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ENGLISH ABSTRACT

N6-Methyladenosine (m6A) is a frequently occurring post transcriptional mRNA modi-

fication that has recently gained much interest as more and more research indicates

that it plays a role in the regulation of various biological processes. Its current detec-

tion methods are biased, have low throughput and/or do not have a single-nucleotide

resolution. Furthermore, they typically require large sequencing machines and labour

intensive experiments.

In this work, Oxford Nanopore direct RNA sequencing data is integrated with a database

of known m6A sites for the development of a neural network model that is capable of

detecting m6A sites in the native mRNA of a sample after direct RNA sequencing.

Keywords: RNA modifications, epitranscriptomics, N6-Methyladenomsine, Oxford

Nanopore Technologies, basecalling, deep learning.
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NEDERLANDS ABSTRACT

N6-Methyladenosine (m6A) is een vaak voorkomende post transcriptionele modifi-

catie van mRNA dat recent in de belangstelling is gekomen vanwege het toenemend

onderzoek dat erop wijst dat het een rol speelt in de regulatie van allerlei biologische

processen. De huidige detectiemethoden voor m6A zijn onderhevig aan bias, hebben

een beperkte schaal en/of een beperkte resolutie. Bovendien vereisen ze typisch

grote sequeneringsmachines en arbeidsintensieve experimenten.

In dit werk wordt data afkomstig van Oxford Nanopore direct RNA sequencing gein-

tegreerd met een database van gekende m6A sites voor de ontwikkeling van een

neuraal netwerk model dat ertoe in staat is m6A sites in ongewijzigd mRNA van een

staal te detecteren.

Trefwoorden: RNA modificaties, epitranscriptomics, N6-Methyladenomsine, Oxford

Nanopore Technologies, basecalling , deep learning.
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CHAPTER 1

INTRODUCTION AND OUTLINE

1.1 Introduction

A proper regulation of the expression of genes is of paramount importance for the

avoidance of many illnesses, including developmental diseases and cancer. Numer-

ous coordinated mechanisms in cells ensure the correct orchestration of gene expres-

sion, often targeting the life cycle of RNA molecules. The m6A RNA modification has

been found to play a role in this regulation at the RNA level.

Recent and ongoing research is bringing m6A’s involvement in various human dis-

eases to light. The development of efficient and high performance m6A detection

methods is of importance, as efficient m6A profiling may prove to be a useful diag-

nostic tool.

The current best m6A detection methods are based on second generation sequencing

technologies, where a relatively large amount of analysis steps are required, leaving

ample room for the introduction of undesired biases and noise in the analysis.

As the modern sequencing technology continues to improve, sequencing-based anal-

yses and their associated data-analysis tools should not lag behind.

Oxford Nanopore Technologies’ MinION sequencing device is portable and has already

been used as a diagnostic tool in remote areas (e.g. for rapid strain identification

during the ebola crisis (Quick et al., 2016)).

Once an accurate and fast high throughput m6A detection method has been devel-

oped, epitranscriptome analysis can be routinely applied for fundamental reseach or

medical diagnostic applications.

1.2 Thesis outline

First an overview of the necessary scientific background is provided in Chapters 2-4.

Chapter 2 introduces the new biological field of RNA epigenetics, Chapter 3 reviews



1.2. THESIS OUTLINE

sequencing technologies (with a focus on Oxford Nanopore sequencing) and some

essential bioinformatics concepts. In Chapter 4, machine learning is discussed, with

a focus on deep learning.

Data processing and the development of a predictive model to detect the presence

of m6A in RNA transcripts using the basecalled reads originating from an Oxford

Nanopore sequencing experiment, is discussed in Chapter 5.

Finally, in Chapter 6, some improvements to the model, as well as some alternative

m6A detection approaches are suggested, before ending with some concluding re-

marks.

2



CHAPTER 2

RNA EPIGENETICS

2.1 Introduction

While posttranscriptional modifications of RNA were already being described as early

as the 1950s, the discovery that an extensive layer of mRNA base modifications in-

fluences gene expression is much more recent. In analogy to the field that studies

DNA and histone modifications (called epigenetics), the study of RNA modifications

and their effects has been termed RNA epigenetics.

The amount of different RNA modifications that have been described is currently over

170 and continues to grow (Boccaletto et al., 2018). This exceeds the amount of

modifications that are known to decorate DNA by an order of magnitude. The reason

for this large discrepancy in amount of alternative nucleotide forms is due to the fact

that the main function of DNA is the storage of genetic information, whereas RNA is

responsible for translation, as well as a variety of functions of a structural, catalytic

or regulatory nature.

The modifications of ribosomal RNA (rRNA) and transfer RNA (tRNA) were the first

to be described. The three major types of rRNA methylation are pseudouridines, 2’-

O-methyl nucleotides and base methylations (Piekna-Przybylska et al., 2008). Their

function generally pertains to quality control in the assembly of ribosomes. Transfer

RNA molecules contain more than 10 base modifications on average with base methy-

lations, pseudouridine, 2’-O-methyl nucleotides and modified wobble bases being the

most prevalent. Their function is to maintain stability, modulate tRNA folding or to

tune the coding capacity of the tRNA molecule (El Yacoubi et al., 2012).

Internal long noncoding RNA (lncRNA) and messenger RNA (mRNA) modifications

were discovered later on and consist of N6-methyladenosine (m6A), inosine, N1-

methyladenosine (m1A), 5-methylcytidine (m5C), 5-hydroxymethylcytidine (hm5C)

and pseudouridine.

In the next section, N6-methyladenosine (m6A), which is the most frequent mRNA

modification and the focus of this thesis, will be discussed in more detail.



2.2. N6-METHYLADENOSINE

2.2 N6-methyladenosine

On average, more than three instances of N6-mythyladenosine are present per mRNA

molecule in mammalian cells, making it the most abundant mRNA modification in the

epitranscriptome. It is most commonly found around stop codons and within long in-

ternal exons and is generally associated with the degenerate consensus motif RRACH

(R = A or G and H = C, A or U), with exceptions often being attributed to artifacts

and false positives. After a thourough search for m6A sites (Dominissini et al., 2013)

(the methods used for this are described in Section 2.3), it was concluded that most

of the m6A sites are found within expressed gene transcripts and a minority within

noncoding genes. Another finding is that a large portion of the m6A sites that were

found within the human transcriptome are conserved in the mouse transcriptome (Do-

minissini et al., 2012), suggesting an important regulatory function of m6A. Gene on-

tology analysis of differentially methylated transcripts did not yield significant results,

which also implies that m6A may serve a more general purpose. N6-methyladenosine

has been shown to also be common in prokaryotes, where it usually occurs within

open reading frames with a distinct GCCAU consensus motif (Deng et al., 2015).

M6A is currently the only RNA modification for which instances of all three of the

signatures of epigenetic regulation (writers, readers and erasers) have been identi-

fied in eukaryotes. In this terminology, writers denote the proteins that play a role

in the addition of the nucleotide modification. Erasers, on the other hand, are the

proteins that remove the modification. Readers are molecules that can bind to the

modified nucleotides either directly or indirectly. They are generally associated with

their biological functions.

Three writers (Liu et al., 2014) that have been discovered for m6A are methyltrans-

ferase like 3 (METTL3), methyltransferase like 14 (METTL14) and Wilm’s Tumor Asso-

ciated Protein (Ping et al., 2014) (WTAP). These three proteins are components of a

large protein complex that is responsible for m6A addition. METTL3 and METTL14 are

catalytically active components with significant structural similarity, while WTAP is

more of an accessory protein that confers selectivity and an appropriate localisation

to the complex. WTAP has also been found to be involved in RNA splicing (Horiuchi

et al., 2006).

Fat mass and obesity-associated protein (FTO) (Jia et al., 2011) and ALKBH5 (Zheng

et al., 2013) are two N6-methyladenosine erasers that belong to the same protein

family. Their mechanism of action differs. While FTO achieves demethylation through

successive oxidation, with the accumulation of two intermediate oxidation products,

4



CHAPTER 2. RNA EPIGENETICS

ALKBH5 can directly demethylate m6A without the formation of any detectable inter-

mediates.

It is anticipated that many m6A readers (Wang et al., 2014, 2015) are yet to be dis-

covered, but human antigen R (HuR), human YTH domain family 1 (YTHDF1), human

YTH domain family 2 (YTHDF2) and heterogeneous nuclear ribonucleoprotein A2B1

(HNRNPA2B1) are the reader proteins identified to date. HuR or ELAVL1 regulates

mRNA stability. The YTHDF proteins contain a conserved domain that directly binds

to m6A. YTHDF2 additionally has a functional domain that causes the bound mRNA to

be translocated to mRNA decay sites. YTHDF1, on the other hand, promotes mRNA

translation efficiency. These opposing YTHDF protein functions may be indicative of

a means by which cells can regulate protein synthesis in response to environmental

stimuli. HNRNPA2B1 (Alarcón et al., 2015) is the most recently discovered m6A reader

and plays a role in alternative splicing. Figure 2.1 illustrates the concept of writers,

erasers and readers in the context of m6A.

Figure 2.1: (A) Signatures of epigenetic regulation. Unmodified RNA is methylated
by a writer. Modified RNA can either be converted back to unmodified RNA by an
eraser or bound by a reader protein. (B) Readers, writers and erasers known for m6A
modification (Liu and Pan, 2015).

Various biological processes, including conditions such as prostatitis, several types of

cancer, obesity, diabetes, cataract and hepatitis are known to be regulated by, or at

least associated with, differences in m6A (Batista, 2017).

2.3 State-of-the-art m6A detection

The earliest detection methods of modified RNA were based on thin-layer chromo-

tography (TLC). These methods are no longer in use except for a recently developed

5



2.3. STATE-OF-THE-ART M6A DETECTION

single-nucleotide resolution method called SCARLET, short for site-specific cleavage

followed by ligation-assisted extraction and thin-layer chromatography (Liu et al.,

2013). High performance liquid chromatography (HPLC) coupled with mass spectrom-

etry (MS) has been used to quantify modified RNA in a sample, but doesn’t provide

any information on where the modification is localized in the sequence. HPLC-MS

also provides a global overview of the amount of modified RNA rather than specific

information concerning a single modification.

