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ABSTRACT ENGLISH

Quantifying the causal influence of climate drivers on vegetation is not a trivial task,

especially on a global scale. In this thesis, recent satellite data is used to model veg-

etation anomalies, using both linear ridge regression models and non-linear random

forest models. This allows for causal inference within a Granger causality framework.

The importance of water as a driver for vegetation anomalies is quantified on a global

scale and compared to the importance of other drivers. Furthermore, the impact of

new variables in the dataset is quantified. Finally, the effect of the high spatial and

temporal resolution of the data is investigated within the Granger causality frame-

work.



ABSTRACT DUTCH

Het kwantificeren van de causale invloed die klimaat drijvers globaal hebben op vege-

tatie is niet triviaal. In deze thesis worden recente satelliet data gebruikt om vegetatie

anomalieën te modelleren, met lineaire ridge regressie modellen en niet-lineaire ran-

dom forest modellen. Deze causaliteit analyse wordt gevoerd binnen een Granger

causaliteit framework. Het belang van water als een drijver voor vegetatie anoma-

lieën wordt globaal gekwantificeerd en vergeleken met andere drijvers. De impact van

nieuwe variabelen in de dataset wordt gekwantificeerd. Finaal wordt het effect van

de hoge spatiale en temporele resolutie van de data binnen het Granger causaliteit

framework onderzocht.



CHAPTER 1

INTRODUCTION

Vegetation dynamics are largely influenced by external climatic drivers: air tempera-

ture, incoming radiation and water availability (Bonan, 2011; Wu et al., 2015; Papa-

giannopoulou et al., 2017a). These drivers have been changing with the climate and

different ecosystems have shown a difference in resilience to these changes (Seddon

et al., 2016). Thus, climate drivers heavily impact vegetation both by their long-term

availability and their change over time.

Meanwhile, vegetation has a non-neglible impact on these climate drivers. This im-

pact stems from effects such as changes in albedo, surface roughness and evapora-

tion. These alterations effect the global climate system through changes in cloud

formation, the CO2 balance and the energy flux partitioning (Zhang et al., 2014;

Heimann and Reichstein, 2008; Papagiannopoulou et al., 2017b).

On top of this two-way interaction, some other variables influence either vegetation

or climate in a significant manner. For example, human behaviour influences vegeta-

tion through deforestation, land use change and the instigation of large-scale wildfires

(Andela et al., 2017; Tepley et al., 2015). Also, anthropogenic CO2 emmissions sig-

nificantly and irreversibly contribute to a global rise in temperature (Solomon et al.,

2009).

This all gives rise to different negative and positive feedback loops, respectively

dampening or strengthening different interactions. These feedback loops combine

to form a highly non-linear system of interactions, which happens on a variety of

spatial scales. This scale ranges from local (land use change influences local cli-

mate (Stohlgren et al., 1998)) to regional (the 2003 and 2010 european heatwaves

impacted vegetation adversily (Bastos et al., 2014)) to global (anthropogenic CO2-

fertilization has an impact on global primary production (Devaraju et al., 2016)).

On top of that, the temporal scale of these interactions also varies massively, due

to the frequency of occurence of impacting phenomena and the latent response of

natural systems. This scale ranges from direct (the impact of large-scale wildfires

on vegetation (Puig-Gironès et al., 2017)) to annual (the strong seasonality of natural



systems) to interannual (El Niño southern oscillation impacts the mainland vegetation

(Li and Kafatos, 2000)).

The combination of these feedback loops on a variety of spatial and temporal scales

results in a complex web of multi-way interactions. The goal of this thesis is to iso-

late and quantify the impact of different climate variables on vegetation, with respect

to the complex system they are entangled in. This should provide additional under-

standing in the response of global vegetation to climate drivers in recent history.

This task is referred to as causal inference and is preferably done within a solid the-

oretical framework. In this work, the framework proposed in Papagiannopoulou et al.

(2017b) will be adopted, since it was designed for this task and has proven succesful

in a very similar setting. This machine learning framework allows for using a non-

linear model. This is useful for these vegetation-climate interactions, which have

often been reported as non-linear. (Heimann and Reichstein, 2008; Bonan, 2011;

Zhang et al., 2014; Papagiannopoulou et al., 2017b). It is also able to handle the high

co-linearities between different climate variables. Furthermore, it utilizes time series

decomposition and promotes the use of high-level features for modelling.

Considering the recent wealth of high-resolution climate and vegetation data (Ma

et al., 2015), only a selection of sources is used to construct the big data set used in

this work. Most sources consist of remote sensing data, coming from satellites and

spanning most of the vegetated land. NDVI (normalized difference vegetation index)

is used as a remote sensing proxy for vegetation productivity (Pinzon and Tucker,

2014). Different climate variables are used to represent the more general groups of

temperature, water availability and radiation. These groups have been often inves-

tigated for their individual control over global vegetation (Nemani et al., 2003; Wu

et al., 2015; Seddon et al., 2016; Papagiannopoulou et al., 2017a). The variables

used are part of the aforementioned complex web of vegetation-climate interactions.

To fully utilize the power of this proposed framework, the other variables in this web

of interactions should be included in the analysis (Granger, 1969; Papagiannopoulou

et al., 2017b).

This thesis is done as part of the SAT-EX project (http://www.sat-ex.ugent.be/). It

is very similar to the work of Papagiannopoulou et al. (2017b,a), with the biggest

novelty being the data, which is more recent: 2003-2015 compared to 1981 - 2010

in Papagiannopoulou et al. (2017b)). The data also has a higher spatial and temporal

resolution. The coding for this work was all done from scratch in python (with initial

support provided by Ir. Stijn Decubber).
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CHAPTER 1. INTRODUCTION

1.1 Goal and research questions

The goal of this thesis is to gain quantitative knowledge on how climate drivers influ-

enced global vegetation between 2003 and 2015 and compare the results to previous

research (Papagiannopoulou et al., 2017b,a). This is represented by the main research

questions.

1. Is water the most important climate driver for vegetation anomalies globally as

presented in Papagiannopoulou et al. (2017a)?

2. What is the impact of the new variables in the dataset on the analysis?

3. What is the influence of a higher spatial and temporal resolution on the Granger

Causality Framework compared to previous work of Papagiannopoulou et al.

(2017a)?

1.2 Outline

In Chapter two, a literature review is presented that contains a selection of research

papers. The aim is to represent the variety of ways these vegetation-climate interac-

tions are researched and where this work fits into that field.

In Chapter three, the used data are discussed. This comprises the data collection

procedure, the data merging and the data preprocessing that was done.

In Chapter four, the used methods are presented. First, the construction of the NDVI

anomalies is explained. Then, the Granger causality theory is given together with the

machine learning models that are used. The construction of model features is dis-

cussed, which consists of a time series decomposition, lagged and cumulative vari-

ables.

In Chapter five, the results are presented and discussed.

In Chapter six, some general conclusions and suggestions for further research are

given.

3



CHAPTER 2

LITERATURE REVIEW

Quantifying the relationship between climate and vegetation has been the topic of

many research projects, on a variaty of scales and using a wide range of different

approaches. From this vast amount of research, some selected papers are presented

in the following sections. This is in no way a representative overview of the available

literature, but merely a slice of context in which to place this work. To facilitate

the comparison between literature, a short structure is presented of the common

differences in scale, goal and methods of the different works.

1. Scale

(a) Space

• regional

• global

(b) Time

• incidental

• decadal

2. Goal

(a) Future prediction

• climate change

• vegetation change

– classification (vegetation type)

– regression (quantity of vegetation)

(b) Causal inference

• influence of climate on vegetation

• influence of vegetation on climate



CHAPTER 2. LITERATURE REVIEW

3. Method

(a) Mechanistical Modelling

• earth system model

• regional climate-vegetation model

(b) Data-driven Modelling

• linear models

• non-linear models

(c) Correlation studies

Within the presented classification, this thesis is a global study that spans thirteen

years. The goal is to infer the causal impact of climate drivers on vegetation. The

methods used are both linear and non-linear data-driven modelling.

In the following sections, the literature is presented according to the used method:

mechanistical modelling, data-driven modelling and correlation studies.

2.1 Mechanistical modelling

Mechanistical modelling of vegetation-climate interactions is done through a tight

coupling of dynamic vegetation models and climate models.

Figure 2.1: Earth System Model
vs Climate Model, Adapted from
SOCCOM, Princeton University, Re-
trieved July 3, 2018 from https:
//soccom.princeton.edu/content/
what-earth-system-model-esm

Climate models simulate the interactions

of important climate drivers using differen-

tial equations based on the laws of physics,

fluid motion, and chemistry. Included in

these models are the main earth compart-

ments including atmosphere, oceans, land

surface, vegetation and ice. By capturing

the interactions between these compart-

ments, these models aim to capture the

feedback loops that arise from these in-

teractions and can thus be used to either

study or predict climate change and its im-

pact on the different compartiments.

Dynamic vegetation models simulate the

changes in vegetation (type, biomass, be-

haviour) arising from climate change and

the associated impact on carbon, nutrient
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2.2. DATA-DRIVEN MODELLING

and hydrological cycles (Bonan et al., 2003; Krinner et al., 2005). Climate models

traditionally used an over-simplified representation of vegetation, which is why the

coupling of global climate models and dynamic vegetation models results in more

realistic models (Foley et al., 1998).

Most of these coupled vegetation-climate models are based on global climate models

and represent the entire earth system (see Figure 2.1). These models are called

earth system models and they play an important role in understanding vegetation-

climate interactions and predicting the long-term effects that arise from them. More

recently, attempts have also been made to couple regional climate models to dynamic

vegetation models. This might provide a useful tool for studying climate-ecosystem

interactions on a regional scale (Wang et al., 2016)

These vegetation-climate feedback loops arise from a changing climate and the veg-

etation response. However, how the feedback loops themselves will change over

time with an ever changing climate remains a source of uncertainty. As discussed in

Heimann and Reichstein (2008), as long as there is no fundamental understanding of

the processes involved, simulations of such models can only illustrate the importance

of the feedbacks, but cannot present a conclusive picture.

2.2 Data-driven modelling

Data-driven modelling does not strive to capture the underlying physical processes

that gouvern the interactions. Instead, general-purpose models are used to predict

the response variable based on the values of the regressor variables (regressors).

The modelling approaches originate from the fields of statistal analysis and machine

learning and can require large amounts of data. Linear models are frequently used

for their simplicity and robustness. However, this linearity assumption is a simplifica-

tion, since the vegetation-climate interactions have often been observed as non-linear

(Heimann and Reichstein, 2008; Bonan, 2011; Zhang et al., 2014; Papagiannopoulou

et al., 2017b).

A balance between prediction accuracy and robustness is sought, which is called the

bias-variance trade-off. When balanced correctly, the model is able predict the re-

sponse variable for data that is was trained on, but also for new data that were not

used for training. In data-driven modelling, the goal is not always to predict the fu-

tute. When causal inference is the goal, statistical and machine learning theory is

often needed to estimate the reliability of the produced conclusions.

6
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Chen et al. (2014) performed a regional study that aims at quantifying the impact of

soil moisture on Australian mainland vegetation. The used methods are statistical,

and consist of windowed cross correlation, quantile regression and piecewise linear

regression. A strong positive relationship was found between soil moisture and NDVI

anomalies, with the anomalies typically lagging behind soil moisture by one month.

The data range from 1991 to 2009 on a monthly time scale.

Wu et al. (2015) quantifies the impact of temperature, precipitation and solar irra-

diation on vegetation using linear regression models. In these regression analyses,

lagged versions of the climate variables were used, as to include the resilience and

latent response of vegetation to perturbations. NDVI was used as a proxy for vege-

tation and the analyses were done on a global scale. The data range from 1982 to

2008 on a monthly time scale. Uni-variate linear regression was used to model the

predictive power of each climate driver on NDVI seperately and the determination

coefficient (R²) is calculated each time. Next, multiple linear regression was used

to model the combined predictive power on NDVI. Also, from the determination co-

efficients, the partial correlation coefficient of each climate driver is calculated and

used as a measure for that driver’s influence on vegetation growth. For the multivari-

ate linear regression, an additive linear model was used, which automatically invokes

the assumption that the combined effect of these climate drivers on vegetation is a

weighted sum of their individual effects. This means that no interaction effects be-

tween these climate drivers are considered, while these effects are observed in reality

(Luo et al., 2008). Also, one should keep in mind that by using the raw NDVI instead of

the anomalies, the seasonal cycle of the NDVI is included (for details, see Section 4.1).

Thus, part of the predictive power in these regression models results from matching

the seasonal cycles of NDVI and a seasonal climate driver (f.e. temperature). This

reflects reality, but is not very informative.

Seddon et al. (2016) researched the sensitivity of global terrestrial ecosystems to

climate variablility. Through a combination of statistical methods, a vegetation sensi-

tivity index is calculated. This index is a weighted sum of the vegetation sensitivity

to perturbations in temperature, cloud cover and water availibility. The weights are

derived from the significant coefficients (p < 0.1) from a principle component regres-

sion (PCR). This PCR does not use raw monthly data, but the monthly Z-scores. The

vegetation sensitivity to the different perturbations is calculated from the vegetation

anomalies, by removing seasonality from the raw data for months with significant PCA

regression coefficients. To account for the memory effects of vegetation, a one-month

lagged variable is also included. The data range from 2000 to 2013 on a monthly time

scale

7



2.2. DATA-DRIVEN MODELLING

The entire analysis is thorough and uses a clever variety of statistical methods. How-

ever, by using the Z-score, it relies on the assumption that the variable in question

is normally distributed. This assumption will be violated in some regions for some

variables (f.e. precipitation often shows a skewed distribution in this thesis’s dataset).

Therefore, using z-scores for regions where a variable is non-normally distributed will

result in the corresponding p-values losing their meaning. Another observation that

could be made is that by using linear regression on principal components, the analysis

also relies on a linearity assumption.

Ackerly et al. (2015) researches the effect of different projected climate change sce-

narios on the vegetation of the San Francisco Bay (SFB) Area. This research aims

at predicting the change in vegetation type distribution that would result from these

different scenario’s (only current vegetation types of the SFB area are taken into ac-

count). This problem is referred to as a multi-class classification problem. Climate

and hydrological variables are taken from the climate models output and combined

with present-day topological and wind speed distribution data. The model of choice

is a multinomial logistic regression model that classifies in a one-vs-all fashion (com-

putationally intensive). Instead of predicting one vegetation class for every location,

the model returns probabilities for the different types, which are then summated over

the entire SFB area to produce a total probability distribution.

In this study, some liberties are taken but the authors themselves identify the lim-

itations of their approach. In order to use the time series output (90 years) of the

climate model simulations as an input for the logistic regression model, the time

series are chopped into 30-year pieces, averaged and further treated as equivalent

individual scenarios. Some uncertainty also arises from the extrapolation of present

day climate-vegetation relations to future climate conditions. The models only predict

steady-state vegetation distributions, which take hundreds to thousands of years to

establish and ignore the transitional phase. The final vegetation distribution is thus

predicted as independent from transitional phenomena such as repeated droughts,

which can cause persistent shifts in vegetation (Mueller et al., 2005).

2.2.1 SAT-EX project

Studies of high importance for this thesis were conducted by Papagiannopoulou et

al, in the framework of the SAT-EX project (http://www.sat-ex.ugent.be/). The goal of

the SAT-EX project is threefold. Firstly, it wishes to provide evidence of how climate

extremes have changed over the satellite era and identify the drivers behind these

changes. Secondly, it strives to provide new insights into past changes in vegetation

and the role of climate and climatic extremes on these changes. Thirdly, it works to

8



CHAPTER 2. LITERATURE REVIEW

test to what extent the IPCC earth sytem models reproduce both the changes in cli-

matic extremes and the associated response in vegetation. The project is conducted

using different data-driven modelling approaches on global satellite datasets.

Initial efforts are presented in Papagiannopoulou et al. (2016), where climate-vegetation

interactions are investigated using satellite data and machine learning techniques. In

this work, a novel framework is presented for identifying climatic drivers that affect

vegetation on a global scale. Firstly, an inclusive data-collection approach is used

to incorporate all the available data for these climate drivers that meets certain

requirements (span and resolution). The time series in this data are decomposed

into three parts: a linear trend, a seasonal cycle and the remaining anomalies. The

resulting time series are then used to look at the predictive performance of differ-

ent decomposed climate drivers on vegetation anomalies. These models are ridge

regression models (McDonald, 2009) and random forest models (Breiman, 2001). In

this analysis, lagged variables, cumulative variables and variable extremes are used.

The explained variance R² (= 1 − RSS
TSS ) is used as a measure of prediction accuracy in

a 5-fold cross-validation scheme.

