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ABSTRACT 

 

 

Throughout history, the Scheldt estuary had a large economic value and drove the industry 

around Antwerp and the hinterland. Besides economic benefits, it has a large impact on nature 

too. Water levels are not only driven by upstream river discharges, but mainly by the tidal 

influences because of the Scheldt’s connection to the North Sea. Spring tide accompanied 

with strong north-western winds may lead to extreme high water levels and thus potentially 

endangering Antwerp city with flooding. Flood protection walls along the quays therefore need 

to keep the city dry. Hence, in-time closure of these protection walls requires good storm surge 

forecasts. Ideally, alert messages are sent out 24 hours in advance to the responsible people 

in case of flood risk, such that the necessary mitigating actions can be taken; 6 hours in 

advance alerts are considered as the minimum time frame.  

Flanders Hydraulic Research, a division of the department of Mobility and Public Works of the 

Government of Flanders, delivers forecast modelling tools for many purposes. Scheldt water 

level forecasts use nowadays physically-based hydrodynamic models with wind effects, and 

astronomical tides are applied as boundary conditions. These variables and others, like 

atmospheric pressure, river discharges, etc. are known to result in discrepancies between the 

astronomical and observed water levels. Note that not only the tidal amplitude may differ but 

also the high and low water time of occurrence. This is called skew surge. The underlying 

causal processes have been reported in literature but not yet all quantified w.r.t. the Lower Sea 

Scheldt. 

This research therefore aimed at improving the water level forecasts near Antwerp by using 

predictive data-driven models. For this purpose, decades of time series data were available 

covering water levels, wind speed and direction, atmospheric pressure, air and water 

temperature, and river discharges into the Scheldt. Not only measurements but also 

predictions were available. Further, water levels were measured at multiple locations along the 

estuary reflecting the hydrodynamic properties of the estuary such as confinement, bends and 

side channels.  

Different machine learning models were explored w.r.t. tidal surge forecasting. For this task, a 

time series spanning 12 years in total, with a 10-minute temporal resolution, was used. The 

forecast horizon covered both 6 and 24 hours in accordance to the previously mentioned high 

water alert trigger times. Past observed surge levels and environmental variables were used 

as predictors. Predicted wind speed and tides additionally fed the models in the forecast 

horizon where observations were absent. A major improvement in high tide forecast 

performance was obtained by sample weighting. By putting more weight on the upper 5% 

highest water levels during model training, the storm surge forecasts majorly improved. Alert 

events, here defined as high water tides exceeding 6.3 m TAW (TAW=Tweede Algemene 

Waterpassing, the reference height used in Belgium for height measurements),  were correctly 

6-hours ahead forecasted in 45% of the cases, whereas the astronomical tide (as base forecast 

model) did not reveal any alert event. Note though that 47% of the true alert events were not 

identified. Alert events only occurred in 0.5% of all tides.  
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Any practical use of forecast models implicates knowledge of the model uncertainty. 

Uncertainty on the water level forecasts was computed by means of the so-called conformal 

prediction framework. The methodological advantage here is its independence of the machine 

learning algorithm and underlying multivariate distribution of the data. Proposals have been 

made to deal with time dependent data, and to generate locally variable prediction intervals. 

With these interval predictions, the alert identification performance was revisited. No or almost 

no alert events were missed by the forecasts, but the other side of the coin was that many 

more events were falsely classified as alert. 

Several issues deserve more attention and continued research. Many other model approaches 

exist that may further improve the surge forecast performance. In this respect, this thesis 

should be seen as a first attempt towards setting up a surge forecast model for the Lower Sea 

Scheldt. 
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CHAPTER 1  

RESEARCH OBJECTIVES AND 

OUTLINE 

1.1 Introduction & problem statement 

The Scheldt estuary flows through the Netherlands and Belgium and is connected to the 

Scheldt river, having its spring in the north-west of France. The Scheldt on the Belgian territory 

is divided in the Upper and Lower Sea Scheldt, where the latter is characterised by tidal 

influences. Generally speaking, one may say that this boundary is located near the town 

Schelle, where the Rupel river discharges in the Scheldt. 

The Sea Scheldt has a large economic value and drives the industry around Antwerp and the 

hinterland. Its accessibility largely depends on the tidal nature of the river though. Besides 

nautical aspects, it also impacts flooding safety in e.g. Antwerp city. Spring tides accompanied 

with strong north-western winds may lead to extreme high water levels and thus potentially 

endangering Antwerp city with flooding. Along the quays, flood protection walls need to keep 

the city dry (Figure 1-1, left). Hence, in-time closure of these protection walls is crucial, for 

which good storm surge forecasts are necessary. Water levels are forecasted and alert 

messages are automatically sent to the responsible people for taking mitigating actions, see 

Table 1-1. 

 

Table 1-1: Storm-tide alert levels in Antwerp 
water levels in 

Antwerp [m TAW] 
alert level description 

6.3 pre-alert nothing really happens 

6.6 alert start of the “storm-tide” procedure (several measures are taken for 
protection and precaution) 

6.7 - the gates of the parking lot next to the river Scheldt in Antwerp are 
closed because water can overtop the embankments due to waves 

7 dangerous storm-tide the parking lots next to the river Scheldt will be flooded 

7.3 alarm alarm 

 

Water level in the Scheldt estuary shows a diurnal pattern with long-term frequencies too, such 

as spring and neap tide with a period of around 14 days. Other oscillations exist such as the 

18.6 years period related to the inclination of the moon. These are the result of the movement 

of the moon around earth and earth around the sun. The resulting gravitational forces lead to 

the so-called astronomical tides. The latter can thus be predicted, but discrepancies occur due 

to wind speed and direction, atmospheric pressure and river discharge (especially at low 

water), see e.g. Rajasekaran et al. (2008) and Roberts et al. (2015). While the astronomy and 

meteorology are external drivers for the water level, the water level change along the river 

stretch is also determined by the river’s constriction. In this respect, Figure 1-1 (right) 
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demonstrates the large discrepancy of astronomical tides with observed water levels in 

Antwerp during the storm conditions in December 2013. 

The Scheldt river is already extensively studied by Flanders Hydraulic Research, being a 

department of Mobility and Public Works of the Government of Flanders (Belgium). Water level 

forecasts use nowadays physically-based hydrodynamic models with wind effects. However, 

storm surges in the Scheldt estuary are phenomenologically not yet fully understood or 

predictable. In this context, this thesis tries to demonstrate the performance of machine 

learning techniques w.r.t. surge forecasting. 

     
Figure 1-1: Flood protection walls along the Antwerp quays (left) (De Standaard, 2018). During the Santa 

Claus storm in December 2013, the astronomical tide largely deviates from the true water levels (right) 

1.2 Objectives of this research 

Storm surge forecasting in the Lower Sea Scheldt river is a rather new research area. The aim 

of this research is therefore to explore several methodologies w.r.t. their forecasting 

performance. For this task, an enormous amount of time series data is available to set up 

mathematical forecast models. This will require some dedicated mathematical tools though. 

Non-linear system behaviour may further complicate the forecasting task. Because the Scheldt 

system behaviour is not fully understood, the idea exists to let the data speak for itself by 

applying machine learning (ML) techniques. Penalization methods allow the selection or 

weighting of the most important surge driving variables. To assess flooding risks, the 

uncertainty on the storm surge forecasts need to be known; hence, some attention in this work 

is devoted to statistical inference of time series forecasts as well. The forecast horizon should 

ideally cover 24 hours to properly initiate mitigation measures in practice; 6 hours is considered 

as the lowest acceptable forecasting time.  

This thesis will thus explore several ML techniques, accounting as much as possible for all 

available system information. Both linear and non-linear techniques are applied. Finally, the 

best predictive model is to be selected, and a first attempt to give a prediction interval is given. 
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1.3 Outline: the roadmap through this thesis 

This thesis will start with a chapter on data and methods. It gives an overview of the available 

data and how it is pre-processed and cleaned. In addition, we will discuss the surge forecast 

modelling approaches as found in literature and those being applied. Chapter 3 deals with data 

exploration giving some insights in the river system dynamics. These insights will also guide 

the setup of the forecast models as discussed in Chapter 4. In this chapter, both linear and 

non-linear model approaches are discussed and evaluated against each other w.r.t. 

forecasting performance. Uncertainty on the surge forecasts is to be discussed in Chapter 5, 

and some general conclusions (Chapter 6) finalise this work. 
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CHAPTER 2  

DATA & METHODS 

2.1 Introduction 

This chapter firstly discusses the data made available by Flanders Hydraulics Research for the 

surge forecast task. Data originates from different sources and therefore requires adequate 

pre-processing and cleaning. Secondly, a short literature overview is given of possible and 

frequently used ML techniques for surge forecasting. A selection is made for evaluation in this 

work. In addition, model evaluation techniques are discussed and a general framework for 

assessing forecast uncertainty in the field of ML is introduced. Finally, the applied software is 

described. 

2.2 Description of the data 

Because the effect of storm surges in Antwerp depends on many factors, it is crucial to 

consider all these in our mathematical model. In this respect, data provided by Flanders 

Hydraulics Research consisted of: 

 measured water levels at Antwerp and Vlissingen 

 wind speed and direction, both measured (Vlakte van de Raan and Hansweert) and 

forecasted (Hansweert and Terneuzen) 

 air and water temperature at Melsele and Prosperpolder respectively 

 barometric pressure (Melsele) 

 river discharges measured at different locations upstream of Antwerp  

The measurement locations in the Scheldt estuary are shown in Figure 2-1. Data originated 

from different sources (Hydrological Information Centre HIC, Royal Netherlands 

Meteorological Institute KNMI and Flanders Environmental Agency VMM) and required some 

cleaning and other preparation prior to their use for modelling purposes. Duplicated data had 

to be removed, and extreme/unrealistic values were replaced by the neighbour averages. 

Depending on the variable, different imputation techniques were applied. An overview is given 

in Table A 1. The provided data showed time intervals between 5 and 60 minutes; conducted 

interpolations allowed a time resolution of 10 minutes common for all variables in the final data 

set. Note that the river discharges were lumped into one discharge value for modelling 

purposes; all rivers discharge upstream of Antwerp, so there was no need to consider them 

separately. 

Note that future water levels need to be predicted, hence observations cannot be used in the 

forecast horizon. Fortunately, wind and water level forecasts were available, being assumed 

having a significant impact on the forecast accuracy. Remark that the predicted water levels 

are based on astronomical forecasts and are thus not related to any surge-related effects. 
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Data were available for the period January 1998 till August 2018, however many data were 

missing as shown in Figure A 1. The period was therefore restricted to January 11, 2006 till 

August 14, 2018. Due to the large data set available, only complete cases were considered for 

modelling. 

 
Figure 2-1: Geography of measurement locations 

2.3 Methods 

2.3.1 Model approaches 

Many studies have already been conducted on time series analyses of water levels in the 

Western Scheldt. Generally speaking, Fourier analyses were conducted and the different 

tide/astronomical components were identified and studied. As such, the evolution of the 

components were studied as function of time, i.e. over a period of 3 to 4 decades (Stoorvogel 

& Habets (2004), Wang & Winterwerp (2013)), to identify the long-term impact of dredging and 

sand dumping works. These impacts seemed, however, rather negligible on the long-term. 

Wang and Winterwerp (2013) showed that the tide in the estuary adversely evolved, i.e. the 

difference between low and high tide increased over time and the location of its maximum 

moved inland as well. Gerritsen & van den Boogaard (1998) additionally performed a principal 

component analysis on the 12 most important harmonic components (over a period of 27 

years), aiming at discriminating patterns in tidal amplitudes and frequencies between different 

measurement stations. Finally, Stoorvogel & Habets (2002) conducted a time series analysis 

on the Western Scheldt water levels by means of autoregressive moving-average (ARMA) 

models in order to predict 1-hour ahead water levels at some measurement station based on 

levels at the estuary mouth. The water levels were detrended by subtracting a linear trend and 

the main Fourier components. There was only 7.3% of unexplained variance left. Even with a 

relatively simple moving-average (MA) model, a large part of the variability at some 

measurement station was to be explained by another station. Note that the final autocorrelation 
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function still showed important correlation peaks at fixed distances from each other. Stoorvogel 

& Habets (2002) attributed this to the too high low water level forecasts. White noise was thus 

definitely not obtained and would require further research. 

Setting up ARIMAX models (see e.g. Shumway & Stoffer, 2017), i.e. ARIMA models including 

exogenous predictors 𝑋, is not an easy task for estuary tidal data. In economics, where ARIMA 

models are very common, trends and seasonal effects are easily determined. In the present 

application, the superposition of many harmonic components in the water level time series 

severely complicates making the time series stationary. This will be discussed further. Going 

beyond ARIMA models, literature on surge modelling is very diverse. In general, 

autoregressive models are applied with lagged feature variables, so temporal autocorrelation 

is accounted for. When much data is available, the central idea is to include multiple lags and 

let the ML method decide by supervised learning what features should be included or not in 

the model. Literature demonstrates that non-linear models are needed to properly predict the 

surge. Penalized linear regression techniques, such as Lasso, are outcompeted by techniques 

such as random forests, support vector regression and artificial neural networks. References 

include e.g. Rajasekaran et al. (2008), Nguyen et al. (2015) and Mafi & Amirinia (2017). 

In this work, the modelling of the tidal surge is considered, i.e. the difference between the 

observed and astronomical water levels. Note that not only the tidal amplitude differs but also 

the high and low water time of occurrence. This is called skew surge, see Figure 2-2. When 

the high water levels are focused upon, one may model both the level and time as target 

variables. Here, the entire water level time series was modelled, as it was believed to contribute 

to the forecasting performance. Nevertheless, this work should be seen as a first exploration 

of forecasting techniques from which future work can be deduced (cf. extreme value analysis 

on the high water levels).  

 
Figure 2-2: Definition of skew surge 

Time series analysis generally deals with one-step ahead forecasting. In this study, multi-step 

forecasting was considered due to the interest in both 24-hours and 6-hours ahead forecasts. 

A sliding window based time series analysis was applied, i.e. prior time steps were used to 

predict the next time step. Sometimes, it is also called a lag method. The number of previous 

time steps is called the window width or size of the lag. The application of this method turns 

the time series data set into a supervised learning method. In our application, we not only have 

𝑝-lagged observational data, but also forecasts between the present time 𝑡 and the 𝑞-step 
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ahead forecast time. This is a modification of the default method and is schematically 

presented in Figure 2-3.  

 
Figure 2-3: Sliding window based time series analysis 

The time series model is still of autoregressive nature and can be written in the general form 

𝑦𝑡+𝑞 = 𝑓(𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝒙𝑡 , 𝒙𝑡−1, … , 𝒙𝑡−𝑝, 𝒙𝑡+𝑞 , 𝒙𝑡+𝑞−1, … , 𝒙𝑡+1) 

where 𝑦𝑡 is the surge at time instant 𝑡 and 𝒙𝑡 is a vector of observed or predicted environmental 

variables at time 𝑡 depending on the time instant, i.e. whether the time instant is situated in the 

lag or forecast horizon. 

The surge forecasting performance will not only depend on which environmental variables are 

considered and the lag/forecast horizon extent, but also on the model structure 𝑓, i.e. the target 

function. We evaluated different model specifications, going from linear model approaches 

such as ordinary and penalized (Lasso, Ridge and elastic net) linear regression, to non-linear 

techniques as random forests, support vector regression (SVR) and artificial neural networks. 

