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Abstract 

Epilepsy is a group of neurological disorders and resting state fMRI has been used to 

investigate epilepsy. Functional connectivity can be used for the functional dependence 

between two regions of interest, and it is time-varying instead of stationary in reality, so 

dynamic functional connectivity is proposed. The aim of this study is to investigate the 

patterns of functional connectivity in epileptic rats and compare them with healthy rats. In this 

study, we used the intraperitoneal kainic acid rat model (Hellier protocol [1]) for temporal 

lobe epilepsy, and six epileptic rats and six healthy rats are used in this study. We can obtain 

resting state fMRI data six weeks after status epilepticus with 7T scanner using medetomidine 

anesthesia. Several preprocessing steps have been completed at first. Sliding window 

technique is the method we have applied to obtain dynamic functional connectivity (dFC). We 

can find the correlation coefficient varies over time, and k-means clustering characterizes 

seven states of functional connectivity. From the results of statistical analysis, we can find that 

the state of the lowest functional connectivity occurs more in epileptic rats, and the number of 

transitions of the states in healthy rats is higher than epileptic rats. In conclusion, the brains of 

epileptic animals are more often in the state of lower functional connectivity than the brains 

of healthy animals, and healthy animals have higher number of transitions of the states than 

epileptic ones. Further research is recommended to investigate dFC with more complex and 

informed model rather than correlation. This can provide more insight in the pathophysiology 

of epilepsy. 
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The aim of this study is to investigate the 

patterns of functional connectivity in epileptic 

rats and compare them with healthy rats. In 

this study, we used the intraperitoneal kainic 

acid rat model (Hellier protocol [1]) for 

temporal lobe epilepsy, and six epileptic rats 

and six healthy rats are used in this study. We 

can obtain resting state fMRI data six weeks 

after status epilepticus with 7T scanner using 

medetomidine anesthesia. Several preprocessing 

steps have been completed at first. Sliding 

window technique is the method we have 

applied to obtain dynamic functional 

connectivity (dFC). We can find the correlation 

coefficient varies over time, and k-means 

clustering characterizes seven states of 

functional connectivity. From the results of 

statistical analysis, we can find that the state of 

the lowest functional connectivity occurs more 

in epileptic rats, and the number of transitions 

of the states in healthy rats is higher than 

epileptic rats. In conclusion, the brains of 

epileptic animals are more often in the state of 

lower functional connectivity than the brains of 

healthy animals, and healthy animals have 

higher number of transitions of the states than 

epileptic ones. Further research is 

recommended to investigate dFC with more 

complex and informed model rather than 

correlation. This can provide more insight in the 

pathophysiology of epilepsy. 
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I. INTRODUCTION 

 Epilepsy is a group of neurological disorders 

and it has become a common disease all over the 

world. Epilepsy can be investigated using resting 

state fMRI. Resting state functional magnetic 

resonance imaging (RS-fMRI) has become a 

popular and important tool for investigating 

functional brain network.  

 In this study, an approach is described and 

implemented to assess the whole brain FC based 

on sliding window technique and k-means 

clustering of different correlation matrices. This 

method is applied to resting-state data from six 

epileptic rats and six healthy rats. We use k-means 

clustering to divide the matrices into different 

states and investigate patterns of FC that reoccur in 

time and across all the subjects. Statistical analysis 

is applied on the results to find the difference 

between epileptic and healthy rats and obtain the 

conclusion. 

II. MATERIALS AND METHODS 

A. Kainic acid (KA) rat model 

 In this experiment 12 adult male 

Sprague-Dawley rats (0.276± 0.019 body weight; 

Envigo, the Netherlands) are used. In this part, 

intraperitoneal kainic acid (IPKA) rat model was 

used to obtain epilepsy rats. KA injection 

according to the Hellier protocol, resulted in 

chronic epilepsy in all rats.   

 Kainate (5mg/kg) was administered to six 

healthy male Sprague-Dawley rats 



 

intraperitoneally every hour until the animals 

displayed a stable status epilepticus (SE) for three 

hours, and control rats were treated similarity with 

saline. Seizures were determined by observing the 

behavioral postures. When we obtain the chronic 

epilepsy rats, for the next step. 

 

B. Image acquisition 

B.1 Anesthesia 

 The rat was anesthetized with 5% isoflurane 

mixed with 1.5L/min oxygen. And after this period, 

isoflurane was reduced to 2% mixed with 0.3L/min 

oxygen for maintenance during preparation for 

imaging. Then the neck of the rat was shaved and 

the needle (30G) was inserted under the skin for 

subcutaneous infusion of medetomidine. And next, 

the rat was placed on a heated water pad while in 

the magnet to maintain the temperature. A pressure 

sensor placed under the chest was used to 

continuously monitor breathing. After this step, the 

rat was given a bolus of medetomidine (0.05mg/kg) 

and after 10 minutes isoflurane was discontinued. 

Anesthesia was maintained with a constant 

medetomidine infusion rate (0.1mg/kg/h). After the 

image acquisition step, the anesthesia can be 

reversed with atipamezole. 

 

B.2 Functional MRI acquisition 

 The resting-state fMRI images were acquired 

with a Pharmascan 7T (Bruker). Firstly, a wobble 

was done to match and tune radiofrequency coil. 

Then a tripilot scan was performed to get the 

information about the position of animal in the 

scanner. The magnetic field homogeneity can be 

improved by shimming. One TurboRARE T2 

image of each rat was acquired after shimming. 

After that, the functional MRI images were 

acquired. About 30 minutes after turning off 

isoflurane, the resting-state fMRI images 

acquisition is performed using a standard 

gradient-echo echo planar imaging (EPI), with 

TR=2s, FOV=0.375mm, slice 

thickness/gap=1mm/0.1mm, scan matrix=80×80. 

This EPI imaging run is repeated 300 times in ten 

minutes and we can obtain 3 rsfMRI images. 

C. Data analysis 

 Different analysis techniques and software are 

used to analyze fMRI images: statistical parametric 

mapping package (SPM12), sliding window 

technique with the toolbox GRETNA and k-means 

clustering performed by a script written in Matlab. 

 

C.1 Preprocessing steps 

 The fMRI images are preprocessed using 

SPM12. Firstly, slice timing correction can be 

performed to adjust and correct for the time 

difference between different slices of the brain. 

Then, the different images have to be realigned to 

correct the data for the effects of movement during 

the scanning period. And next, the structural image 

is superimposed on a functional image to localize 

and visualize the active brain areas better in the 

coregistration step. After this step, the 

normalization step needs to be completed to 

normalize functional image to EPI template. In 

addition, the functional images are spatially 

smoothed with Gaussian filter with a size (FWHM) 

of 0.8mm to increase signal to noise ratio. In the 

last step, the bandpass filter at 0.01-0.1Hz is used 

to remove all non-neurological signals.  

 

C.2 Static correlation analysis 

 One of techniques used to analyze the fMRI 

images is static correlation analysis, and the 

correlation coefficients are used in this kind of 

analysis. In the static correlation matrix, each row 

and each column represent a region of interest 

(ROI), and the elements are the correlation 

coefficients between each pair of ROIs to indicate 

the functional connectivity between these ROIs.  

 

C.3 Sliding window technique 

 Sliding window technique can be used to 

obtain correlation matrices which vary over time. 

In this method, a time window of fixed length is 

selected, and the data points within this window 

are used to calculate correlation matrix of different 

regions of interest (ROIs). The window is shifted 

in time by a fixed step length which defines the 

overlap between two windows. Except for these 

fMRI images, a label mask of the rat brain is also 

necessary to achieve sliding window approach.  

C.3.a Label mask of rat brain 

 After the preprocessing steps, we can obtain 



 

three time series of preprocessed fMRI images for 

one subject. This label mask was made slice by 

slice by comparing with anatomical atlas to 

distinguish the different ROIs. And there are 38 

ROIs in the rat brain fMRI image. 

C.3.b Sliding window analysis  

The optimal window length and step length 

were 50 seconds and 1TR(2s) which were used in 

this master thesis to obtain the final results. The 

whole process from label mask and fMRI data and 

sliding window approach was shown in Fig.1. 

When the optimal window length and step length 

are selected, each two of the signals within the 

window are used to calculate correlation 

coefficient, and all the correlation coefficients of 

different pairs of windowed signals can form one 

correlation matrix. After the window is shifted in 

time by a fixed window length, new correlation 

matrices can be obtained according to the same 

rule. Lastly, all the matrices are aggregated across 

subjects. 

 

Fig.1. The overview of the analysis steps from the 

preprocessed data and the  

label mask 

C.4 K-means clustering  

K-means clustering algorithm was used to divide 

these dynamic FC matrices into separate clusters to 

observe the recurrence of patterns of dFC 

connectivity within subjects across time. An 

optimal k of 7 was obtained using elbow criterion 

method with the function in Matlab. There are 38 

ROIs, so between each pair of ROIs, and we can 

obtain the FC matrix (38 × 38). The number of 

windows for each time course can be calculated as 

WN =
(300−𝑊𝐿)

𝑆𝐿
+ 1=276. 

  There are six healthy and six epileptic (KA) 

rats in this experiment, and each subject has three 

sessions, so 276 × 12 × 3 = 9936 instances 

need to be divided. These instances can be 

clustered to 7 states, so each functional 

connectivity matrix represents the centroid of a 

cluster and belongs to one state. 

III. RESULTS 

A. Static functional connectivity analysis 

 We can acquire the averaged correlation 

matrix for all healthy and epileptic rats separately, 

and the averaged correlation matrix over time for 

all epileptic rats and healthy rats is shown in Fig.2. 

From the comparison between these results, we can 

find visually the general values of correlation 

coefficients between many pairs of ROIs for 

healthy rats are higher than epileptic rats. 

 

Fig.2. Averaged correlation matrix over time for all 

epileptic (left) and healthy (right) rats 

B. Dynamic functional connectivity analysis 

 From the recent research, we can find that the 

functional connectivity between pairs of ROIs in 

rat brains are dynamic, so the correlation 

coefficient between two ROIs changes over time 

(window number), which is shown in Fig.3 This 

graph clearly shows that the correlation coefficient 

is not unchanged or static and it is varying over 

time, which can indicate the fact of dynamic 

functional connectivity. 

 
Fig.3. Correlation coefficient between two ROIs 

varies over window number   
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C. Sliding window technique 

 Sliding window technique is applied to obtain 

a series of correlation matrices. Sliding window 

technique was performed with GRETNA in this 

study.  

D. Clustering 

 K-means clustering is used to cluster all the 

dynamic FC matrices for all scans including 

epileptic and healthy rats. The results of k-means 

clustering show that there are seven states for all 

dFC matrices, and the cluster centroids for FC 

states 1-7 are shown in Fig.4. 

State 1 State 2 

  

State 3 State 4 

  

State 5 State 6 

  

State 7  

 

 

 Fig.4. Correlation matrices of cluster centroids 

for FC States 1-7 

 

 We can clearly observe that there are huge 

differences of the values of correlation coefficients 

in these correlation matrices of seven states. We 

can find that stronger functional connectivity of all 

ROIs in State 1, State 4, State 5 and weaker 

functional connectivity of the ROIs in State 2, 

State 3, State 6 and State 7. From these 

connections, the two strongest correlations occur 

between left and right somatosensory cortex 

(SSC_l and SSC_r), and left septum and right 

septum (Sep_l and Sep_r) while left dorsolateral 

orbital cortex and temporal association cortex 

(DLO_l and TeA_l) exhibit a weaker correlation. 

D.1 Total number and percentage of occurrences 

different states 

 When k-means clustering is completed to 

obtain seven states, the statistical calculation of the 

clustering results can be done. From the 

description above, we can know that 

9936 instances in total need to be divided into 

seven states. We can obtain one graph to compare 

the number of occurrences different states clearly 

is shown in Fig.5. 

 

Fig.5. Comparison between the number of 

occurrences of each state in healthy and epileptic 

rats 

 From the graph above, we can find that the 

number and percentage of occurrences of healthy 

rats in State 1, State 4 and State 5 are much higher 

than epileptic rats and the number and percentage 

of occurrences of epileptic rats in State 2, State 3, 

State 6 and State 7 are much higher than healthy 

rats. 

 To complete the Mann-Whitney U test, p value 

is calculated for each state of the number of of 

epileptic and healthy rats, and all the p values of 

different states are shown in Table 1. There is a 

significant difference (p<0.05) of the number of 
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occurrences of State 3 between the epileptic and 

healthy rats. However, if the p<0.1, there is a trend 

towards significance or it is marginally significant, 

and it can indicate there is a marginally significant 

difference of the number of occurrences of that 

state between healthy and epileptic rats, such as the 

state 4 and state 5.  

State 1 2 3 4 5 6 7 

P  0.24 0.18 0.041 0.091 0.072 0.67 1 

Table 1: P value of different states 

 There is a significant difference of the number 

of occurrences of State 3 between epileptic and 

healthy rats, and the number and percentage of 

occurrences of State 3 for epileptic rats are much 

higher than healthy rats. The mean value of 

correlation matrix in State 3 is much lower than 

other states, which indicates the weaker functional 

connectivity in State 3 than others. 

D.2 Number of transients of states for each rat 

 Except for the number of different states, 

another important result which we can obtain from 

the k-means clustering is the number of transients 

of states for each rat. The transients of states 

indicate how frequency of the change of state. 

From the values of mean and standard deviation, 

we can find that the average number of transients 

in healthy rats is higher than epileptic rats.  

 For the statistical analysis, the Mann-Whitney 

U test can also be applied on the sum number of 

transitions of states for each rat. The p value which 

is calculated with this statistical test is 0.0649 

( 0.05 < p < 0.1) , so we can't reject the null 

hypothesis without increasing the significance 

level, we can also find there is a marginally 

significant difference of the number of transitions 

of states between six healthy and epileptic rats. 