The addition of climate variables leads to a substantial increase in model prefor-

mance, showing that these variables contain additional information about the vegeta-

tion state. In this setting, the non-linear random forest models outperform the linear

ridge regression models, suggesting again the non-linearity of these interactions.

The proposed framework is further completed in Papagiannopoulou et al. (2017b)

through the incorporation of a Granger causality analysis (for details see section 4.2).

This allows for the isolation of the causal influence of different climate variables on

vegetation anomalies. The quantification of causal influence remains an estimation,

but this is arguably the best available technique at this time in this setting. It is

argued that no statistical tests exist for investigating the significance of these non-

linear interactions in this setting, and that the construction of such a test is not a

trivial task. The machine learning models used are ridge regression and random

forest. The regressor variables are constructed through time series decomposition of

these climate variables to isolate the trend, seasonality and anomalies. Additional

high-level features are constructed from these decomposed time series, including

lagged variables, cumulative variables and the occurence of extreme events. The

proposed pipeline now consists of merging data from various databases, time series

decomposition, high-level feature construction, predictive modelling and a Granger

causality quantification. This framework is particularly useful due two factors: the

ability to desentangle the co-linearities between climate variables and the flexibility

to allow for both linear and non-linear models.

9



2.3. CORRELATION STUDIES

This framework is further used in Papagiannopoulou et al. (2017a) to investigate the

causal influence of different climate drivers on vegetation anomalies. The climate

variables used are grouped into three main driving forces: temperature (surface and

near-surface), water availability (precipitation including snow and soil moisture) and

irradiation (incoming and net). The data spans from 1981-2010 and is rescaled to

a monthly time series on a 1◦ x 1◦ spatial resolution. The influence of each of these

three climate driver groups on vegetation is quantified. Different regions are classified

according to which climate driver group has the most influence.

It is concluded that changes in water availability lead to a lagged response in vegeta-

tion and that its impacts are longer lasting than those of radiation and temperature.

The impact of extremes is also investigated and again, extremes in water availability

are the most important. Water availability is identified as the primary factor driving

NDVI anomalies globally, with 61% of the continental surface vegetation being water-

driven. This constrasts with earlier studies (f.e. Wu et al. (2015)) that reported a lower

global importance of water availability for vegetation. This difference can be related

to the different methods used. Interestingly, for most of the regions reported to be

water-driven, the supply of precipitation is expected to decline following global warm-

ing. Furthermore, the reported impact of extremes in water availability underlines the

gravity of the projected increase in hydro-climatic extremes.

2.3 Correlation studies

Correlation studies are data-driven studies that investigate the correlation of two or

more variables. This can be done by calculating a simple correlation coefficient be-

tween variables within a selected period or over the whole time span. Another option

is the use of event composition (also known as superposed epoch analysis) to inves-

tigate the effect of recurring phenomena, such as droughts or wildfires.

Simple correlation studies were some of the first studies to be conducted on global

vegetation-climate interaction. By assessing the covariance between vegetation time

series and the lagged time series of climate variables, the influence of vegetation

on climate is identified in Liu et al. (2006). Similarly, the influence of climate on

vegetation is derived from the covariance between climate variable time series and

lagged vegetation time series. To quantify these influences, a simplified causality

model is used.

Event composition is used in Nicolai-Shaw et al. (2017) to investigate the effect of soil

moisture drought events during the peak of the growing season, on a global scale.

First, the peak of the growing season is mapped globally. Then, the periodes are

10
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isolated when soil moisture drought occurs during the peak of the growing season.

The periods when the peak of the growing season does not coincide with drought are

the reference data. For every climate and vegetation variable, the anomalies between

the isolated and reference periods are calculated and the covariance between the

different variables is quantified.

The climate variables and vegetation correlate with soil moisture drought as expected,

while the resulting anomalies in vegetation activity are often delayed compared to the

anomalies in climate variables. Forests show much less vegetation anomalies than

other land cover types, likely because they have access to water in deeper layers.

For some forest-covered regions, positive anomalies in vegetation activity are even

identified during drought periods. This could relate to the fact that the presence of

deeper soil moisture is not reflected in the utilized soil moisture dataset (ESA-CCI).

Drought events in this analysis only reflect upper soil dryness, which often relates to

warmer-than-average conditions. These conditions can lead to higher fotosynthesis

in energy-limited regions and thus positive vegetation anomalies.

11



CHAPTER 3

DATASET CONSTRUCTION

The outline for this chapter is as follows. Firstly, the data collection procedure is

discussed. Secondly, a description of the datasets is given. Thirdly, the data merging

and preprocessing methods are discussed.

3.1 Data collection

In this thesis, the data units are often omitted. In most research settings, this is

considered very bad practice. In this machine learning setting however, all data is

either fed to a scale-invariant algoritm or rescaled before analysis. Thus, unless units

are of particular relevance for their physical impications, they are omitted from figures

and text. The data were provided by courtesy of ir. Stijn Decubber1, ir. Christina

Papagiannopoulou1, dr. Matthias Demuzere2, ir. Brianna Pagan2, ir. Brecht Martens2

and prof. dr. Diego Miralles2.

A selective data collection approach was used in this work, in contrast to the inclusive

data collection approach proposed in Papagiannopoulou et al. (2017b). For every

considered variable only one data source is used. The reasoning here is that due to

the higher resolution of this analysis, a dataset for this analysis contains much more

data points than the dataset for the same variable in the previous studies. Thus,

in order to keep the total data size reasonable, only a selection of data sources can

be used. Furthermore, the scope of this thesis should be smaller than the scope

of Papagiannopoulou et al. (2017b), so an inclusive data selection procedure is not

desired.

The used climate variables are grouped in three main groups as proposed in Papa-

giannopoulou et al. (2017b): water availability, temperature and irradiation. Addi-

tional variables that were not yet included in the works of Papagiannopoulou et al.

(2017b) are vapour pressure deficit (VPD), irrigation and large-scale wildfires. A short

1KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering
2LHWM, Department of Water and Forest Managment, Faculty of Bioscience Engineering
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structure of the variable groups is presented below and more details are presented in

the following sections.

1. Vegetation

• Normalized difference vegetation index (= NDVI)

2. Water availability

• Precipitation

• Snow water equivalent (= SWE)

• Near-surface soil moisture

• Root-zone soil moisture

• Vapour pressure deficit (= VPD)

3. Temperature

• Near-surface air temperature at midday

• Near-surface air temperature at midnight

• Difference between day and night air temperatures

4. Radiation

• Net radiation

5. Other

• Burned area (Wildfire)

• Irrigation

3.1.1 Vegetation

The response variable for this study is vegetation productivity. This means that the

models will try to predict the vegetation productivity, based on the other variables.

To be fully correct, the response variable is not the NDVI as such, but rather the NDVI

anomalies. The construction and meaning of these anomalies are discussed in Sec-

tion 4.1. Different remote sensing proxies are available for vegetation productivity, of

which the Normalized Difference Vegetation Index (NDVI) is the most commonly used

(Pinzon and Tucker, 2014). This proxy shows a near-linear relation with photosynthet-

ically active radiation absorbed by vegetation, and therefore with light-dependent

photosynthetic activities in the upper canopy. NDVI is near-linearly related to various

productivity variables, such as area-averaged net carbon assimilation and transpira-

tion. An important drawback of NDVI is the well-known saturation effect that occurs in

13
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dense vegetation with high biomass values (Glenn et al., 2008). Data from the Global

Inventory Modeling and Mapping Studies (GIMMS) 3g version 1.0 is used (Pinzon and

Tucker, 2014).

» https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/

3.1.2 Water availability group

The water availability group contains precipitation, snow water equivalent, soil mois-

ture at the surface and root zone, irrigation and vapour pressure deficit.

Precipitation data comes from the Multi-Source Weighted-Ensemble Precipitation

(MSWEP) dataset, which combines a variaty of remote sensing and other sources.

The data is taken from Beck et al. (2017).

» http://www.gloh2o.org/

Snow water equivalent is used to approximate water in the form of snow cover and is

a combination. The data is taken from Metsämäki et al. (2015).

» http://www.globsnow.info/swe/

Soil moisture is a property that goes several meters below the earth surface, which

makes it inheritably more difficult for remote sensing. A first data source is the Euro-

pean Space Agency Climate Change Intiative (ESA CCI) combined soil moisture prod-

uct (Dorigo et al., 2017). This dataset is based on remote sensing alone and is thus

limited to surface moisture.

» http://www.esa-soilmoisture-cci.org/node/145

A second soil moisture data source is the Global Land Evaporation Amsterdam Model

(GLEAM v3.1), which includes deeper soil moisture. This model estimates terrestrial

evaporation and root-zone soil moisture from satellite data observations. The data is

taken from Martens et al. (2017).

» https://www.gleam.eu/

Vapour pressure deficit (VPD) is the difference between the saturated vapour pressure

(the amount of moisture the air can hold when it is saturated) and the vapour pres-

sure (the amount of moisture in the air). VPD is a measure for air drought and is of

importance for plant transpiration, due to its regulatory effects on stomatal conduc-

tance (McAdam and Brodribb, 2015). Therefore, it is included in the water availablility

group. The VPD is calculated from its definition formula (VPD = Pst − P). The data

for the vapour pressure is taken from the Atmospheric Infrared Sounder (AIRS) (Tian,

2016b). The saturated vapour pressure is function of the air temperature (◦C) and is

calculated as Pst = 611 ∗ ep
�

19.65∗T
T+273

�

. These calculations were performed by ir.
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Brianna Pagan.

» https://airs.jpl.nasa.gov/data/physical_retrievals

3.1.3 Temperature group

Temperature is the second climate driver group. It is a another important driver,

especially for certain vegetation types (Williams et al., 2013). The near-surface air

temperature at midday and midnight are used to produce two seperate datasets. The

difference between the day and night time temperatures is also included as a variable.

The data is taken from the Atmospheric Infrared Sounder (AIRS) (Tian, 2016a)

» https://airs.jpl.nasa.gov/data/physical_retrievals

3.1.4 Radiation group

The third climate driver group of importance is radiation. The variable used is net

radiation, which is the difference between incoming and outgoing energy at the top

of the atmosphere. This net radiation is the part of the incoming solar energy that

is available to influence the climate. This is calculated through a radiation balance.

The resulting data is sourced from the Clouds and Earth’s Radiation Energy System

(CERES) (Loeb et al., 2016)

» https://icdc.cen.uni-hamburg.de/1/daten/atmosphere/ceres-radiation.

html

3.1.5 Other

Large-scale wildfires are included in the analysis. They arise from an interplay be-

tween vegetation, temperature, drought, lightning and human interference. Climate

is a dominant control on wildfire activity, regulating vegetation productivity and plant

moisture content. Over short time scales, rainfall during the dry season suppresses

fire activity, whereas over longer time scales, fuel build-up during wet years in more

arid ecosystems can increase burned area in the subsequent years (Andela et al.,

2017). The vegetation recovery after a wildfire varies wildly depending on vegeta-

tion type, fuel build-up and climate conditions such as drought and water availability

(Gouveia et al., 2012; Lu and He, 2014). The remote sensing product for the total

burned area is used as a proxy and is sourced from the 4th generation of the Global

Fire Emissions Database (GFED4) (Giglio et al., 2013)

» http://www.globalfiredata.org/data.html
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Irrigation is the anthropogenic addition of water to vegetation, often for agricultural

purposes. Although this variable is definitely of importance for the local water avail-

ability, it is not a climate variable. Thus it is not included in the water availability

group, which should only contain climate variables. This is directly related to research

question one, which questions the impact of water availability as a climate driver. Irri-

gation is included in the analysis to produce a more correct Granger causality analysis

(see Section 4.2). The data is taken from the global irrigation model (GIM) described

in appendix C of Müller Schmied et al. (2014)

» Data requested by dr. Matthias Demuzere

3.2 Description of the data

3.2.1 Data dimensions

Collecting the data from the aforementioned sources results in twelve datasets, one

with "raw" data for every variable. These datasets all have three dimensions (two in

space and one in time), hence they are named datacubes.

The two spatial dimensions of each dataset are the Latitude and Longitude, and to-

gether they describe the place of a data point on the globe. Latitudes range from

-90◦ at the South Pole to 90◦ at the North Pole and give your position compared to the

Equator (see Figure 3.1).

Figure 3.1: Latitude and Longitude, Slawitsky K., Hicksville High School, Retrieved July
14, 2018 from https://www.hicksvillepublicschools.org/Page/11725

Longitudes range from -180◦ to 180◦ and give your position compared to the Prime

meridian in Greenwich. On a rectangular map of the globe, Latitude corresponds to
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the vertical position (the y coordinate on a graph) and Longitude corresponds to the

horizontal position (the x coordinate). These spatial coordinates divide the globe into

a orthogonal grid. The spatial resolution of a dataset determines on what scale the

measurements are done. In remote sensing, this scale is often expressed in degrees.

A spatial resolution of 0.5◦ x 0.5◦ means that measurements are made for every

square in a grid of 0.5◦ longitude on 0.5◦ latitude.

Figure 3.2: spatial resolution

Such squares are further referred to as pixels and

they are the smallest space over which an individual

measurement is made. The total number of pixels is

dependent on the spatial resolution and is calculated

from #pes = 180◦∗360◦

(resoton)2
. A 0.5◦ x 0.5◦ spatial res-

olution corresponds to a grid of 259200 pixels if the

entire globe is covered. It also follows that doubling

the spatial resolution corresponds to a quadrupling of

the available data (see Figure 3.2). Some attention

should also be paid to naming conventions: Changing

the resolution from 0.5◦ x 0.5◦ to 0.25◦ x 0.25◦ is an

upscaling to a higher resolution.

The pixels are (quasi-)square in shape and are identified by the coordinates of the

central point. For each pixel, a variable is represented by a series of measurements

over time, called a time series. Each variable has a limited time span over which

data is available. Each variable also has its own temporal resolution, which is how

often a measurement is made. For example, a variable might be measured weekly

and hence the temporal resolution is seven days. There is a subtle nuance in the

representativeness of a remote sensing data point. The data point is a snap-shot in

time and is thus often not representative for that entire time step. On the contrary, a

data point is representative in space as it represents the average state of the entire

pixel.

3.2.2 Data merging

The twelve raw datasets differ in the aforementioned properties, which prevents them

from being merged straightaway. They are recorded over different time spans and

may miss data in different areas. They also have different native resolutions, both in

time and space. To ease the further handling of these datasets, a common time span,

spatial span and resolution are defined.

17
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Figure 3.3: NDVI: percentage of missing values

The common spatial span for this study is chosen from the spatial span of the NDVI

dataset, since this is the response variable. Ocean and freshwater pixels don’t have

values for NDVI. In Figure 3.3, the percentage of missing NDVI values in each pixel is

represented for that location. If a pixel has more then 50% missing values in its time

series, it is part of a water body or an area with limited vegetation and is not included.

This results in a land mass similar to that of Papagiannopoulou et al. (2017b). How-

ever, in that study large land areas exist for which no data was available, because

the NDVI was so low that no reliable measurements were possible. These areas are

mainly deserts such as the Sahara region and large parts of Saoudi Arabia and Mon-

golia. In this study, the total NDVI is summed up over time and pixels with a low total

NDVI are excluded from the analysis. The NDVI time series in these regions often have

very low variance and do not neccesarily reflect the actual vegetation dynamics. The

low variance also proved problematic during the construction of the NDVI anomalies

later on. Pixels with a total NDVI below 400000 were exluded (different cut-offs were

tested). The excluded regions are shown on Figure A.1 in Appendix A, together with

a map of missing data from Papagiannopoulou et al. (2017a) in Figure A.2. The pa-

per from Seddon et al. (2016) reviewed in Section 2.2 shows areas of excluded data

similar to what is used in this thesis (see Figure A.3 in Appendix A).

The spatial resolution adopted in this thesis is 0.25◦ x 0.25◦, which corresponds to six-

teen pixels per patch of 1◦ x 1◦. These pixels are (quasi-)squares of roughly 27.8km

x 27.8km around the equator and get smaller towards the poles. The temporal res-

olution is bi-weekly, which corresponds to two data points every month, or one data

point roughly every 15 days. For comparison, the resolution in the works of Papa-

giannopoulou et al. (2017b) is 1◦ x 1◦ and monthly (one data point every month).

The time span of these datasets is chosen from the 1st of january 2003 to the 15th

of december 2015. Thus every time series includes 13 years, which corresponds to
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Figure 3.4: Dimensions of the datacubes

312 data points. This limited time span is due to the high desired resolution: remote

sensing data records extend way earlier than 2003, but for most variables not in the

required resolution. In the work of Papagiannopoulou et al. (2017b), the include data

ranges from 1981 to 2010, an extended period of 30 years. The dimensions of the

resulting data cubes are presented in Figure 3.4. Each dataset is 2.6 GB and con-

tains 13.86 times more data points then similar datasets in Papagiannopoulou et al.

