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ABSTRACT 
 

Cancer is characterized by an accumulation of genetic alternations resulting in the development of 

abnormal cells that divide uncontrollably and have the potential to invade or spread to other parts of the 

body. Somatic mutations can generate tumour-specific neoantigens that can be presented as 

neoepitopes on malignant cancer cells. Subsequently, recognition of neoepitopes by immune cells can 

induce an anticancer immune response. Therefore, these neoepitopes are considered ideal cancer 

vaccine targets. Recent advances in next-generation sequencing technology and novel bioinformatics 

tools have enabled the careful identification of cancer-specific somatic mutations and subsequent 

neoantigens, therefore, paving the way for the development of a personalised therapeutic vaccine. The 

bioinformatics pipeline involved in the identification of neoantigens entails the alignment of sequencing 

data, processing of alignment files, variant calling, HLA-typing, neoepitope prediction and selection of 

immunogenic neoantigens. 

 

Current approaches often rely on whole-exome sequencing (WES) for the detection of somatic variants 

due to its reliability and relatively low cost. Nevertheless, RNA sequencing (RNA-Seq), while mainly 

used for gene expression analysis, can also be used for the detection of genetic variants. Therefore, in 

this master thesis alignment, pre-processing and variant calling were analysed and evaluated to allow 

the accurate identification of somatic variants from transcriptome analysis. The proposed pipeline 

involves GSNAP alignment and subsequent pre-processing using GATK’s SplitNCigarReads and 

BaseRecalibrator. For accurate variant calling a new method called MuVaSt, combining variant calling 

algorithms MuTect2, VarDict and Strelka2, was evaluated. The combination of these three variant callers 

revealed a higher precision for the detection of SNVs than any single variant caller. Nevertheless, the 

precision for the detection of indels remained considerably low. 

 

MuVaSt was applied to RNA-Seq data obtained from a formalin-fixed paraffin-embedded (FFPE) sample 

and a fresh frozen (FF) sample. Subsequently, identified variants were compared to a Gold Standard 

set containing somatic variants identified using WES data. Only a small overlap was found between 

somatic variants called in RNA-Seq and in WES. The DNA unique variants were mainly attributed to a 

low expression. The RNA unique variants, on the other hand, were mainly due to their location outside 

the WES capture regions. Furthermore, it was observed that a large fraction of the discordant variants 

had a low variant allele frequency (VAF) potentially caused by tumour heterogeneity and allele-specific 

expression. In addition, variants with a low read count may also be the result of artefacts originating 

from sequencing errors, misalignments, library preparation artefacts or sample preservation damage. 

Finally, comparison of both fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) sample 

types revealed inferior performances for the FFPE sample primarily due to artefacts originating from the 

formalin fixation process. Moreover, only a limited overlap was observed between FF and FFPE variants 

potentially caused by the geographical tumour heterogeneity. 

 

To validate the suggested bioinformatics workflow, an FFPE sample from a second patient was 

analysed. Nevertheless, a low tumour purity and a high fraction of subclonal mutations complicated the 

detection of somatic variants. Therefore, the bioinformatics pipeline should be optimised in order to allow 

more precise variant calling of heterogeneous tumour samples. 

 

Keywords: RNA sequencing, Lung cancer, Neoantigen, Alignment, Somatic variant calling, FFPE 
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SAMENVATTING 
 

Kanker wordt gekenmerkt door een opeenstapeling van genetische veranderingen die leiden tot de 

ontwikkeling van abnormale cellen die op een chaotische manier delen en zich uiteindelijk verspreiden 

naar andere delen van het lichaam. Somatische mutaties kunnen aanleiding geven tot tumor-specifieke 

neoantigenen die als neoepitopen kunnen worden gepresenteerd op kankercellen. De herkenning van 

deze neoepitopen door cellen van het immuunsysteem kan vervolgens een anti-kanker immuun respons 

induceren. Om deze reden worden neoepitopen beschouwd als ideale targets voor een kanker vaccin. 

De recente vooruitgang in de Next Generation Sequencing technologie en de nieuwe bio-informatica 

algoritmen die vandaag de dag beschikbaar zijn hebben het mogelijk gemaakt om kanker-specifieke 

somatische mutaties en de daaruit resulterende neoantigenen te identificeren. Deze nieuwe 

mogelijkheden dragen bij tot de verdere ontwikkeling van een gepersonaliseerd therapeutisch vaccin. 

De bio-informatica pipeline die wordt gebruikt voor de identificatie van neoantigenen bestaat uit de 

alignment van sequencing data, het verwerken van deze alignment bestanden, de variant calling, HLA-

typering, neoepitoop predictie en de selectie van immunogene neoantigenen. 

 

De aanpak die momenteel vaak wordt toegepast om somatische varianten te identificeren bestaat uit 

whole-exome sequencing (WES), vanwege de betrouwbaarheid en relatief beperkte kosten. Hoewel 

RNA sequencing (RNA-Seq) voornamelijk gehanteerd wordt voor de kwantificatie van de genexpressie, 

is het ook mogelijk om deze RNA-Seq gegevens te gebruiken om genetische varianten te detecteren. 

Met dit voor ogen werd in deze masterproef de alignment, de verwerking en de variant calling van het 

transcriptoom, afkomstig van een long tumor, geanalyseerd en geëvalueerd om een zo accuraat 

mogelijke identificatie van somatische varianten mogelijk te maken. De pipeline die hiervoor werd 

geselecteerd bestaat uit alignment met GSNAP en verdere verwerking met behulp van GATK’s 

SplitNCigarReads en BaseRecalibrator. Voor de variant calling werd een nieuwe methode MuVaSt 

ontwikkeld, deze combineert de variant callers MuTect2, VarDict en Strelka2. De combinatie van deze 

drie variant callers zorgde ervoor dat SNVs met een hogere precisie konden worden gedetecteerd dan 

wanneer slechts één variant caller afzonderlijk werd gebruikt. De precisie voor de detectie van indels 

bleef daarentegen aanzienlijk laag. 

 

MuVaSt werd toegepast op de RNA-Seq gegevens die werden bekomen van een ‘formaline gefixeerd 

en paraffine ingebed’ (FFPE) staal en van een vriescoupe (FF). Vervolgens werden de geïdentificeerde 

varianten vergeleken met een Gouden Standaard set van somatische varianten die werden 

gedetecteerd in WES. Slecht een beperkt aantal van deze somatische varianten werd zowel in RNA-

Seq als in WES geïdentificeerd. De DNA unieke varianten konden deels worden toegeschreven aan 

hun beperkte expressie in het tumor weefsel. De RNA unieke varianten konden daarentegen onder 

andere worden verklaard doordat ze buiten de genomische regio’s lagen die worden getarget door WES. 

Daarnaast werd ook opgemerkt dat een groot deel van de unieke varianten een zeer lage allelfrequentie 

(VAF) had. Het is mogelijk dat dit werd veroorzaakt door de aanwezige heterogeniteit binnen de tumor 

en door allel specifieke expressie. Varianten met een lage VAF kunnen ook vals positieve varianten zijn 

afkomstig van artefacten die ontstonden tijdens de sequencing, de alignment, de library preparation of 

door schade veroorzaakt door de staalname techniek. Ten slotte bleek uit de vergelijking van beide 

staalname technieken dat het FFPE staal aanleiding gaf tot een lagere precisie. Dit was voornamelijk 

het gevolg van artefacten afkomstig van het formaline fixatieproces. Daarnaast was de overlap tussen 

de varianten geïdentificeerd in het FF staal en het FFPE staal beperkt door onder andere de 

geografische heterogeniteit binnen het tumorweefsel. 

 



X 
 

Om deze bio-informatica pipeline te valideren werd een FFPE staal van een tweede patiënt 

geanalyseerd. De accurate detectie van somatische varianten werd hier echter bemoeilijkt doordat dit 

staal slechts een beperkt percentage tumor cellen bevatte en er bovendien meer subklonale mutaties 

aanwezig waren. Bijgevolg vergt deze pipeline nog verder onderzoek om ervoor te zorgen dat de variant 

calling van heterogene tumor stalen preciezer kan worden uitgevoerd. 

 

Trefwoorden: RNA sequencing, Longkanker, Neoantigenen, Alignment, Somatic variant calling, FFPE 

 

 



1 
 

INTRODUCTION 
 

Lung cancer remains the most prevalent cancer worldwide, both in term of new cases (1.8 million cases, 

12.9% of total) and deaths (1.6 million deaths, 19.4% of total) because of the high mortality rate [1]. As 

a genetic disease, somatic mutations accumulate in cancer cells during cancer progression. These 

mutations can alter protein functions, ultimately disrupting cellular control of pathways, resulting in the 

hallmarks of cancer [2].  

 

Conventional chemotherapies are not considered to be the ultimate therapy since not only tumours are 

targeted but also dividing cells in healthy organs. For more than a century, immunotherapy has been 

postulated as a promising alternative since it focusses on deploying a patient’s own immune system to 

specifically target malignant cancer cells. A possible approach is to target immune checkpoints, these 

are molecules that modulate the immune system. For example, Programmed Death 1 (PD-1) and 

cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) are immune checkpoint receptors that can be 

targeted using specific antibodies, so-called immune checkpoint blockers. When an antibody binds the 

receptor or its ligands, the cancer cell is no longer able to suppress the immune response. However, 

only a limited number of patients experience complete treatment response, and even if they do so, 

resistance is often acquired. Owing to these limitations of current immunotherapies, there is 

considerable scope for novel therapies. One promising new approach is a personalised cancer 

immunotherapy that targets patient-specific tumour antigens. In recent years, technological advances 

such as next-generation sequencing (NGS) and machine-learning approaches for epitope prediction 

have paved the way for the development of these personalised anti-tumour therapies directly targeting 

a patient’s somatic mutations, so-called neoantigens. Furthermore, it was already widely recognised 

that somatic mutations within a cancer cell give rise to neoepitopes that are recognised by the adaptive 

immune system as ‘mutated-self’ and in this way differentiate cancer cells from normal cells [3]. 

However, tumours develop immune evasion strategies in order to avoid the recognition and degradation 

by the immune system. Combining computational advances and knowledge on the interactions between 

the immune system and cancer cells allows the development of a personalised therapeutic cancer 

vaccine that specifically targets neoepitopes on cancer cells and in this way activates and enriches the 

immune response. Nevertheless, a standardized protocol for the detection, selection and targeting of 

these neoantigens hasn’t been adapted yet since this is a complex and computationally demanding 

process that requires specialised bioinformatics tools and optimised selection criteria.  

 

This master thesis is part of a research project funded by ‘Kom op tegen Kanker’ that aims to improve 

the outcome of immune checkpoint blockade in lung cancer by combination with a tumour mutanome-

targeted dendritic cell vaccine. The focus of this thesis is to optimise the alignment and the variant calling 

on RNA sequencing (RNA-Seq) data in order to be able to detect and select the most promising 

neoantigens in further steps of the bioinformatics pipeline. The therapeutic pipeline that will be evaluated 

has some features not adapted in previously described pipelines. First of all, the ultimate goal is to use 

formalin-fixed paraffin-embedded (FFPE) samples to extract genomic material. This is challenging 

because accurate detection of mutations is often problematic in FFPE material due to fragmentation and 

modification of DNA and RNA. Second, the transcriptome will be sequenced and analysed to detect 

somatic variants. RNA-Seq has some major advantages over whole-exome sequencing (WES) but at 

the same time brings some computational challenges. Third, both single-nucleotide variants (SNV) and 

insertions and deletions (indels) will be targeted. Nevertheless, alignment and detection of indels is 

challenging and thus requires careful selection and optimisation of bioinformatics tools.
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1 LITERATURE STUDY 
 

1.1 Cancer 
 

1.1.1 Mutational Process 

 

Cancer is a disease characterised by the development of abnormal cells that divide uncontrollably and 

have the potential to invade or spread to other parts of the body. The progression of cancer comprises 

three major phenotypes: growth, invasion and metastasis. When a normal somatic cell acquires 

resistance to apoptosis and undergoes uncontrolled cell proliferation the number of neoplastic cancer 

cells, and hence the tumour tissue mass, will increase which results in a primary, benign tumour. 

Following this growth phase, the cancer cells will start to invade healthy tissue. Eventually, some cancer 

cells will enter the blood circulation and cellular dissemination will result in the formation of a secondary 

metastatic tumour (carcinoma). 

 

Genetic and epigenetic alterations caused by both exogenous carcinogens (e.g. radiation, chemical 

carcinogens) and endogenous carcinogens (e.g. tumour promoting inflammation) underlie this cancer 

progression. Mutated genes contributing to tumour development are called driver genes and can be 

classified into oncogenes and tumour suppressor genes. A normal cellular gene that codes for a protein 

involved in normal cell division, invasion and/or migration can be overexpressed or mutated into an 

oncogene which, in its turn, contributes to the formation of a cancer cell [4]. An example of an oncogene 

is EGFR (Epidermal Growth Factor Receptor) which in its oncogenic form results in an elevated 

responsiveness to growth factors and a reduced sensitivity to apoptosis and malignant cell growth. A 

tumour suppressor gene, on the other hand, is a gene normally acting to inhibit cell proliferation and 

tumour development. In many tumours, these genes are lost or inactivated, thereby removing negative 

regulators of cell proliferation and contributing to cancer progression [4]. For example, pRb (protein 

retinoblastoma) is a tumour suppressor gene that is mutated in several major cancers. One key function 

of pRb is to prevent excessive cell growth by actively inhibiting cell cycle progression into the S phase. 

 

Mutations do not occur at predefined positions in a genome but they rather happen at random. This 

means that not all mutations in a cancer cell drive cancer progression. So-called passenger mutations 

do not confer a selective growth advantage for the cancer cell in contrast to driver mutations. As a result, 

driver mutations can be similar between different patients, conversely, passenger mutations are all 

different. It is important to note that there is a fundamental difference between a driver gene and a driver 

mutation. A driver gene is a gene that contains driver mutations, and in this way contributes to cancer 

progression, but on the other hand, this driver gene may also contain passenger mutations. Although it 

is relatively straightforward to define a driver mutation as one conferring a selective growth advantage, 

it is more difficult to identify which somatic mutations are drivers and which are passengers [5]. 

 

The presence of multiple genetic alterations in cancer cells strongly indicates that those alterations 

accumulate in the cells in a stepwise manner during tumour progression. Analyses of genetic alterations 

in different tumours have shown that the number of genetic alterations in late-stage tumours is usually 

higher than those in early-stage tumours in various types of cancers [6]. This concept of multistage 

carcinogenesis explains why not all cancer cells in a tumour have a similar mutational profile. At first, 

normal cells carefully control the production and release of growth-promoting signals regulating the cell 

growth-and-division cycle, thereby ensuring a homeostasis of cell number and thus preservation of 
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normal tissue morphology and function. When a normal cell acquires a driver mutation in a gene 

regulating this process it will sustain proliferation enabling replicative immortality, the most fundamental 

trait of cancer cells [2]. This first gatekeeping mutation provides a selective growth advantage to a 

normal cell, allowing it to outgrow the surrounding cells [5]. The small adenoma that results from this 

mutation slowly grows and the cancer cells continue to proliferate which eventually results in the 

accumulation of both driver and passenger mutations. This mutational process followed by clonal 

expansion continues, thereby dividing the tumour tissue into different tumour populations with different 

mutational profiles. Mutations that are present in the majority of the neoplastic cells in the tumour are 

called clonal. Subclonal mutations, on the other hand, can only be found in a small subpopulation of 

tumour cells [5]. Beside replicative immortality, seven other biological capabilities are acquired during 

the multistep development of a metastatic tumour: the hallmarks of cancer. These include sustained 

proliferative signalling, evading growth suppressors, resisting cell death, inducing angiogenesis, 

activating invasion and metastasis, evading immune destruction and reprogramming of energy 

metabolism [2]. Eventually, this mutational process results in malignant cancer cells that can invade 

through the underlying basement membrane and ultimately metastasize to lymph nodes and other parts 

of the body [7]. 

 

Over the past decade, comprehensive sequencing efforts have facilitated the research of mutational 

processes in tumours. The cost of high-throughput sequencing has been reduced to a $1000 per 

genome [8], thereby enabling the production of a massive amount of sequencing data that can help to 

unravel the genomic landscape of common types of human cancer, the so-called mutanome [5]. It has 

been shown that in a solid tumour on average 33 to 66 genes have acquired somatic mutations that 

would be expected to alter their protein products, so-called nonsynonymous mutations [5]. However, 

lung tumours together with melanoma tumours have an exceptionally high prevalence of somatic 

mutations as can be seen in Figure 1 [9]. Since the detection of somatic mutations is computationally 

challenging, a higher mutational frequency results in a higher chance of detection. As a result, lung 

tumours are a prime candidate to evaluate somatic mutations. About 95% of the nonsynonymous 

mutations are SNVs, whereas the remainders are indels of one or a few bases. On average 90.7% of 

these nonsynonymous SNVs result in missense mutations, 7.6% result in nonsense mutations, and 

1.7% result in alterations of splice sites or untranslated regions [5]. Other types of mutations found in 

solid tumours are changes in chromosome number (aneuploidy), gene amplifications, and translocations 

that may result in the fusion of two genes thereby creating an oncogene. As already described before, 

the majority (>99.9%) of these genetic alterations appear to be passenger mutations rather than driver 

mutations [5]. 

Figure 1. The prevalence of somatic mutations in human cancer types [9]. Every black dot represents a sample 
and the red horizontal lines indicate the median number of somatic mutations per megabase in the respective 
cancer types. The vertical axis is log scaled and depicts the number of somatic mutations per megabase. 



Literature Study    5 

1.1.2 Lung Cancer 

 

Lung cancer accounts worldwide for more deaths than any other cancer type in both men and women. 

In 2012, 12.9% of new cancer cases and 19.4% of cancer deaths were caused by lung cancer [1]. Lung 

cancer can be categorized into two main histological groups [10]: small cell lung carcinoma (SCLC) and 

non-small cell lung carcinoma (NSCLC). NSCLCs comprises the largest group (85% of all lung cancers) 

and can be subcategorized into lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) 

and large cell carcinoma. Squamous cell carcinomas generally develop in the central bronchi, while 

adenocarcinomas often emerge more at the edges of the lungs [11]. Although NSCLCs are associated 

with cigarette smoke, LUAD may occur in patients who have never smoked. LUSC, on the other hand, 

appears most often in patients who have smoked. In contrast to SCLC, NSCLCs are relatively insensitive 

to standard chemotherapy and radiation therapy.  

 

Lung adenocarcinoma accounts for more than 50% of all cases in lung cancer and arises from the 

glandular cells located in the epithelium of the bronchi. The comprehensive molecular profiling of 230 

adenocarcinomas by The Cancer Genome Atlas (TCGA) was published in 2014 [12]. Whole-exome 

sequencing of tumour and germline DNA revealed a mutation rate of 8.87 somatic mutations per 

megabase of DNA, the nonsynonymous mutation rate was 6.86 per Mb. Consistent with previous studies 

[13], a significantly higher exonic mutation rate was observed in tumours from smokers. The authors 

also identified 18 statistically significant mutated genes: TP53 (46%), KRAS (33%), KEAP1 (17%), 

STK11 (17%), EGFR (14%), NF1 (11%), BRAF (10%), SETD2 (9%), RBM10 (8%), MGA (8%), MET 

(7%), ARID1A (7%), PIK3CA (7%), SMARCA4 (6%), RB1 (4%), CDKN2A (4%), U2AF1 (3%), and RIT1 

(2%) [14]. The percentages reflect the proportion of LUAD containing a mutation in the aforementioned 

gene. These genetic mutations were also found in previous studies [13], [15]. The receptor tyrosine 

kinase (RTK)/RAS/RAF pathway is frequently mutated in LUAD [12]. Most important genetic alternations 

that promote this pathway are KRAS, EGFR and BRAF mutations. In addition to these alterations, also 

MET exon 14 skipping, ERBB2 (or HER2) mutation and/or amplification, ROS1 fusion, ALK fusion, 

MAP2KA mutation, RET fusion, NRAS mutation, HRAS mutation, MET amplification, NF1 mutation and 

RIT1 mutation promote the (RTK)/RAS/RAF pathway [14]. All these genetic alterations are identified as 

driver mutations since they promote the (RTK)/RAS/RAF pathway which may lead to increased or 

uncontrolled cell proliferation and resistance to apoptosis. This pathway plays a key role in oncogenesis 

since 76% of LUAD driver mutations can be identified within the (RTK)/RAS/RAF pathway [12]. 

 

Lung squamous cell carcinoma is defined as a lung carcinoma that begins in the squamous cells (the 

flat cells lining the inside of the airways in the lungs) and is more strongly associated with smoking than 

any other type of NSCLC. The spectrum of mutations in LUSC is very different from LUAD, which 

explains why LUSC has not been responsive to drugs that work for LUAD. For example, mutation of 

EGFR and KRAS, the two most abundant oncogenic alterations in LUAD, are extremely rare in LUSC. 

LUSC is characterised by complex genomic alternations, as can be expected from the history of heavy 

smoking in LUSC patients [9]. A recent comprehensive molecular profiling by TCGA identified 11 

statistically significant genetic mutations: TP53, CDKN2A, PTEN, PIK3CA, KEAP1, MLL2, HLA-A, 

NFE2L2, NOTCH1, RB1 and PDYN [14], [16]. Mutation in TP53 has been identified in 90% of the cases. 

