expression process is depicted in figure 2.2.

The eukaryotic gene expression process for assembling proteins starts with transcribing the gene’s exons

and introns. Basal transcription factors (TFs) initiate the transcription by binding to a preceding regu-

latory sequence named the promoter. The basal TFs control the process’s rate and recruit an enzyme

called RNA polymerase II (Pol II) which unwinds the double-stranded DNA helix. The RNA Pol II then

moves in 3’ to 5’ direction over the now single-stranded template strand and makes a reverse comple-

mentary pre messenger ribonucleic acid (mRNA) molecule. The place where the RNA polymerase will

transcribe its first base is called the transcription start site (TSS). When the enzyme reaches a termina-

tor sequence on the template strand, the newly synthesised pre-mRNA strand is released from the RNA

polymerase (Clancy, 2008a).

The pre-mRNAmolecule has to undergo severalmodifications, ofwhich only splicing is of further interest

for this dissertation. During splicing, a special protein structure called a spliceosome cuts the introns out

of the pre-mRNA strand by cleavage at the exon-intron junctions. The coding regions are then joined
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2. BIOLOGY OF THE GENOME

together, yielding a mature mRNA strand. It is also possible that exons are cut out of the pre-mRNA

sequence, resulting in a different mature mRNA. By this mixing and matching of exons, it is possible for

one gene to code for several different proteins. Splicing is necessary as introns cannot be expressed as

a protein or another functional molecule (Clancy, 2008b; Alberts et al., 2014).

Figure 2.2: Schematic overview of the eukaryotic protein gene expression

process. For simplicity, only the promoter region and the exons

and introns of the gene are shown.

The third and final step during the ex-

pression, called translation, is the con-

version of mRNA into a protein. The

mRNA is read three nucleotides at a

time, and the nucleotide triplets are re-

ferred to as codons. Using the RNA al-

phabet, 64 such codons can be formed,

where each nucleotide triplet encodes

for a specific amino acid or for a spe-

cial start or stop signal. A molecule

called a ribosome attaches itself to the

mRNA start codon carrying the transla-

tion start signal. The ribosome reads

the signal and with the help of a trans-

fer ribonucleic acid (tRNA) molecule,

the corresponding amino acid is col-

lected. Then the ribosome slides over

the remaining mRNA-strand reading all

the codons, and attaches the associ-

ated amino acids provided by the tRNA

to its growing protein chain. The trans-

lation endswhen the ribosome reaches

a stop codon carrying the stop signal,

and the translated protein is released

from the ribosome (Clancy and Brown,

2008).

Apart from protein coding genes, additional genes exist that code for other functional molecules such as

ribosomal ribonucleic acid (rRNA) and tRNA. These are respectively transcribed by RNA polymerase I (Pol

I) and RNA polymerase III (Pol III) and bind to their own associated promoters. Their gene expression

process elapses in a way similar to that of protein coding genes (Paule and White, 2000; Carter and

Drouin, 2009).

2.4. Genes and their genomic elements

Several genes lie next to each other in the genome, divided by non-coding DNA blocks. Genes consist

of three big structures, namely the ORF and the regulatory sequences before and after this ORF. These

three structures consist of several smaller elements themselves, such as exons and introns, promoters,

enhancers, and untranslated regions (UTRs). Even within these smaller blocks, other structures can

be assigned as well. The overall structure of a eukaryotic gene and its position within the genome is

visualised in figure 2.3a.

2.4.1. Splice sites

The ORF is the only part of a gene that carries the coding blocks which can be translated into a functional

molecule (Alberts et al., 2014). It starts with an exon, followed by alternating sequences of respectively

an intron and an exon. During splicing, introns are cleaved out of the transcribed RNA at the splice sites,
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as introns cannot be translated into a protein. Each exon-intron and intron-exon junction respectively

falls within a donor and acceptor splice site, which are sometimes also referred to as the 5’ and 3’ splice

sites (Clancy, 2008b). Apart from these two sites, a branch site has to be present as well for splicing to

take place, which is a region found directly upstream of the acceptor splice site

Donor splice sites of the most commonly found U2 class introns can be recognised by the presence of

a GT consensus sequence at the 5’ end (Breathnach et al., 1978; Breathnach and Chambon, 1981). This

exact pattern is found in nearly all organisms whose DNA requires splicing. It is followed by a less invari-

ant, but still mostly conserved region with RAGT as consensus sequence (Harris and Senapathyl, 1990;

Patel and Steitz, 2003). At the 3’ ending of the preceding exon, a MAG consensus sequence is found

(Lodish, 2008).

The 3’ end of an U2 intron is terminated by an acceptor splice site with NCAG as consensus sequence

(Breathnach et al., 1978; Breathnach and Chambon, 1981; Patel and Steitz, 2003), which in turn is di-

rectly preceded by a 15 to 20 bp long region, rich in Y nucleotides, called the polypyrimidine tract (Lodish,

2008). The 5’ end of the succeeding exon is characterised by a G as most commonly encountered con-

sensus nucleotide (Alberts et al., 2014). Between 20 to 50 nucleotides upstream of the acceptor site

lies the branch site, with an invariant A in its otherwise loosely conserved CTVACT consensus sequence

(Reed and Maniatis, 1985; Patel and Steitz, 2003; Lodish, 2008).

Other consensus sequences in splicing exist, such as the U12-type introns. These introns are recognised

by the consensus sequences of RTATCCTTT and CCTTAAC at respectively the donor and branch sites.

The acceptor site has a sequence similar to that of the U2 introns (Lodish, 2008; Turunen et al., 2013).

A visualisation of the splice sites of an U2 intron and its surrounding exons can be found in figure 2.3b.

2.4.2. Promoter and enhancer regions

In the non-coding regulatory sequences that precede and succeed the ORF, enhancers and promoters

can be found. Both are zones within the DNA that control the transcription process (Clancy, 2008a).

A promoter is a region upstream of a gene’s ORF that is needed to initiate transcription (Smale and

Kadonaga, 2003; Clancy, 2008a). Each eukaryotic gene has at least one promoter, with some genes be-

ing regulated by multiple promoters to enable tissue-specific gene regulation (Kim et al., 2005; Adams

et al., 2011). It consists of another two major elements, called the proximal promoter and the core pro-

moter. The core promoter is the sequence within 50 to 100 bp around the TSS (Roeder, 1996). It holds

the sequences where the basal TFs can bind in order to recruit the RNA polymerase, and is thus themin-

imal sequence that is needed to initiate DNA transcription (Butler and Kadonaga, 2002). Because of its

importance in the transcription process, most of its elements are conversed across species. The second

element is the proximal promoter, which is found immediately upstream of the core promoter and up

to 250 bp upstream of the TSS (Lodish et al., 2000). It encodes binding sites for specifically needed TFs

such as activators and repressors. As these binding sites are not needed to initiate transcription but only

help in further regulation of the gene expression, their sequences differ greatly across genes.

As three different promoter types can be distinguished according to which RNA polymerase they bind,

different structures can be distinguished as well. The most thoroughly researched one is the eukaryotic

RNA Pol II promoter with one TSS. Several TF binding sequences have been identified and annotated

within its core promoter. These elements are listed in table 2.2 along with their location and consensus

sequence, and depicted in figure 2.3c. Not all these elements are needed in order for the core pro-

moter to function, and typically only several of these building blocks will be present at once. Because of

all these possible combinations, a variety of core promoter structures exist (Breathnach and Chambon,

1981; Kadonaga, 2002). Within RNA Pol II promoters with multiple TSSs, CpG islands and ATG-deserts

are commonly found (Lee et al., 2005; Akan and Deloukas, 2008; Lenhard et al., 2012). CpG islands are

regions rich in CG dinucleotides and are frequently methylated at the C residues. ATG-deserts are 1 kbp

sequences in both directions around the TSSs where the frequency of the ATG trinucleotides is lower
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2. BIOLOGY OF THE GENOME

Figure 2.3: Structural blocks within DNA. (a) Positions of eukaryotic genes within the genome. One gene is enlarged to show

its inner structure in more detail. (b) U2-type intron with its surrounding exons, showing the three necessary

splice sites with their consensus sequences. (c) Structure of a eukaryotic RNA Pol II promoter with one TSS. The

core promoter is enlarged and its most commonly found elements with their consensus sequences are shown.

This promoter will never be encountered in real life as only a subset of these elements are needed to initiate

transcription. It is thereforemerely used as an illustration tool to visualise the approximate locationof the individual

elements. 14
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Table 2.2: Most frequently found core promoter elements with their consensus sequence. Unless stated otherwise, the start

position is approximately and relative to the TSS, and the consensus sequence is highly conserved across nearly all

species (Breathnach and Chambon, 1981; Brenner et al., 2002; Kadonaga, 2002; Lim et al., 2004; Deng and Roberts,

2006; Juven-Gershon and Kadonaga, 2010; Roy and Singer, 2015).

Name Location (bp) Consensus sequence

upstream B recognition element (BREu) -35 SSRCGCC

TATA-box -30 TATAWAAR

downstream B recognition element (BREd) -25 RTDKKKK

x gene core promoter element 1 (XCPE1) -4 DSGYGGRASM

x gene core promoter element 2 (XCPE2) -4 VCYCRTTRCMY

initiator element (inr) +1 YYANWYY (mammals)

downstream core element (DCE) +9, +18, +32 CTTC,CTGT,AGC

motif ten element (MTE) +20 CSARCSSAACGS

downstream promoter element (DPE) +30 RGWYV

than in the surrounding sequences. RNA Pol I promoters are typically rich in AT nucleotides around its

initiator element (inr), and contain an upstream promoter element (Paule and White, 2000). The class

of RNA Pol III promoters contains another three different types on its own, with box A, box B and box C

found in the first two types, and a TATA-box in the third type (Paule and White, 2000).

An overall structure of the proximal promoter cannot be defined for any of the three promoter classes

as each gene type has different needs for expression regulation. Some examples of specifically needed

sequences are the sterol response element found in genes involved in lipid metabolism and the N-box

with consensus sequence CACNAG located in genes who are expressed at synapses (EBI, 2019). More

commonly found elements are the CCAAT-box and GC-box, with respectively CCAAT and GGGCGG as

consensus sequences (Everett et al., 1983; Cindy, 2007). However, they are sometimes also seen as part

of the core promoter and little research is available on their exact location.

Enhancers are 10 to 1000 bp long elements that can positively influence the likelihood that transcription

of a gene will take place (Clancy, 2008a; Li and Wunderlich, 2017). They are found up to 1 million bp

upstreamor downstreamof a gene’s TSS, and can also be foundwithin a gene’s introns or within another

gene’s exons (Pennacchio et al., 2013). It is possible for one gene to have multiple enhancers and its

orientation can be reversedwithout affecting its function (Murakami et al., 1992). Similar to the proximal

promoter, enhancers have no general structure and mostly contain TF binding sites that are specific

to the kind of gene they regulate. Some binding sites can be found in both proximal promoters and

enhancers, such as the vitamin D and serum response elements (EBI, 2019). Because of their similarity,

enhancers are sometimes referred to as ’distal promoters’ and the distinction between enhancer and

promoter is not always clear.

2.4.3. Other regulatory elements

Silencers are structural blocks found in the same regions as enhancers that use similar mechanisms to

affect transcription, with the exception that they influence the probability of transcription in a negative

way (Maston et al., 2006). Research on them is still ongoing and not much is known about them yet.

Other regulatory sequences are the UTRs found immediately before and after either end of the ORF.

The preceding UTR is called the 5’ UTR, while the one succeeding the last exon is the 3’ UTR. Both

regulate gene expression, which can be achieved by affecting the stability of themRNA (Bashirullah et al.,

2001) and the translation efficiency (van der Velden and Thomas, 1999), among other mechanisms.

Each UTR is part of the exon which its precedes or succeeds (Mignone et al., 2002; Twyman, 2003)

and is hence transcribed into mRNA. However, UTRs are not found in the final protein and they are

therefore considered non-coding. The 3’ UTR ends with a sequence called a terminator that signals for

transcription to stop. Both UTRs are visualised in figure 2.3a.
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2. BIOLOGY OF THE GENOME

In order tomake sure the transcriptional elements of one gene do not influence the transcription of their

neighbouring genes, insulators or boundary elements are inserted in the DNA (Maston et al., 2006).

These are 500 to 3000 bp sequences that block the activity of an enhancer (enhancer blockers) or a

silencer (barriers) (Kolovos et al., 2012). Some insulators can act as both enhancer blockers and barriers

at once (West et al., 2002). Similar to enhancers and silencers, they can function independently of their

orientation in the genome.
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3. Deep learning

Unless stated otherwise, references used for the neural network and deep learning approaches are

Bishop (2006); Bengio (2009); Jones (2014); Karn (2016); Karpathy et al. (2016); Talwalkar (2016); Chollet

(2017); Ng (2018); Ng and Katanforoosh (2018), and Ng (2019).

3.1. Origins within machine learning

Machine learning is a field of computer science that enables a computer to autonomously learn from a

set of given data. By this automatic learning, the computer is able to make predictions on unseen data

- akin to the data used to train the system - in order to solve a complex problem. For this learning to

take place, the computer generally needs labelled training data to know what the output is expected

to be, and a way to measure the distance between its current output and the expected output. This

measurement provides feedback to the algorithm so it can adjust its inner workings in order to come

closer to the expected predictions, and thus provides the algorithm with the ability to learn. If the

training data are labelled, the process is called supervised learning, yet other cases exist where the

algorithm can learn from unlabelled data. This is referred to as unsupervised learning, and examples of

such techniques are k-means clustering and autoencoders. However, in this master dissertation, only

supervised learning is applicable and unsupervised learning will therefore not be discussed further. The

labels used in a supervised learning approach can either be continuous numerical values, or discrete

values belonging to a certain class. The first is referred to as regression, and the latter as classification.

Today, various sorts of machine learning techniques are widely used worldwide in domains such as

speech recognition, search engines, and bioinformatics Koza et al. (1996).

3.1.1. Data fitting and splitting

Amachine learning model can be tuned to fit the training data nearly perfectly, but this does not neces-

sarily mean it will produce good predictions on previously unseen data. When amodel fails to generalise

to additional data, this is called overfitting. Underfitting is also possible, where the model cannot cap-

ture the structure within the training data and fails to even output good predictions on seen data. Both

overfitting and underfittingwill lead to poor prediction results on unobserved data, and should therefore

be avoided. This can be done by a variety of techniques, elaborated in section 3.2.5.

Figure 3.1: Machine learning model fitting workflow using holdout

validation. The dashed box contains the training stage

through which both the training and validation data

make multiple passes (adapted from Google Developers

(2018)).

To obtain a good model fit, the dataset

is typically split into three disjoint sub-

sets in order to evaluate the algorithm’s

performance. These subsets are re-

ferred to as the training data, the val-

idation data, and the test data. All

three datasets should be independent

from each other and represent the

same characteristics and structure. The

training data are used to fit the model,

and contain the samples from which

the algorithm learns on its own. The

model knows which label each sample

within the training set has, and itera-

tively updates its parameters accord-

ingly in order for its predicted outcome

to come closer to the expected one. A
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3. DEEP LEARNING

validation set is adopted to evaluate the current model’s fit. The algorithm sees this validation set, but

does not learn from it. This set provides an estimation on how the model will perform on unseen data,

and by observing its results small tweaks can bemade to themodel in order to obtain a better generalisa-

tion. Both validation and training sets make multiple passes through the algorithm, and the continuous

training, evaluating and tweaking is referred to as the training stage. After several passes of the data

through this stage, the model with the best predictions on the validation set is chosen. However, this

model should again be evaluated for its ability to generalise to unseen data as small bits of information

about the validation set leak indirectly into the model. This is due to the repeated small tweaks made

to the model based on its validation set performance, which can lead to overfitting. To avoid this, a test

set is used to measure how well this final model generalises to data that is not directly, nor indirectly,

seen by the model. The test set should therefore only be utilised once by the algorithm. A visualisation

on how the different subsets are utilised during holdout validation is seen in figure 3.1.

The choice of the data split percentages depends on the number of samples in the dataset, and on the

model and its number of parameters. If the dataset is not too large, k-fold cross-validation (CV) is used

to reduce the risk of overfitting on the validation set Brownlee (2018). With this technique the original

dataset is first split into two randomly chosen sets, called the train and test sets. A ratio of 80/20 is

frequently used for this initial split. The test set is put aside to function as an actual test set, but the

train set is randomly divided into k equally sized and disjunct groups or folds, and passes through k
rounds of training stages. In each iteration, a different fold functions as the sole validation set, while

the other k − 1 folds function as the training data. Each fold can only be used once as a validation set.

After model fitting, a performance metric Mi is given to and retained for each iteration i, and the model

discarded so a new model can be trained on the next division of training and validation sets. After k
iterations have passed, the average over all the performance scores is determined to yield an overall

performance score M = 1
k

∑k
i=1Mi. This score M reflects how well the model is able to generalise to

unseen data, and based on its value, the global properties of the model are optimised. Once the model

properties have been fixed, the model is fit onto the training dataset as a whole without its subgroup

distribution, and evaluated on the test set that was put aside. Figure 3.2 shows an example of 5-fold CV.

Figure 3.2: Example of k-fold CV with k = 5. The train and test set make up the original dataset that has been split using a

ratio of 80/20, and the training set is subsequently divided into five groups or folds for use during 5-fold CV. The CV

consists of five iterations, where in each iteration i a new model is fitted using four folds as training sets and the

fifth fold as a validation set, and a performance score Mi is calculated for the best fitted model. Every iteration,

the validation fold switches so every fold is used as a validation set only once. When CV has ended, an overall

performance score M is calculated that reflects how well the model is able to generalise to unseen data, and the

model is fitted onto the whole training dataset (striped block) and evaluated on the test set that was put aside

(yellow block).
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The programmer chooses the value of k, with k = 10 being a common option for small datasets. When

k is equal to the number of samples within the training set, this technique is called leave-one-out CV.

Random sampling can result in having folds where the number of labels within the same category differs

significantly. To retain the same class distributions, stratified k-fold CV can be used to ensure that each

fold gets assigned the same proportion of samples of each class category. For the performance metric

M several approaches can be used, such as the proportion of the number of true results to the number

of cases sampled (accuracy) and mean squared error (MSE).

3.2. Neural networks

Figure 3.3: Levels of abstraction in a face

recognition deep learning algo-

rithm (Jones, 2014).

Deep learning is part of the family of ma-

chine learning techniques that is gener-

ally referred to as artificial neural net-

works. It uses several levels of abstrac-

tion to learn from the data and solve the

problem at hand. The data are broken

down into simpler concepts that grad-

ually get more complicated, and pass

through various layers that can make

transformations on the data so a solution

to the problem is reached. An example

of this broken-down abstraction can be

found in figure 3.3. Here, the objective

of the deep learning algorithm is to iden-

tify faces within a picture, and the algo-

rithm will learn on its own which pixels,

edges, and shapes are relevant for human

face recognition and which are not. This

process is called feature extraction, and

is done by the deep learning model itself.

This is in contrast to othermachine learn-

ing techniques, where feature extraction

is most commonly done explicitly by the

programmer.

3.2.1. Input data

With supervised learning, the training data on which the neural network (NN) learns have to consist out

of a numerical input vector x and a numerical true label vector y. Every sample should have the same

length in order to fit into the input vector x. If this is not the case, the input vector gets as width the

length of the longest sample, and shorter samples are padded with zero values.

If the raw data do not consist of numerical values, the data have to be encoded before they get passed

into the network. Several encodings exist, such as one-hot encoding where different values are mapped

onto different bits, and ordinal encoding where values are mapped onto decimal values between 0 and

1. Different encodings can lead to different research results and influence how well the NN is able to

make predictions.

The input data are fed in batches to the network. One batch contains a certain number of samples that

pass through the network, and the model’s internal parameters are updated accordingly. Such a pass
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is called an iteration. The algorithm goes through several of these iterations, until the total number of

samples passed through the network is equal to the number of samples present in the training set. Then

the so-called epoch ends, and the process of batches and iterations starts again.

3.2.2. General layout

A deep learning model can be considered as a deep NN, a term which has its origin within nature as it

vaguely resembles the way biological nervous systems work. Both models’ computational cornerstones

are the neurons, which can transfer signals to other neurons within their network. In an artificial NN,

the neurons are grouped into layers, and individual neurons are connected across layers through edges.

Neurons receive signals from either an external source or from a neuron from another layer, and the

ith input of a neuron is referred to as xi, with x = [x0, . . . , xn]
ᵀ the column vector of all inputs of that

neuron. This input vector also has a column vector of weights w = [w0, . . . , wn]
ᵀ associated with it,

with the ith weight of the xthi input referred to as wi. The first elements of the input vector x and the

weight vector w are special cases as they have no other connections with the network except for the

one going into the calculating neuron. These values are respectively called the bias x0, which has a non-
adjustable value of 1, and the bias weight w0, which has a variable value.