(2017b) due to the higher resolution. Despite their large size and high resolution, the

limited time span may prove to be a strong limitation of these datasets.

3.3 Dataset Preprocessing

Now that the properties are known, each of the raw datasets is to be transformed into

a final datacube. This consists of filling the gaps and adopting the desired resolution

in space and time. If the native resolution of a dataset is higher then 0.25◦ x 0.25◦ or

bi-weekly, downsampling is required. If the native resolution is to lower, upsampling

is required. For most datasets, the preprocessing was performed by ir Stijn Decubber

at the start of this thesis. For four datasets, this was done by myself and the process

is described in more detail.

Finding the optimal approach for gap-filling and resampling these datasets in three

dimensions is not as straightforward as it might seem. The ideal method is tailored to

exploit the specific properties of each dataset and is robust and fast. Some advanced
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Figure 3.5: The NDVI and SWE time series for a pixel in Inuvik, Canada (69.25◦N)

methods were considered (Gerber et al., 2016; Kandasamy et al., 2013), but were

eventually abandoned due to their complexity and the limited scope of this thesis.

Thus, a quick insight into the specific properties of each dataset is given as to moti-

vate the chozen pre-processing procedure. As stated before, these data gaps often

extend into three dimensions. Thus, both spatial and temporal approaches are possi-

ble when performing gap-filling. To aid in the understanding of how these approaches

are different, one can imagine the data cube in Figure 3.4 as a large cuboid potato.

The spatial gap-filling approaches take the data potato and slice it up along the time

dimension to produce one potato chip for every time step. Each of these slices is

now a two dimensional map of the variable around the globe at one specific time. As

an example, Figure A.6 in appendix A shows three such slices with the data daps in

white. The data gaps are areas on a map, and to fill these one can utilize information

from neighbouring pixels around the gap.

The temporal data-filling approaches take the data potato and push it through a french

fry cutter to cut up the spatial dimensions. This produces a large number of french

fries, which are the time series. Every pixel has one time serie per variable, some

examples are presented in Figure A.4 in Appendix A. The data gaps are now periods

in time and to fill them one can utilize the data points before and after the gap.

3.3.1 NDVI

NDVI is the response variable, thus the preprocessing of this variable has to be done

with care. It is already in the desired resolution so only gap-filling is required. First, a

small exploration of the data is performed.
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Figure 3.6: A comparison of gap-filling procedures for NDVI time series

In the raw NDVI data, 76.0% of the pixels has no data (see Figure 3.3). This is a

permanent water or ice surface, barren soil or land that cannot be monitored via

remote sensing. 19.7% of the locations has full time series without missing values.

4.3% of the locations have time series with some (but not all) missing values. These

time series are the ones that need gap-filling. As observed from Figure 3.3, these data

gaps are only located in the Northern regions. They are also very seasonal and occur

during the Northern winters. The gaps are strongly related to snow cover, which

prevents remote sensing of NDVI. This is observed in Figure 3.5, which shows time

series from a pixel in Inuvik, Canada (69.25◦ N). This NDVI time series has 19.9% of

it’s values missing, which seems like alot. However, due to the seasonal nature of

these gaps, they are short (in time) and easily fillable (in time). Thus, the NDVI time

series with less than 50% missing values are gap-filled and included in the analysis.

Due to the spatial isolation of the regions that need to be gap-filled and their seasonal

nature, spatial gap-filling is not very usefull for the NDVI dataset. Thus, a temporal

gap-filling procedure is used.

First, a classification is made for seperating small and large gaps in time. A small

temporal gap has no more than six consecutive data points missing (no more than 3

months). The number six is carefully chosen through visual exploration of different

possibilities. A large gap is every gap that has more than six consecutive data points

missing (more than 3 months). A small temporal gap can be filled easily through

linear interpolation, which is preferable. However, when using linear interpolation
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Figure 3.7: Near-surface soil moisture: Percentage of missing values

for larger gaps, weird artifacts end up in the resulting time series. An interesting

alternative approach for filling these large gaps is by estimating the seasonal cycle of

the variable and then using this as an estimate to fill the gaps. This is however not

possible with NDVI, because the gaps are always located in the same season and it

is impossible to calculate the seasonality for that time of year. It is chosen to fill the

larger gaps with the value zero, which consistenly gives the best results (see Figure

3.6). This is further motivated by the fact that the few data points that are present

in these winter months are close to zero (verified for time series from a number of

different locations). As a final argument: all time steps for which no NDVI values were

available in the original dataset are dropped before training the models. As such, the

gap-filling procedure has a very limited impact on the final analysis.

3.3.2 Near-surface Soil Moisture

The dataset of near-surface soil moisture (ESA CCI combined) is already in the desired

resolution, both in space and time. Thus, only gap-filling is required. However, these

gaps of missing values are extensive. Large seasonal gaps are present at higher

latitudes in the Northern Hemisphere. Furthermore, large areas of tropical rainforest

contain no data over the entire 13 year time span. This is apparent from Figure 3.7,

where the percentage of missing values is represented for every pixel. The coverage

of rainforest is shown in Figures B.3 and B.2 in Appendix B. For additional insight into

the raw soil moisture data and the extent of the data gaps, some additional figures

are presented in Appendix A and an animation of the evolution of the gaps over time

is also available online3.

3www.linkedin.com/feed/update/urn:li:activity:6390884647424917504

22

www.linkedin.com/feed/update/urn:li:activity:6390884647424917504


CHAPTER 3. DATASET CONSTRUCTION

Now that the extent and temporal behaviour of the data gaps is identified, a suitable

gap-filling strategy is to be formulated. As a side note: the areas that have no data

for the entire time span cannot be filled and are further ignored. The areas with more

limited data gaps can be filled using different methods. One possibility is to exploit

the spatial information around these gaps, by taking the values of neighboring pixels

as an estimate of the values in the gap. Another possibility is to use the temporal

information around these gaps, by taking the values of the time before and after the

gaps as estimates for the missing period. Different combinations of these options

were tried and tested, the final stategy is decided to have alternating interpolations

in time and space.

Firstly, the small temporal gaps (up to 3 months) are filled through linear interpolation

in time. Secondly, the edges of the remaining gaps space are filled in space with the

average of the neighboring pixels at that time. Thirdly, the intermediate temporal

gaps (up to 6 months) are filled through linear interpolation in time. Finally, the

remaining missing values are all part of a big gap, for which no nearest neighbor

or interpolation in time is sensible. Thus, these values are filled with the calculated

seasonal cycle for that pixel. The procedure is explained in detail below.

The first step is a linear interpolation in time. When scanning through the individual

time series of different pixels, it becomes apparent that a lot of small temporal gaps

exist, which can easily be filled through linear interpolation (Figures A.4 and A.5 in

Appendix A). The following question imposes itself: what is the maximum gap length

in a time series, that should be filled through linear interpolation? In order to reliably

estimate that maximum gap length, a time series of soil moisture that has no missing

values is selected. Then, artificial gaps of a specific length are introduced at random

places into this time series. These gaps are filled through linear interpolation and

compared to the original data. This procedure is repeated for different values of gap

length, and the maximum length of a small gap is chozen as the highest artificial

gap length that did not result in artifacts. Figures A.7 and A.8 in Appendix A show this

procedure. As a result, small temporal gaps are defined as gaps with no more than six

consecutive data points missing. These short gaps are filled quite accurately through

linear interpolation in time. For larger gaps, other techniques are used.

The second step is an interpolation in space. Different two dimensional spatial inter-

polation strategies are available, pre-implemented in a python package named scipy.

These algorithms are shown in Figure A.11 in Appendix A. The nearest neighbor and

linear interpolation are the most sensible ones, but they both have an important draw-

back. The linear interpolation algorithm cannot cope with the presence of oceans in a

sensible way. The oceans are large fields of missing data, so the agorithm fills these

areas through linear interpolation as well. This on its own is not a problem. However,
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when a gap in the data is present in a coastal area, this becomes a problem. As an

example, imagine a data gap in a part of Cuba. When this gap is filled, it makes sense

to use data from other parts of Cuba, since it is part of the same Island. However,

to the linear interpolation algorithm this data gap is just part of the much larger gap

that is the ocean around Cuba. Thus, to fill this large gap, data from the American

Mainland is also used. This problem arises for all oceans, which would mean that data

from the entire other side of an ocean is used for interpolating coastal data gaps. In

a dataset of this scale, using far-away data for interpolation is of limited use.

An alternative would be to fill these gaps through nearest neighbor interpolation.

This makes more sense, because only the closest data is used. Nearest neighbor

interpolation is quite simple: for every pixel with missing data, it just finds the nearest

pixel that has data and copies the data point from that pixel. To calculate proximity,

the Euclidean distance between the centers of the pixels is used, with the assumption

of all the pixels being true squares of identical size. This is a fine option. However,

when applying this algorithm, it fills every gap present, no matter how large. This

makes little sense, it is only desirable to fill the outer edges of the gaps. This is again

due to the scale of the analysis: a gap can be 20◦ wide, and the information in pixels

around the gap is just a bad estimate for the central pixels in the gap. Thus, the center

of large gaps might be filled more accurately in the next interpolation steps. Now that

it is established why the given spatial interpolation algorithms are insufficient, an

alternative is proposed.

This algorithm is similar to the nearest neighbor, but it only fills the pixels at the

edges of the gap and considers multiple nearest neighbors for a single pixel. As

stated before, spatial interpolation works on a slice of the data cube that contains a

single time step. In such a map, all the pixels on the edge of a gap are identified. If

a pixel has a missing value, but at least one of the neighbors does have a value, it

means that the pixel is part of a gap, but it’s close to the edge. As a neighborhood,

the standard Moore neighborhood is used, so the pixels have eight neighbors. When

a pixel is identified as being at the edge of a gap, it is filled with the average of

it’s neighbors, ignoring those that do not have values. By repeating this procedure

multiple times, small gaps are filled completely while only the edges of large gaps

are filled. These repetitions are called generations, an example of five generations

is shown in Figure A.12 in Appendix A. This gap-filling algorithm is now performed

three times on the entire datacube. These three generations are presented for one

timeslice in Figure 3.8.

After this spatial interpolation, another temporal interpolation was performed. The

procedure was similar to the one performed during the first step. The main difference

is that now all temporal gaps that are no longer than twelve time steps are filled
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Figure 3.8: Near-surface Soil Moisture: spatial interpolation results

through linear interpolation. This corresponds to all remaining gaps up to half a year

in length.

To provide a final estimate for the remaining large gaps, the seasonal cycle is calcu-

lated. This is performed on the raw data, which is divided into individual time series.

Every time series has a time span of 13 years, every year has 12 months and every

month has two time steps. The resulting 312 time steps can be cut into year-long

strips of 24 data points each. Now, the data points in each strip are numbered one

to 24. The number 1 corresponds to the first of january, the number 2 to the 15th of

january and the number 24 to the 15th of december. The data points of these strips

are now grouped together according to their number. If these groups are averaged

out and ordened from one to 24, they represent the "average" year within this 13

year period. This is the basis for estimating the seasonal cycle of a variable (a math-

ematical description is given in Section 4.1, formula 4.4). Gaps in the seasonal cycle

are filled via linear interpolation. Now, if the previously interpolated time series still

had any gaps after the previous steps, the seasonal cycle is thus introduced as an

estimate.

3.3.3 Irrigation

The irrigation dataset has no missing values, the native spatial resolution is 0.5◦ x 0.5◦

and the temporal resolution is monthly. To obtain the desired resolution, both spatial

and temporal upscaling are needed. The spatial interpolation is performed first, be-

cause it is the most memory intensive step. Afterwards, the temporal upscaling is

performed via simple linear interpolation.
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Different pre-implemented versions are available for spatial upscaling (in two dimen-

sions) in the python package scipy. However, these upscaling methods are all insuf-

ficient, as they don’t handle the missing values of water bodies well. When these

upscaling methods encounter a pixel of water (missing value) adjacent to a pixel

of land (with a value), the interpolation result becomes a missing value. By using

these methods, one inevitably loses information along the coast lines of continents

and along water bodies. Thus, another algorithm is proposed. Figure 3.9 serves as a

visual guide to accompany the explanation of this algorithm.

Figure 3.9: Spatial upscaling algorithm. Orange dots = original data, blue dots = new
data points, green and purple stars = temporary data points

The initial situation is described in the top left of the figure. This data is arranged in a

0.5◦ x 0.5◦ resolution grid as depicted with the orange lines. Every pixel is referenced

through its central coordinate, represented by the orange dots. The desired 0.25◦ x

0.25◦ resolution is depicted in the bottom right of the figure. The first step in the

algorithm consists of calculating the green stars. They are all located between two

orange dots and are calculated as the "value average" of their two neighboring dots.

Value averaging ignores missing values and simply returns the average of the avail-
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Figure 3.10: Irrigation: India before and after spatial upscaling

able values. Only if all values are missing will the value-average also be a missing

value.

The second step consists of calculating the purple stars. These are each located in

the middle of four orange dots and are calculated as the value average of these four

dots. Now that the orange and green stars are calculated, one draws orthogonal lines

through all the orange dots and green stars. The combination of old and new lines

forms the new grid of double resolution. As the fourth step, a new central point can be

marked with a blue dot for every pixel in this new grid. Every blue dot is surrounded

by four data points: one orange dot, two green stars and a purple star. The value of

each blue dot is calculated as the value average of these four data points. The final

step consists of removing all purple stars, green stars and orange dots. Notice that

the original data points are removed when doubling the spatial resolution. Figure 3.10

shows the result for the irrigation data set in India. Figure A.15 in Appendix A shows

the result in Australia. After the spatial upsampling, every time series is upsampled

from monthly to bi-weekly resolution via simple linear interpolation.

3.3.4 Vapour Pressure Deficit

The Vapour Pressure Deficit dataset has a native spatial resolution of 1◦ x 1◦, with

daily time steps. Thus, upscaling is needed in space and downscaling is needed in

time. Data gaps are also present, most of them arising from the inherent swath width

of the satellite. Firstly, the temporal downscaling will be performed, followed by the

gap-filling. Finally, the spatial upscaling is performed.
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Figure 3.11: Satellite orbit,
Adapted from NRCAN4

Figure 3.12: Swath Width,
Adapted from NRCAN4

Figure 3.13: Coverage,
Adapted from NRCAN4

Figure 3.14: A timeslice of the raw VPD data cube (without masking of the oceans)

The data gaps mostly originate from the way these measurements are made, on a

daily basis. The satellite continuously encircles the globe from the North to South

Pole and then to the North pole again on the other side (Figure3.11). This orbital

movement, combined with the natural rotation of the earth ensures that the satellite

covers a different strip of the earth with every rotation. This width of these strips

is called the swath width (Figure3.12). The combination of all these different strips

determines the coverage of a satellite (Figure3.13). Because global measurements

are required on a daily basis, the satellite should cover the entire globe from east to

west to east (longitudinal) within 24 hours. Due to this requirement and the inherent

swath width of every orbit, parts of the globe are not covered. This is observed from a

timeslice of the raw VPD datacube, where strips of similar width are missing between

different passages of the satellite (Figure 3.14).

These gaps are not a real problem, since temporal downscaling is required to go from

the native daily resolution to bi-weekly. This means that roughly 15 days of measure-

ments are averaged together to produce one data-point every 2 weeks. Fortunately,

4Natural Resources Canada, Retrieved July 23, 2018 from http://www.nrcan.gc.ca/node/9283
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Figure 3.15: VPD: Australia before and after spatial upscaling

these gaps move spatially from one day to the next. This movement is observed in

Figure A.13 in Appendix A. Because of this, few areas remain with missing data after

the downscaling and those data gaps are very short. The longest temporal gap of all

pixels is just five data points long. Thus, these gaps are easily filled through linear

interpolation in time.

The final step to be performed is the spatial interpolation. The same algorithm showed

in Figure 3.9 is performed twice to obtain the desired spatial resolution. The first

application doubles the resolution from the native 1◦ x 1◦ to 0.5◦ x 0.5◦. The second

application again doubles the resolution to the desired 0.25◦ x 0.25◦ resolution. Figure

3.15 shows the results of the spatial upscaling for Australia. Figure A.14 in Appendix

A shows the results for Africa.
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METHODS

In this chapter, the general methods are explained. As a first step, the calculation of

the NDVI anomalies from the raw NDVI data is explained. The theoretical framework

that allows for the causal inference is Granger causality, which is explained together

with the machine learning models that are used. To tackle a global problem of this

size, a simplification is needed. This ultimately allows one to perform multiple local

analyses in parallel. A time series decomposition is performed, and some high-level

features are constructed to aid in this local analysis. In the next chapter, the results

of these local analyses are combined to obtain global results.