IV. DISCUSSION  

A. Functional connectivity in temporal lobe 

epileptic rats 

 In our study, for sFC analysis results, we can 

find the difference of mean value of correlation 

coefficients between these ROIs for healthy rats 

are higher than epileptic rats. For dFC analysis 

results, the matrix of State 3 has the lowest mean 

value of correlation coefficients compared to other 

states. The matrices of State 4 and 5 have the 

highest mean value of correlation coefficients 

compared to others. In addition, we have found left 

and right somatosensory cortex show stronger 

correlation than others, which is similar to this 

seen in previous work [2].  

 The current study compares the mean 

correlation matrix across all the subjects between 

healthy humans and epilepsy patients. And it 

reveals that the functional connectivity in the 

epilepsy patient group appeared to be less [3]. 

Other previous studies have found that cognitive 

and behavioral deficits are exhibited in epilepsy 

patients, such as attention, memory, and language 

function [4].   

 From the further investigation of the number 

and percentage of occurrences of different states, 

we have found the number and percentage of 

occurrences of State 3 of epileptic rats are much 

higher than healthy rats. Therefore, we can further 

infer that more dFC matrices of epileptic rats are 

divided into State 3 than healthy rats, and majority 

of epileptic rat brains have the same characteristic 

as the FC of State 3. This can indicate epileptic rat 

brains have weaker functional connectivity than 

healthy rats. In addition, the number and 

percentage of occurrences of State 4 and State 5 of 

healthy rats are higher than epileptic rats, so these 

two states with the highest correlation coefficients 

occur marginally significantly more in healthy rats 

than in epileptic rats. 

 For the transitions of functional connectivity, 

From the results, we have found the average 

number of transitions in healthy rats is higher than 

epileptic rats, which could indicate the healthy rat 

brains are more active than epileptic rats generally. 

The coefficient of variation and standard deviation 

of all healthy rats are lower than epileptic rats, 

which means the number of transitions of healthy 

rats is more stable and not changeable than 

epileptic rats.  

 One study found there was a significant 

difference in the number of transitions between 

seizure and healthy control, and total number of 

state transitions in patient was less than that of 

controls [5].   

B. Optimal window length and step length 



 

 The choice of window size is an issue 

concerning the sliding window analysis. The 

window length should be short enough to permit 

the detection of fluctuations and long enough to 

allow estimation of FC [5]. In this study, the 

optimal window length of 50s and step length of 2s 

are chosen empirically based on the graph which 

obtained from the results and previous research [6]. 

There are some alternatives to a fixed window size, 

one may estimate the change points in FC to 

demarcate the windows, or use multi-scale window 

lengths approaches. 

 

C. Limitations and future directions 

 Dynamic analysis is very sensitive to the noise, 

and the variations of the noise signal level across 

the scan which generate strong correlated signal 

fluctuations, can be wrongly seen as dynamic of 

functional connectivity. Another limitation is the 

white noise, which can exhibit the fluctuations in 

common FC matrices which are observed in actual 

fMRI data. Therefore, the sliding window 

technique should be accompanied by hypothesis 

which are supported with appropriate statistical 

testing. 

 Future work should consider multi-modal 

approaches such as EEG-fMRI, to determine the 

electrophysiological difference between FC states, 

and also to find the mapping of cognitive states 

from connectivity data.  

V. CONCLUSION 

 In this study, the dynamic functional 

connectivity (dFC) is investigated using resting 

state fMRI (rs-fMRI) in a rat model of temporal 

lobe epilepsy. For static functional connectivity 

analysis, we can find visually the general values of 

correlation coefficients between ROIs for healthy 

rats are much higher than epileptic rats. 

 For the dynamic functional connectivity, we 

can obtain that the average values of correlation 

coefficients in State 1, State 4 and State 5 are 

higher than other states. Left and right 

somatosensory cortex shows the strongest 

correlation and dorsolateral orbital cortex and 

temporal cortex exhibits the weakest correlation in 

these high values states. Based on the statistical 

analysis, we have found the number and 

percentage of occurrences of State 3 for epileptic 

rats are much higher than healthy rats. Because the 

mean value of correlation matrix of State 3 is much 

lower than other states, we can infer that epileptic 

rat brains have weaker functional connectivity of 

these ROIs than healthy rat brains. For the number 

of transitions of states in healthy and epileptic rats, 

we can find the mean number of transitions in 

healthy rats is higher than epileptic rats.  

 The dynamic functional connectivity patterns 

of TLE rat models have been investigated and 

found in this study. Future research is 

recommended to investigate dFC with more 

complex and informed model rather than 

correlation using new multi-modal approaches and 

some techniques from other field. 
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Chapter 1 Introduction 

 

 Epilepsy is a group of neurological disorders and it has become a common disease all 

over the world. Epilepsy can be investigated using resting state fMRI. Resting state functional 

magnetic resonance imaging (RS-fMRI) has become a popular and important tool for 

investigating functional brain network. Until recently, functional connectivity (FC) is usually 

assumed to stationary over the entire scan. However, if we focus on much smaller time scales, 

we can explore the dynamic properties of the fluctuations of spontaneous blood oxygenation 

level dependent signal. 

 In this study, an approach is described and implemented to assess the whole brain FC 

based on sliding window technique and k-means clustering of different correlation matrices. 

This method is applied to resting-state data from six epileptic rats and six healthy rats. The 

animal model for epilepsy which is used is the intraperitoneal kainic acid rat model for 

temporal lobe epilepsy. After the animal preparation steps, we can obtain resting-state fMRI 

data of these rats. All the preprocessing steps are performed using code written in Matlab 

(SPM and Gretna). The relationship and FC between different regions of interest are 

calculated and obtained with sliding window technique. A series of window length and step 

length are used to compare and find the optimal ones. Lastly, we use k-means clustering to 

divide the matrices into different states and investigate patterns of FC that reoccur in time and 

across all the subjects. Statistical analysis is applied on the results to find the difference 

between epileptic and healthy rats and obtain the conclusion. 
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Chapter 2 Literature study 

 

2.1 Temporal lobe epilepsy 

2.1.1 Introduction of epilepsy 

 Epilepsy is a group of neurological disorders characterized by recurrent spontaneous 

seizures [2]. A seizure is the clinical manifestation of an abnormal electrical activity of 

neurons within the brain [3]. The recurrence is very important for epilepsy, so a patient can 

only be diagnosed with epilepsy if he has had at least two unprovoked seizures [2]. 

 

2.1.2 Mechanism of epilepsy 

 The basic mechanism of neuronal excitability is the action potential. For a 

hyper-excitable state, it is caused by increased excitatory neurotransmission, reduced 

inhibitory neurotransmission, a change in voltage-gated ion channels instead of membrane 

depolarization [3]. An action potential occurs because of depolarization of the neuronal 

membrane, and with the depolarization propagating down in the axon to induce 

neurotransmitter release at the terminal of the axon. The neurotransmitters are the substances 

which are released by the axon terminal and bind to specific postsynaptic receptors [4].  

 Amino acid glutamate is the major excitatory neurotransmitter, and there are two groups 

of glutamate receptors, ionotropic receptors and metabotropic receptors, which are shown in 

Figure 1 [3]. For the ionotropic receptors, N-methyl-D-aspartate (NMDA), 

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors 

are included in these receptors. Experimental studies using animal epilepsy models have 

found that ionotropic receptor agonists induce seizure activity, but their antagonists depress 

seizure activity [4].  

 

Figure 1: Diagram of various glutamate receptor and locations 
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2.1.3 Causes and clinical manifestations of epilepsy 

Although the direct causes of epilepsy are usually not known, certain factors are known 

for people which will lead to epilepsy. These factors include genetic influence, brain diseases, 

head trauma and so on. There are some types of epilepsy and seizures that run in families. In 

these cases, it is more likely that there is a genetic influence. Brain diseases which will cause 

damage to the brain, such as brain tumors and strokes can lead to epilepsy. Head trauma, for 

example as a result of a car accident or some other head injuries can cause epilepsy [5]. 

 Seizures are the main and only visible symptom of epilepsy. Seizure presentation depends 

on various factors, such as the location of onset in the brain, the types of seizure, the patterns 

of propagation, medications and so on [6]. Seizures can have an effect on sensory and motor 

function, consciousness, or even behavior. Seizure symptoms may include temporary 

confusion, uncontrolled movements of arms and legs, loss of consciousness and awareness [6]. 

Not all the seizures have all of the symptoms, but all seizures have a least one of them. 

 

2.1.4 Classification of seizures 

 There are several different types of seizures and most seizures can be categorized as 

partial seizures or primary generalized seizures. Seizures that appear to involve the entire 

brain are called primary generalized seizures. Compared to primary generalized seizures, 

partial seizures originate in a specific location in the brain. There are two types of partial 

seizures, which are simple partial seizures and complex partial seizures. Simple partial 

seizures are not related to the change of consciousness, and the symptoms include for 

example, alterations to sense of taste or smell and dizziness. However, complex partial 

seizures involve a change or loss of consciousness or awareness and the symptoms include for 

example, staring blankly and unresponsiveness [2]. Epilepsy can be classified according to the 

seizure types, but also according to etiology. The classification according to etiology can be 

divided into genetic epilepsy, structural epilepsy and epilepsy due to unknown cause [2]. 

 

2.1.5 Epidemiology of epilepsy 

 Epilepsy in Europe affects around 2.6 million to 6 million people, so it represents a major 

concern for public health organizations and services [7]. For incidence of epilepsy, about 2-5% 

of the general population will suffer an epileptic seizure, however about one third of these 

patients will finally develop epilepsy [7]. The estimated prevalence of active epilepsy is about 

3-10 per 1000, and active epilepsy is defined as a patient with epilepsy who has had at least 

one unprovoked seizure in the last five years. There is a large difference in prevalence 

between developed and developing countries, and prevalence in developing countries is much 

higher than developed countries because of higher rates of trauma and infectious diseases in 

the population [8]. The growing knowledge and technique will result in improvement in 

diagnostic and treatment tools, so more previously unrecognized disorders will be diagnosed 
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and better management of early seizures can be achieved [7].  

 

2.1.6 Temporal lobe epilepsy 

 Temporal lobe epilepsy (TLE) is the most common form of complex partial seizures and 

the electrical abnormality originates in the temporal lobe. The complex partial seizures can 

evolve into secondary generalization. Temporal lobe epilepsy often appears to be because of 

cerebral injury at first, and after that the onset of recurrent seizures occurs after an incubation 

period which can be about 5 to 10 years [1]. 

 The common symptoms of temporal lobe epilepsy include memory impairment and aura. 

The auras can be classified by the symptom types, which are somatosensory, autonomic and 

psychic auras. The auras would include a sudden sense of unprovoked fear, a sudden or 

strange taste [9].  

 

2.1.7 Diagnosis of epilepsy 

 The diagnosis of epileptic seizures is made by analyzing the patient’s detailed medical 

history and symptoms. There are several kinds of diagnostic methods for the patient with 

epilepsy involving the laboratory tests and imaging tests. 

 2.1.7.1 Laboratory tests 

Useful laboratory tests for the patients with new onset seizures include prolactin levels to 

assess the etiology of a spell, and hepatic enzyme panel and toxicology screens to assess for 

potentially reversible causes. The lumbar puncture should be performed for the cerebral spinal 

fluid (CSF) examination in patient with bacterial, viral infection or other inflammatory brain 

disorders [10]. 

2.1.7.2 Imaging tests 

Imaging studies must be performed to identify and classify the seizure types and etiology. 

Electroencephalography (EEG) plays an important role in evaluating epilepsy via sampling of 

electrical brain activity and it is also a common test used in diagnosing epilepsy because it is 

normally a noninvasive and painless test and not difficult to perform. However, EEG 

confirmation of seizures can be made only when a seizure is captured or identified during a 

routine EEG. The sensitivity of a routine EEG for epilepsy is about 50% and the specificity is 

about 98%, while the serial EEG can increase the sensitivity to about 80%. And then, various 

of activation procedures such as hyperventilation and sleep deprivation can increase the 

sensitivity of test. Long term video-EEG monitoring has further provided the semeiology of 

the seizures and it has been commonly used for seizure characterization, medication 

adjustment and epilepsy evaluation [11]. 

Neuroimaging studies are also important for the seizure and epilepsy evaluation for the 

determination of structural and functional etiology of seizures. 3T brain MRI is the current 

standard neuro-radiological imaging. Other imaging techniques are also used including 
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functional neuro-imaging. PET can be used to demonstrate the regional difference in 

metabolic activity, and SPECT can be used to analyze regional difference in blood flow 

during a seizure [12]. MEG and functional MRI have been found to provide more information 

for the localization of potential epileptogenic lesion [13]. 

 

2.1.8 Treatment options 

 If a patient has one single seizure, they should not be treated for epilepsy, because about 

10% of people will have a single seizure during their lifetime and many of them will never 

develop recurrent seizures. But if a patient has at least 2 unprovoked seizures, the treatment 

should be performed. There are two kinds of treatments for patients with epilepsy which are 

pharmacological and non-pharmacological treatment and the treatment algorithm for epilepsy 

is shown in Figure 2 [2]. 

 2.1.8.1 Pharmacological treatment 

 There are many different anti-epileptic drugs (AEDs) available, employing various of 

different methods to reduce the probability of having a seizure. However, there are some 

disadvantages of AEDs. One of disadvantages of AEDs is the common occurrence of side 

effects, which range from limited and tolerable side effects to dangerous side effects. Another 

disadvantage of AEDs is their efficacy. Although there are various types of antiepileptic 

medication, one third of patients with epilepsy cannot be controlled with antiepileptic 

medication and still suffer from refractory seizures [2]. 