The authors also identified novel loss-of-function mutations in the HLA-A class I major histocompatibility 

gene which can be linked to the cancer hallmark of avoiding immune destruction [14]. Frequent 

alterations were also identified in the following pathways: CDKN2A/RB1, NFE2L2/KEAP1/ CUL3, 

PI3K/AKT and SOX2/TP63/NOTCH1 pathways, providing evidence of common dysfunction in cell cycle 

control, response to oxidative stress and apoptotic signalling [9]. 
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The most frequent mutational signatures found in lung cancer tumours are C<T transitions and C<A 

transversions [9], [13]. This mutational signature is associated with tobacco smoking and is probably an 

imprint of the bulky DNA adducts generated by polycyclic hydrocarbons originating from tobacco smoke 

and their subsequent removal by transcription-coupled nucleotide excision repair [16]. As a result, driver 

genetic alterations in LUAD differ between smokers and non-smokers. For example, mutations in the 

KRAS gene are frequently detected in LUAD in smokers, while oncogenic aberrations in EGFR, ALK, 

ROS1 and RET are more abundant in tumours of non-smokers [14]. 

 

1.1.3 Cancer Immunology 

 

Oncogenes not only contribute to tumour development and progression, but they can also be the source 

of tumour-associated antigens (TAA). Several types of TAA exist: differentiation antigens (e.g. 

melanocyte differentiation antigens), mutational antigens (e.g. p53), overexpressed cellular antigens 

(e.g. HER2), viral antigens (e.g. human papillomavirus proteins) and cancer/testis antigens that are 

expressed in germ cells of testis and ovary but silent in normal somatic cells (e.g. MAGE and NY-ESO-

1) [17]. TAA are relatively restricted to tumour cells, and, to a limited degree, to normal tissues 

(differentiation antigens). Tumour-specific antigens (TSA), on the other hand, are solely expressed in 

tumour cells. These TSA, also called neoantigens, can be presented as neoepitopes on malignant 

cancer cells. Recognition of neoepitopes by immune cells may induce an anticancer immune response 

[18]. 

Figure 2. The Cancer-Immunity Cycle. This cycle can be divided into seven major steps, starting with the release 
of cancer cell antigens and ending with the elimination of respective cancer cells [18]. 
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The mutational landscape and the resulting TSA described above imply that there is a clear opportunity 

for the immune system to differentiate tumour cells from healthy tissue. However, in order for an immune 

response to induce the effective elimination of cancer cells, a series of successive events must be 

initiated and expanded iteratively, the so-called Cancer-Immunity Cycle [18] (Figure 2). In a first step, 

TSAs are released, for example, by cancer cell death. Dendritic cells (DCs) capture and process these 

neoantigens thereby presenting them in association with major histocompatibility complex (MHC) class 

I or class II molecules on their cell surface. The DCs migrate to the lymph nodes were T lymphocytes, 

also called T cells, recognise the presented TSA. This results in the priming and activation of CD8+ 

and/or CD4+ T cells. These T cells can now recognise the specific TSA and induce an immune response. 

The activated CD8+ T cell, also called the cytotoxic T cell (CTL), migrates and infiltrates the tumour 

tissue. Next, the CTL binds a cancer cell through interaction between its T-cell receptor (TCR) and its 

cognate neoantigen presented on an MHC I molecule on the cancer cell surface. Finally, perforins and 

granzymes are released by the CTL and the cancer cell is killed which results in the release of additional 

TSAs. Each step of this Cancer-Immunity Cycle is controlled by both stimulatory and inhibitory factors 

such as interleukins, chemokines and growth factors.  

 

MHC class I and class II molecules play a key role in the Cancer-Immunity Cycle. These two classes of 

MHC molecules differ in structure, associated peptides and the type of activated T cells. MHC I 

molecules are present on all nucleated cells in the body and have a heterodimeric structure that consists 

of one membrane-spanning α chain (heavy chain) and one β chain (light chain). The α chain consists of 

3 domains: α1-microglobulin, α2-microglobulin and α3-microglobulin. The latter binds non-covalently 

with β2-microglobulin. The α chain is encoded by three genes: HLA-A, HLA-B and HLA-C in humans 

[19]. These are highly polymorphic genes which explains the unique character of each specific MHC I 

molecule. Polymorphisms of the MHC proteins result in different peptide-binding grooves that recognise 

unique peptides due to variations in the anchor residues to which peptides dock [20]. MHC class I 

molecules generally process and present endogenous antigens through a specific pathway (Figure 3a) 

[21]. First, an endogenous protein is cut into small peptides by the proteasome in the cytosol. Next, 

these peptides are transported into the endoplasmic reticulum (ER) by the TAP1/TAP2 transporter 

where they are trimmed to appropriate length by ER aminopeptidases. With the help of chaperone 

proteins, such as tapasin, these trimmed peptides, generally 8 to 9 amino acids long, are loaded onto 

the peptide-binding groove (α1- and α2-microglobulin) of the MHC I molecule. Finally, the peptide-MHC 

I complex is transported to the cell surface where it can bind with a TCR of a CD8+ cell [20]. 

 

MHC class II molecules are only present on specific antigen-presenting cells (APC) like DCs, B cells 

and macrophages. MHC II molecules consist of two membrane-spanning chains, α and β, both produced 

by three polymorphic genes: HLA-DR, HLA-DQ and HLA-DP in humans [19]. The α1 and β1 

microglobulins come together to make a membrane-distal peptide-binding groove. In contrast to 

MHC I molecules, this groove is open and therefore allows to bind longer peptides, generally 

between 15 and 24 amino acid residues. Since MHC II molecules present exogenous peptides, the 

processing and presenting pathway is different from the MHC I pathway (Figure 3b) [21]. 

Exogenous proteins are captured in an endosome where they are degraded into smaller peptides. 

Subsequently, the endosome fuses with a vesicle containing MHC II molecules and the class II-

associated invariant chain peptide (CLIP) region that blocks the peptide-binding groove is replaced 

by an exogenous peptide. Finally, the peptide-MHC II complex is transported to the APC’s cell 

surface where it can bind with the TCR of CD4+ T cells [20].  
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This T cell reactivity against cancer cells has been widely studied in the past decades [3], [22]–[25]. 

Accumulating evidence suggests that the T-cell-based immune system reacts to both MHC class I-

restricted and MHC class II-restricted neoantigens [7], [24]. Nevertheless, only a small fraction of the 

nonsynonymous mutations leads to the production of neoantigens that can be detected by CD4+ or 

CD8+ T cells. For this reason, tumours with a high mutational load (e.g. melanoma and lung 

adenocarcinoma) are more likely to provoke T cell reactivity against neoantigens [26], [27].  

 

 

Still, in most cancer patients this Cancer-Immunity Cycle no longer performs optimally. The selective 

pressure of our immune system results in the acquisition of cancer cells that have developed immune 

evasion strategies. Thus, the immune system not only protects against tumour formation but at the same 

time also shapes tumour immunogenicity. This so-called immunoediting hypothesis emphasises the 

dual host-protective and tumour-promoting actions of the immune system on developing tumours [17], 

[28]. Three distinct phases that proceed sequentially can be distinguished in this cancer immunoediting 

process: elimination, equilibrium and escape [17]. 

 

The elimination phase is characterised by cancer immunosurveillance, in which both innate and adaptive 

immune systems cooperate in order to detect the presence of a developing tumour long before they 

become clinically apparent [17]. If a cancer cell variant is not destroyed in this phase, it may enter the 

equilibrium phase, in which the immune system prevents further tumour outgrowth and also shapes the 

Figure 3. (a) MHC class I antigen-presentation pathway. Intracellular antigens, such as virus or tumour antigens, 
are processed into peptides by the immunoproteasome. The subsequent peptides are transported into the ER, 
where they are loaded into the groove of the MHC class I complex. MHC class I complexes present antigens on 
the cell surface to CD8+ T cells. (b) MHC class II antigen-presentation pathway. Exogenous antigens, e.g. bacterial 
antigens, are cleaved by endolysosomal enzymes into peptides. These peptides bind to the groove of the MHC 
class II complex by displacing the CLIP. The resulting MHC class II complex presents the antigens to CD4+ T cells 
[21]. 
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immunogenicity of the respective tumour cells. This is the longest phase of the immunoediting process 

since tumour cells are maintained in a functional state of dormancy in which only the adaptive immune 

system, particularly interleukin-12 (IL-12) and interferon-gamma (IFN-ɣ) producing CD4+ and CD8+ T 

cells, prevents tumour outgrowth. However, as a consequence of constant immune selection pressure 

placed on genetically unstable tumour cells in equilibrium, tumour cell variants may escape 

immunosurveillance through different mechanisms. Alterations in tumour cells can lead to reduced 

immune recognition (e.g. due to loss of antigen presentation) or to increased resistance to the cytotoxic 

effect of immunity (e.g. due to induction of anti-apoptotic mechanisms) [17]. The most important and 

best-studied escape mechanism is the loss of TSA presentation which can occur in three different ways: 

through emergence of tumour cells lacking expression of strong TSA, through loss of MHC I expression 

on the tumour cell surface, or through loss of antigen processing function that is required for the 

production of the epitope and the subsequent loading onto the MHC molecule [17]. These alterations 

are probably caused by a combination of the genetic instability of the cancer genomes and the T cell-

dependent process of immunoselection [29]. This Darwinian selection process results in poorly 

immunogenic tumour cells that escape the immune response and acquire the ability to grow 

progressively [17]. Another known immune evasion mechanism is the establishment of an 

immunosuppressive state within the tumour microenvironment. This tumour microenvironment is formed 

during tumour progression and consists of a number of different cell types that support 

immunosuppression, e.g. regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) [30], 

[31]. These MDSCs can suppress T cell activity employing different suppressive mechanisms and in 

certain circumstances differentiate into highly immunosuppressive macrophages. 
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1.2 Detection and Evaluation of Neoantigens 
 

1.2.1 Personalised Therapeutic Pipeline 

 

The previous sections explained the mutational process in cancer cells and how this results in cancer 

progression and the production of TSA that can be targeted by the immune system. However, as already 

described before, cancer immunoediting allows tumours to escape the immune response.  

 

In order to overcome cancer immune escape several new therapeutic strategies are being developed 

to expand and broaden the T cell responses against cancer cells, e.g. adoptive cell transfer (ACT), 

immune checkpoint inhibition (ICI) and CAR-T cell therapy. Another possible strategy is to (re)activate 

and expand the antitumour immune response using cancer-specific neoepitopes to target the immune 

system to the malignant cancer cells. In order to do so, potential neoantigens are selected solely based 

on genomic information and RNA expression data followed by the prediction of subsequent neoepitopes. 

These detected neoepitopes are used to prime T cells to specifically recognise them and in this way 

enhance the immune response against cancer cells presenting these specific neoepitopes on their cell 

surface. Since a large fraction of the genetic alterations in human tumours is not shared between 

patients, this therapeutic approach will be patient-specific: personalised cancer immunotherapy. Several 

studies have already provided evidence that such a cancer mutanome-based approach can be used to 

identify neoantigens that can be recognised by T cells [7], [32]–[38]. For example, Kreiter et al. [38] 

evaluated this approach and provided evidence that a considerable fraction of nonsynonymous 

mutations is immunogenic and that vaccination with both CD8+ and CD4+ immunogenic mutations 

confers strong antitumour activity. Moreover, the clinical feasibility of this approach has already been 

assessed in melanoma first-in-human clinical trials [35], [36], [39]. These studies confirmed a high 

overall immunogenicity rate of 60% against individual mutations. Each patient developed strong T cell 

responses against several of their tumour-specific mutations. Pre-existing T cells were expanded and 

more important the majority of vaccine-induced T cell responses were newly primed and not detected 

prior to vaccination [7]. 

 

Nonetheless, no standardized protocol has been instated. As a result, different strategies and different 

bioinformatics tools have been used to detect mutations in cancer cells that will result in neoantigens. 

Most common pipelines focus on the prediction and selection of SNVs based on the comparison of WES 

data of tumour and normal samples and expression data of RNA-Seq [7], [35], [36], [39], [40]. However, 

since RNA-Seq data also contains information on variants, it would be possible to use only RNA-Seq 

data to call somatic variants. Besides, it was also proven that indels causing a frameshift mutation are 

highly immunogenic and thus induce a strong immune response [41]. Therefore, the goal of this master 

thesis is to evaluate the alignment and variant calling process of a therapeutic pipeline that compares 

RNA-Seq data of tumour tissue and WES data of healthy tissue in order to detect both somatic SNVs 

and indels (Figure 4) in the cancer genome. In the following sections, this personalised therapeutic 

pipeline will be described starting from a lung biopsy and finally resulting in the evaluation of neoepitopes 

and the production of a dendritic cell vaccine. 



Literature Study    11 

 

1.2.2 Biological Material 

 

The first step in this personalised therapeutic pipeline is the collection of a lung tumour biopsy. This 

biopsy tissue needs to be specially prepared for long-term preservation. Two major types of sample 

preparation exist: FFPE samples and fresh frozen (FF) samples. For FF samples, biopsied tissue is 

immediately dipped in liquid nitrogen (“flash freezing”) and stored in a freezer at less than -80 degrees 

Celsius [42]. One major drawback of FF samples is the fact that enormous efforts and financial support 

are required to keep FF samples stable for a longer period of time. For the preparation of FFPE samples, 

tumour tissue is first fixed in formaldehyde, also known as formalin, in order to preserve tissue 

morphology and proteins. In a second step, the FFPE tissue is embedded in a paraffin wax block that 

allows easy cutting of slices for microscopic examination [43]. Once prepared, FFPE tissue is very hardy 

and does not require special equipment to preserve for decades [42]. FFPE samples are most commonly 

used in a clinical setting because pathologists are accustomed to examining FFPE tissue biopsies. For 

this reason, FFPE is mostly considered as a standard preservation technique. However, FFPE samples 

can be difficult to process in many molecular biology assays because the fixation process and 

subsequent tissue storage often cause nucleic acid degradation, resulting in fragmented DNA and RNA 

transcripts [44]. Therefore, FFPE samples are generally inferior for genetic analysis, such as polymerase 

chain reaction (PCR), quantitative PCR (qPCR), or NGS [45]–[50]. FF samples, however, preserve the 

DNA, RNA, and native proteins [42]. As a result, most of the studies of transcriptome analyses have 

traditionally been conducted using fresh or FF tumour samples. To date, most clinical samples collected 

are not fresh or FF but FFPE and often only limited amounts of material are available. Therefore, 

specialised extraction kits have been developed to extract and capture RNA from low-quality FFPE 

samples. 

 

Using FFPE samples for NGS may be challenging due to the fixation process, and the storage time and 

conditions [45]–[50]. On molecular basis, the common issues encountered when using FFPE tissue are 

nucleic acid fragmentation and modification by chemical reactions between formaldehyde and nucleic 

acids, including crosslinking with proteins and other biomolecules [47]. Nucleic acid degradation and 

modification can significantly reduce the quantity and quality of DNA and RNA extracted from FFPE 

Figure 4. Personalised therapeutic pipeline for the detection and evaluation of neoepitopes. The red frame 
represents the focus of this master thesis. 
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samples which can lead to sequencing artefacts ultimately resulting in an increased risk of false positive 

mutation calls. Besides, nucleic acid fragmentation can reduce the library fragment size and uniformity 

[51]. In addition, the fragmentation and modification of RNA transcripts may affect the poly(A) tail of 

mRNA molecules which make them no longer suitable for traditional RNA-Seq library preparation 

protocols [47], [51]. Several studies have been conducted to assess the variability of RNA between 

FFPE and FF samples [48], [49]. These studies concluded that, in contrast to gene expression analysis, 

the identification of somatic mutations in FFPE samples can be challenging due to artefacts appearing 

in RNA material. Graw et al. [49] identified mutational artefacts G>A and C>T specific to FFPE samples. 

Since these artefacts only occurred at low variant allele frequencies (VAF), they applied a VAF filter to 

remove them. Contrarily, Esteve-Codina et al. [48] found some of these artefacts at very high variant 

allele frequencies. It can be concluded that the use of FFPE samples brings additional challenges in the 

detection of somatic mutations compared to FF samples. One should be aware that the quality of RNA 

extracted from FFPE tissue, and as a result the possibility to correctly identify somatic mutations, is 

mainly dependent on the fixation process, storage time and conditions, and the conditions of the paraffin 

blocks [50]. 

 

In order to overcome these challenges, a robust DNA and RNA extraction protocol is required for 

accurate identification and quantification of somatic mutations in FFPE tissue. Some commonly used 

extraction protocols are the AllPrep DNA/RNA FFPE Kit and the RNeasy FFPE Kit (QIAGEN, Inc., 

Hilden, Germany) [48], [49]. These protocols use a Deparaffinization Solution and Proteinase K for the 

digestion of cross-linked proteins for the purification of nucleic acids. However, other protocols like the 

truXTRAC FFPE Kit from Covaris and FormaPure Kit from Beckman Coulter have shown to perform 

equally good or even better than the QIAGEN kits [52]. 

 

1.2.3 RNA Sequencing 

 

The development of NGS technology has facilitated the comprehensive analysis of the full genome and 

transcriptome of human tumours. Moreover, a comparison of the genomic data of cancer tissue with 

genomic data of healthy tissue from the same patient can be used to reveal the full range of somatic 

mutations within a tumour [53]. Nowadays different sequencing techniques are available, each with its 

own advantages and disadvantages. Currently, a frequently used strategy to identify neoantigen 

candidates is based on a comparative analysis of WES data from both tumour and normal tissue 

combined with gene expression analysis by RNA-Seq [7], [35], [36], [39], [40]. However, the goal of this 

master thesis is to detect neoantigens solely based on somatic variant calling using RNA-Seq data of 

tumour tissue and WES data of healthy tissue [32]–[34]. As a result, WES of tumour tissue is no longer 

necessary. The feasibility of this approach has already been assessed in several studies [32]–[34], [54]–

[56]. 

 

WES targets the exome, this is the protein-coding region of the human genome which represents less 

than 2% of the genome but contains about 85% of known disease-related variants making WES a cost-

effective alternative to whole-genome sequencing (WGS) [57]. Besides, WES achieves a higher 

sequence coverage than WGS since only the exonic region of the human genome is sequenced. WES 

of tumour tissue can be examined to detect somatic variants. Nevertheless, for our pipeline only WES 

of healthy tissue is performed in order to detect germline variants thereby preventing the incorrect 

classification of these germline variants as somatic variants. For the tumour tissue, on the other hand, 

RNA-Seq is employed. 
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RNA sequencing is a highly sensitive and accurate sequencing technique for measuring gene 

expression across the transcriptome. This expression data can be used to analyse the expression of 

the genes containing somatic variants. Moreover, RNA-Seq data also provides sequence information. 

Therefore, it is possible to use RNA-Seq data both for expression analysis and for the detection of 

somatic variants. This technique has the advantage over WES that it is not limited to known genes. 

Besides, RNA-Seq has the potential to detect novel transcripts, gene fusions, SNVs, indels, alternative 

splicing events and other features without the limitation of required prior knowledge [32], [33], [54], [58]. 

For this reason, RNA-Seq is considered a powerful method for detecting mutations in cancer 

transcriptomes that would be missed by WES.  

 

Nevertheless, employing RNA-Seq for the identification of somatic variants remains a challenge 

because of the transcriptome’s intrinsic complexity (e.g. splicing), which leads to the technical difficulty 

of the computational analysis [32]. Besides, it is difficult to identify germline variants if only RNA-Seq is 

used because RNA expression profiles of tumour and normal tissue will not be identical. This makes it 

challenging to distinguish tumour-specific somatic mutations from germline variants [59]. When including 

germline variants called from WES data of healthy tissue this problem can be avoided. Another concern 

is the ability to reliably call somatic mutations within RNA-Seq that are only present at a low-level, either 

because of low-level gene expression, allele-specific expression or because of low mRNA stability (for 

instance due to non-sense-mediated RNA decay) will be limited [53]. Another important drawback is the 

library preparation which not only introduces some technical variation in RNA-Seq data but also is 

responsible for PCR duplicates [60]. During PCR amplification fragments are amplified in order to obtain 

sufficient reads to load onto the sequencer. However, it is possible that one fragment generates multiple 

exact copies and, in this way, introduces PCR bias, a common phenomenon in RNA-Seq. Furthermore, 

sequencing can introduce another type of duplicates: optical duplicates. These optical duplicates arise 

when during Illumina® sequencing one read cluster is falsely considered as two clusters. Duplicate reads 

are identified as sequence reads that align to the same genomic coordinates using reference-based 

alignment. However, it is not possible to differentiate between duplicates and fragments that overlap 

precisely in highly expressed genes. For this reason, it is not recommended to remove duplicate reads 

for gene expression analysis of RNA-Seq data as this will underestimate the abundance of highly 

expressed transcripts. On the other hand, it is recommended to mark these duplicates for appropriate 

detection of somatic mutations in order to avoid false positive called variants [60]. Another biological 

factor to consider is RNA editing. RNA editing is a process through which the nucleotide sequence 

specified in the genomic DNA is modified to produce a different nucleotide sequence in the transcript 

[61]. In humans, the most prevalent type of RNA editing converts adenosine (A) residues into inosine (I) 

in double-stranded RNAs through the deamination reaction conducted by members of the adenosine 

deaminase (ADAR) family of enzymes [9], [62]. Subsequently, inosine can be interpreted as guanosine 

(G) by the cellular machinery. This co- and post-translational process results in an A:T→G:C mutational 

signature in RNA. Another but less frequent appearing type of RNA editing is cytosine (C) to uracil (U) 

editing mediated by the APOBEC deaminase enzyme family [9]. 