All weights tied to a neuron are associated with the edges across the layers, and indicate how important

each input is relative to the others, with higher absolute values indicating a higher importance. They are

parameters of the NN that can be adjusted by the algorithm during learning. To produce an output, the

neuron calculates the weighted sum
∑n

i=0wixi over its inputs, which can also be rewritten as the dot

product wᵀx. After this linear operation, an activation function is applied to provide non-linearity. The

choice of activation function can vary and is generally referred to as f(·). By adjusting the bias weight,

the neuron is able to translate the activation function. If no translation is needed, the bias weight is

simply set to zero. Applying the activation function on the weighted sum leads to following equation to

calculate the activated output a in a neuron:

a = f

(
n∑

i=0

wixi

)
= f (wᵀx)

(1)

This output a can be the final output of the NN, or it can be passed on to the next neuron to serve as

new input. It can be regarded as a new feature learned by the neuron based on the already existing

features x. As an NN consists of a series of these neurons grouped into several layers which transfer

their activated output to each other, the NN will learn a hierarchy of features which get adjusted by

altering the weights associated with the neurons, and which gradually get more complex as they are a

mix of previously learned features. This allows for an NN to create potentially better predictions than

more classical machine learning approaches which only work on the original features within the data.

An illustration of a single neuron can be found in figure 3.4.

Three sorts of layers can be distinguished in an NN. The layer which receives the data is called the input

layer, and its inputs represent the original features within the dataset. This layer passes the features to

another layer, called the hidden layer. A hidden layer consists of several neuronswhich take the activated

weighted sum over their inputs, and then pass this sum along to the next layer. This next layer can be

another hidden layer, or an output layer. The output layer is similar to a hidden layer, but as it is the

last layer within the network, it produces the predictions. For a regression problem, only one neuron is

needed that outputs a single value ŷ ∈ R. For classification problems, the number of neurons is equal

to the number of classesK within the input data. Per sample, the neurons give back a probability vector

ŷ ∈ RK representing how sure the NN is that the fed data belongs to each class. All probabilities inside

this vector are within the [0, 1] range and sum up to 1. Binary classification is a special case, as here

one neuron in the output layer is sufficient. A fully connected DNN with three hidden layers is shown

in figure 3.5. The totality of the number and types of layers, their number of neurons and activation

functions, as well as the way they are interconnected is typically referred to as the architecture of the
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Figure 3.4: Visual representation of a single neuron in a NN.

network.

Equation (1) can now be redefined for the output aj,k+1 of a single neuron j within hidden layer k+1:

Figure 3.5: Fully connected feedforward DNN with three hidden layers (Ho, 2017).

aj,k+1 = f

(
n∑

i=0

w(i,k),(j,k+1) · ai,k

)
= f

(
w

ᵀ
k,(j,k+1)ak

) (2)

with w(i,k)(j,k+1) the connection weight from neuron i in layer k to neuron j in layer k + 1, ai,k the

output of neuron i in layer k,wk,(j,k+1) = [w(0,k),(j,k+1), . . . , w(n,k),(j,k+1)]
ᵀ the column vector holding

all the weights of the connections coming from the n neurons in layer k into neuron j in layer k+1, and
ak = [a0,k, . . . , an,k]

ᵀ the column vector holding all the outputs from then neurons in layer k. Note that
in the last two column vectors w(0,k),(j,k+1) and a0,k are special cases that correspond to respectively

the variable weight and fixed value of the bias of neuron j in layer k + 1.

As the output vector ak is needed to calculate the output aj,k+1 of a single neuron j within hidden layer
k + 1, this output vector should also be defined. This is done by associating the current layer with the

output of the previous layer, so that the output vector ak+1 for a hidden layer k + 1 is given by:

ak+1 = f
(
W

ᵀ
k,k+1ak

)
(3)

withw(i,k),(j,k+1) the connectionweight from neuron i in layer k to the jth neuron in layer k+1, ai,k the
output of neuron i in layer k, ak = [a0,k, . . . , an,k]

ᵀ the column vector holding all the outputs from the
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n neurons in layer k, andWk,k+1 an n×m weight matrix associated with the biases of them neurons

in layer k+1 and the connections from the n neurons in layer k going into them neurons in layer k+1
or:

Wk,k+1 =


w(0,k),(1,k+1) · · · w(0,k),(j,k+1) · · · w(0,k),(m,k+1)

...
. . .

...
...

w(i,k),(1,k+1) w(i,k),(j,k+1) w(i,k),(m,k+1)
...

...
. . .

...

w(n,k),(1,k+1) · · · w(n,k),(j,k+1) · · · w(n,k),(m,k+1)


=
[
wk,(1,k+1) . . . wk,(j,k+1) . . . wk,(m,k+1)

]
(4)

with w(i,k),(j,k+1) the weight of the connection from neuron i in layer k to neuron j in layer k + 1, and
wk,(j,k+1) = [w(0,k),(j,k+1), . . . , w(n,k),(j,k+1)]

ᵀ the column vector holding all theweights of connections

coming from the n neurons in layer k into the jth neuron in layer k+1. The first row of this matrix holds

the bias weights for them neurons in layer k + 1.

Equation (3) can be used to associate the output layer k = L + 1 and its prediction outputs ŷ with all

the previous layers, up until the first hidden layer k = 1 whose output depends on the input vector x .

The network is then represented as a composition of a series of activation functions, such that:

ŷ = fL+1

(
W

ᵀ
L,L+1aL

)
= fL+1

(
W

ᵀ
L,L+1fL

(
W

ᵀ
L−1,LaL−1

))
= fL+1

(
W

ᵀ
L,L+1fL

(
W

ᵀ
L−1,L · · · fk+1

(
W

ᵀ
k,k+1fk

(
W

ᵀ
k−1,k · · · f1

(
W

ᵀ
0,1x

)))))
= h (x,W)

(5)

with fk the activation functionused in thek
th layer of the network, andW = [W0,1, · · · ,Wk,k+1, · · · ,WL,L+1]

the matrix holding all the weight matrices associated with each layer. A DNN can thus be regarded as

implementing a function ŷ = h(x,W) thatmaps a set of inputs x to a set of outputs ŷ, controlled by ama-

trixW holding the adjustable weight and bias weight parameters. As each layer needs the previous one

to calculate its outputs, data flows through the network in a feedforward manner. No connections are

found between neurons within the same layer or across non-consecutive layers, although special net-

work structures existwith feedback loops such as recurrent neural networks (RNNs). Initially, theweights

of the NN are set to random values, and the algorithm alters themby comparing the final predictions ŷ to

the true values y. This comparison is done by the use of a cost or loss function J(W) = L(W) = L(y, ŷ)
which expresses the importance of the errors that are made. The cost function is what the algorithm

needs to minimise in order to come closer to the expected output. As the only variable values in the

cost function are the weightsW, an optimal weight matrixW∗ exists which will result in the smallest loss

possible. It is found by minimising the loss function:

W∗ = arg min
W

L(W) (6)

The optimal prediction vector ŷ∗ is then defined by:

ŷ∗ = h(x,W∗) (7)

3.2.3. Loss functions and their minimisation

The two most important and most frequently used loss functions are the MSE function and the cross-

entropy function. They are respectively used in regression and classification problems, and have follow-

ing formulas:

LMSE(W) =
1

n− 1

n−1∑
i=0

(yi − ŷi)
2 Lcross−entropy(W) = −

n−1∑
i=0

M∑
c=1

yi,c log ŷi,c (8, 9)

22



3. DEEP LEARNING

with n the total number of samples present in the dataset,M the number of classes within the dataset,

yi,c a binary indicator showing if class c is the correct classification for sample i, and ŷi,c the predicted

probability of sample i belonging to class c. The MSE loss will result in a high loss when the predicted

value is far away from the true value, and the cross-entropy loss punishes uncertain prediction proba-

bilities. Plots for both functions are given in figure 3.6.

The minimum value of a loss function is reached when the predicted values ŷ are equal to the true
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Figure 3.6: Loss plots for the MSE and cross-entropy loss functions. Both functions rapidly rise to a higher loss value when the

prediction values get further away from the true value.

values y. However, analytically solving equation (7) is computationally impossible due to the large num-

ber of parameters present in a DNN. Therefore, an algorithm called gradient descent is applied to find a

good approximation to the true minimal value of the loss function, and its associated approximation of

the optimal weight matrixW∗.

Various variants of the gradient descent algorithm exist, such as gradient descent with momentum or

an adaptive learning rate. These variations address several problems with the base algorithm and the

choice of which variant to use depends on the problem at hand. Their core mechanisms are similar to

the base algorithm of stochastic gradient descent discussed in the next paragraph, and these variants

are therefore not discussed further.

Stochastic gradient descent and backpropagation

Stochastic gradient descent is an optimisation algorithm designed to find the minimum of a given func-

tion. It does this by calculating the function’s negative gradient in a certain point, updating the function’s

parameters accordingly, and evaluating the function again in the same point but with its newly set pa-

rameters. This results in a new point with a lower function value than the initial one. The loop repeats

itself by the calculation of the negative gradient in the newly found point, and goes on until no or only

small changes occur in the values of these newly calculated points. The gradient descent algorithm is

thus slowly descending the function in small steps in order to reach the lowest value, while continuously

updating the parameters of the function.

A typical NN consists of millions of weight parameters, resulting in a high dimensional space in which the

loss function exists. The initial point for a certain step in the gradient descent algorithmcanbe definedby

the weightmatrixW0, and its gradient by∇L(W0). Every entry in this gradient matrix indicates how the

loss value is influenced if only that certain entry is modified, while the whole gradient matrix describes

the curvature of the loss function around the point W0 . By taking the negative gradient −∇L(W0),
one goes against this curvature and descend in the high dimensional space. The gradient descent algo-

rithm thus goes from an initial weight matrixW0 to a point that is slightly lower by descending along its

gradient, resulting in a new weight matrixW1:

W1 = W0 − γ · ∇L(W0) (10)
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with γ the learning rate. The learning rate controls the size of the steps that the gradient descent al-

gorithm takes while descending along the gradient. If γ is set to a large value, the algorithm will tend

to overshoot the minimum value, potentially leading to an infinite loop. A small value for γ leads to in

a slow convergence towards the lowest value, resulting in an algorithm that takes a long time to finish.

The learning rate can be evaluated by plotting the error on the training set during training, where a good

learning rate results in a steady descend towards zero loss. A learning rate that is set too high will result

in a loss that stays high, while a learning rate that is set too low will result in a loss that descends very

slowly towards zero.

As seen in equation (5), the predictions ŷ of a NN are the product of a series of activation functions.

Calculating the gradient of the loss function and updating the weights is therefore a complex opera-

tion, and both are done by the use of a technique called backpropagation. This technique is based on

the chain rule, where the derivative of a composition of functions can be calculated by the product of

their derivatives. As the deepest layer of the DNN is the one that depends upon all the previous ones,

backpropagation goes through the network in a backwards manner and the first layer is the last one

updated. Each activation function should also be differentiable in every point, as otherwise no gradient

can be determined.

Vanishing and exploding gradients

Two problems that commonly occur when training DNNs are vanishing and exploding gradients. Both

lead to a network that fails to learn meaningful features of the data.

The vanishing gradient problem arises when the gradient of the loss function gets close to zero. This

is due to the chain rule used in the backpropagation algorithm, where the derivative of a layer is equal

to the multiplication of the derivatives of all the following layers. Small derivative values that occurred

in the last layers get multiplied while backpropagating through the network, leading to even smaller

derivative values in the first layers. These first layers then fail to get meaningful updates to their weights

and biases, resulting in a network where no learning occurs in those first layers. As these layers are

essential in recognising the core features in the data, this results in a network with poor prediction

abilities. Small derivative values are typically seenwhenactivation functions are usedwhere a large input

range is mapped onto a small output range. The simplest solution is therefore choosing an activation

function where the input data is not mapped onto a closed output range, but onto an unbounded one.

Batch normalisation is also frequently used, where the data that a hidden layer receives is normalised -

and thus mapped onto a smaller input range - before its output is calculated. A more complex approach

is the use of residual connections in the network. While normally each layer passes its output to the

next layer, residual connections can skip one or more layers and pass their output to a layer that is more

than one step away from them. This results in a smaller chain of multiplications of small derivatives,

leading to an overall larger gradient value for the entire loss function.

Exploding gradients refer to gradients that get uncontrollably large, again due to the chain rule where

the multiplication of large values eventually leads to even larger values in the first hidden layers. Large

gradient values result in large updates to the weight parameters, and in large weights in general. These

make the network unstable, such that a small variation in the input data will lead to large differences

in the output. The network will be sensitive to noise in the input data, and fails to output meaningful

predictions. In the worst case, the exploding gradients lead to an overflow in the loss or weight values,

resulting in not-a-number (NaN) values which completely stop the learning process.

Apart from changing the model’s architecture, gradient clipping and weight regularisation can be ap-

plied to solve the exploding gradient problem. Gradient clipping does this by mapping the calculated

gradients back to a smaller range, or cutting off gradients that are too large by setting them back to

a smaller absolute value. The weights are then calculated with smaller gradients, leading to smaller

weights than when calculated with the non-clipped gradients. While gradient clipping solves the prob-

lem on the gradient level, weight regularisation still allows large gradients but will punish the network

for having large weights. To achieve this, a regularisation term is added to the cost function J(W), such
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that J(W) = L(W)+λ ·Φ(W), with λ the regularisation parameter that indicates the amount by which

large weights are penalised, and Φ(W) the regularisation function. The regularisation term outputs a

higher value for larger weights, resulting in a higher cost value. This way, the network is forced to keep

the weights small in order to minimise the errors. For the regularisation function, typically the L1- or

L2-norm are used, or a combination of both (referred to as elastic net). The L1-norm regularisation term

is calculated by taking the sum over all the absolute values of the entries in the weight matrixW. Due to

its derivative, it introduces a sparse weight matrix where the majority of the weights are equal to zero.

Because of this, the L1-norm is able to perform feature selection by setting the weights associated with

non-useful features to zero. It is robust to outliers, but will not be able to generate complex models.

The L2-norm on the other hand, takes the squared value of all the entries in the weight matrix W and

sums them up, generating complex models where weights are never set to zero, but only to very small

absolute values. All features are thus still taken into account and no feature selection is performed. It is

not robust to outliers as the squared value of the weights will stress the outliers even more.

3.2.4. Activation functions

Activation functions define the output of a neuron, and are typically non-linear. For easy clarification,

equation (2) for the activated output ai,k for a neuron i in layer k is redefined as ai,k = f(zi,k), with f
the activation function, and zi,k = w

ᵀ
k−1,(i,k)ak−1 the non-activated value of neuron i in layer k. Some

commonly used activation functions and their derivatives are plotted in figure 3.7.

The first activation function, the linear function (figure 3.7a), is typically not used in the hidden layers

of a NN. This is due to three main reasons. A derivative that is equal to a constant value will result

in a backpropagation that makes no progress in updating the weights of the network. Secondly, when

only linear activations are used, the final output of the network will be a linear combination of its input,

reducing the NN to a simple linear regression model that lacks the power to handle complex input data.

The last reason is the unconstrained nature of the output range of the linear function. It can produce

large values which only get larger when propagated through the further network, eventually leading

to uncontrollably large calculations. However, the linear function has its use in regression problems,

where only the output layer of the network has a linear activation as here the predicted values need to

be unconstrained.

The sigmoid (figure 3.7b) and hyperbolic tangent (figure 3.7c) functions solve the problems that come

with the linear function. They are able to introduce non-linearity in theNN, have a non-constant function

as derivative, and map large inputs back to small outputs due to their constrained nature. The sigmoid

function is however prone to vanishing gradients, and is not centered around zero. This latter results in

gradients that go too far in either the positive or negative direction, making optimisation harder when

the sigmoid function is used. The hyperbolic tangent does not suffer from a harder optimisation as its

values are centered around zero. It however does not solve the problem of vanishing gradients.

The currently preferred activation function to use in hidden layers is the rectified linear unit (ReLu) func-

tion (figure 3.7d). It has a six times faster convergence than the hyperbolic tangent function due to its

formula being simpler in nature, and does not suffer from vanishing gradients. However, it can introduce

dead neurons, where neurons that are not activated will never be updated again during backpropaga-

tion. This can be solved by replacing the zero value for negative values by a linear function with a slight

slope. This solution is referred to as the leaky ReLu. Note that the derivative for the ReLu function should

be undefined in ai,k = 0, but is instead set to 1 in order to avoid problems with gradient descent.

The last important activation function is the softmax function, which is used in the output layer during

classification tasks. This function will turn scalar values into probabilities for each of the n classes. Each

probability lies in the [0, 1] interval, and the sum over all n probabilities is equal to 1. Its formula is given

by:

ai,k =
ezi,k∑
n e

zn,k
(11)
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Figure 3.7: Activation functions typically used in NNs. The blue lines indicate the activation funtion itself, while the dotted blue

lines are their derivatives. For all subfigures, the x-axis is equal to ai,k, and the y-axis to zi,k.

with zn,k = w
ᵀ
k−1,(n,k)ak−1 the non-activated value of the n-th neuron in layer k, and

∑
n e

zn,k the sum

over all the non-activated values of the n neurons in layer k.

3.2.5. Recognising and solving over- and underfitting

Both over- and underfitting refer to a model that is not able to generalise well on unseen data, and can

be recognised by looking at the evolution of the loss value during model training. Under ideal circum-

stances, the loss of both the training and validation set should be low (figure 3.8a). When one or both

of these losses has a significantly high value, under- or overfitting occurs.

A high training loss means the model is underfitting. It is accompanied by a high validation loss, as the

model fails to capture the structure in the training data and thus will not generalise well to unseen data

either (figure 3.8b). Overfitting is encountered when a model has a high validation loss, but a low train-

ing loss (figure 3.8c). It happens when a model learns too much detail or random noise in its training

data. These learned details and noise are however not present in unseen data, resulting in a model that

captures the training data nearly perfectly yet outputs poor predictions for unseen data.

Underfitting is a problem that can easily be solved by extending the network and introducing more

parameters that can capture the complexity of the input data. Overfitting on the other hand is a more

complex problem that requires more thorough techniques to reduce it.

The easiest solution to reduce overfitting is simply to gather more data. This is however not an option

in most of the cases and data augmentation is then a viable alternative. With data augmentation, new
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(a) Ideal situation where no under- or overfitting occurs.

The NN has a nearly perfect fit to the data at hand.

(b) Underfitting on the dataset. The NN fails to capture

the structure in the training data, and thus cannot

generalise well to the validation data either.

(c) Overfitting on the dataset. The NN learns to pick up

tiny details in the training set, resulting in a poor fit on

the validation set which lacks those same details.

Figure 3.8: Three different DNN architectures run on the same dataset, with the train and validation loss plotted after training

for 70 epochs.

samples are created by slightly altering the original ones. In the case of images as input data, a variety

of transformations exist such as flipping, translation, and rotation. The size of the dataset is increased

by a factor equal to the number of transformations that were performed. If the dataset is small enough

to fit into a computer’s memory, the augmentation can be done offline by applying it before training

takes place. However, if the dataset is too large, real-time or online augmentation is used, where the

augmentation is applied on the batches that are fed to the network during training. Another simple

technique is to reduce the size of the network. A larger network equals more parameters, resulting in a

network that is able to pick upmore detail and noise than a smaller one. Bymaking the network smaller,

the model is forced to shift its main focus back to patterns that actively contribute to the task at hand. A

smaller network size can be achieved by removing hidden layers, or by reducing the number of neurons

in the different layers.

More advanced methods to solve overfitting are early stopping and dropout. Early stopping stops the

training process before overfitting can occur. This is done bymonitoring a certainmetric of the validation

set, such as its loss. Several early stopping schemes exist, such as monitoring if the loss keeps increasing

over a number of epochs or if the absolute loss increase is equal or bigger than a certain value. When the

applied scheme is triggered and training stops, the model with the last most optimal loss value on the

validation set is then set as the final model. When the dropout method is used, the output of randomly

chosen neurons is set to zero during training. This helps with overfitting as neurons in a network will

become co-dependent on each other during training. By dropping some of them, the others neurons

are forced to learn meaningful features on their own again, resulting in a more robust network. The
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chance that a neuron is ignored during training is equal to p, with p a hyperparameter of the dropout

layer. During testing no neurons are set to inactive, but every neuron’s output is reduced by a factor p
in order to account for the missing activations during the training phase.