In this thesis, only multiple layer perceptrons (MLP) as feedforward artificial neural networks 

(ANNs) were examined (one and two hidden layers). Note that the computation of the SVR 

kernel function was very intensive for a large data set as in this work, so this method was 

abandoned and replaced by the less computationally intensive least-squares SVR (LS-SVR). 

Although the LS-SVR loses the advantage of support vector sparseness (De Brabanter, 2011), 

i.e. every observation now becomes a support vector, it had been successfully applied to 

forecasting river flows (Londhe & Gavraskar, 2015). 

2.3.2 Model evaluation & selection 

In supervised machine learning, an algorithm learns a model from training data. The goal of 

any supervised machine learning algorithm is to best estimate the target function 𝑓 for the 

output variable 𝑦 given the input data. The target function is the function that a given supervised 

machine learning algorithm aims to approximate. The central idea is now to achieve a low bias 

and a low variance such that a good forecasting performance is obtained. The 

parameterization of learning algorithms is often a battle to balance out bias and variance, and 

can be examined or optimized in different ways. As such, forecasting models are trained, 

validated and tested on independent data. Model hyperparameters (i.e. parameters supplied 

to the model but which cannot be learnt during training) are tuned on the training data, and 
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evaluated on the validation data set. Different models are subsequently ranked by confronting 

them with another independent data set, i.e. the test data, after calibrating the model with the 

tuned hyperparameters on both training and validation data. The highest forecasting 

performance then identifies the best model (with optimized hyperparameters). Selecting the 

best model with respect to forecasting requires some evaluation methodology. Commonly 

used techniques are the validation (or hold-out) set approach and cross-validation.  

The validation set approach is a very simple method and considers a random split of the data 

in training, validation and test data. Time series data, however, should consider blocked data 

due to autocorrelation issues. On the other hand, cross-validation (CV) is one of the most 

widely used methods to assess the generalizability of algorithms in classification and 

regression. However, also here, care needs to be taken when dealing with time series data. 

When highly autocorrelated errors occur, standard CV may overfit the data (Opsomer et al., 

2001). For that reason, different techniques of CV have been developed for such dependent 

cases. In this respect, Bergmeir & Benitez (2012) performed an empirical study on the impact 

of different CV approaches; they suggested blocked CV where non-interrupted time series are 

used as validating subsamples. A number of time instances ℎ between each block are 

excluded, so they become independent. Bergmeir et al. (2018) theoretically showed that for 

purely autoregressive models, the use of standard 𝐾-fold CV is possible provided the models 

considered have uncorrelated errors. This is quite common when ML methods are used for 

prediction, and where CV can control for overfitting the data. 

Initial training efforts with ℎ-blocked CV were abandoned in this work due to the large 

computational burden for specific modelling approaches; hence, the validation set approach 

was applied throughout this work (see Figure 2-4 for principle). This is allowed because many 

data can be accessed. The following time periods were retained for this purpose (at approx. 

60 / 20 / 20% of the entire data set): 

 training data: from 2006-01-11 04:00 to 2013-07-01 00:00 

 validation data: from 2013-07-01 00:00 to 2016-01-01 00:00 

 test data: from 2016-01-01 04:00 to 2018-08-14 11:10 

 

 

Figure 2-4: Principle of h-block validation set approach 

The advantage of these evaluation methods is the direct estimation of the test error. Different 

performance metrics are used for time series analysis, but the root-mean-squared error 

(𝑅𝑀𝑆𝐸) and the coefficient of determination (𝑅2) are popular (e.g. Royston et al. (2012), 

Nguyen et al. (2015), James et al. (2017)). Whereas the first is a frequently used measure for 

the differences between values predicted by a model 𝑦̂ and the values observed 𝑦, the second 

measure reflects the proportion of the variance in the target or outcome variable that is 

predictable from the features or independent variable(s). Both are defined as follows (𝑦̅  is the 

mean of the observed data): 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

These performance metrics account for discrepancies between forecasts and observations of 

the entire tidal cycle. This research primarily aims at predicting storm surges w.r.t. flooding 

risks, i.e. at high water levels. For this reason, the performance metrics were not only 

determined for the complete data series, but also for the upper 5-percentile of the surge 

reflecting the accuracy at which the model is able to predict extreme situations. This peak-

over-threshold (POT) water level was based solely on the training data and measured 5.41 m 

TAW (TAW=Tweede Algemene Waterpassing, the reference height used in Belgium for height 

measurements). Note again that any model training was based on all samples and not on the 

POT samples. 

One of the goals of the forecast model may be the initiation of alert messages w.r.t. flooding 

risks as mentioned in Table 1-1. Alert messages based on water level forecasts can be 

correctly (cf. true positives TP) but also falsely (cf. false positives FP) initiated. Obviously, the 

same counts when no specific alert needs to be set (cf. true negatives TN and false negatives 

FN). This “classification” performance was evaluated on the test data by the following 

measures: 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝐹𝐷𝑅 = 1 − 𝑃𝑃𝑉 = 𝑓𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 = 𝑓𝑎𝑙𝑙 − 𝑜𝑢𝑡 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
= 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 

Because of the 10-minute frequency of the time series data, many water level observations or 

forecasts originating from the same tide will attribute to the same and/or different classes. An 

alert event is related to a specific tide though, so all observations or forecasts of the same tide 

may only count once in the evaluation to make it fair and objective. Therefore, the evaluation 

will be based on the high water level of each tide only. 

Note that classification problems are generally related with some form of probability modelling, 

i.e. the probability is estimated at which a sample can be attributed to a specific class. A set 

probability threshold defines subsequently the attributed class (here: alert level class). For an 

ordinal classification problem, cumulative logit models and discriminant analysis are some 

example techniques that can be used. Such classification models could be constructed, but 

the primary goal of this work is water level, and not risk, modelling. Hence, no separate model 

had been set up and model results for the continuous target variables were simply projected 

to the alert level class definition for further analysis. As the interpretation of 6 alert categories 

might be hard, averaging techniques exist to create one overall metric and thus facilitates 

interpretation (see e.g. Manning et al., 2009). A macro-average will compute the metric 
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independently for each class and then takes the average (hence treating all classes equally), 

whereas a micro-average will aggregate the contributions of all classes to compute the average 

metric. If we are interested in the number of correct predictions, the micro-average is preferred. 

In this work, the latter will be used to group alert classes. 

2.3.3 Conformal inference 

In general, prediction intervals are constructed based on some distributional characteristics of 

the data. As such, normally distributed data is a prerequisite for many inference techniques. 

When data is time dependent, the correlation between subsequent samples should be 

considered as well. In this respect, the Gaussian process technique models the variance-

covariance structure of the data (Rasmussen & Williams, 2006). Hence, besides the key 

assumption in Gaussian process modelling that the data can be represented as a sample of a 

multivariate Gaussian distribution, the reliability of the solution also depends on how well one 

may select the covariance function. Preliminary testing on the actual data set showed that this 

technique demanded too many computational resources and was therefore considered 

inapplicable, at least in this big data setting.  

Besides the consideration of time-dependent data, the inference technique should thus be 

computationally efficient and, preferably, be applicable to any machine learning algorithm. 

Quite recently, the so-called conformal prediction for inference purposes was introduced. 

Confidence intervals for, e.g., ARIMA and linear regression are based on multivariate 

cumulative distribution functions (CDF) for the residuals or error terms. This is only possible 

when the correct circumstances are satisfied. Conformal prediction brings this idea to the world 

of machine learning in general. When used correctly, it guarantees to give confidence intervals 

with a specified probabilistic tolerance. An introduction can be found in Shafer & Vovk (2008) 

and Linusson (2017); a short summary is given below. 

Conformal prediction uses past experience to determine precise levels of confidence in 

predictions. It can be used with any method of point prediction for classification or regression. 

Essentially, one constructs a so-called nonconformity measure 𝛼, which measures how 

unusual a sample or observation looks relative to previous samples. This non-conformity 

function can be anything; in our prediction setting, this function can be defined as, e.g., the 

error rate. Given a method for making a point prediction 𝑦̂, the conformal prediction algorithm 

turns this nonconformity measure into a prediction region, a set 𝛤𝜀 that contains 𝑦 with a 

probability of at least 1-𝜀.  

Suppose we have a data set with 𝑛 samples {𝒛𝑖}𝑖=1
𝑛 , where 𝒛𝑖 = (𝒙𝑖, 𝑦𝑖). The p-dimensional 

space of possible features is called the feature space, 𝒙𝑖 ∈ 𝑿, and the space of possible targets 

or responses is called the target space, 𝑦𝑖 ∈ 𝒀; hence, we may write 𝒛𝑖 ∈ 𝒁 = 𝑿 × 𝒀.  

We want to predict 𝑚 new responses 𝑦𝑖=𝑛+1
𝑛+𝑚  from new features 𝒙𝑖=𝑛+1

𝑛+𝑚 . The conformal 

algorithm was originally developed for an on-line setting, in which one predicts the targets 

successively, seeing each true target value after one has predicted it and before one predicts 

the next one. So, the prediction 𝑦̂𝑛+1 of the observation 𝑦𝑛+1 may use observed features 𝒙𝑛+1 

and the preceding samples (𝒙1, 𝑦1), …, (𝒙𝑛, 𝑦𝑛). One may obviously also apply this principle 

to a batch setting, such as in this work. 
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It can be shown that this principle is valid, not only under the strong assumption of 

independence, but also the weaker assumption that the samples are probabilistically 

exchangeable. A series of samples 𝑛 is exchangeable when all 𝑛! permutations of this series 

are equally likely to occur. The conformal algorithm is applicable under exchangeability, no 

matter what the probability distribution of the samples is and no matter what nonconformity 

measure is used to construct the conformal prediction region. However, the efficiency of the 

conformal prediction will depend on the probability distribution and the nonconformity measure 

(Shafer & Vovk, 2008). In our setting of dependent data, some modifications to the technique 

have been proposed in literature and will be dealt with later in this section. 

To perform conformal prediction, we define the nonconformal function 𝛼: 𝒁 → ℝ that measures 

the dissimilarity of a sample 𝒛𝑖 = (𝒙𝑖, 𝑦𝑖) with previously collected samples. The sequence 

{𝛼𝑖}𝑖∈ℕ is called the nonconformity measure; the nonconformity score denotes one instance. A 

common choice of 𝛼 for regression problems is the absolute error of the model, i.e. 𝛼 = |𝑦 − 𝑦̂|. 

Hence, when the nonconformity score is large, the predicted target is considered to be 

“strange”. The nonconformity measure 𝛼 can be calculated for all training samples. Whether a 

sample is “too nonconforming” w.r.t. the others, its nonconformity score is evaluated with the 

observed nonconformity measure distribution. For this purpose, one introduces the p-value for 

a sample 𝒛𝑛 as the probability of nonconformal scores being larger or as large as the 

considered score. It is computed as the sample fraction 

𝑝𝑧 =
#|{𝑖 = 1, … , 𝑛: 𝛼𝑖(𝒛) ≥ 𝛼𝑛(𝒛)}

𝑛
, 

 

which varies between 1/𝑛 and 𝑛/𝑛 for the largest and smallest nonconformity measures 

respectively. Consider now the augmented data set where the new sample 𝒛𝑛+1 =

(𝒙𝑛+1, 𝑦𝑛+1), with 𝑦𝑛+1 still being unknown, is added to the training sample set. Based on the 

known nonconformity measure distribution, we can now define a prediction region for 𝒛𝑛+1 

consisting of the set 𝛤𝑛+1
𝜀 = {𝑦|𝑝𝑧 > 𝜀}. The algorithm tells to form a prediction region consisting 

of the 𝒛 that are not among the fraction 𝜀, i.e. a set of 𝑦 excluding 𝜀% of the largest possible 

absolute model errors.  

This can be framed as an application of the Neyman-Pearson theory for hypothesis testing and 

confidence intervals (Lehmann, 1986). In the Neyman-Pearson theory, we test a hypothesis 𝐻 

using a random variable 𝑇 that is likely to be large only if 𝐻 is false. Once one observes 𝑇 = 𝑡, 

we compute the probability 𝑝𝐻 = 𝑃(𝑇 ≥ 𝑡|𝐻) and reject the null hypothesis at level 𝜀 if 𝑝𝐻 ≤ 𝜀. 

Because this happens under the hypothesis 𝐻 with a probability of less than 𝜀, one may declare 

with 100(1-𝜀)% confidence that the true hypothesis 𝐻 is among those not rejected. In our 

setting, 𝐻 and 𝑇 can be defined as: 

 𝐻 reflecting the distribution formed by the training samples, and 

 the test statistic 𝑇 representing the random value of 𝛼𝑛+1 

Hence, under 𝐻, that is, conditional on the training samples, the 100(1-𝜀)% confidence interval 

for 𝛼𝑛+1 is defined as those 𝒛 for which 𝑝𝑧 > 𝜀. For a 95% prediction interval, one chooses a 

significance level 𝜀 = 0.05. The 95-percentile of computed nonconformity measures, denoted 

as 𝛼𝑠, is thus associated with the boundaries of the prediction interval 𝑦̂  ± 𝛼𝑠 in a regression 

setting, cf. 𝛼 = |𝑦 − 𝑦̂|. Obviously, new targets will be covered by the prediction interval as long 

as the underlying model remains valid. 
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Many modifications of the original conformal framework exist. Worthwhile to note is the split 

conformal prediction (Lei et al., 2018). In the original conformal prediction method both the 

point prediction model and the residual CDF for the prediction intervals are performed on the 

training data. However, in a high-dimensional setting (cf. big data) and with computationally 

demanding target estimators (e.g. neural networks), the inference might not be efficient. For 

that reason, an alternative approach has been proposed in literature. The split conformal 

method, also known as inductive conformal inference, separates the model fitting and residual 

CDF steps using sample splitting. Hence, the data is now split in training and calibration data 

on which, respectively, the point prediction model is trained and the residual CDF is 

determined. 

From the above, it is clear that the conformal prediction bands are constant for all samples. In 

some scenarios this may be correct, but in other situations the residual variance may be non-

constant and vary with the features 𝒙. Locally-weighted conformal inference is an extension to 

the standard approach, where the fitted residuals are scaled inversely with the estimated error 

spread. The mean absolute deviation (MAD) can be used for this purpose in a regression 

setting (Lei et al., 2018). The definition of the nonconformity measure then becomes 

𝛼 =
|𝑦 − 𝑦̂|

𝜌̂
 

where 𝜌̂ denotes an estimate of the conditional MAD of [𝑦 − 𝑦̂(𝑥)]|𝒙. Hence, one not only 

needs a point prediction model for 𝑦̂ but also for 𝜌̂. For the latter, k-nearest neighbor (KNN) 

regression was selected in this work but the model for 𝜌̂ resulted, however, in a very poor 

performance. For that reason, an alternative approach was applied. Instead of using the entire 

calibration data set for defining the nonconformity measure distribution, one now selected a 

subset of 𝑛 calibration data being representative for the considered test sample, i.e. one 

selected the 𝑛 closest samples in the high-dimensional feature space. Hence, for every sample 

in the test data set, 𝑛 “similar” samples were searched for in the calibration data set by the 

KNN algorithm. The prediction intervals are thus tailored on the test feature characteristics. 

This method will be referred to as local split conformal inference. 

In this work, time series are considered where the exchangeability condition is violated and the 

conformal predictors theoretically cannot guarantee the calibrated error rates. To deal with 

time-dependency, some modifications to the conformal framework were proposed by 

Balasubramanian et al. (2014) under the assumption that a sample only depends on 

observations within a given time lag or time window W. More theoretical aspects and 

applications can be found in Dashevskiy & Luo (2008) and Chernozhukov et al. (2018). 