4.1 NDVI anomalies

In studies that perform a Granger causality analysis on vegetation time series, the

use of seasonal anomalies is commonplace (Kaufmann et al., 2003; Wang et al., 2006;

Jiang et al., 2015; Notaro et al., 2006). A range of different decomposition techniques

exist to extract these NDVI anomalies from the raw NDVI time series. Only decom-

position techniques based on the additive STL model are considered. This model

decomposes the raw time series into three additive basic elements. The first element

is a longterm trend T, which can sometimes change over time. The second element

is a seasonal cycle S, which captures the cyclic change of a variable within a yearly

frequency. The third element is the anomalies (or residuals) A, that arise from sub-

stracting the trend and seasonal cycle from the raw data. The anomalies are thus

defined as the variations over time that are not included in the trend or the seasonal

cycle: yAt = yt − y
T
t − y

S
t .

A popular decomposition technique is based on the Loess smoother (Cleveland et al.,

1990). In this technique, the trend is not assumed to be linear and is allowed to

change over time. The rate of this change is chozen via a window of time over

which the trend is calculated. A small window creates a rapidly varying trend while a

large window creates a more smooth trend. This is especially beneficial for climate-

vegetation time series with a long timespan, where the long-term rate of change is
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Figure 4.1: NDVI: calculation of detrended NDVI from raw NDVI

often not constant. A similar technique is the BFAST technique proposed in Verbesselt

et al. (2010). In this technique, the trend is assumed to be a piecewise linear func-

tion seperated by breakpoints. This is useful for remote sensing data, where sudden

persistent changes can arise from an update to a satellite.

Both decomposition techniques are considered too complex, because of the hyper-

parameters that need to be estimated and the difficulties that arise from missing

data. Due to the global scale of the data, an immense variability exists between the

different time series. Therefore, a simpler and more robust technique is sought to

ensure proper decomposition of all time series. The used technique is adapted from

Papagiannopoulou et al. (2017b). For the estimation of the trend yTt , a simple linear

regression model in function of time is used.

yTt = ∗ t + b (4.1)

The parameterisation of the slope  and intercept b happens with the standard

method of minimizing the residual sum of squares.

min
,b

N
∑

P+1

(yt − yTt )
2 =⇒ , b (4.2)

This procedure is demonstrated in Figure 4.1 for a sample NDVI time series. The

Theil–Sen estimator was also tried, as it can be computed efficiently, and is insensitive

to outliers (Sen, 1968). This method was however abandonded to keep the research

comparable to Papagiannopoulou et al. (2017b). Performing a detrending removes

some important non-stationary effects from the data. This ensures that the mean of
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the probability distribution does not change over time (with the assumption that the

trend is truly linear and its parameters are constant).

The calculated trend is substracted from the raw NDVI to produce the detrended NDVI:

ydTt = yt− yTt . From this detrended NDVI, the seasonal cycle is estimated. The method

used in Papagiannopoulou et al. (2017b) is based on the assumption that the seasonal

cycle is annual and constant over time. From this, one can simply use the monthly

expectation as an estimate for the seasonal cycle. When indexing the detrended data

in a time series via a one-based indexing system (for the first point  = 1 and the final

points  = N), the formulation is pretty straightforward. The number of the month is

denoted a m, the monthly expectation ySm is calculated as follows:

ySm =

N
∑

=1

ydT ∗ δ

nyrs
with δ =







1,  mod 12 =m

0, Ese
(4.3)

The numbers of years is denoted as nyrs. The inclusion of dummy variable δ is merely

for the sake of notation, the implementation does not require it. This definition only

works for time series with a monthly resolution. In this study however, we can do

better by calculating the seasonal cycle on a bi-weekly basis. The notation is similar

but the months are all devided in halves and index sm now denotes the number of

the semi-month, ranging from one to 24. The odd numbers are the first halves of

the months containing days one to fifteen. The even numbers are the second halves

containing the remaining days.

ySsm =

N
∑

=1

ydT ∗ δ

nyrs
th δ =







1,  mod 24 = sm

0, Ese
(4.4)

This procedure is shown in the top part of Figure 4.2. When the resulting sea-

sonal cycles are examined, they appear less smooth than those reported in (Pa-

pagiannopoulou et al., 2017b). This is normal since every ySm in that studie was

calculated with a lot more data. Due to the monthly resolution every datapoint is an

average over 30 days, compared to the 15 days in this work. On top of that, the time

series in Papagiannopoulou et al. (2017b) contain 30 years of data, while the time

series in this work only contain 13 years. This makes the seasonality calculation less

stable, since less years are averaged together. If a large identical anomaly occurs for

three years in the same semi-month, its effect will be visible in the seasonal cycle.

In a 30 year time series however, this will have less influence. In order to protect

the seasonal cycle from strong anomalies, a smoother is applied. This is based on

the knowledge that NDVI seldom changes drastically in a 15 day window, due to
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Figure 4.2: [top] NDVI: extracting seasonal cycle from detrended NDVI
[bottom] NDVI: smoothing of the seasonal cycle

its lagged response and resilience to perturbations (Seddon et al., 2016). Different

smoothers were tested for a variety of pixels (figure A.16 in Appendix A). The different

smoothers are judged based on their force of smoothing and the possible introduction

of artefacts. The chozen smoother (SM 2 in Figure A.16) is fairly basic, it just replaces

the seasonal cycle ySsm with the weighted average of itself and its two neighbours in

time (the first and final semi-month are also neighbours).

ySsm_smooth =∗ ySsm−1 + y
S
sm + ∗ ySsm+1 (4.5)

The weights  for the neighbours are 0.5. It may seem counterintuitive to include

a weighted version of the next semi-month in time. If this is not done however, the

entire monthly cycle shifts slightly backwards in time because the temporal averaging

is then one-directional.

Finally, the anomalies are calculated as the residual part of the raw data that was not

yet integrated in the seasonal cycle or the trend.

yAt = yt − y
T
t − y

S
sm_smooth = y

dT
t − y

S
sm_smooth (4.6)

These anomalies are the response variabel in the analysis. There are three good rea-

sons to prefer the NDVI anomalies over the raw NDVI as the response variable. Firstly,

the anomaly construction results in a more stationary response variable, which is de-

sirable for a Granger causality analysis (see Section 4.2). The second reason has to

do with the high autocorrelation of the raw NDVI. There is a high correlation of raw

NDVI with lagged versions of itself. By removing the trend and seasonal cycle, the
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Figure 4.3: Calculation of the NDVI anomalies

autocorrelation of the anomalies is lower than the raw NDVI. This effect is demon-

strated in Figures 4.4 and 4.5. These figures show the autocorrelation of the raw NDVI

and the NDVI anomalies for two different measures of correlation: the Pearson cor-

relation and the distance correlation. The Pearson correlation is the classic measure

for correlation, it only accounts for possible linear correlation and ranges between -1

and 1. A higher absolute value corresponds to a higher linear autocorrelation. The

distance correlation is a more recent measure of correlation that also accounts for

non-linear correlation and ranges between 0 and 1 (Székely et al., 2007). A higher

distance correlation corresponds to a higher correlation between variables, either lin-

ear or non-linear. From the Figures, it can be observed that the autocorrelation of the

NDVI anomalies is much lower for both correlation measures and is only apparent in

small lags. The level of autocorrelation that is present in the raw NDVI is undesirable

for the Granger causality analysis. Thirdly, it is not very interesting to look at the raw

data as a predictor since the trend and seasonal cycle often make up most of it. When

predicting this raw data, one is effectively predicting mostly the seasonal cycle and

trend, since they are easier to detect for most models. This is not interesting, it does

not lead to new scientific insights. The existence and behaviour of both seasonal cy-

cles and trends has been researched for decades already. The anomalies contain the

causal information that we are searching for: the response of vegetation to climate

perturbations.
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Figure 4.4: Autocorrelation in function of
lag for raw NDVI and NDVI anomalies,
based on Pearson correlation

Figure 4.5: Autocorrelation in function of
lag for raw NDVI and NDVI anomalies,
based on distance correlation

4.2 Granger causality

Causality is the connection between two variables, the cause and the effect, such

that the occurence or state of the cause influences the occurence or state of the

effect. Although many people have an intuitive understanding of this concept, it is

often incomplete or plainly incorrect. A common logic fallacy is that correlation equals

causality. When two variables are highly correlated, it is often assumed that they have

a causal relation. Correlation is however not a sufficient condition for causality, as a

great number of examples can prove1.

The pipeline for performing a causality analysis described in Papagiannopoulou et al.

(2017b) is based on Granger causality. This theoretical framework allows for iden-

tifying causal relations between time series and was first introduced in the field of

econometrics (Granger, 1969). Ever since then, it has seen used in a variety of re-

search fields and several extensions have been proposed. The causality relationship

between two variables is defined through two main principles: Firstly, the cause must

happen prior to the effect. Secondly, the cause must have some unique informa-

tion about the future of the effect. These general conditions for causality are then

transformed into an operational definition for time series (Granger, 1980).

Suppose that one wishes to investigate the causal influence of a variable  on a

variable y. In this research, the NDVI anomalies is variable y. The variable  is

the variable that is researched for its causal influence on y, which depends on the

research question (see Section 1.1). To investigate the causal influence of  on y,

the time series x = [1, 2, ..., N] and y = [y1, y2, ..., yN] are available. To do so

with Granger causality, one wishes to prove that unique information is present in

the history of  about the future value of y. It is important to include all the other

variables z that may have an influence on either one of these variables. This ensures

1http://www.tylervigen.com/spurious-correlations
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more protection against false conclusions. For these additional variables, time series

z = [z1, z2, ..., zN] are available. The simplication of a single variable z is made for the

sake of notation. To be fully correct, the variable  that is researched for its casual

influence can also be a group of variables (f.e. the water group). In that case the

group is handled as a whole and the procedure is no different.

The causal influence of  on y is quantified through predictive modelling of time se-

ries y. More specifically, a datapoint yt in y at a time t is modelled using previous

data from y itself, x and z. Only data from within a confined window of preceding

timesteps t − p to t − 1 are used, as shown in Figure 4.6. The size of the moving

window is determined by parameter P, called the maximum lag. To isolate the unique

information that is present in the history of x, two different models are used. The first

model is the full model, which includes the history of all variables:

ŷt
ƒ = ƒ (yt−p, t−p, zt−p) ∀ p ∈ 1, . . . , P (4.7)

The second model is the reduced model2, which includes all variables, except . De-

pending on the research question, either a single variable or a group of variables are

omitted from the reduced model.

ŷt
red = ƒ (yt−p, zt−p) ∀ p ∈ 1, . . . , P (4.8)

The variable p is called the lag in these models, with P the maximum lag. After training

the models, the prediction accurary of both models is compared on data that was not

used for training (out-of-sample data) (Granger, 1980). If the prediction accuracy of

the reduced model is less then that of the full model, one can conclude that unique

information is contained in the history of x about the future of y. In that case, it is

stated that X "Granger causes" Y. This is reffered to as the partial Granger causality

of a variable (group). This partial Granger causality is not true causality, but a notion

of causality based on a number of assumptions (Granger, 1980).

A third model is also included in the analysis. This is the baseline model, which in-

cludes only past values of the NDVI anomalies to predict the current NDVI anomaly

value yt. The difference in prediction accuracy between the full and baseline model

gives a measure for the total Granger causality of all included climate drivers on veg-

etation anomalies. This is relevant to identify regions with poor Granger causality.

This is also why the strong autocorrelation present in the raw NDVIA is problematic. A

high autocorrelation in the response variable results in a very strong baseline model.

This makes it very hard for the extended and full models to improve prediction accu-

2This naming convention differs from Papagiannopoulou et al. (2017b), where it is named baseline
model.
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racy over the baseline, which makes the whole Granger causality quantification more

difficult (Papagiannopoulou et al., 2017b).

ŷt
bse = ƒ (yt−p) ∀ p ∈ 1, . . . , P (4.9)

Prediction accuracy is quantified through the coefficient of determination R2, which

is defined as one minus the ratio of the residual sum of squares and the total sum of

squares.

R2 = 1 −
RSS

TSS
= 1 −

∑N
P+1(yt − ŷt)

2

∑N
P+1(yt − ȳt)

2
(4.10)

From the available data, a part is needed for determining the model parameters. This

proces is called training the model and the used data is referred to as the training

data. Preferably, the R² should be calculated on test data that was not used during

training. Doing otherwise often results in an over-estimation of the model perfor-

mance. A common practice is to devide the time series in two parts, with the first

parts being used for training and the second parts for testing (James et al., 2013).

This is only a viable stategy if an abundance of data is available. With only 312 data-

points per time serie, this is certainly not the case (more details in Section 4.3). Thus,

5-fold random cross-validation is used to make better use of the available data. This

procedure randomly divides the datapoints into five equal parts. First, one part is ex-

cluded for testing, and the other four parts are used for training. Predictions are made

for the testing set. Then, a different part is excluded for testing and predictions, with

the four other parts used for training. This is repeated untill each of the five parts

is used for testing and predictions are made for the entire time series. Now, the R²

can be calculated as shown in Equation 4.10. It is chozen to keep the division of time

steps over these 5 folds identical between different models, to reduce unnecessary

sources of variance in the R² score.

Apart from random cross-validation, blocked cross-validation is also a valid option,

which is often preferred for time series. In that case, the data is not randomly assigned

into five batches. Instead, it is chopped up into five chronologically coherent parts

along the time dimension. Blocked cross-validation is often preferable, even in a

causal inference setting (Roberts et al., 2017). Due to dependence structures in the

temporal data, the assumption of independent training and testing data becomes

violated for random cross-validation, which randomly shuffles the data. This method

was also tested, the results and discussion are provide in Section 5.4.4). Random

5-fold cross-validation is adopted for its better performance. This is defended with

the fact that we are not interested in the pure R2 values, but are only interested in

the difference in performance between the full and reduced model. Opposed to the
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prediction setting, accounting for future out-of-sample data is also of no interest in

this study, effectively making one main reason for blocked cross-validation invalid

(Roberts et al., 2017).

As stated before, it is important to include all the other variables Z that may have an

influence on either X or Y (Granger, 1980). This necessity is related to the assumption

of causal sufficiency, which states that all hidden common causes or confounding

variables are included in the data. To illustrate the impact of a confounding variable

on the analysis, consider the following example. A researcher wishes to investigate

causal factors related to the number of shark attacks in his/her home country. For

some reason, the researcher wishes to investigate the causal influence that ice cream

sales on the beaches have on the number of shark attacks. Only a time series y of

shark attacks (red in Figure 4.6) and a time series x of the number of ice cream

sales on beaches (blue in Figure 4.6) are available. When conducting this causality

analysis, it is observed that the predictive performance of the full model including x is

stronger than that of the reduced model excluding x. This leads one to conclude that

the number of ice cream sales are somehow a definite causal factor in the number

of shark attacks. This ridiculous conclusion is produced due to the omission of an

obvious hidden common cause from the analysis. This common cause is the number

of people present at the beach, which influences both the number of shark attacks

and the sales of ice cream. A more correct analysis would include a time series z of

the number of people present at the beach (yellow in Figure 4.6) in both models. In

this new research, both models would have similar predictive performance and the

conclusion is different. Even though the number of icecream sales on the beach is

still correlated with the number of shark attacks, it is no longer identified as a causal

factor.

The assumption of causal sufficiency is almost always violated in climate studies. Due

to the complex nature of these global natural phenomena, it is practically impossible

to include all possible confounding variables and hidden common causes. This im-

plies that the causality conclusions from this type of research don’t necessarily reflect

reality. The conclusions are preferably examined by domain experts and confirmed

via knowledge of physical mechanisms responsible for the causal link.

Some other assumptions are almost inherent to machine learning modelling. One

such assumption is that the considered data is of sufficient quality to serve as a solid

basis for the analysis. As stated in Faghmous and Kumar (2014): "Any data-driven

discovery is inexorably linked to the quality of the data, their source, and sampling

bias". Another important assumption is that the used model succeeds in modelling

the underlying relations between the data well. Historically, mostly linear models are

used in the analysis of vegetation-climate interactions. However, these interactions
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Figure 4.6: time series x, y and z and the window for prediction of yt

have often been reported as non-linear in nature (Heimann and Reichstein, 2008;

Bonan, 2011; Zhang et al., 2014; Papagiannopoulou et al., 2017b). Both linear ridge

regression models and non-linear random forest models are used in this analysis, to

preclude prejudice to either one. The model with the best performance will be chozen.