3.2.6. Hyperparameters

Hyperparameters are parameters of the network that are chosen by the scientist, and are set before

training takes place. Examples are the number of hidden layers, the total number of neurons in each

layer, activation functions, and number of epochs. Hyperparameters either determine the network size

and structure (model parameters) or indicate how the network is trained (optimiser parameters). The

performance of amodel can be optimised by tweaking the hyperparameters. This can be donemanually

or by an automatic search. While the former requires thorough understanding on how deep learning

works and is labour-intensive, the latter comes with a high computational cost to loop through a high

number of parameter combinations.

3.3. Convolutional neural networks

A fully connected DNN gives rise to a rapidly exploding number of parameters. This is especially trou-

blesome when the input datahas three or more dimensions, such as images (3D; 2D and three colour

channels) and videos (4D, 3D and numerous frames), as one neuron in a fully connected layer would

have as many connections as the element-wise multiplication of the dimensions of the input data. For

example, an input image of size 100×100×3would lead to 100 ·100 ·3 = 30.000 connections for each
neuron. CNNs deal with this problem by constricting the number of connections a neuron has between

two consecutive layers. This connection to only a small subset of neurons in the previous layer is called

the receptive field of a neuron, and greatly limits the number of parameters present in the network.

Learning takes place by looking at smaller and simpler patterns in the data, which are later assembled

into bigger andmore complex ones in the deeper layers. A typical CNN has an architecture similar to that

of a normal DNN, but has two extra layers called the convolutional and pooling layer stacked between

the input layer and the fully connected layers. The neurons of these layers are stacked in a 3D manner,

as opposed to the typical 2D arrangement seen in normal DNNs. These three dimensions are referred

to as width, height and depth, and the data that a layer receives or produces are respectively called the

input or output volume. An overview of an example CNN architecture is given in figure 3.9.

Figure 3.9: High level overview of a CNN for use with one-hot encoded DNA data (Al-Ajlan and El Allali, 2018). It consists of

two consecutive series of a convolution and max-pooling layer, followed by two fully-connected layers.

3.3.1. Convolutional layer

Most of the core computations of a CNN are all done in this layer. Here, a matrix window that is small

in width and height but goes through the full depth of the input volume slides in small steps across the

entire width and height of the input volume. This window is called a filter or kernel and has a size F
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that is seen as a hyperparameter of the convolutional layer. Every one of its elements can be adjusted

independently from the other elements in the window, and can be regarded as the weights of the layer.

For every slide the window does, it computes the dot product between its own entries and the seen

input, and outputs thus a single value for that exact position. As it slides over the input volume, a series

of single values is outputted, resulting in a 2D featuremap of the 3D input volume. Several of these filters

can be applied to the same input volume which all produce a 2D feature map, and every one of these

maps recognises other patterns in the data. The feature maps are stacked along the depth dimension,

creating the new 3D output volume. This output volume will thus not always have the same width and

height dimensions as its associated input volume, and its depthK is equal to the total number of filters

applied to the input volume. This numberK is also considered a hyperparameter of the convolutional

layer.

The width and height dimensions of the output volume are controlled by two other hyperparameters

called the stride S and the zero-padding P . The stride S refers to the size of the steps that are taken

when a filter is sliding over the input volume. When the step size is 1, then the filter moves from one

entry in the input volume to the other consecutively. When the stride is set to a larger number, the

filter will skip some entries, resulting in a smaller output volume. The zero-padding hyperparameter P
indicates if an extra border of zeros is added around the input volume and how wide that border is. By

adding padding, a filter can also be applied at the edges and corners of an input volume. If no padding

is added, these entries cannot be used as they lack certain neighbouring values needed to compute the

dot product. This way, the original dimensions of the input volume can be preserved or even expanded.

The stride S and zero-padding P hyperparameters can be used together with the size F of the filter and

the width and height dimensions of the input volume V to calculate the width and height dimensions

of the output volumeW :

W =
V − F + 2P

S
+ 1 (12)

Every entry in the output volume can be regarded as the output of a single neuron. This neuron only has

connections with the neurons in its immediate vicinity, namely the neurons whose output values were

used in the calculation of the dot product with the kernel. This reduced number of connections along

the first two dimensions is called the receptive field of the neuron and is equal to the sizeF of the kernel.

While this kernel sees only a small part of the input volume along these dimensions, it goes through the

full depth of the input volume. This means a neuron has as many connections along the depth axis as

the depth of the original input volume. Its total number of connections along all dimensions is then

equal to the element-wise multiplication of the width and height size F of the kernel and the depth of

its received input. Also note that each neuron has as many weights as it has connections plus 1, as a bias

still has to be added. If one now looks back at the example of an input image with size 100 × 100 × 3,
the convolutional layer that directly follows the input layer will receive an input volume with the exact

same dimensions as the original data. When a filter with size 2 × 2 is applied, a single neuron in that

layer will then have only 2 · 2 · 3 = 12 connections, instead of the 30.000 in a fully connected NN.

Another intervention is needed however to reduce the number of parameters in a convolutional layer.

To illustrate this, we will calculate the size of the output volume of the convolutional layer in the above

example with a stride S = 1, a padding of P = 0, andK = 128 applied filters. Using equation (12), the
output volumeW is equal to:

W =
100− 2 + 2 · 0

1
+ 1

= 99

The output volume thus has a dimension of 99× 99× 128. As each output is associated with a neuron,

the number of neurons in this convolution layer is equal to 99 · 99 · 128 = 1.254.528. As previously
calculated, each neuron has 12 connections with 13 accompanying weights. This finally results in a total

parameter number of 1.254.528 · 13 = 16.308.864 for just this one single convolutional layer, which
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would quickly lead to overfitting. To solve this problem, parameter sharing is applied. The idea behind

this is that if a feature is useful to calculate at one position of the input volume, then it will also be

useful to calculate that exact same feature at another position of the input volume. Every neuron that

is part of the same feature map can thus share the same parameters, resulting in K unique sets of

weights and biases. In the given example, this means that there would only be 128 different sets of

weights and biases, where each set consists of 13 parameters, resulting in a total number of parameters

of 128 · 13 = 1664. This parameter sharing scheme can also be relaxed if the network has to learn

different features on each side of its input.

After the output volumeof a convolutional layer is calculated, it is typically activated by the ReLu function

before it gets passed to the following layer. To illustrate the inner workings of a convolutional layer, a

visual example is given in figure 3.10.

Figure 3.10: Inner workings of a convolution layer (Karpathy et al., 2016). Blue indicates the 3D input volume, where the third

dimension (depth = 3) is illustrated as a stack of 2D inputs. Red indicates the filters (size F=3x3), and green the 3D

output volume (depth = 2; equal to the number of filters used). The filter W0 is applied on the full depth of the

input volume (highlighted in blue). The values are multiplicated elementwise, summed up, and offset with a bias

b0. This results in the highlighted green output, which is found in the first slice of the depth stack. When filter

W1 is used, its result will be found within the second slice of the output volume depth stack.

3.3.2. Pooling layer

After one or more consecutive convolution layers, a pooling layer is added to reduce the output volume

along its width and height dimension. This is done to reduce the number of parameters in the network

which consequently also combats overfitting. In this layer, a kernel slides over every feature map and

applies a function to its input. This function can be the average or L2-norm but most commonly, the

max function is used where only the maximum value over all its seen inputs is retained. Note that the

30



3. DEEP LEARNING

pooling kernel does not go through the full depth of its input volume, and is instead applied on every

feature map separately. The depth dimension of the input volume is therefore not changed.

A pooling layer has no parameters associated with it as it only applies a fixed function. It however

consists of two hyperparameters, namely the size F of the kernel and its stride S. Using these hyperpa-
rameters together with the input volume V , a slight variation of equation (12) is used to calculate the

size of the output volumeW :

W =
V − F

S
+ 1 (13)

A visualisation of how a max-pooling layer works can be seen in figure 3.11.

Figure 3.11: Visualisation of application of amax pooling layer onto a single depth splice. (Karpathy et al., 2016). A single depth

slice extracted from the input volume with a height and width equal to 4x4 is illustrated on the left. The max-pool

kernel of size 2x2 and with stride 2 is applied onto the depth slice. Each colour block indicates an application

of the max-pool kernel. This results in the output volume on the right, where the result of each applied kernel

operation is visualised by its accompanying colour.

3.3.3. Following layers

A CNN always ends with one ormore of the classical fully connected hidden layers. The neurons in these

fully connected layers are arranged in a 1Dmanner, as opposed to the 3D arrangement in the pooling or

convolutional layers. To ensure the neuron connections between the last convolutional layer and the first

fully connected layer, a flatten layer is added. This layer takes the 3D output from the last convolutional

layer and reads it one feature map at a time. While reading a feature map, all values are concatenated,

resulting in one big vector. The other feature maps are added to the same vector after the values of the

previous maps. This eventually results in a vector with a length equal to the element-wise multiplication

of the three dimensions of the output volume of the convolutional layer. The following fully connected

layer takes in the vector-output of the flatten layer, and passes it to the next fully connected layers.

When the last fully connected layer is reached, a prediction is made by the network and outputted.
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4.1. Splice site prediction

Research into splice site detection and prediction began during the mid to late eighties of the previ-

ous century, where the first developed algorithms used PWMs (Staden, 1984), syntactic pattern analysis

(Kudo et al., 1987), and homology to consensus splice sequences (Ohshima and Gotoh, 1987) to predict

donor splice sites in respectively viruses, mammals and eukaryotes. With an accuracy of 55% or worse

and many false positives (FPs), these algorithms failed to accurately predict splicing in test data. In the

meantime, NNs were also explored with pioneer work done by Lapedes et al. (1988), showing promising

results. Their network consisting of one hidden layer (figure 4.1a) was able to correctly identify 85% or

more of both acceptor and donor sites in an eukaryotic test dataset with sequences of length 11 bp , a

number which increased to 91% if the sequences covered a length of 41 bp. The observation that higher

accuracy is reached if the input sequences cover a broader range of nucleotides around the splice site

was confirmed by Brunak et al. (1991) and Hebsgaard et al. (1996). The network developed by Brunak

et al. (figure 4.1b) was able to reduce the number of false negatives (FNs) by a factor up to 30 in a human

dataset, while the NetPlantGene algorithm (Hebsgaard et al., 1996) programmed to identify splice sites

in A. thaliana had false positive rates (FPRs) lower than 1% if longer input sequences were used.

(a) NN used by Lapedes et al. (1988). (b) NN used by Brunak et al. (1991).

Figure 4.1: Two of the first NNs used for splice site prediction. Both networks are a feed-forward NN with one hidden layer.

The input layer takes sequences in one-hot encoding, and the output layer gives back an array of values between

0 and 1, holding the probabilities that the input sequences correspond to a donor (0) or an acceptor (1) splice site.

Characteristic for all these approaches is that the data used was highly skewed with the majority being

negative samples, and rarely covered more than 1000 samples for all classes together. Especially NNs

rely on a high number of training samples in order tomakemeaningful predictions, and as othermethods

were able to perform better on the same amount of data available, focus slowly turned away from NNs

to more conventional machine learning methods. An important break-through was made by the Gene-

Splicer algorithm by Pertea et al. (2001). This approach used a combination of a hidden Markov model

(HMM) and a maximal dependency tree (MDT) and became the standard to benchmark new algorithms

to, as it had less missed true splice sites compared to other models such as NetPlantGene (Hebsgaard

et al., 1996) and Genie (Reese et al., 1997), while still maintaining the same FPs rate. The number of

sequenced genomes was however growing rapidly (figure 4.2), meaning NNs could theoretically again

be competing with the now more popular other machine learning methods. However, no hardware

was available at that time that could efficiently handle the fine-tuning of the millions of parameters

present in large scale NNs, and NNs were mostly - temporally - abandoned for use in DNA annotation.

While therewere still several publications using NNs, reported networkswere small and used for specific

problems such as alternative splicing in humans (Wang and Marín, 2006) and Aspergillus (Wang et al.,
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2009), prediction using secondary structure information (Marashi et al., 2006), and in combination with

other approaches such as HMMs (Liu et al., 2007). An alternative to NNs, SVMs, quickly became popular

as they too are able to introduce non-linearity when the kernel trick is used. However, SVMs were

less computationally intensive and were therefore preferred. Algorithms based on a SVM were able to

generalise well on a number of species (Dror et al., 2005; Zhang et al., 2006; Sonnenburg et al., 2007)

and became the new norm for splice site prediction at that time.

Figure 4.2: Growth of added DNA sequences in both the

GenBank and WGS database. The number of

bases present in each database doubles approx-

imately every eighteen months (data collected

from NCBI, 2018).

A turning point in deep learning applica-

tion came in 2012 with the publication of

the AlexNet algorithm (Krizhevsky et al.,

2012) to classify images using a CNN con-

sisting of eight layers. In their paper,

Krizhevsky et al. explained their newly in-

vented dropoutmethod; amethodwhich

is nowadays still used as one of the stan-

dard approaches to reduce overfitting.

Yet themost important developmentwas

their use of GPUs to train their model.

GPUs are able to process large numbers

of data in parallel, and thus offer a sig-

nificant speed boost in parameter tun-

ing during training (Beam, 2017). This

meant that larger models could now be

programmed, which led to smaller error

rates in predictions. With the still expo-

nentially growing amount of sequence data (figure 4.2), AlexNet prompted a new surge of interest in

NNs and initiated their use as a promising golden standard for splice site annotation. Nguyen et al.

(2016) developed a six layer CNN, taking one-hot encoded input, for annotation of splice sites in pri-

mates. The authors reported an average accuracy of 96%, which is a 1.5% absolute increase compared

to the previous best achieved average accuracy by Li andWong (2003) on the same dataset. However, no

mention was made of the FPR and the dataset used contained only 3000 samples. Excellent use of the

growing amount of DNA data was done by Naito (2018), with their human splice site dataset consisting

of over 50000 sequences in total. Their network consists of amix of a CNN and a RNN and outperformed

previous methods utilising the same dataset, proving that the use of NNs can lead to better prediction

performance. This conclusion was shared by Zuallaert et al. (2018), who managed to improve the false

discovery rate (FDR) on plant and human datasets by a relative value of 80.9%. Zuallaert et al. also

have an online version of their prediction algorithm called SpliceRover, making it one of the most recent

splice prediction programs. Other current state of the art online algorithms and their techniques used

to identify the splice sites are listed in table 4.1.

4.2. Promoter prediction

Automatic promoter prediction gained traction around the sametimeas automatic splice site prediction,

with prokaryotes as the initial species of interest. Prokaryotic promoters consist of only two elements

which are highly conserved and always present in prokaryotic species. This type of promoter thus pro-

vided an ideal situation for developing the first promoter recognition algorithms, as it lacks the high

diversity typically found in eukaryotic promoters. Similar to splice site recognition, focus was divided

between more conventional machine learning techniques and NNs.

One of the first state of the art algorithms was the PROMSEARCH algorithm by Mulligan and Mcclure

(1986) which used the base composition of the observed sequence for promoter prediction. It reached
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an accuracy of 80.6% on an unseen prokaryotic promoter test set, with only 0.85% of the 49 test in-

stances reported as false positives (Horton and Kanehisa, 1992). It was succeeded by the consensus

sequence algorithm of O’Neill and Chiafari (1989), which reached a nearly equal accuracy of 78% in a

dataset of 52 E. coli sequences. However, both algorithms were heavily outperformed by the NN de-

signed by Demeler and Zhou (1991) as their network with one hidden layer was capable of correctly

identifying nearly 100% of the 130 true promoter instances in their E. coli dataset.

In the mid nineties, efforts were made to construct a database holding known eukaryotic promoter se-

quences, resulting in the Eukaryotic Promoter Database (EPD, Cavin Perier et al. (1998)). Algorithms

focusing on species other than prokaryotic organisms became popular, such as PromFind (Hutchinson,

1996) (vertebrates) and PROMOTER SCAN (Prestridge, 1995) (primates). The algorithms used respec-

tively a differential hexamer frequency approach and a PWM, with reported accuracies of 62.1% and

70%. However, this dropped to 29% and 13% in an independent study conducted by Fickett and Hatzige-

orgiou (1997) using 18 previously unpublishedmammalian sequences, proving that eukaryotic promoter

prediction is a problem of a vastly larger extent than prokaryotic promoter prediction. NN approaches

were conducted by Matis et al. (1996) and Larsen et al. (1995), yielding accuracy rates of respectively

73% and 44.6%. Contrary to splice site prediction, NNs for eukaryotic promoter recognition thus pro-

vided no immediate advantage over algorithms implementing other machine learning techniques.

In the following years, little progress was made in improving the accuracy and FPRs for recognition of

mammalian eukaryotic promoters. Ohler stated in 2000 that focus needed to be shifted away from the

primary DNA sequence onto additional features such as DNA bendability in order to make meaningful

progress. This was in strong contrast with prokaryotic promoter prediction and plant promoter pre-

diction, where accuracy rates as high as 97% were reached for bacterial sequences in a dataset of 125

samples using a NN (Kalate et al., 2003), and 82% for a plant dataset with a 166:1 false/positive sample

ratio (Shahmuradov et al., 2005). The prediction of human promoters also became popular during that

time. Bajic et al. (2004) reviewed eight state-of-the-art human promoter prediction software tools on

nearly 8000 whole genome sequences. They showed that none of the models reached precision nor

recall rates over 65%, although FirstEF was previously reported achieving over 83% precision and recall

(Davuluri et al., 2001). Bajic et al. assigned this performance gap to the way the 8 models were tested

on only chromosome 22, which is an atypical chromosome due to its elevated G+C content, and results

could therefore not be extrapolated onto other chromosomes. They concluded that the current state

of technology did not allow for accurate promoter predictions on the whole human genome, and that

other features aside from the base sequence need to be taken into account as well in order to make

improvements. Although 5 of the 8 models under review were NNs, no evidence was found that they

perform significantly better in predicting human promoters than other non-NN algorithms.

In the meantime, several online promoter prediction tools were developed that still can be used to this

date. Promoter 2.0 (Knudsen, 1999) utilises a NN to predict vertebrate Pol II promoters, but has as lim-

itation that it only accepts 50 sequences at once. The NNPP (Reese, 2001) tool runs a NN to predict

eukaryotic promoters. It however still uses the 1999 release of the program, and has only been trained

on 565 and 1941 positive promoter sequences of respectively fruitflies and humans. More recent algo-

rithms able to predict promoters are CNNProm (Umarov and Solovyev, 2017), TSSPlant (Shahmuradov

et al., 2017), and ElemeNT (Sloutskin et al., 2015). Their target species and technique utilised to develop

the model are listed in table 4.1, along with other frequently cited or recently developed PPPs.

A significant problem in the reported articles is the availability and construction of negative promoter

samples. This was already highlighted in the early years of promoter prediction, with Demeler and Zhou

(1991) achieving an accuracy of nearly 100% on their test set. Demeler and Zhou used randomly gener-

ated DNA sequences for their negative samples, inadvertently creating a dataset which consists of two

nearly completely distinct classes. An algorithm trained on such a dataset will have little trouble separat-

ing the two classes due to their lack of shared features, resulting in biased predictions that seem overly

positive, and failing to make accurate generalisations on more intricate datasets where the distinction

between the promoters and non-promoters is not as clear. Other approaches used to circumvent this
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negative sample problem are selecting sequences from the same species but with a different annotation

(Prestridge, 1995), random extraction of coding sequences within the same species (Liu et al., 2018), or

sequences from a related organism (Towell, 1993). Gusmao and de Souto (2014) conducted a com-

parative study for the prediction of promoters in the E. coli bacteria with different negative samples

constructed using the approaches previously explained. They found that the different negative sam-

ple scenarios greatly impact the performance scores of the PPPs, and suggest to assess each scenario

by training a new classifier and evaluating them separately or to use a mix of different approaches to

construct the final negative promoter dataset.

Table 4.1: State of the art prediction programs for splice sites (A) and promoters (B). The first column specifies the name of

the prediction tool, the second the species for which the tool was developed, the third the technique which the

underlying algorithm utilises to make its predictions, and the fourth the reference to the article in or site on which

the tool is described.