 

An important factor to consider when identifying somatic variants is the fact that tumour tissue does not 

consist of identical copies of cancer cells, a phenomenon called tumour heterogeneity. Since the tumour 

sample will also contain a portion of healthy cells, it is more difficult to identify present mutations. Of 

course, the higher the healthy tissue content, the harder it is to detect somatic variants. For this reason, 

an appropriate depth of coverage should be attempted to ensure a sufficient representation of tumour-

derived sequence reads. Another factor contributing to the tumour heterogeneity is the existence of both 

clonal and subclonal mutations. As already described before, clonal mutations can be found in the 

majority of cancer cells in the tumour tissue since these mutations were part of the original set of 
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mutations present when a cell transformed into a neoplastic cancer cell. Subclonal mutations were 

acquired by daughter cancer cells during tumour growth [5]. Similarly, a higher coverage enables to 

distinguish between clonal and subclonal mutations. Nevertheless, this genetic variability is not the only 

dimension of tumour heterogeneity. The complex interplay between the tumour and a set of host and 

environmental factors which define the immunological status, shape each individual cancer. For 

example, HLA haplotype, the microbiome, age, comorbidity, the immune cell repertoire and the 

composition of the tumour microenvironment are important factors that contribute to tumour progression 

[7]. 

 

Both WES and RNA-Seq are performed using the same sequencing platform provided by Illumina. 

Illumina is currently the leader in the NGS industry and most library preparation protocols are compatible 

with this system. In addition, Illumina offers the highest throughput of all platforms, the lowest per-base 

cost and a low sequencing error rate [57], [63]. Both RNA-Seq and WES will be performed using 

Illumina® Hiseq 3000 technology. A fundamental step in each NGS workflow is the conversion of nucleic 

acid fragments into a sequencing library. As already described before, the extraction process of DNA or 

RNA depends on the type of biological material that is used. Next, a specific NGS library preparation 

protocol for DNA or RNA will be performed. A wide variety of NGS library preparation protocols exist, 

but they all have in common that DNA and/or RNA molecules are fused with platform-specific adapters 

[57]. The NGS library preparation of RNA differs somewhat from the library preparation of DNA since 

conversion from single-stranded RNA to double-stranded cDNA using reverse transcriptase is required 

for sequencing. 

 

The goal of this project is to use RNA data obtained from low-quality FFPE tissue. As already described 

before, FFPE samples contain fragmented RNA transcripts due to the fixation process and storage 

conditions [44], [47], [51]. Therefore, traditional transcriptome capturing methods using oligo-dT primers 

that target the polyadenylation sequence of mRNA molecules are ineffective. In order to overcome this 

problem, specific library preparation protocols for RNA originating from FFPE tissue have been 

developed. By applying sequence-specific capture that does not rely on the presence of polyadenylated 

transcripts, it is possible to use low-quality FFPE tissue and samples with limited starting material for 

RNA-Seq. This strategy is being employed in Illumina’s TruSeq® RNA Exome Kit, commonly used in 

library preparation protocols [48], [49]. Library preparation for RNA-Seq involves the conversion of 

cellular RNA into cDNA molecules and the addition of adapter oligonucleotides in order to make the 

RNA fragments suitable for sequencing. Paired-end sequencing will be employed since it provides 

additional information for alignment because the length of both the total cDNA fragment and the reads 

are known which increases the probability of mapping across splice junctions and indels [60]. Therefore, 

paired-end data can be advantageous for the detecting alternative splicing, identification of novel 

transcripts, identification of chromosomal rearrangements and for mapping to high-homology regions.  

 

1.2.4 Alignment and Pre-Processing 

 

As already described before, recent technological advancements in NGS have allowed fast sequencing 

of genomes at a low cost. Together with advanced bioinformatics tools, NGS allows comprehensive 

mapping of mutations in cancer, collectively called the mutanome [7]. However, one critical challenge 

of the development of a personalised cancer vaccine is the accurate alignment of the cancer mutanome 

in order to select the most relevant somatic mutations to induce an optimal immune responses [7], [60], 

[64]. No standardized bioinformatics protocol has been instated yet. As a result, different studies have 

applied a wide variety of protocols to align sequencing data and to call variants [32]–[36], [38], [65].  
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It is important to note that mapping of RNA-Seq data requires splice-aware alignment tools. Since not 

all exons and splice junctions are known, splice junction mapping is critical to map reads across 

unknown splice junctions and to understand alternative transcript usage. A lot of splice-aware alignment 

tools are available nowadays [66], [67]. A second concern is the gapped alignment for indels which still 

remains a significant bioinformatics challenge [55]. Gaps caused by insertion or deletion of nucleotides 

can slow down alignment speed because it is more difficult to identify the right mapping positions of 

these reads. The sensitivity of the detection of splice junction and the alignment of gaps is enhanced 

when longer reads are sequenced. Since the accuracy of downstream analyses heavily depends on the 

alignment, it is important to select the most accurate aligner for this pipeline. In order to do so, splice-

aware alignment tools were selected based on previous comprehensive benchmarking [55], [66], [67] 

and tool performances were evaluated for our data.  

 

The first splice-aware aligner that was selected is GSNAP (Genomic Short-read Nucleotide Alignment 

Program) [68]. GSNAP is a fast and memory-efficient method to align both single- and paired-end reads 

as short as 14 nucleotides and of arbitrary length. The alignment algorithm can detect short- and long-

distance splicing (both novel and known splice sites), complex variants and long indels. Besides, 

GSNAP is an SNV-tolerant aligner, where minor alleles are treated as matches to a reference space, 

rather than mismatches to a reference sequence. In order to do so, GSNAP employs a search process 

of merging and filtering position lists from a genomic index at the oligomer level [55]. 

 

As second, the STAR (Splice Transcripts Alignment to a Reference) aligner was selected [69]. STAR is 

an ultrafast aligner but on the other hand, demands a significant amount of RAM (~30GB for the human 

genome). STAR aligns non-contiguous sequences directly to a reference genome in two steps: a seed 

searching step followed by seed clustering and stitching [60]. In the seed searching step, the algorithm 

finds the Maximal Mappable Prefix (MMP), then takes the unmapped portion of the read and finds the 

MMP for that fragment. This approach represents a natural way of finding exact locations of splice 

junction without any a priori knowledge of splice junctions’ loci or properties [55]. The MMP in the seed 

searching step is implemented through uncompressed suffix arrays, which increases speed but also 

memory usage. In the second phase of the algorithm, STAR stitches together all the seeds that were 

aligned to the genome in the first phase using a local alignment scoring scheme. The stitched 

combination with the highest score is selected as the best alignment of the read [69]. An interesting 

feature of the STAR aligner is the ability to operate in 2-pass mode. The 2-pass mode allows more 

sensitive novel junction discovery. The basic idea is to run a first pass of STAR mapping with the usual 

parameters. The junctions detected in this first pass will be used as ‘annotated’ junctions in a second 

run of the STAR aligner.  

 

For each alignment tool, the parameter space is enormous. This makes it impossible to analyse each 

setting and to optimise these parameters in order to obtain the highest precision and sensitivity. Baruzzo 

et al. [66] used a heuristic strategy to search the parameter space of each alignment tool and concluded 

that most alignment tools (e.g. GSNAP, MapSplice2 and STAR) perform best with default settings. For 

this reason, the aligners evaluated in this thesis will mostly use default parameter settings.  

 

The obtained SAM and BAM files need some further processing and filtering before proceeding to the 

variant calling step of the pipeline. As already mentioned before, PCR duplicates can violate 

assumptions of variant calling potentially resulting in false positive called variants. Hence, it is important 

to remove or mark these duplicates in a way they are not taken into account for variant calling. However, 

since it is impossible to distinguish true technical duplicates from serendipitous biological duplicates, 

variant calling tools will be rather conservative in calculating the confidence of variants. Other processing 
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steps that will be evaluated involve the splitting of N cigar reads, the recalibration of base quality scores 

and indel realignment.  

 

1.2.5 Variant Calling 

 

Variant calling implies the identification of variants from sequence data. In order to detect only somatic 

mutations, RNA-Seq data from tumour tissue will be compared with WES data from a matched healthy 

tissue sample, thereby avoiding the incorrect classification of germline variants as neoantigens [7]. 

Various types of somatic mutations can result in T cell-recognised neoepitopes: SNVs, indels, splice 

site mutations and gene fusions. Most variant calling algorithms work well for SNVs since they are the 

most abundant type of tumour mutation [5] and because of the relative simplicity and reliability of 

identifying sequence changes of one base pair [41]. If SNVs resulting in a nonsynonymous mutation are 

expressed, they can generate T cell-recognised neoepitopes. Besides SNVs, indels and gene fusions 

can lead to highly immunogenic frameshifts [41], [70], [71]. Turajlic et al. [41] proved in a pan-cancer 

analysis that indels giving rise to a frameshift mutation are a highly immunogenic mutational class since 

this frameshift mutation may result in a highly divergent amino acid sequence in the resulting protein 

and hence may produce strong neoantigens. Indeed, it was shown that a high abundance of frameshift 

neoantigens was associated with upregulation of genes involved in the immune response, including 

MHC class I antigen presentation, CD8+ T cell activation, and increased cytolytic activity. As a result, it 

was concluded that frameshift mutations creating novel open reading frames might be an important 

source of tumour-derived neoantigens and in this way induce multiple neoantigen reactive T cells, 

because of both an increased number of mutant peptides and a reduced susceptibility to self-tolerance 

mechanisms [41].  

 

Nevertheless, the detection of indels longer than 2 base pairs appears to be more challenging than SNV 

detection from RNA-Seq data [55]. For this reason, many of the neoantigen detection pipelines 

previously described mainly focused on SNVs detection [32], [34]. Piskol et al. [32] developed a highly 

accurate approach termed SNPiR to identify SNVs in RNA-Seq data using consecutively a splice-aware 

aligner and the Genome Analysis Toolkit’s (GATK’s) [72] UnifiedGenotyper for calling variants. In a next 

step, additional filtering criteria are applied on the called variants for ensuring removal of artefacts that 

might have been introduced. These filters include the removal of false calls in duplicated regions, in 

homopolymeric regions, or close to splice junctions. In addition, known RNA editing sites are removed 

from the called variants. Removal of these false positive calls resulted in a high precision of SNV 

detection. However, indel detection was not considered. It is important to note that UnifiedGenotyper is 

a caller for germline mutations and not for somatic mutations. Therefore, it is more appropriate to use 

GATK’s somatic variant caller MuTect2 instead. For example, Coudray et al. [33] suggested another 

approach using the STAR aligner’s 2-pass procedure combined with MuTect2. Since the MuTect2 [73] 

algorithm uses some hard-coded filters to remove false positive variants, no additional criteria were 

applied. Using this pipeline, they were able to identify variants (both SNVs and indels) that were missed 

by WES. Finally, Neums et al. [56] recently developed a method called Variant Detection in RNA (VaDiR) 

that integrates 3 variant callers, namely: SNPiR [32], RVBoost [74], and MuTect2 [73]. In addition to the 

filtering procedures of the variant callers themselves, the results were further filtered by taking an 

intersection of called variants from the 3 callers and by applying a read depth (DP) and a VAF filter. 

 

The variant calling on RNA-Seq data is more challenging because of splice junctions, RNA editing, 

allele-specific expression, variable levels of gene expression and the tumour heterogeneity, as already 

explained in section 1.2.3. Therefore, it is important to carefully select a variant calling tool that takes 

into account these limitations and to optimise additional filtering of the called variants. For our pipeline, 
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variant callers identifying both SNVs and indels with a great accuracy and sensitivity were selected 

based on previously described pipelines [32], [33], [56] and performance evaluations of different variant 

callers [55], [75]. The three variant calling algorithms selected are: MuTect2, VarDict and Strelka2. The 

fundamental idea of these variant callers is to identify potential variants using the tumour sample and to 

distinguish somatic variants from germline variants using the matched normal sample. 

 

It is important to note that sensitive variant calling largely depends on the alignment tool used for 

mapping. Soft-clipping reads (S in CIGAR string) at the deletion edge introduced by alignment tools 

increase mapping sensitivity and can potentially be used for some variant calling tools to identify indels 

through realignment. However, some variant callers rely on hard evidence indels marked in the CIGAR 

string (I or D in CIGAR string) and soft-clipped reads are generally ignored by these variant callers [55]. 

For this reason, different combinations of alignment tools and variant callers will be evaluated to find the 

optimal combination.  

 

The first variant caller MuTect2 [73], [76] is a popular and well documented somatic variant caller 

developed by GATK [72] and is based on the original MuTect algorithm and the germline variant calling 

tool HaplotypeCaller. While the HaplotypeCaller relies on a ploidy assumption (diploid by default), 

MuTect2 allows for a varying allelic fraction for each variant, as is often seen in tumours with purity less 

than 100%, multiple subclones, and/or copy number variation. MuTect2 is a haplotype-based variant 

caller and therefore, indel realignment is no longer necessary because the original local alignment 

information is discarded and reads are assembled and realigned [77]. Since MuTect2 is designed to call 

somatic variants only, the algorithm skips variant sites that are clearly identified as germline variants 

based on a comparison of the normal and tumour sample. Performing this step at an early phase avoids 

spending computational resources on germline events. MuTect2 infers genotypes based on two log-odd 

ratios: TLOD and NLOD. The former scores the confidence that a mutation is present in the tumour 

sample and the latter scores the confidence that a mutation is absent from the matched normal sample. 

The thresholds that are used by MuTect2 to consider a variant as being real and somatic (resulting in 

the annotation “PASS”) are by default TLOD > 6.3 and NLOD > 2.2 [33]. Besides these thresholds, 

MuTect2 applies a number of hard-coded quality filters to select true variants with a high specificity. An 

additional option for MuTect2 is the use of a Panel of Normals which allows to call somatic variants 

without the need for a paired normal sample. 

 

The second variant caller that will be evaluated is VarDict [78]. VarDict is a sensitive variant caller for 

both single (tumour sample only) and paired sample (tumour and normal sample) variant calling from 

alignment files and can be used for both DNA and RNA sequencing data. Just like MuTect2, VarDict 

performs local realignment to improve indel identification, by which soft-clipped reads are taken into 

account. The VarDict algorithm employs a heuristic approach to identify variants whose supporting reads 

meet a defined threshold to filter out sequencing artefacts. These potential variants are analysed in the 

matched normal sample to filter out germline variants applying Fisher’s exact test [77]. In addition, 

VarDict performs amplicon aware variant calling for PCR-based targeted sequencing and has a built-in 

option to perform de-duplication on the fly, removing the necessity for an additional step and so 

improving efficiency. When using VarDict in paired sample mode, somatic variants can be detected. In 

contrast to MuTect2, VarDict uses only a limited number of hard-coded quality filters. Several 

downstream strategies have been developed to filter variants. For example, Blue Collar Bioinformatics 

(bcbio) provides an overview of how to develop further filters for VarDict [79]. Previous evaluation of 

several variant callers [75] appointed VarDict as best performing variant caller, considering both 

sensitivity and positive predicted value.  
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The third variant caller that was selected is Strelka2 [80]. Strelka2 is an accurate and fast variant calling 

tool build upon the original Strelka somatic variant calling algorithm and can be used for both germline 

and somatic variant calling. This algorithm relies on a series of successive steps: parameter estimation 

from sample data, candidate variant discovery, realignment, variant probability inference, and empirical 

re-scoring and filtration. Strelka2 is capable of detecting SNVs and indels up to a predefined maximum 

size of 49 bases. Besides, good variant calling results are provided down to about 5-10% tumour purity 

given sufficient normal and tumour sequencing depth. Similar to MuTect2 and VarDict, Strelka2 requires 

a matched normal sample to be able to distinguish between both germline variants and true somatic 

variants in the tumour sample. Strelka has already been used by several research groups [35], [39] to 

detect variants for the development of a personal neoantigen vaccine. 

 

The output of these variant calling tools is a variant call format (VCF) file that stores all variant 

information. Based on the genomic location of a variant, additional information can be obtained using 

various annotation tools like Variant Effect Predictor (VEP) [81] from Ensembl, ANNOVAR [82], 

Oncotator [83] or SnpEff [84]. This information includes genes and transcripts affected by the variants, 

consequence of the variants, known variant from the 1000 Genomes Projects and SIFT and PolyPhen 

scores. Once variant detection is completed, each variant is annotated to predict the amino acid change 

that resulted from the altered RNA sequence.  

 

It is important to note that some of the identified variants can be RNA editing sites. As already explained 

before, RNA editing involves mostly A:T→G:C transition. Several databases of RNA editing sites in 

humans exist: The Inosinome Atlas [62], RADAR [85] and REDIportal [86]. These databases can be 

used to identify known RNA editing sites in order to separate them from genomic variants. Filtering out 

RNA editing sites will increase the overlap with the WES called variants and as a result enhance the 

precision of the variant calling using RNA-Seq. 

 

1.2.6 Neoepitope Prediction and Selection 

 

After sequencing, alignment and variant calling have been performed, an annotated VCF file containing 

information about the identified variants is obtained. Not every identified neoepitope will be presented 

on an MHC class I or II molecule and/or induce an immune response. As already explained in section 

1.1.3, the processing and presentation of antigens is a complex, multistep process and only specific 

peptides will fit in the peptide-binding groove. For this reason, only a fraction of the neoantigens is 

presented on MHC molecules at sufficient levels to induce an effective T cell response. Therefore, it is 

critical to select neoantigens with the highest likelihood of immunogenicity. Critical components of this 

neoepitope selection process are the in-silico prediction of MHC class I and II binding affinities for 

specific peptides and RNA expression analysis [7].  

 

Interactions between a specific peptide and the binding pocket residues of an MHC molecule depends 

on the type of HLA proteins and which amino acids interact in the binding groove. Therefore, the binding 

affinity of any peptide is sequence-specific relative to that patient’s HLA proteins. Based on sequence 

data, the HLA haplotype-specific to the patient can be identified. This HLA haplotype can be used for 

the prediction of binding affinity using an artificial neural network based learning method developed from 

a training set of experimentally derived binding affinities [7], [87].  
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Most commonly used software package for the prediction of peptide-MHC class I binding is NetMHC[88], 

[89] that uses artificial neural networks that have been trained for 81 different human MHC alleles. 

Variant-containing peptides with a length between 8 and 11 amino acids are parsed as input data for 

NetMHC along with corresponding wild type peptides and HLA class I haplotypes. For each peptide, the 

algorithm outputs a predicted half maximal inhibitory concentration (IC50), which measures the 

concentration of a given peptide needed to compete with a standardized peptide already bound to a 

given MHC I allele [87]. A widely used threshold to determine whether a neoepitope will have a strong 

to intermediate binding affinity and thus will most likely elicit a CTL response is an IC50 lower than 500 

nM. However, this arbitrary threshold has been questioned, since it has been proven that several 

peptides with a predicted IC50 well over 500 nM elicited a CD8+ T cell response [37]. Besides the 

prediction of binding affinity, also other steps of antigen processing and presentation, stability, and TCR 

recognition can be incorporated in prediction algorithms. Unlike MHC I molecules, predictions for MCH 

class II molecules are significantly more challenging due to extensive HLA class II polymorphism in the 

general population and the open binding groove [90].  

 

Besides neoepitope selection based on predicted binding affinity values (IC50 ≤ 500 nM) additional 

filtering steps can be applied. An important criterium is the expression level of the mutated gene in the 

tumour tissue. It has already been observed that gene expression levels, the amount of translated 

protein, the cell surface density of MHC ligands derived from it, immune recognition and lysis of the 

respective cell are all positively correlated [7], [90], [91]. In this way, it is possible that a highly expressed 

protein can account for a high T cell response even if its IC50 is higher than 500 nM. The RNA-Seq data 

of the tumour tissue can be used for expression analysis.  

 

Besides the IC50 value and the expression level, the VAF and coverage are also useful criteria to further 

select variants. It is important to note that not only the gene but also the variant allele should be 

expressed. The VAF measures how many reads contain the mutations compared to reads containing 

the normal sequence. In theory, heterozygous mutations should have a VAF around 0.50. However, 

somatic mutations in tumour tissue appear at lower frequencies since tumour tissue is heterogeneous. 

First of all, because tumour tissue partially consists of healthy cells, and second, because tumour cells 

contain both clonal and subclonal mutations [33]. Moreover, copy number variations can lead to gain or 

loss of chromosomal regions, and duplication or deletion of genes [92].
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1.3 Personalised Immunotherapy 
 

Lung cancer is the leading cause of cancer-related deaths worldwide [1]. Although various treatment 

methods, such as surgery, radiation therapy and chemotherapy have been used to treat lung cancer 

patients, a high mortality is still observed in patients with advanced stages of tumours. Recently, a new 

approach has been studied to treat cancer using patient’s own immune system: immunotherapy. The 

currently most effective cancer immunotherapies include adoptive cell transfer, immune checkpoint 

inhibition and therapeutic cancer vaccines [93]. These immunotherapies are aimed at (re)activating and 

expanding tumour-specific CTLs, with the ultimate goal being the destruction of primary cancer tumours 

and metastatic tumours. CD8+ T cells play a central role in immunity to cancer. When a CTL recognises 

a specific antigen presented on the surface of a malignant cancer cell through interaction between the 

TCR and the MHC I molecule, the cancer cells are killed by synaptic exocytosis of cytotoxic perforins 

and granzymes. However, when a tumour enters the escape phase, several immune evasion strategies 

are adapted by the cancer cells that hinder the recognition and killing by CTLs. The goal of 

immunotherapies is to circumvent this immune escape by reactivating and enhancing the patient’s 

immune system. 