4.2.1 Linear GC modelling

The traditional Granger causality analyses in climate sciences are performed with

linear models, exceptionally supplemented with a quadratic term (Kaufmann et al.,

2003; Wang et al., 2006; Jiang et al., 2015; Notaro et al., 2006). The used models

are multi-variate vector autoregressive models (VAR). They strive to predict  and y

simultaneously in function of themselves and each other, without making the artificial

subdivision into predictor and response variables. A multi-variate linear VAR model of

order p includes p lags of both variables and is represented in matrix notation by the

following equation.

(4.11)

The β parameters are those estimated during model training, while the ε parameters

represent white noise terms. In this study, the interest lies solely in the influence

of climate drivers t on vegetation anomalies yt, thus only the first equation of this

system is of interest. The standard notation of this first equation is equivalent to the
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linear full model equation.

(4.12)

When setting parameter β12p to zero, the formula for the linear reduced model is

obtained.

(4.13)

The basic model that is described by the equations above is the multivariate linear

regression model. This model is widely used in statistics and machine learning. It

is parameterized (= trained) through minimizing of the residual sum of squares (RSS

=
∑N
p+1(yt − ŷt)

2). This process ensures that the β parameters are chozen to best

fit the training data. In this thesis, eleven basic regressor variables are available.

However, each different lag time adds eleven more regressor variables and a large

number of high-level features are also constructed (see Section 4.5). If a model has

more regressor variables than available data points (312 for a single time series), one

is working in a high-dimensional setting. This means that the classic parameterization

method of minimizing the RSS no longer provides a single solution and is rendered

obsolete. Even in a close to high-dimensional setting, problems arise from the minimal

RSS method. When the number of datapoints is close to the number of parameters,

simple RSS minimalization often leads to overfitting. The model is too flexible for

the available dataset, it succeeds at fitting all the training data. This means that

the model is also fitted to random variations in the data, which are meaningless for

prediction. An overfitted model performs very bad on out-of-sample data, and is of

little use for prediction (James et al., 2013).

A solution to this problem is regularization: the addition of a penalty term to the resid-

ual sum of squares. This penalty term is added to punish high absolute parameter val-

ues, if they don’t lead to a significant drop in RSS. It is constructed by grouping all the

β parameters into a single vector β = [β01, β11p, . . . , β13p] and calculating the norm

(= the sum of the absolute values) of this vector. If the penalty term is quadratic, it is

an L2-norm and the resulting model is a ridge regression model (McDonald, 2009).

(4.14)
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This λ ≥ 0 is a tuning parameter, which is determined before minimizing the above

mention term. A higher λ term is a stronger penalty, which punishes more parameters

and sets all the weakest predictors β parameters close to zero. Only the stronger

predictors will have β parameters significantly different from zero. A feature scaling

of the regressors is performed before training. Otherwise, the model would be biased

towards variables of a higher magnitude. Ridge regression will produce a different

set of β parameter estimates for each value of λ and not all sets give good predictive

performance. Selecting a good value for the tuning parameter is critical, which is

further discussed in Section 4.4.

Within the framework of Papagiannopoulou et al. (2017b), the existence of Granger

causality is identified by comparing the prediction accuracy of the full and reduced

model on out-of-sample data. For linear VAR models, it is also possible to test these

results for their statistical significance (Wang et al., 2006; Jiang et al., 2015). A stan-

dard formulation of the null hypothesis is that variable X does not Granger cause Y.

This corresponds to all of the β12p parameters in the full model being 0. An F-statistic

can then be constructed to test this hypothesis (Wang et al., 2006). However, if you a

large number of variables and lags is used, the partial F-test can lose power. Alterna-

tives are available, but are less straight-forward (Ducasse, 2017). To ensure the cor-

rectness of these statistical tests an important set of assumptions should be fulfilled.

The time series should be stationary and data should be transformed to eliminate

strong autocorrelation. Variables and observational techniques should be indepen-

dent from each other and the errors ε are assumed to be normally distributed. These

assumptions are typically violated for vegetation-climate data on a global scale. Fur-

thermore, these statistical tests typically do not extend well to non-linear models

(Papagiannopoulou et al., 2017b). For these reasons, they are not considered for the

main analysis in this work.

4.2.2 Non-linear GC modelling

The use of non-linear models in Granger causality analyses about vegetation-climate

interactions is rare. However, they have better predictive performance compared to

linear models in similar research (Papagiannopoulou et al., 2017b) and are thus also

used in this work. The model of choice is a random forest model, due to its flexibility

and succesful performance in a (near) high-dimensional setting (Breiman, 2001).

A random forest model is a combination of individual decision trees. Decision trees

can be applied to both classification and regression problems. In this work, the ran-

dom forest is constructed from regression trees, since it is a regression problem. A

tree is built from a series of splits that divide the variable space into distinct regions.
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These regions are chosen that way because the training data shows similar outcomes

inside the region and considerable difference between regions. For the ease of expla-

nation, Figures 4.7 and 4.8 are adopted from James et al. (2013). An example decision

Figure 4.7: Regression tree, adopted
from James et al. (2013) and altered

Figure 4.8: Predicted score for the variable
space, adopted from James et al. (2013)
and altered

tree is shown for a two dimensional regression problem. Imagine the problem in ques-

tion is to estimate the quality of a new brand of coffee (Y) based on the quality of the

beans (B) and the strength of the extraction (X). All the variables are continuous and

stay between 0 and 1.

Figure 4.7 shows a regression tree fitted to the available data. The five blue boxes

at the bottom are the final regions, they share the same prediction for the response

variable (Ŷ). This prediction is shown in Figure 4.8. The predicted response for a

region is usually the average of the observed response values for the training data in

that region. The final regions are obtained through a series of splitting rules, starting

at the top of the tree. The first split is based on the quality of the beans. Coffee

from beans with a lower quality (B < 0.45) branches to the left and coffee from higher

quality beans branches to the right. The low beans quality branch is then split again

according to the strength of extraction. The higher beans quality branch (B ≥ 0.45)

is also split, according to bean quality and strength of extraction. In this example

all splits are binary and result in two branches. Non-binary splits of three or more

branches are also possible. For example, the first split (B < 0.45) and the second split

on the right (B < 0.6) are equivalent to a single 3-way split.

Decision trees incorporate interaction between variables in a very intuitive way. In this

example, the strength of extraction has a different effect on the predicted outcome

based on the quality of the beans. For low quality beans (B < 0.4), a strong extraction

releases more foul tasting components from the low quality coffee powder resulting

in worse tasting coffee. For medium quality beans (0.45 ≥ B < 0.6), the strength
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of extraction has no influence on the quality of the coffee. For high quality beans

(B ≥ 0.6), a strong extraction releases more tasty chemicals from the beans, resulting

in even better coffee.

The splits in regression trees are constructed based on minimizing the residual sum

of squares (RSS). A very simple way of constructing a tree is top-down, with greedy

binary splitting. At the start of the algorithm, a large variety of splits are possible. The

RSS is calculated for each candidate split using the average within a region as the new

prediction within that region. The split that results in the lowest RSS is applied. This

procedure is repeated for each new branch untill a stop criterium is reached. This

can be related to a minimum number of observations required to make a new split, a

maximum number of splits or a required decrease in RSS to justify a new split.

A strong point of decision trees is that they don’t assume a certain relation between

the predictor and response. They are not limited to linear, quadratic or exponential

relationships. This flexibility however comes at a price. A single decision tree is

very non-robust. A small change in the data can cause a large change in the final

constructed tree. This is undesirable, since the available data can be very noisy.

Random forests present a solution to this problem by constructing a large number (B)

of individual regression trees (this makes it an ensemble method).

The random forest algorithm involves some steps to decorrelate the trees, since con-

structing a lot of identical trees is of little use. A first step involves the use of a

resampling method on the data. Cross-validation is a popular example of resampling

methods, which allow for more efficient use of the data. The resampling method used

in the random forest algorithm is bootstrap aggregating, or bagging for short. This

consists of generating a large number of "new" samples from the original one. If the

dataset contains N datapoints, a new dataset is constructed by picking N random ele-

ments from the set, with replacement. Each datapoint has the same chance of being

picked at any time, even when it was already picked before. Some datapoints from

the original dataset will appear multiple times in a bootstrap sample, while others

don’t appear. A bootstrap sample will only contain around two-thirds of the original

data on average (James et al., 2013). By constructing a bootstrapped data set for

every tree, each tree only has access to a limited part of the information. Each tree

is grown deep with few limits to the number of splits.

The use of bootstrapped samples will still lead to a large number of similar trees. If

there is a very strong predictor in the data, most trees will use this predictor in their

first split. Hence, most of the trees are still very similar. Random forest further decor-

relates the trees by forcing each split to only consider a small subset of the variabels.

This subset of variables is picked at random each time (without replacement) and
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usually contains
p
p variables with p the number of variables. Even though it may

seem counterintuitive, it is beneficial because it reduces variance. When a strong

variable is present, it is not considered in many of the splits, giving a better chance to

moderately strong predictors to also play an important part in the tree. By averaging

the predictions from all trees, a more robust model is obtained that performs better

on unseen test data.

Another strong point of the random forest algorithm is the scale-invariance, meaning

that it is invariant under scaling and some other transformations of the variables. Fur-

thermore, the algorithm performs well in a high-dimensional setting due to its robust-

ness to the inclusion of irrelevant features (Hastie et al., 2001). The implementation

of the scikit-learn package in python is used.

4.3 Simplifying the problem

A first step in tackling the problem at hand is simplifying it. This involves moving

away from the global setting that was necessary during data pre-processing. The

Granger causality analysis will be performed locally, for every pixel individually. The

individual results from these local analyses are aggregated and mapped to enable

global conclusions.

For each pixel, its twelve corresponding time series are extracted from the datacubes.

The Granger causality analysis is now performed for every pixel seperately, a sim-

plified example is given in Figure 4.9. The models get a number of features (time

series) to predict the NDVI anomalies time series. These features are not the climate

variables as such, but rather the higher level features constructed from them. This

process is explained in Section 4.5. Baseline, reduced and full models are constructed

based on both random forest and ridge regression. These models only get the high-

level features coming from the variables they are allowed to use (see Equations 4.7,

4.8 and 4.9). As such, random forests and ridge regression can be compared on their

prediction accuracy and the results from the best of both models are used to draw the

further conclusions.

Because of the way these time series are used, any knowledge of neighbourhood

between pixels is not exploited. This may not be the best use of this abundance

of data, but it allows for highly parallelized calculations and an immense speed-up.

Furthermore, the local analyses allow for a very natural translation of the Granger

causality theory, which is based on time series. The model training and predictions are

performed using the Tier-2 infrastructure of the VSC centrum (Vlaams Supercomputer

Centrum).
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Figure 4.9: Simplified example of the procedure for one pixel

45



4.4. MODEL PARAMETERIZATION

4.4 Model parameterization

Since every model operates independently, the hyperparameters of each model can

be tuned seperately. This is very useful for ridge regression, since the optimal choice

of the tuning parameter β will vary between different pixels and models. If many

strong predictors exist that are not cross-correlated, the optimal β is low. For the ridge

regression models, the optimal value of β is picked from a set of 20 candidate values

between 101 and 1015. The optimal value is selected from these candidates via

generalized leave-one-out cross-validation (LOOCV), which only considers the training

data. The explanation of LOOCV is considered out of the scope for this thesis3. It

is sufficient to understand that it is just another form of cross-validation, which is

extremely fast for linear models (Seber and Lee, 2012). The LOOCV Ridge Regression

implementation of the scikit-learn package in python is used. The training data was

already selected through 5-fold cross-validation, and now the λ parameterization is

done via LOOCV within this training data. This is called a nested cross-validation

scheme. This is needed for tuning hyperparameters such as λ, as they have to be set

before the training of the model.

Figure 4.10: An example of a nested cross-validation scheme, Sebastian Raschka,
Adopted from Machine Learning FAQ4

Some hyperparameters exist for the random forest models as well. They relate to the

number of trees, the depth of the trees and the amount of features offered at each

split. The number of trees (B) is a peculiar hyperparameter. Most hyperparameters

have an optimal range and both smaller and larger values outside of this range give

bad model predictions. For the number of trees, this is not the case. The prediction
3A full explanation is available in section 5.1.2 of James et al. (2013).
4Retrieved on July 25 2018 from https://sebastianraschka.com/faq/docs/evaluate-a-model.html
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accuracy increases with the number of trees, but there is no optimal range after which

the prediction accuracy decreases. Instead, the prediction accuracy stagnates after a

certain number of trees. There is however another cost related to overestimating B:

the time needed for model training. This increases almost linearly with the number of

trees, as can be seen in Figure 4.11. From this figure, the number of trees is chozen as

150. The trees in a random forest model are typically allowed to grow deep without

restriction, this is also chozen here (James et al., 2013). The amount of features

offered at each split is set to the default parameter, as tuning of this parameter

typically does not increase prediction accuracy by much. This default parameter is
p
p with p the number of features available to the model (James et al., 2013).

Figure 4.11: [left] Computation time needed for training and predicting of a single
random forest model in function of B [right] Prediction accuracy of the same random
forest model in function of B

4.5 Model features

Each model gets a collection of time series from the predictor variables for training

and prediction. Rather than simply using the raw variables, a large number of high-

level features are constructed from them as proposed in Papagiannopoulou et al.

(2017b). The construction of extreme events is not included in this work, due to the

small available time span of the data and the limited scope of this thesis. Variables

that have no data or only zeros are removed for that pixel.

4.5.1 Time series decomposition

The relevant time series that remain are put through the times series decomposi-

tion procedure described at the beginning of Section 4.1. The seasonal cycle is not

smoothed this time because some variables can change rapidly in magnitude. The
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result is a trend yTt (Eq. 4.1) and a non-smoothed seasonal cycle ySMt (Eq. 4.4) for

each variable. The trend is then substracted from the raw time series to produce the

detrended time serie: ydTt = yt−yTt . The anomalies are produced by substracting both

the trend and seasonal cycle from the raw time series: yAt = yt − y
T
t − y

SM
t . This allows

for extracting useful information from the raw data and it lowers the cross-correlation

between predictors.

For every variable, the raw, trend, detrended, seasonal and anomaly time series are

available as possible features. The trend time series are monotonous linear functions.

They all offer the same information to the random forest and the ridge regression

models, hence they are all functionally equivalent. Those time series are dicarded

and replaced by one linear function with a positive slope and one linear function with

a negative slope, to offer the same information. The raw time series contains mostly

the same information as the detrended time series, but it is less stationary. For this

reason, the raw time series are also discarded. Thus, from every time series we have

a detrended time series ydTt , a seasonal time series ySMt and an anomalies time series

yAt . This results in a maximum of 33 predictor time series per pixel.

4.5.2 Lagged variables

Vegetation responds to most perturbations with a certain delay in time, called a lag.

This encourages the inclusion of lagged variables in the analysis, which is done in

most vegetation-climate studies of this scale (see chapter 2). The formulation of a

lagged variable  at lag p is very straightforward: pt = t−p with p ranging from 1

to P. Lagged versions of the 33 time series components are constructed, as well as

lagged versions of the NDVI anomalies: ypt = yt−p

What is the maximum lag P that has to be incorporated in the analysis? How far back

in time do climate variables have a unique influence on vegetation, in such a way that

they cause anomalies? To truly identify the optimal maximum lag, one should perform

another Granger causality analysis. In such an analysis, the different lagged versions

of the same variable are all considered to be different variables. The reduced model

contains all lagged variables up to a small lag value P− 1, and the full model contains

all lagged variables up to P. If the full model outperforms the reduced model, the

lags up to P should be included in the model. Different possible values are tested and

the best performing value is chozen for the maximum lag P. This procedure requires

multiple repetitions of a time-intensive calculation and is thus considered to be out of

scope for this thesis. It was reported in Papagiannopoulou et al. (2017b) that including

lagged variables of more than six months lag no longer improved model predictions.

Thus, the maximum lag adopted in this study is set to twelve (two lags per month).
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A maximum of 441 features are obtained per pixel (33 original + 34 ∗ 12 lagged

versions) for the full model.