Name Species Technique Reference

A. Splice sites

FSPLICE eukaryotes not specified http://www.softberry.com

GeneSplicer A. thaliana, human decision tree, Markov model Pertea et al. (2001)

HSF human PWM Desmet et al. (2009)

HSplice vertebrates SVM Meher et al. (2016c)

MaLDoSS human random forest Meher et al. (2016b)

NetAspGene 1.0 Aspergillus NN Wang et al. (2009)

NetGene2 Server A. thaliana, C.elegans, human NN Brunak et al. (1991); Hebsgaard

et al. (1996)

NetPlantGene A. thaliana NN Hebsgaard et al. (1996)

NNSPLICE fruitfly, human NN Reese et al. (1997)

PreDOSS vertebrates SVM, NN, random forest Meher et al. (2016a)

SPL A. thaliana, C.elegans, yeast,

fruitfly, human

linear discriminant analysis Solovyev et al. (1994)

SplicePort human feature generation Dogan et al. (2007)

SplicePredictor eukaryotes bayesian models Brendel et al. (2004)

SpliceRover A. thaliana, human CNN Zuallaert et al. (2018)

SPLM human PWM Solovyev (2008)

B. Promoters

70ProPred prokaryotes SVM He et al. (2018)

BacPP E. coli NN de Avila e Silva et al. (2011)

BPROM bacteria linear discriminant analysis Solovyev and Salamov (2010)

CNNProm E. coli, B. subtilis, A. thaliana,

mouse, human

CNN Umarov and Solovyev (2017)

ElemeNT eukaryotes PWM Sloutskin et al. (2015)

EP3 eukaryotes not specified Abeel et al. (2008)

FPROM human linear discriminant analysis Solovyev et al. (2010)

GPMiner mouse, rat, dog, chimpanzee,

human

SVM Lee et al. (2012)

iPromoter-2L E. coli random forest Liu et al. (2018)

NNPP prokaryotes, eukaryotes NN Reese (2001)

PROMH eukaryotes linear discriminant analysis Solovyev and Shahmuradov

(2003)

Promoter 2.0 vertebrates NN Knudsen (1999)

PromoterInspector mammals not specified Scherf et al. (2000)

PromoterPredict E. coli PWM Bharanikumar et al. (2018)

TSSG mammals linear discriminant analysis Solovyev et al. (2010)

TSSP plants linear discriminant analysis Solovyev et al. (2010)

TSSPlant plants NN Shahmuradov et al. (2017)

TSSW human linear discriminant analysis Solovyev et al. (2010)
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5.1. Datasets - Splice sites

5.1.1. Arabidopsis thaliana
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Class distribution within the ARAsplice dataset

Figure 5.1: Class distribution within the A. thaliana splice dataset.

The exact number of samples per class is shown on top

of the bars.

The A. thaliana splice site dataset - re-

ferred to as ARAsplice - was acquired

through the VIB in the fall of 2016. It con-

tains 559250 sample sequences in four

distinct classes, covering 1486 different

genes. The four classes consist out of

negative pseudo donor sites (donorNeg,

263507 samples), negative pseudo ac-

ceptor sites (acceptorNeg, 277225 sam-

ples), positive true donor sites (donor-

Pos, 9208 samples), and positive true

acceptor sites (acceptorPos, 9310 sam-

ples). Both negative sample classes cover

all 1486 genes, while the donorPos class

consists of samples from 1330 genes and

the acceptorPos class from 1334. The

data is heavily skewed in favour of the

negative samples, with a ratio of 29 negative samples for every single positive sample (figure 5.1). Each

sample is 402 bp long, and both true and pseudo donor and acceptor sites are found in themiddle of the

sequence. Benchmark prediction results exist for ARAsplice due to it being used as a dataset in articles

by Degroeve et al. (2005) and Zuallaert et al. (2018). The construction of the dataset is described in full

detail in the former, and can also be found in appendix A.

The difference in characteristics between the sequences from the four splice site classes is visualised

in sequence logos in figure 5.2. Here it is seen that all classes share the major consensus sequences

GT and AG innate to respectively donor and acceptor splice sites. However, the positive classes have a

higher nucleotide conservation around their splice sites than their negative counterparts, showing that

true splice sites can possibly be recognised by the presence of these nucleotide regions. Note that the

number of genes in the dataset received from the VIB is different from the number of genes reported

by Degroeve et al. (1486 vs. 1495). This is probably due to a loss of information when the dataset was

handled in the VIB. This can be seen in the received dataset where 127169 sequences were given the

meaningless gene descriptionof ’fasta’, with the vastmajority of these sequences belonging to either the

donorNeg or the acceptorNeg class. As this number of sequences is nearly one fourth of all samples in

the entire dataset, these sequenceswere not removed and simply assigned ’fasta’ as their accompanying

gene.

5.2. Datasets - Promoters

Promoter prediction is done for two different species, namely A. thaliana andH. sapiens. As explained in

section 4.2, special attention has to be given to the creation of the negative dataset in order to avoid bi-

ased prediction results. To this end, twomain approaches for negative sample construction are explored

called the balanced and conserved approach. The balanced approach ensures that the number of neg-

ative samples is equal to the number of the positive ones. The novel conserved construction method
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Figure 5.2: Sequence logo around around the (pseudo) donor or acceptor siteswithin theA. thaliana splice site dataset (a) True

donor sequences (donorPos class). (b) True acceptor sequences (acceptorPos class). (c) Pseudo donor sequences

(donorNeg class). (d) Pseudo acceptor sequences (acceptorNeg class).

is equal to the balanced scheme, with the alteration that the most conserved consensus sequences in

the positive samples are always retained in the negative samples too. An overview of the resulting four

different datasets and their composition is given in table 5.1. In all datasets, the positive samples are

referred to as promPos and the negative samples as promNeg.

Table 5.1: Overview of the five different datasets used in promoter prediction. The first column holds the name of the dataset,

the second column specifies which species the samples are extracted from, and the third column gives a brief de-

scription on the approach used to design the negative samples. The fourth indicates the positive to negative sample

ratio.

Name Species Construction negative set Sample ratio

Training sets

ARAprom balanced A. thaliana 40% similarity to positive samples 1:1

ARAprom conserved A. thaliana 40% similarity to positive samples with conservation of TATA-box

and TSS

1:1

HOMprom balanced H. sapiens 40% similarity to positive samples 1:1

HOMprom conserved H. sapiens 40% similarity to positive samples with conservation of TSS 1:1

5.2.1. Arabidopsis thaliana positive sample set

The Arabidopsis thaliana positive promoter dataset - referred to as ARAprom - was collected from the

public EDPnew database (Dreos et al., 2013) in spring 2019. It contains 22703 Pol II promoters from

22701 different genes, covering TATA-boxes and initiator elements as core promoter elements, and GC-

and CCAAT-boxes as proximal promoter elements. The extracted sequence length was set to 300 bp,

ranging from -249 to +50 bp relative to the TSS. The base composition around the TSS is visualised in

??a, where two conserved regions can be distinguished. The first region is found between approximately

-35 to -25 and makes up the TATA-box found in the core promoter. The second conserved region is the

inr, encountered around the TSS’s position at +1. The assembly pipeline as done by EDPnew is further

elaborated and visualised in appendix B.
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5.2.2. Homo sapiens positive sample set

Similarly as the ARAprom dataset, the H. sapiens positive promoter dataset or HOMprom set was ac-

quired through the public EDPnew database (Dreos et al., 2013) in spring 2019. It consists of 29598 Pol

II promoters from 16455 different coding genes. Each sample contains at least one promoter element

from the following list: a TATA-box, an inr, a GC-box, or a CCAAT-box. The sequence length of the down-

loaded samples was set to 300 bp, ranging from -249 to +50 bp relative to the TSS. The region around

the TSS is pictured in ??b. The sequence composition in human promoters is much more conserved

around the TSS than for A. thaliana promoters, although the inr around position 0 seems to knowmore

variation in humans. The consensus logo for the TATA-box is also nearly completely absent, indicating a

more diverse sequence composition around position -35 to -30 compared to the ARAsplice dataset. The

full assembly pipeline as done by EDPnew is explained in appendix B.

Figure 5.3: Sequence logos around the TSS of the positive samples in the promoter datasets of (a)A. thaliana and (b)H. sapiens.

.

5.2.3. Negative sample construction

Two approaches are tested, namely the balanced construction method by Oubounyt et al. (2019), and

the newly proposed conserved approach. The effect of the two approaches on the base composition of

the negative samples is visualised in respectively figure 5.4b and figure 5.4c for the ARAprom dataset.

In figure 5.4a, the original base composition of the positive samples is given as a reference to show the

differences between the positive and negative samples.

Balanced set

In this approach, the negative samples are constructed according to the method laid out by Oubounyt

et al. (2019). Every positive sample is split into 20 windows with a length of 15 bp. From these subse-

quences, the contents of 12 randomly selected windows are replaced by randomly chosen DNA bases.

The remaining 8 are not altered in any way in order to preserve a certain level of similarity between

the two samples. The 12 new sequences and 8 conserved sequences are then concatenated together in

their original order to form a negative sample.

This results in an artificial negative sample for each positive sample, and thus in a completely balanced

dataset. As 8 out of 20 windows are conserved between the positive and negative sample, the two

samples share approximately 40 percent similarity to each other. The negative sample construction

procedure according toOubounyt et al. is illustrated in figure 5.5, and the resulting consensus sequences

in figure 5.4b for the ARAprom dataset. Here it is seen that the major consensus sequences present in

the positive samples are still retained, although to a much lesser degree.
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Figure 5.4: Visualisation of the differences between the negative sample construction approaches. (a) Positive samples. (b)

Negative samples with balanced approach. (c) Negative samples with conserved approach.

Conserved set

When testing the negative sample method by Oubounyt et al., it became clear that the technique was

too liberal to provide a stimulating dataset for the deep learning algorithms. Therefore their method is

slightly altered to yield the conserved method. In this approach, the windows with a highly conserved

consensus sequence are always picked for incorporation into the negative sample, with the remaining

windows being picked in such a manner that an overall similarity percentage of 40% is obtained. This

is done so the DNN is forced to use other, less obvious, features to learn the distinction between pro-

moter and non-promoter samples. For the ARAprom set, the windows containing the TATA-box and inr

(respectively window number 14 and 16) are conserved in the negative sample, with 6 other windows

being randomly selected for conservation from the 18 remaining ones. In the HOMprom dataset, only

the inr (window number 16) is conserved across the different samples, resulting in 7 out of 19 remain-

ing windows taken randomly for conservation in the negative sample. A sequence logo of the resulting

negative samples is plotted in figure 5.4c for the ARAprom dataset. The TATA-box and inr are conserved

in an equal degree between the positive and negative samples. Between these two major consensus

sequences, it is seen that no conservation takes place due to the random sampling method used in the

construction approach.

5.3. Preprocessing of the data and its labels

5.3.1. Data splitting

Each dataset is split into a training, validation, and test set, with respectively an 80-10-10 percent distri-

bution of the original dataset. Two different data splits have been applied, namely the stratified and the

grouped split. The first split focuses on the problem of a large class imbalance, while the second one

ensures that no genes are shared over the three different data splits.
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Figure 5.5: Negative promoter sample construction procedure as pictured in Oubounyt et al. (2019). Each positive sample is

split into 20 windows of length 15 bp . 8 windows are randomly chosen to be conserved (green squares) in the

newly constructed negative sample. The remaining 12 windows get substituted by randomly chosen sequences

(red squares) and are assembled into the negative sample, yielding a fully constructed negative sample that shares

40% similarity to its accompanying positive one.

Stratified split

The stratified data split ensures that the train, test, and validation splits all have the same class distribu-

tion as the original dataset. When a certain class is under-represented in the training set, the network

will fail learning to predict this class correctly, which will result in poor test results. If this happens in the

validation or test sets, the final results will be overly positive or negative, and will not reflect the true

state of the data under observation. By making a stratified split, each class has the same representation

in every split and no skewing can take place during the training or testing phase of the deep learning net-

work. It is achieved by applying the train_test_split function from the Scikit-learn Python package

(Pedregosa et al., 2011).

Grouped split

It is possible that sequences extracted from the same gene share underlying characteristics which the

NN could pick up on. If these sequences are distributed over the training and test sets, test results could

become biased as the model will have less difficulty predicting these sequences as it has already seen

a near similar instance during its training phase. In order to avoid this situation, a grouped split was

made. Here the original dataset is split in such a way that no overlapping genes are found between the

training, test and validation set. This is donewith the use of the GroupShuffleSplit function from the

Scikit-learn Python package (Pedregosa et al., 2011). This function has no option to stratify the samples,

and thus each of the three different splits has a different class distribution compared to each other and

the original dataset. Results from this split should therefore be interpreted with caution if the number

of covered genes greatly differs from the number of samples.

As no gene information was given for the ’fasta’ gene samples in the ARAsplice set, these were removed

before the train-test-validation group split was made. This resulted in a removal of 127169 sequences

in total - of which 65801, 59650, 859, and 859 and were removed from respectively the acceptorNeg,

donorNeg, donorPos, and acceptorPos class - and gave rise to a new class distribution of 1:25 positive

to negative samples. The grouped split was not applied on the promoter prediction datasets as the

negative sample set partly consist out of randomly created sequences, abandoning the association with

a certain gene.
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5.3.2. Data augmentation

While creating the promoter prediction program PromoterInspector, Scherf et al. (2000) found that a

predicted promoter sequence on a DNA strand came with another predicted promoter region on the

opposite DNA strand at the same location. This could indicate that DNA consists out of promoter re-

gions instead of orientation-specific promoter sequences tied to only one DNA strand. Because of this

implication, a data augmentation scheme is proposed for use in unbalanced datasets where the reverse

complementary strand is constructed for every positive sample. This way the class imbalance between

positive and negative samples is lessened and the DNN is provided with more learning samples. The

augmented samples are aligned to the other samples in the dataset in order to avoid highly similar se-

quences, again using the Clustal Omega program (version 1.2.4; Sievers and Higgins (2018)). For the

ARAsplice set, the augmented samples are aligned to only a randomly chosen subset of the original

samples in the dataset, as the available computational resources are not sufficient for alignment with

the nearly 600000 sequences contained in the entire dataset.

5.3.3. Data encoding

A NN cannot handle non-numerical data. As DNA consists out of character data, each letter of the DNA

alphabet has to be cast to a new, numerical variable. Two encodings are explored to achieve this, namely

the commonly used one-hot encoding and the newly proposed k-mer encoding.

One-hot encoding

One-hot encoding is widely spread in the deep learning community as a standard for data encoding due

to its simplicity and good performance. Each variable in the data is represented as a binary vector with

a length equal to the total number of unique classes in the data, which were all assigned a temporary

integer value. Its accompanying one-hot vector is then a vector of all zeros, except with a value of one

found at the index of the assigned integer. For use on DNA data, this means that each letter of the

genetic alphabet is represented as a 1D row vector of length 4. The exact encoding used in this master

dissertation is A = [0001], C = [0010], G = [0100], T = [1000], and unknownnucleotidesN = [0.5 0.5 0.5 0.5].
A sequence of length l is then represented as a 2D matrix with a shape of [l× 4], and the entire dataset

with n samples as a [n × l × 4] matrix. If sequences of differing length are present within the dataset,

the length of all sequences is set to the length of the longest sample and gaps are padded with N values.

K-mer encoding

K-mer encoding works by establishing a vocabularium and counting how many times each word in the

vocabularium occurs in each sample. This way, every sample is transformed into a 1D numerical array

with a length equal to the size of the vocabularium. It can thus transform a dataset where samples have

different lengths into a dataset where samples all have an equal length. This is especially interesting in

the application of deep learning for the automatic recognition of promoters, as promoters can range

from 100 bp to as large as several thousands of bp . Setting the sample length immediately to a large

fixed bp length, shorter promoters will be surrounded by non-contributing bases that add noise to the

data. With k-mer encoding, every sample can still have its own length. Its use stems from the bag-of-

words model used in natural language processing and has to this date not been applied in splice site or

promoter prediction with deep learning, to the best of our knowledge.

The vocabularium consists of every possible ’word’ or k-mer of at most length k using the four letters

of the DNA alphabet. All shorter k-mer lengths are also taken into account, until a length of k = 1 is

reached. This amounts to a vocabularium with a size v equal to
∑k

i=1 4
i. After this, every sample in

the dataset is split into their respective k-mers. This is done by sliding a window with size k over the

sequence, one step at a time, and for every value of k between 1 and its maximum number. For every

sample it is then counted how many times each unique k-mer from the global vocabularium occurs,

and the count is divided by the length of the sample sequence to account for the imbalance that longer

sequences will have more counts for the lower k-mer values. Unknown nucleotides (N) are cast to an
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arbitrarily chosen nucleotide before they are counted. All counts are then inserted into a 2Dmatrix with

shape [n × v], with n the number of samples in the dataset and v the total size of the vocabularium.

Row i holds the k-mer counts for the ith sample in the dataset. In figure 5.6, an example is given on

how k-mer encoding works on a DNA dataset with samples of varying lengths. To see if k-mer encoding

has the potential for being a successful DNA encoding, histograms of the kmer-counts per dataset class

have been plotted to see if a difference in distribution is encountered. For every k-mer, the total count

is divided by the number of sequences in the class to obtain the k-mer count per sequence. These plots

are shown and further discussed in chapter 6.

Figure 5.6: Example of k-mer encoding on a DNA dataset with samples of varying length, with k = 2. (a) Construction of

the vocabularium. All possible combinations with the four DNA bases are made, starting from a length of 1 until a

length of k = 2 is reached. All combinations are then joined together into one global vocabularium of size v = 20.
(b) The DNA dataset holding three samples (n = 3) of varying length, and their split into their respective 1- and

2-mers. Unknown nucleotides (N) are cast to an arbitrary chosen nucleotide. (c) Table holding the absolute counts

for each sample in the dataset and for every k-mer in the vocabularium. The table has a fixed shape of [3 × 20].
The next and final step consists of dividing each row entry by the length of its accompanying sample (not pictured).

As the function
∑k

i=1 4
i is an exponential function, the size of the vocabularium will grow quickly with

rising values of k. To save computational space, speed up the deep learning process and avoid meaning-

less features, k-mer encoding is only tested for k ∈ [3, 5]. Also note that k-mer encoded data needs an

extra, second dimension if it is to be used with a 1D CNN designed for one-hot encoded data.

5.3.4. Label encoding

Labels from the ARAsplice set are one-hot encoded into 1D arrays of length 4, with [0 0 0 1] = accepter-

Pos, [0 0 1 0] = acceptorNeg, [0 1 0 0] = donorPos, and [1 0 0 0] = donorNeg. For the promoter datasets

vectors of length 2 are used, with the non-promoter class cast upon the [0 1], and the promoter class

upon [1 0].

5.4. Deep neural networks

Different deep learning architectures are proposed according to the task at hand. For every one of

these architectures, the validation loss is monitored and the model’s weights are saved for every epoch

during the training process. When training ends, the model is reverted back to the state it was in when

the lowest validation loss was encountered, ensuring the best possible model is selected for further

use. After the model is evaluated on the test set, for each sample it will output a probability vector

ŷ = [p0, . . . , pi, . . . , pk], with k the number of classes in the dataset and pi the probability of a sample
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belonging to class i. The predicted label of the sample ŷ is then set to the corresponding class of the

index where the highest value was encountered, or ŷ = arg max ŷ.

5.4.1. Splice site prediction

One-hot encoded data

The first part of splice site prediction consists of establishing the baseline results obtained by Zuallaert

et al. (2018). To this end their proposed network called SpliceRover is implemented as described in the

research article by Zuallaert et al., with the exception that four neurons are used in the output layer

instead of two. SpliceRover exists out of five 2D convolutional layers with three 2D max-pooling layers,

six dropout layers, one fully connected layer and an output layer, and is designed for use with one-hot

encoded data. As 2D convolutional layers take 3D data as input, the one-hot encoded data is expanded

with another dimension using the expand_dims function from the NumPy Python package (Oliphant,

2006). In order to avoid this expansion of dimensions, a new version of SpliceRover is implemented

with 1D convolutional andmax-pooling layers, using the same hyperparameters as provided by Zuallaert

et al.. The networks are respectively referred to as SpliceRover2D and SpliceRover1D, and are both

visualised in figure 5.7. The hyperparameters for the used layers in the network and for the network itself

are found in table 5.2. For the learning rate, a step decay schedule is used. This means the learning rate

is divided by a certain factor each time after an user-specified number of epochs has passed. Changing

the learning rate during training helps with faster convergence of the algorithm.

Figure 5.7: Visualisation of the SpliceRover2D model. Values indicated with an ’*’ are omitted to obtain the SpliceRover1D

model. All convolutional and dense layers are activatedwith a ReLu, except for the output layerwhich has a softmax

activation function.

K-mer encoded data

The second part of splice site prediction consists of evaluating the k-mer encoding. Different network

architectureswere designed to achieve this, yet none proved sufficient in accurately predicting the k-mer

encoded splice data. This is further discussed in section 6.1.2.