 

ACT involves the in vitro expansion of tumour infiltrating lymphocytes (TIL) obtained from the patient’s 

tumour tissue. When the expanded TIL are re-infused in the patient, they will display an increased 

specificity towards the cancer cells which will result in an enhanced spontaneous T-cell response and 

degradation of the cancer cells. Nowadays, an even more advanced technique is being developed: 

CAR-T cell therapy. For this therapy, isolated T cells are genetically engineered to express a chimeric 

antigen receptor (CAR) that specifically recognises TSA on cancer cells and enhances T cell 

proliferation. Another possible approach is to circumvent cancer’s immune-evading strategies using 

immune checkpoint blockers, this is called immune checkpoint inhibition (ICI). One possible target is the 

PD-1 receptor, an immune checkpoint receptor expressed by activated T cells which induces 

immunosuppression through interaction with its ligands PD-L1 and PD-L2. Tumour cells can express 

these ligands and, in this way, escape the immune response. Immune checkpoint blockers are 

antibodies that interact with PD-1 or PD-L1/2 and in this way restore the cytotoxicity of pre-existing 

cancer-specific T cells in order to destroy the cancer cell. Another possible target for ICI is CTLA-4, a 

CD28 homolog expressed on T cells that can inhibit T-cell proliferation. Clinical studies have already 

proven the effectiveness of these therapies. However, only a limited number of patients respond to the 

treatment, indicating the need for an additional component in the treatment like for instance a tumour-

specific vaccine.  

 

The detection and selection of neoantigens, as previously described in detail, allows the development 

of a personalised therapeutic cancer vaccine specifically targeting neoepitopes presented on the 

analysed cancer cells. Different types of therapeutic cancer vaccine exist. Nevertheless, for this pipeline, 

an mRNA-loaded dendritic cell vaccine will be used to target and kill malignant cancer cells [94]. Mature 

DCs play a major role in the Cancer-Immunity Cycle since they evoke T-cell priming and activation, 

leading to the recognition and eradication of cancer cells [18]. However, this is a highly complex process 

involving different immune cells, cytokines and co-stimulatory molecules. Brabants et al. [94] developed 

a good manufacturing practice (GMP)-compliant culture protocol that generates high yield of mature 

DCs in a short period of time. The produced DCs can translate incorporated mRNA and present the 

resulting neoepitopes bound to an MHC molecule on the cell surface. In this way, the DCs can prime 

and activate CD8+ T cells specifically targeting cancer cells based on the somatic variants that were 

selected in the bioinformatics pipeline.  
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Personalised cancer vaccines are a promising new approach of cancer treatment that offer great 

improvements over current treatment options. One major advantage of this approach is the possibility 

to produce DCs targeting different neoepitopes, thereby overcoming the problem of tumour 

heterogeneity. In this way, not only the treatment response is enhanced but also the risk of treatment 

resistance is lowered, and a higher chance of patient survival can be achieved. Although it is becoming 

increasingly evident that in the future personalised immunotherapy has the potential to replace 

conventional therapies, it will likely be a combination therapy that achieves optimal treatment outcomes. 

A combination therapy of a personalised dendritic cell vaccine and immune checkpoint blockers offers 

a great potential. Induction of the immune response by DC vaccination can evoke up-regulation of PD-

L1 in the tumour microenvironment. As a result, efficacy of immune checkpoint blockers anti-PD-1 and 

anti-PD-L1 is improved and a higher treatment response can be obtained. In addition, vaccine induced 

memory T cells may enhance durability of the anti-PD-1 and anti-PD-L1 effects by promoting robust 

memory responses [7]. However, the implementation of such a personalised combination therapy as 

standard therapy is still ongoing research and many challenges have to be solved.  
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2 MATERIALS AND METHODS 
 

2.1 Data Collection 
 

In this section, the extraction of nucleic acids and the library preparation will be explained. The tumour 

samples were provided by Prof. Karim Vermaelen at the UZ Gent. Lung tissue was obtained directly 

from a lung squamous cell carcinoma during a lobectomy. Two sample types with an estimated tumour 

purity of 50% were analysed: FFPE samples and FF samples. 

 

2.1.1 RNA Extraction 

 

For the extraction of RNA from the FFPE samples the RNeasy® FFPE Kit (Qiagen) was used [95]. This 

kit is specially designed for purifying total RNA from FFPE tissue sections. The paraffin embedded tissue 

was trimmed of the glass slides using a scalpel and a Deparaffinization Solution was added to remove 

the paraffin. In a next step, optimised lysis buffer was added to allow sample lysis with proteinase K 

digestion. After lysis, samples were incubated at 80°C for 15 minutes to reverse formalin crosslinking. 

In a next step, DNA was removed from the FFPE sample using DNase Booster Buffer and DNAse I. 

Finally, the concentrated RNA was purified using RNeasy® MinElute spin columns. Quality metrics of 

this extraction protocol can be found in Appendix 8.1. 

 

The extraction of RNA from the FF samples was performed using the Maxwell® RSC simplyRNA Tissue 

Kit (Promega) [96]. This procedure purifies total RNA with minimal sample handling before automated 

purification on a Maxwell® RSC Instrument (Promega). The automated procedure involves paramagnetic 

particles which provide a mobile solid phase to optimise sample capture, washing and purification of 

nucleic acids. Sample pre-processing was performed manually and involved a tissue homogenization 

step (1-Thioglycerol/Homogenization Solution) and a DNA removal step (DNase I Solution). 

 

2.1.2 Library Preparation and Sequencing 

 

For the library preparation of the extracted RNA material the TruSeq® RNA Exome Kit (Illumina) was 

used [97], [98]. This library preparation kit does not rely on the presence of the polyadenylation signal 

since it specifically targets the RNA coding region (exonic regions) using sequence-specific capture. 

Library preparation for RNA-Seq involves the conversion of cellular RNA into molecules that are suitable 

for sequencing (Figure 5). Some abundant RNA such as ribosomal RNA (rRNA), transfer-RNA (tRNA) 

and small nucleolar RNA (snoRNA) can comprise up to 80% of the total cellular RNA and in this way 

reduce the depth of sequence coverage, resulting in less detection of lowly expressed RNA [64]. 

However, when using the TruSeq® RNA Exome Kit this problem is minimised. First, RNA molecules 

were fragmented into a smaller size to be suitable for sequencing by the Illumina platform. Once RNA 

of the appropriate size was obtained, the single-stranded RNA molecules are converted into double-

stranded complementary DNA (cDNA) using reverse transcriptase (RT) with random primers during first 

strand synthesis. The second strand synthesis removes the RNA template and synthesizes a 

replacement strand, incorporating dUTP in place of dTTP to generate double-stranded cDNA. During 

the Adenylate 3' End step a single ‘A’ nucleotide is added to the 3’ ends of the blunt fragments to prevent 

them from ligating to one another during the adapter ligation reaction. A corresponding single ‘T’ 

nucleotide on the 3’ end of the adapter provides a complementary overhang for ligating the adapter to 
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the fragment [98]. In a next step, adapter oligonucleotides are ligated to the cDNA to allow amplification 

and sequencing. These adapters consist of a sequencing binding site, indices and nucleotides 

complementary to the flow cell oligonucleotides. In paired-end sequencing, the adapter sequences 

contain a ‘read 1’ index at one end of the cDNA fragment and a ‘read 2’ index at the other end of the 

cDNA fragment. In this way, 2 reads are amplified from one cDNA fragment. Paired-end sequencing 

provides additional information for alignment since the length of both the total cDNA fragment and the 

reads are known which increases the probability of mapping across splice junctions and indels. 

Therefore, paired-end data can be very useful for estimating alternative splicing, identification of novel 

transcripts, identification of chromosomal rearrangements and for mapping to high-homology regions. 

After adaptor ligation, a PCR step using a PCR Primer Cocktail is performed to selectively enrich those 

cDNA fragments that have adapter molecules on both ends and to amplify the library. In a final step of 

the library preparation protocol, the coding regions of the transcriptome are then captured using 

sequence-specific probes. In order to do so, streptavidin beads are used to capture the probes 

hybridized to the targeted regions of interest [98]. The TruSeq® RNA Exome protocol involves two 

hybridization and two capture rounds. 

 

 

Figure 5. An overview of Illumina’s TruSeq® RNA Exome Kit [87].  
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2.2 Data Processing 
 

The different tools and scripts described in this chapter ran on either the HPC infrastructure that consists 

of several Tier2 clusters which are hosted in the S10 datacentre of Ghent University, or locally on a 

laptop. The laptop ran on Windows 10 Home and the Ubuntu 16.04.4 LTS terminal. The connection with 

HPC server was made using the Secure Shell (SSH) protocol ensuring secure network services. Two 

different SSH clients where used: PuTTY (version 0.70) and WinSCP (version 5.13.3). PuTTY was used 

to connect to the HPC server and WinSCP was needed for the file transfer between the local computer 

and the remote HPC server.  

 

The sequencing data was processed using GSNAP [68], STAR [69], GATK [72], Picard [99], Biobambam 

[100], R [101], Python [102], MuTect2 [73], VarDict [78], Strelka2 [80], VEP [81], RTG Tools [103], 

Hap.py [104], BEDTools [105], VAtools [106], SAMtools [107], [108] and BCFtools [107], [108], which is 

a part of the SAMtools package. A detailed overview of the used version of these tools can be found in 

Appendix 8.2. Example scripts mentioned in the sections below are available in my personal GitHub 

repository (https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove). 

 

2.2.1 Alignment 

 

After sequencing, fastq files containing raw sequencing data were obtained. To assess the quality of 

this sequencing data, FastQC [109] was used to analyse the fastq files. Some important quality control 

metrics are base quality over read length, per sequence quality score, QC content and sequence 

duplication levels. Reads containing a low-quality score or other sequence artefacts may be trimmed or 

corrected to improve the alignment quality. Following quality control, the processed data can be aligned 

to a reference genome using an appropriate aligner.  

 

For RNA-Seq, two aligners were evaluated: GSNAP and STAR. The reference genome used is hg38, 

this is the assembly of the human genome released December of 2013 which uses alternate or ALT 

contigs to represent common complex variation in the human genome. However, GSNAP and STAR 

cannot handle these ALT contigs. Therefore, ALT contigs were removed and hg38-noalt was used as 

reference genome.  

 

Before aligning the raw RNA-Seq data to the reference genome, the total cellular RNA was filtered. In 

order to do so, the raw fastq files were aligned to known human tRNA, rRNA and snoRNA sequences. 

The fasta files containing these sequences were provided by BioBix. The remaining unmapped reads 

were used for further mapping against hg38-noalt. 

 

STAR 

In a first step, STAR genome indexes were created using --runMode genomeGenerate. The index file 

for hg38-noalt was created using the hg38 GTF annotation file hg38-noalt.93.gtf and the option --

sjdbOverhang 150 to enhance mapping of known splice junctions. The STAR aligner was used in 2-

pass mode with adjusted parameters --outFilterMismatchNmax 2, --outFilterMultimapNmax 10, 

seedSearhStartLmaxOverLread 0.5 and --outSAMmapqUnique 60 in order to allow further 

processing using GATK. For other parameters default values were maintained. Example scripts with the 

implementation of these commands are available in my personal GitHub repository: RNA-

Seq_STAR_Index_Creation.sh and RNA-Seq_STAR_Alignment_FFPE_sample.sh.  

 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_STAR_Index_Creation.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_STAR_Index_Creation.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_STAR_Alignment_FFPE_sample.sh
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GSNAP 

GSNAP genome indexes were created using gmap_build. Next, the filtered fastq files were aligned to 

hg38-noalt using gsnap with additional option -s hg38-noalt.splicesitesfile.iit to supply the 

known splice junctions file. This file was created using the GSNAP function gtf_splicesites and the 

annotation file hg38-noalt.93.gtf. For the additional options the default values were maintained. Example 

scripts with the implementation of these commands are available in my personal GitHub repository: 

RNA-Seq_GSNAP_Index_Creation.sh and RNA-Seq_GSNAP_Alignment_FFPE_sample.sh. 

 

2.2.2 Pre-Processing 

 

In general, the variant calling process consists of three components: pre-processing, variant evaluation, 

and post-filtering. The main purpose of pre-processing is to make the alignment files suitable for variant 

calling and to reduce low-quality reads. First of all, Picard [99] was used to validate the obtained BAM 

file (ValidateSamFile) and to add read groups (AddOrReplaceReadGroups). Next, the BAM file was 

sorted using samtools sort and duplicate reads were marked using Biobambam2’s 

bammarkduplicates. Duplicate reads were marked by adding the 0x400 bit (1024) flag to the second 

column of a SAM record, for each mate of a pair. Before somatic variant calling, GATK’s 

SplitNCigarReads, BaseRecalibrator and/or IndelRealigner were applied to enhance accuracy of variant 

calling. An example script with the implementation of these tools is available in my personal GitHub 

repository: RNA-Seq_PreProcessing_Frozen_GSNAP_ExampleScript.sh. 

 

SplitNCigarReads  

The SplitNCigarReads tool [110] was developed specifically for RNA-Seq data to splits reads into exon 

segments. This tool identifies all N cigar elements (base skipped from the reference) in sequence reads 

and creates k+1 new reads, where k is the number of N cigar elements. The part of the read that is right 

of the N (the intronic part) is hard clipped. In this way, the number of called false variants can be reduced. 

The input for SplitNCigarReads consisted of the alignment file, the reference genome and the additional 

option -U ALLOW_N_CIGAR_READS in order to be able to handle RNA-Seq data as input.  

 

BaseRecalibrator 

The BaseRecalibrator tool [111] can be applied to acquire more accurate base quality scores, which in 

turn improves the accuracy of the called variants. Since variant calling algorithms rely on these base 

quality scores to call variants, it is important to estimate the systematic technical error introduced by the 

sequencing machine. Base quality score recalibration (BQSR) is a machine learning algorithm that 

involves two key steps: first the program builds a model of covariation based on the data and a set of 

known variants; next it adjusts the base quality scores in the data based on this model. The base score 

recalibration involves two functions. First, BaseRecalibrator was applied to the alignment file in order 

to calculate the recalibration table. The input for BaseRecalibrator consisted of the reference genome, 

a VCF file with known human variants (--knownSites dbsnp-150.vcf.gz) and the additional option 

-U ALLOW_N_CIGAR_READS. In a second step, these recalibration values were applied to the alignment 

file using PrintReads. 

 

IndelRealigner 

The IndelRealigner [112] tool locally realigns reads to minimize the number of mismatching bases across 

all the reads. Mismatching bases can accumulate due to the presence of an indel. Local realignment of 

this regions transforms reads with misalignment caused by indels into clean reads containing a 

consensus indel which eventually results in a more accurate detection of indels and SNVs by variant 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_GSNAP_Index_Creation.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_GSNAP_Alignment_FFPE_sample.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_PreProcessing_Frozen_GSNAP_ExampleScript.sh
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calling tools. There are 2 steps to the realignment process. In a first step, (small) suspicious intervals 

which are likely in need of realignment are identified using the RealignerTargetCreator tool. The 

input for this tool consisted of the reference genome, the alignment file, a file containing knowns SNPs 

(-known resources_broad_hg38_v0_1000G_phase1.snps.high_confidence.hg38.vcf) and a file 

containing known indels (-known 

resources_broad_hg38_v0_Mills_and_1000G_gold_standard.indels.hg38.vcf). The resulting 

list of target intervals are used as an input for the IndelRealigner tool to produce a realigned version 

of the input alignment file. 

 

Each pre-processing step has an impact on the number of variants identified and the precision of variant 

calling. Therefore, different combinations of pre-processing steps will be evaluated.  

 

2.2.3 Variant Calling 

 

After pre-processing the alignment files, somatic variant calling was performed. Three different aligners 

were evaluated: MuTect2, VarDict and Strelka2. All variant callers operated in paired tumour-normal 

mode comparing a tumour BAM file (RNA-Seq) and a normal BAM file (WES). The normal BAM file 

consisted of WES data aligned using BWA-MEM, and pre-processed using samtools sort and 

Biobambam2’s bammarkduplicates. Each variant calling algorithm produces a VCF file containing the 

identified somatic variants. This VCF file consists of 11 columns: CHROM, POS, ID, REF, ALT, QUAL, 

FILTER, INFO, FORMAT, TUMOR and NORMAL. 

 

MuTect2  

In order to enhance the speed and efficiency of variant calling, the regions of interest were divided over 

several interval lists. The input for MuTect2 consisted of the processed WES data from the normal 

sample and the RNA-Seq BAM file from the tumour sample, the reference genome, the interval list and 

additional option -U ALLOW_N_CIGAR_READS in order to be able to handle RNA-Seq data as input. The 

resulting VCF files of different intervals were zipped, indexed and merged using rtg bgzip, rtg index 

and rtg vcfmerge from the RTG Tools package respectively. The identified variants are subjected to 

MuTect2 built-in hard-coded quality filters (Table 1). A disadvantage of these MuTect2 quality filters is 

the fact that thresholds used for filtering are often hard-coded and therefore it is not possible to modify 

them. An example script with the implementation of MuTect2 variant calling is available in my personal 

GitHub repository: RNA-Seq_Frozen_GSNAP_Mutect2_batch1_ExampleScript.sh. 

 

Table 1. MuTect2 built-in hard-coded quality filters. 

Filter Description 

PASS The variant passed all filters. 

alt_allele_in_normal Reject false positives in the tumour data by looking at the 

normal data for evidence of the alternate allele beyond 

what is expected from random sequencing error [73]. 

clustered_events When several mutations are close together, they are 

filtered out because this is often a sign of being an artefact 

[73]. 

clustered_read_position Reject false positives caused by misalignments 

originating from the alternate alleles being clustered at a 

consistent distance from the start or end of the read 

alignment [73]. 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_Frozen_GSNAP_Mutect2_batch1_ExampleScript.sh
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germline_risk Reject variants that show sufficient evidence of being 

germline based on dbSNP, COSMIC and the matched-

normal sample (NLOD value) [73]. 

homologous_mapping_event This filter detects homologous sequences and filters out 

variants falling into sequences that have three or more 

events observed in the tumour [73]. 

multi_event_alt_allele_in_normal Reject variants when multiple events are detected at the 

same position in the matched-normal sample [73]. 

panel_of_normals Reject variants seen in at least 2 samples in the Panel of 

Normals (when provided) [73].  

str_contraction Reject variants from short tandem repeat regions [73]. 

strand_artifact Reject false positives caused by context-specific 

sequencing errors where the vast majority of the alternate 

alleles are observed in a single direction of reads [73]. 

t_lod_fstar Reject a variant when the specific TLOD > 6.3 threshold 

is not reached, suggesting insufficient evidence of its 

presence in the tumour sample [73]. 

triallelic_site Variant filtered because more than two alternate alleles 

pass the TLOD > 6.3 threshold [73]. 

 

VarDict  

Similar to MuTect2, interval list were provided in order to enhance speed and efficiency of variant calling. 

The input for VarDict consisted of the processed WES data from the normal sample, the RNA-Seq BAM 

file from the tumour sample, the reference genome and the interval list. To run VarDict in paired normal-

tumour mode the VarDict scripts testsomatic.R and var2vcf_paired.pl were used and the minimum 

allele frequency was set at 0.01 (default value). The resulting VCF files of different intervals were zipped, 

indexed and merged using rtg bgzip, rtg index and rtg vcfmerge from the RTG Tools package 

respectively. Since VarDict not only calls SNVs and indels but also multi-nucleotide polymorphisms, 

SNVs and indels need to be extracted in order to be able to compare VarDict to the other variant callers. 

This can be done using bcftools view --types snps,indels. Opposite to MuTect2, VarDict has 

some filters that are not hard-coded which means the filtering thresholds can be changed using different 

parameters. When using default parameters, these VarDict filters are less stringent and results in more 

false positive identified variants. Therefore, additional filtering of the identified variants is required to 

enhance the precision of variant calling. An example script with the implementation of VarDict is 

available in my personal GitHub repository: RNA-

Seq_Frozen_GSNAP_VarDict_batch1_ExampleScript.sh. 

 

The aim of implementing additional filters is to reduce the false positive identified variants using VarDict. 

The Blue Collar Bioinformatics (bcbio) provides a guideline for the development of additional filters [79]. 

The additional filters that were applied can be found in Table 2. The implementation of these filters can 

be found in Appendix 8.3 or in my personal GitHub repository: RNA-

Seq_FFPE_GSNAP_VarDict_AdditionalFilters_ExampleScript.sh.  

 

 

 

 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_Frozen_GSNAP_VarDict_batch1_ExampleScript.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_Frozen_GSNAP_VarDict_batch1_ExampleScript.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_FFPE_GSNAP_VarDict_AdditionalFilters_ExampleScript.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_FFPE_GSNAP_VarDict_AdditionalFilters_ExampleScript.sh
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Table 2. VarDict additional quality filters. *filter described in the bcbio guidelines [79]. 

Filters Description 

PASS The variant passed all filters. 

LowFreq_with_LowDepth* Reject variants with a low allele frequency and a low total read depth 

(DP) or coverage. This filter also includes criteria for mapping quality, 

number of reads mismatches, low depth and low quality [79]. 

LowFreq_with_PoorQual* Reject variants that have a combination of a low allele frequency, a low 

quality and high p-values [79]. 

LowFreqBias* Reject variants that have a combination of a low allele frequency, a low 

depth, a low p-value for strand bias and more than two mismatches [79]. 

Exon-exon Junctions Reject variant in close proximity of exon-exon junctions. 

Likely Germline Reject variants classified as germline according to VarDict. 

Likely Somatic + Strong 

Somatic 

Select variants classified as somatic or strong somatic variants 

according to VarDict. 

Strong Somatic Select variants classified as strong somatic variants according to 

VarDict. 