4.5.3 Cumulative variables

Vegetation is resilient against short disruptions, and often prolonged climate anoma-

lies are needed to induce a strong response on vegetation. Thus, vegetation anoma-

lies don’t always reflect the influence of a single lagged variable, but rather the cu-

mulative impact of that variable during the preceding months. It is concluded in Ji

and Peters (2003) that cumulative moisture variables up to three months are more

succesful in predicting the vegetation response to drought than the single month vari-

ables. A cumulative variable of lag k is constructed as the sum of all lags smaller or

equal to k. For the NDVI anomalies, the present timestep is not included since it is

the response variable ykt =
∑k
p=1 yt−p. For other variables, the cumulative variable in-

cludes the present timestep: kt =
∑k
p=0 t−p. The maximal lag K is set to 12, which is

the same as for ordinary lagged variables. However, not all cumulative variables with

k ranging from 1 to 12 are included. When k becomes higher, the difference between

consecutive cumulatives kt and k+1t becomes smaller. To prevent the abundance of

highly correlated features, the cumulative variables with k = 6, 8, 10 and 11 are not

constructed. In total 8 cumulative variables are constructed for the 33 time series

components (k = 1,2,3,4,5,7,9,12), together with 7 cumulative variables for the NDVI

anomalies (the cumulative variable at k = 1 is identical to the lagged variable at p =

1 and is not included). In the end, a maximum of 712 features are available to the full

model per pixel.
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RESULTS AND DISCUSSION

The general methods have been explained and the three research questions can now

be tackled. Is water the most important climate driver for vegetation anomalies glob-

ally? What is the impact of the new variables on the analysis? What is the influ-

ence of a higher spatial and temporal resolution on the Granger Causality Framework,

compared to previous work of Papagiannopoulou et al. (2017a)? First, some gen-

eral results are presented for the entire analysis. Then, the results for each research

question are graphically presented and discussed.

5.1 General results

Before further analyses, it is important to determine which machine learning model

should be used. To do so, the predictive performance (R²) of random forest and ridge

regression models are presented in Figure 5.1. This comparison is based on the full

models, as they contain all possible features constructed from all variables (see Sec-

tion 4.2), which is the most complex setting for prediction. The difference in prediction

accuracy between ridge regression and random forest models is also shown. For the

ridge regression model, the distribution of the used λ terms falls nicely within the

given range of possible values (see Figure B.1 in appendix B). This is an indicator for

correct hyperparameter tuning.

From the figures on prediction accuracy, it is clear that the random forest models

outperform the ridge regression models on a global scale. This was also reported in

Papagiannopoulou et al. (2017b) and all further analyses are thus performed with the

random forest models. The random forest model performs well in mostly the same

regions as reported in Papagiannopoulou et al. (2017b).

The results for the baseline model are presented in Figure 5.2. The difference in R²

score between full and baseline model is used as a measure for the total Granger

causality (see Figure 5.3). In theory, only positive Granger causality is possible: the

full model has all the same features available as the baseline model, combined with

many additional features. Even if all additional features are useless for prediction, the
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Random forest: R² score of the full model

Ridge Regression: R² score of the full model

ΔR²: Random forest - Ridge regression

Figure 5.1: Predictive performance of Ridge regression vs Random forest in terms of
R² score [Top] Random forest full model R² score [Middle] Ridge regression full model
R² score [Bottom] Difference in R² score of the full models: random forest - ridge
regression
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Figure 5.2: Predictive performance of Random forest baseline model: R² score

full model should still score equally well as the baseline model. In reality however, this

is not always true. The difference in R² score between the full and baseline model can

be negative. This happens when the climate features in the full model have very low

predictive power for that pixel. A high number of useless variables are present and it

becomes harder for the full model to find the few useful features that are present. The

full model has to work a in high-dimensional setting and some overfitting is almost

inevitable, while the baseline model is used in a low-dimensional setting. As such, the

performance can drop below that of the baseline model (for more details see Section

5.3.2).

The full model outperforms the baseline model in most regions of the world, which

validates the Granger causality analysis as a whole. The total Granger causality is

similar to that reported in Papagiannopoulou et al. (2017a) for most of the world, with

higher values in much of the Northern latitudes of North America and Asia. This total

Granger causality serves as a reference for further Figures on partial Granger causal-

ity. This partial Granger causality only describes unique information present in that

variable (group), it does not account for the shared information between variables.

This shared information is part of the total Granger causality, so the sum of all partial

Granger causalities is lower then the total Granger causality.
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Figure 5.3: The difference in R² score between full and baseline model, used as a
measure for the total Granger causality

5.2 Impact of the water availability group

In the work of Papagiannopoulou et al. (2017a), the partial Granger causality of three

main climate driver groups on vegetation anomalies is researched. Temperature, ra-

diation and water availability are ranked based on their partial Granger causality. The

main conclusion is that water availability is the most important climate driver that

Granger causes NDVI anomalies worldwide. It is reported that 61% of the global veg-

etated area is primarily controlled by water availability. Temperature and radiation

are the primary climatic controls in 23% and 15% of the global vegetated area, re-

spectively. The same analysis from Papagiannopoulou et al. (2017a) is now repeated

with new data in an attempt to validate or nuance those findings.

The first step in ranking the different climate driver groups is calculating the partial

Granger causality of each group in the vegetation anomalies. A reduced model is

constructed for the water availability that uses all features except those related to

precipitation, soil moisture and snow water. The R² score of the reduced model is

then substracted from the R² score of the full model. This is the partial Granger

causality of the water group, as shown in Figure 5.4. This procedure is repeated

for the temperature and radiation group, to quantify their respective partial Granger

causality. In regions where the considered group is useless for predicting the NDVI

anomalies, the reduced model will perform slightly better then the full model and the

reported Granger causality is negative.

It is clear that the water group provides the strongest Granger causality at a global

scale. Regions with tropical or monsoonal rainforest vegetation (based on the Köp-

pen–Geiger climate classification) coincide with regions of low Granger causality, as
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can be observed in Figure B.2 in Appendix B. This is as expected, since these climates

are characterized by abundant precipitation throughout the year. Tropical rainforest

climate has no dry season and all months have an average precipitation value of at

least 60 mm. Monsoonal rainforest climate does have a driest month with rainfall

less than 60 mm. This month still contains more than 1/25th of the total annual pre-

cipitation, by definition (Kottek et al., 2006). When using the global land cover map

described in Chen et al. (2015), it becomes clear that many of the areas that have

low Granger causality for water availability are forested areas or cultivated land (see

Figure B.3 in Appendix B). This is related to the fact that trees generally have access

to deeper layer soil moisture. The root-zone soil moisture is included in this model by

means of the GLEAM dataset (see Section 3.1). Forests grow mostly in non-arid re-

gions, as arid land forests and wooded lands only count for 6% of the total forest area

(Malagnoux, 2007). This ultimately results in most of the global forests not being lim-

itated by water availability, which is in accordance with the results of Boisvenue and

Running (2006) and Seddon et al. (2016). As a side-note, it should be mentioned that

it is hard to get a complete image of the actual soil-moisture content in dense forests

through remote sensing. This is especially true for rain-forests due to the obscuring

effect of the constant cloud cover, as could be observed from Figure 3.7. Thus, the

impact of the water group may be underestimated in these regions.

Radiation shows partial Granger causality mainly in South America, Southeast Asia

and the Philippines. This corresponds to the forested areas that are not water-driven.

These same areas have been reported in Boisvenue and Running (2006) for the po-

tential limitation of available sunlight to net primary production. The temperature

group only shows limited partial Granger causality, mostly in Europe and near the

East Coast of North America. The impact of temperature is significantly lower than

was reported in Papagiannopoulou et al. (2017b).

The three main variable groups can be ranked per pixel based on their Granger causal-

ity. For every variable group, its respective place in the ranking is determined per pixel

and plotted in Figure 5.5. If a group shows no total Granger causality in that pixel,

no ranking is shown. The conclusions from the partial Granger causality Figures are

reinforced here, with the water availability showing the best overal rankings. The

radiation group ranks highest in most of the forested areas, where the water group

has poor Granger causality. The temperature group mostly shows highest rankings in

Europe and near the East Coast of North america. This high ranking in Europe may

be linked to the increased length of heatwaves over Western Europe as reported by

Della-Marta et al. (2007). During the extreme heatwave of 2003 (Russo et al., 2015),

the strong reduction in vegetation net primary production has been reported as driven

by temperature rather then rainfall deficit for Western Europe (Ciais et al., 2005).
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Radiation partial GC

Water availability partial GC

Temperature partial GC

Figure 5.4: partial Granger causality (GC) of the three main groups, expressed as the
difference in R² score between the full and reduced models
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Radiation rank

Water availability rank

Temperature rank

Figure 5.5: Ranking of the three main group in terms of Granger causality. The "no
GC" label is used if that group shows no Granger causality for that pixel
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A global map of the group with the highest Granger causality per pixel is shown in

Figure 5.6. This Figure is similar to the reported results in Seddon et al. (2016) (see

Figure A.3 in Appendix A) with the cloudiness replaced by radiation, as both are linked

(Nemani et al., 2003). A clear resemblance exists to the global land cover map re-

ported in Chen et al. (2015), suggesting a strong causal link between the dominant

climate driver and the vegetation type. In Figure 5.6, the water availability group is

the dominant group in terms of partial Granger causality, with 64% of the vegetated

land being mainly water-driven. The radiation and temperature group are the domi-

nant group in 18% and 8% of the vegetated land. No Granger causality is measured

in 10% of the vegetated land. If the pixels without Granger causality are not taken

into account, the relative percentages for water, radiation and temperature are 71,

20 and 9%, respectively.

In the construction of Figure 5.6, the only requirement for the inclusion of a pixel is

that the total Granger causality is larger than zero. Even if the full model outperforms

the baseline with only the slightest margin, the results are included and they have the

same weight over the final outcome as regions with very strong Granger causality. An

attempt is made to isolate the results that are based on stronger Granger causality.

A minimum total Granger causality is required, and the resulting new global ranking

of the three groups is shown in Figure B.4 in Appendix B. If a pixel does not meet

this requirement, it is not shown. The aforementioned relative percentages of 71, 20

and 9% for water, radiation and temperature stay relatively stable over a wide range

of cut-offs. The water availability percentage rises to 73%, the radiation percentage

drops to 18% and the temperature percentage stays the same. The global division of

the dominant climate drivers holds up, even if only strong Granger causality is taken

into account.

In the global ranking, the temperature group shows the lowest control over vegeta-

tion anomalies, which is not in accordance with the results of Papagiannopoulou et al.

(2017a). The primary control percentages reported were 61, 15 and 23% for water,

radiation and temperature, respectively. Large areas in the Northern latitudes are

no longer reported to be controlled by temperature in this thesis. Most of those re-

gions are now reported to be controlled by radiation instead. This shift in control can

be linked to an actual decreased impact of temperature in these Northern latitudes.

However, it is also possible that this shift in control is not linked to reality, as Granger

causality does not equal true causality. A range of factors can influence the conclu-

sions: missing data, new data, hidden common causes and confounding variables can

all influence the results. In further Sections, some of these possibilities are tested for

their possible influence on the analysis. It turns out that part of the high Granger

causality for temperature in previous work is related to the fact that the VPD variable
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Figure 5.6: Group with the highest Granger causality for every pixel. The "no GC"
label is given for pixels that have no total Granger causality

was not included in that database (see Section 5.3.3). Another factor that has an

influence on the low reported temperature Granger causality in this study is the high

resolution (see Section 5.4.3).

From Figures 5.5 and 5.6, the main conclusion from Papagiannopoulou et al. (2017a) is

confirmed: global vegetation anomalies are primary controlled by the water availabil-

ity. The areas previously shown to be water-driven remain primarily water-controlled

in this study. For completeness, it must be mentioned that one factor can cause an ar-

tificial preference in the random forest models towards the water group in my thesis.

This factor is the unbalanced number of variables, as every variable is represented by

a single dataset (except for soil moisture). The water group has 5 raw datasets, that

incorporate both remote sensing and other data sources (see Section 3.1). The tem-

perature group has only 3 raw datasets, that are often highly correlated. The radiation

group only contains data from a single source. This can cause problems, because a

single dataset can be inaccurate for a certain region or period in time. Using only one

data source per variable is related to the limited scope of this thesis, but it may be a

source of bias. The unbalanced variable groups also present another possible source

of bias. Due to the nature of random forest models, only a small subset of variables

are available for each split (a maximum of 27 features in this setting). On average,

almost half of the variables in these subsets will be related to the water availibility.

Thus, if every variable has only one relevant lag-time, the water group simply has a

better chance of being incorporated in any given random split.
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Figure 5.7: Cumulative burned area over time

5.3 Impact of the new variables

In this dataset, three variables are included that were not present in the research of

Papagiannopoulou et al. (2017b): wildfire, VPD and irrigation. Since they are new to

the analysis, it might be interesting to test these variables for their respective Granger

causality, to see if they are useful for further analyses. This is done by constructing a

seperate reduced model for each variable and calculating the decrease in predictive

performance compared to the full model.

5.3.1 Wildfire

Wildfire is a climate variable that does not belong to any of the three main groups

(radiation, temperature and water availability). To be fully correct, it is a variable

group of its own. If the wildfire data on burned area is summed up over time per

pixel, the most heavily impacted regions become clearly visible (see Figure 5.7). In

the most intensely burned regions, more than 50% of the vegetated area burns on

average every year (see Figure B.5 in Appendix B). It is a reasonable assumption

that the amount of burned area will show strong Granger causality in these heavily

affected regions.

This assumption does not hold however, as it can be seen from Figure 5.8. Most

regions show only very limited Granger causality. The strongest Granger causality is

present in the Northern latitudes and South America. However, even in these regions,

the Granger causality is low compared to that of the three main groups. If the wildfire

variable is incorporated in the ranking procedure from Figure 5.5, it is never the first

or even second Granger causality factor (Figure not included).
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The areas with strongest Granger causality are not really associated to the areas with

the highest cumulative burned area over time. This is a counterintuitive conclusion, as

much research suggests a strong impact of large-scale wildfires on vegetation (Lu and

He, 2014; Puig-Gironès et al., 2017; Wakeling et al., 2012; Bond et al., 2005). A partial

explanation for this phenomenon might be related to the vegetation type. The areas

where a large percentage of the vegetated area burns on an annual basis are mostly

grasslands and shrublands (see Figure B.3 in Appendix B). It is known that these

vegetation types have many different adaptations to enable a quick recovery after a

large wildfire (Mares, 2017; Lu and He, 2014; Wakeling et al., 2012). Furthermore, an

important part of the impact that frequent wildfires have in these areas is that they

hold back forest vegetation (Wakeling et al., 2012; Bond et al., 2005). This influence

is not really detectable with this setup, as it does not investigate causal influences

on the average raw NDVI over time. The only visible correlation that the areas with

stronger Granger causality have to the GFED wildfire database is in another variable,

that was not included in this study: the average fuel consumption. The Northern

areas with stronger Granger causality also show a high average fuel consumption per

square meter (Figure B.5 in Appendix B). This high fuel consumption is related to the

vegetation type, as forests have more available biomass for the fire to burn. It might

be that the burned area alone is just a bad predictor for how harsh wildfires impact

vegetation. The burned area is a consequence of vegetation destruction, rather than

a causal factor.

Another possible reason for the absence of strong Granger causality in Africa is the

large amounts of smoke coming from the fires. These would be detectable through

remote sensing and might interfere with the measurements for other variables used

by the models. If this were to happen in such a way that the smoke disturbance

were detectable in that data to the random forest models, the occurence of wildfires

would no longer be unique information. This is however considered unlikely due to the

advanced state of remote sensing measurements and processing of the data before

publishing.

5.3.2 Irrigation

Irrigation is not a climate variable, but it is included in the analysis as it could be

a hidden common cause or confounding variable. For example, it might be so that

positive anomalies in the soil moisture data coincide with the application of irriga-

tion. The partial Granger causality is shown in Figure 5.8. No areas with clear partial

Granger causality are visible. There are some variations visible, but these variations

are scattered and they don’t prove anything. Due to the random nature of the random
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Wildfire GC

Irrigation GC

Vapour pressure deficit GC

Figure 5.8: partial Granger causality for wildfire, irrigation and VPD
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Figure 5.9: Difference in R² score between two repetitons of full model (no GC). This
is used as a baseline to compare low partial Granger causality to.

forest models, such variations are also visible in the difference in R² score between

two repetitions with the same full model 5.9.

In order to test for low partial Granger causality in scattered pixels, a different ap-

proach is adopted. The frequency distribution of the Granger causality values from

all pixels is plotted in Figure 5.10 for irrigation. If Granger causality is present, the

distribution should lean towards more positive values in theory. This is not really the

case, and the mean of the distribution is only 2∗10−4. One might conclude from this

that no significant Granger causality is present, and that the addition of the irrigation

variable is the same as adding a randomly created meaningless variable to the model.