5.4.2. Promoter prediction

Four networks are developed for the promoter prediction task, namely one for the different combina-

tions of encoding and species. The networks are named to species promoter sequences they predict,

with ARApromnet for A. thaliana prediction and HOMpromnet for H. sapiens prediction. No different

names are used for the different encodings and will always be mentioned in plain text. After training of

the HOMpromnet model on both the balanced and conserved H. sapiens promoter dataset, the trained

models are used to predict the Berkeley Drosophila Genome Project (BDGP, Reese (2001)) H. sapiens

test dataset.
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Table 5.2: Overview of the SpliceRover2D and SpliceRover1D splice site models for use with A. thaliana splice site data. The

first column specifies which layers are used in consecutive order. The second column gives more information about

the parameter settings specific to the used layer, while the third column indicates their used activation function (if

applicable). The fourth and fifth column show the hyperparameters and their accompanying value.

Layer Details Activation Hyperparameter Value

SpliceRover2D

convolution 2D 70× (9,4) ReLu batch size 128

dropout p = 0.2 - optimizer SGD (nesterov TRUE)

convolution 2D 100× (7, 1) ReLu learning rate 0.05

dropout p = 0.2 - learning rate decay 0.5 every 5 epochs

convolution 2D 100× (7, 1) ReLu epochs 50

max-pool 2D (3,1) - loss categorical cross-entropy

dropout p = 0.2 -

convolution 2D 200× (7, 1) ReLu

max-pool 2D (4,1) -

dropout p = 0.2 -

convolution 2D 250× (7, 1) ReLu

max-pool 2D (4,1) -

dropout p = 0.2 -

fully connected 512 neurons ReLu

dropout p = 0.2 -

fully connected 4 neurons softmax

SpliceRover1D

convolution 1D 70× (9) ReLu batch size 128

dropout p = 0.2 - optimizer SGD (nesterov TRUE)

convolution 1D 100× (7) ReLu learning rate 0.5

dropout p = 0.2 - learning rate decay 0.5 every 5 epochs

convolution 1D 100× (7) ReLu epochs 50

max-pool 1D (3) - loss categorical cross-entropy

dropout p = 0.2 -

convolution 1D 200× (7) ReLu

max-pool 1D (4) -

dropout p = 0.2 -

convolution 1D 250× (7) ReLu

max-pool 1D (4) -

dropout p = 0.2 -

fully connected 512 neurons ReLu

dropout p = 0.2 -

fully connected 4 neurons softmax
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One-hot encoded data

The same network architecture is used for predicting the one-hot encoded promoter sequences in the

A. thaliana and H. sapiens promoter datasets, although with slightly different hyperparameter settings.

They consist of three consecutive series of a convolutional layer, a max-pooling layer, and a dropout

layer. After the last dropout layer, two dense layers and an output layer are added, where each one of

the dense layers is followed by a dropout layer. The global network architecture is pictured in figure 5.8a.

More details about the layers and used hyperparameters are found in table 5.3.

K-mer encoded data

Both the ARApromnet and HOMpromnet networks for k-mer encoded data consist of 2 fully-connected

layers with respectively 256 and 512 neurons, and one output layer. The networks are visualised in

figure 5.8, and more info on their layers and hyperparameters is given in table 5.3.

(a) Promnet for one-hot encoded data. All convolutional and dense layers are activated with a ReLu, except for the output

layer which has a softmax activation function.

(b) Promnet for k-mer encodeddata. All layers are activatedwith a ReLu, except for the output layerwhich has a softmax output

function. The subscripts ’ara’ and ’hom’ indicate the layer-specific hyperparameters settings for use with respectively the

A. thaliana and H. sapiens promoter datasets.

Figure 5.8: Visualisation of the promnet architectures for use with the one-hot and k-mer encoded promoter data.
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Table 5.3: Overview of the ARApromnet and HOMpromnet models for use with respectively A. thaliana and H. sapiens pro-

moter data. The first column specifies which layers are used in consecutive order. The second column gives more

information about the parameter settings specific to the used layer, while the third column indicates their used ac-

tivation function (if applicable). The fourth and fifth column show the hyperparameters and their accompanying

value.

Layer Details Activation Hyperparameter Value

ARApromnet (onehot)

convolution 1D 128×(6) ReLu batch size 128

max-pool 1D (3) - optimizer adam

dropout p = 0.3 - learning rate 0.001

convolution 1D 256×(6) ReLu epochs 30

max-pool 1D (3) - loss categorical cross-entropy

dropout p = 0.3 -

convolution 1D 512×(3) ReLu

max-pool 1D (3) -

dropout p = 0.3 -

dense 512 neurons ReLu

dropout p = 0.3 -

dense 512 neurons ReLu

dropout p = 0.3 -

dense 2 neurons softmax

HOMpromnet (onehot)

convolution 1D 128×(6) ReLu batch size 128

max-pool 1D (3) - optimizer adam

dropout p = 0.3 - learning rate 0.0005

convolution 1D 256×(6) ReLu learning rate decay 0.5 every 5 epochs

max-pool 1D (3) - epochs 50

dropout p = 0.3 - loss categorical cross-entropy

convolution 1D 512×(3) ReLu

max-pool 1D (3) -

dropout p = 0.3 -

dense 512 neurons ReLu

dropout p = 0.3 -

dense 512 neurons ReLu

dropout p = 0.3 -

dense 2 neurons softmax

ARApromnet (kmer)

dense 256 neurons ReLu batch size 128

dropout p = 0.3 - optimizer adam

dense 256 neurons - learning rate 0.001

dropout p = 0.3 ReLu epochs 30

dense 2 neurons softmax loss categorical cross-entropy

HOMpromnet (kmer)

dense 512 neurons ReLu batch size 128

dropout p = 0.3 - optimizer adam

dense 512 neurons - learning rate 0.0005

dropout p = 0.3 ReLu epochs 50

dense 2 neurons softmax loss categorical cross-entropy
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5.4.3. Performance measures

Figure 5.9: Generalised confusion matrix for mul-

ticlass classification with k classes.

Three performance measures are used to evaluate

a proposed DNN, namely precision (Pr), recall (Re),

and the false discovery rate (FDR). Precision is the

proportion between the true number of samples

belonging to a certain class and the predicted num-

ber of samples of that class, revealing how many of

the retrieved results are truly relevant. Recall indi-

cates howmany samples belonging to a certain class

are correctly predicted by the model, and thus illus-

trates howgood themodel is at retrieving that class.

FDR specifies the percentage of wrongly identified

samples over all samples predicted as belonging to

a certain class. All three measures are calculated

separately for each class in the test set, using the

multiclass confusion matrix. A generalised confu-

sion matrix for classification with k classes is visu-

alised in figure 5.9. Using a one vs. all approach, precision Pri, recall Rei and false discovery rate FDRi

for a class i are then calculated by applying following formulas:

Pri =
TPi

TPi + FPi
Rei =

TPi

TPi + FNi
FDRi =

FPi

TPi + FPi

=
xi,i∑k
j=0 xj,i

=
xi,i∑k
j=0 xi,j

=

∑k
j=0
j 6=i

xj,i∑k
j=0 xj,i

(14, 15, 16)

with TPi the number of samples of class i that are correctly predicted as class i, FPi the number of sam-

ples wrongly predicted as class i, FNi the number of samples of class i that were missed by the model,

and x the confusion matrix. The F1 score is also calculated in order to obtain one single value to com-

pare the different trained algorithms. It takes into account both precision and recall by calculating their

harmonic average, providing a single value to evaluate both. It lies between 0 and 1, with 1 indicating a

perfect precision and recall. The F1 score for class i (F1i) is determined by:

F1i = 2 · Pri · Rei
Pri + Rei

(17)

Class-specific precision-recall curves (PR-curves) are also plotted. To achieve this, a binary situation is

created for each class i where ŷ = [pi, 1− pi], with pi the probability of the sample belonging to class i
and 1− pi the probability of the sample belonging to any of the other classes. A probability threshold t
is then applied onto ŷ, where the sample is predicted as class i if pi ≥ t, and the corresponding precision
and recall values are calculated. This is done for a range of thresholds between 0 and 1, yielding a series

of recall and precision values. These series are plotted against each other in order to obtain the PR-curve

for each class.

5.5. Post-processing of the results

Results are tested for homoscedasticity using the Bartlett’s test. Student’s t-tests are conducted be-

tween the various approaches in order to determine if the results differ significantly, with an α level of

0.05.
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5.6. Soft- and hardware

All coding is done using the Python programming language (www.python.org, version 3.5.2), utilising

the Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2015) frameworks for deep learning. To allow the

use of a GPU to speed up the training progress, CUDA is used (version V9.0.176). Other versions of the

Python and deep learning packages used can be found in appendix C.

Sequence logos are made using the command line interface of the WebLogo application (Crooks et al.,

2004), version 3.6.0. For constructing the logos for the A. thaliana, the following base composition is ap-

plied: A: 27, C: 18, G: 21, T: 34. For the HOMpromdataset, theH. sapiens base composition incorporated

in WebLogo is used. An explanation on how to interpret sequence logos is given in appendix D.

All preprocessing of the data, except the similar samples control, was done on a laptop with 8 GB RAM

and a quad core i5-6200U Intel Core CPU, clocked at 2.30 GHz with hyperthreading. The similar samples

control, and deep NN training and testing was done on a GPU server with 32 GB RAM, a twelve core

i7-3930K Intel Core CPU clocked at 3.20 GHz with hyperthreading, and a single NVIDIA Tesla K40c GPU.
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6. Results and discussion

6.1. Splice site prediction

6.1.1. One-hot encoding: establishing baseline results by Zuallaert et al.

Both the SpliceRover2D and SpliceRover1D networks are run on the stratified and grouped split, and

this for both the original ARAsplice dataset and the augmented one. The performance measures for the

positive classes are found in table 6.1.

Table 6.1: Performance measures (PM) on the original and augmented one-hot encoded ARAsplice dataset, for both the

SpliceRover2D and SpliceRover1D model. The reported donor and acceptor values are reached for respectively

the donorPos and acceptorPos classes.

ARAsplice PM

SpliceRover2D SpliceRover1D

Stratified Grouped Stratified Grouped

Donor Acceptor Donor Acceptor Donor Acceptor Donor Acceptor

Original Pr 0.872 0.860 0.873 0.852 0.858 0.880 0.871 0.858
Re 0.939 0.931 0.930 0.929 0.939 0.905 0.902 0.928
F1 0.904 0.894 0.901 0.889 0.897 0.893 0.902 0.892

FDR 0.128 0.140 0.127 0.148 0.142 0.120 0.129 0.142

Augmented Pr 0.874 0.895 0.886 0.915 0.880 0.883 0.890 0.875
Re 0.910 0.832 0.942 0.877 0.924 0.859 0.933 0.907
F1 0.891 0.863 0.913 0.895 0.901 0.859 0.911 0.891

FDR 0.126 0.105 0.114 0.0854 0.120 0.117 0.110 0.125

Zuallaert et al. report precision values of 0.956 and 0.939 for respectively the positive donor and accep-

tor class, and a FDR of respectively 0.044 and 0.061. For both classes, the recall values are 95%, resulting

in F1 values of respectively 0.953 and 0.944. These results are obtained by dividing the ARAsplice set

into two new datasets, where one holds the positive and negative donor classes and the other the pos-

itive and negative acceptor classes. The SpliceRover2D model is then trained separately on these two

datasets, yielding a model designed for donor site prediction and a model designed for acceptor site

prediction. The benchmark results by Zuallaert et al. are not reached by any of the self-implemented

methods listed in table 6.1. The main reason for this is that the SpliceRover models trained in this dis-

sertation are trained on the full ARAsplice dataset instead of on two distinct subsets. While this has the

advantage that only one model has to be trained and thus less time is spent training, it also results in a

severe drop in performance measures (p < 0.001 for all performance measures of the positive donors

and acceptors). Another reason for this performance difference can be due to the data splits used in

this dissertation. In the original SpliceRover article, the data split strategy is not mentioned and thus

probably a random split was utilised. This can result in different class distributions in each one of the

splits, leading to biased prediction results. The reported result can stem from a split where the train

and test set contain respectively a high and a low number of positive class samples. The network will

then be optimally trained on the - typically heavily undersampled - positive samples, resulting in high

prediction rates for the test set where little positive samples are encountered. A solution to increase the

credibility is to perform k-fold CV or multiple runs where each time the data is split in a different way.

However, this is not feasible with most deep learning approaches due to their high training time when

large datasets are used.

Degroeve et al. implemented a SVM to predict the splice sites in the ARAsplice data, with which they

obtained 0.80 and 0.68 as precision values for respectively the positive donor and acceptor class, along
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Figure 6.1: Class-specific PR-curves for the test set results from the

SpliceRover2Dmodel trained on the original ARAsplice set with

a stratified split.

with a recall value of 0.95 for both

classes. Their FDRs are respec-

tively 0.20 and 0.32. The precision

and FDR benchmarks by Degroeve

et al. are all exceeded by the meth-

ods tested in table 6.1. Together

with the results obtained by Zual-

laert et al., it is clear that DNNs have

the ability to significantly outper-

form conventionalmachine learning

methods when it comes to splice

site prediction, due to their natural

ability to autonomously extract fea-

tures and learn from them. How-

ever, the recall value of 0.95 is not

obtained by any of the SpliceRover

models trained. This is an effect of

the precision-recall trade-off, visu-

alised in figure 6.1 using PR-curves for the SpliceRover2D model trained on the original ARAsplice set

with a stratified split. While these PR-curves differ between models, a trend seen over all the methods

tested is that the PR-curves show a larger drop for the positive classes than the negative ones, meaning

that an increasing precision value results in a decreasing recall value and vice versa for the donorPos

and acceptorPos classes. While Degroeve et al. obtained high recall values for both the positive classes,

it resulted in deteriorating precision values. Their developed splice site recognitionmodel will therefore

be able to identify the true positive samples in a highly precise manner, yet the predicted positive sam-

ples will suffer from a high amount of incorrectly identified samples. In order to find a balance between

precision and recall, a maximum for both can be derived. This is done by finding the intersect of the

y = x line and the PR-curve. In figure 6.1, the joint maximum is found at around 90% for both perfor-

mance measures, with the donorPos class having a slightly higher rate than the acceptorPos class. The

highest achievable F1 for the SpliceRover models trained in this dissertation will therefore lie around

0.9, a result which is reflected in the values shown in table 5.2.

In both the original and augmented ARAsplice runs, a trend is seen where the precision and recall values

- and therefore also the F1 score - are worse in the positive acceptor class (p = 0.0106 for F1) than in the
positive donor class. This is due to acceptor splice site prediction being a harder problem than donor

splice site prediction, something which was also remarked by Hebsgaard et al. (1996). Inside the cell,

different mechanisms are in place to recognise the specific splice sites. A donor site is recognised by

one single substructure of the spliceosome, while a series of substructures are needed to identify the

acceptor site (Matera and Wang, 2014). The recognition of the donor site is also the first step in initiat-

ing splicing and thus crucial for it to take place, while the acceptor site is only identified later on in the

process. Due to these differences, a donor site will have a stronger conserved consensus sequence than

an acceptor site, which leads to donors having more easily identifiable features than acceptors. While

the FDR on the original ARAsplice set follows the same trend as the precision, recall, and F1 scores, an

opposite trend is noticed in the augmented ARAsplice set. This trend is however not found to be signif-

icant (p = 0.433).
To derive if the different proposed strategies differ significantly from each other, t-tests are conducted

between the original and augmented run, the stratified and grouped split, and the 2D and 1D model.

The results from these tests are found in table 6.2. Significant differences are reported only for the first

comparison between the original and augmented ARAsplice set, with the augmented run resulting in

overall better performance measures. The statistically most powerful effects are seen in the precision

value and FDR when all positive samples are evaluated together, with a relative increase of 2.7% in the

former and a relative decrease of 16.3% in the latter. Slightly less significant effects are detected when
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the positive classes are treated separately, with a precision gain of 1.6% and 3.4% and a FDR reduction

of 10.6 and 21.7% for respectively the donorPos and acceptorPos class. The proposed augmentation

method is thus a viable addition to splice site datasets that suffer from a large class imbalance, espe-

cially when it comes to decreasing the number of FPs in the predictions. Specifically interesting is that

the decrease in FP results in the acceptor class is twice the value of the donor class. Seeing as acceptor

sites pose a more difficult classification problem than donor sites, the reverse complement DNA aug-

mentation can be used to even out the difference in performance measures between the two classes.

Caution is however advised when augmenting the data as it can result in a worse recall rate for the pos-

itive acceptor class, where a significant relative decrease is seen of 5.9%. This recall drop is due to a

smaller number of true positives (TPs) and larger number of FNs when SpliceRover is run with the aug-

mented dataset. This is illustrated in the confusion matrices given in figure 6.2 (absolute numbers) )and

figure 6.3b (normalised). While the number of TPs drops (885 vs. 775), no decrease is seen in the pre-

cision due to compensation by the smaller number of FPs (129 vs. 91). However, recall suffers from the

rise in FN predictions (76 vs. 156), resulting in a decreasing recall value compared to the original dataset

run. This effect can again be contributed to the difference in recognition mechanisms between donor

and acceptor splice sites. When the data are augmented, new ’consensus’ sequences are introduced to

the positive samples. As donors have stronger conserved consensus sequences, they have more robust

features which the network can rely on to be consistently present within a positive donor sample. The

newly added consensus sequences - which can potentially add noise - have thus little effect on the donor

data due to their inherent robustness. This is not the case for the positive acceptor samples, where the

data augmentation will introduce even more consensus sequences to an already great variety, leading

to confusion of the network which features to focus on in order to correctly predict the acceptor class.

Note that the recall drop is not seen when both positive classes are evaluated together, and thus the

proposed reverse complement augmentation method only becomes a problem when one is specifically

interested in a high recall for the true acceptor splice sites.

No significant differences are found between the runs with the SpliceRover2Dmodel and the ones done

with SpliceRover1D. This is no surprise as the first layer in the original SpliceRover network by Zuallaert

et al. calculates the convolution over the full length of the one-hot encoding which results in one single

value. This is essentially the same as what a 1D convolutional layer does. The first layer from both the

SpliceRover2D and SpliceRover1D model is visualised in figure 6.4. Here it can be seen that the outputs

of the two layers share the same dimensions, with the output from the 2D convolution having an extra

dimension of length 1. This is however the extra dimension that was added to make the data 3D, which

does not contain any additional information. While no significant differences are found in the predictions

outputted by the twomodels, the SpliceRover1Dmodel has the advantage that it takes less time to train

and execute as a 1D convolution is an easier calculation than a 2D convolution and thus requires less

computational resources. Due to this observation, the SpliceRover2D model is abandoned for further

research purposes in this dissertation.

When the stratified and grouped split are compared, no significant variations are seen between the

results from the two groups either. This indicates no data leakage takes place in any of the two different

splits, and samples do not share underlying characteristics if they belong to the same gene. This is due to

splicing being necessary for a gene to be expressed as a functional molecule. It is thus a crucial process

in maintaining life, resulting in the splice patterns being highly conserved across genes. The grouped

split is therefore discarded as well for use with other experiments in this dissertation.
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Table 6.2: P -values andmean± SD for the different ARAsplice SpliceRover runs comparisons. The first column indicates which

two groups are compared to each other. The second column holds the performance measures (PM), and the third

their accompanying p-value and the mean ± SD for the two groups within the comparison. Each comparison is

done for both positive classes together (fourth column), and the two classes separately (fifth and sixth column).

Significant p-values are highlighted in gray.