 

Strelka2  

For Strelka2, no interval lists were provided since this variant caller has a multithreading option. The 

input for Strelka2 consisted of the processed WES data from the normal sample and the RNA-Seq BAM 

file from the tumour sample, the reference genome and the --exome option. The Strelka2 output 

consisted of two separate VCF files for somatic SNVs and somatic indels. These VCF were merged 

using rtg vcfmerge --force-merge=DP. The resulting VCF file was zipped and indexed using rtg 

bgzip, and rtg index from the RTG Tools package respectively. Strelka2 has only two hard-coded 

built-in quality filters (Table 3). An example script with the implementation of Strelka2 is available in my 

personal GitHub repository: RNA-Seq_Frozen_GSNAP_Strelka2_Protocol_1.4_ExampleScript.sh. 

 

Table 3. Strelka2 built-in quality filters. 

Filters Description 

LowEVS Reject variants when the Somatic Empirical Variant Score 

(SomaticEVS) is below the threshold [80]. 

LowDepth Reject a variant when the tumour or normal sample read depth at this 

locus is below 2 [80]. 

 

3.1.3 Annotation 

 

Functional annotation is a key step to understand the potential clinical impacts of identified variants. The 

Variant Effect Predictor [81] (VEP) is an Ensembl annotation tool that determines the effect of variants 

on genes, transcripts, and protein sequences, as well as regulatory regions. The additional option--

stats_file was used to produce an HTML file containing annotation statistics. An example script with 

the implementation of VEP is available in my personal GitHub repository: RNA-

seq_Frozen_GSNAP_Case1_Mutect2_GATK3-Annotate_VEP_ExampleScript.sh. 

 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_Frozen_GSNAP_Strelka2_Protocol_1.4_ExampleScript.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-seq_Frozen_GSNAP_Case1_Mutect2_GATK3-Annotate_VEP_ExampleScript.sh
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-seq_Frozen_GSNAP_Case1_Mutect2_GATK3-Annotate_VEP_ExampleScript.sh
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2.3 Performance Evaluation  
 

The aim of this master thesis is to evaluate the different pre-processing steps, alignment tools and 

variant calling algorithms in order to improve the precision of the identification of somatic variants from 

RNA-Seq data obtained from FF and FFPE tissue. To do so, a comprehensive benchmarking of different 

workflows was performed. The performance of each workflow was evaluated based on the intersection 

of the identified variants with a Gold Standard set of variants. 

 

2.3.1 Performance Metrics 

 

In order to compare different pre-processing steps, aligners, and variant callers, the precision and 

sensitivity of variant detection was calculated using a Gold Standard set of variants. To obtain this Gold 

Standard set, somatic variant calling was performed on WES data from the patient’s tumour tissue. This 

analysis was conducted and validated at the UZ Gent and involved BWA-MEM alignment and MuTect2 

somatic variant calling. The Gold Standard set of variants is available on my personal GitHub: batch1-

mutect2-annotated-decomposed.vcf.gz. The DNA variants in this Gold Standard set can be regarded 

as true positive (TP) variants. The Gold Standard variant set consists of 1254 variants, including 1113 

SNVs and 141 indels. However, since it is impossible to verify whether the Gold Standard set of variants 

includes all true variants, it is more correct to refer to these Gold Standard variants as DNA concordant 

variants. The performance metrics used to evaluate different workflows are precision and sensitivity. 

The performance metrics were calculated using the following formulas: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

where TP is the number of true positives, TN the number of true negatives, FP the number of false 

positives and FN the number of false negatives. 

 

2.3.2 Performance Evaluation of the Pre-Processing Steps 

 

A first step in the optimisation of the somatic variant detection was the selection of the appropriate pre-

processing steps. As already described before, three different pre-processing tools were analysed: 

SplitNCigarReads, BaseRecalibrator and IndelRealigner. Six protocols with different combinations of 

these pre-processing tools were established (Figure 6). Protocol 0 performs no additional pre-

processing, Protocol 2 and 5 include only one pre-processing tool, Protocol 1 and 4 include two pre-

processing tools and Protocol 3 includes all pre-processing tools. After pre-processing, the resulting 

BAM file was used for variant calling with MuTect2. The output VCF files were compared to the Gold 

Standard variant set. Two tools were used to identify TP, TN, FN and FN variants: som.py from the 

Hap.py package and bcftools isec. The bcftools isec command was used to obtain an intersecting 

VCF file that contained only the DNA concordant somatic variants. Finally, the performance metrics 

were calculated as explained in section 2.3.1. For the comparison of these six protocols mainly precision 

is taken into consideration since the main goal is to identify variants that are true positive. Currently, the 

best way to verify whether an RNA variants is true positive is to check if this variant is supported by DNA 

sequencing. In other words, when an RNA variant is included in the Gold Standard variant set, it can be 

considered true positive. 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/batch1-mutect2-annotated-decomposed.vcf.gz
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/batch1-mutect2-annotated-decomposed.vcf.gz
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To evaluate whether different pre-processing protocols identified the same somatic variants, the 

concordance between different VCF files was analysed using bcftools isec and bcftools stats. 

Venn diagrams were created using the Python matplotlib_venn package (version 0.11.5). 

 

2.3.3 Performance Evaluation of the Alignment Algorithms 

 

A second step in the optimisation of the bioinformatics workflow is the evaluation of the alignment 

algorithms GSNAP and STAR. To select the most appropriate aligner, again the precision of variant 

calling was calculated and compared. In order to do so, pre-processing Protocol 4 and variant caller 

MuTect2 were used and only the alignment tool was changed. Similarly as before, the DNA concordant 

variants were identified using som.py and bcftools isec, and the precision and sensitivity were 

calculated. 

 

To evaluate the concordance between GSNAP and STAR, the overlap between different VCF files was 

analysed using bcftools isec and bcftools stats. Venn diagrams were created using the Python 

matplotlib_venn package (version 0.11.5). 

 

2.3.4 Performance Evaluation of the Variant Calling Algorithms 

 

After alignment and pre-processing of the RNA-Seq data the actual variant calling was performed. As 

already described before three variant calling algorithms were compared: MuTect2, VarDict and 

Strelka2. The output VCF files were analysed using som.py from the Hap.py package. To include 

variants that did not pass the built-in quality filters the option --include-nonpass was used.  

 

The results indicated that any single caller is not adequate in discovering variants with high precision. 

Therefore, it was tested if the combination of three variant calling algorithms would provide a higher rate 

of variant calls supported by WES. The overlap between the VCF files of MuTect2, VarDict (with 

additional filters) and Strelka2 was made using bcftools -isec. The resulting VCF files, containing 

only variants identified by all three variant callers, were analysed using bcftools stats –apply-

filters PASS to obtain the total number of variants, the number of SNVs and the number of indels 

that passed the quality filters. An example script to evaluate this overlap is available in my personal 

GitHub repository: RNA-Seq_FFPE_GSNAP_MuVaSt_ExampleScript.sh. The precision was calculated 

similarly as before. To summarise these result, a Venn diagram was created using the Python 

matplotlib_venn package (version 0.11.5). Variants identified in all three variant callers were regarded 

as the most reliable variants.  

 

To assess the difference between variants identified using RNA-Seq or WES, the expression of somatic 

variants called in WES was analysed using Kallisto data provided by the Center for Medical Genetics 

Ghent (CMGG). This Kallisto file included expression information (transcripts per kilobase million, TPM) 

on the gene level. The VCF Expression Annotator tool (VAtools) was used to add the expression data 

to the Gold Standard VCF file. Based on Supplementary Figure 1, a threshold of 1 TPM was used. In 

addition, the allele-specific expression of SNVs was evaluated using GATK’s ASEReadCounter [113]. 

Indels were not evaluated since ASEReadCounter was unable to handle indels correctly. A VAF 

threshold of 0.04 was adapted based on a previous study by Karasaki et al. [34]. 

 

 

 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/RNA-Seq_FFPE_GSNAP_MuVaSt_ExampleScript.sh
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Besides expression, also the VAF and DP were analysed. The VAF was calculated separately for RNA 

and DNA variants using the following formulas: 

 

𝑉𝐴𝐹𝑅𝑁𝐴 =
𝐴𝐷𝑎𝑙𝑡  𝑖𝑛 𝑅𝑁𝐴 − 𝑆𝑒𝑞

𝐷𝑃 𝑖𝑛 𝑅𝑁𝐴 − 𝑆𝑒𝑞
                      𝑉𝐴𝐹𝐷𝑁𝐴 =

𝐴𝐷𝑎𝑙𝑡  𝑖𝑛 𝑊𝐸𝑆

𝐷𝑃 𝑖𝑛 𝑊𝐸𝑆
 

 

where ADalt is the allelic depth of the alternate allele and DP the total read depth. This analysis was 

performed in Jupyter Notebook. An example script can be found in my personal GitHub repository: 

VAF_ExampleScript.py and DP_ExampleScript.py.  

 

Finally, BEDTools was used determine whether the variants identified using RNA-Seq were covered by 

the WES SureSelect Human All Exon V6 (Agilent) capture kit using the ‘‘-intersectBed’’ function. 

 

https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/VAF_ExampleScript.py
https://github.ugent.be/lovouden/Thesis_Lore_Van_Oudenhove/blob/master/DP_ExampleScript.py
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Figure 6. Overview Bioinformatics Pipeline. 
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3 RESULTS 
 

For the performance evaluation of the pre-processing protocols, alignment algorithms and variant 

callers, one FF sample and one FFPE sample were used. The sequencing data consisted of fastq files 

containing paired-end reads. The quality of this sequencing data was assessed using FastQC [109]. 

The mapping statistics of both samples can be found in Appendix 8.5. 

 

3.1 Performance Evaluation of the Pre-Processing Steps 
 

A first step in the optimisation of the bioinformatics workflow for the identification of somatic variants is 

the selection of the appropriate pre-processing steps. To evaluate the performance of the different pre-

processing steps, six pre-processing protocols (Figure 6) were compared for both sample types. This 

comparison was conducted for both aligners and one variant caller, MuTect2. The section below only 

describes the results for the GSNAP alignment since the same conclusion was drawn from the STAR 

alignment. The detailed results for STAR can be found in Appendix 8.6. The number of variants, the 

number of SNVs and the number of indels were visualised using a histogram. Only variants that have 

passed MuTect2’s built-in quality filters (Table 1, section 2.2.3) were considered. A second graph shows 

the overall precision, the precision of SNV detection and the precision of indel detection for each protocol 

calculated as explained in section 2.3.1. Again, only variants that have passed MuTect2’s built-in quality 

filters were considered. 

 

3.1.1 GSNAP 

 

FF Sample 

The first workflow, used to compare the six pre-processing protocols, was comprised of GSNAP 

alignment of the FF data and somatic variant calling with MuTect2. An overview of the number of called 

variants can be found in Figure 7. When no pre-processing steps were applied (Protocol 0, see Figure 

6), the highest number of variants was called (8254). When only one pre-processing step was applied 

(Protocol 2 and 5, see Figure 6), fewer variants were called. Moreover, applying two or three pre-

processing steps (Protocol 1, 3 and 4, see Figure 6) resulted in less variants. For each protocol, fewer 

indels than SNVs were detected. Figure 8 contains information on the precision of the called variants. 

Protocol 1, 3 and 4 (see Figure 6) obtained a higher overall precision than Protocol 0, 2 and 5 (see 

Figure 6). Generally, the precision of SNV detection was higher than the precision of indel detection. 

Moreover, application of the different pre-processing protocols had only a limited effect on the precision 

of indel detection. As a result, the improvement in overall precision for Protocol 1, 3 and 4 was mainly 

due to a more precise detection of SNVs. It can be concluded that applying no or only one pre-

processing step (Protocol 0, 2 and 5, see Figure 6) resulted in a low overall precision. Furthermore, 

Protocol 3 and 4 resulted in the highest overall precision and seem to be the most appropriate pre-

processing protocols for an accurate somatic variant calling. Both Protocol 3 and 4 include GATK’s 

SplitNCigarReads and BaseRecalibrator. In addition, Protocol 3 also includes IndelRealigner. 

Nevertheless, the additional application of the IndelRealigner tool did not enhance the precision of indel 

detection for Protocol 3 compared to Protocol 4 (Figure 8). 
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Protocol 0 Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Precision FF 0,0276 0,0651 0,0384 0,0716 0,0708 0,0365

Precision SNVs FF 0,0377 0,0891 0,0439 0,1025 0,1023 0,0602

Precision Indels FF 0,0025 0,0068 0,0078 0,0067 0,0089 0,0024
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Figure 8.Graph depicting the precision obtained using the different pre-processing protocols depicted in Figure 6, 
based on GSNAP alignment and MuTect2 somatic variant calling for the FF sample. Only variants that have passed 
the built-in quality filters from MuTect2 were taken into account. 

Protocol 0 Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Variants FF 8254 4071 5911 3717 2317 7088

SNVs FF 5887 2886 5017 2517 1534 4186

Indels FF 2367 1185 894 1200 783 2902
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Figure 7. Histogram depicting the number of variants, SNVs and indels obtained using the different pre-processing 
protocols depicted in Figure 6, based on GSNAP alignment and MuTect2 somatic variant calling for the FF sample. 
Only variants that have passed the built-in quality filters from MuTect2 were taken into account. 
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FFPE Sample 

The same workflow was applied to the FFPE data. Protocol 0, 2 and 5 (see Figure 6) identified a higher 

number of variants (Figure 9). Again, this higher number of variants resulted in a lower precision (Figure 

10). Protocol 1, 3 and 4 (see Figure 6) detected a slightly higher number of indels than SNVs, however, 

the precision of indel detection remained very low for all protocols. Similar to the FF data, Protocol 3 

and 4 (see Figure 6) had the highest precision and seem to be the best pre-processing protocols. The 

improvement in overall precision was mainly due to an enhancement in the precision of SNV detection, 

since only a limited effect was observed for the precision of indel detection when different pre-processing 

protocols were applied. Generally, the overall precision was higher for the detection of somatic variants 

in the FF sample.

Protocol 0 Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Variants FFPE 6123 3946 5261 3844 3871 6471

SNVs FFPE 4685 1910 4656 1742 1758 2805

Indels FFPE 1438 2036 605 2102 2113 3666
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Figure 9. Histogram depicting the number of variants, SNVs and indels obtained using the different pre-processing 
protocols depicted in Figure 6, based on GSNAP alignment and MuTect2 somatic variant calling for the FFPE 
sample. Only variants that have passed the built-in quality filters from MuTect2 were taken into account. 

Protocol 0 Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Precision FFPE 0,0206 0,0489 0,0232 0,0515 0,0509 0,0295

Precision Indels FFPE 0,0035 0,0034 0,005 0,0033 0,0033 0,0022

Precision SNVs FFPE 0,0258 0,0974 0,0256 0,1096 0,1081 0,0652
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Figure 10. Graph depicting the precision obtained using the different pre-processing protocols depicted in Figure 
6, based on GSNAP alignment and MuTect2 somatic variant calling for the FFPE sample. Only variants that have 

passed the built-in quality filters from MuTect2 were taken into account. 
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3.1.2 STAR  

 

The same analysis was performed using STAR as alignment algorithm. Since these results also 

indicated that Protocol 3 and 4 outperformed the other pre-processing protocols, only an overview of 

the overall precision for both sample types is depicted in Figure 11. More detailed results can be found 

in Appendix 8.6. For both sample types, the overall precision was in the same range. Protocol 3 and 4 

obtained a higher precision for the variant calling of somatic variants. It should be noted however, that 

the overall precision for STAR is lower than the overall precision obtained using GSNAP. 

 

3.1.3 Protocol 3 versus Protocol 4 

 

To verify whether Protocol 3 and 4 identified the same variants, the overlap between these VCF files 

was analysed. Table 4 and Table 5 give an overview of both protocols and their overlap for both sample 

types. Only variants that have passed all built-in quality filters from MuTect2 were considered. Figure 

12 summarises the overlapping variants in Venn diagrams.  

 

Table 4. Overlapping variants between Protocol 3 and Protocol 4 using GSNAP or STAR alignment and MuTect2 
somatic variant calling for the FF sample. Only variants that have passed the built-in quality filters from MuTect2 
were taken into account. 

Aligner Type Protocol 3 Protocol 4  Overlap 

GSNAP Variants 3717 2317 2184 

 SNVs 2517 1534 1425 

 Indels 1200 783 759 

STAR Variants 5655 5705 4533 

 SNVs 4591 4639 3595 

 Indels 1064 1066 938 

Protocol 0 Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

FF sample 0,0105 0,037 0,0241 0,0486 0,0473 0,0115

FFPE sample 0,0149 0,0363 0,0219 0,048 0,0471 0,0154
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Figure 11. Graph depicting the overall precision of variant calling using the different pre-processing protocols, based 
on STAR alignment and MuTect2 somatic variant calling for both sample types. Only variants that have passed the 
built-in quality filters from MuTect2 were taken into account. 
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Table 5. Overlapping variants between Protocol 3 and Protocol 4 using GSNAP or STAR alignment and MuTect2 
somatic variant calling for the FFPE sample. Only variants that have passed the built-in quality filters from MuTect2 
were taken into account. 

Aligner Type Protocol 3 Protocol 4  Overlap 

GSNAP Variants 3844 3871 3597 

 SNVs 1742 1758 1641 

 Indels 2102 2113 1956 

STAR Variants 3936 3988 3494 

 SNVs 2384 2411 2067 

 Indels 1552 1577 1427 

 

 

Figure 12 shows a high concordance between variants called by either Protocol 3 or Protocol 4. 

Nevertheless, a small portion of the variants seem to be unique either for Protocol 3 or 4. This can be 

the result of the IndelRealigner tool used in Protocol 3. Figure 12a shows a larger fraction of Protocol 3 

unique variants, this is not surprising since for this workflow Protocol 3 identified a higher number of 

variants (3717) than Protocol 4 (2317). Despite these difference, the precision of both protocols were in 

the same range: 0.0716 for Protocol 3 and 0.0708 for Protocol 4. For the other workflows (Figure 12b, 

c, d), the number of called variants was more in the same range and, therefore, a larger overlap between 

Protocol 3 and 4 was observed. For example, Figure 12c depicts a large overlap between Protocol 3 

and 4. Only 247 variants (101 SNVs and 146 indels) were ‘Protocol 3 unique’ and only 274 variants (117 

SNVs and 157 indels) were ‘Protocol 4 unique’. From these 247 ‘Protocol 3 unique’ variants only 1 SNV 

was supported by WES and from the 274 ‘Protocol 4 unique’ variants no variants could be verified in 

WES data (Supplementary Figure 6c). Similar results were found for the other workflows (Appendix 8.7). 

Figure 12. Overlap between Protocol 3 and Protocol 4. (a) Overlap for the FF sample, GSNAP alignment and 
MuTect2 somatic variant calling. (b) Overlap for the FF sample, STAR alignment and MuTect2 somatic variant 
calling. (c) Overlap for the FFPE sample, GSNAP alignment and MuTect2 somatic variant calling. (d) Overlap for 
the FFPE sample, STAR alignment and Mutect2 somatic variant calling. 
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3.1.4 Conclusion 

 

The workflows analysed above indicate that Protocol 3 and Protocol 4 obtained the highest overall 

precision for the detection of somatic variants. Protocol 3 consisted of three pre-processing steps: 

SplitNCigarReads, IndelRealigner and BaseRecalibrator. Protocol 4, on the other hand, only consisted 

of two pre-processing steps: SplitNCigarReads and BaseRecalibrator. It can be concluded that applying 

SplitNCigarReads and BaseRecalibrator in this order had a positive effect on the overall precision of 

variant calling when MuTect2 was used. Therefore, it is considered advantageous to apply these pre-

processing steps in order to enhance the accuracy of somatic variant calling in RNA-Seq data. 

IndelRealigner, on the other hand, only had a limited effect since no vast improvement was observed in 

the precision of indel detection. A high overlap was observed between Protocol 3 and Protocol 4, 

nevertheless, both protocols identified some unique variants. However, only a limited number of these 

unique variants were supported by WES (Appendix 8.7). To select the optimal pre-processing protocol, 

one should consider the variant calling algorithm that will be used. However, since MuTect2, VarDict 

and Strelka2 perform a realignment step in their algorithm, Protocol 4 can be selected as the most 

appropriate pre-processing protocol.  
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3.2 Performance Evaluation of the Alignment Algorithms 
 

The next step in the optimisation of the bioinformatics pipeline is the evaluation of the alignment 

algorithms GSNAP and STAR. Since MuTect2 will be used for somatic variant calling, it is appropriate 

to use Protocol 4 for pre-processing of the alignment files. Nevertheless, the same analysis was 

performed for Protocol 3, these results can be found in Appendix 8.8. Figure 13 gives an overview of 

the precision for the detection of all variants, SNVs and indels for both sample types when Protocol 4 

and MuTect2 were applied. These histograms indicate that alignment with GSNAP resulted in a higher 

precision than if STAR was used, particularly SNVs were called with a higher precision. This can be 

related to the fact that STAR generally called more variants than GSNAP which resulted in a larger false 

positive fraction. For example, when looking at variants identified in the FF sample using Protocol 4 and 

MuTect2, GSNAP alignment resulted in 2317 variants (Figure 7) and STAR in 5705 variants 

(Supplementary Figure 3). For both GSNAP and STAR the precision of SNV detection was higher than 

for indel detection. For the FFPE sample (Figure 13b) only a small difference in overall precision was 

observed, nevertheless, SNV precision was much higher for GSNAP alignment. The explanation for this 

is the fact that for the FFPE sample GSNAP alignment resulted a large indel/SNV ratio (1.20) which 

subsequently led to a lowered overall precision. For the STAR alignment the indel/SNV ratio was lower 

(0.65) which resulted in reduced effect of the low indel precision. For the FF sample this effect was less 

pronounced due to lower indel/SNV ratios: 0.51 for GSNAP and 0.23 for STAR alignment. 