 2.1.8.2 Non-pharmacological treatment 

 Drug resistant epilepsy is defined as a failure of trials of two tolerated and appropriately 

chosen AEDs with adequate dose to achieve seizure freedom [14]. For these patients with 

drug resistant epilepsy, other alternative non-pharmacological treatment should be considered 

including epilepsy surgery and neuromodulation. Epilepsy surgery is most commonly 

considered if they have an identifiable epileptogenic focus which is amenable to resection and 

the aim is seizure freedom. Epilepsy surgery requires a presurgical evaluation to ensure that 

the probability of seizure freedom for the patients is as high as possible. Presurgical 

evaluation is based on multimodal imaging and several medical examinations to localize the 

epileptogenic zone. The clinical, paraclinical and imaging data can be obtained from these 

several medical examinations. The most important clinical data is the semeiology of the 

seizures, because we can get some information about the location of epileptic discharge from 

observing symptoms. The clinical data can be obtained by recording during 

video-EEG-monitoring [2]. The imaging data can be obtained from various structural or 

functional imaging modalities, such as MRI, PET, EEG. A neuropsychological evaluation can 

be used as paraclinical data [15]. When the epileptogenic zone is localized, before it is 

removed, it is very important to know which brain functions are localized in this zone that 

will be resected. Wada-test and fMRI can be used to determine the functionality of the zone. 



 

 
 

7 
 

Anti-epileptic drug 1 
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= refractory epilepsy 

Usually the resection will not be considered if it will cause the impairment of important and 

primary functions such as language, memory, etc [16]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Treatment algorithm for epilepsy 

 

2.1.9 Animal model of temporal lobe epilepsy 

 Because of the ethical and experimental limitations of human studies, detailed evaluation 

of underlying mechanisms of epileptogenesis and ictogenesis in patients is unfeasible, so it is 

very essential to make an appropriate animal model of epilepsy to investigate treatment 

options for epilepsy [1]. Although there is no experimental model that reproduces all the 

features of TLE, chronic animal models of TLE which have high level of similarity with 

human epilepsy have been used [17].  

2.1.9.1 Kindling model 

The kindling model is a commonly used model for the development of seizures and 

epilepsy. Increasing seizure duration and enhanced behavior of these seizures are caused by 

repeatedly induced seizures, and this process is called as kindling [18]. Although this model is 

widely used, it is controversial for its applicability to human epilepsy. 

Focal electrical stimulation in the brain is the usually taken approach to carry out kindling 

[18]. The brains of experimental animals are stimulated with electricity or also chemicals 

repeatedly to induce seizures. The first stimulation produces a seizure which is quite short in 

duration and has small behaviors. After repeated stimulation, the length of duration and 

If AEDs works 
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behavior intensifies and can reach a plateau [19]. 

 

2.1.9.2 Pilocarpine model 

The pilocarpine model belongs to status epilepticus (SE) models. This model appears to 

be highly similar to human disease, so it has been used in many laboratories since its first 

description. Pilocarpine is a powerful cholinergic agent and produces persistent seizures with 

neurodegeneration. The model is very simple to use and it doesn't require much complicated 

equipment. Pilocarpine is usually used for systemic administration to induce SE in rats or 

mice [20]. 

Injection of pilocarpine induces a status epilepticus and after several hours of SE, 

pilocarpine-treated animals recover spontaneously and they will go into a seizure-free period, 

which is known as latent period, before displaying spontaneous recurrent seizures which 

represents the chronic epileptic condition. Pilocarpine (400mg/kg, i.p) was injected in adult 

male rats, and a progressive evolution of seizures which is similar to kindling model, was 

observed [21]. 

2.1.9.3 Kainic acid (KA) model  

Another model is kainic acid, which is a cyclic analog of L-glutamate and an agonist of 

ionotropic KA receptors [22]. It was isolated from the red algae (Digenea simplex) [22]. This 

model has been widely studied, especially in chronic epileptic state produced after a latent 

period following SE [1]. There are three major stages for KA model, which are the initial 

hours-long episode of SE, days-to-weeks long seizure free latent period, and the gradual 

progressive increase in the frequency of recurrent spontaneous seizures. The final stage is 

generally permanent and can be used to define property of chronic epilepsy.  

KA can be administered in the hippocampus, intraperitoneally (IP), intravenously (IV), 

subcutaneously, or intracerebroventricularly. The treatments can be given as a single large 

dose (8-12mg/kg) or repeated lower (3-5mg/kg) doses in each hour. Our focus in this thesis is 

on repeated lower doses treatments because this is effective in creating an animal with chronic 

epilepsy. 

The modeled epileptogenesis process in KA model results in similar pathological features 

which are commonly seen in human TLE, so it can support the validity of this model for 

human TLE [17].KA reproduces the seizures associated with neuronal damage which is 

similar with human epileptogenic tissue. It is easy to use and doesn’t require complicated 

equipment, except for the monitoring of EEG [17]. A main drawback of KA model is the 

variable sensitivity of rats of different ages, strains and weight to KA [23]. Aged rats show SE 

at lower dose of KA with greater neuronal damage. Another limitation of KA model is the 

direct excitotoxic action of KA which it makes it not easy to separate direct neuronal damage 

which is caused by seizures [20]. 
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2.2 Functional magnetic resonance imaging   

2.2.1 Introduction of fMRI 

Functional magnetic resonance imaging (fMRI) is a technique which is used to measure 

brain activity according to physiological or metabolic changes in the brain. It works by 

detecting the changes of blood flow or blood oxygenation in the acquisition point. If one brain 

area is active, it would consume more oxygen with the increase in blood flow and blood 

volume to the active area. Because blood oxygenation changes according to the levels of 

neural activity, it can be used to detect brain activity. This principle is called blood 

oxygenation level dependent (BOLD) imaging [2]. fMRI has better spatial resolution than 

EEG and MEG, but the resolution is not as good as invasive procedure for example 

single-unit electrodes. fMRI has low temporal resolution. However, advanced techniques can 

improve temporal resolution, such as using multiple coils to speed up acquisition time and 

deciding and dropping which parts of signals matter less. It is non-invasive and safe for the 

subject and there is no radiation [24]. 

 

2.2.2 Magnetic resonance imaging 

 Magnetic resonance imaging (MRI) is a non-invasive imaging technology that produces 

three dimensional detailed anatomical images using a strong magnetic field and 

electromagnetic waves. The magnetic resonance signal from the hydrogen nuclei within water, 

fat or other molecules in the body can be imaged by MRI.  

There are several steps to create an MRI signal. At first, when the strong magnetic field 

𝐵0 is applied, the longitudinal magnetization (𝑀𝐿) would be generated, parallel to the field 

𝐵0. Then, a radiofrequency wave is applied at Larmor frequency and this would reduce 

longitudinal magnetization (𝑀𝐿 ) and create a transverse magnetization (𝑀𝑇 ). After the 

exciting pulse (RF), longitudinal magnetization (𝑀𝐿) will recover back to its full magnitude 

with relaxation constant 𝑇1 and transverse magnetization (𝑀𝑇) will decay with a relaxation 

constant 𝑇2. The relaxation time 𝑇1 and 𝑇2 are tissue dependent [25]. Because of this, the 

different tissues and structures can be distinguished on an MRI image. Tissues with a long 𝑇1 

appear dark and tissues with a short 𝑇1 appear bright on a T1 weighted image. Fat will show 

up the brightest, so the white matter would be brighter than gray matter and cerebral spinal 

fluid will be dark. An example of 𝑇1-relaxation curves and a corresponding T1 weighted MRI 

image are shown in Figure 3 [2]. Another example of 𝑇2-relaxation curves and corresponding 

T2 weighted MRI image are shown in Figure 4. In this case, water or cerebral spinal fluid will 

be brightest and white matter would be darker than gray matter. Because of field 

inhomogeneities, 𝑇2will often be replaced by 𝑇2
∗ in reality. 
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Figure 3: 𝑇1-weighted image and 𝑇1-relaxation curve [2] 

  

Figure 4: 𝑇2-weighted image and 𝑇2-relaxation curve [2] 

 

 An MRI sequence is an ordered combination of RF and excitation pulses designed to 

acquire the data to form the image. Each excitation pulse is separated by a repetition time TR. 

Data is measured at some characteristic time after the application of excitation pulses and this 

is defined as the echo time TE [26]. The spin echo (SE) sequence is commonly used, shown in 

Figure 5. The spin echo (SE) sequence starts by switching on the slice select gradient (Gss), 

and this gradient is used to select the slice from which the signal will be sampled. The 90∘RF 

excitation pulse is applied at the same time. Then the phase encoding gradient (Gpe) and read 

out gradient (Gro) are switched on to know the location of the image voxels [27]. The 

refocusing of the spins is obtained by applying a 180∘RF pulse after the 90∘RF excitation 

pulse. The signal will increase again after the 180∘RF pulse, and this is called the echo. This 

180∘pulse is applied exactly halfway between the excitation pulse and the echo. 
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Figure 5: Diagram of SE sequence 

 

 Another sequence is the gradient echo (GE) sequence, shown in the Figure 6 below. 

Because a 90∘RF excitation pulse is always used in a SE sequence, 𝑇1 relaxation can take a 

long time. It can be avoided by using gradient echo (GE) sequence. GE sequence uses 

gradients with opposite signs to dephase and rephase the spins. 180∘ RF pulse is not used in 

GE sequence, allowing lower flip angles for RF excitation. The signal is obtained during the 

Readout gradient (Gro), and by changing the polarity of the Readout gradient, the same effect 

can be obtained as by applying a 180∘pulse RF-pulse. 

 

Figure 6: Diagram of SE sequence 

2.2.3 fMRI principles 

   Blood oxygenation level dependent (BOLD) fMRI is the most often used technique in 

fMRI. So the blood oxygenation level can be used to detect brain activity [2]. When a brain 

area is activated, the neurons become hyperpolarized and to get them back to their polarized 

state requires actively transporting ions across cell membranes, so ATP is needed during this 

transport process. Glucose is the brain’s primary energy source and ATP can be formed from 
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oxidizing glucose, but glucose is not stored in the brain [28]. If the brain activity increases, 

more ATP is needed and more glucose is required, so the blood flow to the active area will 

increase to transport more glucose. And more oxygenated hemoglobin molecules are brought 

in red blood cells with the transport of more glucose [29].  

 Oxygenated hemoglobin (oxyHb) is diamagnetic while deoxygenated hemoglobin 

(deoxyHb) is paramagnetic. Deoxygenated hemoglobin has a paramagnetic moment so there 

is a local disturbance of the magnetic field, resulting in a shortening of the 𝑇2
∗- relaxation 

time of the tissue so there is a loss of MRI signal compared to tissue with oxyHb [30].  

When brain neurons in a region are activated, and the cerebral metabolic rate for 𝑂2 has 

increased, there will be less oxygenated hemoglobin and more deoxygenated hemoglobin in 

this active region. However, blood flow and blood volume are also increased, leading to a 

high increase of oxygenated hemoglobin and a decrease of deoxygenated hemoglobin. This is 

shown in Figure 7 [2]. The increase of blood flow and blood volume are much higher than the 

oxygen metabolism, so the total amount of oxygenated hemoglobin will increase and 

deoxygenated hemoglobin will decrease. So the BOLD signal, which is the ratio of 

oxygenated hemoglobin to deoxygenated hemoglobin, increases and the 𝑇2
∗ weighted MRI 

signal increases. Therefore, the active areas in the brain appear to be brighter than other 

regions on a 𝑇2
∗-weighted image [2]. 

 

 

Figure 7: BOLD signal is the combination of the effects of oxygen metabolism and blood 

flow [2] 
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2.2.4 Hemodynamic Response Function 

 BOLD fMRI allows us to study the hemodynamic responses to neural firing. The change 

in the MRI signal which is caused by a neural event is referred to as the hemodynamic 

response function (HRF), and it is shown in Figure 8. There is a decrease in blood 

oxygenation after the neurons are active, which is known as the initial dip in the 

hemodynamic response. At this time, the metabolic demands increase due to the neuronal 

activity and it leads to an increase in the flow of oxygenated blood to active regions of brain. 

Because more oxygen is supplied than demanded, this leads to a decrease in the deoxygenated 

hemoglobin, which leads to an increase in signal following neural activation. The positive 

increase in the signal starts 1-2 seconds after the initial dip and peaks after about 6 seconds 

after peak neural activity. After the peak level, the BOLD signal decreases below baseline 

level, often followed by a positive-stimulus undershoot [31]. Since the blood flow decreases 

more rapidly than blood volume, so there is more deoxygenated hemoglobin present. 

 
Figure 8: Hemodynamic response function 

 

2.2.5 Echo Planar Imaging 

Echo planar imaging (EPI) is a fast MR image acquisition technique and it is used to 

acquire brain images, every few seconds, during several minutes. EPI is so fast because it can 

acquire all frequency and phase encoding points in one single pulse cycle. It is called 

“single-shot” because it can collect the entire 2D image in one TR.  

Spin echo and gradient echo can be used to offer a wide range of contrast behaviors. 

Figure 9 shows the most common implementation of EPI which is used for clinical imaging: 

the spin echo sequence [32]. The phase and frequency encoding is preceded by an 

90∘excitation pulse and 180∘echo-forming pulse, and an echo can be formed during readout 

period. For Gradient Echo (GE) sequence, EPI data collection follows a single RF pulse, with 

a flip angle between1∘to180∘, depending on the preferred contrast. This is shown in Figure 10 

[32]. 
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Figure 9: Echo-Planar pulse sequence 

 

Figure 10: Gradient Echo EPI sequence 

 

2.2.6 fMRI paradigm design 

 The stimulus should be given to the region of interest in order to measure the brain 

activity or visualize the certain brain regions. The meaning of ‘paradigm’ or ‘design’ is the 

way how tasks and stimuli are organized [33]. The most common used designs are the block 

design and event-related design. They are shown in Figure 11 [33]. In a block design, stimuli 

are presented within one condition and alternate this with other moments when a different 

condition is presented. Individual hemodynamic response functions from each stimulus can be 

combined in BOLD response, so the BOLD response has higher magnitude. Therefore, it is 

best for detect differences in BOLD signals between conditions, however it is not good at 

isolating different responses to single event within the block. 