Consider further a time series with samples 𝒂1, 𝒂2, 𝒂3,… from a q-dimensional feature space. 

The objective is thus to forecast 𝒂𝑖 given 𝒂1,…, 𝒂𝑖−1. Two options were presented by 

Balasubramanian et al. (2014), both based on some transformation of the original sample data. 

Method 1: one considers W-lagged variables but the data are allowed to overlap. They are 

thus not independent but the dependency is aimed to be accounted for via the features. The 

following rule is used (𝑛 is the time series length): 

∀𝑖, 𝑊 + 1 ≤ 𝑖 ≤ 𝑛: 𝒛𝑖−𝑊 = (𝒙𝑖−𝑊, 𝑦𝑖−𝑊) ∶= ((𝒂𝑖−𝑊, … , 𝒂𝑖−1), 𝒂𝑖) 

For example, if 𝑛 = 6 and 𝑊 = 2, the new transformed data will be 
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{𝒛1, 𝒛2, 𝒛3, 𝒛4} = {((𝒂1, 𝒂2), 𝒂3), ((𝒂2, 𝒂3), 𝒂4), ((𝒂3, 𝒂4), 𝒂5), ((𝒂4, 𝒂5), 𝒂6)} 

Method 2: one again considers W-lagged variables but the data are now completely separated 

by filtering the variables with a W window. Now, the rule becomes: 

∀𝑖, 0 ≤ 𝑖 ≤ [
𝑛

𝑊 + 1
] − 1: 𝒛𝑖+1 = (𝒙𝑖+1, 𝑦𝑖+1) ∶= ((𝒂𝑛−𝑖(𝑊+1)−𝑊, … , 𝒂𝑛−𝑖(𝑊+1)−1), 𝒂𝑛−𝑖(𝑊+1)) 

The example above would then give 

{𝒛1, 𝒛2} = {((𝒂4, 𝒂5), 𝒂6), ((𝒂1, 𝒂𝟐), 𝒂3)} 

Note that the chronological order of the original data is reversed in the transformation process. 

This has no influence though, because we deal now with independent data. The performance 

and applicability of the different conformal prediction approaches, incl. time-dependency 

considerations, is discussed in Chapter 5. 

2.3.4 Applied software 

Analyses were performed in R, version 3.4.3 (2017-11-30). Most calculations were performed 

on a pc with 64 bit operating system and Intel® Core™ i7-7820HQ CPU @ 2.9 GHz. A RAM 

memory of 16 GB was installed. For large calculations, the computational resources of the 

Flemish Supercomputer Center (VSC) at Ghent University were accessed. 

An overview of the applied R packages is given in Table 2-1. 

Table 2-1: Overview of applied R packages for modelling 

R package version application 

elmNNRcpp 1.0.1 extreme learning machines 

e1071 1.7-0 support vector regression 

glmnet 2.0-16 penalized linear regression (Lasso, Ridge, elastic net) 

keras 2.2.4 R interface to Keras (ANN) 

liquidSVM 1.2.2 least-squares SVR 

ranger 0.10.1 random forest regression 

tensorflow 1.4 R interface to TensorFlow 

tideharmonics 0.1-1 harmonic analysis of tides 

tides 2.1 maxima and minima of quasi periodic time series 
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CHAPTER 3  

DATA EXPLORATION 

3.1 Introduction 

This chapter will explore the data with respect to our forecast goal. Obviously, the surge level 

is the central theme seen our forecast effort. The surge, i.e. the difference between true and 

astronomical water level, has to be known. Because the provided astronomical (predicted) 

water level time series showed some unexplainable aberrations, we doubted the data quality 

and the astronomical levels were first determined. Wind direction and speed are known to be 

strongly associated with surge. A proper treatment and preparation of this wind vector may 

improve modelling and thus deserves some more attention. Subsequently, the autocorrelation 

is examined and how the surge is correlated with the other predictors or features. All this will 

clarify some modelling decisions at a later stage. With respect to any model evaluation based 

on the alert levels in Table 1-1, their prevalence is examined as last topic. Some conclusions 

finalize this chapter. 

3.2 Harmonic analysis 

Flanders Hydraulics Research provided the astronomical water levels, but some 

inconsistencies existed at year transitions. A tidal harmonic analysis was therefore first 

performed on the measured water levels (Jan 1, 1998 until Aug 14, 2018), so adequate surge 

level data could be obtained. As a first stage, the water levels were detrended by linear 

regression. The mean water level measured 2.60 m TAW with a 95% confidence interval of 

[2.57, 2.63] m TAW. The annual water level change was not significantly different from zero, 

i.e. -2.47 10-11 m/year with a 95% CI of [-4.95 10-11, 1.01 10-13]). Subsequently, 114 tidal 

components were estimated in this study and summarized in Table B 1 for completeness. 

Every component has two parameters, reflecting the cosine and sine constituent. Note that 

harmonic regression is based on data not only reflecting tidal effects but also wind and 

atmospheric effects. Hence, the resulting harmonics will not be the true components and errors 

on the true surges will occur. This may obviously impact the surge modelling performance. 

3.3 Wind decomposition 

As mentioned, wind is a very important driving force for storm surges. Both observed and 

predicted data were available and each was provided as paired data of speed and angle. 

Figure B 1 shows that wind speeds at both Hansweert and Vlakte van de Raan (at sea) may 

go up till almost 30 m/s in the period 2006-2018. The dominant wind direction at both locations 

was south-west to west but wind speeds at Vlakte van de Raan were more prominent. This 

does however not indicate that these directions have the largest impact on the surge 

generation. Indeed, the Scheldt estuary is oriented (i) west to east between the estuary mouth 
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and Bath with a large bend near Hansweert, and (ii) north-west to south-east between Bath 

and Antwerp (see also Figure 2-1). Hence, winds along these directions are expected to have 

the largest impact, i.e. increased wind shear along a straight estuary trajectory (and also 

atmospheric pressure) results in a large water set-up. 

For modelling purposes, the wind vector was decomposed in 𝑥 and 𝑦 Cartesian components. 

Their axis orientation was chosen such that a maximal cross-correlation with the surge 

occurred in the period 2006-2018. This is depicted in Figure B 2. From this, the wind vector 

was most optimally decomposed by selecting a 𝑥-axis angle of 289° and 295° for Hansweert 

and Vlakte van de Raan respectively; the respective (maximal) cross-correlations measured 

0.59 and 0.61. 

In machine learning and the big data world, all features are typically retained in the forecasting 

model and the learning algorithm will decide what features are important. However, knowing 

in advance that features are highly correlated allows one to reduce the high-dimensional 

feature space and thus the computational effort. As such, only the wind data of Vlakte van de 

Raan was selected for model building.  

3.4 Autocorrelation & cross-correlation 

Time series of water levels are highly correlated. A forecast model best performs when data is 

decorrelated such that correlation does not have to be accounted for. Decorrelation starts with 

detrending being performed by subtracting the previously determined astronomical water 

levels from the observed ones. Knowing to what extent the surge data is autocorrelated will 

elucidate how many time lags one needs to consider for the lagged regressor definition (or the 

lag horizon). For this purpose, we considered only the model training data set. In this respect, 

the autocorrelation function (ACF) in Figure 3-1 clearly shows peaks returning every 78 lags 

(of 10 minutes), or every 13 hours. This corresponds to one high-low tide cycle. Differencing 

is traditionally applied to remove autocorrelation (Shumway & Stoffer, 2017) but the approach 

was abandoned after continuing efforts to obtain stationarity. Because of the complex 

harmonic residual signal, this does not seem surprising though. It also demonstrates that 

ARIMAX models are not easily applied in this context. In addition, as we will discuss later, our 

modelling effort will consider 24-hours and 6-hours ahead forecasts where observations lack 

between present time and forecasting time. Hence, back-calculating stationary differenced 

data seems rather impossible (in general, time series forecasting predicts the observation at 

the next time step only). 

In addition, the cross-correlation function (CCF) between the surge level and the other 

observed variables / features was examined for the training data set too. The results are shown 

in Table 3-1 and Figure B 3. As shown before, wind was correlated strongest with surge 

(correlation of ~0.6), followed by atmospheric pressure. Whereas all other features were 

positively correlated with surge, the pressure showed a negative correlation of -0.36. This 

makes sense, as storms are generally associated with low-pressure situations (with winds as 

a consequence). Scheldt water levels had a correlation of around 0.22, i.e. surges were more 

prominent at high water levels. Increased river discharges also resulted in larger surges 

(correlation of 0.23). Note that most features were leading the surge, i.e. the maximum 

(absolute) cross-correlation occurred at positive lags in the CCF, so the surge was maximally 
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correlated with features from the past. Only the water level at Antwerp, the water temperature 

and the river discharge were lagging, i.e. the maximum cross-correlation occurred at negative 

lags. This means that the latter three were lagging behind in time and were not drivers for the 

surge levels. Figure B 3 shows that care needs to be taken with the interpretation of the water 

temperature, as a second large peak arose at around -600 lags. 

The auto- and cross-correlation analysis is important for setting up autoregressive models with 

leading predictors, as discussed in Chapter 4 (see also Shumway & Stoffer, 2017). The results 

further indicate that all predictors were maximally correlated with the surge level within approx. 

130 10-min lags. 

In §3.3, we already discussed the wind location feature selection as a result of nearly identical 

CCFs of surge with measured wind speeds at Hansweert and Vlakte van de Raan. This is also 

demonstrated in Figure B 4, depicting the wind CCF between these two locations. Vlakte van 

de Raan was kept for the wind variable, as it showed the largest cross-correlation (Table 3-1). 

W.r.t. water level, the same can be mentioned about the locations Antwerp and Vlissingen. 

Nevertheless, the latter two were retained because we believed that the difference between 

their cross-correlation functions reflects the hydrodynamic properties of the estuary such as 

confinement, bends and side channels. 

 
Figure 3-1: Autocorrelation function (ACF) for the surge level in Antwerp (period 2006-2013) 

Table 3-1: Maximal cross-correlations between surge level and observed features (period 2006-2013), 

see also Figure B 3 

features max. cross-correlation # 10-min lags 

water level Antwerp 0.2250 -1 

water level Vlissingen 0.2224 10 

atmospheric pressure -0.3628 69 

air temperature 0.0939 121 

water temperature 0.0562 -4 

river discharge 0.2320 -50 

X wind Hansweert 0.5928 12 

Y wind Hansweert 0.3134 125 

X wind Vlakte van de Raan 0.6186 17 

Y wind Vlakte van de Raan 0.2939 128 
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3.5 Prevalence of alert events 

The model performance will be evaluated on, among others, the alert messaging of Flanders 

Hydraulics Research. Ideally, the model should be able to correctly predict the water levels 

and trigger the corresponding alerts. The forecasting ability of the model largely depends on 

the supervised learning procedure and, as such, on the training data. If no rare events occur 

in the training phase, one cannot expect the model to forecast this correctly. Hence, the 

prevalence of these alert events is important to be examined. 

As discussed in §2.3.2, the alert classification will be performed on the tidal high waters only. 

In this respect, Table 3-2 summarizes the number of events categorized by the alert level cut-

off values; in addition, Table B 2 lists the corresponding dates of these extreme high water 

situations. Clearly, the alert categories represented rare events. Even more, Table B 2 shows 

that these events were not evenly distributed over training, validation and test periods. This 

will have an impact on the learning process. As such, one may expect that a good modelling 

performance for these events will be a hard nut to crack when the modelling focuses on the 

entire tidal cycle and not only on the high tides.   

Table 3-2: Prevalence of alert (extreme) events in the period Jan 11, 2006 until August 14, 2018 

(analysis based on high water levels of raw data, so prior to complete cases analysis) 

alert levels high water level range [m TAW]* # tides 

normal ]-, 6.3[ 17610 

pre-alert [6.3, 6.6[ 52 

storm tide [6.6, 6.7[ 5 

(gate lockdown) [6.7, 7[ 8 

dangerous storm tide [7, 7.3[ 3 

alarm [7.3, [ 0 

  * notation: [a, b[ denotes the range including the lower limit a, and excluding the upper limit b   

3.6 Conclusions 

Many measurement data are available for the Western Scheldt estuary that can be used for 

surge modelling purposes. Raw data covered the period Jan 1, 1998 until Aug 14, 2018. 

However, the period Jan 11, 2006 until August 14, 2018 was selected for model building and 

evaluation. 

The surge time series was obtained by subtracting the estimated astronomical water levels 

from the observed water levels. Obviously, the surge was strongly autocorrelated with a 

repeating pattern every 78 10-minute lags (or 13 hours) in the autocorrelation function. The 

largest cross-correlations with surge were found for the variable wind. Because the correlations 

were very similar for Vlakte van de Raan and Hansweert, only the former was selected as 

feature for further modelling (because it showed slightly larger correlations). Atmospheric 

pressure was also strongly, but negatively, correlated followed in importance by the river 

discharge and the water levels. In general, all environmental variables were maximally 

correlated with the surge level within approx. 130 10-min lags. These observed auto- and 

cross-correlations will be helpful for defining the lag and forecast horizons in Chapter 4. 
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With respect to model performance evaluation based on correctly forecasting alert events, it 

could be observed that the predefined alert classes were characterized by a very low 

prevalence. This is important to acknowledge when discussing the forecast performance of 

these rare events in §4.4. 
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CHAPTER 4  

SURGE FORECAST MODELLING 

4.1 Introduction 

Flanders Hydraulics Research primarily requested a 24-hours ahead forecast model for surge 

levels. As such, this chapter starts by describing this modelling effort, i.e. an evaluation of the 

several model approaches. The most optimally performing model structure will subsequently 

be retrained and applied for 6-hours ahead forecasts to examine any improvements of the 

forecast performance. Next to the impact of the forecast horizon, a small sensitivity analysis 

was also performed on the extent of the lag horizon. Some remarks on the final model and 

performance are given before ending this chapter with some conclusions.  

4.2 24-hours ahead surge forecast model 

4.2.1 General model structure & input data 

The basic model for 24-hours ahead forecasts consists of the sliding window multi-step 

forecasting method (see also Figure 2-3) where the samples include the target values, i.e. the 

24-hours ahead surge levels, and (i) lagged observations included in the lag horizon and (ii) 

predictions in the forecast horizon. 

The following environmental variables were considered as input data in the lag and forecast 

horizons: 

 Lag horizon (consisting of lagged observations) 

o surge level 

o water level in Antwerp 

o water level in Vlissingen 

o wind speed at Vlakte van de Raan, 𝑥 component 

o wind speed at Vlakte van de Raan, 𝑦 component 

o atmospheric pressure in Melsele 

o air temperature in Melsele 

o water temperature at Prosperpolder 

o river discharge upstream of Antwerp 

 

 Forecast horizon (consisting of predicted variables) 

o astronomical water levels in Antwerp 

o wind speed in Terneuzen, 𝑥 component 

o wind speed in Terneuzen, 𝑦 component 
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From §3.4, it is clear that including 130 lags of 10 minutes in the model would account for all 

major cross-correlations between the surge, as target variable, and the features. However, 

with a 24-hours ahead forecast one has 144 time steps without any data, hence loosing 

important cross-correlations, what may affect the model performance. As one considers an 

autoregressive model, lagged surge instants augment the feature data set. Although the surge 

autocorrelation structure is not significantly included in the input data too, it was decided to 

include 13h of lagged variables (based on the 78 lags to cover the surge autocorrelation peak, 

see §3.4) such that a tidal cycle of high water and low water was covered. How sensitive the 

forecast results are w.r.t. the extent of the lag horizon will be dealt with in §4.3. 