 

To verify whether GSNAP and STAR alignment resulted in the identification of the same somatic 

variants, again the overlap between the VCF file was calculated. Figure 14 gives information on the 

overlap between called variants, SNVs, indels and variants supported by WES (DNA concordant). It 

appears that only a limited fraction of the variants was called by both alignment tools. This is surprising 

since in both cases the same pre-processing steps and variant calling tool were used. To further 

investigate this difference, the unique fractions in Figure 14a were annotated and analysed. An overview 

of the most severe consequences of the variants uniquely identified by GSNAP and STAR can be found 

in Figure 15. It was observed that the alignment algorithm used seem to affect the type of variants 

Indels SNVs
Total

Variants

GSNAP 0,0089 0,1023 0,0708

STAR 0,0075 0,0565 0,0473
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Figure 13. Precision of somatic variant calling for all variants, SNVs and indels. The alignment tools used were 
GSNAP and STAR and the somatic variant calling was performed using MuTect2 after pre-processing with Protocol 
4. Only variants that have passed built-in quality filters from MuTect2 were taken into account. (a) FF sample. (b) 
FFPE sample. 

P
re

c
is

io
n
 



Results    42 

identified. GSNAP alignment mainly identified splice site variants (50.8%), frameshift variants (20%), 

missense variants (17.3%) and a smaller fraction of synonymous variants (8%). STAR alignment, on 

the other hand, mainly identified missense variants (53%), synonymous variants (22.1%) and a smaller 

fraction of frameshift variants (10.7%). The inconsistent identification of somatic variants may be 

attributed to the algorithmic differences between GSNAP and STAR. Further research involving more 

samples is required to further investigate this discrepancy, however, this was out of scope of this master 

thesis. 

 

 

 

 

Figure 14. Venn diagrams depicting the overlap between somatic variants called using either GSNAP or STAR 
alignment for both sample types when pre-processing Protocol 4 and MuTect2 somatic variant calling were used. 
(a) Venn diagram for all variants that have passed built-in quality filters from MuTect2. (b) Venn diagram for SNVs 
that have passed built-in quality filters from MuTect2.(c) Venn diagram for all indels that have passed built-in quality 
filters from MuTect2. (d) Venn diagram for variant calls that were supported by WES (DNA concordant). 

Figure 15. Most severe consequences of somatic variants called by MuTect2 after GSNAP or STAR alignment, 
only aligner unique variants from Figure 14a were considered. The VCF files were annotated using VEP. For 
GSNAP 1589 variants were taken into account, for STAR 4977. 

on_variant 
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3.3 Performance Evaluation of the Variant Calling Algorithms 
 

In this section, three variant calling algorithms are analysed for both sample types: MuTect2, VarDict 

and Strelka2. Here, only results for GSNAP alignment and pre-processing Protocol 4 are shown. For 

the sake of completeness, Appendix 8.10 provides detailed results on the GSNAP alignment combined 

with pre-processing Protocol 3 and Appendix 8.11 for the STAR alignment combined with pre-

processing Protocol 4. 

 

3.3.1 MuTect2 

 

Table 6 gives an overview of the number of called variants using MuTect2 and the resulting precision 

for the FF sample when GSNAP alignment and pre-processing Protocol 4 were applied. A large fraction 

(73.22%) of the variants was rejected by built-in quality filters from MuTect2 (Table 1, section 2.2.3) 

resulting in 2317 variants, including 1534 SNVs and 783 indels. Applying these filters had a positive 

effect on the precision, particularly on the precision of SNV detection (0.1023). Nevertheless, an overall 

precision of 0.0708 is considerably low. This low overall precision is partly attributable to the high fraction 

of DNA discordant indels which resulted in a poor precision for the detection of indels (0.0089). As for 

the FF sample, somatic variant calling of the FFPE sample revealed a large fraction (91.93%) of called 

variants that was rejected by built-in quality filters from MuTect2 (Table 1, section 2.2.3) resulting in 

3871 variants, including 1758 SNVs and 2113 indels (Table 7). Again, applying these quality filters had 

a positive effect on the precision, particularly on the SNV precision (0.1081). Nevertheless, due to the 

low precision of indel detection (0.0033), the overall precision (0.0509) remained considerably low. 

Compared to the FF sample, a lower overall precision was obtained for the FFPE sample, however, the 

precision of SNV detection was in the same range. 

 

Similar results were found when pre-processing Protocol 3 (Appendix 8.10) was applied. As already 

described in section 3.2, when STAR was used as alignment tool (Appendix 8.11), a lower overall 

precision was obtained. 

 

 

Table 6. Number of (filtered) variants, SNVs and indels called for the FF sample when GSNAP alignment, pre-
processing Protocol 4 and MuTect2 somatic variant calling were applied and corresponding number of variants that 
were supported by WES (DNA concordant). From column 2 to 4, between brackets the percentage of rejected 
variants in relation to the initial number of called variants can be found. From column 4 to 6, between brackets the 
precision can be found. 

 Variants SNVs Indels  DNA 

Concordant 

Variants  

DNA 

Concordant 

SNVs 

DNA 

Concordant 

Indels 

No Filters 8652 6023 2629 226   

(0.0261)  

201   

(0.0334) 

27     

(0.0095) 

MuTect2 

Filters 

2317 

(73.22%) 

1534 

(74.53%) 

783 

(70.22%) 

164   

(0.0708) 

157   

(0.1023) 

7        

(0.0089) 
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Table 7. Number of (filtered) variants, SNVs and indels called for the FFPE sample when GSNAP alignment, pre-
processing Protocol 4 and MuTect2 somatic variant calling were applied and corresponding number of variants that 
were supported by WES (DNA concordant). From column 2 to 4, between brackets the percentage of rejected 
variants in relation to the initial number of called variants can be found. From column 4 to 6, between brackets the 

precision can be found. 

 Variants SNVs Indels  DNA 

Concordant 

Variants 

DNA 

Concordant 

SNVs 

DNA 

Concordant 

Indels 

No Filters 43903 

 

15841 

 

28062 308   

(0.0070) 

278   

(0.0175) 

30     

(0.0011) 

MuTect2 

Filters 

3871 

(91.93%) 

1758 

(88.90%) 

2113 

(92.47%) 

197   

(0.0509) 

190   

(0.1081) 

7        

(0.0033) 

 

 

3.3.2 VarDict 

 

Table 8 gives an overview of the number of variants called using VarDict and the resulting precision for 

the FF sample when GSNAP alignment and pre-processing Protocol 4 were applied. VarDict called 

more variants than MuTect2, even after applying built-in quality filters from VarDict 59536 variants, 

including 49642 SNVs and 9894 indels, were retained. Due to the limited number of DNA concordant 

variants, the overall precision of variant calling remained very low (0.0051). More variants were identified 

in the FFPE data (99384) and the overall precision was only 0.0020 after applying the standard quality 

filters from VarDict (Table 9). Somatic variant calling using VarDict appeared to be less precise for the 

FFPE sample than for the FF sample. 

 

 

Table 8. Number of (filtered) variants, SNVs and indels called for the FF sample when GSNAP alignment, pre-
processing Protocol 4 and VarDict somatic variant calling were applied and corresponding number of variants that 
were supported by WES (DNA concordant). From column 2 to 4, between brackets the percentage of rejected 
variants in relation to the initial number of called variants can be found. From column 4 to 6, between brackets the 

precision can be found. 

 Variants SNVs Indels  DNA 

Concordant 

Variants  

DNA 

Concordant 

SNVs 

DNA 

Concordant 

Indels 

No Filters 218560 193571 24989 341   

(0.0016) 

280   

(0.0014) 

61     

(0.0024) 

VarDict 

Filters 

59536 

(72.76%) 

49642 

(74.35%) 

9894 

(60.41%) 

305   

(0.0051) 

249   

(0.0050) 

56     

(0.0057) 

Additional 

Filters 

3303 

(98.49%) 

750 

(99.61%) 

2553 

(89.78%) 

110   

(0.0333) 

104   

(0.1387) 

6        

(0.0024) 

 

 

 

 

 

 

 



Results    45 

Table 9. Number of (filtered) variants, SNVs and indels called for the FFPE sample when GSNAP alignment, pre-
processing Protocol 4 and VarDict somatic variant calling were applied and corresponding number of variants that 
were supported by WES (DNA concordant). From column 2 to 4, between brackets the percentage of rejected 
variants in relation to the initial number of called variants can be found. From column 4 to 6, between brackets the 

precision can be found. 

 Variants SNVs Indels  DNA 

Concordant 

Variants  

DNA 

Concordant 

SNVs 

DNA 

Concordant 

Indels 

No Filters 525069 368312 156757 237   

(0.0005) 

194   

(0.0005) 

43     

(0.0003) 

VarDict 

Filters 

99384 

(81.07%) 

68431 

(81.42%) 

30953 

(80.25%) 

201   

(0.0020) 

167   

(0.0024) 

34     

(0.0011) 

Additional 

Filters 

8599 

(98.36%) 

3749 

(98.98%) 

4850 

(96.91%) 

83     

(0.0097) 

76     

(0.0203)  

7        

(0.0014) 

 

To enhance precision, additional filters described in Table 2 (section 2.2.3) were applied. Figure 16 and 

Figure 17 summarise the implementation of these additional filters for a workflow comprising GSNAP 

alignment and pre-processing Protocol 4 of the FF data. When the seven additional filters were applied, 

the number of variants decreased from 59536 to a total of 3303 (Figure 16), including 750 SNVs and 

2253 indels (Table 8). The overall precision increased from 0.0051 to 0.0333 (Figure 17). The most 

pronounced enhancement was found for the precision of SNV detection: from 0.0050 to 0.1387. The 

precision of indel detection, on the other hand, did not increase. It can be concluded that additional 

filtering resulted in a more precise detection of SNVs but further optimisation remains necessary for 

indels. The results for the FFPE sample are summarised in Table 9. 
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Figure 16. The evolution of the number of variants, including SNVs and indels, after applying built-in quality filters 
from VarDict and seven additional filters (Table 2, section 2.2.3). The workflow evaluated comprised GSNAP 
alignment, pre-processing Protocol 4 and VarDict somatic variant calling of the FF data. 
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3.3.3 Strelka2 

 

Table 10 gives an overview of the number of variants called using Strelka2 and the resulting precision 

for the FF sample. A large fraction (94.08%) of the variants was rejected by built-in quality filters from 

Strelka2 (Table 3, section 2.2.3) resulting in a remaining 12602 variants, including 10498 SNVs and 

2104 indels. Nevertheless, application of these standard quality filters had only a limited effect on the 

overall precision (0.0145). Again, a considerably low precision of indel detection was observed (0.0048). 

To further enhance the precision it would be possible to apply additional filters similar to the VarDict 

filters. However, no guidelines were provided for the implementation of additional filters. Besides, the 

VCF files produced by Strelka2 did not provide similar quality metrics to VarDict. For example, Strelka2 

did not include a NM (number of mismatches in reads) and SBF (Strand Bias Fisher p-value) info field 

in the VCF file. As a result, no additional filters were applied to the Strelka2 variants. For the FFPE 

sample likewise a large fraction of the variants was rejected by Strelka2’s standard quality filters (Table 

11). However, the precision remained very low.  

 

Table 10. Number of (filtered) variants, SNVs and indels called for the FF sample when GSNAP alignment, pre-
processing Protocol 4 and Strelka2 somatic variant calling were applied and corresponding number of variants that 
were supported by WES (DNA concordant). From column 2 to 4, between brackets the percentage of rejected 
variants in relation to the initial number of called variants can be found. From column 4 to 6, between brackets the 

precision can be found. 

 Variants SNVs Indels  DNA 

Concordant 

Variants  

DNA 

Concordant 

Variants 

DNA 

Concordant 

Variants 

No Filters 212776 204685 8091 388   

(0.0018) 

337   

(0.0016) 

51     

(0.0063) 

Strelka2 

Filters 

12602 

(94.08%) 

10498 

(94.87%) 

2104 

(74.00%) 

183   

(0.0145) 

173   

(0.0165) 

10     

(0.0048) 
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Figure 17. The evolution of the overall precision of variant detection, including SNV and indel precision, after 
applying built-in quality filters from VarDict and seven additional filters (Table 2, section 2.2.3). The workflow 
evaluated comprised GSNAP alignment, pre-processing Protocol 4 and VarDict somatic variant calling of the FF 

data. 
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Table 11. Number of (filtered) variants, SNVs and indels called for the FFPE sample when GSNAP alignment, pre-
processing Protocol 4 and Strelka2 somatic variant calling were applied and corresponding number of variants that 
were supported by WES (DNA concordant). From column 2 to 4, between brackets the percentage of rejected 
variants in relation to the initial number of called variants can be found. From column 4 to 6, between brackets the 

precision can be found. 

 Variants SNVs Indels  DNA 

Concordant 

Variants  

DNA 

Concordant 

SNVs 

DNA 

Concordant 

Indels 

No Filters 493766 447889 45877 468   

(0.0009) 

417   

(0.0009) 

51     

(0.0011) 

Strelka2 

Filters 

30757 

(93.77%) 

25702 

(94.26%) 

5055 

(88.98%) 

261   

(0.0085) 

252   

(0.0098) 

9        

(0.0018) 

 

3.3.4 Conclusion  

 

The goal of this master thesis is to implement a bioinformatics workflow to identify somatic variants in 

tumour tissue with a high precision. In other words, it is important that a somatic variant called using 

RNA-Seq data, can be verified using WES data (Gold Standard variant set), which means the number 

of FP should be as low as possible. Therefore, the precision (as calculated in section 2.3.1) was 

compared in order to select the most appropriate variant calling algorithm. Sensitivity (as calculated in 

section 2.3.1) was not considered since this metric takes into account the FN variants, which consists 

of variants called in WES but not in RNA-Seq. However, the Gold Standard variant set was acquired 

from WES data, hence, it is possible that these Gold Standard variants were not expressed in the tumour 

tissue. As a result, some of the FN variants might be TN variants as these variants were not covered in 

RNA-Seq. Therefore, the calculated sensitivity is only a conservative estimate. An overview of the 

sensitivity for different variant callers can be found in Appendix 8.12. 

 

The precision of different variant calling algorithms for the FF sample is summarised in Figure 18, only 

filtered variants were considered. MuTect2 somatic variant calling resulted the highest overall precision 

(0.0708) and the highest precision of indel detection (0.0089). When additional filters were applied, 

VarDict acquired the highest precision for SNV detection (0.1387). Strelka2, on the other hand, detected 

variants with the lowest overall precision (0.0145).  
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Figure 18. Overview of the precision for MuTect2, VarDict, VarDict with additional filters and Strelka2 for the FF 
sample. The workflow evaluated comprised GSNAP alignment and pre-processing Protocol 4. 
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The same comparison was made for the FFPE sample (Figure 19). It appeared that the implementation 

of additional filters for VarDict did not have a similar improvement as for the FF sample. Moreover, 

MuTect2 was the only variant caller that obtained a similar high precision for both sample types. 

Therefore, MuTect2 seems to be the most appropriate variant caller for the both sample types.  

 

For the selection of the most appropriate variant calling algorithm, the precision was considered the 

decisive performance metric. Each caller alone called many variants that were not validated by DNA 

somatic variants in the Gold Standard set (discordant calls). MuTect2 provided the least amount of 

variant calls not supported by WES compared to the other 2 methods and, therefore, MuTect2 seems 

the most appropriate variant caller. Nevertheless, only 7.08% of variant calls made by MuTect2 were 

supported by WES. The results in Figure 18 and Figure 19 indicate that any single caller was not 

adequate in discovering variants with a high precision. Moreover, only a limited number of variants were 

identified by all three variant callers (Figure 20, Figure 22), which indicated that a large portion of the 

variant identified by a single variant caller were false positive calls. Therefore, it was tested if the 

combination of three variant calling algorithms would provide a higher rate of variant calls supported by 

WES. 

 

 

3.3.5 Combination MuVaSt 

 

The combination of MuTect2, VarDict with additional filters and Strelka2 (further referred to as MuVaSt) 

was applied for both sample types, both alignment algorithms and both Protocol 3 and Protocol 4. Next, 

it was tested if the combination of three variant callers would provide a higher rate of variant calls 

supported by WES. Table 12 summarises the precision of the MuVaSt somatic variant calling method 

for both aligners and for both Protocol 3 and Protocol 4 for the FF sample. Table 13 shows the same 

results for the FFPE sample. 
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Figure 19. Overview of the precision for MuTect2, VarDict, VarDict with additional filters and Strelka2 for the FFPE 
sample. The workflow evaluated comprised GSNAP alignment and pre-processing Protocol 4. 
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Table 12. Overview of the precision of the MuVaSt somatic variant calling method for the FF sample. It should be 
noted that only variants that have passed built-in quality filters and VarDict additional filters were taken into account. 

 Total Precision  SNV Precision Indel Precision 

Protocol 3 

GSNAP  0.2457 0.7927 0.0090 

STAR 0.2647 0.6560 0.0093 

Protocol 4 

GSNAP 0.2401 0.8381 0.0109 

STAR 0.2584 0.6522 0.0092 

 

Table 13. Overview of the precision of the MuVaSt somatic variant calling method for the FFPE sample. It should 
be noted that only variants that have passed built-in quality filters and VarDict additional filters were taken into 
account. 

 Total Precision  SNV Precision Indel Precision 

Protocol 3 

GSNAP  0.2215 0.6526 0.0197 

STAR 0.1997 0.3284 0.0143 

Protocol 4 

GSNAP 0.2231 0.6667 0.0231 

STAR 0.2009 0.3283 0.0147 

 

It is remarkable that the precision of indel detection remained very low. This poor indel precision had a 

negative effect on the overall precision. Therefore, the workflows were further evaluated solely based 

on the precision of SNV detection. For both sample types, STAR alignment resulted in a lower precision 

than GSNAP alignment when only SNVs were considered. When GSNAP was used, pre-processing 

Protocol 4 seemed to perform slightly better than Protocol 3. Moreover, the highest SNV precision was 

acquired when GSNAP and Protocol 4 were combined for both sample types. To further assess the 

performance of the MuVaSt somatic variant calling method, this workflow was evaluated based on the 

differences between variants identified using RNA-Seq or WES. These differences were assessed using 

gene expression, allele-specific expression, VAF, DP and coverage in WES. 

 

FF Sample 

Figure 20a gives an overview of the overlapping variants between MuTect2, VarDict (with additional 

filters) and Strelka2. It is remarkable that a large fraction of the called variants was unique for a single 

variant calling tool. For example, Strelka2 identified the highest number of unique variants (11210). Only 

a small fraction of 379 variants, including 105 SNVs and 274 indels, was identified by all three variant 

callers. Figure 20b depicts the number of DNA concordant variants for each variant caller. The 

intersection of the three VCF files resulted in the highest overall precision (0.2401): 91 of 379 variants 

were found in the Gold Standard variant set. Most of these DNA concordant variants appeared to be 

SNVs (88), only a minor fraction were indels (3) (Figure 23). Two of these indels were deletions of 1 

base pair, the other one was an insertion of 1 base pair. This again indicated that this workflow is not 

yet suitable for the correct identification of indels. Conversely, a vast improvement was observed for the 

precision of SNV detection when the MuVaSt somatic variant calling method was employed: a precision 

of 0.8381 was obtained. From the 105 called SNVs, 88 were DNA concordant and only 17 were RNA 

unique (Figure 23b). 
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To understand why a large fraction of the variant calls in WES (Gold Standard) were missed by RNA-

Seq, the properties of DNA unique variants (1163, see Figure 23a) were analysed for the FF sample. 

An important reason why variants called in WES were missed by RNA-Seq is the gene expression. 

Analysis of the gene expression data obtained from RNA-Seq of the FF tumour tissue revealed that 537 

of 1163 DNA unique variants (46.2%) had an expression below 1 TPM. These 537 lowly expressed 

variants consisted of 46 indels and 491 SNVs. Nevertheless, expression of the gene does not 

automatically imply expression of the variant. To overcome this limitation, the allele-specific expression 

of the DNA unique SNVs was analysed using ASEReadCounter [113] and expression data from RNA-

Seq data of the FF sample. It should be noted that this analysis was limited to SNVs since 

ASEReadCounter was unable to handle indels correctly. It was observed that from the 1025 DNA unique 

SNVs only 358 were supported by at least one RNA read and only 309 SNVs had a VAF greater than 

0.04. This means that at least 667 DNA unique SNVs (65.1%) were not supported by any RNA reads 

containing the mutation. It can be concluded that a large fraction of the DNA unique variants consisted 

of variants that were lowly, or not, expressed. As a result, it would be impossible to detect these variants 

using RNA-Seq only. 