PM Donor + Acceptor Donor Acceptor

Original vs. augmented Pr p 0.00222 0.0304 0.0320

original 0.864± 9.11 ·10−3 0.869± 6.10 ·10−3 0.863± 1.05 ·10−2

augmented 0.887± 1.24 ·10−2 0.883± 6.61 ·10−3 0.892± 1.51 ·10−2

Re p 0.0923 0.983 0.0180

original 0.925± 1.13 ·10−2 0.928± 1.15 ·10−2 0.923± 1.11 ·10−2

augmented 0.898± 3.60 ·10−2 0.927± 1.18 ·10−2 0.869± 2.73 ·10−2

F1 p 0.437 0.590 0.205

original 0.896± 5.02 ·10−3 0.901± 2.55 ·10−3 0.892± 1.87 ·10−3

augmented 0.891± 1.87 ·10−2 0.904± 8.77 ·10−3 0.877± 1.16 ·10−2

FDR p 0.00216 0.0304 0.0316

original 0.135± 9.11 ·10−3 0.132± 6.10 ·10−3 0.138± 1.05 ·10−2

augmented 0.113± 1.23 ·10−2 0.118± 6.06 ·10−3 0.108± 1.49 ·10−2

Stratified vs. grouped Pr p 0.788 0.223 0.787

stratified 0.875± 1.11 ·10−2 0.874± 8.06·10−3 0.880± 1.26·10−2

grouped 0.878± 1.84·10−2 0.880± 8.15·10−3 0.875± 2.46·10−2

Re p 0.416 0.914 0.312

stratified 0.928± 1.20·10−2 0.928± 1.20·10−2 0.883± 3.67·10−2

grouped 0.927± 2.00·10−2 0.927± 1.50·10−2 0.910± 2.11·10−2

F1 p 0.115 0.087 0.221

stratified 0.888± 1.60·10−2 0.898± 4.87·10−3 0.877± 1.63·10−2

grouped 0.899± 8.53·10−3 0.907± 5.31·10−3 0.892± 2.17·10−3

FDR p 0.792 0.223 0.782

stratified 0.125± 1.14·10−2 0.129± 8.06·10−3 0.121± 1.26·10−2

grouped 0.123± 1.84·10−2 0.120± 8.15·10−3 0.125± 2.44·10−2

2D vs. 1D Pr p 0.632 0.849 0.696

2D 0.878± 1.87·10−2 0.876± 5.67·10−3 0.881± 2.57·10−2

1D 0.874± 1.08·10−2 0.874± 1.18·10−2 0.874± 9.67·10−3

Re p 0.958 0.615 0.796

2D 0.911± 3.58·10−2 0.930± 1.25·10−2 0.895± 4.10·10−2

1D 0.912± 2.39·10−2 0.924± 1.40·10−2 0.900± 2.52·10−2

F1 p 0.948 0.929 0.898

2D 0.894± 1.37·10−2 0.902± 7.85·10−3 0.885± 1.30·10−2

1D 0.893± 1.43·10−2 0.903± 5.12·10−3 0.884± 1.43·10−2

FDR p 0.506 0.849 0.557

2D 0.118± 2.59·10−2 0.124± 5.67·10−3 0.113± 3.54·10−2

1D 0.126± 1.08·10−2 0.125± 1.18·10−2 0.126± 9.67·10−3
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Figure 6.2: Confusion matrices of the SpliceRover2D model run on the stratified split of both the original and augmented

ARAsplice set.
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Figure 6.3: Normalised confusion matrices of the SpliceRover2D model run on the stratified split of both the original and

augmented ARAsplice set.

(a) SpliceRover2D (b) SpliceRover1D

Figure 6.4: First layer from both the SpliceRover2D and SpliceRover1D model, as visualised by Keras.
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The negative classes - donorNeg and acceptorNeg - have similar performance results over all the dif-

ferent model runs, with 0.997 ± 4.84 · 10−4, 0.995 ± 6.61 · 10−4, and 0.996 ± 0 for respectively the

precision, recall, and F1 score for the donorNeg class, and 0.996 ± 1.13 · 10−3, 0.996 ± 1.12 · 10−3,

and 0.996 ± 4.84 · 10−4 for respectively the precision, recall, and F1 score for the acceptorNeg class.

These values indicate that both SpliceRover models experience no problems in correctly predicting the

negative classes. This was already remarked in section 5.1.1, where figure 5.2 shows significant differ-

ences in DNA sequence between the positive and negative classes, with no preservation of consensus

sequences around the pseudo splice sites for the latter.

The obtained FDR for the donorNeg class is 0.00258±3.26·10−4. For the FDR of the acceptorNeg class, a

significant difference is found between the SpliceRover models run on the original ARAsplice set and the

augmented one (p = 0.0049), with respectively FDRs of 0.00290±2.85 ·10−4 and 0.00391±1.16 ·10−3.

The augmented ARAsplice dataset thus introduces more FPs in the acceptorNeg class than the original

set, which is due to the rise in FNs in the acceptorPos class (see also figure 6.2b). The acceptorPos FN

results are all wrongly categorised into the acceptorNeg class, thus inflating the number of FPs in this

class. This rise in FDR is however no reason for concern, as the reported value is less than 1% and one

will most commonly only be interested in correctly predicting the positive classes.

6.1.2. K-mer encoding

K-mer histograms

The histograms for k = 1 and k = 3 are plotted in figure 6.5. For k = 1 (figure 6.5a), it is seen that the

count of DNA bases is independent from the ARAsplice class, and the GC-content is considerably lower

than the number for A and T. This is a normal observation, as organisms typically have a GC-content

inherent to their species. For A. thaliana, this value is determined to be around 36% (NCBI, 2011), which

is in line with the results plotted in figure 6.5a. As the four classes share the same number of bases

per single nucleotide, k-mers of length 1 will most likely not contribute towards producing meaningful

features for splice site prediction. This is in contrast for k-mers of length 3 (figure 6.5b), although the

differences are still small between the four classes for a certain k-mer. These effects become however

more explicit when the k-mers of length 4 and 5 are plotted (plots not shown due to their large size).

An algorithm could thus pick up on these subtle patterns, theoretically making k-mer encoding a valid

alternative to other, more frequently used encodings.

K-mer network

A variety of different architectures consisting of only dense layers were tested for use with k-mer en-

coded splice data. None managed to capture the intricate differences between the four splice classes

in the original nor the augmented ARAsplice set, with the best performing architecture stalling around

a training and validation loss of 0.8. The SpliceRover1D model was also tested, with again the same

performance issues as the dense architectures. The loss plots obtained with the SpliceRover1D model

for both the original and augmented ARAsplice set are shown in figure 6.6 for a value of k = 3.

In the plot of the original ARAsplice run (figure 6.6a), a small decline in the beginning of the training

process can be observed in the training and validation loss, meaning learning indeed takes place in

the earliest epochs. However, the learning process stalls almost immediately after these few epochs,

resulting in a loss that never declines anymore and stays around a value of 0.8. The same effect is seen

when the augmented ARAsplice set is used (figure 6.6b), with only a few fluctuations in the validation

loss in the beginning of the training process. All tested and optimised NNs stopped learning around a

loss of 0.8 for both ARAsplice sets. This indicates that k-mer encoding cannot produce ameaningful data

representation for splice site data, as even the deepest tested NN were not able to correctly predict the

ARAsplice set. This is most likely due to the differences in k-mer counts being too small between the

four classes, where not even a deep learning network can capture them.
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Figure 6.6: SpliceRover1D model loss plots after training on both the original and augmented k-mer encoded ARAsplice set,

with k = 3.

Another observation is that the validation loss drops below the training loss for the augmented ARAs-

plice run (figure 6.6b). This is due to the effect of the dropout layers present in the SpliceRover1Dmodel.

Dropout injects a small amount of noise into the training set by setting different neurons to active during

each pass of the data through the network. As dropout is not applied onto the validation set, the valida-

tion data lacks this noise which results in a slightly lower loss for the validation set than for the training

set. This effect is bigger in the augmented dataset, as it contains more samples in both the training set.

The effect of a model with and without dropout layers is visualised in appendix E.

6.2. Promoter prediction

6.2.1. K-mer histograms
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Figure 6.7: K-mer counts per sequence for both classeswithin

the ARAprom-B dataset for k = 1.

In figure 6.7 the k-mers of length 1 are shown

for the samples within the balanced ARAprom

dataset. It is shown that the k-mer num-

bers between the classes differ for each of

the kmers within the vocabularium. Organ-

isms typically have a base distribution that is

inherent to their species, which should only be

differing in very small amounts when diverse

genome sequences are analysed. As a differ-

ence is already seen in this base composition,

it can be derived that the negative sample con-

struction will provide no challenge for a ma-

chine learning algorithm and this regardless of

the encoding used. When the histograms for

higher k-mer counts are analysed for the bal-

anced ARApromdataset, the negative samples evolve into a uniform distributionwith only a few outliers

(figure 6.8b), whereas the positive samples are represented by a more sparse distribution (figure 6.8a).

This uniform negative sample distribution is an artifact from the semi-random constructionmethod that

is used where every base has an equal chance of being chosen. Although 40% similarity is retained be-

tween the two samples, the remaining 60% inequality still has a large influence on the overall base

composition of the negative samples. A possible solution to this could be to incorporate the species-
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specific base composition into the negative sampling method, so every one of the four DNA bases will

have a different probability of being chosen as a substitute base. This will help in preserving the natural

order of occuring nucleotides, resulting in a more similar distribution between the different k-mers in

both classes.

The same observations are seen in the k-mer histograms of the conserved dataset approach for A.

thaliana, which are visualised in appendix F.1. Again, the species-specific base composition is not re-

tained over the two classes (figure F.1), and eventually evolves into a uniform distribution for the nega-

tive samples (figure F.2b). Little difference is also spotted in the outliers of the balanced and conserved

approach, indicating that preserving the most conserved consensus sequences does not cancel out the

influence of the 60% dissimilarity between samples. The same conclusions can be drawn for both the

balanced and conserved balanced human dataset approach, which are respectively visualised in ap-

pendix F.2 and appendix F.3. In humans, the kmer representation (k = 4) of the positive samples is less

sparse than the one for A. thaliana, resulting in a more uniform distribution that shows a higher resem-

blance to the negative samples k-mer distribution. However, the negative samples histogram lacks the

frequent outliers that are seen in the positive sample histogram, indicating that the negative sample

constructionmethod cannot capture the underlying characteristics innate to human promoter samples.

Due to the large differences in k-mer composition, it is expected that the proposed DNN will have little

trouble in predicting the correct class when k-mer encoding is used.

6.2.2. Performance of the ARAprom- and HOMpromnet models

The performance measures for the ARAprom- and HOMpromnet networks for all different encodings

and the balanced and conserved ARAprom and HOMprom datasets are given in table 6.3, and this for

both classes within the datasets.

A trend seen over the reported results is that the negative promoter class suffers from worse perfor-

mance measures than the positive promoter class, except for the recall value where an opposite ten-

dency is seen. A t-test is performed to detect if these trends are significant. These results can be found

in table 6.4.

ARApromnet

The obtained results in table 6.3 with the one-hot encoding and a k-mer encoding of k equal to 5 are in

line with state of the art results, where recall and specificity values up to 95% are obtained for TATA-box

containing A. thaliana promoter datasets (Triska et al., 2017). When compared to more conventional

machine learning techniques, it is able to outperform the proposed models. Anwar et al. (2008) reports

precision and recall values of respectively 86% and 89 % for the positive promoter class with the use of a

SVM. Similar results are found by Azad et al. (2011), who also implemented a SVM to predict plant pro-

moter sequences. Both extracted coding and non-coding sequences from elsewhere in the A. thaliana

genome to construct their negative sample set. The highest reported precision and recall values are

found with the one-hot balanced ARApromnet, respectively 94.7% and 94% when averaged over the

two promoter classes. This is a relative increase of respectively 10.3% and 6.4% compared to the results

obtained by Anwar et al. (2008) and Azad et al. (2011). When compared to other state of the art deep

learning models for promoter prediction, it achieves comparable results. Umarov and Solovyev (2017)

designed a CNN to predict A. thaliana promoter data, consisting of one convolutional layer with 200 fil-

ters of length 21, and one max-pooling layer of length 2 followed by one dense layer with 128 neurons.

As negative construction approach, the intron sequences of each gene contained in the dataset are ex-

tracted. Umarov and Solovyev (2017) reported recall values of 94% and 95 % for respectively A. thaliana

datasets with non-TATA and TATA promoters. This shows that the ARApromnet models implemented in

this master dissertation can compete with and even outperform state of the art A. thaliana promoter

prediction models.

In table 6.4, the p-values for the t-tests conducted between the negative and positive promoter classes
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6. RESULTS AND DISCUSSION

Table 6.3: PMs on the balanced and conserved ARAprom and HOMprom datasets for all different data encodings, and both

classes within the datasets.

Encoding Class PM
A. thaliana H. sapiens

Balanced Conserved Balanced Conserved

Onehot promNeg Pr 0.945 0.932 0.930 0.928
Re 0.950 0.952 0.949 0.945
F1 0.948 0.942 0.939 0.936

FDR 0.0552 0.0681 0.0702 0.0723

promPos Pr 0.950 0.951 0.948 0.944
Re 0.944 0.930 0.928 0.926
F1 0.947 0.941 0.938 0.935

FDR 0.0501 0.0491 0.0518 0.0558

k = 3 promNeg Pr 0.900 0.907 0.895 0.888
Re 0.936 0.923 0.926 0.926
F1 0.918 0.915 0.910 0.907

FDR 0.0995 0.0926 0.105 0.113

promPos Pr 0.933 0.922 0.923 0.923
Re 0.896 0.906 0.892 0.883
F1 0.915 0.914 0.907 0.903

FDR 0.0665 0.0780 0.0769 0.0770

k = 4 promNeg Pr 0.921 0.922 0.912 0.909
Re 0.950 0.944 0.928 0.928
F1 0.935 0.933 0.920 0.918

FDR 0.0794 0.0782 0.0877 0.0913

promPos Pr 0.948 0.943 0.926 0.926
Re 0.918 0.920 0.911 0.907
F1 0.933 0.931 0.919 0.917

FDR 0.0519 0.0573 0.0735 0.0735

k = 5 promNeg Pr 0.929 0.930 0.904 0.910
Re 0.961 0.959 0.953 0.938
F1 0.945 0.945 0.928 0.924

FDR 0.0715 0.0700 0.0959 0.0895

promPos Pr 0.960 0.958 0.950 0.936
Re 0.926 0.928 0.899 0.908
F1 0.943 0.943 0.924 0.922

FDR 0.0402 0.0419 0.0500 0.0638

are shown for all performance values derived with the k-mer encoding. The promNeg class has a sig-

nificantly overall lower precision and a higher FDR than the promPos class (p-values of respectively

0.00525 and 0.00476), and a significant better recall performance (p = 0.00206). When the one-hot en-

coded promNeg and promPos values are compared to each other, no significant differences are reported

(p > 0.207). This is due to the different nature of the one-hot and k-mer encoding, and the conservation

of consensus sequences within A. thaliana promoter sequences. It is seen in figure 5.3a that two major

core promoter elements are preserved within A. thaliana promoters, namely the TATA-box and the inr.

When one-hot encoding is applied, the model will learn to look for these specific sequences in the data.

If a consensus sequence is accompanied by a lot of random noise, it is flagged as a negative sample,

and if the bases are to some extent retained, a positive class is predicted. When k-mer encoding is ap-

plied, the conserved consensus sequences get split into smaller k-mers, transforming the once easily

identifiable consensus sequences into much less detailed shorter k-mers. The network trained on k-mer

encoded data will thus be more easily confused as to what constitutes a negative or positive promoter

sample, resulting in larger differences of the FPs and FNs within a class. These effects are also seen in

the confusion matrices for ARApromnet run on one-hot encoded data (figure 6.9a) and on k-mer
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6. RESULTS AND DISCUSSION

Table 6.4: Results of the t-tests performed on k-mer encoded data to derive if a difference can be seen in performance mea-

sures between the negative and positive promoter class. Significant p-values are highlighted in gray.

Class PM p-value
Mean± SD

PromNeg PromPos

A. thaliana Pr 5.25 ·10−3 0.923± 0.0134 0.945± 0.0112

Re 2.06 ·10−3 0.947± 0.0117 0.921± 0.0139

F1 0.787 0.935± 0.0118 0.933± 0.0120

FDR 4.76 ·10−3 0.0768± 0.0132 0.0544± 0.0132

H. sapiens Pr 1.97 ·10−3 0.910± 0.0136 0.936± 0.0107

Re 5.75 ·10−4 0.937± 0.0104 0.907± 0.0145

F1 0.724 0.923± 0.0107 0.921± 0.0114

FDR 1.71 ·10−3 0.0905± 0.0136 0.0653± 0.0107
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(b) K-mer encoded ARAprom data (k = 3)

Figure 6.9: Confusion matrices for the ARApromnet model fitted onto one-hot encoded and k-mer encoded balanced A.

thaliana promoter data. No normalised confusion matrix is shown as the test data is completely balanced.

encoded data (figure 6.9b). Note that the comparison for the performancemeasures obtainedwith one-

hot encoding is done using only two different values. The reported results could therefore be biased.

To obtain statistically more robust results, these t-tests should ideally be conducted again over a series

of repeated experiments. To this end, k-fold CV can be used. However, this approach is not feasible for

deep learning approaches due to the amount of data and parameters inherent to this technique.

t-tests are also conducted to derive if differences exist between the balanced and conserved negative

sample approach, and the one-hot and k-mer encoding for A. thaliana promoter prediction. Results

from the conducted statistical tests are shown in table 6.5. These tests are again all conducted on only

two performance measure values if the two promoter classes are tested separately and should there-

fore be treated with caution. For the balanced vs. conserved construction approaches comparison, all

performance values obtained for the A. thaliana run are used, except for the one-hot-encoding ones.

The analysis of the one-hot encoded balanced vs conserved negative sampling approach is not executed

due to only having one value to perform a statistical test on.

No significant effects are seen between the application of the balanced and conserved negative sampling

approach, showing that the conserved approach has no direct benefit over the balanced approach from

Oubounyt et al.. While the conserved approach ensures that the most important features are shared

between the negative and positives samples, it cannot cancel out the effect of the 60% random variety

that is contained within the negative samples. This effect has previously been noted in section 6.2.1

during the observation of the k-mer histograms. The two sample classes still show too many differences
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Table 6.5: P -values and mean ± SD for the different ARApromnet run comparisons. The first column indicates which two

groups are compared to each other. The second column holds the performance measures (PM), and the third their

accompanying p-value and the mean± SD for the two groups within the comparison. Each comparison is done for

both classes together (fourth column), and the two classes separately (fifth and sixth column). Significant p-values
are highlighted in gray.

PM PromNeg + PromPos PromNeg PromPos

Balanced-conserved Pr p 0.775 0.930 0.673

balanced 0.936± 1.80 ·10−2 0.924± 1.62 ·10−2 0.948± 9.65 ·10−3

conserved 0.33± 1.57 ·10−2 0.923± 9.84 ·10−3 0.944± 1.35 ·10−2

Re p 0.658 0.507 0.348

balanced 0.936± 1.98 ·10−2 0.949± 8.87 ·10−3 0.921± 1.72 ·10−2

conserved 0.932± 1.65 ·10−2 0.944± 1.35 ·10−3 0.921± 9.43 ·10−3

F1 p 0.699 0.783 0.825

balanced 0.935± 1.20 ·10−2 0.936± 1.17 ·10−3 0.934± 1.23 ·10−3

conserved 0.933± 1.16 ·10−3 0.933± 1.16 ·10−3 0.932± 1.14 ·10−3

FDR p 0.774 0.941 0.659

balanced 0.0643± 1.78 ·10−3 0.0764± 1.59 ·10−3 00.0522± 9.39 ·10−3

conserved 0.0669± 1.56 ·10−2 0.0772± 9.65 ·10−3 0.0566± 1.35 ·10−3

Onehot vs. k = 3 Pr p 0.0150 0.0417 0.0531

onehot 0.944± 7.56·10−3 0.938± 6.50 ·10−3 0.950± 5.00 ·10−4

k = 3 0.915± 1.28 ·10−2 0.903± 3.50 ·10−3 0.927± 5.50 ·10−3

Re p 0.0301 0.0821 0.0526

onehot 0.944± 8.60 ·10−2 0.951± 1.00 ·10−3 0.937± 7.00 ·10−3

k = 3 0.915± 8.60 ·10−3 0.929± 6.50 ·10−3 0.901± 5.00 ·10−3

F1 p 1.00 ·10−5 0.0135 0.01405

onehot 0.944± 3.04 ·10−3 0.945± 3.00 ·10−3 0.944± 3.00 ·10−3

k = 3 0.915± 1.50 ·10−3 0.916± 1.50 ·10−3 0.914± 5.00 ·10−4

FDR p 0.0159 0.0423 0.0592

onehot 0.0556± 8.94 ·10−3 0.0616± 6.66 ·10−3 0.0496± 2.56 ·10−4

k = 3 0.0842± 1.52 ·10−2 0.0960± 7.30 ·10−3 0.0723± 4.70 ·10−3

Onehot vs. k = 4 Pr p 0.231 0.120 0.188

onehot 0.944± 8.85 ·10−3 0.938± 6.65 ·10−3 0.950± 2.68 ·10−4

k = 4 0.933± 1.27 ·10−2 0.921± 5.61 ·10−3 0.945± 9.91 ·10−3

Re p 0.294 0.333 0.125

onehot 0.944± 1.00 ·10−3 0.951± 2.55 ·10−3 0.937± 7.07 ·10−3

k = 4 0.933± 1.41 ·10−2 0.947± 9.73 ·10−3 0.919± 5.24 ·10−3

F1 p 1.02 ·10−3 0.0736 0.0629

onehot 0.944± 4.47 ·10−3 0.945± 4.44 ·10−3 0.944± 4.44 ·10−3

k = 4 0.933± 7.36 ·10−3 0.934± 7.57 ·10−3 0.932± 7.07 ·10−3

FDR p 0.231 0.117 0.210

onehot 0.0556± 8.94 ·10−3 0.0616± 6.66 ·10−3 0.0496± 2.56 ·10−4

k = 4 0.0667± 1.28 ·10−2 0.0788± 5.52 ·10−4 0.0546± 9.64 ·10−3

Onehot vs. k = 5 Pr p 0.980 0.301 0.0168

onehot 0.944± 8.85 ·10−3 0.938± 6.65 ·10−3 0.950± 2.68 ·10−4

k = 5 0.944± 1.94 ·10−2 0.929± 1.15 ·10−4 0.959± 9.43 ·10−3

Re p 0.964 0.0238 0.292

onehot 0.944± 0.100 ·10−3 0.951± 2.55 ·10−3 0.937± 7.07 ·10−3

k = 5 0.943± 2.16 ·10−2 0.960± 9.01 ·10−3 0.927± 1.22 ·10−2

F1 p 0.785 1.00 0.771

onehot 0.944± 4.47 ·10−3 0.945± 4.43 ·10−3 0.944± 4.44 ·10−3

k = 5 0.944± 1.00 ·10−3 0.945± 0.00 0.943± 0.00

FDR p 0.978 0.296 0.0134

onehot 0.0556± 8.94 ·10−3 0.0616± 6.66 ·10−3 0.0496± 2.56 ·10−4

k = 5 0.0559± 1.94 ·10−2 0.0708± 1.12 ·10−4 0.0411± 9.33 ·10−4
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between them, and thus do not provide a challenge for the network at hand. This results in performance

measures equal to the one obtained with the balanced approach.