This is however not the case. A very large number of features are offered to the full

random forest model (max. 712) and only few will have strong predictive power over

the NDVI anomalies. If one were to add a useless variable, its time series components

and all high-level features, it becomes harder for the model to find the stronger pre-

dictors amongst the now larger pile of weak predictors. The cost of adding a useless

variable to the features is not zero. This cost is simulated by performing a partial

Granger causality analysis for a random variable. The performance of the full model

with the random variable (and its high-level features) is compared to the performance

of the full model without the random variable. This difference in R² score is used as

a measure for what the partial Granger causality of a truly useless variable would be.

The frequency distribution for this difference in R² score is shown in Figure 5.10 and

it is clearly negative on average.

The fact that these distributions are so spread out is also related to the random nature

of the models. The difference between the R² score of two repetitions of the same full

model is also shown in Figure 5.10 (labeled no GC), as a reference for the variability
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Figure 5.10: Frequency distribution of
the Granger causality (GC) values: [Top]
GC for irrigation [center] GC for a ran-
dom variable [Bottom] Difference be-
tween two repetitons of full model (no
GC)

Figure 5.11: Difference between two
frequency distributions: [Top] Irrigation
Granger causality - no Granger causal-
ity [Bottom] Random variable Granger
causality - No Granger causlaity

that affects all results. It is now possible to assess whether the distribution of irriga-

tion Granger causality is more positive than the distribution of the difference between

two repetitions in the full model (no GC). The difference between these two distribu-

tions is calculated and shown in Figure 5.11. For reference, the difference between

the distributions of a random variable GC and no GC is also calculated and shown.

These Figures show that more positive Granger causality values are present in the ir-

rigation distribution than in the no GC distribution, while quite the opposite is true for

a random variable. The Mann–Whitney U test can be used to test for the statisical sig-

nificance of this conclusion (Mann and Whitney, 1947). The null hypothesis of this test

is that no variable is stochastically larger then the other and the one-sided alternative

hypothesis is that the irrigation partial Granger causality is stochastically larger then

the difference in R² score between two repetitions of the same full model (no GC). The

resulting p-value of 2.5∗10−8 suggests that the alternative hypothesis is correct and

that partial Granger causality exists for irrigation. The combined evidence of Figure

5.11 and the Mann–Whitney U test proves that irrigation does have partial Granger

causality over NDVI anomalies. However, this partial Granger causality is limited and

not really noticable on a global scale.

This leads one to wonder why irrigation shows so little Granger causality, when we

know it is applied to succesfully prevent vegetation withering? This is likely related to

the nature of partial Granger causality, which only accounts for the unique information
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that a variable (group) holds over the response variable. In this case, the near-surface

soil moisture is incorporated in both the reduced model and full model. Part of the

information present in the irrigation data is likely also present in the near-surface

soil moisture data. As such, the reported Granger causality for irrigation may be

lower then the actual causality. Another factor that may play a role is the spatial

resolution of the study. A timeseries for NDVI represents the average NDVI anomalies

over 775 km² (near the equator). The application of irrigation may be too localized

to induce a noticable response in the average anomalies over 775 km², for many

pixels. The data quality may also have an impact on the outcome, as it is derived

from modelling efforts on a monthly resolution, instead of direct remote sensing at a

bi-weekly resolution as for most other sources (see Section 3.1).

Another possible explanation for the low Granger causality is related to the anthro-

pogenic nature of irrigation. Irrigation is applied to promote plant growth and prevent

drought stress. This makes it fundamentally different from the climate variables.

Large application of irrigation is often an induced response to periods of lower water

availability, with the specific goal to prevent vegetation anomalies. If irrigation is ap-

plied in that manner over the entire period for a pixel, periods of drought will produce

less negative NDVI anomalies, compared to a neighbouring pixel without irrigation. It

would not be possible to trace this causality back to irrigation, since there is no period

without irrigation to compare to. This is a weakness originating from the simplification

procedure described in Section 4.3. By isolating every pixel, all spatial information is

lost and it becomes impossible to quantify causality arising from spatial differences.

Even though the irrigation variable might not show much partial Granger causality,

it is still advised to include the variable in future analyses. It may contain important

shared information with variables from the water group, thus preventing an inflation

of the partial Granger causality of that group.

5.3.3 Vapour pressure deficit

The VPD is a measure for air drought that is included in the water group. The partial

Granger causality of the VPD is shown in Figure 5.8. The observable partial Granger

causality suggests that new information is present in the VPD data that was not de-

tectable in the other (water) variables. Mainly forests in Northern latitudes and South-

East Asia show Granger causality for the VPD. If the resulting NDVI anomalies are

mainly negative and they are related to positive VPD anomalies, VPD is a measure

for the impact of drought on Northern Hemisphere forest vegetation. This remains

speculation as the sign of the explained anomalies is not known.
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The inclusion of VPD as a water variable may be part of the reason for the low Granger

causality of the temperature group. As mentioned in Section 3.1, the VPD is calcu-

lated as the difference between the saturated vapour pressure and the actual vapour

pressure. The actual vapour pressure is the mass of air moisture per volume and

is measured via remote sensing. The saturated vapour pressure is a function of the

air temperature (◦C) and is calculated as Pst = 611∗ ep
�

19.65∗T
T+273

�

. It is likely that

some of the previously reported Granger causality for the temperature group (Papa-

giannopoulou et al., 2017a) is no longer unique information for that group, due to the

addition of the VPD variable. This would result in a lower partial Granger causality for

temperature.

To test this hypothesis, the analysis of Section 5.2 is repeated. In this scenario how-

ever, the VPD variable is removed from all models, as if it were not used in this study.

The temperature ranking in the models without VPD is higher in areas of North Amer-

ica and continental Asia, which are areas with a high Granger causality for the VPD

(Figure not included). The map of the first ranking variable group is also remade. The

new ranking without VPD is shown in Figure 5.12, the old correct ranking in Figure 5.6.

It is clear that the dominance of the water group has dropped in favor of both the tem-

perature and radiation group. The absolute percentages have gone from 64, 18 and

8% to 58, 19 and 13% for water, radiation and temperature. Some of the information

about the NDVI anomalies held in the temperature group is thus not unique, and also

available in the VPD time series. This is logical, the VPD is strongly linked to temper-

ature by definition and it was calculated (partly) from the temperature data. It is thus

likely that the VPD was a confounding variable in the results of (Papagiannopoulou

et al., 2017b), as the variable was not included there. This would account for part

of the reason why the temperature partial Granger causality was reported higher in

those previous papers.

It could be argued that VPD represents the combined influence of the water group

and temperature group rather than just the water group, as it is calculated from the

vapour pressure (a measure for air water content) and temperature. This could be

tested by replacing the VPD with a another water variable such as air moisture content

or actual vapour pressure. This is considered out of scope for this work and could be

investigated in future analyses.
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Figure 5.12: Ranking of the three main group in terms of Granger causality when the
VPD variable is removed from all models. The "no GC" label is given to pixels with no
total Granger causality

5.4 Impact of a higher spatial and temporal

resolution

The data used in this study has a higher spatial and temporal resolution than the

data from Papagiannopoulou et al. (2017b). The effect of the individual temporal

and spatial upscaling steps is discussed. The effect of a combined upscaling is also

investigated. The different resolutions may allow for the use of different techniques,

such as blocked cross-validation and the exclusion of lag zero from the models. Both

options are evaluated on their possibility and usefulness for future studies.

5.4.1 Impact of higher spatial resolution

The spatial resolution has gone from 1◦ x 1◦ in the work of Papagiannopoulou et al.

(2017b) to 0.25◦ x 0.25◦ in this thesis. This means that what used to be a single pixel

is now divided into sixteen different pixels. This makes it easier to pick up on local

patterns, which could improve prediction accuracy. The increase in spatial resolution

comes at a cost, as the datacubes become much larger. Older personal computers

can show memory problems for simple mathematical operations on these datacubes.

Due to the extreme parallelization described in Section 4.3, the associated increase in

computation time is limited. If the problem were to be tackled in a more complex way

(e.g. per region instead of per pixel), such extreme parallelization is not possible. A

random forest model can become very slow in a regional setting (Papagiannopoulou
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et al., 2018). It is investigated whether the higher resolution results in better perfor-

mance of the models.

As a way to test for the effect of this higher resolution, the basic Granger causality

analysis is performed again with a lower spatial resolution dataset. All available data

is downsampled to a spatial resolution of 1◦ x 1◦ (the temporal resolution is still bi-

weekly). Each new pixel contains sixteen old pixels. If less then eigth of these were

included in the original analysis, the pixel is not used. The difference in R² score

between the high and low resolution models is calculated for the full and baseline

model : 0.25◦ x 0.25◦ - 1◦ x 1◦. The results are presented in Figure 5.13. These values

corresponds to the effect of moving from a lower to a higher spatial resolution: if the

difference is positive, the higher resolution results in better predictive performance.

It can be concluded that the baseline model becomes a bit worse on average, but

regions with improvements in R² scores are also visible. The predictive performance of

the full model drops more on average, which results in a lower total Granger causality,

as is shown in the bottom of the Figure. The relation between the difference in total

Grange causality (bottom of Figure) and the difference in R² score of the baseline and

full models (top and middle of figure) is as follows:

ΔGC1,2 = GC1 − GC2 =
�

R2ƒ1 − R
2
bse1

�

−
�

R2ƒ2 − R
2
bse2

�

(5.1)

=
�

R2ƒ1 − R
2
ƒ2

�

−
�

R2bse1 − R
2
bse2

�

= ΔR1,2ƒ − ΔR1,2bse

This lower predictive performance is a bit counterintuitive: one would expect that

the availability of finer resolution data would make both models stronger, as more

detailed anomalies can be explained. This effect is probably present in some regions,

but another effect plays a more important role. The 1◦ x 1◦ data is an average-pooled

representation of the higher resolution data, which removes some of the noise that

was present. By lowering the random variance in the data, it becomes easier for the

models to detect actual patterns of prediction (Costanza and Maxwell, 1994). This

effect seems to dominate over the effect of the additional information and moving

to a higher spatial resolution makes both the predictive performance and the total

Granger causality lower.

5.4.2 Impact of higher temporal resolution

The temporal resolution has increased from monthly to bi-weekly between this thesis

and the work of Papagiannopoulou et al. (2017a). This (combined with the spatial

increase in resolution) comes at direct cost. The common timespan of the used vari-

ables only goes back to 2003 in such a high resolution. This means that only 13 years
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ΔR² score baseline: 0.25◦ - 1◦

ΔR² score full: 0.25◦ - 1◦

ΔGC total: 0.25◦ - 1◦

Figure 5.13: Effect of a higher spatial resolution: difference between 0.25◦ x 0.25◦ bi-
weekly and 1◦ x 1◦ bi-weekly resolutions [Top] Difference in R² score between baseline
models [Middle] Difference in R² score between full models [Bottom] Difference in
total Granger causality (GC)
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of data are available for this study, compared to 30 years for Papagiannopoulou et al.

(2017b). As a consequence, it becomes harder to identify the "normal" state of NDVI

when strong anomalies are present over multiple years. Long term NDVI anomalies

may also be partly removed in the extraction of the seasonal cycle, which is not desir-

able. In this study, no climate extremes were defined. If this were the case, the short

timespan would make it harder to define these extremes, as they are infrequent by

definition. By doubling the temporal resolution, the amount of features also roughly

doubles for every time series.

The higher temporal resolution likely has a strong impact on the predictive perfor-

mance of the random forest models. Due to the shorter time period between lags,

the autocorrelation of the NDVI anomalies at lag 1 becomes higher. This makes the

predictive performance of all models stronger. However, if the predictive information

in the anomalies at lag one is related to the influence of climate variables at earlier

lags, the associated increase in R² will not be that high for the full model as this in-

formation was allready available at a low resolution. The full model gets additional

features for the climate variables at lag one. This does not necessarily result in a

large increase in predictive performance for the full model, as this information was

already partly available to the monthly model in the form of the lag zero climate fea-

tures. This effect is absent from baseline models which don’t have lag zero features.

All the information at lag one is new to the baseline model, as it was not used for

prediction in a monthly resolution. The increase in temporal resolution might actually

result in a lower total reported Granger causality. The effect of the higher resolution

is investigated on the performance of the models and the reported Granger causality.

This effect is investigated in a similar manner as for the spatial resolution. The basic

analysis is repeated with a monthly datacube, that was downsampled in time (the

spatial resolution is still 0.25◦ x 0.25◦). The resulting difference in prediction accuracy

is shown for the baseline and full models in Figure 5.14. The baseline model shows a

very strong increase in predictive performance, on a near global scale. The full model

also shows an increased predictive performance in most of the world, but not as much

as the baseline. The combined effect on the total Granger causality is also visible in

Figure 5.14. Due to the lower increase in performance of the full model compared to

the baseline, the total Granger causality decreases for most of the earth. This is as

anticipated.

5.4.3 Combined impact

The upscaling that happened between the work of Papagiannopoulou et al. (2017b)

and my work is a combined upscaling in both time and space. An isolated upscaling
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ΔR² score baseline: bi-weekly - monthly

ΔR² score full: bi-weekly - monthly

ΔGC total: bi-weekly - monthly

Figure 5.14: Effect of a higher temporal resolution: difference between 0.25◦ x 0.25◦

bi-weekly and 0.25◦ x .25◦ monthly resolutions [Top] Difference in R² score between
baseline models [Middle] Difference in R² score between full models [Bottom] Differ-
ence in total Granger causality (GC)
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in either spatial or temporal resolution results in a near global drop in total Granger

causality. The drop from the spatial upscaling is related to a general decrease in the

predictive performance of individual models while the drop related to the temporal

upscaling resulted from a general increase in model performance. This different im-

pact makes it harder to estimate what the effect is of both upscaling steps combined

on the total Granger causality. One could intuitively assume that the effect of the

combined upscaling equals the combined effects of each individual upscaling. If this

were the case, the combined higher resolution would result in a much lower total

Granger causality.

Another basic analysis is performed to investigate the effect of the combined upscal-

ing. The used dataset is downscaled both spatially and temporally, to the original 1◦

x 1◦ monthly resolution of Papagiannopoulou et al. (2017b). The combined effect on

the baseline model, full model and total Granger causality is shown in Figure 5.15.

It seems that the effect of a combined upscaling is indeed similar to the combined

effects of the individual upscaling steps. The baseline model becomes much stronger,

while the full model only partly improves. This results in a much lower total Granger

causality. For this reason, the previously reported results should be checked on their

consistency across the different resolutions. To this end, the main analysis is repeated

with the 1◦ x 1◦ monthly dataset. The partial Granger causality of the three main

groups and the three new variables is shown in Figures 5.16 and 5.17. The conclusions

for both previous research questions are mostly the same in a low resolution setting.

This further validates the results that were previously shown, as they are consistent

between different resolution models. The predictive performance of irrigation did not

visibly increase, suggesting that its low partial Granger causality was not related to

the higher resolution. The global ranking of the three main variable groups is also

repeated. The resulting percentages are shown in Figure 5.18.

The global ranking between the three groups is now a little more balanced. The

water group is still the dominant factor in 62% of the world, which is 2% lower then

before. The temperature group ranks first in 11% of the pixels, which is a 3% increase

compared to the reported result in a higher resolution. Part of the lower reported

importance of the temperature group in the aforementioned conclusions (compared

to previous work) is partly related to the higher resolution that was used. The reported

global ranking in a low resolution setting stays pretty constant over different cut-offs

for the minimum required Granger causality (see Figure B.6 in Appendix B). The fact

that 55% of the pixels have a total Granger causality above 0.15 again shows the

large increase in total Granger causality (In the higher resolution, this was only 13%).
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ΔR² score baseline: 0.25◦ bi-weekly - 1◦ monthly

ΔR² score full: 0.25◦ bi-weekly - 1◦ monthly

ΔGC total: 0.25◦ bi-weekly - 1◦ monthly

Figure 5.15: Effect of a higher combined resolution: difference between 0.25◦ x 0.25◦

bi-weekly and 1◦ x 1◦ monthly resolutions [Top] Difference in R² score between base-
line models [Middle] Difference in R² score between full models [Bottom] Difference
in total Granger causality (GC)
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Radiation GC

Water availability GC

Temperature GC

Figure 5.16: partial Granger causality
(GC) of the three main groups in a 1◦

x 1◦ monthly resolution

Wildfire GC

Irrigation GC

VPD GC

Figure 5.17: partial Granger causality of the
new variables in a 1◦ x 1◦ monthly resolution

Due to the strong similarity in reported results with those of a higher resolution and

the higher total Granger causality, the 1◦ x 1◦ monthly resolution is deemed superior

for this framework. Additional benefits from adopting this resolution are much smaller

datasets, faster calculations and a much longer available timespan of data at a lower

resolution (1981 to 2015). The number of features roughly halves for all models,

which is especially valuable for the full model, which performs in a high-dimensional

setting. In further analyses, the term "high resolution" is used for the 0.25◦ x 0.25◦

bi-weekly resolution and the term "low resolution" for the 1◦ x 1◦ monthly resolution.