 

One important metric to consider is the VAF. The VAF denotes the fraction of reads containing the 

variant allele. Figure 21a depicts the VAFRNA (as calculated in section 2.3.4) for the RNA variants that 

were supported by WES (DNA concordant) and the RNA unique variants. It is noticeable that the VAFRNA 

for DNA concordant variants was higher than the VAFRNA of RNA variants that were missed by WES 

(RNA unique). Although it was possible to identify variants with a low VAFRNA in RNA-Seq data, a large 

fraction of these variants was not supported by WES. For example, it was observed that 83.7% 

(241/288) of the RNA unique variants had a VAFRNA below 0.2. Figure 21b reveals a more narrow peak 

between 0.17 and 0.4 for the VAFDNA distribution of the DNA concordant variants. The VAFDNA 

distribution for the DNA unique variants shows 2 peaks: a first peak between 0 and 0.17 and a second 

peak between 0.17 and 0.4. These two peaks may be attributed to the clonality of somatic mutations as 

it was already proven that the VAFDNA can be used to distinguish between the subpopulations of tumour 

cells [114]. Moreover, considering tumour purity and aneuploidy, somatic mutations with a high VAFDNA 

(>0.25) are more likely to be clonal mutations, while somatic mutations with a lower VAFDNA are more 

Figure 20. Overview of the overlapping variants between MuTect2, VarDict (with additional filters) and Strelka2 for 
the FF sample when GSNAP alignment and pre-processing Protocol 4 were applied. (a) This Venn diagram only 
takes into account variants that have passed the built-in quality filters. (b) This Venn diagram only includes variants 
that were validated by WES (DNA concordant). 

a. b. 
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likely to be subclonal mutations [115]. As a result, the first peak of the VAFDNA (between 0 and 0.17) can 

be attributed to subclonal mutations; and the second peak (between 0.17 and 0.4) to clonal mutations. 

Consequently, based on the VAFDNA a high fraction of the DNA concordant variants may be considered 

clonal mutations. Correct identification of the subclonal mutations, on the other hand, appeared to be 

more difficult. 

 

Another important metric to consider is the read depth (DP). The average DP observed was 328, 

moreover, 92.2% of the RNA-Seq variants had a read depth of more than 10 reads. Due to the high 

sequencing coverage, no significant difference was observed between concordant and discordant 

variants (Appendix 8.13).  

 

As it was already described in section 1.2.3, RNA-Seq has the potential to detect variants that could be 

missed by WES. To understand why a large fraction of the MuVaSt variants calls were missed by WES, 

these variants were analysed for the FF sample. WES only covers a target region of known genes and 

their flanking regions. Therefore, it is possible that some of the RNA unique variants were not identified 

in WES because they are not included in the exome target region. Indeed, using a BED file containing 

the SureSelect Human All Exon V6 (Agilent) capture regions, it was observed that only 15 (2 SNVs and 

13 indels) of the 288 RNA unique variants were covered in WES. As a result, it is possible that these 

RNA unique variants contain true positive variants that cannot be detected using WES. The 288 RNA 

unique variants consisted of 17 SNVs and 271 indels (Figure 23). From the 17 SNVs, 1 A to G 

substitution and 4 T to C substitutions were observed. It is possible that these SNVs include some 

unknown RNA editing sites (section 1.2.3) that cannot be identified using WES. Nevertheless, analysis 

of a larger number of samples should be performed to prove this hypothesis. The indel fraction included 

264 insertions of 1 base pair, 7 deletions of 1 base pair, 1 deletion of 29 base pairs, 1 deletion of 42 

base pairs and 1 deletion of 43 base pairs. However, it is important to note that some of these RNA 

unique variants may also be attributed to artefacts originating from RNA-Seq related technical errors. 

Figure 21. Distribution plots of the variant allele frequency (VAF) for the DNA concordant and discordant fractions 
for the FF sample when the MuVaSt variant calling method was used (GSNAP and Protocol 4). (a) VAFRNA for the 
RNA variants as calculated in section 2.3.4. The blue graph depicts the RNA variants that were not supported by 
WES, the yellow graph depicts variants that were supported by WES. (b) VAFDNA for the DNA variants as calculated 
in section 2.3.4. The blue graph depicts the DNA variants that were not supported by RNA-Seq, the yellow graph 
depicts variants that were supported by RNA-Seq. 

a. b. 

RNA DNA 

a. b. 

RNA DNA 
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As described before, only a limited fraction of variants with a VAFRNA below 0.2 was supported by WES 

(Figure 21a). This finding suggest that it might be beneficial to apply a threshold VAFRNA value of 0.2 to 

enhance the precision of variant calling. When this threshold was applied, 130 of 379 called RNA 

variants were retained (34.3%) of which 83 variants, including 82 SNVs and 1 indel, were supported by 

WES. As a result, implementation of this additional VAF threshold resulted in an increase of overall 

precision from 0.2401 to 0.6385. The 130 RNA variants consisted of 92 SNVs and 38 indels which 

means 12.4% of the SNVs and 86.1% were rejected by the VAFRNA threshold. This results in a precision 

of 0.8913 for the detection of SNVs and a precision of 0.0263 for the detection of indels. It is important 

to note that this threshold was adapted arbitrarily and solely based on this sample, therefore, it might be 

overfitted. As a result, a threshold VAFRNA of 0.2 might not be useful for other samples with different 

tumour purities. 

 

FFPE Sample 

The MuVaSt variant calling method was also applied to the FFPE sample. Figure 22 gives an overview 

of the overlapping variants between MuTect2, VarDict (with additional filters) and Strelka2. Again, a 

large number of variants was called by only one variant caller. Only 251 variants were identified by all 

three variant calling tools of which 56 were also supported by the Gold Standard variant set resulting in 

an overall precision of 0.2231. The 56 DNA concordant variants consisted of 52 SNVs and only 4 indels 

(Figure 23). Consequently, the precision for SNV detection was 0.6667 and only 0.0231 for the detection 

of indels.  

Gene expression analysis of DNA unique variants indicated that 545 of 1198 DNA unique variants 

(45.5%) had an expression below 1 TPM. These 545 unexpressed variants consisted of 46 indels and 

499 SNVs. Evaluation of the allele-specific expression revealed that from the 1061 DNA unique SNVs 

only 364 were supported by at least one RNA read and only 331 had a VAF greater than 0.04. As a 

result, at least 697 DNA unique SNVs (65.7%) were not supported by any RNA read containing the 

mutation. Similar to the FF sample, a large fraction of the DNA unique variants showed no, or only low, 

expression in the RNA-Seq data. 

 

Figure 22. Overview of the overlapping variants between MuTect2, VarDict (with additional filters) and Strelka2 for 
the FFPE sample when GSNAP alignment and pre-processing Protocol 4 were applied. (a) This Venn diagram only 
takes into account variants that have passed the built-in quality filters. (b) This Venn diagram only includes variants 

that were validated by WES (DNA concordant). 

a. b. 



Results    53 

Analysis of the RNA variants missed by WES indicated that only 21 (7 SNVs and 14 indels) of the 195 

RNA unique variants were covered in the SureSelect Human All Exon V6 (Agilent) target regions. The 

remaining 186 RNA variants possibly contain true positive variants that cannot be detected using WES. 

The 195 RNA unique variants consisted of 26 SNVs and 169 indels (Figure 23). From the 26 SNVs, only 

2 A to G substitution and 2 T to C substitutions were observed. Again, these SNVs might contain some 

unknown RNA editing sites. The indel fraction included 145 insertions of 1 base pair, 3 deletions of 1 

base pair, 6 deletion of 2 base pairs, 13 deletion of 3 base pairs and 2 deletion of 4 base pairs. 

 

Analysis of the VAF for both RNA and DNA variants showed similar results as for the FF sample 

(Appendix 8.14). Application of the threshold VAFRNA of 0.20 reduced the number of called variants from 

251 to 79 (31.5% rejected). Since 53 of these 79 variants were supported by WES, the overall precision 

was improved to 0.6709. The 79 variants include 58 SNVs of which 50 are supported by WES and 21 

indels of which only 3 were supported by WES. As such, a precision of 0.8621 was obtained for the 

detection of SNVs and a precision of 0.1429 for the detection of indels. 

 

Figure 23 depicts the overlap between variants identified in the FF sample and FFPE sample using the 

MuVaSt variant calling method and the overlap with the Gold Standard variant set. The overlap between 

these three groups of variants is more pronounced for the SNVs than for the indels. Two SNVs were 

detected in both sample types but not supported by WES. These 2 SNVs include one A to G and one A 

to C transition. Since the A to G mutation at location chr1:33270581 was found in both samples, this 

SNV potentially represents an unknown RNA editing site. For the indels, on the other hand, 38 indels 

were identified in both samples but not included in the Gold Standard set. These 38 indels consisted of 

38 insertions of 1 base pair. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 depicts the nucleotide substitutions for both sample types. It appears that for the FFPE sample 

a higher percentage of C to T and G to A substitutions were found. The enrichment of these nucleotide 

substitutions can probably be assigned to mutational artefacts specific for FFPE sample preservation 

[49]. 

Figure 23. Venn diagrams of the overlap between variants identified using the MuVaSt somatic variant calling 
method (after GSNAP alignment and pre-processing Protocol 4) and somatic variants supported by WES (Gold 
Standard). Both sample types were considered. (a) Overlap when all variants were taken into account. (b) Overlap 

when only SNVs were taken into account. (c) Variants when only indels were taken into account. 

a. b. c. 



Results    54 

 

Figure 24. Percentages of identified nucleotide substitutions identified using the MuVaSt somatic variant calling 
method for both the FFPE and FF sample. 
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Figure 25. Overview of the overlapping variants between MuTect2, VarDict (with additional filters) and Strelka2 for 
the FFPE sample when GSNAP alignment and pre-processing Protocol 4 were applied. (a) This Venn diagram only 
takes into account variants that have passed the built-in quality filters. (b) This Venn diagram only includes variants 
that were validated by WES (DNA concordant). 

a. b. 

3.4 Validation 
 

To validate this bioinformatics pipeline, tumour tissue originating from a lung adenocarcinoma of a 

second patient was analysed. RNA sequencing data was obtained from an FFPE sample with an 

estimated tumour purity of 40%. The FFPE data consisted of 65101981 x 2 reads. The quality of this 

dataset was assessed using FastQC [109]. Sequencing data was aligned using GSNAP, mapped reads 

were sorted, duplicate reads were marked, read groups were added, pre-processing Protocol 4 was 

applied, and the somatic variant calling was performed using the MuVaSt method.  

 

Figure 25a depicts the overlap between variants identified using MuTect2, VarDict and Strelka2. Similar 

as before, it was observed that Strelka2 called the highest number of variants. Analysis of the overlap 

between the variant callers revealed 191 variants, including 69 SNVs and 122 indels, that were identified 

using the MuVaSt somatic variant calling method (Table 14). To assess the precision of the MuVaSt 

method, the called variants were compared to a Gold Standard variant set that was obtained from WES 

data of an FF sample with a tumour purity of 30%. This dataset was provided by the CMGG. The Gold 

Standard set consisted of 267 somatic variants, including 234 SNVs and 33 indels (Table 14). 

Considering the Gold Standard set, the tumour of patient 2 seemed to contain less mutations than 

patient 1 (section 2.3.1), this may be attributed to the fact that patient 2 was a non-smoker [13]. 

Evaluation of the overlap between the MuVaSt variant calls and the Gold Standard set revealed only 10 

DNA concordant variants, including 9 SNVs and 1 indel. Therefore, the overall precision of the MuVaSt 

somatic variant calling method was only 0.0524 for the FFPE sample of patient 2. The precision of SNV 

detection was higher (0.1304) than the precision of indel detection (0.0082). However, variant calling 

using the MuVaSt method was more precise than when a single variant caller was applied (Figure 25b).  

 

Table 14. Column 2: Number of variants called in the RNA-Seq data of the FFPE sample using the MuVaSt somatic 
variant calling method. Column 3: Number of variants in the Gold Standard variant set obtained from WES data of 
the FF sample. Column 4: Number of MuVaSt variants supported by WES (DNA-concordant). Column 5: Resulting 
precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MuVaSt  Gold Standard  DNA Concordant Precision 

Total Variants 191 267 10 0.0524 

SNVs 69 234 9  0.1304 

Indels 122 33 1 0.0082 
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It was remarkable that only 5.24% of the RNA variants called by MuVaSt were supported by WES (Gold 

Standard). Since a large fraction of the Gold Standard variants was missed using RNA-Seq, the allele-

expression of the DNA variants was evaluated. It was observed that only 32 of the 225 DNA unique 

SNVs were supported by at least one RNA read and only 26 had a VAF greater than 0.04. Therefore, 

at least 193 DNA unique SNVs (85.8%) could not be identified in RNA-Seq. As it was already observed 

in patient 1, a large fraction of the DNA unique variants is not, or lowly, expressed. 

 

To further assess the limited overlap between the RNA variants and the DNA variants, the VAF was 

analysed. It was observed that variants identified using WES had a VAFDNA distribution that was mainly 

below 0.25 (Figure 26b). This may be attributed to the fact that the tumour purity was only 30%, which 

consequently resulted in a lower VAFDNA for both clonal and subclonal mutations. For the DNA unique 

variants, a first peak was observed between 0 and 0.1, comprising most likely the subclonal mutations; 

and a second smaller peak between 0.1 and 0.2, which may be attributed to the clonal mutations. This 

suggests that the tumour tissue only contained a limited number of clonal mutations and a larger fraction 

of subclonal mutations. The VAFDNA distribution of the concordant variants shows a peak between 0.1 

and 0.2 which indicates that the concordant variants comprise most likely clonal mutations. Indeed, 

further analysis of the concordant variants revealed a mutation in the KRAS gene (chr12: 21971123, C 

to A) and in the CDKN2A gene (chr9: 21971123, G to GT). As already described in section 1.1.2, these 

genes are considered driver genes of lung adenocarcinoma. Since driver gene mutations are crucial in 

the progression to a neoplastic cancer cell, these mutations are considered clonal mutations that are 

present in the majority of cancer cells in the tumour. Furthermore, a lot of the discordant variants may 

be attributed to a low VAF due to subclonal mutations and a low tumour purity (tumour heterogeneity), 

since these mutations are more difficult to identify correctly (as was already described in section 3.3.5); 

and to false positive variants caused by artefacts. Moreover, it should be noted that an FFPE sample 

was used for RNA-Seq and an FF sample for WES, which may contribute to the low overlap between 

both sequencing techniques. In conclusion, the sample used for the validation of the MuVaSt somatic 

variant calling method appeared to be more challenging due to a higher percentage of subclonal 

mutations and a low tumour purity. Nevertheless, MuVaSt variant calling succeeded in identifying two 

driver gene mutations that were verified by WES. 

Figure 26. Distribution plots of the variant allele frequency (VAF) for the DNA concordant and discordant fractions 
for the FFPE sample when the MuVaSt variant calling method was used (GSNAP and Protocol 4). (a) VAFRNA for 
the RNA variants as calculated in section 2.3.4. The blue graph depicts the RNA variants that were not supported 
by WES, the yellow graph depicts variants that were supported by WES. (b) VAFDNA for the DNA variants as 
calculated in section 2.3.4. The blue graph depicts the DNA variants that were not supported by RNA-Seq, the 
yellow graph depicts variants that were supported by RNA-Seq. 

RNA DNA 

a. b. 
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4 DISCUSSION 
 

One crucial step in the development of a personalised therapeutic vaccine is the detection of tumour 

specific antigens: neoantigens. The detection of neoantigens is a multistep process comprising 

alignment of sequencing data, pre-processing of alignment files, somatic variant calling, filtering of 

identified variants, neoepitope prediction and selection of immunogenic neoantigens candidates. Every 

single step in this pipeline requires extensive optimisation to ensure the selection of reliable neoantigens 

that can be used for the development of a personalised therapeutic vaccine. In this master thesis the 

alignment, pre-processing and variant calling were analysed and evaluated in order to pave the way for 

the development of a fully operational bioinformatics pipeline that allows the accurate identification of 

somatic variants from transcriptome analysis of both FF and FFPE samples. 

 

4.1 Performance Evaluation of the Bioinformatics Pipeline 
 

The alignment is a crucial step in the detection of somatic mutations from RNA-Seq data. Both GSNAP 

and STAR are splice-aware aligners that have already proven to perform reliable and accurate alignment 

of RNA-Seq data [66], [67]. However, these benchmarking studies did not evaluate the somatic variant 

calling accuracy. Therefore, in this master thesis, the precision of both alignment algorithms was 

assessed using a Gold Standard variant set containing somatic variants detected using WES data. It 

could be concluded that GSNAP alignment resulted in a higher overall variant calling precision than 

STAR alignment for both the FF and the FFPE sample (Figure 13). The difference in overall precision 

was mainly attributable to a higher precision of SNV detection after GSNAP alignment. The precision of 

indel detection remained considerably low for both aligners. It is reasonable to assume that RNA-Seq 

aligners yield nearly identical results when using the same input data. Nevertheless, Figure 14 

demonstrates only limited concordance between GSNAP and STAR. It should be noted that these 

results were obtained using only MuTect2 as variant caller, which means a large fraction of the called 

variants might be false positive variants. Nonetheless, identical analysis with the optimised variant 

calling method MuVaSt also resulted in a limited concordance between both aligners (Supplementary 

Figure 8). Hong et al. [116] already revealed such a discrepancy among splice-aware alignment 

algorithms. The inconsistent identification of somatic variants may be attributed to the algorithmic 

differences between GSNAP and STAR. To further investigate the RNA somatic variant discrepancy 

among splice-aware alignment algorithms, a larger number of samples should be examined. However, 

this was out of scope of this master thesis. 

 

Before proceeding to the actual variant calling, the alignment files were subjected to various pre-

processing steps in order to enhance variant calling accuracy. The BAM files were sorted, duplicate 

reads were marked and an additional pre-processing protocol was applied (Figure 6). The performance 

evaluation of different pre-processing protocols demonstrated superior performances for Protocol 3 and 

4. Protocol 3 consisted of three pre-processing steps: SplitNCigarReads, IndelRealigner and 

BaseRecalibrator. Protocol 4, on the other hand, only consisted of two pre-processing steps: 

SplitNCigarReads and BaseRecalibrator. Consecutive application of SplitNCigarReads and 

BaseRecalibrator had a positive effect on the overall precision of variant calling. IndelRealigner, on the 

other hand, had only a limited effect, since no vast improvement was observed for the precision of indel 

detection. This is not surprising since the variant calling algorithms used, include a realignment step and 

thus do not require additional indel realignment. As expected, Protocol 3 and 4 identified a large fraction 

of common variants (Figure 12). Among the somatic variants identified by only one pre-processing 
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protocol, only a limited number of DNA concordant variants was observed (Supplementary Figure 6). It 

can be concluded that GATK’s BaseRecalibrator and SplitNCigarReads are the most appropriate pre-

processing steps to apply to RNA-Seq alignment files before proceeding to somatic variant calling. This 

is not surprising since these pre-processing steps are included in the workflow recommended by GATK 

[117] for somatic variant calling on RNA-Seq data. It is important to note that the vast improvement in 

the overall precision of somatic variant calling was mainly attributable to an enhanced precision of SNV 

detection since for each pre-processing protocol the precision of indel detection remained low. 

 

There are plenty of tools available for performing variant calling of SNVs and indels in NGS data [77]. 

However, for implementation in our bioinformatics pipeline, the variant calling algorithm should meet a 

small set of criteria. First of all, the variant calling tool should be able to handle transcriptomic data. 

Second, the variant calling tool should be able to operate in paired tumour-normal-sample mode and 

accordingly identify somatic variants. Based on these selection criteria and previous benchmarking 

studies [55], [75] MuTect2, VarDict and Strelka2 were selected. MuTect2 and Strelka2 are more 

“modern” haplotype-based variant callers while VarDict employs a position-based strategy to identify 

somatic variants [77]. With respect to the precision, the results in Figure 18 and Figure 19 demonstrated 

that MuTect2 achieved the highest overall precision and the highest precision of both SNV and indel 

detection for both sample types. Nevertheless, after additional filtering of VarDict called variants, a 

higher precision of SNV detection was obtained for the FF sample. Contrarily, this improvement was not 

as pronounced for the FFPE sample. It is remarkable that no single variant calling algorithm succeeded 

in identifying indels with a precision greater than 0.01. However, all three variant callers claim to be 

suitable for the accurate detection of indels [73], [78], [80]. It can be concluded that each variant caller 

alone called many somatic variants that were not supported by WES. MuTect2 provided the least 

amount of DNA discordant variant calls compared to the other two variant callers and, therefore, 

MuTect2 seems the most appropriate variant caller. Nonetheless, only about 5-7% of the variants 

identified using MuTect2 were supported by WES. Therefore, the implementation of a single variant 

caller seemed not adequate in discovering somatic variants with a high precision in RNA-Seq data. 

 

One interesting observation is the fact that only a limited number of variants were called by all three 

variant callers (Figure 20, Figure 22), a phenomenon already observed by Neums et al. [56]. Hence, a 

large portion of the variants identified by only one variant calling tool were most likely false positive 

variants. Therefore, in order to enhance the precision of variant calling, a new method was employed 

combining all three aforementioned variant callers: MuVaSt. A vast improvement in the precision of SNV 

detection was observed (Table 12, Table 13). For the FF sample, 84% of the detected SNVs was 

supported by WES. Nevertheless, the precision of indel detection remained below 0.03 for both sample 

types.  

 

It is clear that the accurate identification of indels poses a major bioinformatic challenge because both 

the alignment and the variant calling are hindered by indels. Furthermore, no vast improvement in the 

precision of indel detection was observed when different pre-processing steps, different aligners or 

different variant callers were applied. Correct alignment of indels requires splice-aware aligners since 

RNA-Seq data is composed of spliced exons. In addition, the alignment algorithm must allow gapped 

alignment. However, both GSNAP and STAR have already proven to be suitable for indel detection [55]. 

Sun et al. [55] indeed selected GSNAP and STAR as most optimal alignment tools for accurate indel 

detection. Nevertheless, when somatic indels identified using RNA-Seq were evaluated in WES data, 

only a low overlap was demonstrated [55]. A large fraction of the RNA unique indels consisted of 

insertions of only one base pair. Further in-depth analysis of these insertions revealed a systematic error 

at repeated nucleotide sites (Appendix 8.15). For example, an insertion of one T was followed by 5 
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successive T residues (Supplementary Figure 13). This indicates that it is possible that these insertions 

may be originating from systematic errors introduced during the library preparation. To assess this 

systematic error, further research is required. 