Reverse transcriptase (RT) can be blocked or paused during primer extension when a

modified RNA nucleotide is encountered. This phenomenon allows for the detection

of the modifications due to abortive primer extension or nucleotide misincorporation

in the vicinity of the modified site. The applicability of these methods for m6A de-

tection has remained limited as it was found to be ’RT-silent’. This means that the

presence of m6A in native RNA cannot be detected from aberrant RT behaviour. The

use of alternative RT enzymes such as the Thermus thermophilus polymerase (Har-

court et al., 2013) or engineered RT enzymes, however, yield promising results for

future applications in m6A detection.

Next generation sequencing-based (NGS) techniques are currently the most widely

used m6A detection methods. These techniques generally achieve m6A localization

within a sequence either by a (possibly chemically induced) RT signature or antibody-

based enrichment. These two strategies can be combined, thus allowing for a de-

crease in false positives. Immunoprecipitation using m6A-specific antibodies is the

current state of the art. M6A-seq (Dominissini et al., 2012) or MeRIP-seq (Meyer et al.,

2012) (methylated RNA immunoprecipitation sequencying) split the analysed sample

in two parts. In the first part, the RNA is fragmented and the complementary DNA

(cDNA) library, resulting from reverse transcription, is sequenced. The second part

undergoes the same procedure after enrichment for modified RNA through immuno-

precipitation. M6A sites are then identified as regions where the amount of reads

is increased upon enrichment. A peak-calling algorithm such as exomePeak (Meng

et al., 2014) can efficiently identify these regions. Figure 2.2 displays an overview of

the m6A-seq protocol.

Mapping m6A at Individual-Nucleotide Resolution Using Crosslinking and Immunopre-

cipitation (MiCLIP) (Grozhik et al., 2017) is a single-nucleotide resolution method in

which anti-m6A antibodies are UV-crosslinked to the RNA. Specific mutational signa-

tures arise after reverse transcription of crosslinked RNA, from which the m6A position

can be deduced.

Promising new developments in m6A detection are the application of single molecule

sequencing technologies (discussed in Section 3.2.4) that allow the modified RNA

6
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Figure 2.2: Work flow (left) and schematic diagram (right) of the m6A-seq protocol
(Lusser, 2017). RNA immunoprecipitation (RIP) is carried out on fragmented poly(A)
RNA using anti-m6A antibodies followed by RNA sequencing of the enriched m6A
positive RNA fragments with a background control of non-immunoprecipitated RNA
fragments.

bases such as m6A to be detected directly without the need for intermediate reverse

transcription (as was the case with m6A-seq). Pacific Biosciences’ Single Molecule

Real Time (SMRT) sequencing platform has already been shown to be capable of de-

tecting m6A residues (Vilfan et al., 2013). Oxford Nanopore Technologies (ONT) has

expanded its single molecule sequencing technology to allow direct RNA sequencing,

this should make it possible to develop tools for the detection of m6A, as these are

currently lacking.

2.4 The MethylTranscriptome Database

Hui Liu and colleagues assembled a database containing publicly available MeRIP-seq

data. This database is called the MethylTranscriptome Database (MetDB) (Liu and

Pan, 2015; Liu et al., 2018) and consists of more than four hundred thousand m6A

sites from over 185 samples originating from seven different species and twenty-six

independent studies.

After quality control, trimming and alignment (these steps will be elaborated in the

next chapter), peak calling was performed. Each predicted m6A peak constitutes a

new data instance in the database. Positional information, quality scores (p-values

and false discovery rate scores) as well as the source of the data are reported for

each predicted m6A peak in the database.

7



2.4. THE METHYLTRANSCRIPTOME DATABASE

While the resolution of m6A-seq is limited to about 100-nucleotide-long regions of

transcripts, a single-base m6A dataset was obtained by attributing the m6A peaks to

the nearest instance of the degenerate sequence motif (RRACH). The distance of the

called peak to the nearest motif is provided and can be used as a confidence score.

Other quality scores are not reported in the single-base m6A dataset. Figures 2.3 and

2.4 depict the distribution of these scores and the sequence logo of the sequences in

the database, respectively.

−1000 −750 −500 −250 0 250 500 750 1000
Position of motif relative to peak

20000

40000

60000

80000

100000

Co
 n
t

MetDB single-base score distrib tion

Figure 2.3: Histogram of the scores, which are the relative positions of the called
peaks with respect to the nearest RRACH motifs. About 90% of the entries have a
motif within a distance of 200 nucleotides from the m6A peaks.

Figure 2.4: Sequence logo of the MetDB entries ranging from 20 nucleotides upstream
to 20 nucleotides downstream of the m6A sites. A sequence logo (Schneider and
Stephens, 1990) is a visual portrayal of the nucleotides that are conserved in a col-
lection of sequences. The vertical axis (i.e. the height of the letters) represents the
information content of the associated position, measured in bits. The RRACH motif
(where R is A or G and H is C, A or T) is clearly present in all of the entries of the
MetDB single base database.
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CHAPTER 3

BIOINFORMATICS AND

SEQUENCING

3.1 Introduction

Technological progress in the last few decades gave rise to the generation of an im-

mense amount of biological data. The diverse field of bioinformatics develops meth-

ods to gain insight in and value from this data. The subfields of genomics and pro-

teomics develop and use a wide range of tools to analyse nucleic acids and proteins.

The fast-paced development of nucleic acid sequencing technologies is a significant

contributing factor of the recent surge in biological data. These sequencing technolo-

gies are discussed next.

3.2 Sequencing technologies

3.2.1 Sanger sequencing

Nucleic acid sequencing (mainly in the form of DNA sequencing) has been around

since 1977 when Frederick Sanger and colleagues developed the first method (Sanger

et al., 1977). Sanger sequencing is based on the selective incorporation of dideoxynu-

cleotides (which cannot be elongated) by DNA polymerase during in vitro DNA repli-

cation. The DNA sequence can be inferred from the resulting pattern after polyacry-

lamide gel electrophoresis. Although Sanger sequencing is still being used today for

small-scale experiments, its limited throughput and read length (although the reads

are still long compared to some of the more recent methods) gave way to the emer-

gence of next generation sequencing (NGS) technology.
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3.2.2 Next generation sequencing

Next generation sequencing technologies are characterised by their tremendously

increased throughput and concomitant decrease in cost per base. These technolo-

gies also require DNA amplification as part of their library preparation. When RNA

molecules are to be sequenced (known as RNA-seq), an intermediate reverse tran-

scription step is required to obtain a complementary DNA (cDNA) library before se-

quencing. Several different competing technologies were developed, each having

their strengths and weaknesses. Among these technologies, illumina sequencing

gained the upper hand due to its large throughput (Levy and Myers, 2016).

3.2.3 Illumina

What follows is a general and brief description of the Illumina sequencing principle.

The protocol of this sequencing platform consists of four steps: sample preparation,

cluster generation, sequencing and data analysis. During sample preparation, adap-

tors are added to the DNA fragments. One of the functions of these adaptors is to

allow hybridisation to oligonucleotides on the flow cell. During cluster generation,

DNA strands complementary to the sample DNA are synthesized. Afterwards, the

double stranded DNA bound to the flow cell is denatured, and the original template is

washed away. The unbound adaptor sequence of the single stranded molecule sub-

sequently hybridizes with a nearby oligonucleotide on the flow cell and bridge poly-

merase chain reaction (PCR) (Mullis et al., 1986) follows. This bridge PCR is repeated

many times and the reverse strands are removed so that only forward strands remain.

The next step is massively parallel sequencing by synthesis on the flow cell, where

DNA polymerase catalyses the incorporation of fluorescently labeled deoxyribonu-

cleotide triphosphates (dNTPs) into a DNA template strand during sequential cycles

of DNA synthesis. The nucleotides are identified by nucleotide-specific fluorophore

exitation. In paired-end sequencing, the reverse strands are also sequenced in order

to increase the quality of sequence alignment.

3.2.4 Third generation sequencing

Third generation sequencing, or single molecule sequencing, is a promising recent

development in sequencing technology. The limited read length of the first two se-

quencing generations, as well as the requirement for an amplification step that can

introduce bias, are two incentives for the development of long-read technologies.

10
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Pacific Biosciences and Oxford Nanopore Technologies are two companies that each

have successfully developed single molecule sequencing technologies.

Pacbio SMRT sequencing

Pacific biosciences’ single molecule real-time (SMRT) sequencing platform (Zhu and

Craighead, 2012) achieves single molecule sequencing by employing DNA polymerase

molecules in nanoscale observation chambers called Zero Mode Waveguides (ZMW),

in which the incorporation of fluorescently labled nucleotides is recorded. The sam-

ple DNA is first circularised by ligation of hairpin adaptors on both sides. Due to the

circularity of the resulting structure (called a SMRTbell), the insert sequence can be

covered multiple times. Therefore, an accurate consensus sequence, called a circular

consensus sequence, can be determined.

Oxford nanopore sequencing

Another single-molecule sequencing platform is Oxford Nanopore sequencing. This

technology features prominently in this thesis. The basic principle of nanopore se-

quencing is the nucleotide-specific disruption of ionic current measured as single

strands of nucleic acids are ratcheted through a nanopore protein embedded in a syn-

thetic polymer membrane with high electrical resistance. Several protein nanopores

have been researched and employed by Oxford Nanopore Technologies (ONT), in-

cluding the alpha-hemolysin pore protein obtained from Staphylococcus aureus. In

the case of native DNA sequencing, a choice must be made between single pass 1D

and double pass 2D reads, which represents a trade-off between accuracy (2D) and

throughput (1D). In 2D reads, the two DNA strands are ligated by a hairpin adap-

tor and they are sequenced consecutively. 1D reads involve the analysis of a single

strand of the nucleic acid molecules, which generates data of slightly lower quality

albeit at a higher sequencing rate.