The next set of comparisons consist of the one-hot encoding versus the k-mer encoding, and this for

different values of k. For k = 3 it is seen that themodel performs significantly worse thanwhen one-hot

encoded data is used, and this for every performancemeasure outside of recall when the two classes are

analysed separately. A tipping point is detected for k = 4, where no significant differences are reported
except for the F1-value when both the promNeg and promPos classes are observed. However, as seen

in table 6.4, a significant difference is found between the two classes and this obtained value could thus

be an artifact of regarding the negative and positives classes as one group. When the value of k is set

to 5, significant improvements are started to be seen in favour of the k-mer encoding, with an elevated

precision and recall for respectively the promPos and promNeg class (p = 0.0168 and p = 0.0238).
For the promNeg class, a decline is also detected in the FDR (p = 0.0134). In contrast to the k-mer

encoding employed on splice site data, k-mer encoding is capable of capturing the intricate sequence

details that prevail within A. thaliana promoters, yet only for a value of k = 5. K-mer encoding might be

able to outperform one-hot encoding if larger values of k are used. To visualise this effect, a logarithmic

trendline is fitted onto the performance measure results obtained with the three different values of k.
The outcome can be seen in figure 6.10. The trendline is fitted onto the average taken over both the

values for promPos and promNeg and over the conserved and balanced approach. Although significant

differences are found between the positive and negative class, their average can still capture the general

trend that is expected in the results for growing values of k.
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Figure 6.10: Expectations in performance measures for higher values of k on the ARApromset. The dotted values are the

performance results obtained with the tested values of k. A logarithmic trendline is fitted onto these values,

yielding the dotted curved line. The horizontal solid line indicates the results obtained when one-hot encoding is

used. The trendline is fitted onto the average over the promPos and promNeg performance measure results.

In the plots in figure 6.10 it can be seen that the k-mer encoding for k = 5 intercepts with the values

obtained with one-hot encoded data, indicating both encodings are equal in performance. If k grows

larger than 5, it immediately starts to outperform the one-hot encoded ARApromnet fits, with values

as high as 98% for precision, recall and F1, and as low as 2% for FDR for a value of k = 10. These

values are probably not realistic due to a too liberal fit onto the data for k ≤ 3 and the lack of more

data points. It can however be expected that an incline will still be seen if experiments are conduced

for k > 3. K-mer encoding can thus provide a valid alternative to the more commonly used one-hot

encoding when it is used with A. thaliana promoter data. This provides a benefit in the implementation

of the NNs. As one-hot consists of two dimensions, a CNN is typically applied. In this architecture,

a variety of hyperparameters are present that need to be tweaked in order to obtain good prediction

performance. This tweaking requires a certain experience on how different hyperparameters have a

different influence on the outcome. K-mer encoded data has only one dimension, so only a dense NN
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can be applied to it. While still having a certain number of hyperparameters that need to be adjusted to

obtain a good fit to the data, it is considerably easier to optimise due to its simpler architecture than a

CNN.

HOMpromnet

Research conducted on H. sapiens promoter prediction reports accuracies and sensitivities as high as

94% and 95%. These performances are respectively reached by Lai et al. (2019), who implemented

a SVM, and by Umarov and Solovyev (2017). Umarov and Solovyev (2017) designed a series of CNN

architectures for use with prokaryotic and eukaryotic TATA and non-TATA promoter data. The recall rate

of 95% was found for both the human TATA and non-TATA datasets. Other reported results were 95%

and 90% for the recall values of respectively human TATA and human non-TATA promoter sequences.

The results obtained on the HOMprom set using the HOMpromnet model are equal to the state of the

art results (table 6.3). In the research article by Oubounyt et al. (2019), the same human dataset is used

as the one in this dissertation, with the difference that Oubounyt et al. split it into two new datasets

yielding a TATA and a non-TATA promoter set. The scheme used to construct their negative samples is

equal to the balanced strategy introduced in this thesis. For the TATA set, precision and recall values

of respectively 93% and 95% are reported. For the non-TATA set, they obtain a precision of 97% and

a recall of 95%. While the HOMpromnet is not able to achieve performance measures this high, this

is no reason for concern as the HOMprom dataset in this dissertation was not split into two different

ones. It can be assumed that their reported value for the entirety of the dataset will lie somewhere

between a precision value of 93% and 97%. This is a result that the HOMpromnet model designed in

this thesis is able to obtain. While these reported results make it seem that human promoter prediction

has reached nearly perfect performance, this is hardly the case. The designedmodels are able to predict

their training and test data in a highly reliable manner, yet fail when used in more realistic settings such

as the human reference genome. Bajic et al. (2004) reviewed eight frequently used PPPs, and found

that some of them perform even worse than when random guessing is used. The reported state of the

art results should therefore not be seen as the golden standard to which a model can be compared, and

models should ideally always be evaluated onto a different, unseen test set.

The same trend as with the ARAprom data is seen in the performances measures, where the promNeg

class performs significantly worse than the promPos class, except for the recall value where the opposite

effect is observed (table 6.4). If the confusion matrices are plotted for the one-hot and k-mer encoding

(k = 3; figure 6.11), it is seen that the FPs and FNs results of the one-hot encoded HOMpromnet run

also show rather large differences between them (figure 6.11a). When a t-test is conducted, significant
differences are indeed detected between the precision, recall, and FDR values obtained with one-hot

encoded data (p-values of respectively 0.0169, 0.0123, and 0.0164). This is because of the less conserved
consensus sequenceswithin human promoters. As a result, themodel will also have a hard time learning

meaningful representations on the one-hot encoded data for the different classes, resulting in elevated

FP and FN results within a class.

In table 6.6 the p-values are found for the different group comparisons between the balanced vs. con-

served negative sampling approach, and the one-hot encoding vs the k-mer encoding, and this for all

three tested values of k. The differences in the balanced vs. conserved approach are here calculated

using all different values from both encodings as the one-hot encoding showed the same significant dif-

ferences between the negative and positive promoter class.

For the comparison of the balanced and the conserved negative sample set construction approach, again

no differences are found between the two groups. This further proves that the conserved approach does

not provide a significant benefit compared to the balanced approach by Oubounyt et al.. For the com-

parisons between the one-hot encoding and the three different k-mer encodings, the results differ from

what was found with the ARApromnet model. For all k-mer values, significant worse results are seen

compared to when one-hot encoded data is used. These effects are worst for an encoding with k = 3,
and slowly wears of when k grows in value. However, at k = 5, significant worse performances are still

seen for the k-mer encoding. A logarithmic trendline is again fitted to evaluate what effect growing
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Table 6.6: P -values and mean ± SD for the different HOMpromnet run comparisons. The first column indicates which two

groups are compared to each other. The second column holds the performance measures (PM), and the third their

accompanying p-value and the mean± SD for the two groups within the comparison. Each comparison is done for

both classes together (fourth column), and the two classes separately (fifth and sixth column). Significant p-values
are highlighted in gray.

PM PromNeg + PromPos PromNeg PromPos

Balanced-conserved Pr p 0.752 0.896 0.618

balanced 0.923± 1.82 ·10−2 0.910± 0.128 ·10−2 0.936± 1.32 ·10−2

conserved 0.920± 1.65 ·10−2 0.908± 1.41 ·10−2 0.932± 8.31 ·10−3

Re p 0.768 0.587 0.903

balanced 0.923± 20.3 ·10−2 0.939± 7.96 ·10−2 0.907± 1.52 ·10−2

conserved 0.920± 1.86 ·10−2 0.934± 7.63 ·10−3 0.906± 1.52 ·10−2

F1 p 0.631 0.739 0.775

balanced 0.923± 1.09 ·10−2 0.924± 1.06 ·10−2 0.922± 1.11 ·10−2

conserved 0.920± 1.102 ·10−2 0.921± 1.04 ·10−2 0.919± 1.14 ·10−2

FDR p 0.746 0.882 0.618

balanced 0.0764± 1.82 ·10−2 0.0897± 1.12 ·10−2 0.0630± 1.22 ·10−2

conserved 0.0795± 1.67 ·10−2 0.0914± 1.42 ·10−2 0.0675± 9.31 ·10−3

Onehot vs. k = 3 Pr p 0.0277 9.29 ·10−3 7.84 ·10−3

onehot 0.937± 8.64 ·10−3 0.929± 1.00 ·10−3 0.946± 2.00 ·10−3

k = 3 0.907± 1.51 ·10−2 0.891± 3.50 ·10−3 0.923± 0.00

Re p 0.0545 8.98 ·10−3 0.0134

onehot 0.937± 1.00 ·10−2 0.947± 2.00 ·10−3 0.927± 1.00 ·10−3

k = 3 0.906± 1.95 ·10−2 0.926± 0.00 0.887± 4.50 ·10−3

F1 p 0.00 5.31 ·10−3 6.24 ·10−3

onehot 0.937± 1.58 ·10−3 0.937± 1.50 ·10−3 0.936± 1.50 ·10−3

k = 3 0.906± 2.48 ·10−3 0.908± 1.50 ·10−3 0.905± 2.00 ·10−3

FDR p 0.0290 0.0106 7.39 ·10−2

onehot 0.0625± 8.94 ·10−3 0.0713± 1.05 ·10−3 0.0538± 2.00 ·10−3

k = 3 0.0929± 1.61 ·10−2 0.108± 3.75 ·10−3 0.0769± 5.00 ·10−5

Onehot vs. k = 4 Pr p 0.0288 9.36 ·10−3 9.58 ·10−3

onehot 0.937± 8.85 ·10−3 0.929± 1.50 ·10−3 0.946± 2.00 ·10−3

k = 4 0.918± 7.88 ·10−3 0.910± 1.50 ·10−3 0.926± 0.00

Re p 0.0614 0.0109 0.0151

onehot 0.937± 1.00 ·10−2 0.947± 2.00 ·10−3 0.927± 1.00 ·10−3

k = 4 0.918± 9.60 ·10−2 0.928± 0.00 0.909± 2.00 ·10−3

F1 p 0.00 9.36 ·10−3 9.36 ·10−3

onehot 0.937± 1.58 ·10−3 0.937± 1.50 ·10−3 0.936± 1.50 ·10−3

k = 4 0.918± 1.18 ·10−3 0.919± 1.00 ·10−3 0.918± 1.00 ·10−3

FDR p 0.0339 0.0127 0.0101

onehot 0.0625± 8.87 ·10−3 0.0713± 1.05 ·10−3 0.0538± 2.00 ·10−3

k = 4 0.0815± 8.01 ·10−3 0.0895± 1.80 ·10−3 0.0735± 0.00

Onehot vs. k = 5 Pr p 0.335 0.0200 0.720

onehot 0.937± 8.85 ·10−3 0.929± 1.00 ·10−3 0.946± 2.00 ·10−3

k = 5 0.925± 1.87 ·10−2 0.907± 3.00 ·10−3 0.907± 7.00 ·10−3

Re p 0.404 0.846 0.036

onehot 0.937± 1.12 ·10−2 0.947± 2.00 ·10−3 0.927± 1.00 ·10−3

k = 5 0.924± 2.18 ·10−2 0.945± 7.50 ·10−3 0.903± 4.50 ·10−3

F1 p 2.00 ·10−4 0.0441 0.0172

onehot 0.937± 1.58 ·10−3 0.937± 1.50 ·10−3 0.936± 1.50 ·10−3

k = 5 0.924± 2.17 ·10−3 0.926± 2.00 ·10−3 0.923± 1.00 ·10−2

FDR p 0.343 0.0237 0.708

onehot 0.0625± 8.87 ·10−3 0.0713± 1.05·10−3 0.0538± 2.00 ·10−3

k = 5 0.0748± 1.85 ·10−2 0.0927± 3.20 ·10−3 0.0569± 6.90 ·10−3
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(b) K-mer encoded HOMprom data (k = 3)

Figure 6.11: Confusion matrices for the HOMpromnet model fitted onto one-hot encoded and k-mer encoded balanced H.

sapiens promoter data. No normalised confusion matrix is shown as the test data is completely balanced due to

the usage of a stratified split.
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Figure 6.12: Expectations in performance measures for higher values of k on the HOMpromset. The dotted values are the

performance results obtained with the tested values of k. A logarithmic trendline is fitted onto these values,

yielding the dotted curved line. The horizontal solid line indicates the results obtained when one-hot encoding is

used. The trendline is fitted onto the average over the promPos and promNeg performance measure results.

values of k will have on the performance measures, which is pictured in figure 6.12. Here it is observed

that k-mer encoding only starts to outperform the one-hot encoding from a value of k = 7, and this

for the precision and recall values. F1 and FDR values will only get significantly better if k ≥ 8. While

k-mer encoding was able to achieve results equal to the ones obtained with one-hot encoding in the

case of A. thaliana promoter prediction, this is not the case anymore for human promoter prediction.

This is because human promoter prediction is a problem that is much more difficult than for less com-

plex species like A. thaliana. In the latter, a conservation is seen of both the TATA-box and inr, while

in the HOMprom set only the inr is conserved. Human promoter sequences are thus prone to a larger

difference in consensus sequences. Due to this variety, the distribution of the k-mers in the positive

sample set evolves into a more uniform distribution, which is also found within the negative sample set

of both the balanced and conserved approach. This has as a result that the differences between the two

promoter classes get smaller. As was illustrated with the k-mer encoding applied onto the ARAsplice

set, k-mer encoding will not work if no or only a little amount of dissimilarities are found between the

data classes. The k-mer encoded HOMprom dataset seems to lie on a point where models are still able

to learn meaningful features from it, yet also start suffering from the many similarities that are already

seen between the two classes. K-mer encoding will thus only have an application in species where large
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differences are examined in the k-mer composition between the different classes. This can be assessed

by plotting the k-mer histograms as was done in section 6.2.1, and can be used as a tool in order to

determine is k-mer encoding a certain dataset is worth the effort.
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In this master dissertation, deep learning was applied to predict splice sites and promoter sequences in

DNA data. These specific problems in genome annotation are still plagued by a fair amount of FP results.

In splice site detection, this is due to the high class imbalance in favour of the negative samples. For pro-

moter detection, no easily identifiable reason can be appointed, as it suffers from a variety of problems,

such as the lack of easily identifiable consensus sequences and a straight-forward negative sample con-

struction method. In addition, the most conserved consensus sequences in promoters stretch over tens

or even twenty bp and are variable in length. This is in contrast with splice sites, of which the most

conserved sequences are only two bp long. Due to this greater length and variable size, it is difficult to

capture the details contained within promoter sequences in an encoding which uses a fixed length, as

sequences have to be padded or truncated to this set length.

For one-hot encoded splice site data, the SpliceRover network by Zuallaert et al. (2018) was reimple-

mented. The network as designed by Zuallaert et al. employs 2D convolution onto the 2D one-hot

encoded splice site data to which an extra dimension is added in order to make it 3D. In this thesis, a

novel version of the SpliceRover was also implemented apart from the original, which utilises 1D convo-

lutions that can directly work onto the 2D one-hot encoded dataset. Both models failed in reproducing

the results obtained by Zuallaert et al., reaching maximum values for precision, recall and FDR of 87,

94, 94, and 13 percent for the positive donor class, and 86, 93, 89, 14 percent for the positive accep-

tor class. This result is due to the slightly different architecture that is used in this dissertation for the

SpliceRover2D model. The SpliceRover2D model as originally implemented by Zuallaert et al. has an

output layer with only two neurons, and two different classifiers are trained for the donor and acceptor

classes separately. The self-implemented SpliceRover2D network uses four neurons in its output layer.

While this has the disadvantage of not reaching state of the art results in splice site prediction, it has the

benefit that it canwork on the dataset in its entirety and only onemodel has to be trained. Especially the

latter is a considerable advantage, as training and tweaking of deep learningmodels can take a long time

due to the amount of data they work on. It however does not outweigh the low performance results, as

Zuallaert et al. obtained precision values and FDRs of respectively 96% and 4.4% for the positive donor

class, and respectively 94% and 6.1% for the positive acceptor class. Nonetheless, both SpliceRover2D

and SpliceRover1D are able to outperform state of the artmethods such as SVMs (Degroeve et al., 2005).

Together with the results obtained by Zuallaert et al., this indicates that deep learning has the ability to

significantly outperform other machine learning methods.

No differences were found between the self-implemented SpliceRover2D and the SpliceRover1D perfor-

mance results. Thiswas expected, as the filter sizes of the convolution layers in the original SpliceRover2D

network are initialised in such a way that they are essentialy equivalent to 1D convolutions. The Splice-

Rover1D network has the advantage that is takes less time to train as 1D convolutions need less com-

putational resources than their 2D counterparts. No differences were found either between the results

obtained with a stratified split and a grouped split. This indicates that no data leakage takes place in

either of the splits, and that splice site patterns are conserved independently from their accompanying

gene. On the contrary, better performance is reported for runs where the augmented A. thaliana splice

site dataset was used, with the most significant gains found in the prediction of the positive acceptor

class. Here, a relative decrease of 21.7%was noted in their FDR, which is twice the value of the decrease

seen in the FDR of the positive donor class. The reverse complement augmentation technique can thus

be a valuable tool in improving the results for positive acceptor sites. This is especially interesting as this

class still suffers from worse prediction rates than the positive donor class. A downside to this augmen-

tation method is however that it can also result in a lower recall rate for the positive acceptor class. An

assessment therefore has to be made if higher precision or higher recall rates are preferred when this

DNA augmentation technique is used.
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Efforts made to develop a NN that works on k-mer encoded splice site data proved fruitless, as no pro-

posed deep learning architecture managed to get the validation loss below 0.8. This is due to the very

small differences that are observed between the k-mer counts for the four different splice classes. K-mer

encoding is therefore not a valid encoding strategy for use with splice site data. When k-mer encoding

is applied onto the promoter dataset of A. thaliana, it is able to reach results equivalent to the ones

obtained with the one-hot encoded A. thaliana promoter data when a value of k = 5 is used. This

effect however disappears again in the H. sapiens promoter dataset. Consequently, the performance of

k-mer encoding relies heavily on the data it is applied on. When the data of interest is k-mer encoded,

large enough differences should be seen between the different classes. Once this is not the case, the

performance obtained with k-mer encoding starts deteriorating. In the worst case, a model trained on

k-mer encoded data will fail to learn any meaningful data representations, as was the case for the A.

thaliana splice site set. In order to assess if k-mer encoding will work for a certain dataset, k-mer his-

tograms can be plotted. If these display too many similarities between them, kmer encoding will not

work on the data at hand. This does notmean that the application of k-mer encoding is futile in all cases.

When the right balance between similarity and dissimilarity is reached between the different classes, it

can compete with the more frequently used one-hot encoding. K-mer encoding then has the advantage

that it works with dense network architectures, as opposed to CNNs for one-hot encoded data. These

are easier to tweak and demand less expert knowledge of the techniques involved in deep learning for

them to be optimised.

7.1. Future perspectives

Improvements to the techniques presented in this master dissertation can be done in a variety of ways.