Note that several forecast methods demanded considerable computation times. For that 

reason, it was decided to have forecasts every 20 minutes instead of 10 minutes. In addition, 

the interval between subsequent time instants in the lag and forecast horizon was set at 30 

minutes. This time resolution was considered enough to characterize high water or flood levels.  

4.2.2 Linear models 

The surge modelling quest was initiated with some linear model approaches: ordinary linear 

regression and its regularized forms Lasso, Ridge and elastic net. Regularization or 

penalization techniques are known to generalize better to unseen data than ordinary linear 

regression if correlated predictors or features occur. Because the number of observations was 

largely exceeding the feature number, the main advantage of Lasso compared to Ridge 

regression is its sparse solution, i.e. the regression coefficients are forced to zero for highly 

correlated features. Note that this feature selection procedure tends to select, rather randomly, 

one feature among the group of highly correlated features, and thus complicates any model 

interpretation at a later stage. Elastic-net regression is a combination of Ridge and Lasso 

regression and returns a sparse solution with potentially more predictors than the rank of the 

feature matrix; it was included in this comparative study for completeness.  

The performance of these linear models on the test data is presented in Table 4-1. More 

performance details and parameter settings can be found in Table C 1. The table clearly shows 

that any regularization does not outperform ordinary linear regression; all methods look similar.   

Table 4-1: Performance metrics for linear 24-hours ahead forecast models 
  training data test data 

  RMSE R² RMSE R² 

Ordinary linear regression 0.214 0.450 0.236 0.261 

Lasso regression 0.214 0.445 0.235 0.269 

Ridge regression 0.214 0.445 0.235 0.269 

Elastic-net regression 0.214 0.445 0.235 0.269 

 

From Table C 1 one can conclude that every regularization parameter 𝜆 approaches zero and 

thus these techniques are similar to ordinary linear regression. This convergence of ordinary 

and penalized regression techniques is further demonstrated by considering 9-fold h-block CV 

for Lasso regression in Figure 4-1. The penalization parameter clearly asymptotically 

approaches zero with a negligible change in validation error rate, assessed as MSE. For model 

selection, it is common practice to select the largest value of 𝜆 such that the validation error is 
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within one standard error of the minimum MSE (James et al., 2017). Evaluation of this feature-

reduced model (only 9 features remain) on the test error, however, resulted in a very bad 

performance (data not shown), indicating a too large model sparseness.  

This demonstrates that all features considered in the model seem needed to improve the model 

performance and that a typical minimum in validation error rate is not obtained, i.e. the point 

at which overfitting occurs with further decreasing 𝜆 values. This can be attributed to the 

extremely long time series data available with its multitude of environmental variable 

interactions, resulting in as many unique surge dynamics. In this respect, a small sensitivity 

analysis on the lag horizon will be performed in §4.4.1 for the final model selected. Note that 

not only the lags and kinds of model features matter but also the target function 𝑓. Table 4-1 

shows a low coefficient of determination 𝑅2 of 0.269, which may indeed indicate some non-

linear system behavior. Hence, non-linear models may improve the forecasting performance. 

This is discussed in the next section.   

 
Figure 4-1: Validation error rate as function of the Lasso regularization parameter 𝜆 for 9-fold h-block 
cross-validation 

4.2.3 Non-linear models 

In order to evaluate whether surge level forecasting can be improved by applying non-linear 

models, four different model approaches were considered: random forest regression, least-

squares support vector regression (LS-SVR), extreme learning machines (ELM) and multiple 

layer perceptron (MLP) models. The latter two belong to the class of artificial neural networks 

(ANNs). 

With respect to random forest regression, the number of trees was optimized to a value of 300, 

at which the validation error rate stabilized when further increasing the tree number. The 

number of variables randomly sampled as candidates at each split was set at 65, minimizing 

the validation error. Similar to the linear models, the loss function (expressed as validation 

MSE) was rather flat such that any change in this number of variables resulted in only slight 

changes of MSE.  

With LS-SVR, the feature space is mapped onto an augmented feature space using some 

fixed (non-linear) mapping, and then a linear model is constructed in this feature space. The 

mapping is performed by a kernel function. Selecting a particular kernel type and related kernel 

function parameters is usually based on application-domain knowledge. For surge modelling, 

one mainly applied in literature the Gaussian or radial basis function kernel (Rajasekaran et al. 

(2008), Londhe & Gavraskar (2015), Elgohary et al. (2017)). This kernel was retained in this 
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work too. The bandwidth of this Gaussian kernel was optimized at a value of 450. The LS-SVR 

loss function consisted of the residual sum of squares fitting error and a 𝑙2 regularization term. 

The inverse of this regularization parameter, denoted as 𝐶 in Table C 1, was determined as 

300. 

Besides random forest regression and LS-SVR, ANNs were explored as well. Simple MLP 

models were applied with up to two hidden layers, as they performed well in literature (e.g. 

Steidley et al. (2005), Tsai & You (2014)). Data from the input layer are sent throughout the 

different layers using the feed-forward method. Defining the network architecture and how to 

avoid overfitting are major issues when applying ANN in practice. For that reason, a small 

sensitivity study was performed. From one layer to another, the nodal values are transformed 

by the activation function, of which the most popular ones had been examined with respect to 

the out-of-sample error: linear, tanh, relu, elu and sigmoid. In addition, the number of nodes in 

each layer, the type of optimization algorithm, learning rate and number of necessary epochs 

were studied. For fully connected layers, nodes may develop co-dependency amongst each 

other during training, which curbs the individual power of each neuron leading to overfitting of 

training data. Two ways of dealing with this are dropout and regularization. The former method 

randomly drops a predetermined percentage of individual nodes out of the network. The aim 

of this dropout is the reduction of node interdependencies. Activity regularization, where the 

output of a layer is penalized, has been tested as well. In the end, a single-hidden layer model 

turned out to perform best on the out-of-sample data. A linear activation function was applied 

on the input to 1000 layer nodes. The input weights were randomly chosen from a uniform 

distribution. Further on, a learning rate of 0.01 and 200 epochs were needed to train the MLP. 

In this respect, similar to the linear model training, Figure 4-2 shows that overfitting does not 

occur because both training and validation error stabilize. Epochs between 50 and 1000 did 

not influence the test error (data not shown).  

Defining the best MLP network is a tedious task with many degrees of freedom and is an art 

on itself. For that reason, an ELM model was applied, as it is a single-hidden layer feed-forward 

neural network with randomly chosen input weights and hidden bias weights. It does not 

require any setting of learning rate, epochs, etc…, making it very appropriate to check the 

applicability of a single-hidden layer ANN before exploring the multitude of possibilities of MLP. 

Actually, only two parameters need to be defined, i.e. the activation  function and the number 

of nodes. A combination of the triangular basis activation function with 389 (i.e. the number of 

features) nodes performed best. 

The hyperparameter settings for random forests and LS-SVR can be found in Table C 1; it also 

summarizes the examined ELM settings. For the MLP models, please refer to Table C 2. 

 
Figure 4-2: Training and validation error rates as function of the epoch number for the selected MLP 
model 
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An overview of the performance metrics (𝑅𝑀𝑆𝐸 and 𝑅²) of the final selected models is given 

in Table 4-2. When first looking at the MLP, it is somewhat surprising that this model performed 

worst. It allows the most degrees of freedom but this may be the largest disadvantage too w.r.t. 

ANN optimization. Notably, the ELM was very comparable to MLP w.r.t. performance, although 

the activation function and number of nodes were different. Because of the abundant use of 

ANN in literature for storm surge modelling, dedicated research here should allow better 

forecasting performance. Present work should be seen as a first exploration though. In 

addition, recurrent neural networks are typically used for temporal sequences and deserve 

more attention. Also a further improvement such as long-short term memory (LSTM) networks 

are worthwhile to be further explored. One restricted to MLP only because, otherwise, the input 

data frame had to be reorganised.  

An improvement in forecasting performance could be observed when moving to LS-SVR, see 

Table 4-2. The 𝑅² increased from 0.284 to 0.326 when comparing LS-SVR with ELM. 

Nevertheless, all methods were outcompeted by random forest regression. It performed best 

on both the training and test data. An 𝑅² of 0.568 was obtained for the test data. 

Table 4-2: Performance metrics for non-linear 24h ahead forecast models 

 training data test data 

 RMSE R² RMSE R² 

Random forests 0.030 0.989 0.180 0.568 

LS-SVR 0.177 0.623 0.225 0.326 

ELM 0.218 0.428 0.233 0.284 

MLP 0.218 0.428 0.235 0.271 

4.2.4 POT weighting for extreme event modelling  

From §4.2.2 and §4.2.3 it became clear that random forest regression performed best. 

Performance evaluation was based on the 𝑅𝑀𝑆𝐸 and 𝑅², computed on all observations. One 

of the practical model applications is flood alert messaging. As such, the modelling effort may 

put more focus on correctly forecasting the high water levels and giving the low levels, the low 

tides, less priority. For this purpose, water levels above the 95-percentile water level (i.e. 5.39 

m TAW based on the training data set) were weighted more than others in model training. This 

peaks-over-threshold (POT) approach should allow a better forecast of extreme events. 

During construction of the random forest model, bootstrap samples were taken from the 

training data set in order to create multiple trees. This bootstrap aggregation, or bagging, 

resulted in an ensemble surge forecast. Here, POT water levels were given more weight or a 

higher probability to be selected in the bootstrap sample. The results of this further random 

forest optimization is shown in Table 4-3; note that a weight of 1 refers to the default random 

forest model, as obtained in §4.2.3. In addition to the default 𝑅𝑀𝑆𝐸 and 𝑅², we computed these 

metrics on the POT water levels only to examine the improved forecasting performance for 

extreme high water events. 

From Table 4-3 it becomes clear that any weighting decreased the training 𝑅𝑀𝑆𝐸 𝑃𝑂𝑇 to zero 

and the 𝑅2𝑃𝑂𝑇 to one, i.e. a perfect prediction. Obviously, predicted non-POT water levels 

now show a larger bias as reflected by the increased 𝑅𝑀𝑆𝐸 and decreased 𝑅². It becomes 
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more interesting when one moves to the out-of-sample performance though. The 𝑅𝑀𝑆𝐸 

remained almost constant, whereas the 𝑅𝑀𝑆𝐸 𝑃𝑂𝑇 decreased with increasing weights; a 

weight of 30 resulted in the largest performance gain. Note also that the unweighted random 

forests returned a 𝑅2𝑃𝑂𝑇 of 0.639, being larger than the 𝑅² value based on all observations. 

This would indicate that the model, even unweighted, already performed worse on other stages 

of the tidal cycle than high water. Also here, a weight of 30 resulted in the largest 𝑅2𝑃𝑂𝑇 

increase to 0.688, while roughly maintaining the 𝑅² value based on all test data. As already 

mentioned before, we dealt with an extensive time series data set, hence, improving the 

forecast of 5% of the samples will not deteriorate the 𝑅𝑀𝑆𝐸 or 𝑅² too much. The weighted 

random forest model was selected as the best compromise between global surge and storm 

surge forecast performance. 

Table 4-3: Performance metrics for weighted random forest regression (24h ahead forecast) 

 training data  test data 

weight RMSE RMSE POT R² R² POT  RMSE RMSE POT R² R² POT 

1 0.030 0.037 0.989 0.986  0.180 0.184 0.568 0.639 

30 0.070 0.000 0.940 1.000  0.181 0.171 0.567 0.688 

60 0.096 0.000 0.888 1.000  0.180 0.172 0.568 0.684 

90 0.113 0.000 0.846 1.000  0.181 0.169 0.567 0.693 

 

We may further examine the forecast performance by analysing the model residuals. Figure C 

1 clearly shows that the model forecasted surge levels best in the range -0.5 and 0.5 m. 

Outside this surge level range, absolute surges were underpredicted by the weighted random 

forest regression. The largest underpredictions occurred for water levels higher than 1.25 m 

TAW, with a maximum underprediction of ~2.3 m for water levels around 2.5 m TAW. These 

large discrepancies occurred during the transitional phase between high-low tides, and vice 

versa, where the water level quickly changed. Obviously, any small temporal shift in tide from 

skew surges results in large deviations (note that an improperly performed harmonic analysis 

of the astronomical tide may result in deviations too). At POT water levels, surges were more 

underpredicted than overpredicted as well. 

4.3 6-hours ahead surge forecast model 

Flanders Hydraulics Research maintains several forecasting models with different purposes. 

The shortest forecast horizon measures 6 hours. Hence, a 6-hours ahead tidal surge forecast 

was considered as the shortest forecast horizon possible. The implications should be beneficial 

towards forecast performance because now only 6 hours without measurement data occurred. 

The best performing 24-hours forecast model, i.e. the random forest regression model, was 

selected and re-trained on a modified feature data frame. Again, a lag horizon of 13 hours was 

applied but the forecast horizon now measured 6 hours; time steps of 20 minutes were here 

considered. The number of trees was kept at a value of 300 and the number of variables 

randomly sampled as candidates at each split being optimized at 100 by a grid search. 

Table 4-4 summarizes the performance metrics for both the unweighted and weighted random 

forest regression models. In comparison to the 24-hours ahead forecast model, the 𝑅² and 
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𝑅2𝑃𝑂𝑇 increased to 0.67 and 0.71 respectively for the unweighted case. A weight of 30 further 

increased the 𝑅2𝑃𝑂𝑇 to a value of 0.75. The model residuals in Figure C 2 now showed smaller 

underpredictions of absolute surge levels compared to the 24-hours ahead forecasts. In 

addition, the POT water levels were better forecasted as well. Similar to the 24-hours ahead 

forecast model, water levels were extremely underpredicted around 2.5 m TAW with a 

maximum underprediction of ~2 m. These occurred during tidal transition. 

Table 4-4: Performance metrics for (un-)weighted random forest regression (6h ahead forecast) 

 training data  test data   

weight RMSE RMSE POT R² R² POT  RMSE RMSE POT R² R² POT   

1 0.036 0.041 0.984 0.983  0.157 0.162 0.670 0.712   

30 0.075 0.000 0.933 1.000  0.158 0.152 0.668 0.747   

4.4 Some remarks 

In this section, some further discussion about the random forest regression model is given. For 

this purpose, the 6-hours ahead forecast model was selected. Its model performance was 

expected to depend on the extent of the lag horizon and is to be discussed in §4.4.1. In relation 

to this, some interpretation to the regression model by the variable or feature importances is 

given. Finally, §4.4.2 evaluates the model w.r.t. alert classification.  

4.4.1 Influence of lag horizon and related features 

The auto- and cross-correlation functions in §3.4 all showed a maximum within a lag period of 

21.3 hours. These functions declined at a different rate with increasing lags. Hence, a larger 

lag horizon was expected to have a beneficial effect on the forecast performance. 

In this respect, Table 4-5 demonstrates the effect of a 0-hours, 13-hours and 42-hours lag 

horizon on the performance metrics. In all cases, the number of trees was kept at a value of 

300 and the number of variables randomly sampled as candidates at each split measured 25, 

100 and 600 with increasing lag horizons (based on a grid search). The table remarkably 

shows that the lag horizon has hardly any effect on the performance.  