The library preparation is rather simple and consists of ligation of a leading and a trail-

ing adaptor to the 5’- and 3’-ends respectively. These adaptors allow the addition of a

motor protein at the 5’-end, aiding in the concentration of the nucleic acids near the

nanopore. The motor protein unwinds double stranded DNA, thereby allowing single-

file passage of the nucleotides through the nanopore. In the case of 2D sequencing, a

hairpin loop connects the template strand to the complementary strand so that these

are sequenced in tandem, and a concensus sequence with improved accuracy can

be attained. Although some authors claim that SMRT sequencing is currently a more

matured sequencing platform (Ardui et al., 2018) as it delivers a better data quality

11
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overall (Weirather et al., 2017), ONT maintains a competitive edge due to the lack of

expensive (fluorescently labeled) reagents and polymerase enzymes, as well as the

convenient portability and the high speed operation with an intriguing ’run untill’ op-

tion that gathers data untill the user is satisfied. The chemistry (protein and reagents)

and data anaysis workflow are also frequently updated to increase performance.

Figure 3.1: An illustration of the oxford nanopore sequencing process. When the
DNA-enzyme complex approaches the nanopore , the single stranded DNA is pulled
through the aperture. For 2D reads, the reverse strand is connected to the forward
strand by a hairpin adaptor. It is pulled through the nanopore after the forward strand,
allowing for a higher quality consensus sequence to be achieved.

RNA sequencing was already possible through cDNA after reverse transcription, but

the recent development of direct RNA sequencing (Garalde et al., 2018) grants us

access to the RNA molecule in its native state. Before this development, nearly all

RNA sequencing endeavours relied on reverse transcription, making discoveries that

are inhibited by this intermediate step impossible. The ability to infer the presence

of modified RNA residues with single-nucleotide resolution directly from the native

RNA sequence should be possible. This has already been attempted with synthet-

ically modified RNA, with moderate success (Liu et al., 2019). An overview of the

straightforward library preparation for direct RNA sequencing is displayed in Figure

3.2.

12
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Figure 3.2: The simple library preparation steps for direct RNA sequencing (Garalde
et al., 2018). Using T4 DNA ligase, the poly(A)+ RNA in the sample is ligated to
a poly(T) adaptor with a double stranded portion at its end. Sequencing adaptors
preloaded with a tether and a motor protein are then ligated onto the overhang of the
previous adaptor by T4 DNA ligase.

3.3 Basecalling

An important and non-trivial part of the sequencing process is the acquisition of a

nucleotide sequence starting from the raw output of a sequencing machine. This step

is called basecalling and is generally integrated in the proprietary technology of the

respective sequencing platforms. In several cases, third party basecalling softwares

have been developed for their open source nature, increased performance or other

specific purposes. The output of a basecalling algorithm is typically stored using a

fastA or fastQ file format (Cock et al., 2010). The former contains a header/identifier

followed by the basecalled sequence, while the latter additionally contains quality

scores. The quality scores in FASTQ files are called Phred scores (Q), calculated using

the following equation:

Q = −10 log10(P) (3.1)

where P is the estimated probability of incorporating a wrong base.

In the case of oxford nanopore sequencing, the raw signal (electric current) output,

which is stored in Fast5 files (a variant of HDF5 files), is segmented in events. A spe-

13
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cialized algorithm is used to predict the bases that correspond to the events. Initially

hidden markov models (HMMs) were used (Bishop, 2006). Current state-of-the-art

ONT basecallers are bidirectional recurrent neural networks (RNN), such as ONT’s Al-

bacore and the open source DeepNano (Boža et al., 2017). Recurrent neural networks

are discussed in Section 4.3.3.

3.4 Sequence alignment and quality control

After acquiring the sequence from basecalling, its location of origin in the genome can

be elucidated by so-called alignment algorithms. Prior to sequence alignment, quality

control of the sequence should be performed (e.g. by fastQC), possibly followed by

’trimming off’ parts of the sequence (e.g. residual adaptor sequences) that don’t meet

the imposed quality requirements (e.g. using Trimmomatic (Bolger et al., 2014)).

A variety of alignment algorithms have been described, with many being designed to

address specific problem settings. Other than the sequence to be aligned, a genome

assembly and optionally a Gene Transfer Format (GTF) annotation file, containing in-

formation concerning the location of genes, transcripts and exons, should be provided

to the alignment algorithm. The output is a Sequence Alignment Map (SAM) file. SAM

files contain several characteristics of the aligned reads. Three interesting reported

characteristics are the genomic coordinates (chromosome and position), the mapping

quality, and the CIGAR string. The latter is an abbreviation of Concise Idiosyncratic

Gapped Alignment Report and provides a detailed yet compact description of the dif-

ferences and similarities between the reads and the reference sequence to which they

are aligned. It is a string of letters and numbers, in which the letters denote opera-

tions and the numbers are the amount of consecutive bases to which the operations

apply. The most frequent CIGAR string operations are displayed in Table 3.1.

Table 3.1: Common CIGAR string operations.

Operation Description

M Match : Base position in reference corresponds to base in read.
I Insertion : Base abscent in reference but present in read.
D Deletion : Base abscent in read but present in reference.
N Skip : Range of bases not present in read.
S Soft clipping : Non-aligned bases at the read ends present in read.
H Hard clipping : Non-aligned bases at the read ends removed from read.

An alignment tool developed specifically for ultra-long reads such as those resulting

from an Oxford Nanopore direct RNA sequencing experiment, is Minimap2 (Li, 2018).
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MACHINE LEARNING

4.1 Introduction

According to former Baidu Chief Scientist Andrew Ng, artificial intelligence (AI) is the

new electricity. In this analogy, the impact of AI on our lives is compared to that

of the replacement of steam powered machines with those using electricity at the

end of the 19th century. Currently, many businesses and domains of industry are

being transformed by AI, more specifically by machine learning. Machine learning is a

subfield of artificial intelligence that focuses on automatically finding patterns in data

without being explicitly programmed. Figure 4.1 illustrates a typical data analysis

workflow in which machine learning constitutes the final steps.

Figure 4.1: Knowledge Discovery from Databases (Fayyad et al., 1996). After the nec-
essary available data is selected, it is preprocessed and transformed into a structure
that lends itself to the appropriate data mining (machine learning) analysis that fol-
lows. This machine learning step can consist of one or more of a variety of methods
that will be discussed in the next section. Finally the output is interpreted and/or
evaluated and can increase our domain knowledge.

4.2 Basics

4.2.1 Types of machine learning

The three main branches of machine learning algorithms are unsupervised, super-

vised and reinforcement learning. The latter is based upon a learning algorithm that
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learns to take appropriate actions in a specified situation in order to maximize a re-

ward. A difficulty in reinforcement learning is that rewards are often only amassed

after a sequence of actions made by the learning algorithm in its environment. A pop-

ular application of reinforcement learning is a software agent learning to play games.

AlphaGo (Silver et al., 2017) is a program that beats any human player in the Chinese

board game Go.

Unsupervised learning is concerned with finding relationships between variables with-

out an outcome or response variable having to be predicted. These methods are used

to analyse unlabelled input features. They can be used to attempt to cluster obser-

vations into distinct groups in order to ascertain similarities between observations, or

to perform density estimation. An example is news websites that cluster together ar-

ticles with related content, providing the reader with as much relevant information as

possible. Another example is the clustering of cancer cell types based on their gene

expression profiles. This is done to provide insights in viable treatment strategies.

Unsupervised methods are often applied in exploratory data analysis.

In supervised learning, the goal is to predict an outcome variable (that is often imprac-

tical to measure) using a set of input variables. A wide range of methods have been

developed for this purpose. The importance of having a variety of methods at our dis-

posal is exemplified by David Wolpert’s "no free lunch" theorem, which states that no

single machine learning algorithmn outperforms any other when their performance is

averaged over all possible problems (Wolpert and Macready, 1997).

Depending on the nature of the response variable, a distinction is made between

regression problems, for which a continuous output value is to be predicted, and

classification problems, for which the output is constrained to a discrete set of classes.

Another frequently made distinction in supervised learning methods is whether the

the model is parametric. Parametric models, such as linear regression, make an as-

sumption about the functional form of the model (e.g. the response is linear). This

effectively reduces the modelling effort to the estimation of parameter values that

maximize the prediction accuracy on the training data (which is the data used to fit

the model, consisting of both the input variables and their associated true response

value). Non-parametric models, on the other hand, do not require any assumptions

about the functional form of the outcome, but merely seek to deliver predictions

that are as similar as possible to the training data’s response values for similar input

values. A simple but often effective example is the K-nearest neighbours algorithm

(KNN) that assigns the most prevalent outcome class (C) among the K training data
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instances with input values closest to those of the test point to be predicted.

y = ArgmC

�1

K

∑

j∈N

(yj = C)
�

(4.1)

In the above formula, N represents the K training data instances, who’s feature vec-

tors j lie closest to the feature vector  to be classified, according to an appropriately

chosen distance metric (e.g. Euclidian distance). The value y, is the class associated

with an input feature vector . (yj = C) is the indicator function which returns 1 if

yj = C and 0 otherwise. The advantage of non-parametric models is that they of-

ten perform well on data of relatively low dimensionality, without requiring any prior

knowledge about the true functional form or assumptions that limit the flexibility of

the models. A drawback of non-parametric models is that quite a lot of data is required

to sufficiently cover the input space (Marimont and Shapiro, 1979). Another drawback

is that the training data is required when doing predictions with non-parametric mod-

els. When using parametric models, the training data can be discarded once the

optimal parameter values have been acquired (see Section 4.2.2).

4.2.2 Parameter optimisation

First a distinction should be made between parameters and hyperparameters. Pa-

rameters are variables that are part of parametric machine learning models and can

be adjusted during training. They are the part of the model that is learned from the

training data. Hyperparameters are not estimated from the data, but are manually

specified before the model is trained. An example of a hyperparameter is K in the K

nearest neighbours algorithm.