 Another common used type of design is the event-related design. It can enable us to 

design more complex experiments.  Hemodynamic response function for each individual 

event can be detected when very short stimuli are given. It is best for estimating the shape of 

response function and looking for the differences in timing. Compared with block design, the 
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resulting curve of event-related design depends on the shape of impulse response [33]. 

 

 

Figure 11: A: Block design, B: Event-related design 

2.2.7 Resting state fMRI 

Much of what we previously knew about the brain comes from the research of 

task-related fMRI during which a stimulus is applied. In recent years, another method called 

resting state fMRI has been used to examine the functional organization of brain. In resting 

state fMRI the brain is imaged during rest state when no external stimulus is applied. The 

resting brain activity can be observed by the BOLD effect because any brain regions have 

spontaneous fluctuations in the BOLD signal when there is not an external stimulus or task 

[2]. The goal of the resting state method is to find out the functional organization of the brain 

and compare the difference in signal between healthy subjects and subjects with neurological 

or psychiatric diseases. Also, a number of networks have been found in healthy or abnormal 

subjects, different stages of consciousness and across species. In particular it has been shown 

that fluctuations in the low frequency part of the BOLD signal show strong correlations across 

distant regions. Temporal correlation between different regions in the network can be 

calculated based on the time course of the signal and also functional connectivity can be 

derived from this [2].  

Resting state fMRI is based on the study of low frequency BOLD fluctuations and the 

oscillation frequency of spontaneous BOLD can be easily separable from frequencies of 

respiratory and cardiovascular signals [34]. Typical resting experiments are about 5-10 min, 

and there is no consensus whether the data should be collected while the subjects are awake. 

Preprocessing steps of resting state fMRI normally follows the same principles which are 

applied to standard task-related fMRI. However, the data is band-pass filtered at 0.01-0.1 Hz 

because of the interference of these non-neuronal physiological signals which are mentioned 

before, instead of high pass filtering which is applied to task fMRI data because it would 

remove some useful information. In addition, the cerebrospinal fluid (CSF), and the white 

matter are commonly removed before analysis to reduce the effect of head motion [34]. 

Due to the lack of task and stimulus, resting state fMRI is attractive because it removes 

the burden of experiment design, subject compliance and training demands of the subjects. 

Also, it is easy to complete a resting state scan when performing task-based experiments. 
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Because of these reasons, it is commonly used and attractive in the studies of clinical 

population [35]. 

  

2.2.8 Applications of fMRI 

 Functional MRI has a small but growing role in clinical neuroimaging and also there are 

some initial applications to neurosurgical planning. 

 2.2.8.1 fMRI guided neurosurgery 

 fMRI can be used for pre-surgical mapping to localize cerebral function in tissue within 

or near regions which are intended for neurosurgical resection [36]. fMRI is necessary for 

precise and safe neurosurgical planning. 

 2.2.8.2 Parkinson's disease 

 Functional imaging can not only study the process underlying Parkinson's disease (PD) 

symptoms, but also can be used to detect the subclinical and early disease and monitoring the 

progression of disease [37]. fMRI can be applied to investigate cognitive disturbances in 

patient with PD [38]. The studies about motor activation can be completed by quantifying 

BOLD signal changes during the performance of a task. Therefore, the changes of activation 

patterns which are characteristic for PD can be identified [38]. Resting-state fMRI can be used 

to gain more information about pathophysiology of PD and it can assess the functional 

abnormalities without the effect of a specific cognitive task. By using this kind of method, it 

might be possible to separate patients with PD from healthy people, so fMRI can be used as a 

diagnostic tool for PD. 

2.2.8.3 Epilepsy 

   Many diagnostic methods have been used for the presurgical evaluation and management 

of epilepsy, including the intracarotid amobarbital testing (IAT) or Wada test, regarded as the 

golden standard for a long time [39]. The Wada test is performed during angiography and it 

can identify the side of brain which controls language and show the area of memory function 

in the brain. Functional MRI (fMRI) is also a promising tool for the management of epilepsy 

and it can provide a less invasive alternative to the IAT [39]. Also, by mapping the eloquent 

area with fMRI, it can be used to predict and manage the possible deficits in motor and 

sensory or language functions which could be caused by surgery [39]. Lateralization of 

language and memory function can be identified with fMRI. EEG and fMRI can be integrated 

to localize the changes in regional brain activity. The combination of EEG and fMRI can 

utilize the high temporal resolution of EEG and high spatial resolution of fMRI to aid in 

seizure localization. 

 2.2.8.4 Migraine  

 Migraine is a common neurological disorder which is characterized by headache [40]. A 

non-invasive approach based on kinetic oscillatory stimulation (KOS) for the treatment of 

migraine has been developed [41]. By using the blood oxygen-level dependent (BOLD) 
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functional MRI, the alterations in the functional connectivity in the brain which are responded 

to KOS treatment can be studied [41]. So by comparing the resting state functional 

connectivity differences between patients with migraine and normal volunteers before and 

after KOS treatment, it is demonstrated that migraine is related to abnormal functional 

connectivity in the limbic systems. And KOS treatment can regulate this abnormal status in 

limbic systems back to normal status. 

 

2.2.9 Preclinical Imaging 

 Imaging has become very important in clinical practice and preclinical imaging is the 

bridge between the molecular and clinical imaging.  

 

 2.2.9.1 Preclinical imaging 

Small animal imaging has become a critical part of preclinical biomedical research. 

Because the volume and size of small animals (rats or mice) is much smaller than human body, 

the spatial resolution of small animal imaging should be about 10 times smaller than human 

imaging. The signal of small animal imaging would be much smaller than human imaging so 

there should be some refinements of these imaging modalities [42]. For micro-fMRI, small 

animal imaging should be conducted at higher field strengths, and also the gradient fields and 

coils should be improved. To obtain the high spatial resolution data, the acquisition time is 

really long and it can even extend to one hour, so this is one drawback of micro-fMRI. 

Another disadvantage is the large cost of the facility . 

 

 2.2.9.2 Anesthesia 

 The main challenge for preclinical imaging is the biological motion not only the physical 

motion of small animal, but also the respiratory and cardiac activities affecting the quality of 

images. Compared with human studies, a specific requirement for small animal imaging is 

anesthesia which helps to restrain and immobilize the animal. But the cardiac and respiratory 

motion still should be considered to be controlled [43]. 

 The handling and preparation of animals and the anesthesia regimes are the challenges 

when carrying out functional MRI. Since physiological parameters can influence fMRI signal, 

it is very important to keep these parameters stable to allow for the detection of a 

physiological response related to the stimulus. A MRI-compatible system which includes 

ECG, temperature, blood pressure and respiratory monitoring equipment is used to test and 

monitor these physiological parameters [43]. Respiration is the only physiological parameter 

we monitored in this master thesis. 

 Injectable and inhalation anesthesia methods are commonly used in rats [43]. Inhaled 

anesthetics have rapid onset and recovery times, it is easier to control the doses and 

maintenance time of anesthesia, so they are more suitable for imaging. The injectable agents 
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need to be metabolized by the liver and excreted by the kidney, whereas the inhaled agents 

will be eliminated via the lung quickly [43]. 

 Inhalation anesthetics Inhaled anesthetics are not stable compounds which have a 

specific effect on the central nervous system. The inhalation anesthesia must produce 

complete anesthesia, the induction and recovery should be rapid, and they have to be safe, 

non-irritant and non-explosive. Isoflurane and halothane are the most commonly used 

inhalation anesthetics. Isoflurane is widely used because it is minimally metabolized by the 

liver and is less toxic than injectable anesthetics. An overdose can be fatal, so animals should 

be induced individually and then the maintenance percentage has to be reduced when the 

animals are unconscious. Isoflurane has become a better agent for cardiovascular studies 

because it depresses cardiac function less than injectable anesthetics. However, it causes a 

decrease in blood pressure by reducing peripheral resistance. 

Injectable anesthetics For injectable anesthetics, the anesthetic dose rates for injectable 

agents will depend on various factors which are the type of species, the administration of age, 

sex, body condition and the level of anesthesia required. Three injectable agents that are often 

used are medetomidine, ketamine and Fentanyl. 

Medetomidine Medetomidine is commonly used in fMRI studies for small animals and its 

active enantiomer, dexmedetomidine, is used in human medicine. Medetomidine has many 

beneficial effects on anesthesia practice, including reliable sedation (not being under full 

anesthesia), analgesia, muscle relaxation and anxiolysis [44]. Medetomidine exhibits a rapid 

distribution, on the order of minutes, to the brain, so it leads to a good control of the depth of 

anesthesia. Medetomidine has an influence on vascular responses resulting in the decrease of 

CBF and CBV. But the dose-dependent effect of medetomidine on functional BOLD response 

has not been evaluated systematically. Medetomidine is a perfect anesthetic to use when we 

want to study the relation between neuronal activation and the hemodynamic properties of the 

BOLD signal in fMRI experiment. A reasonable time window for BOLD-fMRI responses is 

1-2 hours when a constant infusion rate is used. And it is also found that a constant infusion of 

medetomidine at 100μg/kg/hr is not enough to maintain sedation beyond 3 hours, so it is 

necessary to increase the infusion dose after 3 hours. 

Ketamine Ketamine is an anesthetic which is commonly used in the veterinary field. It 

can produce a state in which there is profound analgesia, light sedation and muscle rigidity 

[45]. And it doesn’t depress central nerve system, so reflexes remain intact. But there are 

some negative effects of ketamine and one of the negative effects is the eyes of animals 

remain open, so the ophthalmic ointment is required and the spontaneous movements and 

muscles cause an initial increase in blood pressure. Compared to other anesthetics, ketamine 

doesn’t depress the cardiac and respiration output. Ketamine cannot achieve the surgical 

anesthesia on its own, so it is often used in combination with xylazine, medetomidine during 

surgery. 
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Fentanyl Fentanyl is licensed for sedation in rodents, rabbits and pigs. Because of its poor 

production of muscle relaxation, it cannot be used on its own for surgery [43]. So it should be 

used in combination with benzodiazepine (midazolam or diazepam) for surgical anesthesia in 

rodents, rabbits and pigs because it will produce good muscle relaxation [43]. 

 

2.2.10 Limitations of fMRI  

fMRI doesn't measure neural activity directly, but shows the changes in blood flow and 

volume caused by the modulation in neural activity. The researchers still don't completely 

understand the relation between fMRI measurements and neural activity. The fMRI can't 

convey the detailed information about the activities of individual neurons, which are very 

important to mental function of brain. Each area of brain studied in fMRI is made up of many 

individual neurons, and each of them may have different functions [46]. If the certain areas of 

brain which "light up" on fMRI may represent different functions, it is really hard to tell 

exactly what kind of brain activity is being represented on the scan. 

Another significant limitation of fMRI is its low temporal resolution because the BOLD 

contrast is derived from delayed hemodynamic response to metabolic changes. Also, because 

the change of deoxygenated hemoglobin concentration in the blood often occurs further away 

from the activated neurons, it is imprecise to locate the activation area [47]. 

 

2.3 Dynamic functional connectivity 

Functional connectivity is defined as the study of temporal correlations or dependency 

among two or more anatomically distinct neurophysiological events. Until now, most fMRI 

studies have assumed that the functional connectivity of signals between distinct brain regions 

is constant throughout the recording periods [48]. It is referred as static functional 

connectivity (sFC). More recently, temporal fluctuations in functional connectivity within the 

session have been found, and it is referred to as dynamic functional connectivity (dFC). 

 

2.3.1 Static functional connectivity (sFC) 

 The most well-known functional connectivity measure is the correlation, which is called 

the Pearson correlation coefficient. It calculates the linear relation between the two signals 

based on the amplitudes of the signals. Another measure is cross-correlation which 

investigates the correlation between two signals in function of time and they are shifted in 

time with respect to each other. In the frequency domain, the counterpart of cross-correlation 

is coherency [2]. 
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 Correlation coefficient 

 The correlation coefficient ( 𝜌𝑥𝑦)  is a simple connectivity method to assess the 

interdependency between two time series (x and y). The formula to calculate the correlation 

coefficient is shown as follows [2]: 

𝜌𝑥𝑦 =
𝐸[(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)]

𝜎𝑥𝜎𝑦
=

1

𝑁
∑

(𝑥(𝑛) − 𝜇𝑥)(𝑦(𝑛) − 𝜇𝑦)

𝜎𝑥𝜎𝑦

𝑁

𝑛=1

 

 Where N is the number of samples, E[x] is the expected value of x,  𝜇𝑥 and 𝜇𝑦 are the 

mean values, and 𝜎𝑥 and 𝜎𝑦 are the standard deviations of the signals. The correlation 

coefficient lies between -1 and +1. Negative values represent negative correlation and positive 

value indicates positive correlation and 0 means there is no correlation. 

 

 Cross-correlation 

 The cross-correlation estimates the correlation between two time series that are shifted in 

time, which is shown as follow: 

𝜌𝑥𝑦(𝜏) =
𝐸[(𝑥𝑛 − 𝜇𝑥)(𝑦𝑛+𝜏 − 𝜇𝑦)]

𝜎𝑥𝜎𝑦
=

1

𝑁 − 𝜏
∑

(𝑥(𝑛) − 𝜇𝑥)(𝑦(𝑛 + 𝜏) − 𝜇𝑦)

𝜎𝑥𝜎𝑦

𝑁−𝜏

𝑛=1

 

 Where τ is time lag which represents how much y shifted with respect to x, and it can be 

used to assess the directionality of the correlation.   

 

 Correlation matrix 

 Correlation coefficient can be calculated to evaluate the association between two or more 

variables. Correlation matrix can be used to investigate the dependence between multiple 

variables at the same time. The correlation matrix can be seen as a table containing the 

correlation coefficients between each variable and the others. 

 

2.3.2 Dynamic functional connectivity (dFC) 

 In recent years, FC has been shown to fluctuate over time, so there has been a shift from 

static analysis of functional connectivity to dynamic functional connectivity (dFC), because 

dynamic properties of the BOLD signal fluctuations have been found.  