Table 4-5: Influence of lag horizon on random forest performance metrics (6h ahead forecast) 
  training data  test data 

random forests lag horizon RMSE RMSE POT R² R² POT  RMSE RMSE POT R² R² POT 

unweighted 0h 0.038 0.042 0.982 0.982  0.162 0.166 0.647 0.699 

 13h 0.036 0.041 0.984 0.983  0.157 0.162 0.670 0.712 

 42h 0.036 0.040 0.985 0.983  0.161 0.165 0.661 0.712 

weighted 0h 0.081 0.011 0.920 0.999  0.162 0.151 0.648 0.752 

 13h 0.075 0.000 0.933 1.000  0.158 0.152 0.668 0.747 

 42h 0.074 0.000 0.933 1.000  0.161 0.156 0.661 0.745 
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Why did the lag horizon have such a small influence on the performance metrics? To answer 

this question, the feature importances of each case were examined. A graphical representation 

of these feature importances can be found in Figure C 3. It seemed that the actual wind speed 

at Vlakte van de Raan, measured along the river stretch, mostly determined the tidal surge, 

independent of the lag horizon extent. For the 13- and 42-hours lag horizons, the observed 

surge at a 6.3-hours lag (i.e. lag 38) had the second largest influence. Accounting for a forecast 

horizon of 6 hours, this observation thus lagged 12.3 hours to the forecast time, being very 

close to the period of the semidiurnal tidal cycle (i.e. one low-high-low tide). When no lag 

horizon was considered, one noticed that the actual measurements played a crucial role. 

Besides the strong increase in importance of the measured wind speed at Vlakte van de Raan, 

also the actual measured surge in Antwerp and the atmospheric pressure at Melsele gained 

now in importance. Due to the lack of observational information, the predicted wind speed at 

Terneuzen became more important too. Nevertheless, the measured wind speed outcompeted 

both the predicted one and measured surge in Antwerp, thus stressing its importance. 

4.4.2 Forecast model in practice 

One of the forecast model applications is triggering alert messages under flood risk conditions. 

Hence, the model should be accurate enough to attribute the forecasted water level to the 

correct alert class, cf. Table 1-1. Based on Table B 2, the alert events were considered as 

being rare. The model classification performance w.r.t. alert classes with only a single or a few 

events was a priori deemed to be bad. A more objective and realistic method included the 

combination of different alert events into a single alert class, next to the class of normal events. 

These two classes were separated by a threshold water level of 6.3 m TAW, see Table 1-1. 

As flood risk conditions were considered, only high water levels were examined w.r.t. the alert 

classification performance. The results are shown in Table 4-6. The performance based on 

astronomical tides is supplemented for comparison. The latter resulted from the harmonic 

analysis in §3.2. Note that it does not consider any forecast horizon. 

During the period Jan 2016 - August 2018 only 17 alert events occurred, i.e. 0.5% of all 

observed high water levels. Table 4-6 indicates that the 24-hours ahead forecast model 

identified 7 alert events. However, 14.3% or 1 event was falsely identified as extreme and 

64.7% of the observed ones were missed during identification, i.e. 11 alert events. On the other 

hand, the 6-hours ahead forecast model identified 20 alert events, being larger than the 

observed number. Now, 11 were falsely discovered and 8 observed alert events were missed. 

Hence, the 6-hours ahead forecast model correctly classified three more alert events than the 

24-hours ahead model. However, false alert messages were triggered as well though. 

The model results were obviously better than the astronomical tidal forecasts where no alert 

events were identified. Nevertheless, the alert messaging needs further improvement. The 

forecast model was trained on the tidal surges and not only storm surges, although some 

improvement towards POT water levels was introduced by weighting the observations. It is 

thus not very surprising that discrepancies occur at these extreme events, occurring only in 

0.5% of all high water levels. 
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Table 4-6: Alert classification performance on test data (from Jan 1, 2016 until August 14, 2018) for 

weighted random forest regression and harmonic analysis (cf. astronomical tides) 

   high water levels (m TAW) 

forecast lag   normal alert 

horizon horizon   ]-, 6.3[ [6.3, [ 

24 13 # observations 3148 17 

    # forecasts 3158 7 

    positive predicted value, PPV (precision) 0.997 0.857 

    false discovery rate, FDR (fall-out) 0.003 0.143 

    false negative rate (miss rate) 0 0.647 

6 13 # observations 3137 17 

    # forecasts 3134 20 

    positive predicted value, PPV (precision) 0.997 0.45 

    false discovery rate, FDR (fall-out) 0.003 0.55 

    false negative rate (miss rate) 0.004 0.471 

astronomical tides # observations 3137 17 

  # forecasts 3134 0 

  positive predicted value, PPV (precision) 0.997 0 

  false discovery rate, FDR (fall-out) 0.003 1 

  false negative rate (miss rate) 0.004 1 

 

4.5 Conclusions 

It is believed that including exogenous, environmental variables in water level forecast models 

may explain discrepancies between the astronomical and true water levels. This chapter 

therefore made an evaluation of different modelling approaches for tidal surge forecasts. Both 

linear and nonlinear autoregression techniques were applied of which random forest 

regression performed best on an independent out-of-sample surge time series. The forecast 

model focused on the tidal surge and not specifically on the high water levels only, being more 

important for storm surges. Because one of the applications consists of storm tide forecasting 

with related alert message triggering, the forecast performance towards high water levels had 

been improved by weighting extreme observations, being defined as water levels exceeding 

the 95-percentile (peaks-over-threshold or POT water levels). As such, evaluated performance 

measures were not only based on the entire tidal cycle but also solely on the POT water levels. 

The finally selected random forest regression model put 30 times more weight on the POT 

observations. Further, a lag horizon of 13 hours was retained. Both a 24-hours and 6-hours 

ahead forecast model was trained. 

Whereas the 24-hours ahead forecast model returned a 𝑅² of 0.57, the 6-hours ahead forecast 

model obviously gave better results, i.e. 𝑅² measured 0.67. The 𝑅2𝑃𝑂𝑇 was determined as 

0.69 and 0.75 respectively. In general, the model underpredicted the absolute surge levels. 

The largest errors on the forecasted surge levels were observed for water levels around 2.5 m 

TAW and measured up to more than 2 m. These large discrepancies occurred during the 

transitional phase between high-low tides, and vice versa, where the water level quickly 

changed. A small temporal shift in tide from skew surges resulted in these large deviations. 
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Random forests can be used to estimate feature importances, and to rank which features have 

the largest predictive power. This may be considered as some form of explanatory analysis. 

Other than that, random forests are very opaque but deliver good predictions. An examination 

of the feature importances revealed the actual wind speed at Vlakte van de Raan, measured 

along the Lower Sea Scheldt river stretch, as the primary predictor in the 6-hours forecast 

model. The observed surge in Antwerp at a 6.3-hours lag was secondly ranked.   

The presented forecast model makes a point prediction of the water level in time. However, 

any interpretation of this point prediction requires an assessment of the related model 

uncertainty. This is less trivial for nonparametric techniques for time series analysis and will be 

dealt with in Chapter 5. 
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CHAPTER 5  

CONFORMAL PREDICTION 

Machine learning techniques can forecast the water level in Antwerp, as demonstrated in 

Chapter 4. However, in general, they do not provide any information on how close their 

forecasts are to the real water levels. Knowledge of the uncertainty on the results is of prior 

importance w.r.t. the model’s practical use. E.g. a (point) water level forecast can be 

underpredicted and thus not triggering any alert message. However, when a 95% prediction 

interval is to be determined, an alert can still be initiated when the alert level is covered by the 

interval estimate. 

Conformal prediction or inference provides a general framework, as explained in §2.3.3. The 

advantages are manifold, because one does not make any prior assumptions about the 

multivariate distribution of the data and the forecasting tool. The conformal prediction 

framework and some extensions will be demonstrated on the present case of surge 

forecasting. The basic assumption is exchangeable data, which is definitely not valid in case 

of time series analysis though. Again, §2.3.3 discussed some options based on the work of 

Balasubramanian et al. (2014). These methods will be applied to the present case of surge 

forecasting. 

5.1 Conformal prediction for time series analysis 

Balasubramanian et al. (2014) described two methods to deal with dependent data in the 

conformal inference framework. The first method uses an autoregressive model, as described 

in the previous chapter; one thus not mind violating the exchangeable requirement. The 

observations or samples are intrinsically dependent because different rows of the feature 

matrix contain the same features. As such, one cannot theoretically guarantee for validity. The 

second method filters the data such that samples become independent, i.e. any feature only 

resides in one single sample; see §2.3.3 for more information. 

To obtain an independent data set, as proposed in the second method, the data was filtered 

with a certain time frame such that between-sample correlations were eliminated. This time 

frame was identified by gradually increasing the frame while sequentially conducting a Ljung-

Box independence test (with a significance level of 0.05). This resulted in selecting samples 

every 491 time intervals of 10 minutes each. As a result, only 1352 samples remained for the 

period January 2006 till August 2018, which showed to be insufficient to build a predictive 

model with high performance. It was therefore decided to continue with the first method, 

expanded with a coverage probability check on the test data, i.e. we checked whether e.g. 

95% of the predictions were covered by the 95% prediction interval. 



Chapter 5. Conformal Prediction 

 

34 

 

5.2 Evaluation of conformal prediction and its extensions 

In this work, the original conformal prediction framework is presented, together with three 

extensions or modifications. Their performance is assessed by the coverage probability of the 

95% conformal prediction interval on a test data set, being independent of the training and 

calibration data sets. This is shown in Table 5-1 for the different methods. In addition, the 

prediction intervals will be visually expected based on the storms of December 2013 (Santa 

Claus storm) and January 2018. These can be found in Figure D 1 - Figure D 7. Note that the 

weighted random forest regression model from Chapter 4 is used below. The conformal 

prediction evaluation was performed for both the 6-hours and 24-hours ahead forecast models. 

Firstly, the original conformal framework is discussed. To conduct the original framework, we 

trained the point forecast model on the previously set training and validation data sets, i.e. from 

2006-01-11 to 2016-01-01. The nonconformity measures were determined on the same data 

set (denoted as calibration data) and the coverage probability was checked on the test data 

from 2016-01-01 to 2018-08-14. Table 5-1 shows a 95% coverage probability on the calibration 

data set, which was expected seen the nonconformal measure definition on this data. Whereas 

the prediction interval only covered 77.7% of the predictions for the 6-hours ahead forecast 

model, the coverage improved to 86.1% for the 24-hours ahead forecast model. These 

discrepancies from the set value of 95% indicate that the forecast model was not properly 

generalized and thus resulted in lower coverage probabilities w.r.t. the test data. From Figure 

D 1 and Figure D 5, one notices that the prediction intervals were very narrow as a result of 

the large 𝑅² on the training data (see Table 4-3 and Table 4-4). The 𝑅² on the test data was 

much lower, reflecting some overfitting of the forecast model on the training data. This 

suggests that it might be better to determine the nonconformity measures on a separate and 

independent data set, such that the prediction interval width becomes more realistic. This is 

applied in the split conformal framework. 

Table 5-1: Coverage probability of 95% conformal prediction intervals 

 6-hours forecast 24-hours forecast 

 calibration test calibration test 

Original conformal prediction 0.950 0.777 0.950 0.861 

Split conformal prediction 0.950 0.963 0.950 0.960 

Locally-weighted conformal prediction 0.950 0.961 n.a. n.a. 

Local split conformal prediction 0.949 0.932 0.957 0.941 

 

Secondly, the split conformal framework was originally developed to cope with large data sets 

and computationally demanding target estimators. For that reason, the method separates the 

model fitting and residual ranking steps (to determine the nonconformity measure) using 

sample splitting. Hence, the data is now split in training (from 2006-01-11 04:00 to 2013-07-01 

00:00) and calibration (from 2013-07-01 00:00 to 2016-01-01 00:00) data on which, 

respectively, the point prediction model is trained and the residual ranking is performed.  

The performance results are again shown in Table 5-1, and the visual inspection is to be found 

in Figure D 2 and Figure D 6 for the 6-hours and 24-hours ahead forecast models respectively. 

The table clearly shows that the nonconformity measure distribution was now more realistic 

w.r.t. test data: 96% of the predicted water levels were covered by the prediction interval, being 
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close to the set 95%. Due to the sample split, the 6-hours ahead forecast model was now only 

able to be trained on one major storm and, as such, was incapable to properly forecast the 

2013 storm; the 95% prediction interval did not cover the observed water levels (note that the 

24-hours ahead forecast model performed much worse). Surprisingly, the 2018 storm was well 

predicted (probably because of the more moderate low tide level, similar to the storm the model 

was trained on). The nonconformity measures were now determined on more realistic, cf. 

unknown, predicted water levels and thus led to wider prediction intervals, as observed in the 

figures and the increased coverage probabilities. 

Thirdly, locally-weighted conformal prediction was applied to make the prediction intervals 

variable and dependent on the features. For this purpose, the fitted residuals were inversely 

scaled with the mean absolute deviation (MAD). The latter was attempted to be forecasted by 

both a random forest and simple linear regression model. The MAD forecast performance was 

so bad that this research track was left. For completeness, results for the 6-hours ahead 

forecast model are given in Table 5-1 and Figure D 3. 

Lastly, an alternative to the former method was examined in order to obtain feature-dependent 

prediction intervals: the local split conformal framework. Instead of using the entire calibration 

data set for defining the nonconformity measure distribution, we now selected a subset of n 

calibration data being representative for the considered test sample, i.e. the n closest samples 

in the high-dimensional feature space (in terms of Euclidean distance). The optimal subset 

size n was determined as 200, when the coverage probability leveled off at increasing size 

(data not shown). Hence, for every sample in the test data set, 200 “similar” samples were 

searched for in the calibration data set by the KNN algorithm. The prediction intervals are thus 

tailored on the test feature characteristics. The coverage probabilities on the test data are 

summarized in Table 5-1. Both the 6-hours and 24-hours ahead forecast models were 

characterized by slightly lower coverage probabilities than 95%; they are still acceptable. As 

demonstration, Figure 5-1 now shows a locally variable prediction interval for the 6-hours 

ahead forecast model; see Figure D 4 and Figure D 7 for the other storms and forecast horizon. 

The figures indicate not only wider intervals around low and high tide, but also around the tide 

transitions. The latter agrees with the surge residuals largely deviating from the observed ones 

in these specific tidal phases. 

 
Figure 5-1: Local split conformal prediction intervals for the January 2018 storm, supplemented to the 
6-hours ahead weighted random forest regression model (the astronomical tide is shown too) 
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5.3 Alert classification revisited 

In §4.4.2, we evaluated the random forest regression model w.r.t. its alert classification 

performance on high water levels. The two considered classes, i.e. “normal” and “alert”, were 

separated by a threshold water level of 6.3 m TAW. Besides the fact that some events were 

wrongly identified as alert, 65 and 47% of the alert events were missed for the 24-hours and 

6-hours ahead forecast models respectively. The latter can be improved by considering the 

uncertainty on the point prediction. As such, Table 5-2 revisits the classification performance 

but now based on the upper 95% local split conformal prediction limit. 

From Table 5-2, we may conclude that now 6 (i.e. 1 event) and 0% of the 17 true alert events 

were missed during the period Jan 2016 - August 2018. This is a major improvement, but the 

other side of the coin is that the false discovery rate increased. Instead of 7 alert events with 

the 24-hours ahead forecast random forest model, we now identified 99 events with the local 

split conformal prediction approach. This number decreased to 92 for the 6-hours ahead 

prediction. Despite the large frequency of falsely triggered alerts, the algorithm did not miss 

any true alert event. Similar to §4.4.2, we may conclude that the alert messaging needs further 

improvement. Note, however, that these events were very rare and occurred only in 0.5% of 

all high water levels, hence, demanding high model performances. 