A loss function quantifies our dissatisfaction with the predictions of a model for a

given set of values of its parameters. In order to achieve the best performance of the

model, the loss function should be minimized.

In some machine learning algorithms such as linear regression, a closed form solution

exists to the problem of finding the optimal parameter values (i.e. the method of least

squares). In other cases, iterative convex or non-convex optimisation is required to

acquire the most suitable parameter values that maximise the model’s performance.

Gradient descent is such an iterative method that attains parameter values corre-

sponding to a (local) minimum in the loss function by taking successive steps in the

direction that locally leads to the greatest decrease in the loss function. This direction

corresponds to the negative gradient of the loss function, evaluated at the current
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parameter values of the model.

k =k − α
1

N

N
∑

=1

δL(y, ŷ)
δk

(4.2)

In Equation 4.2, a gradient descent step to update the parameter k is displayed.

The learning rate is denoted by α, N is the amount of training observations and L is

the loss function applied to the prediction ŷ and the true label y.

In order to tune the hyperparameter values in a less manual fashion, resampling

methods such as cross-validation are commonly used. Cross-validation involves re-

peatedly excluding a different specified amount of observations from the training pro-

cedure and evaluating the mean performance of the resulting models on the excluded

observations. These hyperparameter tuning methods will not be discussed in more

detail here, as it is not standard to apply them to the methods used in this thesis.

4.2.3 Model capacity and regularisation

The used machine learning method, the amount of parameters included, as well as

the degree of optimisation (e.g. the amount of passes through the training data in the

case of neural networks, see Section 4.3.2), are choices that influence the complexity

of the fit. Some methods are more flexible than others, meaning that they can more

easily attain the structure and patterns in the training data. This degree of flexibility is

termed the model capacity. There are, however, patterns present in the training data

that are not inherent to the process being modelled, but rather to random noise in the

data. It is undesirable to include this random noise in the model, as it doesn’t describe

the process being modelled, resulting in a decrease in predictive performance when

classifying unseen data. This problem of overfitting the model to training data can

be mitigated by either choosing a simpler model or by increasing the amount of data.

However, when an overly simple model is chosen, certain patterns in the data that

require a certain degree of model flexibility can no longer be modelled adequately.

This trade-off between underfitting models that make invalid simplifying assumptions

and overfitting models that model irrelevant noise in the training data is known as

the bias-variance trade-off (see Figure 4.2). Both ends of the trade-off bring about an

unsatisfactory performance of the model when tested on new data.

A common way to reduce overfitting is with regularisation. Any modification to a

learning algorithm that results in a decrease of the generalisation error (i.e. the error

made on unseen test data), but not of the training error, is known as regularisation.

Various methods exist to penalize model complexity through regularisation. A popular
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regularisation method is to penalize the loss function with a parameter norm function.

In many models (e.g. polynomial regression), parameter values tend to become large

as the model starts overfitting to the training data. This can be seen in Figure 4.2.

Thus, including a measure of the magnitude of the parameters in the loss function

can counteract overfitting. Two such measures that are widely used are the L1 and L2

norms. The L1 norm, also known as the lasso in linear regression (Tibshirani, 1996),

is given by:
n
∑

=1

�

y − 0 −
p
∑

j=1

jj

�2
+ λ

p
∑

j=1

|j| (4.3)

The L2 norm, also known as ridge regression (Hoerl and Kennard, 1970) or weight

decay, is given by:
n
∑

=1

�

y − 0 −
p
∑

j=1

jj

�2
+ λ

p
∑

j=1

2
j

(4.4)

In Equations 4.3 and 4.4, the first term is the residual sum of squares, while the second

term is the norm penalty. The amount of observations in the training set is denoted

by n, and p is the total number of features included in the model. The jth input

feature of the th observation, is denoted by j .The parameter λ is a hyperparameter

that can be selected using cross-validation (see Section 4.2.2). Both of the described

parameter norms are useful in lowering the generalisation error by decreasing the

model’s variance. An advantage of the L1 norm is that it performs model selection by

setting the coefficients of unnecessary terms to zero.

4.2.4 Model performance evaluation

In order to assess the value of a model it must be tested with a separate dataset from

the dataset that was used to optimise the parameters. Otherwise the performance

would be overestimated due to the training-set specific noise that would be predicted.

Ideally a separate validation set is included as well for use during hyperparameter

tuning and model selection.

Simply reporting the error rate
1

n

n
∑

=1

(y 6= ŷ) (4.5)

of a classifier (where ŷ is the predicted class, y is the true class of observation , and

n is the amount of observations) to evaluate its performance is often not satisfactory

because it does not take difficulties arising from class imbalances into account. An

example is a binary classification problem in which 99% of the observations belong

to the first class. if the classifier were to assign every observation to the first class, it

would have an error rate of only 1% despite being useless. An often used performance
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Figure 4.2: Bias-variance trade-off illustration. A data generating function
ƒ () = −23+22+30+20 with  ∈ [−4,4] (shown in blue) was used to generate 15
data points, subject to gaussian noise ε N (0,20). Polynomial functions of degree 1, 2,
3, 4, 6 and 8 (shown in red) were respectively fitted to the generated sample in order
to see the bias-variance trade-off in action. Upon visual inspection, the third degree
polynomial fits the data generating formula best. This is expected, as the ground
truth is a polynomial of degree 3. As the degree of the polynomial increases, the
training data points can be fitted more accurately. A straight line and a parabola are
too simple models, they are incapable of fitting the training data and suffer from bias.
As the degree of the polynomial becomes increasingly larger than three, the model
’tries too hard’ to fit the data points and starts fitting the sample-specific noise. The
resulting polynomials would look different when a new noisy sample is drawn from
the data generating function. The degree 8 polynomial has high variance and drasti-
cally overfits the training sample. As the model overfits and attempts to precisely fit
the sample data, it displays more erratic behavior and the coefficients take on large
values. This can be observed in the increasing parameter norms (L1 =

∑p
j=1 |j| and

L2 =
∑p
j=1

2
j
, see Equations 4.3 and 4.4) at the bottom of the figure. The reported

mean squared error (MSE) is a measure of how badly the model fits to the sample
data and always decreases as the degree of the polynomial increases. A polynomial
of degree n, with n the sample size, is capable of precisely passing through every
single point in the training sample (MSE = 0), but drastically overfits and would be
rather useless on a new sample. It is clear that regularisation can be achieved by pe-
nalizing the MSE (which decreases with complexity) with a parameter norm penalty
(which increases as the model overfits).
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measure that doesn’t fall victim to the above phenomenon is the ROC AUC (Area

Under the Curve) score. To describe this performance measure, some concepts such

as confusion matrix, sensitivity, specificity and the receiver-operator characteristic

curve (ROC) should be introduced. For a classifier with C classes, the confusion matrix

is a C by C matrix in which any element (, j) is given by the amount of observations

classified in class  while actually belonging to class j. Elements on the diagonal

correspond to correct classifications. In the case of binary classification, the confusion

matrix is a 2x2 matrix. Terminology associated with these elements is given by Figure

4.3. The Sensitivity, true positive rate (TPR) or Recall of a model is the ratio of the

Figure 4.3: Terminology for the confusion matrix in case of binary classification (McEl-
wee, 2018). The column labels are the classes predicted by the binary classification
model, whereas the row labels denote the true classes to which data belong.

amount of correctly predicted positives to the total amount of positive observations,

Senstty = TPR =
TP

TP + FN
(4.6)

whereas the specificity is the ratio of the number of correctly predicted negatives to

the total amount of negative observations.

Specƒ cty =
TN

TN + FP
(4.7)

When the threshold of the minimum output probability to classify an observation as a

positive is varied, the values in the confusion matrix change as well as the sensitivity

and specificity values. A plot of the sensitivity versus the false positive rate (FPR),

which is equal to one minus the specificity, is a ROC curve and the area under this

curve (AUC) gives a measure of the model’s overall performance.

1 − Specƒ cty = FPR =
FP

TN + FP
(4.8)
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Figure 4.4: ROC curves of four models of decreasing performance denoted by the
letters A to D. Model A is a perfect model with an AUC score of 1. Model D, with an
AUC score of 0.5, performs no better than a random coin toss.

Alternative performance metrics for the evaluation of binary classification models,

are precision and recall. The precision of a model is the fraction of predicted positives

that are true positives.

Precson =
TP

TP + FP
(4.9)

A precision-recall curve is a plot of the precision of a model versus its recall for differ-

ent thresholds of the output probabilities.

4.3 Deep learning

4.3.1 Motivation, advantages and drawbacks

Neural network models have achieved groundbreaking results and are the state of the

art for certain problem settings such as image recognition (Huang et al., 2016), nat-

ural language processing (Vaswani et al., 2017) and speech recognition (Chiu et al.,

2017). A general trend in machine learning methods is the observed trade-off be-

tween model complexity (flexibility) and interpretability. Regularised linear regres-

sion models and deep neural networks are two extremes of this spectrum. It has

22



CHAPTER 4. MACHINE LEARNING

been shown that a sufficiently large neural network model is capable of representing

any abitrarily complex function (Hornik et al., 1989). The interpretability of the out-

come, however, is currently still lacking. On the other hand, linear regression is more

straightforward to interpret, but only performs well when the data to be fitted is of a

linear nature. Neural network models are harder to train compared to many classic

methods due to the trial-and-error procedure of tuning a relatively high amount of

hyperparameters. Furthermore, the presence of local minima in the non-convex loss

function hinders parameter optimisation. A property of Neural networks is that they

often require a rather large amount of data to achieve a decent performance, which is

inconvenient if the data cannot be easily and cheaply gathered. This "data hunger" of

neural networks can also be seen as a favorable property, because the models have

the capacity to continue to increase their performance with increasing data, while

many more traditional methods will have reached a plateau of performance.

An important advantage of deep learning is that feature engineering is not needed.

Feature engineering is often a challenge in other machine learning methods, but less

so in deep learning, as an appropriate neural network architecture should be capable

of learning its own features from the input data through a series of new representa-

tions that correspond to the successive layers.