There are various of analysis methods for dynamic functional connectivity. The most common 

and straightforward method to investigate dFC is using sliding windowed FC, which was first 

introduced by Sakoglu and Calhoun in 2009, and applied to schizophrenia [49]. 

 

2.3.3 Dynamic functional connectivity analysis 

 2.3.3.1 Independent component analysis (ICA) 

 Independent component analysis is a computational and statistical technique for 

separating signals into different subcomponents in signal processing field. This is done by 
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assuming that all the subcomponents are statistically independent from each other. Normal 

independent component analysis provides only steady-state information of the networks over 

the scan time and the relationship between different areas involved in the network is assumed 

to be kept over the entire scan. Therefore, this kind of analysis method cannot give any 

information about spatiotemporal dynamic changes of the signal.      

Spatial ICA (sICA) has been applied to fMRI as a data-driven method and it can estimate 

the network from the entire spatiotemporal dataset at one time. This is one method to apply 

the degree of variability into ICA FC estimation by performing sICA on a sliding-window 

basis [50]. The functional connectivity profile of default mode network was found to vary 

over sliding windows. 

 

 2.3.3.2 Sliding window technique 

 Sliding window analysis is performed by conducting analysis on a set number of scans 

within fMRI sessions. To complete the sliding window step, optimal window length and step 

length should be determined at first. The correlation coefficients between different ROIs are 

calculated over consecutive windowed segments of data. The defined window is then moved 

forward in time. A time series of FC values can be obtained and they can be used to assess 

fluctuations in FC within sessions. One benefit of this sliding window analysis is that almost 

steady state analysis can be performed if the window length is large enough. 

 The following description is dFC analysis using sliding window approach. Instead of 

calculating the Pearson correlation using the whole activity time course across, dFC is based 

on the segmentation of the activity time course. The window ‘w’ segments the whole activity 

time courses into more or less overlapping parts. After segmenting the activity time courses, 

correlation coefficient will be calculated for each window segment. We can see from the 

Figure 12 [51] that sliding window method is applied and for each window, the data points 

within this window are used to calculate correlation matrix. The window is shifted in time by 

a step length which defines the overlap between two windows, and we can obtain a series of 

correlation matrices. From the results, we can indentify that correlation matrices vary over 

time. 
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Figure 12: The figure ( [51]) shows the temporal evolution of functional connectivity 

 

2.3.3.3 Clustering analysis 

 K-means algorithm is one of the common unsupervised learning algorithms which solve 

all the well-known clustering problems. The procedure follows a simple and easy way to 

classify a given data through a certain number of clusters (k clusters). The main idea of this 

algorithm is to define k centroids, one for each cluster. And then we need to put them as far 

from each other as possible. In the next step, each point should be taken belonging to a given 

data set and associated the nearest centroid. When all the points have been taken, early 

groupage is done. At this point, we need to calculate k new centroids as the barycenters of the 

clusters from previous step. When we obtain k new centroids, a new association has to be 

done between the data points and nearest new centroid, so the loop of this algorithm has been 

generated. The location of k centroids will change their location step by step until there is no 

more changes of their location. The aim of this algorithm is to minimize the objective 

function, which is shown as follow [52]: 

J = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

 Where ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

 is the distance measured between a data point 𝑥𝑖
(𝑗)

 and the cluster 

center 𝑐𝑗. 

 To assess the frequency and structure of dFC connectivity patterns, the k-means 

algorithm can be used to cluster these dynamic functional connectivity windows, partitioning 

the data into a set of separate clusters in order to maximize the correlation within a cluster to 

cluster centroid. The initial clustering was performed on a subset of windows from each 

subject, instead of clustering all of dFC windows across all the subjects. The subset of 

windows from each subject can be obtained by selecting windows corresponding to local 

maxima after we have calculated the variance of dFC across all parts at each window. The 

optimal number of centroids can be estimated using the elbow criterion, defined as the ratio of 
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within cluster to between cluster distances. These sets of initial groups of centroids were the 

starting point to cluster all the dFC windows across all the subjects. 

 

2.3.4 Applications of dFC 

 There are some clinical applications for the analysis of functional connectivity. 

Physiological diseases have disrupted large-scale functional or structural properties. 

Quantification of disrupted dynamics in clinical populations may lead to a better 

understanding of disease and targeted drug treatment. Therefore, an improved understanding 

of the relation between disease and dynamics can enhance the understanding of how dynamic 

functional connectivity properties support brain function. Altered dynamics in schizophrenia, 

depression and Alzheimer’s disease have been examined to find the link between disease and 

dynamics. 

 

 

 2.3.4.1 Schizophrenia 

 Sensory, motor and frontal networks had less engagement with other networks and there 

is a significant difference in time-frequency patterns of connectivity between schizophrenic 

patients compared to healthy controls. And the FC window states switch more often in healthy 

controls, while patients with schizophrenia tend to have a state of “weak” and relatively “rigid” 

connectivity. This finding cannot be detected using a static FC method [49]. 

 

 2.3.4.2 Depression 

 The transition of FC as a marker of dynamic brain state changes can be well 

corresponded to current findings of brain activity in depression. Major depressive disorder 

(MDD) is a recently proposed model and it suggests alterations in static FC could be due to 

bias toward more frequent down states and it would predict a decrease in mood-related brain 

dynamics [53]. Initial findings have supported the notion that the resting-state dynamics of 

key structures in MDD may be altered and it provides the correlation with the subject’s 

decreased ability to react to external and internal cognitive demands [53]. More work is 

needed to understand connections between brain network dynamics and changing affective 

states. 

 

 2.3.4.3 Alzheimer’s disease 

 Previous studies have found altered static FC measures in Alzheimer’s patients compared 

with healthy controls. Also, the author reported differences in the “dwell time” within 

different sub-network configurations of the default-mode network (DMN) between 

Alzheimer’s patients and old healthy controls [54]. More specifically, there was less time 

spent in brain states with stronger posterior DMN region contributions [54]. It can provide a 
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more accurate description of Alzheimer’s disease and lead to a better understanding of the 

characteristics of the disease and better diagnostic indicators. 

 

2.3.5 Limitations of dFC 

 There are some limitations for using dFC. First, our ability to make the conclusions from 

dFC and states is limited. Because of uncontrolled nature of the resting-state scan, we have 

few tools to investigate changes in FC, and the functional roles of dynamics and the relations 

to cognitive states remain unknown. Then, the most common limitation is that of overlooking 

the fact that the observed FC values are estimates of the true and not observable values, and 

hence, there is some statistical uncertainty [55]. Although the fluctuations are real, the 

observed dynamics may be driven by time-varying noise and don’t reflect fluctuations in 

BOLD signals. Noise in the fMRI can arise from a various of factors including the heart beats, 

changes in blood brain barrier, characteristics of the acquiring scanner. The noise cannot be 

completely eliminated with most preprocessing techniques. An appropriate statistical test has 

to be done to decide whether the fluctuations are due to statistical uncertainty or true changes 

in population FC. Another experimental limitation of the study is the limited data available for 

each subject. Each subject was scanned for a short time, and the dynamics of the connectivity 

and state transitions at the level of the individual can not be precluded. Therefore, longer 

scanning time can improve the estimation of dFC variability and permit patterns of 

connectivity to reoccur several times within the scanning time and this is important for future 

investigation [51]. 
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Chapter 3 Materials and Methods 

 

3.1 Kainic acid (KA) rat model 

 In this experiment 12 adult male Sprague-Dawley rats (0.276± 0.019 body weight; 

Envigo, Netherlands) are used. In this part, intraperitoneal kainic acid (IPKA) rat model was 

used to obtain epilepsy rats.  

 KA can be administered by many methods which are described in literature overview part 

in this paper, and IPKA rat model was used in this master thesis. KA injection according to 

the Hellier protocol [1], resulted in chronic epilepsy in all rats.  

 In the Hellier's study [1], they have tested the hypothesis that rats receiving multiple 

low-dose systemic injections of kainate (i.e. 5mg/kg per h) chronically develop seizure 

characteristics which are similar to those of human temporal lobe epilepsy. This kind of 

modified kainate treatment protocol (i.e. repeated low-dose injections of kainate) has a greater 

efficiency compared to other protocols, because the injections are performed intraperitoneally 

and the exposure to kainate is extended. Repeated low dose intraperitoneal (i.p.) injections of 

kainate can reduce the mortality rate and allows slower diffusion to the brain compared to 

other injection methods, and it is effective in creating an animal with chronic epilepsy.  

 Kainate (5mg/kg) was administered to six healthy male Sprague-Dawley rats 

intraperitoneally every hour until the animals displayed a stable status epilepticus (SE) for 

three hours, and control rats were treated similarity with saline [17]. Seizures were 

determined by observing the behavioral postures.  

 

3.2 Image acquisition 

3.2.1 Anesthesia 

 The rat was anesthetized with 5% isoflurane mixed with 1.5L/min oxygen. And after this 

period, isoflurane was reduced to 2% mixed with 0.3L/min oxygen for maintenance during 

preparation for imaging. Then the neck of the rat was shaved and the needle (30G) was 

inserted under the skin for subcutaneous infusion of medetomidine. And next, the rat was 

placed on a heated water pad while in the magnet to maintain the temperature. A pressure 

sensor placed under the chest was used to continuously monitor breathing. After this step, the 

rat was given a bolus of medetomidine (0.05mg/kg) and after 10 minutes isoflurane was 

discontinued. Anesthesia was maintained with a constant medetomidine infusion rate 

(0.1mg/kg/h). The timeline of anesthesia protocol can be seen in Figure 13. After the image 

acquisition step, the anesthesia can be reversed with atipamezole. 
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Figure 13: Timeline of anesthesia protocol 

 

3.2.2 Functional MRI acquisition  

 In this master thesis, functional MRI is the only imaging modality for preclinical research, 

and it allows longitudinal non-invasive serial imaging studies within the same animals. 

 The resting-state fMRI images were acquired with a Pharmascan 7T (Bruker). Firstly, a 

wobble was done to match and tune radiofrequency coil. Then a tripilot scan was performed 

to get the information about the position of animal in the scanner. The magnetic field 

homogeneity can be improved by shimming. One TurboRARE T2 image of each rat was 

acquired after shimming. This kind of anatomical image has a better resolution than 

functional images and can be used to localize different brain regions of interest more 

accurately. After that, the functional MRI images were acquired. 

 About 30 minutes after turning off isoflurane, the resting-state fMRI images acquisition is 

performed using a standard gradient-echo echo planar imaging (EPI), with TR=2s, 

FOV=0.375mm, slice thickness/gap=1mm/0.1mm, scan matrix=80×80. This EPI imaging run 

is repeated 300 times in ten minutes and we can obtain 3 rsfMRI images. 

 

3.3 Data analysis 

 Different analysis techniques and software are used to analyze fMRI images: statistical 

parametric mapping package (SPM12 [56]), sliding window technique with the toolbox 

GRETNA [57] and k-means clustering performed by a script written in Matlab. When the 

original resting-state fMRI images are obtained, the images will be preprocessed firstly. Then 

the sliding window technique is performed of these preprocessed images. After this, all the 

correlation matrices are divided by k-means clustering method. And finally, the results of 

these clustered matrices are used to perform necessary statistical analysis to compare the 

epileptic and healthy rats and obtain the conclusion. 
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3.3.1 Preprocessing steps 

 Preprocessing is necessary in fMRI analysis in order to prepare raw data from the scanner 

for statistical analysis [58]. Therefore, before fMRI data can be analyzed, several 

preprocessing steps need to be completed. The fMRI images are preprocessed using SPM12. 

Firstly, slice timing correction can be performed to adjust and correct for the time difference 

between different slices of the brain. Then, the different images have to be realigned to correct 

the data for the effects of movement during the scanning period. And next, the structural 

image is superimposed on a functional image to localize and visualize the active brain areas 

better in the coregistration step. After this step, the normalization step needs to be completed 

to normalize functional image to EPI template. In addition, the functional images are spatially 

smoothed with Gaussian filter to increase signal to noise ratio [59]. In the last step, the 

bandpass filter is used to remove all non-neurological signals. The flow chart of all the 

preprocessing steps is shown in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 14: Flow chart of all preprocessing steps 

 

3.3.1.1 Slice timing correction 

When individual slices are recorded, there is a time difference to acquire different slices. 

Therefore, it is not correct to assume that all the slices were acquired at the same time [58]. 

This can be done by using temporal interpolation of the slices with respect to the reference 

slice to make it appear as though all of the slices were acquired at the same time.  

In the slice timing correction step in SPM12, several parameters have to be chosen. For 

each subject, three sessions are added, each contains a time series of images (300 images). 

The parameters of slice timing correction in SPM12 which are chosen for our experiment are 

the number of slices of 16 and TA (acquisition time) of 1.875s. The other input parameters 

Slice timing correction 

Realignment Coregistration 

Normalization 

Spatial Smoothing 

Filtering 
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which need to be changed are slice order, TR, and reference slice. The slice timing order of 

acquisition we chose is interleave model which is odd numbered slices acquired then even 

numbered slices, and the order of slice acquisition determines when in hemodynamic 

response the signal for a slice is acquired. The repetition time (TR) is set to 2s and the 

reference slice is the eighth slice. 

 

3.3.1.2 Realignment 

 In the reality of the experiment, the subjects cannot lie perfectly still in the scanner while 

the experiment is completed on them. Therefore, different images have to be realigned with a 

motion correction algorithm to correct the data and remove the effects of movement during 

scanning period [59]. 

 In the realignment step in SPM12, there are some parameters which need to be chosen. 

For each subject, three sessions after the slice timing correction are added. The standard 

parameters in this step which need to be changed are the separation of 0.4mm and the 

smoothing (FWHM) of 0.5mm. A mean image is created at one time point and the 

realignment is done for each time series separately.  

 

3.3.1.3 Coregistration 

 The anatomical or structural images have a higher spatial resolution compared with 

functional images. The structural images can be superimposed on a functional image to 

visualize and localize active brain regions better. The structural image and functional image 

have different acquisition parameters, so they have to be coregistered first. During the 

coregistration step, the T2 image, which can be seen as structural image, is registered to the 

mean of three EPI images.  