Table 5-2: Alert classification performance on test data (from Jan 1, 2016 until August 14, 2018) for the 

upper 95% local split conformal prediction limit of weighted random forest regression 

 
 

  high water levels (m TAW) 

forecast  lag   normal alert 

horizon  horizon   ]-, 6.3[ [6.3, [ 

24  13 # observations 3144 17 

     # forecasts 3062 99 

     positive predicted value, PPV (precision) 1 0.162 

     false discovery rate, FDR (fall-out) 0 0.838 

     false negative rate (miss rate) 0 0.059 

6  13 # observations 3137 17 

     # forecasts 3062 92 

     positive predicted value, PPV (precision) 1 0.185 

     false discovery rate, FDR (fall-out) 0 0.815 

     false negative rate (miss rate) 0 0 

 

5.4 Conclusions 

Any practical use of forecast models implicates knowledge of the model uncertainty. In this 

respect, the forecasted water levels from the weighted random forest regression model were 

supplemented with 95% prediction intervals. These uncertainty bands were computed by 

means of the conformal prediction framework. The advantage here is that the methodology 

can be applied independent of the machine learning algorithm and underlying multivariate 

distribution of the data. Prudence is important when applying the conformal prediction 

framework because it assumes exchangeable data, which is not a priori valid in time series 
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analysis. For this reason, the coverage probability was checked on test data to make sure the 

approach was acceptable. 

To obtain locally variable prediction intervals, the nonconformal measure for a test sample was 

based on a subset of 200 calibration data being representative for this sample, i.e. being 

closest in the high-dimensional feature space. The KNN algorithm was applied for this purpose. 

In comparison to some other alternative conformal methods, this local split conformal 

prediction framework resulted in the best results. 

Once an interval prediction can be performed, the alert classification performance from 

Chapter 4 can be revisited. Alert events were now identified by the upper 95% conformal 

prediction limit. No or almost no alert events were missed by the classification effort, but the 

other side of the coin was that many more events were falsely classified as alert. 
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CHAPTER 6  

CONCLUSIONS 

Throughout history, the Scheldt estuary had a large economic value and drove the industry 

around Antwerp and the hinterland. Besides economic benefits, it has a large impact on nature 

as well. Water levels are not only driven by upstream river discharges but mainly by the tidal 

influences, because of the Scheldt’s connection to the North Sea. Spring tide accompanied 

with strong north-western winds may lead to extreme high water levels and thus potentially 

endangering Antwerp city with flooding. Flood protection walls along the quays therefore need 

to keep the city dry. Hence, in-time closure of these protection walls requires good storm surge 

forecasts.  

Flanders Hydraulic Research, a division of the department of Mobility and Public Works of the 

Government of Flanders, delivers forecast modelling tools for many purposes. Scheldt water 

level forecasts use nowadays physically-based hydrodynamic models with wind effects, and 

astronomical tides are applied as boundary conditions. These variables and others, like 

atmospheric pressure, river discharges, etc. are known to result in discrepancies between the 

astronomical and observed water levels. Note that not only the tidal amplitude may differ but 

also the high and low water time of occurrence. This is called skew surge. This research 

therefore aimed to improve the water level forecasts near Antwerp by feeding these 

environmental variables into a data-driven tidal surge forecast model.  

The Scheldt estuary had been extensively measured over the last decades, resulting in huge 

time series data sets. As such, data was available from January 1998 until August 2018 

covering water levels, wind speed and direction, atmospheric pressure, air and water 

temperature, and the river discharge upstream of Antwerp. Not only measurements but also 

predictions were available for the wind speed and direction. Further, some variables were 

measured at multiple locations along the estuary. Due to the very similar cross-correlation 

function of wind at Vlakte van de Raan and Hansweert with surge level, the former was 

selected based on the maximum correlation value. Water levels of Antwerp and Vlissingen 

were both retained, as the difference between their cross-correlation functions reflects the 

hydrodynamic properties of the estuary such as confinement, bends and side channels. Note 

that data originated from different sources and required the necessary data preparation, 

cleaning and imputation of missing values.  

This tidal surge forecasting task is essentially a time series analysis problem. It was opted to 

model the surge and not the water levels themselves though. For this purpose, a harmonic 

analysis was first performed to subtract the astronomical water levels from the observed ones. 

A sliding window multi-step forecast model was applied, i.e. prior time steps were used to 

predict multiple time steps ahead. A lag horizon of 13 hours was withheld because longer 

horizons did not significantly improve the model performance anymore. In addition, both a 6-

hours and 24-hours ahead forecast model were trained to examine their difference in 

performance. In the present application, we not only have lagged observational data, but also 

forecasts between the present time and the 6-hours or 24-hours ahead forecast time. 
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Different supervised learning techniques were subsequently evaluated on their surge forecast 

performance. Linear regression techniques covered ordinary linear regression and its 

penalized variants Lasso, Ridge and elastic net. Regularization or penalization primarily aimed 

at properly dealing with correlated predictors or features in order to avoid overfitting. Because 

of estuarine nonlinear system behaviour, increased forecast performances were expected by 

applying nonlinear models. In this respect, random forest regression, least-squares support 

vector regression, extreme learning machines and multiple layer perceptron models were 

evaluated. 

These learning methods were trained with the validation set approach; this approach was 

expected to be allowed because of the extent of the available time series. Model training 

happened on 6.5 years of data, whereas the validation period consisted of 2.5 years. The 

forecast performance was subsequently evaluated on an independent out-of-sample data set 

of another 2.5 years. Contiguous time periods were considered here with excluded data at the 

period’s start to account for autocorrelation. If a learning technique required hyperparameters, 

they were tuned by a grid search approach.  

From this comparative study, random forest regression resulted in the best tidal surge forecast 

performance. Whereas the 24-hours ahead forecast model returned a 𝑅² of 0.57, the 6-hours 

ahead forecast model obviously gave better results with a 𝑅² of 0.67. Because one of the 

model applications consists of storm tide forecasting with related alert message triggering, the 

forecast performance towards high water levels had been improved by weighting extreme 

observations. The latter were defined as water levels exceeding the 95-percentile (peaks-over-

threshold or POT) water levels. Evaluated performance measures were therefore not only 

based on the entire tidal cycle but also solely on the POT water levels. The finally selected 

random forest regression model put 30 times more weight on the POT observations. The 

𝑅2 𝑃𝑂𝑇 was determined as 0.69 and 0.75 respectively. In general, the model underpredicted 

the absolute surge levels. The largest errors on the forecasted surge levels were observed for 

water levels around 2.5 m TAW and measured up to more than 2 m. These large discrepancies 

occurred during the transitional phase between high-low tides, and vice versa, where the water 

level quickly changed. A small temporal shift in tide by skew surges resulted in large deviations. 

Storm surge alert situations were defined as tides where the high water level exceeded 6.3 m 

TAW. For proper alerting, and subsequent initiation of mitigation measures, predicted tides 

should be properly classified as a normal or alert event. Only 17 alert events occurred during 

the test period Jan 2016 - August 2018, i.e. 0.5% of all observed high water levels, illustrating 

how rare such situations were. The 24-hours ahead forecast model was capable of identifying 

only 7 of these alert events. Additionally, 14.3% or 1 event was falsely identified as extreme 

and 64.7% of the observed ones were missed during identification, i.e. 11 alert events. On the 

other hand, the 6-hours ahead forecast model identified 20 alert events, being larger than the 

observed number. Now, three more alert events than the 24-hours ahead model were correctly 

classified. False alert messages were triggered as well though. The model results were 

obviously better than the astronomical tidal forecasts where no alert events were identified.  

Nonparametric models such as random forests cannot be used for inference but some 

explanatory analysis can be based on feature importances. Feature importance ranking gave 

some indication of which features had the largest predictive power. As a result, the actual wind 

speed at Vlakte van de Raan, measured along the Lower Sea Scheldt river stretch, was 
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identified as the primary predictor in the 6-hours ahead forecast model. The observed surge 

at a 6.3-hours lag was secondly ranked. 

Any practical use of forecast models implicates knowledge of the model uncertainty. 

Uncertainty on the water level forecasts was computed by means of the conformal prediction 

framework. The methodological advantage here is its independence of the machine learning 

algorithm and underlying multivariate distribution of the data. Conformal prediction assumes 

exchangeable data though, which is not a priori valid in time series analysis. For this reason, 

the coverage probability was checked on test data to make sure the approach was acceptable. 

After evaluating several conformal prediction method alternatives, local split conformal 

prediction returned the best results. Once an interval prediction could be performed, the alert 

classification performance was revisited; alert events were now identified by the upper 95% 

conformal prediction limit and not by the point prediction itself. No or almost no alert events 

were missed by the classification effort, but the other side of the coin was that many more 

events were falsely classified as alert. Hence, the alert classification needs further 

improvement. 

 

Further research 

This work should be seen as a first exploration of different surge forecasting techniques. From 

the conducted work, several topics were identified that deserve more attention and effort in 

future research. 

The surge forecast performance strongly depends on the quality of the surge data, being 

defined as the difference between observed and astronomical water levels. These 

astronomical water levels were based on a harmonic analysis of the entire water level time 

series. According to IMDC (2013), the maximum difference between high and low tide 

increases on the long term, and it moves more upstream of the Scheldt estuary too. In addition, 

Gerritsen & van den Bogaard (1998) documented a periodic and sometimes more erratic 

evolution of tidal components in their analyses. This indicates that the long-term harmonic 

analysis, as conducted in this work, averaged out these trend. A harmonic analysis based on, 

e.g., one-year water level time series is expected to improve the surge data quality, and thus 

the model forecast performance. 

In addition to the previous, the model performance may also be improved by applying the so-

called rolling origin approach. Rolling origin is an evaluation technique according to which the 

forecast origin is updated successively and the forecasts are produced from each origin. As 

such, the model is estimated on the training data, and 𝑛-step ahead forecasts are subsequently 

made. When new observations become available, the model is re-trained and forecasts are 

again made, but now starting from the new origin. This method would thus allow the 

consideration of evolving estuary system dynamics. In this respect, on-line learning techniques 

may give improvements as well. 

Autoregressive models generally require stationary data. This data requirement was not 

fulfilled in this thesis though. Attempts had been made to properly transform the data by 

differencing, but stationarity was not obtained and it was decided to continue with non-
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stationary data. It may be worthwhile to further examine the impact of the degree of differencing 

on the model performance. We may also include several degrees of differences in the forecast 

model and let the learning model select the necessary predictors or features.  

Further, the surge forecast models in this work were trained with an objective function based 

on data of the entire tidal cycle; the model performance is thus averaged over all data. One of 

the model applications covers extreme high water forecasting so an objective function based 

on only the maximum high water levels may improve these forecasts. When the high water 

levels are focused upon, the simultaneous modelling of the maximum high water level and 

their time of occurrence by multivariate modelling techniques can be a worthwhile alternative 

approach. Correct alert classification is important and was dealt with in §4.4.2 and §5.3. 

Dedicated models could improve the classification performance, such as autoregressive 

multinomial logit models (Augustin et al., 2008), support vector machines and artificial neural 

networks. 

Finally, multiple layer perceptron models were applied in this work as a nonlinear modelling 

technique. Training these models is not an easy task and requires time and effort. In this 

respect, artificial neural networks should deserve extra attention in future research, especially 

dedicated techniques such as recurrent neural networks and its long-short term memory 

(LSTM) variant for time series analysis.  

 

 

 



 

43 

 

REFERENCES 

 

Augustin N.H., Beevers L. and Sloan W.T. (2008). Predicting river flows for future climates 

using an autoregressive multinomial logit model. Water Resources Research, 44(7).  

Balasubramanian V.N., Ho S.-S. and Vovk V. (2014). Conformal prediction for reliable machine 

learning theory, adaptations and applications. Morgan Kaufmann, 334 pp. 

Bergmeir C. and Benitez J.M. (2012). On the use of cross-validation for time series predictor 

evaluation. Information Sciences, 191, 192-213. 

Bergmeir C., Hyndman R.J. and Koo B. (2018). A note on the validity of cross-validation for 

evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 

120, 70-83. 

Chernozhukov V., Wüthrich K. and Zhu Y. (2018). Exact and robust conformal inference 

methods for predictive machine learning with dependent data. Proceedings of Machine 

Learning Research, 75, 1–17. 

Dashevskiy M. and Luo Z. (2008). Network traffic demand prediction with confidence. In: 

Proceedings of the Global Communications Conference (GLOBECOM 2008), New Orleans, 

USA, 30 November - 4 December 2008. 

De Brabanter K. (2011). Least-squares support vector regression with applications to large-

scale data: a statistical approach. PhD thesis, KU Leuven. 

De Standaard (2018). http://www.standaard.be/cnt/dmf20180103_03278019 

Elgohary T, Mubasher A. and Salah H. (2017). Significant deep wave height prediction by 

using support vector machine approach (Alexandria as case of study). International Journal 

of Current Engineering and Technology, 7(1), 135-143. 

Gerritsen H. en van den Boogaard H. (1998). Getijanalyse Westerschelde. Datarapport 

getijcomponenten. Toepassing van Principal Component Analysis. WL|delft hydraulics i.o.v. 

Rijkswaterstaat, the Netherlands. 

James G., Witten D., Hastie T. and Tibshirani R. (2017). An introduction to statistical learning 

with applications in R. New York, Springer, 426 pp. 

Lei J., G’Sell M., Rinaldo A., Tibshirani R.J. and Wasserman L. (2017). Distribution-free 

predictive inference for regression. Journal of the American Statistical Association, 113(523), 

1094-1111. 

Linusson H. (2017). An introduction to conformal prediction. Totorial Day, The 6th Symposium 

on Conformal and Probabilistic Prediction with Applications (COPA 2017), Stockholm, 

Sweden, 14-16 June 2017. 



References 

 

44 

 

Londhe S. and Gavraskar S.S. (2015). Forecasting one day ahead stream flow using support 

vector regression. Aquatic Procedia, 4, 900-907. 

Mafi S. and Amirinia G. (2017). Forecasting hurricane wave height in Gulf of Mexico using soft 

computing methods. Ocean Engineering, 146, 352-362. 

Manning C.D., Raghavan P. and Schütze H. (2009). An introduction to information retrieval. 

Cambridge University Press, Cambridge, UK, 544 pp. 

Nguyen T.-T., Huu Q.N. and Li M.J. (2015). Forecasting time series water levels on Mekong 

River using machine learning models. 7th International Conference on Knowledge and 

Systems Engineering, October 8-10 2015, Vietnam. 

Opsomer J., Wang Y. and Yang Y. (2001). Nonparametric regression with correlated errors. 

Statistical Science, 16(2), 134-153. 

Rajasekaran S., Gayathri S. and Lee T.-L. (2008). Support vector regression methodology for 

storm surge predictions. Ocean Engineering, 35, 1578-1587. 

Rasmussen C. and Williams C. (2006). Gaussian processes for machine learning. MIT Press, 

USA, 248 pp. 

Roberts K.J., Colle B.A., Georgas N. and Munch S.B. (2015). A regression-based approach 

for cool-season storm surge predictions along the new York-New Jersey coast. Journal of  

Applied Meteorology and Climatology, 54, 1773-1791. 

Royston S.J., Horsburgh K.J. and Lawry J. (2012). Application of rule based methods to 

predicting storm surge. Continental Shelf Research, 37, 79-91. 

Shafer G. and Vovk V. (2008). A tutorial on conformal prediction. Journal of Machine Learning 

Research, 9, 371-421. 

Shumway R.H. and Stoffer D.S. (2017). Time series analysis and its applications. Springer 

International Publishing AG, Fourth Ed., 562 pp. 