4.3.2 Neural network model components

Input units, hidden units and output units

The first layer of a neural network is the input layer, which contains one unit per

variable value of the observations. After the input layer there are one or more hidden

layers, each containing one or more hidden units. The structure of a single hidden unit

is displayed in Figure 4.5. Activation functions introduce non-linearities, allowing the

artificial neural networks (ANNs) to map non-linear correlations. It is a requirement

that activation functions are non-linear, otherwise the resulting neural network would

also turn out to be a linear model, incapable of learning non-linearities in the data.

Common activation functions are the Sigmoid, Tanh (hyperbolic tangent) and ReLU

(rectified linear unit) functions. Sigmoid units are essentially logistic regression units

that map the linearly combined inputs to a value between 0 and 1.

σ(z) =
1

1 + e−z
(4.10)

In Equation 4.10, z is a linear combination of the p input variables, given by
∑p
0+

b. Here b is a bias term. Tanh units, which are actually scaled sigmoid functions,
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Figure 4.5: Computational graph of a single hidden unit (or neuron) of a neu-
ral network. The inputs {1, 2, 3, ..., n} are linearly combined with weights
{1,2,3, ...,n}, and a bias term b is added. A non-linear activation function ƒ is
then applied to the linearly combined inputs to produce the output y of the neuron.

Figure 4.6: Sigmoid activation function.

behave similarly but map to a value between -1 and 1.

tnh(z) = 2σ(2z) − 1 (4.11)

A major disadvantage of using sigmoid or tanh units is that they suffer from vanishing

gradients in deep neural networks. In this phenomenon, learning is inhibited by the

small values of the gradients near the asymptotes of the activation function. Another

factor contributing to vanishing gradients is the fact that the derivative of the sigmoid

function is always smaller than 1, which means that some of the gradients obtained

through the chain rule of calculus (more specifically backpropagation, which is ex-

plained below) contain many multiplied values smaller than 1. The ReLU activation
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function gives an output of z if z is positive and 0 otherwise. It has several advantages

and is often the first choice when assembling an ANN model. The advantages of ReLU

activations include that they are less susceptible to vanishing gradients than sigmoid

units, they are computationally inexpensive and allow a network to obtain beneficial

sparse representations (Glorot et al., 2011).

ReLU =







z, ƒ z > 0

0, Otherse
(4.12)

Figure 4.7: Rectified Linear Unit (ReLU) activation function.

The outputs of the last hidden layer are transformed into the model’s prediction values

in the output layer. For classification problems, the softmax output function is typically

used. A softmax function transforms the output of the last hidden layer to K values

that are positive and sum to one, where K is the amount of classes. The softmax

output values are essentially class probabilities. The loss function is applied to the

output layer.

soƒ tm(z) =
ez

∑K
k=1 e

zk
(4.13)

The exponentiation of the values in the softmax formula makes sure that all values

are positive, while the normalisation in the denominator causes the outputs to sum to

one so that they can be interpreted as class probabilities. It can be shown that soft-

max with k = 2 is equivalent to logistic regression. The weights associated with the

units of neural networks are initialized randomly or according to a certain initialization

strategy (Glorot and Bengio, 2010) , but may never all be zero, as this would hamper

the training process.
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Backpropagation and optimisation

The gradients needed to adjust the parameters of the ANN during training are ob-

tained by a method called backpropagation (Rumelhart et al., 1986). This algorithm

is based on the chain rule of calculus, used to iteratively compute gradients w.r.t. the

output of the loss function along the nodes of a computational graph of the model.

The strength of backpropagation is that it utilises an efficient order of operations and

optimally stores the values of sub-expressions that are used more than once. The

resulting computed gradients of the parameters with respect to the loss function are

used by the optimisation method to adapt the parameter values.

Common gradient descent is not advisable when training neural networks, because a

vast amount of computation would be needed to take a single step along the negative

gradient. Stochastic gradient descent (SGD) is more appropriate. In SGD, gradient

steps are taken w.r.t. a subfunction of the loss function based on a sampled limited

amount of observations called minibatches. This significantly speeds up the learning

process.

k =k −
α

m

m
∑

=1

δL(y, ŷ)
δk

(4.14)

Equation 4.14 is a single SGD step to adjust a parameter k of a model that currently

predicts an outcome ŷ on an example . Herein α denotes the learning rate, m is

the size of the minibatches and L is the loss function. Several improvements have

been made to SGD (Goodfellow et al., 2016), of which adam (adaptive momentum)

(Kingma and Ba, 2014) is most widely used.

Regularisation in neural networks

Various regularisation strategies are employed by neural network models including

the norm penalties to the loss function discussed in Section 4.2.3. Two important

neural network regularisation methods, batch normalisation (Ioffe and Szegedy, 2015)

and dropout (Srivastava et al., 2014), are often found in a deep learning practitioner’s

toolbox.

Batch normalisation applies the following transformation after linear combination of

the outputs of the previous layer but before the current layer’s activation function:

BNγ,β() = γ
�  − μB
Ç

σ2B + ε

�

+ β (4.15)

In Equation 4.15, μB =
1
m

∑m
1  is the mean estimate calculated on the minibatch

B = {1, ...,m} and σ2B =
1
m

∑m
1 ( − μ

2
B) is the biased variance estimate calculated on
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the same minibatch. A small constant ε is included in the denominator to ensure nu-

merical stability. The parameters γ and β are learned during training. Their function

is to make sure that the layer is not restricted in what it can represent. For exam-

ple, if the original activations (without batch normalisation) were optimal, the model

is capable of converting the batch normalisation step into the identity mapping by

learning γ =
Ç

σ2B + ε and β = μB.

Batch normalisation was mainly developed to improve optimisation, by making sure

that the layers of the network do not have to deal with the so-called covariate shift,

which is the phenomenon of changing distributions of the activations as the param-

eters adapt during training. This covatiate shift slows down the training of neural

network models due to the burden of having to adapt the parameters of their layers

to the changing output distributions of the activations of the previous layer.

Different examples are randomly chosen for inclusion in the minibatches at each pass

through the training data and the statistics (mean and variance) differ between the

minibatches. This causes some noise to be introduced due to the same examples

causing a slightly varying behaviour of the network during each pass through the

training data. This phenomenon produces a regularising effect.

Dropout is a regularisation strategy that is mainly applied to fully connected layers.

It constitutes the random removal of hidden units and their connections during the

training phase, with a specified probability p. The idea behind this seemingly detri-

mental action is that it prevents the units from co-adapting too much (Srivastava

et al., 2014). An interesting interpretation of dropout is that it trains an ensemble

consisting of all sub-networks that can be formed by removing units from specified

layers of an underlying base network (Goodfellow et al., 2016).

Figure 4.8: The dopout regularisation method (Srivastava et al., 2014).
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Early stopping, which essentially stops the training process when a maximum per-

formance on a validation set is achieved, is also considered to be a regularisation

method. The effective model capacity is controlled by limiting the amount of param-

eter update steps it can take to fit the training data.

4.3.3 Neural network architectures

Fully connected layers

Fully connected layers are the oldest neural network architecture type. A classical

neural network consisting of only fully connected layers is called a multilayer per-

ceptron (MLP). A MLP consists of an input layer, an output layer and one or more

hidden layers. All units of the input layer are linearly combined with weights and

subsequently undergo a non-linear transformation by an activation function for each

hidden unit. The resulting outputs of the first hidden layer are the inputs of the next

one and so on. A MLP with two hidden layers is illustrated in Figure 4.9. Consecutive

hidden layers can be thought of as handling increasing levels of abstraction with re-

gard to the prediction problem. One can think of a neural network as learning a more

suitable representation of the data in each consecutive layer. hidden layers can be

thought of as single vector-to-vector functions, or as many units that act in parallel,

each representing a vector-to-scalar function.

h(1)

h(2)

h(3)

h(4)

x(2)

x(3)

x(1)

y(2)

y(1)

h(5)

h(6)

h(7)

h(8)

Figure 4.9: Multilayer perceptron with two hidden layers. Three input unites are each
connected to the four hidden units of the first hidden layer. These hidden units are
connected to the 4 hidden units of the second hidden layer, which are connected to
the two output units.
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Convolutional layers

Convolutional neural networks (CNN) (Le Cun et al., 1990) are specialized in analysing

data with a grid-like structure, with their main application being state-of-the-art image

recognition.

Convolutional layers are designed to preserve information on the spatial structure of

images (or other grid-like data sources). A convolution in the context of deep learning

can be described as a kernel (also called a filter) of learned weights sliding over the

data with a certain stride length while computing dot products with data chunks of

equal dimensions. The result is an activation map of the input data. Typically, multi-

ple kernels are used to create several activation maps (all contributing a unit of depth

or channel to the output). Each of these kernels can be thought of as looking for a

specific template or concept in the input data. If the input data is comprised of mul-

tiple channels (as is the case with RGB-images in computer vision), the dot products

performed by the kernel must extend the full depth of the amount of input channels.

A CNN is a sequence of convolutional layers stacked on top of each other and in-

terspersed with activation functions, followed by one or more fully connected layers.

The activation functions allow for the flexibility of non-linear transformations in the

mapping of the data between two consecutive layers, which contributes to the ver-

satility of representations that can be learned as the data is processed through the

network. In addition to the aforementioned components of a CNN, pooling layers

are frequently encountered in CNNs, although their requirement for the CNNs perfor-

mance is subject to criticism (Springenberg et al., 2014). Pooling layers reduce the

size of data representations and equivalently the number of parameters to be learned

(the computational burden of the model) by summarising groups of adjacent interme-

diary outputs into a single value, typically by taking the average or the maximum.

x(i-1) x(i) x(i+1)

w(1) w(2) w(3)

y(i)

Input

Kernel

Output

Figure 4.10: The convolution operation in its simplest form with one 3x1 kernel. the
value of y() is given by (−1)(1) + ()(2) + (+1)(3).
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Recurrent layers

Recurrent neural networks (RNNs) (Giles et al., 1994) are an extension of feed-forward

neural networks to include feedback connections. This is useful in sequence modeling,

as information regarding the previous inputs in a sequence can be stored in the model.