The difference of the parameters in this step compared to realignment step is the 

parameters are estimated with another objective function, which is normalized mutual 

information. 

 

3.3.1.4 Normalization 

 There are large variations between individual brains, and even major landmarks such 

central sulcus will vary in different subjects' brains, considering the position and length. 

Although the brains of Sprague-Dawley rats are more similar than humans, it is also 

necessary to complete normalization step for preprocessing the images. Spatial normalization 

can wrap individual brains into a common reference space and it allows the fMRI signal 

changes across individuals within a group of subjects. An EPI template is necessary to 

achieve the normalization of the mean EPI image, and mean EPI image can be normalized to 

EPI template. Except for the EPI template image, a template weighting image is also 

important for this normalization step. The template weighting image is a mask for 
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normalization of KA rat images. 

  

3.3.1.5 Smoothing  

 Smoothing can increase the ability to detect task-related signal changes and the signal to 

noise ratio at the cost of reduced spatial resolution [58]. In this step, a spatial Gaussian filter is 

applied to the images. The size of 3D Gaussian kernel is at least twice of the voxel size. 

Smoothing can be seen as the intensity of each voxel replaced by weighted average value of 

the intensities of its own and neighboring voxels [59]. 

 In the smoothing step of SPM12, the images from the normalization step are smoothed 

with a Gaussian filter with a size (FWHM) of 0.8mm. 

 

3.3.1.6 Filtering 

 This filtering step is performed with GRETNA, which is also a toolbox about 

neuroscience in Matlab. The filtering step is similar to spatial filtering but the images are 

processed across time to reduce some temporal noise and non-neurological signals. Therefore, 

the smoothed images are band-pass filtered at 0.01-0.1Hz, all the signals out of the band will 

be removed.  

 

3.3.2 Static correlation analysis 

  One of techniques used to analyze the fMRI images is static correlation analysis. From 

the previous study, the functional connectivity between these ROIs during a long scanning 

period is always regarded as constant, so one average static correlation matrix can be obtained 

over this long scanning time. The correlation coefficients are used in the static correlation 

analysis. The correlation coefficients are the measure for the degree of dependence between 

two variables and these are the elements in the static correlation matrix. The correlation 

coefficient between two variables (x and y) can be calculated using the following formula: 

𝜌𝑥𝑦 =
1

𝑁
∑

(𝑥(𝑛) − 𝜇𝑥)(𝑦(𝑛) − 𝜇𝑦)

𝜎𝑥𝜎𝑦

𝑁

𝑛=1

 

 Where N is the number of samples, 𝜇𝑥 and 𝜇𝑦 are the mean values, and 𝜎𝑥 and 𝜎𝑦 are 

the standard deviations of the signals. 

 In the static correlation matrix, each row and each column represent a region of interest 

(ROI), and the elements are the correlation coefficients between each connection of ROIs to 

indicate the functional connectivity between these ROIs. One example of static correlation 

matrix is shown in Figure 15. This matrix can be seen as a table containing the different 

values of correlation coefficients between each variable and the others. 
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Figure 15: Example of static correlation matrix 

 

3.3.3 Sliding window technique 

 Recently, the most commonly used method for examining dynamics in resting-state 

functional connectivity has been the sliding window technique [60]. Sliding window 

technique can be used to obtain correlation matrices which vary over time. In this method, a 

time window of fixed length is selected, and the data points within this window are used to 

calculate correlation matrix of different regions of interest (ROIs). The window is shifted in 

time by a fixed step length which defines the overlap between two windows. We can get the 

time-varying behavior of chosen matrix in quantity over the scanning duration.  

 The sliding window technique was performed on a series of preprocessed fMRI scans. 

Except for these fMRI images, a label mask of the rat brain is also necessary to achieve 

sliding window approach. The label mask was used to divide the rat brain into different 

regions of interests. Between two of these regions of interest, the correlation coefficient can 

be calculated and the correlation coefficients of all the regions of interest can form the 

correlation matrix. 

 

3.3.3.1 Label mask of rat brain 

 After the preprocessing steps, we can obtain three time series of preprocessed fMRI 

images for one subject. The number of slices is set as 16, and there are 300 timepoints (600s) 

for one time series. The dimension of one slice is 80 × 80. So for each one time series (300 

timepoints), the size of fMRI images can be expressed as 80 × 80 × 16 × 300. This label 

mask was made slice by slice by comparing with anatomical atlas to distinguish the different 

ROIs. And there are 38 ROIs in the rat brain fMRI image, and these are shown in the Table 1. 

There are two examples of label mask and corresponding same slice fMRI image which are 

shown in Figure 16 and Figure 17. There are no ROIs in the label mask before the 4th slice 

and after the 14th slices. All the slices from the 4th slice to 14th slice of label mask and 
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corresponding fMRI image are shown in Figure B in annexes B. I have marked and pointed 

out all the ROIs with the number to show the ROIs in the label mask image clearly. 

 

 

 Table 1: 38 ROIs of the label mask 

1 Pir_r Piriform Cortex 20 Pir_l Piriform Cortex 

2 RSC_r Retrosplenial Cortex 21 RSC_l Retrosplenial Cortex 

3 Vis_r Visual Cortex 22 Vis_l Visual Cortex 

4 Hip_r Hippocampus 23 Hip_l Hippocampus 

5 Th_r Thalamus 24 Th_l Thalamus 

6 Cg_r Cingulate Cortex 25 Cg_l Cingulate Cortex 

7 SSC_r Somatosensory Cortex 26 SSC_l Somatosensory Cortex 

8 MC_r Motor Cortex 27 MC_l Motor Cortex 

9 PtA_r Parietal Association 

Cortex 

28 PtA_l Parietal Association 

Cortex 

10 PrL_r Prelimbic Cortex 29 PrL_l Prelimbic Cortex 

11 PtP_r Posterior Parietal Cortex 30 PtP_l Posterior Parietal 

Cortex 

12 CPu_r Caudate Putamen 31 CPu_l Caudate Putamen 

13 Au_r Auditory Cortex 32 Au_l Auditory Cortex 

14 DLO_r Dorsolateral Orbital 

Cortex 

33 DLO_l Dorsolateral Orbital 

Cortex 

15 TeA_r Temporal Association 

Cortex 

34 TeA_l Temporal Association 

Cortex 

16 GP_r Globus Pallidus 35 GP_l Globus Pallidus 

17 Acb_r Nucleus Accumbens 36 Acb_l Nucleus Accumbens 

18 Sep_r Septum 37 Sep_l Septum 

19 Ins_r Insula 38 Ins_l Insula 

 

 
Figure 16 The 8th slice of label mask (left) and corresponding fMRI image (right) 
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Figure 17 The 11th slice of label mask (left) and corresponding fMRI image (right) 

 

3.3.3.2 Sliding window analysis 

 Using the same data, sliding window correlation was performed using window lengths of 

30, 50 and 100 seconds with step length of 1TR (2s). We can find greater variance observed 

when shorter window lengths were used from the results.  

When the window length is short, we can observe more fluctuations of correlation time 

courses, because there are fewer points available for computing functional connectivity, and 

also there will be more sensitivity to capture real fluctuations. On the other hand, when the 

window length is large, fewer changes will be observed. The connectivity measurement is 

computed over too many timepoints, it may be less able to describe fast changes. So normally, 

the window length should be around 30-60s, which have been able to produce robust results 

in conventional acquisition [60]. Therefore, the optimal window length and step length were 

50 seconds and 1TR(2s) which were used in this master thesis to obtain the final results.  

The whole process from label mask and fMRI data to sliding window approach was 

shown in Figure 18. Because of 38 ROIs in the label mask, there are 38 signals during 300 

timepoints in the subject time courses. When the optimal window length and step length are 

selected, each two of the signals within the window are used to calculate correlation 

coefficient, and all the correlation coefficients of different connections of windowed signals 

can form one correlation matrix. After the window is shifted in time by a fixed window length, 

new correlation matrices can be obtained according to the same rule. Lastly, all the matrices 

are aggregated across subjects.  
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Figure 18: The overview of the analysis steps from the preprocessed data and the  

label mask 

 

3.3.4 K-means clustering 

 When we have obtained a series of windowed correlation matrices from sliding window 

technique step, all the series of correlation matrices of healthy rats and epileptic rats are put 

together to complete clustering to keep the same clustering standard between them.  

 K-means clustering algorithm was used to divide these dynamic FC matrices into 

separate clusters to observe the recurrence of patterns of dFC connectivity within subjects 

across time [61]. The data can be divided into a set of clusters to maximize the correlation 

within a cluster to the cluster centroid. The optimal number of clusters (k value) was 

estimated using elbow criterion, which is defined as the ratio of within cluster to between 

cluster distances [61]. An optimal k of 7 was obtained using this method with the function in 

Matlab. There are 38 ROIs, so between each pair of ROIs, and we can obtain the FC matrix 

(38 × 38). The optimal window length is 25 timepoints (50s) and step length is 1 timepoint 

(2s), so the number of windows for each time course can be calculated as 
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WN =
(300−𝑊𝐿)

𝑆𝐿
+ 1=276 

  There are six healthy and six epileptic (KA) rats in this experiment, and each subject has 

three sessions, so 276 × 12 × 3 = 9936 instances need to be divided. These instances can 

be clustered to 7 states, so each functional connectivity matrix represents the centroid of a 

cluster and belongs to one state. 

 The results of k-means clustering step show the relationship between different states and 

time series, so we can acquire how often each state occurs and how often there is a change of 

states. We can also compare the difference of these results between healthy and epileptic rats 

to complete the statistical analysis. 
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Chapter 4 Results 

4.1 Introduction 

 For the initial fMRI data, the preprocessing steps can be completed with SPM. After the 

preprocessing steps of fMRI images of rat brains, the preprocessed images can be analyzed 

with different techniques. At first, the analysis of static functional connectivity can be 

performed with static correlation matrix to represent the functional connectivity between all 

ROIs. Then, for dynamic functional connectivity, the sliding window technique is applied 

with GRETNA. A series of window length and step length are used and compared to find the 

optimal ones. After this step, we can obtain a series of correlation matrices. The k-means 

clustering can divide these matrices into seven states. From the results of this step, we can 

find the number of occurrences of different states in healthy and epileptic rats and also 

investigate the difference of the number of transitions between them.  

 

4.2 Static functional connectivity analysis 

 Although the functional connectivity between each pair of ROIs varies over time in 

reality, we can obtain one average correlation matrix over time series for each rat, and the 

mean and standard deviation (SD) of all correlation coefficients in this matrix are shown in 

Table 2. And then, we can acquire the average correlation matrix for all healthy and epileptic 

rats separately. The average correlation matrix over time for all epileptic rats is shown in 

Figure 19, and the average correlation matrix over whole time series for all healthy rats is 

shown in Figure 20.  

 From the comparison of the values in the table, we can find that the mean of correlation 

coefficient for all healthy rats is higher than epileptic rat, while the standard deviation of all 

healthy rats is lower than epileptic rats. From these two figures of average correlation matrix, 

we can also find visually the values of correlation coefficients between most of connections of 

ROIs for healthy rats are higher than epileptic rats. In order to show the difference between 

these two average correlation matrices clearly, we can obtain the subtraction of these two 

matrices by average correlation matrix for healthy rats subtracting the matrix for epileptic rats. 

The result of subtraction is shown in one same dimension matrix, which is shown in Figure 21. 

In addition, we have applied statistical analysis method, which is Mann-Whitney U test, on 

the data of these two matrices to find if there is a significant difference between these two 

matrices. Corresponding Matlab function is used to calculate the p value and we can find the 

p value is much smaller than 0.05, and it indicates there is a significant difference of the 

values in these two matrices, and we can further obtain that there is a large difference of 

functional connectivity between the 38 ROIs in the brains for healthy and epileptic rats. 
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 Table 2: Mean and SD of correlation coefficient for each rat 

Epileptic rats Mean and SD Healthy rats Mean and SD 

1 0.4782 ± 0.0063 1 0.7299 ± 0.0095 

2 0.6432 ± 0.0069 2 0.7697 ± 0.0062 

3 0.5059 ± 0.0248 3 0.7576 ± 0.0052 

4 0.5456 ± 0.0194 4 0.6276 ± 0.0059 

5 0.5565 ± 0.0052 5 0.6675 ± 0.0079 

6 0.7851 ± 0.0060 6 0.7866 ± 0.0036 

Mean and SD 

(all epileptic rats) 

0.5858 ± 0.0062 Mean and SD 

(all healthy rats) 

0.7232 ± 0.0037 

 

 

 
Figure 19: Average correlation matrix over time for all epileptic rats 

 

Figure 20: Average correlation matrix over time for all healthy rats 
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Figure 21: Subtraction of two matrices for healthy and epileptic rats 

4.3 Dynamic functional connectivity analysis 

 From the recent research, we can find that the functional connectivity between 

connections of ROIs in rat brains are dynamic, so the correlation coefficient between two 

ROIs changes over time (window number). In our study, one example connection of ROIs 

which are left hippocampus (Hip_l) and left thalamus (Th_l) is chosen to investigate the 

time-varying correlation coefficient. The location of Hip_l and Th_l in correlation matrix can 

be found from Table 1, which is shown in Figure 22Figure 22. When window length (WL=25 

timepoints=50s) and step length (SL=1 timepoint=2s) are selected, the window number WN is 

276, which can be calculated from the same formula above. And then, we can obtain the 

relationship between correlation coefficient (between Hip_l and Th_l of one healthy rat brain) 

and window number (time), which is shown in Figure 23. This graph clearly shows that the 

correlation coefficient is not unchanged or static and it is varying over time, which can 

indicate the fact of dynamic functional connectivity. 