5.4.4 Blocked cross-validation

As stated in Section 4.2, blocked cross-validation is an alternative cross-validation

scheme for time series. The data is not shuffled, instead it is split in 5 chronological

blocks. Blocked cross-validation is often preferable, even in a causal inference setting

(Roberts et al., 2017). However, blocked cross-validation generally comes at a loss of

predictive power, especially over a short timespan. Imagine that a given time series

starts with one very dry year, followed by 12 "normal" years of limited droughts. In

73



5.4. IMPACT OF A HIGHER SPATIAL AND TEMPORAL RESOLUTION

Figure 5.18: Group with the highest Granger causality for every pixel in a 1◦ x 1◦

monthly resolution. Pixels with no total Granger causality are labeled as "no GC".

that case, the dry year is completely put into the first cross-validation fold. When

this fold is used for testing and the other four folds are used for training, the model

does not encounter any data from very dry conditions and is not trained to know what

happens to the NDVI in a very dry year. For that fold, the model will not perform well

in the testing phase, resulting in low R² values. If a random cross-validation scheme

is used instead, the information from the dry year will be spread more evenly over

the five folds. The model can encounter some of these very dry datapoints during

training and is able to better predict the anomalies for datapoints in the test set from

that very dry year.

Blocked cross-validation was tested for the models at high resolution. The predictive

performance of the full model becomes much lower, while the performance of the

baseline model becomes a little lower (Figures not included). As a result, the total

Granger causality becomes negative in nearly half of the world (see Figure 5.19).

This is clear evidence that the Granger causality analysis falls apart when a blocked

cross-validation scheme is introduced at a high resolution.

Blocked cross-validation was also tested for the models at low resolution. Due to the

large total Granger causality that is present with random cross-validation at a low

resolution, a blocked cross-validation might work in this setting. The R² score for

both the baseline and full model are shown in Figure 5.20. The R² score is low in

many regions for both the full and baseline model, but the full model outperforms the

baseline in most of the world. The total Granger causality is shown to be strong and

positive in most pixels. To investigate the potential for the future use of blocked cross-

validation, the ranking procedure of the three main groups is repeated (see Figure
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Figure 5.19: Total Granger causality with blocked cross-validation in a 0.25◦ x 0.25◦

bi-weekly (high) resolution

5.21). The amount of water-driven area is 49%, lower then what was reported from

random cross-validation. This corresponds to a relative percentage of 62%, which is

very close to the reported percentage in Papagiannopoulou et al. (2017a). The water

and radiation groups show slightly higher relative percentages, compared to random

cross-validation results. From this, it seems that blocked cross-validation produces

reasonable results. As such, it is a newly available option for future research in a low

resolution setting.

The main advantage of blocked cross-validation in this framework is that it gives

a more true error estimates. The reported R² values from random cross-validation

can be too optimistic (low), due to temporal dependencies that exist in the data.

Blocked cross-validation does not scramble these dependence structures, which re-

sults in more accurate R² values in theory. However, this may not be that important

in this setting, because the baseline model is allready used to control the reported

R² values. Furthermore, as stated in Roberts et al. (2017): "If blocking structures fol-

low environmental gradients, blocking may hold out entire portions of the predictor

space, introducing extrapolation between cross-validation folds." No extrapolation is

desired between folds in this study, as it leads to bad predictions for less common

climate conditions (as illustrated in the aforementioned dry year example). The in-

troduction of blocked cross-validation results in 21% of the pixels having no Granger

causality at all (see Figure 5.21), which is a cost for the analysis. As such, no strong

recommendation is given in whether to use random cross-validation or blocked cross-

validation. Each researcher should evaluate personally the pros and cons of blocked

cross-validation and deside whether the inclusion is useful for the analysis.
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Baseline model R² score

Full model R² score

Total Granger causality

Figure 5.20: R² score of the baseline and full model and total Granger causality for
blocked cross-validation in a 1◦ x 1◦ monthly (low) resolution
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Figure 5.21: Group with the highest Granger causality for every pixel, based on
blocked cross-validation in a low resolution setting. Pixels without total Granger
causality are labeled as "no GC".

5.4.5 Exclusion of lag zero

The used framework (described in Section 4.2) is very useful for tackling the described

research questions, but it is not completely in line with the definition of Granger

causality. One of the main principles in Granger causality is that the cause must

precede the effect. This is translated for the used framework as follows: the influence

from climate variables should happen at least one timestep before the NDVI anoma-

lies that they cause. In this framework, to predict an NDVI anomaly, climate data from

the same time step is used. This data is used as features by the full and reduced mod-

els. This actually violates that principle, since both cause and effect are allowed to

come from the same timestep. This approach was necessary in previous studies due

to the lower temporal resolution. If all climate impacts from within the same 30 day

window as the anomaly are excluded, short-lived influences on vegetation are lost.

The impact of radiation is almost completely gone after that 30 day window, thus lag

zero of the climate variables had to be included (Papagiannopoulou et al., 2017a).

Another practical problem is that by removing lag zero, the reduced and full models

lose predictive features and become weaker. The predictive power of the baseline

model stays the same, as it never had a lag zero variable.

Because of the available bi-weekly data, it may now be possible to remove lag zero

from the models in the high resolution setting without losing too much predictive

power. The lag zero time series components are removed and all cumulative features

are reconstructed as kt =
∑k
p=1 t−p. The performance for the full model turns out
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to be somewhat lower with lag zero removed (Figure not included). This drop in per-

formance is limited, however it is mostly visible in regions where the original model

with lag zero included was allready showing low predictive performance. For these re-

gions, the new full model can only barely outperform the baseline. The total Granger

causality is now lower, and is even totally lost in some of those regions, as can be

seen in Figure 5.22.

The effect on the Granger causality analysis for the three main groups is also inves-

tigated. The Granger causality for radiation has almost disappeared (see bottom of

Figure 5.22) while the Granger causality for the temperature and water group stayed

mostly the same (Figures not included). This shows that the impact of radiation on

vegetation is relatively fast and short-lived. This may be due to the less destructive

nature of anomalies in radiation compared to anomalies in temperature and water

availability. It is also possible that those NDVI anomalies are mainly positive, related

to the impact of abundant radiation on tropical rainforest vegetation, which has been

reported as energy-limited on average (Williams et al., 2012; Mallick et al., 2016). The

fact that temperature and water availability keep most of their Granger causality for

the models with lag zero removed shows the more latent response of vegetation to

those anomalies. Similar findings were reported in Papagiannopoulou et al. (2017b),

where the impact of the water group shows clear Granger causality up to 3 months

later. The ranking procedure for the three main groups is also repeated and the result-

ing map of the first rank reveals similar conclusions (see Figure 5.22). The radiation

group only has first ranking in 8% of the pixels. The combination of these results

shows that the higher temporal resolution is not enough to allow for the removal of

lag zero from the models in the high resolution setting. This would lead to an under-

estimation of the global importance of radiation as a climate driver (Nemani et al.,

2003; Wu et al., 2015; Seddon et al., 2016).

The removal of lag zero from the low resolution setting is not considered, as this

would have an even larger impact on the full and reduced models. It is shown in

Papagiannopoulou et al. (2017a) that the influence of radiation largely disappears

after lag zero on a monthly resolution. In the end, the removal of lag zero is not

recommended for both high and low resolutions.
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Total GC w/o lag zero

Partial GC for radiation w/o lag zero

Ranking w/o lag zero

Figure 5.22: Models without lag zero in a high resolution setting (0.25◦ x 0.25◦ bi-
weekly). [Top] Total Granger causality (GC) without lag zero [Middle] partial Radiation
Granger causality without lag zero [Bottom] Group with the highest Granger causality
for every pixel without lag zero
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CONCLUSION

One of the main conclusions is that water availability is indeed the most impor-

tant climate driver influencing global vegetation anomalies, as was reported in Pa-

pagiannopoulou et al. (2017a). The impact of water availability is strongest for vege-

tation types other than forests and cultivated land. The global impact of the radiation

group is higher than previously reported and mostly visible in areas with tropical rain-

forest vegetation. The temperature group shows the strongest importance in Europe

and North America but has only limited Granger causality in other regions.

The relative importance of the temperature and radiation group was reported to be

the other way around in the research of Papagiannopoulou et al. (2017b). The new

relative ranking between the two groups was consistent over a wide range of exper-

imental set-ups in this thesis. Only removing lag zero switches this ranking, but this

method is considered too biased for interpretation. The low partial Granger causality

for temperature partly originates from the inclusion of VPD in this dataset.

The new variable VPD holds unique Granger causality for the water group in Northern

forested areas. It is of use to disentangle the causal impact of temperature and

water availability related to their respective influence on plant transpiration. The

new wildfire variable shows some Granger causality in Northern regions with forest

vegetation. It does not show strong Granger causality in regions with a large annual

burned percentage of vegetation in Africa or Australia. This may be partly due to the

inability of the models to incorporate spatial information. The burned area alone may

be a bad predictor of the wildfire impact on vegetation and a higher Granger causality

may be observable by including the fuel consumption as a variable. The new irrigation

variable shows only a very small amount of Granger causality, which is negligible on

a global scale. This may be related to the local effect of irrigation and possibly to the

data quality. Irrigation may serve to control the reported partial Granger causality of

the water group. As such, the inclusion of these three new variables is advised for

future studies.

The higher resolution of the new data leads to a much lower reported total Granger

causality. This originates from the combined effect of the temporal and spatial up-
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scaling. The aforementioned conclusions are mostly invariant to the used resolution.

A low resolution results in faster calculations, and remote sensing data is available for

a much longer time span at a lower resolution (1981 to 2015). From these collective

arguments, the 1◦ x 1◦ monthly resolution setting is deemed superior for this frame-

work. One theoretical advantage of the setting with bi-weekly resolution is that it

might allow for the removal of lag zero from the models. This proved possible in real-

ity, but it leads to an underestimation of the casual impact of the radiation group and

is therefore not advised. Blocked cross-validation was tested and proved possible only

in the low resolution setting. No strong recommendation is given in whether to use

random or blocked cross-validation, as this choice has implications for the reported

results and their meaning.

The used framework has its flaws, as is the case with any framework in global

vegetation-climate research. Causal information in the spatial dimension is not used

and Granger causality itself only reflects unique information in variables. The impor-

tance of the water availability group might be overestimated due to the larger number

of variables included in this group. The full model works in a high-dimensional setting

that may contain a lot of less useful predictors for some pixels, while the baseline

model works in a low-dimensional setting. The large difference in number of available

features to both models can be a source of bias towards lower reported total Granger

causality. As such, it might be interesting to decrease the amount of predictors in the

full and reduced models by applying some dimensionality reduction technique such

as principal component analysis or a non-linear alternative (Abdi and Williams, 2010).

In the end, the reported Granger causality is not a measure of ‘real’ causality, but

only of pseudo-causality. The presented results should be considered together with

the previous research of Papagiannopoulou et al. and with other research based on

different methods (see Chapter 2 for some examples).

6.1 Further research

There are plenty of opportunities for future research in this setting. An interesting

approach is the further inclusion of new variables. One such variable is the fuel con-

sumption of wildfires, which could be used complementary to the data on burned area.

Other possible new variables are wind speed and turbulence, as both are relevant for

the rate of vegetation transpiration on a global scale (Bonan et al., 2014, 2018). This

data would likely have to origin from modelling efforts and weather station data (Fick

and Hijmans, 2017), as remote sensing wind characteristics is almost exclusively per-

formed over the ocean (Martin, 2014; Lillesand et al., 2014). The influence of VPD

on the analysis could be compared to the that of the absolute air moisture content.
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Another possibility would be to reverse the analysis and investigate the causal impact

of global vegetation on climate drivers.

When investigating the impact of new variables, the adoption of a statistical test

should be investigated. The null hypothesis is that this variable holds no new infor-

mation about the state of the NDVI anomalies. A null distribution could be based on

the frequency distribution of the difference between two repetitions in the full model.

Different statistical tests should be tested for their use in this setting. The Granger

causality distributions are not normally distributed (Figures and tests not included),

so statistical tests that rely heavily on that assumption should be avoided. Possibili-

ties include non-parametric rank tests, such as the Mann–Whitney U test (Mann and

Whitney, 1947).

An interesting challenge is to utilize the spatial information present in the data. Defin-

ing regions of similar vegetation types and training a multi-task learning model per

region seems like a succesful stategy (Papagiannopoulou et al., 2018). This enables

one to detect and predict vegetation anomalies in space as well, which is useful for

localized impacts such as land use change, deforestation and irrigation. Time series

would no longer be forced to have equal amounts of negative and positive anomalies

over time. This approach is also much better use of the immense data pool available,

as it does not force turning to a high-dimensional setting. It might be interesting to

isolate the drivers for positive and negative anomalies. By doing so, the positive and

negative effects of climate drivers can be isolated and the difference between water-

limitation and water fertilization would become visible. The seasonal evolution in this

balance could also be investigated. To summarize: there are plenty more research

questions to be answered and the findings from this thesis and (Papagiannopoulou

et al., 2018) can be used as a starting point for future research.
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APPENDIX A

ADDITIONAL FIGURES: DATA

AND METHODS

Figure A.1: Areas with total NDVI below 400000 that are exluded from the analysis

Figure A.2: Result from Papagiannopoulou et al. (2017a), the grey areas shown have
no data



Figure A.3: Result from Seddon et al. (2016) that shows the contribution of three
climate variables to the vegetation sensitivity index. White areas are excluded from
the analysis
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APPENDIX A. ADDITIONAL FIGURES: DATA AND METHODS

Figure A.4: Near-surface soil moisture: different time series from a vertical slice of
European mainland (Longitude = 7.125)
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Figure A.5: Near-surface soil moisture: Different time series from a horizontal slice of
European mainland at (Latitude = 48.125)
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APPENDIX A. ADDITIONAL FIGURES: DATA AND METHODS

Figure A.6: Near-surface soil moisture: 3 consecutive timesteps from the raw data
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Figure A.7: soil moisture time series with artificial gaps of length 6, filled with linear
interpolation

Figure A.8: soil moisture time series with artificial gaps of length 9, filled with linear
interpolation
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APPENDIX A. ADDITIONAL FIGURES: DATA AND METHODS

Figure A.9: soil moisture time series with artificial gaps of length 12, filled with linear
interpolation

Figure A.10: soil moisture time series with artificial gaps of length 15, filled with linear
interpolation
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Figure A.11: Different pre-implemented interpolation algorithms. Upper left: original
data, Upper right: linear interpolation, Lower left: nearest neighbor, Lower right: cubic
interpolation
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APPENDIX A. ADDITIONAL FIGURES: DATA AND METHODS

Figure A.12: Own interpolation algorithm: 5 generations. Upper left: Original data
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Figure A.13: VPD: Movement of the data gaps over 15 days

100



APPENDIX A. ADDITIONAL FIGURES: DATA AND METHODS

Figure A.14: VPD: Africa before and after spatial upscaling

Figure A.15: Irrigation: Australia before and after spatial upscaling
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Figure A.16: Different smoothers for the NDVI seasonal cycle, for 10 random pixels.
the used smoother is SM 2
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APPENDIX B

ADDITIONAL FIGURES: RESULTS

Figure B.1: Histogram of λ terms for the ridge regression full model.
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Figure B.2: Global classification of climate types, adopted from Kottek et al. (2006).
Af and Am indicate tropical and monsoonal rainforest respectively

Figure B.3: Global vegetation zones mapped through remote sensing as described in
Chen et al. (2015)
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APPENDIX B. ADDITIONAL FIGURES: RESULTS

Total GC ≥ 0.05

Total GC ≥ 0.10

Total GC ≥ 0.15

Figure B.4: Group with the highest Granger causality (GC) for every pixel. Different
cut-offs are set for the minimum total Granger causality, the "no GC" label is used for
pixels below that cut-off
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Figure B.5: Average annual burned fraction of vegetation and fuel consup-
tion, Adopted from GFED4, Retrieved August 16, 2018 from https://www.
globalfiredata.org/figures.html
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APPENDIX B. ADDITIONAL FIGURES: RESULTS

Total GC ≥ 0.05

Total GC ≥ 0.10

Total GC ≥ 0.15

Figure B.6: Group with the highest Granger causality (GC) for every pixel in a 1◦ x 1◦

monthly resolution. Different cut-offs are set for the minimum total Granger causality,
the "no GC" label is used for pixels below that cut-off
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