When an input vector is fed to a RNN, it is used together with a previous hidden state

vector to calculate a new hidden state vector and an output vector. The parameters of

functions used to calculate hidden states and outputs are all learned during training.

Figure 4.11 is a general illustration of a RNN.

The sharing of parameters resulting from the common hidden state calculation proce-

dure throughout the analysed sequence grants RNNs the possibility of generalising to

sequence lengths not seen during training. The training process of a recurrent neural

network is similar to training any other neural network, with in this case the gradients

flowing through the computational graph of the unrolled representation of the net-

work during backpropagation (termed ’backpropagation through time’). Due to the

issue of vanishing or exploding gradients (Hochreiter, 1998) in the classical RNNs, so-

lutions have been developed (LSTMs, GRUs and others) (Hochreiter and Schmidhuber,

1997) (Chung et al., 2014) to mitigate this issue. In multi-layered RNNs, the hidden

state vector of the first RNN layer is the input to the next RNN layer and the output is

calculated from the hidden state of the last layer.

An additional extension of RNNs for the analysis of sequential data from both sides

are bidirectional RNNs (Schuster and Paliwal, 1997), in which the hidden state is com-

puted by concatenation of two hidden states from the forward and backward direction.

Unfortunately this results in a doubling of the amount of parameters to be estimated.

RNN
node

x(i)

y(i)

RNN
node

x(1)

y(1)

RNN
node

x(2)

y(2)

RNN
node

x(i)

y(i)

Figure 4.11: Diagram of a single-layer recurrent neural network (left) with unrolled
representation (right).
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CHAPTER 5

M6A DETECTION USING

BASECALLER OUTPUT

5.1 Introduction

The goal here is to develop a model that is capable of accurate detection of N6-

methyladenosine without using the raw nanopore signal. The idea is that the output

of a known ONT basecaller contains the necessary information for the annotation of

modified ribonucleotides. Sequence information and information about the quality

of the basecalls are among the features that would be used to train the classifier.

The use of sequence information is effective if m6A is found in specific sequence

contexts (other than the well known RRACH motif) that have not yet been elucidated.

The use of basecaller quality information (i.e. phred scores) could contribute to the

model’s performance, as the basecaller is expected to be more unsure of its predicted

basecalls in the neighbourhood of modified bases. The basecalling algorithm that

Figure 5.1: A visual example of Basecaller output being examined for the detection
of modified RNA bases (Smith et al., 2017). Detection of 7mG modifications in E.
coli 16S rRNA. The Genome browser on the left displays an E. coli strain that has
a 7mG modification, while the right genome browser shows the same region in the
transcriptome for a mutant strain that is incapable of catalysing that particular RNA
modification.

has been used on the nanopore direct RNA sequencing data is Albacore v2.1. This
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recently developed basecaller differs from previously developed basecallers (with the

exeption of Chiron (Teng et al., 2018)) in that it no longer includes a segmentation

step that splits the raw nanopore signal into kmer events. The raw nanopore signal is

directly plugged into the RNN model, which uses an end-to-end learning approach that

was first described in speech recognition applications (Graves and Jaitly, 2014). The

complete signal and the complete nucleotide sequence are considered per training

example rather than discrete events that are assumed to each correspond to one

or two bases. This end-to-end learning approach has led to a significant increase in

basecalling performance, as event segmentation introduces some noise and bias into

the data. To my knowledge, only one other attempt has been made to detect m6A

from basecaller output features. Liu et al. (2019) very recently used support vector

machine models to annotate m6A in synthetically modified RNA molecules with an

AUC score of around 88%.

5.2 Nanopore data processing

Five direct RNA sequencing runs of the human transcriptome were performed at the

University of British Columbia. These sequencing runs all used the R9.4 chemistry.

The FAST5 files as well as the basecalled FASTQ files of the runs were downloaded and

used for this project. An overview of the data processing pipline from the basecalled

reads to the BAM file that was used to generate the data is displayed in Figure 5.2.

The quality control plots generated by fastQC, which justify the trimming of the reads

before aligning them, can be found in Appendix A.

5.3 Data generation

The first step towards generating the data is obtaining the positions of m6A sites.

The MethylTranscriptome database was used for this (see Section 2.4). Pysam, a

wrapper for Samtools in Python, was used to extract the reads that were aligned

to the genomic positions that correspond to the m6A sites in MetDB. As the effect

of modified bases on the nanopore signal manifests itself in the neighbourhood of

the m6A positions (Stoiber et al., 2017), a window of 101 bases that is centered at

the m6A positions is considered. For all m6A positions in MetDB, the CIGAR strings

of the aligned reads were parsed. To annotate the m6A positions, insertions were

removed from the reads, while skips and deletions were replaced by dashes. This

was done in order to get corresponding positions of the reads and the reference, as

is the case in a genome browser. The same was done for the quality scores. The
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Sequence reads
(FASTQ)

Quality control &
trimming

Alignment

Hg38 reference
genome
(FASTA)

indexing

Aligned reads 
(SAM)

convert, sort &
index

Aligned reads
(BAM)

Figure 5.2: Nanopore data processing pipeline. The rounded rectangles represent files
and the diamonds represent processes applied to files. First the quality of the FastQ
files was assessed using FastQC. From this analysis, it was observed that trimming
was required. The first 9 bases were removed using TRIMMOMATIC. The hg38 human
reference genome assembly was indexed using minimap2, after which the reads were
aligned. Minimap2 was also used for the alignment. Samtools (Li et al., 2009) was
used to further process the SAM files. The SAM files were converted to the less mem-
ory intensive BAM files, sorted and indexed. The resulting BAM files could be loaded
and manipulated in Python to generate the data (see Section 5.3).
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DNA reference sequence has been one-hot encoded, which means that each position

of the nucleotide sequence was replaced by a vector of length 4, with a one at a

single position that depends on the base (A,C,T or G) and zeros at the other three

positions. Anti-sense reads’ reference sequences were reverse-complemented before

inclusion into the data generation process. The amount of reads that did not display

a skip or deletion relative to the reference at each of the 101 positions of the window

was recorded as well as the mean and standard deviation of the quality scores of

the reads. The GTF file associated with the hg38 reference genome was processed

to extract information on the chromosomal coordinates of exons and introns, which

was also used as a feature for the classification. Finally, the fraction of reads that

exactly matches the reference sequence of each position was included. Figure 5.3 is

an illustration of what the resulting generated data looks like.

Figure 5.3: One of the hundreds of thousands of generated data instances. The first
four channels (rows) are the one-hot encoded sequence. The fifth channel indicates
whether the position in the sequence is exonic. The four remaining channels are the
amount of reads that aligned to the reference, the fraction of aligned reads that match
the reference, the Phred score mean and standard deviation, respectively.

The entries of MetDB correspond to positive examples (i.e. m6A modifications). In

order to train a model to detect modified bases, a negative set is also required. It is

also important that the negative and positive sets are as similar as possible, except

where it matters (in this case differences in features associated with the presence of

modified bases). Otherwise the classifier would simply learn unimportant differences

that do not have any value when applying the model to independent data. To this end,

a negative set was generated by first removing genomic positions that are present in

the positive set, then performing a RRACH-motif search. As over 95% of the positive

set has its RRACH motif in an exonic region, this constraint was also enforced during

the generation of negative examples. After procuring the positions for the negative

set, a data generating procedure that is identical to the one used to obtain the pos-

itive set was executed. An overview of the complete data generating procedure can

be seen in Figure 5.4. Besides the arrays, meta-data was also generated and saved

for all instances. This meta-data consists of the path to where each array is saved,
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the coverage (read count), genomic coordinates, mean error fraction, mean mapping

quality of the reads (not to be confused with the basecalling quality), label, mean read

intronic fraction, strand, score (see Section 2.4) and the amount of m6A experiments

that report the m6A site. These meta-data were used to load the data and to con-

strain the loaded data to specified ranges of sufficient quality. The correctness of the

generated data was manually confirmed using the Integrative Genomics Viewer (IGV)

genome browser (Thorvaldsdottir et al., 2013). An illustration of a generated positive

example and its associated screen in IGV can be found in Appendix C.

Position from MetDB

Exome with positive
positions removed

RRACH
motif search

Negative positions

Fetch reads
for positions

Make reads
correspond to

reference

Generate 
tensor

Metadata Numpy arrays

Figure 5.4: A high level overview of the code workflow to generate the positive and
negative sets of the data. The positive positions are used to fetch reads from the BAM
file that align at the m6A sites and to edit the hg38 reference within a window of 101
around these positions to ’N’s before conducting a motif search to obtain negative
positions. From the negative positions, only those with their RRACH motif in an exonic
region were retained. Once all the reads for the positive and negative positions were
fetched, their CIGAR strings were parsed and made to correspond to the reference
sequence by removing parts that are present in the reads but not in the reference.
Finally, the arrays were created, as well as metadata that will be used for loading and
filtering the data.
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5.4 Model architecture

The large amount of high-dimensional data with a grid-like topology suggests that

a relatively simple convolutional neural network should do the trick. The CNN was

built in PyTorch (Paszke et al., 2017). The model architecture is displayed in Figure

5.5. It has three convolutional layers and two fully connected layers. In each of

the convolution layers, 101 kernels were used and batch normalisation (see Section

4.3.2) was applied. Twelve of these kernels were used to convolve over the 9 input

channels. 8 kernels were used to convolve over the resulting activation maps in the

second convolutional layer. The third layer used 6 kernels. The output of the third

convolutional layer was fed to two fully connected layers with drouput regularisation

before the softmax output (in this case of binary classification this is simply a sigmoid

unit). The inclusion of both dropout and batch normalization leads to a significant

increase in performance. Increasing the amount of convolution layers does not lead

to an improvement of the model’s performance. Due to a slight class imbalance,

a weighted cross-entropy loss function was used together with an adam optimizer.