Steidley C., Sadovski A., Tissot P., Bachnak R. and Bowles Z. (2005). Water level prediction 

with artificial neural network models. In: Proceedings of the 6th WSEAS international 

conference on Automation & information, Buenos Aires, Argentina, March 1-3, 2005. 

Stoorvogel A.A. and Habets L.C.G.J.M. (2002). Rapport tijdreeksanalyse Westerschelde. 

ICTOO/TU Delft: Eindhoven, the Netherlands. 

Tsai C.-P. and You C.-Y. (2014). Development of models for maximum and time variation of 

storm surges at the Tanshui estuary. Nat. Hazards Earth Syst. Sci., 14, 2313-2320. 

Wang Z.B. and Winterwerp H. (2013). Data-analyse waterstanden Westerschelde: 

basisrapport grootschalige ontwikkeling G-1. Instandhouding vaarpassen Schelde 

Milieuvergunningen terugstorten baggerspecie. IMDC, in cooperation with Deltares, Svasek 

Hydraulics and ARCADIS. 



 

45 

 

LIST OF ABBREVIATIONS 

 

ACF      autocorrelation function 

ANN      artificial neural network 

ARIMA      autoregressive integrated moving average 

ARIMAX     ARIMA model with exogenous variables X 

CCF      cross-correlation function 

CDF      cumulative distribution function 

CV      cross-validation 

ELM      extreme learning machine 

FDR      false discovery rate (fall-out) 

FNR      false negative rate (miss rate) 

FP      false positives 

HIC      Hydrological Information Centre 

KNMI      Royal Netherlands Meteorological Institute 

KNN      k-nearest neighbor 

LOCF      last observation carried forward 

LS-SVR     least-squares support vector regression 

LSTM      long-short term memory 

MAD      mean absolute deviation 

ML      machine learning 

MLP      multiple layer perceptron 

MSE      mean squared error 

POT      peak-over-threshold 

PPV      positive predicted value (precision) 

R²      coefficient of determination 

RMSE      root-mean-squared error 

SVR      support vector regression 

TAW      Tweede Algemene Waterpassing 

TP      true positives 

VMM      Flanders Environmental Agency 
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APPENDIX A 

PROVIDED DATA 

 
Table A 1: Overview of observed and predicted data, provided by Flanders Hydraulic Research 

data location type start date end date time interval provider data cleaning 

tide Antwerpen M 1/01/1998 14/08/2018 10 min HIC  

 Vlissingen M 1/01/1998 14/08/2018 10 min HIC  

wind speed 
& direction 

Vlakte van de 
Raan 

M 1/06/1998 14/08/2018 10 min HIC  

 Hansweert M 1/01/1998 14/08/2018 10 min HIC  

 
 

P 11/01/2006 3/07/2018  10 min 

 forecast 
horizon of 
50h, 
updated 
every 6h 

KNMI  

 Terneuzen P 11/01/2006 3/07/2018  10 min 

 forecast 
horizon of 
50h, 
updated 
every 6h 

KNMI  removal of duplicates (with 
slightly different values) 

 linear interpolation for 
intermediate times, unless 
missing data for more than 
12h 

air temp. Melsele M 1/01/2014 14/08/2018 15 min HIC/ 
VMM 

 removal duplicates 

 replace extreme values, i.e. 
ΔT between subsequent times 
is >2°C, by average of 
neighbours 

 linear interpolation for 
intermediate times 

barometric 
pressure 

Melsele M 1/01/2014 14/08/2018 15 min HIC/ 
VMM 

 removal duplicates 

 replace extreme values, i.e. 
ΔP between subsequent 
times is >10Pa, by average of 
neighbours 

 linear interpolation for 
intermediate times 

river 
discharge 

Demer M 1/01/2002 25/09/2018 60min/15min

/5min 

HIC  missing values for max. 1h 
are linearly interpolated due to 
slowly changing discharges 

 Dender M 1/01/2002 25/09/2018 24h/15min/5

min 

HIC  24h-meas are kept constant, 
i.e. LOCF 

 linear interpolation for 
15min/5min measurements 

 Dijle M 1/01/2002 2/10/2018 15 min HIC  missing values for max. 1h 
are linearly interpolated due to 
slowly changing discharges 

 Grote Nete M 1/01/2002 25/09/2018 60min/15min

/5min 

HIC  missing values of max. 1h are 
linearly interpolated 

 Kleine Nete M 1/01/2002 25/09/2018 60min/15min

/5min 

HIC  missing values are linearly 
interpolated 

 Zeeschelde M 1/01/2002 25/09/2018 24h/15min/5

min 

HIC  24h-meas are kept constant, 
i.e. LOCF 

 linear interpolation for 
15min/5min measurements 

 Zenne M 1/01/2002 25/09/2018 60min/15min

/5min 

HIC  missing values are linearly 
interpolated 
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data location type start date end date time interval provider data cleaning 

water temp. Prosperpolder M 1/1/2002 24/09/2018 5 min HIC  missing values for max. 1h 
are linearly interpolated due to 
slowly changing discharges  

Notes: 

 Type: M and P refer to measured and predicted variables respectively. 

 Missing values are imputed for all variables, but only 1 value of 10 min each is imputed due to two reasons: 

1. data is collected nowadays at a frequency of 5-15 min so one acknowledges that this is the necessary 

frequency to capture all necessary dynamics 

2. imputing only one value drastically lowers the number of missing data periods, hence enlarging our 

observation data matrix 

 Wind direction is given in degrees. 
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Figure A 1: Overview of missing data between 1998 and 2018 
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APPENDIX B 

DATA EXPLORATION 

 
 

Table B 1: Fitted tidal component parameters with the R package TideHarmonics (For the naming 

scheme of the harmonic constituents, please refer to: https://CRAN.R-

project.org/package=TideHarmonics) 
component names value 95% CI  component names value 95% CI 

Sa_S -0.03143 [-0.03235 , -0.03052]  Sa_C -0.05426 [-0.05517 , -0.05334] 

Ssa_S -0.00133 [-0.00224 , -0.00041]  Ssa_C -0.0169 [-0.01782 , -0.01599] 

Mm_S 0.012497 [0.01159 , 0.01341]  Mm_C 0.006714 [0.0058 , 0.00763] 

MSf_S 0.039562 [0.03865 , 0.04048]  MSf_C 0.05299 [0.05208 , 0.0539] 

Mf_S 0.013074 [0.01227 , 0.01388]  Mf_C 0.004213 [0.00341 , 0.00502] 

`2Q1_S` -0.00199 [-0.00288 , -0.0011]  `2Q1_C` 0.004013 [0.00312 , 0.0049] 

sig1_S 0.002735 [0.00185 , 0.00363]  sig1_C -0.00516 [-0.00605 , -0.00427] 

Q1_S 0.003493 [0.0026 , 0.00438]  Q1_C 0.032883 [0.03199 , 0.03377] 

rho1_S 6.64E-05 [-0.00082 , 0.00096]  rho1_C 0.007159 [0.00627 , 0.00805] 

O1_S 0.089575 [0.08868 , 0.09046]  O1_C 0.054434 [0.05354 , 0.05532] 

`1M.1p1_S` -0.00431 [-0.00523 , -0.0034]  `1M.1p1_C` -0.00226 [-0.00318 , -0.00135] 

M1_S 0.002002 [0.00144 , 0.00257]  M1_C 6.27E-05 [-0.0005 , 0.00063] 

chi1_S 0.001752 [0.00086 , 0.00265]  chi1_C -0.00045 [-0.00135 , 0.00045] 

pi1_S 0.001659 [0.00074 , 0.00257]  pi1_C -0.00187 [-0.00279 , -0.00096] 

P1_S -0.02172 [-0.02264 , -0.02081]  P1_C -0.03552 [-0.03644 , -0.03461] 

S1_S -0.00755 [-0.00847 , -0.00664]  S1_C -0.00788 [-0.00879 , -0.00696] 

K1_S -0.05628 [-0.05719 , -0.05538]  K1_C -0.04844 [-0.04935 , -0.04754] 

psi1_S 0.003372 [0.00246 , 0.00429]  psi1_C -0.00217 [-0.00309 , -0.00126] 

phi1_S -0.0004 [-0.00129 , 0.0005]  phi1_C -0.00102 [-0.00191 , -0.00012] 

the1_S -0.00045 [-0.00135 , 0.00044]  the1_C -0.00094 [-0.00183 , -0.00004] 

J1_S -0.00083 [-0.00172 , 0.00007]  J1_C 0.005359 [0.00446 , 0.00626] 

`1S.1o1_S` 0.003383 [0.00249 , 0.00427]  `1S.1o1_C` 0.005193 [0.0043 , 0.00608] 

OO1_S -0.00028 [-0.00109 , 0.00052]  OO1_C 0.005586 [0.00478 , 0.00639] 

`1o1q.2_S` -0.01247 [-0.01331 , -0.01163]  `1o1q.2_C` -0.01774 [-0.01857 , -0.0169] 

`1M1N.1S2_S` -0.02951 [-0.03042 , -0.02859]  `1M1N.1S2_C` -0.03734 [-0.03825 , -0.03642] 

`2N2_S` 0.038124 [0.03721 , 0.03904]  `2N2_C` 0.000697 [-0.00022 , 0.00161] 

mu2_S -0.17234 [-0.17326 , -0.17143]  mu2_C -0.17193 [-0.17285 , -0.17102] 

N2_S 0.342162 [0.34125 , 0.34308]  N2_C -0.09272 [-0.09363 , -0.0918] 

nu2_S 0.133623 [0.13271 , 0.13454]  nu2_C 0.010361 [0.00945 , 0.01128] 

`1o1p.2_S` -0.02477 [-0.02566 , -0.02388]  `1o1p.2_C` -0.0029 [-0.00379 , -0.00201] 

M2_S 1.927675 [1.92676 , 1.92859]  M2_C -1.17283 [-1.17374 , -1.17191] 

`1M1K.1S2_S` -0.0304 [-0.03128 , -0.02952]  `1M1K.1S2_C` 0.008489 [0.00761 , 0.00937] 

lam2_S 0.065446 [0.06453 , 0.06636]  lam2_C -0.05323 [-0.05415 , -0.05232] 

L2_S 0.143448 [0.14257 , 0.14433]  L2_C -0.11107 [-0.11195 , -0.11019] 

T2_S 0.012247 [0.01133 , 0.01316]  T2_C -0.02967 [-0.03059 , -0.02876] 

S2_S 0.04164 [0.04072 , 0.04256]  S2_C -0.57296 [-0.57388 , -0.57205] 

R2_S -0.00386 [-0.00478 , -0.00295]  R2_C -0.00234 [-0.00325 , -0.00142] 

K2_S 0.017291 [0.01642 , 0.01816]  K2_C -0.16855 [-0.16942 , -0.16768] 

`1M1S.1N2_S` 0.00855 [0.00764 , 0.00946]  `1M1S.1N2_C` 0.044548 [0.04363 , 0.04546] 

`1k1j.2_S` 0.001876 [0.00101 , 0.00275]  `1k1j.2_C` -0.0036 [-0.00447 , -0.00273] 

`2S.1M2_S` 0.01597 [0.01551 , 0.01643]  `2S.1M2_C` 0.025969 [0.02551 , 0.02643] 

`1M1o.3_S` 0.046986 [0.04609 , 0.04788]  `1M1o.3_C` -0.01298 [-0.01388 , -0.01208] 

M3_S 0.00994 [0.00903 , 0.01085]  M3_C 0.001789 [0.00088 , 0.0027] 

`1S1o.3_S` 0.00191 [0.00102 , 0.0028]  `1S1o.3_C` -0.02284 [-0.02373 , -0.02195] 

`1M1k.3_S` -0.03848 [-0.03939 , -0.03757]  `1M1k.3_C` -0.00478 [-0.00569 , -0.00387] 

`1S1k.3_S` -0.00973 [-0.01063 , -0.00882]  `1S1k.3_C` 0.008924 [0.00802 , 0.00983] 

`1M1N.4_S` -0.01678 [-0.01769 , -0.01586]  `1M1N.4_C` -0.03593 [-0.03684 , -0.03502] 

M4_S -0.08546 [-0.08637 , -0.08455]  M4_C -0.08294 [-0.08386 , -0.08203] 

`1S1N.4_S` -0.00512 [-0.00603 , -0.0042]  `1S1N.4_C` 0.000143 [-0.00077 , 0.00106] 

`1M1S.4_S` -0.07438 [-0.07529 , -0.07346]  `1M1S.4_C` 0.006459 [0.00554 , 0.00737] 

`1M1K.4_S` -0.02093 [-0.02181 , -0.02005]  `1M1K.4_C` 0.002442 [0.00156 , 0.00332] 

S4_S -0.0025 [-0.00342 , -0.00159]  S4_C 0.002873 [0.00196 , 0.00379] 

`1S1K.4_S` -0.00048 [-0.00135 , 0.00039]  `1S1K.4_C` 0.002345 [0.00147 , 0.00321] 

`2M1N.6_S` -0.00966 [-0.01011 , -0.0092]  `2M1N.6_C` 0.035236 [0.03478 , 0.03569] 

M6_S 0.012569 [0.01166 , 0.01348]  M6_C 0.134897 [0.13399 , 0.13581] 

`1M1S1N.6_S` 0.014278 [0.01337 , 0.01519]  `1M1S1N.6_C` 0.01566 [0.01475 , 0.01657] 

`2M1S.6_S` 0.046094 [0.04564 , 0.04655]  `2M1S.6_C` 0.042549 [0.04209 , 0.04301] 

`2M1K.6_S` 0.012561 [0.01212 , 0.013]  `2M1K.6_C` 0.011134 [0.01069 , 0.01157] 

`2S1M.6_S` 0.009262 [0.0088 , 0.00972]  `2S1M.6_C` -0.00157 [-0.00203 , -0.00112] 

`1M1S1K.6_S` 0.011764 [0.01088 , 0.01264]  `1M1S1K.6_C` -0.00209 [-0.00297 , -0.00121] 

`2M1N.2S2_S` -0.00125 [-0.00147 , -0.00102]  `2M1N.2S2_C` 0.004001 [0.00377 , 0.00423] 

`3M.1S1K2_S` -0.00073 [-0.00102 , -0.00044]  `3M.1S1K2_C` 0.012289 [0.012 , 0.01258] 
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component names value 95% CI  component names value 95% CI 

`3M.2S2_S` -0.00134 [-0.00149 , -0.00119]  `3M.2S2_C` 0.010755 [0.0106 , 0.01091] 

`1M1N1K.2S2_S` 0.001447 [0.001 , 0.00189]  `1M1N1K.2S2_C` 0.00117 [0.00073 , 0.00161] 

`1S1N.1K2_S` 0.002452 [0.00157 , 0.00333]  `1S1N.1K2_C` 0.005662 [0.00478 , 0.00654] 

`2S.1K2_S` 0.001062 [0.00063 , 0.0015]  `2S.1K2_C` -0.00178 [-0.00222 , -0.00135] 

`2M1S.2N2_S` -0.00019 [-0.00042 , 0.00003]  `2M1S.2N2_C` -0.0003 [-0.00053 , -0.00007] 

`1M1q.3_S` 0.018192 [0.0173 , 0.01909]  `1M1q.3_C` 0.008011 [0.00711 , 0.00891] 

`2M.1p3_S` 0.003854 [0.0034 , 0.00431]  `2M.1p3_C` -0.0019 [-0.00236 , -0.00144] 

`2M.1q3_S` 0.001174 [0.00073 , 0.00162]  `2M.1q3_C` 0.002906 [0.00246 , 0.00335] 