 

Figure 22: The location of the pair of ROIs (Hip_l and Th_l) in correlation matrix 
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Figure 23: Correlation coefficient between two ROIs varies over window number 

 

 

4.4 Sliding window technique 

 To complete the analysis of dynamic functional connectivity over one time series (300 

timepoints), sliding window technique is applied to obtain a series of correlation matrices. But 

before that, we need to find the optimal window length and step length. 

 

4.4.1 Optimal window length and step length 

 Sliding window correlation was plotted as a function of time for each scan using window 

lengths of 30, 50 and 100 seconds with step length of 2s. One example from the first scan of 

the first healthy rats is shown in Figure 24. We can find that all correlation time courses 

exhibited variance over time. Comparing the difference between correlation time courses of 

different window length, we can observe greater variance when shorter window lengths are 

used. These results are consistent with previous findings in another research [60]. Based on 

this finding, the window length should be neither too short nor too large, and it should be 

around 30-60s. For step length, 1TR (2s) is chosen in this study. Therefore, the optimal 

window length and step length which are chosen in this study are 25 timepoints (50s) and 1 

timepoint (2s) separately. 
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Figure 24: Correlation is plotted as a function of window number for different window 

lengths [s] 

 

4.4.2 Sliding window technique 

 Sliding window technique was performed with GRETNA in this study, and one example 

protocol of this software to complete sliding window technique was shown in Figure 25. The 

window number for each scan per rat (WN) is 276, which can be calculated by the same 

formula above. After this step, we can obtain a series of correlation matrices for each scan per 

rat. 

 

 

Figure 25: Protocol of GRETNA to complete sliding window technique 
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4.5 Clustering 

 K-means clustering is used to cluster all the dynamic FC matrices for all scans including 

epileptic and healthy rats. An optimal k of 7 is found using elbow criterion with Matlab. From 

the materials and methods part of this thesis, we can know that there are six healthy and six 

epileptic rats in this experiment and each subject is scanned three times. The window number 

each scan per subject is 276, so there are 276 × 6 × 2 × 3 = 9936 instances in total to 

divide into separate clusters. The results of k-means clustering show that there are seven states 

for all dFC matrices, and the cluster centroids for FC states 1-7 are shown in Figure 26. 
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State 5 State 6 

  

State 7  

 

 

Figure 26: Correlation matrices of cluster centroids for FC States 1-7 

 

 We can clearly observe that there are huge differences of the values of correlation 

coefficients in these correlation matrices of seven states. The values of correlation coefficients 

in State 1, State 4 and State 5 are much higher than other States generally, and larger value in 

the correlation matrix indicates stronger functional connectivity. The highest and lowest 

values, the mean and standard deviation in each state are shown in the Table 3. 
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Table 3: Statistical results of the values in correlation matrices of seven states 

States Maximum Minimum Mean±SD Rank 

State 1 0.914 0.329 0.6271 ± 0.0042 3 

State 2 0.859 0.162 0.4947 ± 0.0047 4 

State 3 0.82 0.0308 0.3497 ± 0.0094 7 

State 4 0.964 0.676 0.8460 ± 0.0021 1 

State 5 0.939 0.508 0.7309 ± 0.0031 2 

State 6 0.912 0.018 0.4846 ± 0.0324 5 

State 7 0.964 0.03 0.3726 ± 0.0606 6 

 

Table 4: General top ten connections of ROIs for all states 

Rank 1 2 3 4 5 6 7 8 9 10 

ROIs SSC_l, 

SSC_r 

Sep_l, 

Sep_r 

Cg_l, 

Cg_r 

MC_r, 

SSC_r 

MC_l, 

SSC_r 

MC_l, 

MC_r 

MC_l, 

SSC_l 

SSC_r, 

Hip_r 

SSC_r, 

Hip_r 

SSC_l, 

Hip_r 

 

 From the Table 3, we can find that the mean values of correlation matrix in State 1, State 

4, State 5 are above 0.5, which means general stronger functional connectivity of all ROIs in 

these states. However, the mean values of correlation matrix in State 2, State 3, State 6 and 

State 7 are lower than 0.5, which means weaker functional connectivity of the ROIs in these 

states.  

 To investigate detailed connections of ROIs which show stronger functional connectivity, 

we have obtained the top ten connections of ROIs for all seven states, which are shown in 

Table A in annexes. From this table, we can find many top ten connections of ROIs are the 

same in all states, so the list of general top ten connections of ROIs for seven states is shown 

in Table 4. From these connections, the two strongest correlations occur between left and right 

somatosensory cortex (SSC_l and SSC_r), and left septum and right septum (Sep_l and Sep_r) 

while left dorsolateral orbital cortex and temporal association cortex (DLO_l and TeA_l) 

exhibit a weaker correlation. 

  

 

4.5.1 Number and percentage of occurrences of different states  

 When k-means clustering is completed to obtain seven states, the statistical calculation of 

the clustering results can be done. From the description above, we can know that 

9936 instances in total need to be divided into seven states. Therefore, the number of 

occurrences of each state is the number of instances (matrices) which are divided into this 

state in healthy or epileptic rats. The percentage of occurrences of different states is the 

number of occurrences of each state divided by the total number of instances in healthy and 

epileptic rats.  
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 We also want to investigate how stable the clustering or pattern between six healthy and 

epileptic animals is. To quantify this, the coefficient of variation (CV) needs to be calculated. 

The coefficient of variation (CV) is defined as the ratio of standard deviation σ to the mean 

μ, which is shown in this formula: 

CV =
σ

μ
 

 CV shows the extent of variability in ration to the mean of the population. CV is also a 

measure for reproducibility of the data. This coefficient can remove the effect of different 

mean on the degree of variation.  

 The percentage and the numbers of occurrences of different states for healthy rats are 

shown in Table 5. The coefficient of variation for each state or pattern can also be calculated 

by the formula above, which is also shown in Table 5. The percentage and numbers of 

occurrences of different states for epileptic rats, and the corresponding CV for each state or 

pattern are shown in Table 6. One graph to compare the number of occurrences of different 

states is shown in Figure 27. 

 

Table 5: Percentage and the number of occurrences of different stats for healthy rats 

States Healthy rats Sum CV 

(SD/Mean) 

Rank Percentage 

1 2 3 4 5 6 

State1 191 266 111 366 306 158 1398 0.413 2 28% 

State2 21 47 17 229 152 68 534 0.948 4 11% 

State3 0 5 1 34 44 32 116 1.008 5 2% 

State4 166 237 289 35 84 268 1079 0.574 3 22% 

State5 415 273 404 158 218 302 1770 0.344 1 36% 

State6 35 0 6 6 24 0 71 1.215 6 1% 

State7 0 0 0 0 0 0 0 0 7 0 

Sum 4968   100% 

 

 

Table 6: Percentage and the number of occurrences of different stats for epileptic rats 

States Epileptic rats Sum CV 

(SD/Mean) 

Rank Percentage 

1 2 3 4 5 6 

State1 85 352 119 146 260 110 1072 0.586 2 22% 

State2 414 111 113 196 359 26 1219 0.752 1 24% 

State3 295 91 119 40 113 3 661 0.917 4 13% 

State4 0 48 0 7 0 383 438 2.096 6 9% 

State5 1 224 20 163 67 302 777 0.928 3 16% 

State6 33 2 457 0 29 4 525 2.075 5 11% 

State7 0 0 0 276 0 0 276 2.449 7 5% 

Sum 4968   100% 
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Figure 27: Comparison between the number of occurrences of each state in healthy and 

epileptic rats 

 From the graph and table above, we can find that there is a big difference between 

healthy and epileptic rats in most of states. The number and percentage of occurrences of 

State 1, State 4 and State 5 for healthy rats are higher than epileptic rats and the number and 

percentage of occurrences of State 2, State 3, State 6 and State 7 for epileptic rats are higher 

than healthy rats.  

 For the coefficient of variation, we can compare the values of CV for each state or pattern. 

Higher CV shows high variability and low stability between all healthy or epileptic rats. 

Distribution with CV < 1  is considered low-variance, while those with CV > 1  are 

considered high-variance [62]. For healthy rats, CV of State 1, State 4 and State 5 are much 

lower than other states, so this indicates the patterns of State 1, State 4 and State 5 are more 

stable than other patterns. Only few healthy animals have the patterns of State 3 and State 6, 

and no healthy animals have the pattern of State 7, so this indicates low stability and 

reproducibility of these patterns for healthy rats. For epileptic rats, the patterns of State 1, 

State 2 and State 3are more stable than others. And we can also notice that few epileptic rats 

have State 4 and State 5, and only one epileptic rat has the pattern of State 7, which indicates 

low stability and low reproducibility of these patterns for epileptic rats. 

 In addition, we have to apply statistical analysis approach on these data to find if there is 

a significant difference between these two kinds of rats. Statistical analysis is a necessary tool 

to prove the findings of results and bring some reasonable support to investigate if there is a 

significant difference between two groups of experiments. In this study, Mann-Whitney U test 

[63] is used to test whether the difference between healthy and epileptic rat groups is 

significant. 
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 Mann-Whitney U test is a nonparametric test of null hypothesis which it is equally likely 

that a randomly selected value from one sample will be greater or less than another randomly 

selected value from a second sample. 

 The statistical analysis is applied to prove the significant difference between the number 

of occurrences of each state for epileptic and healthy rats. To complete the Mann-Whitney U 

test, the corresponding Matlab function is used. And for each state, the p value is calculated of 

the number of epileptic and healthy rats, and all the p values of different states are shown in 

Table 7. The null hypothesis of this test is there is no difference between epileptic and healthy 

rats in the number of occurrences of different states, and the significance level is α = 0.05. 

Therefore, there is a significant difference (p<0.05) of the number of occurrences of State 3 

between the epileptic and healthy rats. However, if the p<0.1, there is a trend towards 

significance or it is marginally significant, and it can indicate there is a marginally significant 

difference of the number of occurrences of that state between healthy and epileptic rats, such 

as the State 4 and State 5. If the p value is higher than 0.1, there is no significant difference 

between healthy and epileptic rats, such as state 1, state 2, state 6 and state 7. 

Table 7: P value of different states 

 State 1 State 2 State 3 State 4 State 5 State 6 State 7 

P value 0.2403 0.1797 0.0411 0.0909 0.0714 0.6667 1 

 

 There is a significant difference of the number of occurrences of State 3 between epileptic 

and healthy rats, and the number and percentage of occurrences of State 3 for epileptic rats are 

much higher than healthy rats. From Table 3, the mean of correlation matrix in State 3 is 

much lower than other states, which indicates the weaker functional connectivity in State 3 

than others. Therefore, the state of weaker functional connectivity (State 3) occurs more in 

epileptic rats. 

 

 

4.5.2 Number of transitions of states for each rat 

 Except for the number of different states, another important result which we can obtain 

from the k-means clustering is the number of transitions of states for each rat. The transitions 

of states indicate the frequency of the change of state. One example to show the transitions of 

states of healthy rats for one scan is shown in Figure 28. After the statistical calculation, the 

number of transitions for each scan per rat are shown in Table 8. 
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Figure 28: The relationship between states and the window number for one scan 

 

 

Table 8: The number of transitions for each scan per rat 

Rats Scans Healthy Sum Epileptic Sum 

1 1 38 99 21 56 

2 27 14 

3 34 21 

2 1 19 70 26 89 

2 27 22 

3 24 41 

3 1 30 82 28 54 

2 23 8 

3 29 18 

4 1 37 94 31 58 

2 26 1 

3 31 26 

5 1 41 103 30 91 

2 28 27 

3 34 34 

6 1 29 68 8 62 

2 16 28 

3 23 26 

 

 From the results of the table above, the mean and standard deviation of the number of 

transitions for healthy and epileptic rats can be calculated. The coefficient of variation (CV) 

of healthy and epileptic rats can also be obtained from the mean and standard deviation. The 

mean and standard deviation for healthy rats is 28.67±6.53, and CV is 0.228. The mean and 

standard deviation for epileptic rats is 22.78±10, and CV is 0.439. 
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 From the values of mean and standard deviation above, we can find that the average 

number of transitions in healthy rats is higher than epileptic rats. The standard deviation of all 

healthy rats is lower than epileptic rats, and also CV for healthy rats is lower than epileptic 

rats, which means the data about the number of transitions of healthy rats is more stable than 

epileptic rats. And there would be a large difference between the number of transitions for 

different epileptic rats. 

 

 For the statistical analysis, the Mann-Whitney U test can also be applied on the sum 

number of transitions of states for each rat. Therefore, there are six values of number of 

transitions for each group and we want to compare these by this statistical test. This test is 

used to investigate if there is a significant difference of number of transitions between six 

healthy and epileptic rats. The p value which is calculated with this statistical test is 0.0649 

(0.05 < p < 0.1), so we can't reject the null hypothesis without increasing the significance 

level, we can also find there is a marginally significant difference of the number of transitions 

of states between six healthy and epileptic rats, and the number of transitions of states in 

healthy rats is higher than epileptic rats. 
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Chapter 5 Discussion 

 In this study, we have explored the dynamic functional connectivity in the rat model of 

TLE and found the difference between healthy and epileptic rats in the percentage and 

number of states and the number of transitions of states with sliding window technique and 

clustering.  

5.1 Functional connectivity in temporal lobe epileptic rats 

5.1.1 Static functional connectivity analysis 

 In our study, for sFC analysis results, two average correlation matrices of healthy and 

epileptic rats have been obtained. We can find that the mean value of correlation coefficients 

between these ROIs for healthy rats is higher than in epileptic rats, which can indicate that 

healthy rat brains have stronger functional connectivity between these ROIs than epileptic rat 

brains. 

 One current study has compared the mean correlation matrix across all the subjects within 

the healthy and epileptic group (Luo C et al., 2011). And it reveals that functional connectivity 

in the epilepsy patient group appeared to be less than healthy group [64]. In this study, to 

compare connectivity of each pair regions, the correlation of one third of pairs of regions were 

decreased significantly (p < 0.05) in the patient group, and no significant increase of 

correlation of the pair of regions was observed in the patient [64]. Moreover, they have found 

the decreased functional connectivity in epilepsy patient may be related to attention and 

memory loss, just like the cases in Alzheimer's disease and schizophrenia [64].  