The SpliceRover as originally implemented by Zuallaert et al. has the disadvantage that two different

networks have to be trained, resulting in a longer training time and more effort spent on finding the

most optimal hyperparameters for both networks. If one wants to use the online version of their net-

work, a choice has to bemade between which model to run on the provided sequences. This means the

user has to make two prediction calls to the model, and also two different analyses of the results need

to be conducted. This can be solved with the implementation of a branched network. Such a network

consists of two smaller networks that learn different features parallel to each other. By constructing

two branches, one branch can focus on correctly predicting if a sample is a negative or positive donor

splice site, while the other branch learns how to detect the differences between negative and positive

acceptor sites. This way, only one network has to be trained, and the user does not have to select their

preferred model resulting in a more user-friendly prediction experience.

The grouped split can be revised to identify the function of the gene they belong to. Genes with similar

functions often share the same expression patterns (Inoue and Horimoto, 2017; Hickman et al., 2018).

It is thus possible that, while still being highly conserved in general, splice site patterns differ slightly

across the different gene groups. This function group can also be passed onto the network as an ad-

ditional label, giving the network the ability to learn different patterns according to the gene function

group at hand. Furthermore, this is especially interesting for application in promoter prediction, as pro-

moters directly drive the gene expression process and are prone tomuchmore variety in their consensus

sequence than splice sites are.

The negative promoter dataset construction can also be enhanced further. Firstly, the balanced strategy

by Oubounyt et al. and the novel proposed conserved strategy should be altered in such a way that

the random choice of bases retains the species-specific DNA base composition. This will result in more

shared features between the positive and negative promoter classes, providing the DNN with a bigger

challenge thanwhen the balanced and conserved approach are used. It will possibly have the advantage

that the trained deep learning model will be more robust when used in real-life prediction predictions.

Secondly, the negative sampling method can be adapted according to the conclusions found by Gusmao

and de Souto (2014). They stated that negative sampling techniques could be improved when differ-
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ent strategies are used together in order to construct the negative sample set. Another enhancement

that can bemade to ensure the artificially constructed dataset mimics real-life genome conditions in the

best possible way is to introduce a class imbalance in favour of the negative samples. Utilising different

negative sampling methods will produce more negative samples than there are positive ones, and thus

consequently also results into the class imbalance approach. In appendix G, a small proposal is written

on how to apply these strategies onto the promoter datasets of A. thaliana and H. sapiens used in this

dissertation.

A whole new approach to the generation of negative samples can be done by applying a machine learn-

ing technique called generative adversarial networks (GANs, Goodfellow et al. (2014)). This approach

is able to generate its own data with the same characteristics as its received input data. It consists of

two neural networks, namely a generative one and a discriminative one. The discriminative network is a

network such as the ones seen in this master thesis, which classifies data based on their characteristics

and features. Another way of stating this is that a discriminative networkmaps features to labels. A gen-

erative network performs the opposite task by modeling features given a certain label. It will generate

new, real-looking data instances, which the discriminator then evaluates to see if the generated sample

is part of the original training set or not. The goal of the generator is to model data in such a way that

the discriminator becomes confused in calling out the falsely provided data samples. This eventually

leads to a discriminator network that will have learned to only model features that are present in the

real data samples. The model can then be utilised to predict promoter sequences (Goodfellow et al.,

2014; Nicholson, 2019).

As the used promoter datasets of both A. thaliana and H. sapiens only covers Pol II promoters, future

work consists of expanding these datasets by also including Pol I and Pol III promoter sequences. A deep

learning network can then be constructed that learns to predict if a sample is a promoter or not (binary

prediction). It is likely that such a model will produce poor prediction results due to the great variance

seen in consensus sequences between these promoter classes. The different promoter classes can then

be encoded as different labels instead of just the binary setting, resulting in a multiclass classification

problem. This way, the network will be forced to learn meaningful data representations for each of the

classes instead of trying to find - possibly non-existing - class-wide features.

As deep learning proved its merits in the application of automated DNA sequences annotation, it can

also be adopted to tackle different DNA annotation problems. One of these is the prediction of enhancer

regions. The identification of enhancers is especially challenging as they completely lack consensus

sequences, can be found nearly anywhere in the genome, have a great variety in length, and can still

function in a reverse orientation. ADNNcould provide a significant boost to this problem, as the different

characteristics and patterns that recede within enhancer data are extremely hard to determine.
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Appendices

A. ARAsplice assembly as described by Degroeve et al.

Publicly available mRNA sequences were downloaded from the EMBL database on 5 June 2000 and

aligned to theArabidopsis chromosome assembly bacterial artificial chromosome (BAC) sequences using

the SIM4 program (Florea et al., 1998). To remove redundant genes, neighbouring genes were removed

from the dataset. Genes were seen as neighbours if they shared 80% or more of their nucleotides, and

excluded by counting the neighbours of every gene and removing the one with the largest number. The

removal process was repeated until no genes with neighbours were present in the dataset. This gene

pruning reduced the number of genes in the dataset from1812 to 1495. The positive donor and acceptor

splice site classes consist out of intron parts which comply to the GT-AG consensus sequence for U2 class

introns. The negative donor splice site class consist out of all sequences for which a GT dinucleotide is

found between -300 bp and +300 bp of the TSS, yet lack the full GT-AG consensus sequence. Similarly,

the negative acceptor site class contains all sequences for which an AG dinucleotide is found between

-300 bp and +300 bp of the translation stop site near the stop codon, and which lack the full GT-AG

consensus sequence.
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B. ARAPROM AND HOMPROM ASSEMBLY PIPELINES BY EPDNEW

B. ARAprom and HOMprom assembly pipelines by EPDnew

B.1. ARAprom dataset

The source data consists of the February 2011 araTha1 genome release from the publicly available

TAIR10 database (Berardini et al., 2015). Genome annotation is also downloaded from the TAIR10 web-

site (1 February 2015 version), and linked with NCBI RefSeq files (O’Leary et al., 2016) to obtain the

RefSeq IDs. From the original source data, 31615 promoter sequences covering 27149 different genes

are selected, annotated, and saved under the SGA format for further processing (step 1 and 2 in fig-

ure B.1). The genome release data is extended with 13 extra experimental cap analysis gene expression

(CAGE) samples obtained from Morton et al. (2014), Cumbie et al. (2015), Tokizawa et al. (2017), and

Ushijima et al. (2017). Peak calling to obtain the location of the TSS is performed on these 13 samples,

using the ChIP-Peak Analysis Module (Ambrosini et al., 2016) with a window width of 1 bp, a vicinity

range of 200 bp, the refinement of peak position toggled to YES, a count cut-off of 9999999, and the

peak threshold read counts and relative enrichment factor both to 5 (step 3, 4, and 5 in figure B.1).

The peak-called CAGE data is then combined with the TAIR10 source data to experimentally validate the

TSSs and thus the promoter sequences. An annotated TSS is confirmed as a true TSS if an experimental

CAGE peak can be found in the vicinity of 100 bp around it. The validated TSS is then shifted to the

position of where the highest CAGE data peak can be found (step 6 in figure B.1). This results in a sepa-

rate promoter collection for each TAIR10 sample, as multiple annotated TSSs can be linked to the same

CAGE peak and thus result in a slightly different position of the TSS. Each sample promoter collection is

scanned for the presence of core promoter elements TATA-box and inr (step 8 in figure B.1), and used

as input data for the next step of the data assembly pipeline (part B in figure B.1). TSSs that were not

experimentally validated by a CAGE peak are discarded (step 7 in figure B.1)

The separate promoter collections are merged into one file, and one position for each experimentally

validated TSS is chosen by taking the position that was confirmed by the largest amount of samples (step

9, 10, and 11 in figure B.1). An additional filter is then applied for TSSs that are in the vicinity of 100

bp or less of each other, and that belong to the same gene. These TSSs are merged into the promoter

validated by the highest number of samples, which resulted in the experimentally validated EPDnew A.

thaliana promoter dataset containing 22703 promoter samples (step 12 and 13 in figure B.1).

Figure B.1: Visualisation of the EPDnew assembly pipeline for the A. thaliana promoter dataset (Dreos et al., 2013).
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B. ARAPROM AND HOMPROM ASSEMBLY PIPELINES BY EPDNEW

B.2. HOMprom dataset

Human ENCODE gene data is retrieved through the USCS Table Browser (Karolchik et al., 2004) with

the December 2013 (GRCh38/hg38) assembly toggled. Annotation data is downloaded from the EBI

website, using the Human GENCODE v28/hg38 release (Wright et al., 2016). Sequences are kept if they

belong to genes coding for proteins and if all splice junctions of the gene are supported by at least

one mRNA (transcript support level equal to 1). Sequences that share the same absolute TSS position

are merged, resulting in 35320 extracted promoter sequences in 17056 genes which are saved in the

SGA format (step 1 and 2 in figure B.2). The gene data is extended with experimental CAGE and RNA

Annotation andMapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data fromDjebali

et al. (2012; 145 CAGE samples), Batut et al. (2013; 225 RAMPAGE samples), and FANTOM5 (2014; 941

CAGE samples). The CAGE source files in BAM format are downloaded from the USCS (Kent et al., 2002)

or FANTOM (Lizio et al., 2015) website, and mapped onto the GRCh37/hg19 genome assembly. The

liftOver tool (Kent et al., 2002) is used to lift the samples over to the GRCh38/hg38 genome assembly.

Peak calling with the ChIP-Peak Analysis Module (Ambrosini et al., 2016) is performed on every CAGE

sample to obtain the location of the TSS, with a window width of 1 bp, a vicinity range of 200 bp, the

refinement of peak position toggled to NO, a count cut-off of 9999999, and the peak threshold read

counts and relative enrichment factor both to 5 (step 3, 4, and 5 in figure B.2). The RAMPAGE data,

obtained by paired-end sequencing, is used to identify TSS that map outside gene boundaries. The

samples are downloaded through the ENCODE portal (Davis et al., 2018), mapped as BAM files onto

the GRCh38/hg38 genome assembly, and analysed separately from the CAGE data (step 6 in figure B.2).

Samples are kept and annotated if a mapping score of 255 is achieved and if the second paired endmaps

inside a gene exon and has the same orientation as the first paired end. Peak calling is then performed

in the same manner as for the CAGE samples, and peaks are selected for further analysis if they map

outside their defined gene boundaries.

Since quality control for the extracted samples indicated poor quality, the RAMPAGE data is merged

together with the ENCODE gene data for TSS validation by use of the CAGE data (step 7 in figure B.2).

A ENCODE TSS is experimentally confirmed if a CAGE peak with at least 5 tags is found within a vicinity

of 200 bp, while a RAMPAGE TSS is confirmed when the CAGE peak maps to the 5’ UTR of the gene

and has at least 50 tags. For both the ENCODE and RAMPAGE samples, the validated TSS is shifted

onto the base where the highest CAGE peak was found. Secondary promoters for genes with multiple

TSSs are discarded when their expression level is below 10% of the expression level of the strongest

promoter (ENCODE data), or if the peak was less than 10 tags (RAMPAGE data). TSSs that failed to be

experimentally validated were discarded from further analysis.

As a TSS can be validated by multiple CAGE peaks and thus have slightly different start positions, each

sample in the ENCODE and RAMPAGE data generated its own promoter set. These are controlled for low

quality by discarding samples with low frequencies for the TATA-box (< 5%) and the inr (< 10%) (step 8 in

figure B.2). Each promoter set is then used as input for an additional processing step (part B in figure B.2),

where they are allmerged into one single file. A TSS is only retainedwhen itwas experimentally validated

by at least three CAGE samples, and its position is fixed by taking the position that was confirmed by the

largest number of samples (step 9,10 and 11 in figure B.2). Additional filtering is then done by merging

promoters which share the same gene and from which the TSSs are within a 100 bp window of each

other (promoter with largest sample confirmation is kept; step 12 in figure B.2). This eventually resulted

in the experimentally validated EPDnew H. sapiens coding promoter collection, with 29598 promoter

sequences (step 13 in figure B.2).
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B. ARAPROM AND HOMPROM ASSEMBLY PIPELINES BY EPDNEW

Figure B.2: Visualisation of the EPDnew assembly pipeline for the coding H. sapiens promoter dataset (Dreos et al., 2013).
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C. PYTHON PACKAGE VERSIONS

C. Python package versions

1 abs l−py ==0 . 6 . 1

a s t o r = = 0 . 7 . 1

brewer2mpl = =1 . 4 . 1

c y c l e r = =0 . 10 . 0

5 d i l l = = 0 . 2 . 8 . 2

g a s t = = 0 . 2 . 0

g g p l o t ==0 . 11 . 5

g r p c i o ==1 . 16 . 1

h5py ==2 . 8 . 0

10 Kera s = =2 . 2 . 4

Keras−A p p l i c a t i o n s = =1 . 0 . 6

Keras−P r e p r o c e s s i n g = =1 . 0 . 5

k i w i s o l v e r = = 1 . 0 . 1

lm l = = 0 . 0 . 7

15 Markdown ==3 . 0 . 1

ma t p l o t l i b = = 3 . 0 . 2

numexpr = =2 . 6 . 8

numpy ==1 . 15 . 4

odfpy = =1 . 3 . 5

20 pandas ==0 . 23 . 4

pa t s y = =0 . 5 . 1

pkg−r e s ou r c e s = =0 . 0 . 0

p ro tobu f = =3 . 6 . 1

pydot = =1 . 4 . 1

25 pyexce l−i o = =0 . 5 . 1 1

pyexce l−ods = =0 . 5 . 4

p ypa r s i n g = =2 . 3 . 0

python−d a t e u t i l = = 2 . 7 . 5

py t z ==2018.7

30 PyYAML ==3 .13

s c i k i t −l e a r n ==0 . 20 . 0

s c i p y = =1 . 1 . 0

seaborn = =0 . 9 . 0

s i x = =1 . 11 . 0

35 s k l e a r n ==0 .0

s t a t smode l s = = 0 . 9 . 0

t a b l e s = = 3 . 4 . 4

tenso rboa rd ==1 . 12 . 0

t en s o r f l ow ==1 . 12 . 0

40 t e rmco l o r = = 1 . 1 . 0

Werkzeug ==0 . 14 . 1

Listing 1: Python packages and their versions used for the scripting and training of the DNNs.
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D. SEQUENCE LOGOS AND HOW TO INTERPRET THEM

D. Sequence logos and how to interpret them

A sequence logo is a visualisation of a multiple sequence alignment of proteins or DNA sequences

which represents the nucleotide or amino acid conservation at each position in the provided sequences

(Schneider and Stephens, 1990; Crooks et al., 2004). For use with DNA sequences, a stack of bases is

seen at each position where the total height R of the stack indicates how well the sequences are con-

served at that location. This height is represented in bits of entropy, with the maximum value of 2 being

found at positions where always the same base is encountered (CLC bio, 2019). Within a stack for a

certain position, the heights of the letters relate to the relative frequency of each letter at that location.

The stack heightRi at position i is calculated using:

Ri = 2− [Hi + en] (1)

with Hi the Shannon entropy or uncertainty at position i and en a small-sample correction. They are

determined by:

Hi = −
∑
b ∈ B

fb,i · log2(fb,i) en =
1

ln(2)
· 3

2n
(2, 3)

where B = {A, C, G, T}, fb,i the relative frequency of base b at position i, and n the number of sequences

in the alignment. Note that en can be discarded for large numbers of n.
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E. EFFECT OF DROPOUT ON THE LOSS DURING TRAINING

E. Effect of dropout on the loss during training
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Figure E.1: Loss plots for the SpliceRover2D model run with a stratified split on the original ARAsplice set.
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F. K-MER HISTOGRAMS PROMOTER DATASETS

F. K-mer histograms promoter datasets
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Figure F.1: K-mer counts per sequence for both classes within the ARAprom-C dataset for k = 1.
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F. K-MER HISTOGRAMS PROMOTER DATASETS

F.2. HOMPROM: balanced
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Figure F.3: K-mer counts per sequence for both classes within the HOMprom-B dataset for k = 1.
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F. K-MER HISTOGRAMS PROMOTER DATASETS

Km
er

s
012345 Counts per sequence

Km
er

s c
ou

nt
s p

er
 se

qu
en

ce
 in

 p
ro

m
Po

s (
k=

4)

(a
)
P
o
si
ti
v
e
p
ro
m
o
te
rs
(p
ro
m
P
o
s)

Km
er

s
012345 Counts per sequence

Km
er

s c
ou

nt
s p

er
 se

qu
en

ce
 in

 p
ro

m
Ne

g 
(k

=4
)

(b
)
N
e
g
a
ti
v
e
p
ro
m
o
te
rs
(p
ro
m
N
e
g
)

F
ig
u
re

F.
4
:
K
-m

e
r
co
u
n
ts
p
e
r
se
q
u
e
n
ce

fo
r
b
o
th

cl
a
ss
e
s
w
it
h
in

th
e
H
O
M
p
ro
m
-B

d
a
ta
se
t
fo
r
k
=

4
.

89



F. K-MER HISTOGRAMS PROMOTER DATASETS

F.3. HOMPROM: conserved
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Figure F.5: K-mer counts per sequence for both classes within the HOMprom-C dataset for k = 1.
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G. NEGATIVE PROMOTER CONSTRUCTION: UNBALANCED APPROACH

G. Negative promoter construction: unbalanced approach

The unbalanced approach adopts several negative sample construction methods proposed by Gusmao

and de Souto (2014). All methods are used on the same dataset at once, creating a dataset with a class

imbalance in favour of the negative samples. This approach establishes a dataset that is more in line

with the conditions in real-life genomes, where a promoter sequence is encountered every 30 to 40

kilobases (in humans; Antequera and Bird, 1993). This ratio roughly translates to 100 negative samples

for every single positive one if sample lengths of 300 bp are used.

The first scheme is the nearly exactly the same as the conserved balanced approach described in sec-

tion 5.2.3, with the alteration that now two negative samples are constructed for one positive sample.

As 2, respectively 1, windows need to be conserved in the ARAprom and HOMprom set, 6 out of 18 re-

maining windows, respectively 7 out of 19, are randomly chosen to be conserved. This means for every

dataset that, after the construction of the first negative sample, 12 windows were not used in the neg-

ative sample construction. From these 12 windows, 6, respectively 7, windows can again be randomly

chosen to construct a new negative sample. In both negative samples the consensus sequences are

then conserved, yet the other randomly chosen conserved sequences differ completely. The randomly

chosen DNA bases are chosen in such a way that the species-specific base composition is retained.

The second approach is the addition of promoter sequences from related species as non-promoter sam-

ples. For A. thaliana the only other plant available in the EPDnew database is selected, namely Zeamays

(corn), adding 17801 new samples to the negative ARAprom set. ForH. sapiens, themost closely related

mammal is chosen from EPDnew, resulting in the addition of 9575 samples from the Macaca mulatta

(rhesus macaque) set. Note that this makes the trained network unusable for multispecies promoter

prediction as the network will learn to focus on the promoters patterns unique to the species in the

training set.

Third is the addition of sequences with an annotation other than ’promoter’, such as introns and exons.

Sequences can be extracted directly from the species reference genome, which is freely available for

download on websites such as NCBI. Genome annotation can also be downloaded from the same web-

site. Coding and non-coding sequences are then scanned for their length, and sequences smaller than

300 bp in length are discarded. For sequences up to 600 bp , a random starting point is chosen in order to

obtain a 300 bp long sequences. For sequencing with a length between 600 and 900 bp , two sequences

can be extracted. This is done in such a way that no overlap consists between the extracted sequences.

This process is repeated for every multiplication of 300 bp , until no more genome sequences are left

fromwhich a negative sample can be obtained. Before the extracted sequences are added to the rest of

the negative sample set, they are scanned to see if highly similar sequences are present to avoid biased

prediction results. If two highly similar samples are divided over the training and test set, the algorithm

will have no problem predicting the similar sample in the test set as it has already been seen during the

training phase. This can lead to the algorithm having inflated prediction values for the test set, which do

not reflect how well the algorithm would perform on an entirely unseen dataset. Samples are scanned

with the Clustal Omega program (version 1.2.4; Sievers and Higgins (2018)) which outputs a full distance

matrix, holding the similarity percentage between samples. If two samples share a similarity of 80% of

higher, the sample which shares the highest overall similarity to all other samples is removed. This pro-

cedure is repeated until all samples have a similarity lower than 80% to each other.

Lastly, randomly generatedDNA sequences are addeduntil the desired class imbalance is reached. These

random sequences are again constructed in such a way that the species-specific base composition is not

altered. The samples generated with these four negative samples practices are then mixed together to

yield one large negative sample dataset.
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