`3M.1K4_S` -0.00013 [-0.00043 , 0.00016]  `3M.1K4_C` 0.001703 [0.00141 , 0.002] 

`3M.1S4_S` -0.00091 [-0.00122 , -0.00061]  `3M.1S4_C` 0.00392 [0.00362 , 0.00423] 

`2M1S.1K4_S` -0.0003 [-0.00074 , 0.00014]  `2M1S.1K4_C` 0.003088 [0.00265 , 0.00353] 

`3M.1k5_S` 0.003439 [0.00314 , 0.00374]  `3M.1k5_C` -6.7E-05 [-0.00037 , 0.00024] 

M5_S -3.5E-05 [-0.00095 , 0.00088]  M5_C 1.89E-06 [-0.00091 , 0.00091] 

`3M.1o5_S` -0.00441 [-0.0047 , -0.00411]  `3M.1o5_C` -0.00337 [-0.00367 , -0.00308] 

`2M2N.1S6_S` 0.001938 [0.00171 , 0.00217]  `2M2N.1S6_C` -6.9E-05 [-0.0003 , 0.00016] 

`3M1N.1S6_S` 0.007242 [0.00694 , 0.00755]  `3M1N.1S6_C` -0.00242 [-0.00273 , -0.00212] 

`4M.1K6_S` 0.001302 [0.00108 , 0.00152]  `4M.1K6_C` -0.00217 [-0.00239 , -0.00195] 

`4M.1S6_S` 0.006425 [0.0062 , 0.00665]  `4M.1S6_C` -0.00412 [-0.00434 , -0.00389] 

`2M1S1N.1K6_S` 0.000475 [0.00003 , 0.00092]  `2M1S1N.1K6_C` -0.00184 [-0.00229 , -0.0014] 

`2M1V.6_S` -0.00673 [-0.00719 , -0.00628]  `2M1V.6_C` 0.012547 [0.01209 , 0.013] 

`3M1S.1K6_S` 0.000794 [0.0005 , 0.00109]  `3M1S.1K6_C` -0.00362 [-0.00391 , -0.00333] 

`4M.1N6_S` -0.00194 [-0.00217 , -0.00171]  `4M.1N6_C` -0.00593 [-0.00616 , -0.0057] 

`3M1S.1N6_S` -0.00997 [-0.01027 , -0.00966]  `3M1S.1N6_C` -0.00498 [-0.00528 , -0.00467] 

`1M1K1L.6_S` 0.005271 [0.00442 , 0.00612]  `1M1K1L.6_C` 0.001751 [0.0009 , 0.0026] 

`2M2N.8_S` -0.0005 [-0.00073 , -0.00028]  `2M2N.8_C` 0.003907 [0.00368 , 0.00413] 

`3M1N.8_S` 0.003315 [0.00301 , 0.00362]  `3M1N.8_C` 0.012938 [0.01263 , 0.01324] 

M8_S 0.032043 [0.03114 , 0.03295]  M8_C 0.042541 [0.04164 , 0.04345] 

`2M1S1N.8_S` 0.013942 [0.01349 , 0.0144]  `2M1S1N.8_C` 0.006594 [0.00614 , 0.00705] 

`3M1S.8_S` 0.024013 [0.02371 , 0.02432]  `3M1S.8_C` 0.006023 [0.00572 , 0.00633] 

`3M1K.8_S` 0.006208 [0.00592 , 0.0065]  `3M1K.8_C` 0.000948 [0.00065 , 0.00124] 

`1M1S1N1K.8_S` 0.002574 [0.00169 , 0.00346]  `1M1S1N1K.8_C` -0.00194 [-0.00282 , -0.00105] 

`2M2S.8_S` 0.005521 [0.00529 , 0.00575]  `2M2S.8_C` -0.00417 [-0.00439 , -0.00394] 

`2M1S1K.8_S` 0.006245 [0.0058 , 0.00668]  `2M1S1K.8_C` -0.00497 [-0.00541 , -0.00453] 

`4M1S.10_S` 0.001956 [0.00173 , 0.00218]  `4M1S.10_C` -0.00111 [-0.00134 , -0.00088] 

`3M2S.10_S` 0.000202 [0.00005 , 0.00035]  `3M2S.10_C` -0.00109 [-0.00124 , -0.00094] 

`4M1S1N.12_S` -0.00379 [-0.00402 , -0.00356]  `4M1S1N.12_C` 0.001292 [0.00106 , 0.00152] 

`5M1S.12_S` -0.00301 [-0.00319 , -0.00283]  `5M1S.12_C` 0.002415 [0.00223 , 0.0026] 

`4M2S.12_S` -0.00028 [-0.00039 , -0.00016]  `4M2S.12_C` 0.001759 [0.00164 , 0.00187] 

`1M1V.1S2_S` -0.01551 [-0.01643 , -0.0146]  `1M1V.1S2_C` -0.03584 [-0.03675 , -0.03493] 

`2M.1K2_S` -0.03122 [-0.03166 , -0.03078]  `2M.1K2_C` -0.02154 [-0.02198 , -0.0211] 

MA2_S 0.034275 [0.03336 , 0.03519]  MA2_C -0.00265 [-0.00356 , -0.00173] 

MB2_S -0.02005 [-0.02097 , -0.01914]  MB2_C -0.01895 [-0.01986 , -0.01803] 

`1M1S.1V2_S` 0.005054 [0.00414 , 0.00597]  `1M1S.1V2_C` -0.01012 [-0.01103 , -0.00921] 

`1S1K.1M2_S` 0.016515 [0.01564 , 0.0174]  `1S1K.1M2_C` 0.028952 [0.02807 , 0.02983] 

`2M1N.1S4_S` -0.00125 [-0.00171 , -0.0008]  `2M1N.1S4_C` 0.002937 [0.00248 , 0.00339] 

`1M1V.4_S` -0.00512 [-0.00603 , -0.00421]  `1M1V.4_C` -0.01358 [-0.01449 , -0.01267] 

`3M.1N4_S` 0.003856 [0.00355 , 0.00416]  `3M.1N4_C` 0.002337 [0.00203 , 0.00264] 

`2M1S.1N4_S` 0.005106 [0.00465 , 0.00556]  `2M1S.1N4_C` -0.00197 [-0.00243 , -0.00152] 

NA2_S 0.005323 [0.00441 , 0.00624]  NA2_C -0.00175 [-0.00267 , -0.00084] 

NB2_S 0.005974 [0.00506 , 0.00689]  NB2_C 0.00105 [0.00014 , 0.00197] 

`1M1S1o.5_S` 0.004149 [0.00325 , 0.00505]  `1M1S1o.5_C` -0.01093 [-0.01182 , -0.01003] 

`1M1S1k.5_S` -0.0038 [-0.00471 , -0.00289]  `1M1S1k.5_C` -0.00972 [-0.01063 , -0.00881] 
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Figure B 1: Wind roses for Hansweert (left) and Vlakte van de Raan (right), based on the period 2006-

2018 

 

 
Figure B 2: Minimum and maximum value of the cross-correlation function (CCF) between surge and 

x/y wind speed as function of the wind directional decomposition. Results are shown for both Hansweert 

and Vlakte van de Raan, based on the period 2006-2018 
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Figure B 3: CCF between the surge level and other observed variables or features (period 2006-2013). 

Features are leading/lagging the surge when the maximum (absolute) cross-correlation occurs at 

positive/negative lags 
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Figure B 4: CCF between different locations for water level (top) and wind (middle and bottom) for the 

period 2006-2013 
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Table B 2: Prevalence of alert events for the training, validation and test data sets 
  high water level dates  
# pre-alert storm tide gate lockdown dangerous storm tide alarm  
1 28/02/2006 16:00 9/11/2007 15:20 18/03/2007 15:20 9/11/2007 4:00 

  

training 

2 1/03/2006 4:20 28/02/2010 16:40 25/11/2007 15:40 6/12/2013 5:20 validation 

3 1/03/2006 16:40 13/01/2017 3:20 21/03/2008 15:40 3/01/2018 16:00 test 

4 31/03/2006 4:20 14/01/2017 4:40 10/02/2009 16:00 

  

 
5 31/03/2006 16:40 2/03/2017 5:40 6/12/2013 18:00  
6 7/10/2006 15:20 

  

22/10/2014 2:40  
7 8/12/2006 18:20 28/11/2015 5:00  
8 18/01/2007 15:20 15/01/2016 7:00  
9 21/01/2007 17:00 

  

 
10 19/03/2007 3:20  
11 19/03/2007 16:00  
12 20/03/2007 16:40  
13 21/03/2007 5:00  
14 21/03/2007 17:00  
15 7/12/2007 14:00  
16 12/03/2008 6:00  
17 12/03/2008 18:40  
18 13/03/2008 7:00  
19 21/03/2008 3:20  
20 22/03/2008 4:00  
21 25/03/2008 5:40  
22 1/10/2008 16:40  
23 31/01/2010 16:20  
24 1/02/2010 17:00  
25 2/02/2010 17:40  
26 1/03/2010 3:40  
27 1/03/2010 16:00  
28 2/03/2010 16:40  
29 30/08/2010 6:40  
30 9/12/2011 15:00  
31 16/12/2011 19:40  
32 24/12/2011 2:40  
33 31/08/2012 3:20  
34 6/11/2013 4:40  
35 5/01/2014 6:00  
36 24/01/2015 18:20  
37 21/03/2015 16:20  
38 30/11/2015 6:20  
39 13/01/2016 5:20  
40 10/02/2016 4:20  
41 10/02/2016 16:40  
42 12/01/2017 3:00  
43 13/01/2017 16:00  
44 14/01/2017 17:00  
45 1/03/2017 5:00  
46 8/12/2017 6:40  
47 2/01/2018 3:00  
48 4/01/2018 4:40  
49 4/01/2018 17:00  
50 1/02/2018 16:00  
51 2/02/2018 4:40  
52 1/05/2018 4:00  
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APPENDIX C 

SURGE FORECAST MODELLING 

 
 

Table C 1: Model performance measures for ordinary and penalized linear regression, random forests, 

LS-SVR and ELM 
    training data test data training data test data 

 lambda alpha  RMSE 
RMSE 
POT 

RMSE 
RMSE 
POT 

R² R² POT R² R² POT 

OLS    0.214 0.229 0.236 0.270 0.450 0.463 0.261 0.220 

Lasso 1.00E-07 1  0.214 0.231 0.235 0.256 0.445 0.453 0.269 0.298 

Ridge 1.00E-07 0  0.214 0.231 0.235 0.256 0.445 0.453 0.269 0.298 

elastic net 1.00E-07 0.5  0.214 0.231 0.235 0.256 0.445 0.453 0.269 0.298 
 ntree mtry weight         

Random forests 300 65 1 0.030 0.037 0.180 0.184 0.989 0.986 0.568 0.639 
 300 65 30 0.070 0.000 0.181 0.171 0.940 1.000 0.567 0.688 
 300 65 60 0.096 0.000 0.180 0.172 0.888 1.000 0.568 0.684 
 300 65 90 0.113 0.000 0.181 0.169 0.846 1.000 0.567 0.693 

 C gamma          

LS-SVR 300 450  0.177 0.190 0.225 0.264 0.623 0.629 0.326 0.256 
 activation no units          

ELM ANN sig 389  0.223 0.250 0.242 0.275 0.398 0.361 0.222 0.192 
 hardlim 389  0.241 0.269 0.258 0.282 0.298 0.256 0.120 0.151 

 hardlims 389  0.241 0.269 0.258 0.282 0.298 0.256 0.120 0.151 
 satlins 389  0.213 0.239 0.245 0.277 0.450 0.416 0.204 0.180 
 tansig 389  0.231 0.257 0.249 0.276 0.356 0.322 0.181 0.184 
 tribas 389  0.218 0.237 0.233 0.249 0.428 0.422 0.284 0.337 
 relu 389  0.215 0.238 0.238 0.265 0.440 0.418 0.250 0.248 
 purelin 389  0.215 0.231 0.237 0.270 0.444 0.455 0.256 0.224 
 tribas 100  0.228 0.253 0.255 0.279 0.371 0.341 0.137 0.169 
 tribas 200  0.223 0.247 0.236 0.264 0.397 0.376 0.264 0.257 
 tribas 389  0.218 0.237 0.233 0.249 0.428 0.422 0.284 0.337 
 tribas 600  0.215 0.233 0.233 0.254 0.439 0.444 0.281 0.310 
 tribas 800  0.214 0.230 0.237 0.258 0.449 0.456 0.254 0.288 
 tribas 1000  0.213 0.230 0.236 0.267 0.454 0.455 0.262 0.241 
 tribas 2000  0.209 0.226 0.235 0.268 0.472 0.478 0.270 0.233 
 tribas 3000  0.216 0.273 0.241 0.333 0.438 0.236 0.233 -0.184 
 satlins 100  0.231 0.254 0.248 0.270 0.357 0.340 0.186 0.220 
 satlins 200  0.225 0.255 0.240 0.286 0.389 0.333 0.237 0.126 
 satlins 389  0.213 0.239 0.245 0.277 0.450 0.416 0.204 0.180 
 satlins 600  0.210 0.228 0.238 0.252 0.466 0.465 0.252 0.320 
 satlins 800  0.206 0.223 0.230 0.271 0.490 0.490 0.301 0.213 
 satlins 1000  0.205 0.222 0.233 0.285 0.494 0.493 0.277 0.132 
 satlins 2000  0.197 0.212 0.232 0.272 0.530 0.541 0.286 0.209 
 satlins 3000  0.194 0.209 0.244 0.302 0.544 0.550 0.214 0.025 
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Figure C 1: Examination of observed vs predicted surge level (top), and surge errors as function of 
water level (bottom) for the 24-hours ahead weighted random forest forecast model (weight = 30) 
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Figure C 2: Examination of observed vs predicted surge level (top), and surge errors as function of 
water level (bottom) for the 6-hours ahead weighted random forest forecast model (weight = 30) 
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42-hours lag horizon  

13-hours lag horizon  

   0-hours lag horizon  

Figure C 3: Feature importance for weighted random forest 6-hours ahead forecast model with several 
lag horizons: 42 hours (top), 13 hours (middle) and 0 hours (bottom). The feature names end with the 
number of time steps X in the lag horizon (cf. lagX) or forecast horizon (cf. predX) 
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APPENDIX D 

CONFORMAL INFERENCE 

 

Figure D 1: Original conformal prediction intervals for two extreme events 6-hours ahead forecasted: 
December 2013 (top) and January 2018 (bottom)  
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Figure D 2: Split conformal prediction intervals for two extreme events 6-hours ahead forecasted: 
December 2013 (top) and January 2018 (bottom) 

  



Appendix D: Conformal Inference 

 

65 

 

 

 

Figure D 3: Locally-weighted split conformal prediction intervals for two extreme events 6-hours ahead 
forecasted: December 2013 (top) and January 2018 (bottom) 
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Figure D 4: Local split conformal prediction intervals for two extreme events 6-hours ahead forecasted: 
December 2013 (top) and January 2018 (bottom) 
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Figure D 5: Original conformal prediction intervals for two extreme events 24-hours ahead forecasted: 
December 2013 (top) and January 2018 (bottom) 
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Figure D 6: Split conformal prediction intervals for two extreme events 24-hours ahead forecasted: 
December 2013 (top) and January 2018 (bottom) 
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Figure D 7: Local split conformal prediction intervals for two extreme events 24-hours ahead forecasted: 
December 2013 (top) and January 2018 (bottom) 