 Other previous studies (Henkin et al., 2005) have found that cognitive and behavioral 

deficits are exhibited in epilepsy patients, such as attention, memory, and language function 

[65]. In addition, reduced connectivity strength within the temporal lobe was reported in 

resting-state fMRI studies in TLE patients (Bettus et al., 2009) [66]. 

 The findings from these studies about epilepsy patients are consistent with our findings to 

support our study. 

 

5.1.2 Dynamic functional connectivity analysis 

 The dynamic functional connectivity in the rat model of TLE has been explored and 

indicated in this thesis. For dFC analysis results, seven states for all dFC matrices have been 

obtained. The mean values of the correlation matrices of these states have been calculated and 

compared, and the matrix of State 3 has the lowest mean value of correlation coefficients 

compared to other states, which is shown in Figure 29. The matrices of State 4 and 5 have the 

highest mean value of correlation coefficients compared to others, which are shown in Figure 

30. 
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 In addition, top ten connections of these ROIs for all states have been found. As expected, 

the strongest correlations occur between homologous areas in the left and right cortex 

(Keilholz S D et al.,2013) [48]. Left and right somatosensory cortex (SSC_l and SSC_r), and 

left septum and right septum (Sep_l and Sep_r) show stronger correlation than others, while 

left dorsolateral orbital cortex and temporal association cortex (DLO_l and TeA_l) exhibit a 

weaker correlation than others. Although both of SSC_l and SSC_r, and Sep_l and Sep_r are 

mirrored pairs, Sep_l and Sep_r are closely located to each other from the anatomy of brain. 

Therefore, left and right somatosensory cortex exhibit highest correlation, and this high 

correlation pair is more meaningful than Sep_l and Sep_r, which is similar to this seen in 

previous work (Williams K A et al.,2010) [67].  

 From the further investigation of the number and percentage of the occurrences of 

different states, we have found there is a significant difference of the percentage and number 

of occurrences of State 3 between epileptic and healthy rats, and the number and percentage 

of occurrences of State 3 for epileptic rats are much higher than healthy rats. Therefore, we 

can further infer that more dFC matrices of epileptic rats are divided into State 3 than healthy 

rats, and the majority of epileptic rat brains have the same characteristic as the FC of State 3. 

This can indicate that epileptic rat brains have weaker functional connectivity than healthy 

rats. In addition, the number and percentage of occurrences of State 4 and State 5 for healthy 

rats are higher than epileptic rats, so these two states with the highest correlation coefficients 

occur marginally significantly more in healthy rats than in epileptic rats. 

 

 

State 3 

 

Figure 29: The correlation matrix of State 3 
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State 4 State 5 

  

Figure 30: The correlation matrices of State 4 (left) and State 5 (right) 

 

 Another one study about dynamic functional connectivity in generalized tonic-clonic 

seizure patients have found that patients had significantly shorter dwell time in State 4 (high 

correlation state), and dwell time is measured as the average number of windows in the same 

state (Liu F et al. 2017) [68]. In addition, the fraction of time spent in this high correlation 

state was shorter than healthy controls, and fraction of time spent in each state is measured as 

the proportion of the windows in each state [68]. 

 From one study about focal epilepsy rat model, interhemispheric functional connectivity 

was reduced in the epileptic group, while interhemispheric functional connectivity remained 

stable over time in the control animals (Willem M.Otte et al. 2012) [69]. Increased 

intrahemispheric functional connectivity was found in both hemispheres in epilepsy rats [69]. 

Focal epilepsy resulted in significant lower fractional anisotropy (FA) values in white matter 

[69]. 

 These findings about dwell time in dFC analysis and focal epilepsy rat model are 

consistent with our findings to support our results. 

 

5.1.3 Number of transitions  

 From the results of this study about transitions of states, we have found there is a 

marginally significant difference of the number of transitions of states between healthy and 

epileptic rats. The mean and standard deviation for healthy rats is 28.67±6.53, and the mean 

and standard deviation for epileptic rats is 22.78±10. We can find that the average number of 

transitions in healthy rats is higher than epileptic rats, which could indicate that the healthy rat 

brains are more active than epileptic rats generally. The coefficient of variation and standard 

deviation of all healthy rats are lower than epileptic rats, which means the number of 

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



 

 
 

52 
 

transitions of healthy rats is more stable and less changeable than epileptic rats.  

 For the transitions of functional connectivity, one study found there was a significant 

difference in the number of transitions between generalized tonic-clonic seizure patients and 

healthy controls (Liu F et al. 2017), and total number of state transitions in patients was less 

than that of controls, but mean transition probability was unchanged [68].  

 

5.2 Optimal window length and step length 

 The choice of window size is an issue concerning the sliding window analysis. The 

window length should be short enough to permit the detection of fluctuations and long enough 

to allow estimation of FC [68]. In previous studies, the minimum window length should be 

larger than 1/𝑓𝑚𝑖𝑛,where 𝑓𝑚𝑖𝑛was the minimum frequency of correlation time courses [70]. In 

this study, a bandpass filter (0.01-0.1Hz) was applied to remove the physiological noise, so 

the optimal window length should be greater than (1/0.01=100s) [68]. In this study, although a 

series of window lengths and step length are used to make the plot of correlation coefficient 

as the function of time, this is not enough to find the best window length. Therefore, the 

optimal window length of 50s and step length of 2s are chosen empirically based on the graph 

which obtained from the results and previous research [71]. This previous research reported 

that cognitive states may be identified correctly from the covariance matrices estimated on as 

little as 30-60s of data. If the window size shrinks, the SNR of the estimated FC decreases 

because there are fewer points available for computing the functional connectivity [60]. 

 There are some alternatives to a fixed window size, one may estimate the change points 

in FC to demarcate the windows [72], or use multi-scale window lengths approaches [60]. 

 

5.3 Limitations and future directions  

 It is still not clear whether the observed connectivity patterns are of neural origin, or 

whether they are patterns induced by non-neural sources. Therefore, one limitation is the 

observed dynamics of FC may be driven by time-varying noise (e.g. motions of subjects and 

psychological noises). Dynamic analysis is very sensitive to the noise, and the variations of 

the noise signal level across the scan which generate strong correlated signal fluctuations, can 

be wrongly seen as dynamic of functional connectivity. This noise may not be completely 

eliminated even with most powerful preprocessing techniques. Another limitation is the white 

noise, which can exhibit the fluctuations in common FC matrices which are observed in actual 

fMRI data. Therefore, the sliding window technique should be accompanied by hypothesis 

which are supported with appropriate statistical testing [60]. And we need to find the whether 

there is a significant difference of the range of sliding window variability between two ROIs 

between two subject populations.  
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 Though k-means clustering is an efficient and robust partitioning algorithm, it has some 

limitations. It is very difficult to separate the different clusters of different sizes and densities 

of correlation matrices. There are some other clustering models, for example fuzzy-clustering 

method, which are not subject to the same limitations and may be better for FC clustering [51]. 

Many other approaches to identify FC states are also possible rather than clustering, such as 

using topological description of brain connectivity as characteristics instead of the 

connectivity values themselves [73]. Some models can be made to detect the change points in 

connectivity instead of clustering [74].  

 Future work will consider and develop methods for the identification of FC states and 

state transition. In this study, the differences between groups have been found, but the 

neurological meaning behind these alternations is not clear and this should be investigated in 

the future studies. Future work should also consider multi-modal approaches such as 

EEG-fMRI, to determine the electrophysiological difference between FC states [51], and also 

to find the mapping of cognitive states from connectivity data. Multimodal studies will also 

be important in determining which properties are neutrally or meaningful. Also, some 

techniques can be adopted from other fields for example pattern recognition from computer 

science. Finally, it is of importance to move from investigating the variations in FC with 

simple descriptive measure (for example correlation) to more complex and biologically 

informed models which allow serious inference of non-stationary functional network activity 

from fMRI data. 
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Chapter 6 Conclusion 

 In this study, the dynamic functional connectivity (dFC) is investigated using resting state 

fMRI (rs-fMRI) in a rat model of temporal lobe epilepsy. For static functional connectivity 

analysis, the average correlation matrix over time series for all healthy and epileptic rats can 

be obtained. From the comparison between these average correlation matrices, we can find 

visually the general values of correlation coefficients between ROIs for healthy rats are much 

higher than epileptic rats, and it can further indicate that the functional connectivity of ROIs 

in healthy rat brains is stronger than epileptic rats. Therefore, static analysis approaches will 

persist and continue to provide valuable information concerning healthy and epileptic brains 

of rats. However, if we desire to find a more comprehensive understanding of large-scale 

network activity, dynamic functional connectivity must be considered and evaluated. 

 For the dynamic functional connectivity, we have obtained that correlation coefficient 

between two ROIs (Hip_l and Th_l) changes over time (window number), and this can 

indicate the fact of dynamic functional connectivity at first. And then, the sliding window 

technique and k-means clustering have been performed. After the k-means clustering step, 

seven states for all dFC matrices have been obtained. From the comparison between these 

seven correlation matrices, we can obtain that the average values of correlation coefficients in 

State 1, State 4 and State 5 are higher than other states. Left and right somatosensory cortex 

shows the strongest correlation and dorsolateral orbital cortex and temporal cortex exhibits 

the weakest correlation in these high values states. In addition to the values of correlation 

matrices, the number and percentage of occurrences of different states and the number of 

transitions of states for each rat need to be investigated. Based on the statistical analysis, we 

have found there is a significant difference of the number of occurrences of State 3 between 

healthy and epileptic rats, and the number and percentage of occurrences of State 3 for 

epileptic rats are much higher than healthy rats. Because the mean value of correlation matrix 

of State 3 is much lower than other states, we can infer that epileptic rat brains have weaker 

functional connectivity of these ROIs than healthy rat brains. For the number of transitions of 

states in healthy and epileptic rats, according to the Mann-Whitney statistical analysis, we can 

find there is a marginally significant difference of the number of transitions of states between 

healthy and epileptic rats, which is the mean number of transitions in healthy rats is higher 

than epileptic rats, while the standard deviation of number of transitions in healthy rats is 

much lower than epileptic rats. Therefore, healthy rats have more transitions of functional 

connectivity than epileptic rats.  

 The dynamic functional connectivity patterns of TLE rat models have been investigated 

and found in this study. Future research is recommended to investigate dFC with more 

complex and informed model rather than correlation using new multi-modal approaches and 

some techniques from other fields. 
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Annexes   

Annexes A 

Table A: Top ten connections of ROIs for all states 

Rank 1 2 3 4 5 6 7 8 9 10 

S1 SSC_l, 

SSC_r 

Sep_l, 

Sep_r 

Cg_l, 

Cg_r 

MC_r, 

SSC_r 

MC_l, 

SSC_l 

MC_l, 

SSC_r 

SSC_l, 

MC_r 

SSC_r, 

Vis_r 

MC_l, 

MC_r 

SSC_r, 

Hip_r 

S2 Sep_l, 

Sep_r 

SSC_l, 

SSC_r 

Cg_l, 

Cg_r 

MC_r, 

SSC_r 

MC_l, 

SSC_l 

MC_l, 

SSC_r 

MC_l, 

MC_r 

SSC_l, 

MC_r 

SSC_l, 

Th_l 

SSC_r, 

Hip_r 

S3 Sep_l, 

Sep_r 

Cg_l, 

Cg_r 

SSC_l, 

SSC_r 

MC_r, 

SSC_r 

MC_l, 

MC_r 

MC_l, 

SSC_l 

SSC_r, 

Hip_r 

MC_l, 

SSC_r 

SSC_r, 

Vis_r 

SSC_l, 

Hip_r 

S4 SSC_l, 

SSC_r 

Cg_l, 

Cg_r 

Sep_l, 

Sep_r 

MC_r, 

SSC_r 

MC_l, 

MC_r 

MC_l, 

SSC_r 

MC_l, 

SSC_l 

CPU_r, 

SSC_r 

SSC_l, 

CPU_r 

SSC_r, 

Th_r 

S5 SSC_l, 

SSC_r 

Cg_l, 

Cg_r 

Sep_l, 

Sep_r 

MC_l, 

SSC_r 

MC_l, 

SSC_l 

MC_r, 

SSC_r 

MC_l, 

MC_r 

SSC_l, 

MC_r 

SSC_r, 

Hip_r 

SSC_r, 

Th_r 

S6 Sep_l, 

Sep_r 

SSC_l, 

SSC_r 

MC_r, 

SSC_r 

Cg_l, 

Cg_r 

MC_l, 

SSC_r 

SSC_l, 

MC_r 

MC_l, 

SSC_l 

CPU_r, 

SSC_r 

MC_r, 

Cg_r 

SSC_r, 

Vis_r 

S7 Sep_l, 

Sep_r 

Au_l, 

Au_r 

SSC_l, 

Th_l 

Cg_l, 

Cg_r 

SSC_l, 

RSC_l 

Hip_l, 

RSC_l 

Th_l, 

Hip_l 

SSC_l, 

Hip_l 

MC_r, 

Hip_r 

GP_l, 

GP_r 
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Annexes B  

Label Mask 

 
Figure B.1: The 4th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.2: The 5th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.3: The 6th slice of label mask (left) and corresponding fMRI image (right) 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

34 

22 

3 

15 

32 

22 

23 

3 

4 

13 

32 30 

22 
23 

21 

2 
4 

13 
11 

3 



 

 
 

63 
 

 
Figure B.4: The 7th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.5: The 8th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.6: The 9th slice of label mask (left) and corresponding fMRI image (right) 
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Figure B.7: The 10th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.8: The 11th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.9: The 12th slice of label mask (left) and corresponding fMRI image (right) 
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Figure B.10: The 13th slice of label mask (left) and corresponding fMRI image (right) 

 

 
Figure B.11: The 14th slice of label mask (left) and corresponding fMRI image (right) 
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