The model was trained for 40 epochs. Separate training, validation and test datasets

were used. After each epoch, the performance on the validation set was evaluated

and the model that performed best on this validation set was selected and evaluated

on the test set. Training was done on chromosomes 1, 8, 15, 18, 20, 21, 22 and

X, validation was done on chromosome 9 and testing was done on chromosome 10.

Additional testing was done on chromosome 14, and a withheld split of the data from

the chromosomes of the training set. All of these testing procedures yielded similar

results.

Figure 5.5: Convolutional neural network used for the binary classification of the data.
A more detailed depiction of the 9 input channels is shown in Figure 5.3.
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5.5 Discussion and model assessment

The first thing that should be investigated is differences in the positive and negative

sets. Some data exploration of the positive and negative sets was done to assess

the degree of similarity between them. As stated earlier, these differences should be

minimal, unless they can be explained by the presence or absence of m6A.

The equivalence of the reads with the reference to which they were mapped was

evaluated for the positive and negative sets in Figure 5.6.
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Figure 5.6: Error rates of around 10% are expected for Oxford Nanopore sequenc-
ing. The fact that they are slightly higher here may be due to the fact that 1D RNA
sequencing is less accurate than the more generally used 2D DNA sequencing. The
positive and negative sets have quite similar error distributions, although the reads of
the positive set tend to have somewhat higher error rates. This is actually expected
due to the less certain behaviour of the basecaller when it encounters a modified
nucleotide.

An interesting phenomenon can be observed when comparing the base occurrence in

the 101 windows with ACTG-plots. It can be seen in Figure 5.7 that m6A sites corre-

spond to regions of the genome with a relatively higher percentage of G and C, when

compared to the other exonic RRACH motifs in the genome. The total percentages of

A, C, T and G in the genome are 30%, 20%, 30% and 20% respectively. This is about

the same as what can be seen in the ACTG-plot of the negative set.

Figure 5.8 compares the fraction of the aligned reads that match the reference per

position, the average quality scores and their standard deviation. A magnification

of this figure between positions 45 and 55 (near the RRACH motif) can be found in

Appendix F.

Some assumptions were made during the development of this model. The first as-

sumption that was made is concerned with the origin of the m6A positions in the pos-
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Figure 5.7: ACTG plots, summarizing the frequency of each nucleotide at each po-
sition for the positive (top) and negative (bottom) sets. The RRACH motifs can be
observed at positions 48-52. There appears to be a difference between the sequence
distributions of m6A sites and those of other motifs in exonic regions. This is remi-
niscent of the different frequency of occurence of the DNA methylation 5mC in CpG
islands (Caiafa and Zampieri, 2005). A and T are less prevalent near m6A sites. The
frequency of occurence of the different RRACH motifs also seems to be different at
m6A sites, where G is favored over A in the first two positions.
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Figure 5.8: (A) Fraction of reads that do not have deletions or mismatches per posi-
tion. In general this is lower in the positive set, this is especially the case near the
m6A sites. This was expected due to the less certain behaviour of the basecaller
when it encounters modified bases. There is a very pronounced drop at the m6A po-
sition. The reason that this same drop can be seen in the negative set (albeit much
less pronounced) may be due to the presence of false negatives in the negative set.
(B) Average mean qualities per position. There is a baseline average phred score
difference of about 0.5 at large distances from the m6A site. This baseline difference
is due to the difference in nucleotide distribution of the positive and negative sets,
as Albacore calls the four bases with different error probabilities (Krishnakumar et al.,
2018). The difference is considerably larger at the m6A sites. This corroborates the
hypothesis that the basecaller is less certain of its basecalls in the neighbourhood
of the m6A sites. (C) Average standard deviations of the quality scores. These are
lower in the positive set. 95% confidence intervals are included in the plots. In the
three displayed feature plots, peaks can be seen in the neighbourhood of the RRACH
motifs. This is due to the fact that the reads were specifically selected to have the
RRACH motif so fewer mismatches are expected, without taking the presence of m6A
into account.
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itive set. As mentioned earlier these were downloaded from the MetDB single base

database (see Section 2.4). The validity of the procedure used in MetDB to obtain

single nucleotide resolution m6A positions by linking the chromatin immunoprecipita-

tion peaks to the nearest RRACH motif seems reasonable, although a limited amount

of false positives are to be expected. A second assumption is that these m6A posi-

tions which originate from independent human m6A-seq experiments, are sufficiently

conserved in the human RNA samples that were subjected to the Oxford Nanopore

direct RNA-sequencing runs. M6A modifications have been reported to be quite con-

served within species (Schwartz et al., 2013), although some subsets of m6A sites

exhibit tissue specificity and are subject to dynamic regulation. Some false positives

may arise due to this assumption as well. A third important assumption concerns

the absence of m6A sites in the negative set. The positions of the negative set were

obtained by searching for RRACH motifs in the exome with positive m6A positions re-

moved. Although the RRACH motif is about two orders of magnitude more prevalent

than m6A modifications (Dominissini et al., 2012), some false negatives are expected

in the negative set.

These assumptions have been avoided in other m6A detection research by using syn-

thetically modified RNA molecules, although the capacity of models trained on these

RNA molecules to generalise to real modified RNA molecules has not yet been demon-

strated. Other ways to reduce the reliance on these assumptions would be to conduct

m6A-sequencing and direct RNA sequencing experiments on the same sample or to

make use of conventional single-nucleotide resolution methods (see Section 2.3). In

this work, a stringent filtering of the data was conducted. See Appendix B for the

filtering criteria and their distributions after filtering was applied. These distributions

are similar in the positive and negative sets.

When all features of the generated and filtered data were used to train the model,

an ROC-AUC score of 0.87 and an average precision score of 0.83 were achieved on

the test set. The associated ROC-curve and PR-curve are displayed in Figure 5.9. The

model was additionally tested on chromosome 14 and an independent test set from

the same chromosomes as the training set, where AUC scores of 0.86 and 88 were

achieved, respectively. Overfitting of the model to chromosome-specific noise does

not appear to be an issue.

In order to interpret feature importance, the model was retrained and re-evaluated us-

ing different independent subsets of the features. Additionally, the model was trained

and evaluated on all features but using a reduced window size of 31 instead of 101.

The results of these experiments can be seen in Figure 5.10.
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Figure 5.9: ROC curve (left) and PR-curve (right) of the model displayed in Figure
5.5 with inclusion of all features, trained on the filtered data from chromosomes 1, 8,
15, 18, 20, 21, 22 and X, validated on chromosome 9 and tested on chromosome 10.

Figure 5.10: ROC curves of the CNN model using either all features, only sequence
features, a reduced window size, quality features or a combination of exon presence,
coverage and the fraction of reads equal to the reference sequence per position.
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The sequence information is most useful in predicting the presence of m6A sites,

followed by the quality information and the three other features.

In order to further investigate the validity of the model assumptions, the arrays that

were erroneously predicted were examined using ACTG plots similar to Figure 5.7.

These plots can be inspected in Appendix F. The sequence distributions suggest that

the negative set arrays may be contaminated by positives and vice versa.

As the amount of independent studies confirming the presence of m6A sites at spe-

cific positions in the genome increases, the amount of false predictions of a resulting

model due to wrong labels decreases. An experiment to validate this claim is to split

the positive set into several equal parts, each with an increasing amount of inde-

pendent studies reporting the m6A positions, before training the model on each of

the parts. The performance should increase with the amount of independent studies

reporting the m6A sites. This experiment was done using the model described in Sec-

tion 5.4. The positive set was first filtered in the same way as described in Appendix

B, without filtering on the amount of independent samples reporting the m6A sites.

Afterwards, it was sorted by the amount of samples and split into four equal parts

(each having around fourteen thousand instances). The first part contained the m6A

sites reported by up to three independent experiments, the m6A sites in the second

part were reported by between three and ten independent experiments. The third

part contained m6A sites reported by between 10 and 35 experiments and the final

part contained between 35 and 52 experiments. Due to the equal sizes of the parts,

differences in performance cannot be attributed to differences in the amount of data

that is provided to train the model. The resulting constant increase in performance as

more independent studies confirm m6A sites can be seen in Figure 5.11.

Figure 5.11: Barplot displaying the increase in performance of the CNN model de-
scribed in Section 5.4 as the amount of independent studies reporting the m6A po-
sitions in the positive set increases. It is clear that the three chosen performance
metrics (accuracy, average precision and AUC) improve from left to right.
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CHAPTER 6

FUTURE PERSPECTIVES AND

CONCLUSIONS

6.1 Future perspectives

6.1.1 Improvement and expansion of the basecaller output

model

The most important improvement to be made is on the data. The main shortcomings

of the data that was currently used and some suggestions for improvement were

discussed in the previous chapter. A more general improvement would be the use of

the newest R9.5.1 chemistry in the Oxford Nanopore sequencing experiments. ONT

is constantly improving the quality of their nanopore proteins and reagents, leading

to more accurate nucleic acid translocation measurements, resulting in an increased

performance of the predictive models for basecalling.

The synthetic m6A data from liu et al (Liu et al., 2019), can be used either for indepen-

dent testing or improvement of the model. The ideal situation would be to conduct

experiments where a sample is split in two parts, one of which undergoes a single nu-

cleotide resolution method for m6A detection, while the other is subjected to a direct

RNA sequencing run. That way one can be much more certain of the sample-specific

m6A sites and their precise positions.

While the focus of this thesis was on m6A, a similar method can be applied for the

detection of other RNA modifications, when sufficient high-resolution data of their

positions is available.

As the only sample-specific requirement of the model is a fastQ file, it could also

be used for m6A detection of reads originating from another long-read sequencing

technology such as Pacific Biosciences’ SMRT sequencing platform.
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Potential improvements of the model itself are the inclusion of features originating

from the signal itself, such as the mean and standard deviation of the signal segments

that correspond to each base prediction of the basecaller.

6.1.2 Development of a m6A-augmented basecaller

A m6A detection model that is based on the output of another predictive model (e.g.