 

4.2 RNA-Seq versus WES 
 

WES data has been employed extensively for the identification of somatic mutations [7], [35], [36], [39], 

[40] due to its reliability and relatively low cost. Nevertheless, RNA-Seq is gaining interest because this 

sequencing technique has the ability to address a multitude of different questions, such as the 

quantification of gene expression levels, detection of somatic mutations, detection of alternative splicing, 

allele-specific expression, gene fusions and RNA editing. However, extensive research is required to 

assess the reliability of somatic variants detected using RNA-Seq data alone. In this master thesis, a 

combination of three variant callers, MuVaSt, was employed to identify somatic variants in RNA-Seq 

data with a high precision. The overlap between variants called from WES data and variants called from 

RNA-Seq data was summarised in Figure 23. Similar to previous studies [33], [54], [55], only a low 

overlap was observed, both for SNVs and indels. In a recent study, O’Brien et al. [54] examined the 

detection of somatic SNVs from both WES and RNA-Seq data of the same tumour and normal samples, 

and also revealed only a low overlap. Sun et al. [55] confirmed this finding and revealed an even lower 

overlap for somatic indels. Coudray et al. [33] used a workflow comprising STAR alignment in 2-pass 

mode, SplitNCigarReads, BaseRecalibrator and MuTect2 somatic variant calling in paired tumour-

sample mode. Again, only a small overlap was found between RNA-Seq and WES variants.  

 

Further analysis of the RNA-Seq unique variants, DNA unique variants and concordant variants revealed 

some (biological) factors contributing to this limited overlap (Table 15). Expression analysis using RNA-

Seq data demonstrated that about 46% of the genes containing WES variants were not, or very lowly, 

expressed. Therefore, it would be impossible to identify these variants using RNA-Seq only. This was 

also found by O’Brien et al. [54]. Nevertheless, expression of the gene does not automatically imply 

expression of the alternate (non-reference) allele. There may be several explanations for this. Firstly, 

the alternate alleles of the DNA unique variants may be located on the untranscribed strand and, 

therefore, were not transcribed at the mRNA level due to allele-specific expression [54]. Secondly, it is 

possible that the variant indeed occurred on the transcribed strand but its variant allele frequency was 

too low to be detected due to tumour heterogeneity. Evaluation of the allele-specific expression of SNVs 

revealed that a large fraction (about 65%) of SNVs identified by WES was not supported by RNA-Seq 

data. It can be concluded that analysis of both gene expression and allele-specific expression indicated 

that a large fraction of the DNA unique variants couldn’t be identified using RNA-Seq because the 

variants were not expressed. It is important to note that for the aim of the therapeutic pipeline only 

expressed variants are of clinical relevance. Moreover, it has already been observed that gene 

expression levels and the resulting neoantigens presented on the cell surface are positively correlated, 

and therefore have a great influence of the immune recognition and the subsequent lysis of the 

respective cell [90], [91]. As a result, many variants called in WES may not have an impact at the 

biological level because the variants are located within non-expressed genes or alleles.  

 

One interesting metric to assess the difference between RNA-Seq and WES variants is the variant allele 

frequency (VAF). It was observed that RNA and DNA unique variants had a lower VAF than concordant 

variants (Figure 21). Moreover, a large fraction of the RNA unique variants had a VAFRNA below 0.2 

(Figure 21a). It is possible that this low VAFRNA was due to subclonal mutations that were only present 

in a limited fraction of the cancer cells (tumour heterogeneity). Consequently, it is more difficult to detect 

these variants in WES. Contrarily, a low VAFRNA may also be attributed to a lowly expressed clonal 
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mutation that can be detected using WES. The VAFDNA of DNA variants not supported by RNA-Seq 

(Figure 21b) showed two peaks. Since somatic mutations with a high VAFDNA are more likely to be clonal 

[115], the VAFDNA peak of the DNA unique variants between 0.17 and 0.4 may be denoted to clonal 

mutations that were located in non-expressed genes and, therefore, were not detected in RNA-Seq. The 

VAFDNA peak below 0.17, on the other hand, can potentially be allocated to subclonal mutations [115] 

that were only present in a limited fraction of the tumour. As a result, only a limited number of RNA-Seq 

reads supported these mutations and, therefore, they were not identified as a somatic variant in RNA-

Seq data. It can be concluded that it is challenging to correctly identify variants with a low VAF. Both 

RNA-Seq and WES allowed the detection of variants with a VAF below 0.2, nevertheless, only a limited 

fraction of these variants was called by both sequencing techniques and therefore considered true 

positive. It is important to note that a low VAF may also be due to artefacts originating from sequencing 

errors, misalignments, library preparation artefacts or sample preservation damage. 

 

For the development of a therapeutic vaccine, clonal mutations are attractive immunological targets as 

they are expressed on all cells within the cancer cell population. Subclonal mutations, on the other hand, 

are solely expressed on that subclone or subpopulation, hence targeting them would only eliminate a 

fraction of the tumour cells [118]. As already described before, clonal mutations can be found in the 

majority of cancer cells in the tumour tissue since these mutations were part of the original set of 

mutations present when a cell transformed into a neoplastic cancer cell. These clonal mutations have a 

VAF that is around 0.5, since most somatic mutations are heterozygous. However, somatic mutations 

in tumour tissue are expected to appear at a lower VAF, due to the normal cell content of a tumour 

sample [33]. Moreover, copy number variations can lead to gain or loss of chromosomal regions, and 

duplication or deletion of genes [92]. Indeed, Figure 21b shows a VAFDNA peak between 0.17 and 0.4 

which may be allocated to the clonal mutations present in the tumour tissue [115]. Subclonal mutations, 

on the other hand, are acquired by daughter cells during tumour growth and appear only in a limited 

fraction of the cancer cells and, as a result, have a VAF below 0.5. Indeed, both RNA-Seq and WES 

identified variants with a VAF below 0.2, comprising most likely the subclonal mutations [115]. 

Nevertheless, only a limited fraction of these variants was considered true positive. It should be noted 

that the VAF is also affected by the tumour purity. A reduced percentage of tumour cells present in the 

sample will lower the VAF of both clonal and subclonal mutations which subsequently complicates the 

correct classification of somatic mutations. 

 

Both the fact that subclonal mutations are not of great relevance as vaccine targets [118], and the fact 

that only a limited precision was obtained for variants with a VAF below 0.2, imply that it would be 

beneficial to apply a threshold VAF value of 0.2 to filter out false positive variants. Indeed, when this 

threshold was applied, a higher overall precision was obtained. Nevertheless, this filter was only 

beneficial for the detection of SNVs. The precision of indel detection remained very low because very 

few concordant indels were identified. Implementation of this VAF threshold for RNA variants indeed 

improved the overlap between RNA-Seq and WES variants. Nevertheless, it is possible that some of 

the RNA unique variants with a low VAFRNA are true positive variants [119]. Moreover, it was already 

observed by Coudray et al. [33] that true variants showing a low VAFRNA but a high coverage in RNA-

Seq data are more likely to be missed by WES. Therefore, care should be taken when applying this VAF 

threshold because it is possible that true variants were excluded. Moreover, it is important to note that 

the implementation of this VAF threshold value was based on the analysis of only two tumour samples 

with a tumour purity of around 50%. Since the VAF is highly dependent of the tumour purity, this 

threshold value of 0.20 is not relevant for every tumour sample. Although this master thesis indicates 

that the application of a VAF threshold might be beneficial for the accurate identification of somatic 

variants, this VAF threshold value should be adjusted for different tumour purities. Therefore, a dynamic 
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VAF threshold would be more appropriate to use. Nevertheless, the establishment of a dynamic VAF 

threshold would require investigation of a large number of samples comprising different tumour purities. 

 

Evaluation of the RNA unique variants revealed that only a limited fraction was covered by the WES 

capture regions, this was also found by O’Brien et al. [54]. It can be concluded that while RNA-Seq 

covers the whole transcriptome, WES is limited to detecting variants in known exons and their flanking 

regions. This is an important aspect to consider, because it means that many potentially important 

somatic mutations that were not located in the WES target region would be missed if only WES was 

considered. Another biological explanation why RNA-Seq unique SNVs might be missed by WES is due 

to RNA editing. As already described before, in humans, RNA editing mostly results in an A:T→G:C 

mutational signature [62]. Subsequently, WES of tumour tissue might not be adequate to detect all 

present somatic variants. However, in the tumour samples analysed, no clear enrichment in potential 

RNA editing sites was observed. 

 

In conclusion, RNA-Seq has proven to be suitable for the detection of somatic variants and, moreover, 

imposes some additional benefits over WES. The most important advantage is the fact that RNA 

sequencing only allows the detection of expressed variants and that RNA-Seq data can be used for the 

quantification of expression. In addition, RNA-Seq has the potential to detect novel transcripts, gene 

fusions, alternative splicing events and other features without the limitation of required prior knowledge 

[32], [33], [54], [58]. For this reason, RNA-Seq is considered a powerful sequencing technique for the 

detection of somatic mutations in cancer transcriptomes that might be missed by WES. Nevertheless, 

some RNA-Seq variants could be considered questionable, since RNA-Seq data has been shown to be 

more prone to false positive calls due to technical variation introduced during library preparation, 

particularly during the RNA to cDNA conversion with reverse transcriptase [60]. Other important sources 

of false positive calls are sequencing [120] and alignment, especially incorrect alignment at the very 

ends of a read due to splicing [121]. However, a splice junction filter was already applied to reject 

variants close to a known exon-exon junction (Table 2, section 2.2.3).  

 

The accurate detection of somatic variants is not only hindered by bioinformatics challenges but also by 

biological factors. Most importantly, the nature of tumour tissue makes somatic variant calling a 

challenging task [122]. Tumour heterogeneity, including normal cell content (tumour purity) and 

subclonal mutations, complicates the somatic variant calling because the heterozygote allele distribution 

cannot be expected in tumour tissue. Hence, in addition to specificity also sensitivity of a somatic variant 

caller is of great interest, in order to detect a delicate signal. Especially variants with a low VAF impose 

a great challenge since it becomes more difficult to determine whether a somatic mutation is a true 

mutation or an artefact. 

 

Table 15. Summary of factors that may lead to inconsistencies in the detection of somatic variants in WES versus 

RNA-Seq. 

Factors causing RNA-Seq unique variants Factors causing WES unique variants 

Variants outside WES capture regions Non-expressed variants so no coverage in RNA-

Seq 

RNA editing: conversion from A:T to G:C Variants on non-transcribed strand of the gene: 

allele-specific expression 

Low VAF in WES due to tumour heterogeneity 

(subclonal mutations or normal cell content) 

Low VAF in RNA-Seq due to allele-specific 

expression 

Error-prone RNA-Seq data  Errors introduced during WES 
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4.3 FFPE versus FF Sample Preparation 
 

Apart from the difficulties introduced due to tumour heterogeneity, the type of tissue preservation 

imposed an additional factor of variability. As already described in section 1.2.2, the use of FFPE 

samples can introduce artefacts due to the fixation process, and the storage time and conditions [45]–

[50]. Indeed, it was observed that the precision for variant calling in the FFPE sample was lower than 

for the FF sample (Table 12, Table 13). Moreover, in the FFPE sample, a higher percentage of T to C 

and A to G nucleotide substitutions was observed (Figure 24). These substitutions may potentially be 

assigned to FFPE preservation artefacts [49] and, therefore, more likely represent false positive variants. 

In addition, only a limited fraction of the variants was identified in both the FFPE and the FF sample 

(Figure 23). This limited overlap may be the result of low-quality mRNA that was obtained from the RNA 

extraction on the FFPE sample (Appendix 8.1). Besides, it should be noted that the tumour sample 

region was not exactly the same for the FFPE and the FF sample. Hence, it is possible that due to the 

geographical heterogeneity of tumour tissue, different variants were identified in different samples. It 

can be concluded that the identification of somatic mutations in FFPE samples is possible although the 

precision is lowered because of additional artefacts origination from the formalin fixation process.  
 

4.4 Validation 
 

To validate the ability of the MuVaSt somatic variant calling method to identify somatic variants with a 

high precision, a second FFPE sample originating from a lung adenocarcinoma was used. The Gold 

Standard variant set consisted of only 267 variants (Table 14). This smaller number of mutations may 

be attributed to the fact that patient 2 was a non-smoker [13]. The overall precision of MuVaSt variant 

calling was considerably low (0.0524) because only 10 DNA concordant variants, including 9 SNVs and 

1 indel, were identified. Nevertheless, MuVaSt succeeded in identifying two driver gene mutations that 

were verified by WES. Further investigation of the tumour data revealed a large fraction of subclonal 

mutations and only a small fraction of clonal mutations (Figure 26b). Moreover, the tumour purity of the 

FF sample was only 30%, which resulted in a reduced VAFDNA for the clonal (peak between 0.1 and 0.2) 

and subclonal mutations (peak between 0 and 0.1). This low tumour purity and the high percentage of 

subclonal mutations might explain why only a limited precision was obtained for the MuVaSt method. 

As already described before, variants with a low VAF can also represent false positive variants caused 

by artefacts originating from sequencing errors, misalignments, library preparation artefacts or sample 

preservation damage. It can be concluded that the sample used for the validation appeared to be more 

challenging due to the presence of a higher percentage of subclonal mutations and the low tumour 

purity. Nevertheless, this tumour heterogeneity complicates both WES and RNA-Seq [77]. Therefore, 

further research is still required to enhance the somatic variant calling in heterogeneous tumour 

samples. 

 

The bioinformatics workflow evaluated in this thesis evaluates only a small part in the therapeutic 

pipeline for the development of a personalised therapeutic vaccine. The somatic variants identified in 

the workflow described in this master thesis have to be further processed to ultimately obtain a set of 

immunogenic neoantigens that can be used for the development of a dendritic cell vaccine. A few steps 

that are involved are HLA-typing, and neoepitope prediction and selection. Obviously, also these steps 

need to be evaluated in order to optimise the detection of neoantigens. The accurate detection is only 

one of the obstacles that has to be overcome. Subsequently, the implementation of a personalised 

neoantigen vaccine as standard therapy is still ongoing research and many challenges have to be 

solved. The optimal combination therapy, the reduction of vaccine production time, the upscaling of 

manufacturing, and ensuring affordability are only a few factors that require further research. 

Nevertheless, if one succeeds in producing a properly optimised personalised combination therapy, a 

new era of cancer treatment will be introduced that allows to treat patients of different cancer types with 

a high accuracy and efficacy. 
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5 CONCLUSION 
 

In this master thesis the alignment, pre-processing and variant calling was analysed and evaluated in 

order to pave the way for the development of a fully operational bioinformatics pipeline that allows the 

accurate identification of somatic variants (SNVs and indels) from transcriptome analysis of FFPE and 

FF samples. Careful evaluation of the alignment step revealed a more precise variant calling when the 

GSNAP alignment algorithm was employed. For the pre-processing of the alignment files, consecutive 

application of GATK’s SplitNCigarReads and BaseRecalibrator enhanced the precision of variant 

calling, in particular for SNVs. Next, evaluation of the individual somatic variant calling algorithms 

MuTect2, VarDict and Strelka2 revealed suboptimal performances. Therefore, it was tested if the 

combination of these three variant callers would provide a higher rate of variant calls supported by WES. 

Indeed, the new variant calling method MuVaSt succeeded in identifying somatic SNVs with a higher 

precision. Nevertheless, for the identification of indels only a low precision was achieved.  

 

Although WES has been the mainstay for the identification of somatic variants in cancer genomes, this 

master thesis suggests that variant calling from RNA-Seq offers a valuable complement. Comparison 

of somatic variants from WES and RNA-Seq revealed a low overlap. It was observed that some of the 

DNA variants were missed in RNA-Seq due to low, or no, expression of the gene or the variant allele. 

Furthermore, some of the variants detected in RNA-Seq were missed in WES because they were 

located outside the WES capture regions. This means that potential somatic mutations that were not 

located in the WES target region would be missed if only WES was considered. It was observed that a 

large fraction of the discordant variants had a low VAF, potentially caused by tumour heterogeneity 

and/or allele-specific expression; or due to artefacts originating from sequencing errors, misalignments, 

library preparation artefacts or sample preservation damage. Accordingly, if a somatic mutation only 

appears in a small fraction of the tumour mass or the variant allele has a low expression, it is more 

difficult to identify this somatic variant both in WES and RNA-Seq. The validation of the FFPE data from 

a second patient supported this finding: a low tumour purity and a high fraction of subclonal mutations 

complicated the detection of somatic variants. Therefore, the bioinformatics pipeline should be optimised 

in order to allow more precise variant calling of heterogeneous tumour samples. 

 

Application of this optimised workflow revealed a limited overlap between somatic variants identified in 

the FF sample and the FFPE sample. This low overlap may be allocated to the geographical 

heterogeneity of the tumour tissue. Moreover, FFPE samples are more likely to contain artefacts 

originating from the formalin fixation process. Subsequently, these artefacts can be misclassified as 

somatic variants. As a result, care should be taken when solely FFPE samples are used for somatic 

variant calling. 

 

In conclusion, the highest precision (0.8381) was obtained for the detection of SNVs in the FF sample 

of patient 1 when GSNAP alignment, SplitNCigarReads and BaseRecalibrator pre-processing tools, and 

MuVaSt somatic variant calling were applied. Therefore, this master thesis suggests that the 

implementation of RNA-Seq for the detection of somatic SNVs might pose a feasible alternative for 

WES. Nevertheless, for samples with a low tumour purity neoantigen detection using RNA-Seq seems 

inadequate. Moreover, RNA-Seq did not allow the accurate identification of indels, which indicates that 

WES will still be required for indel detection. Accordingly, the implementation of a pipeline solely based 

on RNA-Seq is not yet sufficiently reliable to replace WES for the detection of neoantigens. Further 

validation involving more samples and optimisation for low purity samples is still required. In addition, 

neoantigen detection from FFPE tissue seems feasible, although the implementation of FFPE samples 

in the therapeutic pipeline demands more research as for now, higher precisions are obtained for FF 

samples. 
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6 FUTURE IDEAS 
 

The feasibility and precision of a bioinformatics pipeline for the detection of somatic variants in RNA-

Seq data was assessed in this master thesis. Although a considerable high precision was obtained for 

the detection of SNVs, the precision for the detection of indels remained relatively low. Moreover, a low 

tumour purity and a high fraction of subclonal mutations complicated the precise detection of somatic 

variants. Therefore, several ways of improving the detection of somatic mutations using RNA-Seq are 

possible. Variant calling algorithms have been evolving and improving over the past years. For example, 

some of the original position-based variant callers were upgraded to haplotype-based variant callers 

(e.g. Strelka to Strelka2 and MuTect to MuTect2) [77]. More recently, the use of deep learning algorithms 

was introduced for somatic variant calling. For example, NeuSomatic [123] is the first Convolutional 

Neural Networks-based approach that can effectively leverage signals derived from the alignment of 

WES data to accurately identify somatic variants. Benchmarking of NeuSomatic revealed superior 

performances compared to MuTect2, Strelka2 and VarDict [123]. For now, this deep learning approach 

is limited to the analysis of DNA sequencing data. Implementation of deep learning algorithms in variant 

callers that specifically handle RNA-Seq data might improve the detection of both SNVs and indels. 

 

To overcome the limitation of accurate detection of indels in RNA-Seq, machine learning algorithms 

specifically targeting indels were developed recently. For example, RNAIndel [124] employs a machine 

learning based algorithm for the classification of indels identified in RNA-Seq data into somatic, 

germline, and artefact by random forest models. Another important factor contributing to the accurate 

identification of indels is the alignment. Recently, ABRA2 [125] was developed providing an improved 

realignment in order to enable more accurate variant calling. Despite the fact that more modern variant 

callers, such as MuTect2 and Strelka2, already include a local realignment step in their algorithm, a 

more sensitive and precise detection of both SNV and indels was obtained when ABRA2 was used to 

realign reads initially mapped by STAR [125]. Since it was observed that a large fraction of the indels 

might potentially be attributed to systematic errors originating from the library preparation, another 

solution could be to use a Panel Of Normals (PON), an option which is available for e.g. MuTect2. A 

PON consists of a large set of VCF files of normal samples, that underwent the same processing i.e. 

library preparation and sequencing as the study sample, and its primary purpose is to eliminate false 

positive variant calls that are due to systematic technical errors [126]. 

 

In this master thesis, real-life sequencing data was used. To calculate the precision and sensitivity of 

variant calling, a Gold Standard variant set containing somatic variants detected in WES data of the 

tumour tissue was employed. Nevertheless, as already described before, this Gold Standard variant set 

is not optimal for several reasons. First, it may contain variants that are not expressed in the tumour 

tissue. Second, RNA-Seq has the ability to call variants that cannot be detected in WES. Since it is 

impossible to verify whether the Gold Standard set of variants includes all true variants, the resulting 

precision and sensitivity might be biased. Despite these limitations, to date, no good validation datasets 

are available for independent and unbiased benchmarking of somatic variant callers [77]. Other recent 

benchmarking studies have used artificial spiked in datasets, RNA-Seq simulations programs such as 

BEERS [127], datasets obtained from cell lines, and real tumour-normal pairs. However, none of these 

are perfect validation datasets. Therefore, the development of a benchmarking dataset composed of a 

collection of real cancer transcriptomes that are deep sequenced to generate high-confidence and 

validated somatic variants would be a great asset for the research community. 
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