Albacore) has its drawbacks. These drawbacks include the rather large amount of

computation steps between the input direct RNA sequencing data and the m6A site

predictions, as the reads first need to be basecalled by Albacore, aligned and pro-

cessed further before being fed to the model. Furthermore, the basecaller output

model makes a single prediction per RRACH motif, neglecting differentially-modified

transcripts.

It would be advantageous to develop and train a new basecaller with addition of the

m6A class to the four other base classes. This would allow for real-time m6A analy-

sis without the burden of much intermediary computation and without the potential

inclusion of the biases of another basecaller. There are two main approaches for the

development of such a basecaller: one that works on signal data that has been seg-

mented into events and one that makes predictions directly on the raw signal in an

end-to-end fashion.

Post-event segmentation basecaller

Until recently, the go-to method to basecall Oxford Nanopore signals was to first seg-

ment the signal into events using a Poremodel provided by ONT. Basecallers using this

strategy include Metrichor, Nanonet, DeepNano (Boža et al., 2017) , NanoCall (David

et al., 2017) and early versions of Albacore. After event segmentation and a limited

data processing, a HMM or RNN model is used to classify the events into bases.

Raw signal basecaller

As event segmentation is known to introduce some noise and bias, a significant in-

crease in performance is achieved by avoiding this step entirely and building a clas-

sifier that works directly with the raw signals. Recently developed basecallers, such

as Chiron (Teng et al., 2018), Wavenano (Wang et al., 2018) and the latest versions

of Albacore are examples of the raw signal approach. Chiron employs a convolutional

recurrent neural network (Shi et al., 2015), where residually-connected convolutions

(He et al., 2015) learn to extract a useful feature representation from the signal, which
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is then passed to bidirectional LSTM layers. In order to address the differing output

sequence lengths associated with signal segments of specified length, a connection-

ist temporal classification decoder (Graves et al., 2006) is used as loss function and

output decoder. An overview of the required data processing to annotate Oxford

Nanopore signals with bases (including m6A) is described in Appendix E. Figure 6.1 is

an illustration of a raw signal that has been annotated with the aforementioned data

processing procedure.
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Figure 6.1: MinION signal measurement that has been annotated with its correspond-
ing conventional bases (top), and with m6A (bottom). Adaptors and polyA tails are
largely removed by ONT’s segmentation algorithm. Sometimes the first events are
contaminated by adaptor sequence measurements. This explains the overall lower
quality of the first basecalls, which can be seen in Appendix A.
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6.2 Conclusions

M6A sites seem to reside in specific sequence contexts that are enriched in C and G.

To my knowledge this has not yet been reported or tested in other studies. Nor can

it be learned by analysing synthetically modified mRNA constructs. The convolutional

neural network model developed in this thesis has the potential to generalize to other

long-read sequencing technologies and to become effective in the epitranscriptome

analysis of mammalian biological samples. Furthermore, it only requires a FastQ file as

input from the sequenced sample. Ideally, data of higher quality should be procured

and used to further improve the model and potentially achieve state-of-the-art m6A

detection performance. With a data processing pipeline for the annotation of raw

Nanopore signals in place, a foundation has been laid for the development of novel

m6A detection models that address the drawbacks of a basecaller output model.
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APPENDIX A

DIRECT RNA SEQUENCING

RUNS AND QUALITY CONTROL

Table A.1: Additional information on the five direct RNA sequencing runs.

Sequencing run Count Length range Average length Average %GC

UBC run 1 587569 12-13138 1050 63
UBC run 2 534410 19-12606 985 63
UBC run 3 751775 15-18505 1053 63
UBC run 4 259368 6-13355 910 63
UBC run 5 628824 11-18293 1228 64

Figure A.1: Comparison of the quality scores across all bases before (A) and after (B)
trimming off the first 9 bases is displayed for UBC run 1. The other sequencing runs
give rise to similar plots. The Figures were generated by fastQC. A description of how
these quality scores are calculated can be found in section 3.3.



56



APPENDIX B

DISTRIBUTIONS OF SELECTED

DATA AFTER FILTERING

B.1 Positive set
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Figure B.1: Positive set filtered data distributions. The imposed constraints are as
follows: the average fraction of error (i.e. mismatches) of the reads must be below
0.4, the overlap of the considered windows with intronic regions is limited to 10% of
the window size, the mean mapping quality of the reads must exceed 10, at least 5
reads must be aligned at the motif, the m6a site positions must be corroborated by
at least two independent m6A-seq experiments (see section 2.3) and the distance of
the ChIP peak from the nearest RRACH motif may not exceed 150 (see section 2.4).



B.2. NEGATIVE SET

B.2 Negative set
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Figure B.2: Negative set filtered data distributions. The same constraints were
applied as with the positive set, with the exceptions of the amount of experiments
n_samples and the score, which are specific to the positive set.
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APPENDIX C

MANUAL EVALUATION OF DATA

GENERATION

A m6A position in the MetDB (the database with m6a sites, see section 2.4) with an

amount of aligned reads that is feasible to manually examine, was randomly sam-

pled. This sampled position was 29326365 on chromosome 21. The validity of the

generated data is confirmed by comparing a part of the generated array with the cor-

responding part in the IGV genome browser. The RRACH motif is the region that will

be subjected to manual evaluation. It is indicated by rectangles in the figures C.1 and

C.2 below.

Figure C.1: Integrative Genomics Viewer with the RRACH region of interest indicated
by a rectangle. A total amount of 5 reads are aligned to this region, of which the
sequence is AGACT. This region lies within the BACH1 gene and is exonic. When
hovering over the aligned reads, the quality scores per position can be seen. In in
the selected region these are {13,13,4,21,9}, {10,9,4,20,9}, {13,13,5,20,13},
{13,11,5,14} and {8,9,5,4,9} respectively. When we calculate the means μ =
1
N

∑N
1  of these qualities per position and round the result to the nearest integer,

we get 12,10,13,11 and 7. Next, the standard deviations σ =
r

1
N−1

∑N
1 ( − μ)

2 are
calculated. The resulting values (rounded to the nearest integer) are 6,6,5,4 and 2.
The read counts per position are 5, except at the second last position, where it is 4
due to a deletion in the last aligned read. As the first, fourth and fifth positions have
either a mismatch or a deletion, the fractions matched per position is 80%, 100%,
100%, 80%, and 80%.

With these calculations, upon inspection of figure C.2, it can be concluded that the

information in the genome browser corroborates the values in the generated array

and the data generation was successful.



Figure C.2: The middle part of the generated array is displayed, with the central
RRACH morif region indicated by a rectangle. The one-hot sequence encoding is
equivalent to AGACT.
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APPENDIX D

BIO-INFORMATICS COMMANDS

D.1 Albacore basecalling

read_fast5_basecaller.py -i .../Fast5/ -t N_threads -s .../output_dir/

-f FLO-MIN106 -k SQK-RNA001 -c r941_70bps_rna_linear.cfg -o fast5,fastq

D.2 Trimmomatic

java -jar .../trimmomatic-0.38.jar SE -phred33 .../reads.fastq

reads_trim.fastq HEADCROP:9

D.3 FastQC

fastqc reads.fastq

D.4 Minimap2

.../minimap2 -k14 -d hsa_genome.mmi .../genome.fa

../minimap2 -ax splice -uf -k14 -t N_threads -secondary=no .../hsa_genome.mmi

reads_trimmed.fastq > reads_trimmed.sam

D.5 Samtools

samtools view -bS -o reads_trimmed.bam reads_trimed.sam

samtools sort -@ 10 -m 1000M -o reads_sorted_trimmed.bam reads_trimmed.bam

samtools index reads_sorted_trimmed.bam



D.5. SAMTOOLS
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APPENDIX E

ANNOTATING THE RAW

NANOPORE SIGNAL

In order to train a novel Oxford Nanopore basecaller that is capable of predicting the

presence of m6A in addition to the four unmodified regular bases, a suitable model

should be provided with parts of signals, as well as the base labels that correspond to

these parts.

What follows is a brief description of the workflow diagram depicted in Figure E.1. The

Fast5 files, originating from a MinION device, are basecalled. The output is a FastQ

file with the basecalled reads and new Fast5 files with event segmentation informa-

tion and the raw signals. Table E.1 provides an overview of the event segmentation

information that is available in the Fast5 files. M6A positions in MetDB are filtered

according to a threshold of their score values (see Section 2.4) and the amount of

independent studies reporting them. The FastQ file undergoes a similar procedure as

described in Section 5.2. The CIGAR string of the resulting Bam file is parsed and

used to annotate the reads with m6A positions. Corrections to Albacore’s basecalls

can also be applied during this step. The ’move’ and ’start’ event characteristics are

used to assign base labels to specific segments of the raw signal.

Table E.1: Event segmentation information contained in basecalled fast5 files.

Event characteristic Description example

Mean Scaled mean of the signal segment 114.14
Start Starting position of the signal segment 10347
Standard deviation Standard deviation of the signal segment 19.82
Length Length of the signal segment 15
Model state State of ONT’s pore model CCAAA
Move Amount of bases translocated 2
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Figure E.1: Base annotation of Oxford Nanopore signals. Rounded rectangles denote
files or a description of their content and circles designate processes applied to these
files.
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APPENDIX F

SUPPLEMENTARY FIGURES

Figure F.1: Magnification of Figure 5.8 near the RRACH motif.



Figure F.2: Top 5% wrong positive predictions ACTG plot. The CNN model de-
scribed in Section 5.4 predicted (with a probability of at least 0.95) that the arrays
summarised in this ACTG plot originate from the positive set, although they have
negative labels. The similarity of this plot to the ACTG plot of the positive set in Fig-
ure 5.7 is inline with the proposition that the negative set is contaminated by some
positives.

Figure F.3: Top 5% wrong negative predictions ACTG plot. The CNN model de-
scribed in Section 5.4 predicted (with a probability of at least 0.95) that the arrays
summarised in this ACTG plot originate from the negative set, although they have
positive labels.
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